1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 /* 22 * Copyright 2008 Sun Microsystems, Inc. All rights reserved. 23 * Use is subject to license terms. 24 */ 25 26 27 #include <sys/debug.h> 28 #include <sys/types.h> 29 #include <sys/file.h> 30 #include <sys/errno.h> 31 #include <sys/uio.h> 32 #include <sys/open.h> 33 #include <sys/cred.h> 34 #include <sys/kmem.h> 35 #include <sys/conf.h> 36 #include <sys/cmn_err.h> 37 #include <sys/modctl.h> 38 #include <sys/disp.h> 39 #include <sys/atomic.h> 40 #include <sys/filio.h> 41 #include <sys/stat.h> /* needed for S_IFBLK and S_IFCHR */ 42 #include <sys/kstat.h> 43 44 #include <sys/ddi.h> 45 #include <sys/devops.h> 46 #include <sys/sunddi.h> 47 #include <sys/esunddi.h> 48 #include <sys/priv_names.h> 49 50 #include <sys/fssnap.h> 51 #include <sys/fssnap_if.h> 52 53 /* 54 * This module implements the file system snapshot code, which provides a 55 * point-in-time image of a file system for the purposes of online backup. 56 * There are essentially two parts to this project: the driver half and the 57 * file system half. The driver half is a pseudo device driver called 58 * "fssnap" that represents the snapshot. Each snapshot is assigned a 59 * number that corresponds to the minor number of the device, and a control 60 * device with a high minor number is used to initiate snapshot creation and 61 * deletion. For all practical purposes the driver half acts like a 62 * read-only disk device whose contents are exactly the same as the master 63 * file system at the time the snapshot was created. 64 * 65 * The file system half provides interfaces necessary for performing the 66 * file system dependent operations required to create and delete snapshots 67 * and a special driver strategy routine that must always be used by the file 68 * system for snapshots to work correctly. 69 * 70 * When a snapshot is to be created, the user utility will send an ioctl to 71 * the control device of the driver half specifying the file system to be 72 * snapshotted, the file descriptor of a backing-store file which is used to 73 * hold old data before it is overwritten, and other snapshot parameters. 74 * This ioctl is passed on to the file system specified in the original 75 * ioctl request. The file system is expected to be able to flush 76 * everything out to make the file system consistent and lock it to ensure 77 * no changes occur while the snapshot is being created. It then calls 78 * fssnap_create() to create state for a new snapshot, from which an opaque 79 * handle is returned with the snapshot locked. Next, the file system must 80 * populate the "candidate bitmap", which tells the snapshot code which 81 * "chunks" should be considered for copy-on-write (a chunk is the unit of 82 * granularity used for copy-on-write, which is independent of the device 83 * and file system block sizes). This is typically done by scanning the 84 * file system allocation bitmaps to determine which chunks contain 85 * allocated blocks in the file system at the time the snapshot was created. 86 * If a chunk has no allocated blocks, it does not need to be copied before 87 * being written to. Once the candidate bitmap is populated with 88 * fssnap_set_candidate(), the file system calls fssnap_create_done() to 89 * complete the snapshot creation and unlock the snapshot. The file system 90 * may now be unlocked and modifications to it resumed. 91 * 92 * Once a snapshot is created, the file system must perform all writes 93 * through a special strategy routine, fssnap_strategy(). This strategy 94 * routine determines whether the chunks contained by the write must be 95 * copied before being overwritten by consulting the candidate bitmap 96 * described above, and the "hastrans bitmap" which tells it whether the chunk 97 * has been copied already or not. If the chunk is a candidate but has not 98 * been copied, it reads the old data in and adds it to a queue. The 99 * old data can then be overwritten with the new data. An asynchronous 100 * task queue is dispatched for each old chunk read in which writes the old 101 * data to the backing file specified at snapshot creation time. The 102 * backing file is a sparse file the same size as the file system that 103 * contains the old data at the offset that data originally had in the 104 * file system. If the queue containing in-memory chunks gets too large, 105 * writes to the file system may be throttled by a semaphore until the 106 * task queues have a chance to push some of the chunks to the backing file. 107 * 108 * With the candidate bitmap, the hastrans bitmap, the data on the master 109 * file system, and the old data in memory and in the backing file, the 110 * snapshot pseudo-driver can piece together the original file system 111 * information to satisfy read requests. If the requested chunk is not a 112 * candidate, it returns a zeroed buffer. If the chunk is a candidate but 113 * has not been copied it reads it from the master file system. If it is a 114 * candidate and has been copied, it either copies the data from the 115 * in-memory queue or it reads it in from the backing file. The result is 116 * a replication of the original file system that can be backed up, mounted, 117 * or manipulated by other file system utilities that work on a read-only 118 * device. 119 * 120 * This module is divided into three roughly logical sections: 121 * 122 * - The snapshot driver, which is a character/block driver 123 * representing the snapshot itself. These routines are 124 * prefixed with "snap_". 125 * 126 * - The library routines that are defined in fssnap_if.h that 127 * are used by file systems that use this snapshot implementation. 128 * These functions are prefixed with "fssnap_" and are called through 129 * a function vector from the file system. 130 * 131 * - The helper routines used by the snapshot driver and the fssnap 132 * library routines for managing the translation table and other 133 * useful functions. These routines are all static and are 134 * prefixed with either "fssnap_" or "transtbl_" if they 135 * are specifically used for translation table activities. 136 */ 137 138 static dev_info_t *fssnap_dip = NULL; 139 static struct snapshot_id *snapshot = NULL; 140 static struct snapshot_id snap_ctl; 141 static int num_snapshots = 0; 142 static kmutex_t snapshot_mutex; 143 static char snapname[] = SNAP_NAME; 144 145 /* "tunable" parameters */ 146 static int fssnap_taskq_nthreads = FSSNAP_TASKQ_THREADS; 147 static uint_t fssnap_max_mem_chunks = FSSNAP_MAX_MEM_CHUNKS; 148 static int fssnap_taskq_maxtasks = FSSNAP_TASKQ_MAXTASKS; 149 150 /* static function prototypes */ 151 152 /* snapshot driver */ 153 static int snap_getinfo(dev_info_t *, ddi_info_cmd_t, void *, void **); 154 static int snap_attach(dev_info_t *dip, ddi_attach_cmd_t cmd); 155 static int snap_detach(dev_info_t *dip, ddi_detach_cmd_t cmd); 156 static int snap_open(dev_t *devp, int flag, int otyp, cred_t *cred); 157 static int snap_close(dev_t dev, int flag, int otyp, cred_t *cred); 158 static int snap_strategy(struct buf *bp); 159 static int snap_read(dev_t dev, struct uio *uiop, cred_t *credp); 160 static int snap_print(dev_t dev, char *str); 161 static int snap_ioctl(dev_t dev, int cmd, intptr_t arg, int mode, 162 cred_t *credp, int *rvalp); 163 static int snap_prop_op(dev_t dev, dev_info_t *dip, ddi_prop_op_t prop_op, 164 int flags, char *name, caddr_t valuep, int *lengthp); 165 static int snap_getchunk(struct snapshot_id *sidp, chunknumber_t chunk, 166 int offset, int len, char *buffer); 167 168 169 /* fssnap interface implementations (see fssnap_if.h) */ 170 static void fssnap_strategy_impl(void *, struct buf *); 171 static void *fssnap_create_impl(chunknumber_t, uint_t, u_offset_t, 172 struct vnode *, int, struct vnode **, char *, u_offset_t); 173 static void fssnap_set_candidate_impl(void *, chunknumber_t); 174 static int fssnap_is_candidate_impl(void *, u_offset_t); 175 static int fssnap_create_done_impl(void *); 176 static int fssnap_delete_impl(void *); 177 178 /* fssnap interface support routines */ 179 static int fssnap_translate(struct snapshot_id **, struct buf *); 180 static void fssnap_write_taskq(void *); 181 static void fssnap_create_kstats(snapshot_id_t *, int, const char *, 182 const char *); 183 static int fssnap_update_kstat_num(kstat_t *, int); 184 static void fssnap_delete_kstats(struct cow_info *); 185 186 /* translation table prototypes */ 187 static cow_map_node_t *transtbl_add(cow_map_t *, chunknumber_t, caddr_t); 188 static cow_map_node_t *transtbl_get(cow_map_t *, chunknumber_t); 189 static void transtbl_delete(cow_map_t *, cow_map_node_t *); 190 static void transtbl_free(cow_map_t *); 191 192 static kstat_t *fssnap_highwater_kstat; 193 194 /* ************************************************************************ */ 195 196 /* Device and Module Structures */ 197 198 static struct cb_ops snap_cb_ops = { 199 snap_open, 200 snap_close, 201 snap_strategy, 202 snap_print, 203 nodev, /* no snap_dump */ 204 snap_read, 205 nodev, /* no snap_write */ 206 snap_ioctl, 207 nodev, /* no snap_devmap */ 208 nodev, /* no snap_mmap */ 209 nodev, /* no snap_segmap */ 210 nochpoll, 211 snap_prop_op, 212 NULL, /* streamtab */ 213 D_64BIT | D_NEW | D_MP, /* driver compatibility */ 214 CB_REV, 215 nodev, /* async I/O read entry point */ 216 nodev /* async I/O write entry point */ 217 }; 218 219 static struct dev_ops snap_ops = { 220 DEVO_REV, 221 0, /* ref count */ 222 snap_getinfo, 223 nulldev, /* snap_identify obsolete */ 224 nulldev, /* no snap_probe */ 225 snap_attach, 226 snap_detach, 227 nodev, /* no snap_reset */ 228 &snap_cb_ops, 229 (struct bus_ops *)NULL, 230 nulldev, /* no snap_power() */ 231 ddi_quiesce_not_needed, /* quiesce */ 232 }; 233 234 extern struct mod_ops mod_driverops; 235 236 static struct modldrv md = { 237 &mod_driverops, /* Type of module. This is a driver */ 238 "snapshot driver", /* Name of the module */ 239 &snap_ops, 240 }; 241 242 static struct modlinkage ml = { 243 MODREV_1, 244 &md, 245 NULL 246 }; 247 248 static void *statep; 249 250 int 251 _init(void) 252 { 253 int error; 254 kstat_t *ksp; 255 kstat_named_t *ksdata; 256 257 error = ddi_soft_state_init(&statep, sizeof (struct snapshot_id *), 1); 258 if (error) { 259 cmn_err(CE_WARN, "_init: failed to init ddi_soft_state."); 260 return (error); 261 } 262 263 error = mod_install(&ml); 264 265 if (error) { 266 cmn_err(CE_WARN, "_init: failed to mod_install."); 267 ddi_soft_state_fini(&statep); 268 return (error); 269 } 270 271 /* 272 * Fill in the snapshot operations vector for file systems 273 * (defined in fssnap_if.c) 274 */ 275 276 snapops.fssnap_create = fssnap_create_impl; 277 snapops.fssnap_set_candidate = fssnap_set_candidate_impl; 278 snapops.fssnap_is_candidate = fssnap_is_candidate_impl; 279 snapops.fssnap_create_done = fssnap_create_done_impl; 280 snapops.fssnap_delete = fssnap_delete_impl; 281 snapops.fssnap_strategy = fssnap_strategy_impl; 282 283 mutex_init(&snapshot_mutex, NULL, MUTEX_DEFAULT, NULL); 284 285 /* 286 * Initialize the fssnap highwater kstat 287 */ 288 ksp = kstat_create(snapname, 0, FSSNAP_KSTAT_HIGHWATER, "misc", 289 KSTAT_TYPE_NAMED, 1, 0); 290 if (ksp != NULL) { 291 ksdata = (kstat_named_t *)ksp->ks_data; 292 kstat_named_init(ksdata, FSSNAP_KSTAT_HIGHWATER, 293 KSTAT_DATA_UINT32); 294 ksdata->value.ui32 = 0; 295 kstat_install(ksp); 296 } else { 297 cmn_err(CE_WARN, "_init: failed to create highwater kstat."); 298 } 299 fssnap_highwater_kstat = ksp; 300 301 return (0); 302 } 303 304 int 305 _info(struct modinfo *modinfop) 306 { 307 return (mod_info(&ml, modinfop)); 308 } 309 310 int 311 _fini(void) 312 { 313 int error; 314 315 error = mod_remove(&ml); 316 if (error) 317 return (error); 318 ddi_soft_state_fini(&statep); 319 320 /* 321 * delete the fssnap highwater kstat 322 */ 323 kstat_delete(fssnap_highwater_kstat); 324 325 mutex_destroy(&snapshot_mutex); 326 327 /* Clear out the file system operations vector */ 328 snapops.fssnap_create = NULL; 329 snapops.fssnap_set_candidate = NULL; 330 snapops.fssnap_create_done = NULL; 331 snapops.fssnap_delete = NULL; 332 snapops.fssnap_strategy = NULL; 333 334 return (0); 335 } 336 337 /* ************************************************************************ */ 338 339 /* 340 * Snapshot Driver Routines 341 * 342 * This section implements the snapshot character and block drivers. The 343 * device will appear to be a consistent read-only file system to 344 * applications that wish to back it up or mount it. The snapshot driver 345 * communicates with the file system through the translation table, which 346 * tells the snapshot driver where to find the data necessary to piece 347 * together the frozen file system. The data may either be on the master 348 * device (no translation exists), in memory (a translation exists but has 349 * not been flushed to the backing store), or in the backing store file. 350 * The read request may require the snapshot driver to retrieve data from 351 * several different places and piece it together to look like a single 352 * contiguous read. 353 * 354 * The device minor number corresponds to the snapshot number in the list of 355 * snapshot identifiers. The soft state for each minor number is simply a 356 * pointer to the snapshot id, which holds all of the snapshot state. One 357 * minor number is designated as the control device. All snapshot create 358 * and delete requests go through the control device to ensure this module 359 * is properly loaded and attached before the file system starts calling 360 * routines defined here. 361 */ 362 363 364 /* 365 * snap_getinfo() - snapshot driver getinfo(9E) routine 366 * 367 */ 368 /*ARGSUSED*/ 369 static int 370 snap_getinfo(dev_info_t *dip, ddi_info_cmd_t infocmd, void *arg, void **result) 371 { 372 switch (infocmd) { 373 case DDI_INFO_DEVT2DEVINFO: 374 *result = fssnap_dip; 375 return (DDI_SUCCESS); 376 case DDI_INFO_DEVT2INSTANCE: 377 *result = 0; /* we only have one instance */ 378 return (DDI_SUCCESS); 379 } 380 return (DDI_FAILURE); 381 } 382 383 /* 384 * snap_attach() - snapshot driver attach(9E) routine 385 * 386 * sets up snapshot control device and control state. The control state 387 * is a pointer to an "anonymous" snapshot_id for tracking opens and closes 388 */ 389 static int 390 snap_attach(dev_info_t *dip, ddi_attach_cmd_t cmd) 391 { 392 int error; 393 394 switch (cmd) { 395 case DDI_ATTACH: 396 /* create the control device */ 397 error = ddi_create_priv_minor_node(dip, SNAP_CTL_NODE, S_IFCHR, 398 SNAP_CTL_MINOR, DDI_PSEUDO, PRIVONLY_DEV, 399 PRIV_SYS_CONFIG, PRIV_SYS_CONFIG, 0666); 400 if (error == DDI_FAILURE) { 401 return (DDI_FAILURE); 402 } 403 404 rw_init(&snap_ctl.sid_rwlock, NULL, RW_DEFAULT, NULL); 405 rw_enter(&snap_ctl.sid_rwlock, RW_WRITER); 406 fssnap_dip = dip; 407 snap_ctl.sid_snapnumber = SNAP_CTL_MINOR; 408 /* the control sid is not linked into the snapshot list */ 409 snap_ctl.sid_next = NULL; 410 snap_ctl.sid_cowinfo = NULL; 411 snap_ctl.sid_flags = 0; 412 rw_exit(&snap_ctl.sid_rwlock); 413 ddi_report_dev(dip); 414 415 return (DDI_SUCCESS); 416 case DDI_PM_RESUME: 417 return (DDI_SUCCESS); 418 419 case DDI_RESUME: 420 return (DDI_SUCCESS); 421 422 default: 423 return (DDI_FAILURE); 424 } 425 } 426 427 /* 428 * snap_detach() - snapshot driver detach(9E) routine 429 * 430 * destroys snapshot control device and control state. If any snapshots 431 * are active (ie. num_snapshots != 0), the device will refuse to detach. 432 */ 433 static int 434 snap_detach(dev_info_t *dip, ddi_detach_cmd_t cmd) 435 { 436 struct snapshot_id *sidp, *sidnextp; 437 438 switch (cmd) { 439 case DDI_DETACH: 440 /* do not detach if the device is active */ 441 mutex_enter(&snapshot_mutex); 442 if ((num_snapshots != 0) || 443 ((snap_ctl.sid_flags & SID_CHAR_BUSY) != 0)) { 444 mutex_exit(&snapshot_mutex); 445 return (DDI_FAILURE); 446 } 447 448 /* free up the snapshot list */ 449 for (sidp = snapshot; sidp != NULL; sidp = sidnextp) { 450 ASSERT(SID_AVAILABLE(sidp) && 451 !RW_LOCK_HELD(&sidp->sid_rwlock)); 452 sidnextp = sidp->sid_next; 453 rw_destroy(&sidp->sid_rwlock); 454 kmem_free(sidp, sizeof (struct snapshot_id)); 455 } 456 snapshot = NULL; 457 458 /* delete the control device */ 459 ddi_remove_minor_node(dip, SNAP_CTL_NODE); 460 fssnap_dip = NULL; 461 462 ASSERT((snap_ctl.sid_flags & SID_CHAR_BUSY) == 0); 463 rw_destroy(&snap_ctl.sid_rwlock); 464 mutex_exit(&snapshot_mutex); 465 466 return (DDI_SUCCESS); 467 468 default: 469 return (DDI_FAILURE); 470 } 471 } 472 473 /* 474 * snap_open() - snapshot driver open(9E) routine 475 * 476 * marks the snapshot id as busy so it will not be recycled when deleted 477 * until the snapshot is closed. 478 */ 479 /* ARGSUSED */ 480 static int 481 snap_open(dev_t *devp, int flag, int otyp, cred_t *cred) 482 { 483 minor_t minor; 484 struct snapshot_id **sidpp, *sidp; 485 486 /* snapshots are read-only */ 487 if (flag & FWRITE) 488 return (EROFS); 489 490 minor = getminor(*devp); 491 492 if (minor == SNAP_CTL_MINOR) { 493 /* control device must be opened exclusively */ 494 if (((flag & FEXCL) != FEXCL) || (otyp != OTYP_CHR)) 495 return (EINVAL); 496 497 rw_enter(&snap_ctl.sid_rwlock, RW_WRITER); 498 if ((snap_ctl.sid_flags & SID_CHAR_BUSY) != 0) { 499 rw_exit(&snap_ctl.sid_rwlock); 500 return (EBUSY); 501 } 502 503 snap_ctl.sid_flags |= SID_CHAR_BUSY; 504 rw_exit(&snap_ctl.sid_rwlock); 505 506 return (0); 507 } 508 509 sidpp = ddi_get_soft_state(statep, minor); 510 if (sidpp == NULL || *sidpp == NULL) 511 return (ENXIO); 512 sidp = *sidpp; 513 rw_enter(&sidp->sid_rwlock, RW_WRITER); 514 515 if ((flag & FEXCL) && SID_BUSY(sidp)) { 516 rw_exit(&sidp->sid_rwlock); 517 return (EAGAIN); 518 } 519 520 ASSERT(sidpp != NULL && sidp != NULL); 521 /* check to see if this snapshot has been killed on us */ 522 if (SID_INACTIVE(sidp)) { 523 cmn_err(CE_WARN, "snap_open: snapshot %d does not exist.", 524 minor); 525 rw_exit(&sidp->sid_rwlock); 526 return (ENXIO); 527 } 528 529 switch (otyp) { 530 case OTYP_CHR: 531 sidp->sid_flags |= SID_CHAR_BUSY; 532 break; 533 case OTYP_BLK: 534 sidp->sid_flags |= SID_BLOCK_BUSY; 535 break; 536 default: 537 rw_exit(&sidp->sid_rwlock); 538 return (EINVAL); 539 } 540 541 rw_exit(&sidp->sid_rwlock); 542 543 /* 544 * at this point if a valid snapshot was found then it has 545 * been marked busy and we can use it. 546 */ 547 return (0); 548 } 549 550 /* 551 * snap_close() - snapshot driver close(9E) routine 552 * 553 * unsets the busy bits in the snapshot id. If the snapshot has been 554 * deleted while the snapshot device was open, the close call will clean 555 * up the remaining state information. 556 */ 557 /* ARGSUSED */ 558 static int 559 snap_close(dev_t dev, int flag, int otyp, cred_t *cred) 560 { 561 struct snapshot_id **sidpp, *sidp; 562 minor_t minor; 563 char name[20]; 564 565 minor = getminor(dev); 566 567 /* if this is the control device, close it and return */ 568 if (minor == SNAP_CTL_MINOR) { 569 rw_enter(&snap_ctl.sid_rwlock, RW_WRITER); 570 snap_ctl.sid_flags &= ~(SID_CHAR_BUSY); 571 rw_exit(&snap_ctl.sid_rwlock); 572 return (0); 573 } 574 575 sidpp = ddi_get_soft_state(statep, minor); 576 if (sidpp == NULL || *sidpp == NULL) { 577 cmn_err(CE_WARN, "snap_close: could not find state for " 578 "snapshot %d.", minor); 579 return (ENXIO); 580 } 581 sidp = *sidpp; 582 mutex_enter(&snapshot_mutex); 583 rw_enter(&sidp->sid_rwlock, RW_WRITER); 584 585 /* Mark the snapshot as not being busy anymore */ 586 switch (otyp) { 587 case OTYP_CHR: 588 sidp->sid_flags &= ~(SID_CHAR_BUSY); 589 break; 590 case OTYP_BLK: 591 sidp->sid_flags &= ~(SID_BLOCK_BUSY); 592 break; 593 default: 594 mutex_exit(&snapshot_mutex); 595 rw_exit(&sidp->sid_rwlock); 596 return (EINVAL); 597 } 598 599 if (SID_AVAILABLE(sidp)) { 600 /* 601 * if this is the last close on a snapshot that has been 602 * deleted, then free up the soft state. The snapdelete 603 * ioctl does not free this when the device is in use so 604 * we do it here after the last reference goes away. 605 */ 606 607 /* remove the device nodes */ 608 ASSERT(fssnap_dip != NULL); 609 (void) snprintf(name, sizeof (name), "%d", 610 sidp->sid_snapnumber); 611 ddi_remove_minor_node(fssnap_dip, name); 612 (void) snprintf(name, sizeof (name), "%d,raw", 613 sidp->sid_snapnumber); 614 ddi_remove_minor_node(fssnap_dip, name); 615 616 /* delete the state structure */ 617 ddi_soft_state_free(statep, sidp->sid_snapnumber); 618 num_snapshots--; 619 } 620 621 mutex_exit(&snapshot_mutex); 622 rw_exit(&sidp->sid_rwlock); 623 624 return (0); 625 } 626 627 /* 628 * snap_read() - snapshot driver read(9E) routine 629 * 630 * reads data from the snapshot by calling snap_strategy() through physio() 631 */ 632 /* ARGSUSED */ 633 static int 634 snap_read(dev_t dev, struct uio *uiop, cred_t *credp) 635 { 636 minor_t minor; 637 struct snapshot_id **sidpp; 638 639 minor = getminor(dev); 640 sidpp = ddi_get_soft_state(statep, minor); 641 if (sidpp == NULL || *sidpp == NULL) { 642 cmn_err(CE_WARN, 643 "snap_read: could not find state for snapshot %d.", minor); 644 return (ENXIO); 645 } 646 return (physio(snap_strategy, NULL, dev, B_READ, minphys, uiop)); 647 } 648 649 /* 650 * snap_strategy() - snapshot driver strategy(9E) routine 651 * 652 * cycles through each chunk in the requested buffer and calls 653 * snap_getchunk() on each chunk to retrieve it from the appropriate 654 * place. Once all of the parts are put together the requested buffer 655 * is returned. The snapshot driver is read-only, so a write is invalid. 656 */ 657 static int 658 snap_strategy(struct buf *bp) 659 { 660 struct snapshot_id **sidpp, *sidp; 661 minor_t minor; 662 chunknumber_t chunk; 663 int off, len; 664 u_longlong_t reqptr; 665 int error = 0; 666 size_t chunksz; 667 caddr_t buf; 668 669 /* snapshot device is read-only */ 670 if (bp->b_flags & B_WRITE) { 671 bioerror(bp, EROFS); 672 bp->b_resid = bp->b_bcount; 673 biodone(bp); 674 return (0); 675 } 676 677 minor = getminor(bp->b_edev); 678 sidpp = ddi_get_soft_state(statep, minor); 679 if (sidpp == NULL || *sidpp == NULL) { 680 cmn_err(CE_WARN, 681 "snap_strategy: could not find state for snapshot %d.", 682 minor); 683 bioerror(bp, ENXIO); 684 bp->b_resid = bp->b_bcount; 685 biodone(bp); 686 return (0); 687 } 688 sidp = *sidpp; 689 ASSERT(sidp); 690 rw_enter(&sidp->sid_rwlock, RW_READER); 691 692 if (SID_INACTIVE(sidp)) { 693 bioerror(bp, ENXIO); 694 bp->b_resid = bp->b_bcount; 695 biodone(bp); 696 rw_exit(&sidp->sid_rwlock); 697 return (0); 698 } 699 700 if (bp->b_flags & (B_PAGEIO|B_PHYS)) 701 bp_mapin(bp); 702 703 bp->b_resid = bp->b_bcount; 704 ASSERT(bp->b_un.b_addr); 705 buf = bp->b_un.b_addr; 706 707 chunksz = sidp->sid_cowinfo->cow_map.cmap_chunksz; 708 709 /* reqptr is the current DEV_BSIZE offset into the device */ 710 /* chunk is the chunk containing reqptr */ 711 /* len is the length of the request (in the current chunk) in bytes */ 712 /* off is the byte offset into the current chunk */ 713 reqptr = bp->b_lblkno; 714 while (bp->b_resid > 0) { 715 chunk = dbtocowchunk(&sidp->sid_cowinfo->cow_map, reqptr); 716 off = (reqptr % (chunksz >> DEV_BSHIFT)) << DEV_BSHIFT; 717 len = min(chunksz - off, bp->b_resid); 718 ASSERT((off + len) <= chunksz); 719 720 if ((error = snap_getchunk(sidp, chunk, off, len, buf)) != 0) { 721 /* 722 * EINVAL means the user tried to go out of range. 723 * Anything else means it's likely that we're 724 * confused. 725 */ 726 if (error != EINVAL) { 727 cmn_err(CE_WARN, "snap_strategy: error " 728 "calling snap_getchunk, chunk = %llu, " 729 "offset = %d, len = %d, resid = %lu, " 730 "error = %d.", 731 chunk, off, len, bp->b_resid, error); 732 } 733 bioerror(bp, error); 734 biodone(bp); 735 rw_exit(&sidp->sid_rwlock); 736 return (0); 737 } 738 bp->b_resid -= len; 739 reqptr += (len >> DEV_BSHIFT); 740 buf += len; 741 } 742 743 ASSERT(bp->b_resid == 0); 744 biodone(bp); 745 746 rw_exit(&sidp->sid_rwlock); 747 return (0); 748 } 749 750 /* 751 * snap_getchunk() - helper function for snap_strategy() 752 * 753 * gets the requested data from the appropriate place and fills in the 754 * buffer. chunk is the chunk number of the request, offset is the 755 * offset into that chunk and must be less than the chunk size. len is 756 * the length of the request starting at offset, and must not exceed a 757 * chunk boundary. buffer is the address to copy the data to. len 758 * bytes are copied into the buffer starting at the location specified. 759 * 760 * A chunk is located according to the following algorithm: 761 * - If the chunk does not have a translation or is not a candidate 762 * for translation, it is read straight from the master device. 763 * - If the chunk does have a translation, then it is either on 764 * disk or in memory: 765 * o If it is in memory the requested data is simply copied out 766 * of the in-memory buffer. 767 * o If it is in the backing store, it is read from there. 768 * 769 * This function does the real work of the snapshot driver. 770 */ 771 static int 772 snap_getchunk(struct snapshot_id *sidp, chunknumber_t chunk, int offset, 773 int len, char *buffer) 774 { 775 cow_map_t *cmap = &sidp->sid_cowinfo->cow_map; 776 cow_map_node_t *cmn; 777 struct buf *snapbuf; 778 int error = 0; 779 char *newbuffer; 780 int newlen = 0; 781 int partial = 0; 782 783 ASSERT(RW_READ_HELD(&sidp->sid_rwlock)); 784 ASSERT(offset + len <= cmap->cmap_chunksz); 785 786 /* 787 * Check if the chunk number is out of range and if so bail out 788 */ 789 if (chunk >= (cmap->cmap_bmsize * NBBY)) { 790 return (EINVAL); 791 } 792 793 /* 794 * If the chunk is not a candidate for translation, then the chunk 795 * was not allocated when the snapshot was taken. Since it does 796 * not contain data associated with this snapshot, just return a 797 * zero buffer instead. 798 */ 799 if (isclr(cmap->cmap_candidate, chunk)) { 800 bzero(buffer, len); 801 return (0); 802 } 803 804 /* 805 * if the chunk is a candidate for translation but a 806 * translation does not exist, then read through to the 807 * original file system. The rwlock is held until the read 808 * completes if it hasn't been translated to make sure the 809 * file system does not translate the block before we 810 * access it. If it has already been translated we don't 811 * need the lock, because the translation will never go away. 812 */ 813 rw_enter(&cmap->cmap_rwlock, RW_READER); 814 if (isclr(cmap->cmap_hastrans, chunk)) { 815 snapbuf = getrbuf(KM_SLEEP); 816 /* 817 * Reading into the buffer saves having to do a copy, 818 * but gets tricky if the request size is not a 819 * multiple of DEV_BSIZE. However, we are filling the 820 * buffer left to right, so future reads will write 821 * over any extra data we might have read. 822 */ 823 824 partial = len % DEV_BSIZE; 825 826 snapbuf->b_bcount = len; 827 snapbuf->b_lblkno = lbtodb(chunk * cmap->cmap_chunksz + offset); 828 snapbuf->b_un.b_addr = buffer; 829 830 snapbuf->b_iodone = NULL; 831 snapbuf->b_proc = NULL; /* i.e. the kernel */ 832 snapbuf->b_flags = B_READ | B_BUSY; 833 snapbuf->b_edev = sidp->sid_fvp->v_vfsp->vfs_dev; 834 835 if (partial) { 836 /* 837 * Partial block read in progress. 838 * This is bad as modules further down the line 839 * assume buf's are exact multiples of DEV_BSIZE 840 * and we end up with fewer, or zero, bytes read. 841 * To get round this we need to round up to the 842 * nearest full block read and then return only 843 * len bytes. 844 */ 845 newlen = (len - partial) + DEV_BSIZE; 846 newbuffer = kmem_alloc(newlen, KM_SLEEP); 847 848 snapbuf->b_bcount = newlen; 849 snapbuf->b_un.b_addr = newbuffer; 850 } 851 852 (void) bdev_strategy(snapbuf); 853 (void) biowait(snapbuf); 854 855 error = geterror(snapbuf); 856 857 if (partial) { 858 /* 859 * Partial block read. Now we need to bcopy the 860 * correct number of bytes back into the 861 * supplied buffer, and tidy up our temp 862 * buffer. 863 */ 864 bcopy(newbuffer, buffer, len); 865 kmem_free(newbuffer, newlen); 866 } 867 868 freerbuf(snapbuf); 869 rw_exit(&cmap->cmap_rwlock); 870 871 return (error); 872 } 873 874 /* 875 * finally, if the chunk is a candidate for translation and it 876 * has been translated, then we clone the chunk of the buffer 877 * that was copied aside by the file system. 878 * The cmap_rwlock does not need to be held after we know the 879 * data has already been copied. Once a chunk has been copied 880 * to the backing file, it is stable read only data. 881 */ 882 cmn = transtbl_get(cmap, chunk); 883 884 /* check whether the data is in memory or in the backing file */ 885 if (cmn != NULL) { 886 ASSERT(cmn->cmn_buf); 887 /* already in memory */ 888 bcopy(cmn->cmn_buf + offset, buffer, len); 889 rw_exit(&cmap->cmap_rwlock); 890 } else { 891 ssize_t resid = len; 892 int bf_index; 893 /* 894 * can cause deadlock with writer if we don't drop the 895 * cmap_rwlock before trying to get the backing store file 896 * vnode rwlock. 897 */ 898 rw_exit(&cmap->cmap_rwlock); 899 900 bf_index = chunk / cmap->cmap_chunksperbf; 901 902 /* read buffer from backing file */ 903 error = vn_rdwr(UIO_READ, 904 (sidp->sid_cowinfo->cow_backfile_array)[bf_index], 905 buffer, len, ((chunk % cmap->cmap_chunksperbf) * 906 cmap->cmap_chunksz) + offset, UIO_SYSSPACE, 0, 907 RLIM64_INFINITY, kcred, &resid); 908 } 909 910 return (error); 911 } 912 913 /* 914 * snap_print() - snapshot driver print(9E) routine 915 * 916 * prints the device identification string. 917 */ 918 static int 919 snap_print(dev_t dev, char *str) 920 { 921 struct snapshot_id **sidpp; 922 minor_t minor; 923 924 minor = getminor(dev); 925 sidpp = ddi_get_soft_state(statep, minor); 926 if (sidpp == NULL || *sidpp == NULL) { 927 cmn_err(CE_WARN, 928 "snap_print: could not find state for snapshot %d.", minor); 929 return (ENXIO); 930 } 931 932 cmn_err(CE_NOTE, "snap_print: snapshot %d: %s", minor, str); 933 934 return (0); 935 } 936 937 /* 938 * snap_prop_op() - snapshot driver prop_op(9E) routine 939 * 940 * get 32-bit and 64-bit values for size (character driver) and nblocks 941 * (block driver). 942 */ 943 static int 944 snap_prop_op(dev_t dev, dev_info_t *dip, ddi_prop_op_t prop_op, 945 int flags, char *name, caddr_t valuep, int *lengthp) 946 { 947 int minor; 948 struct snapshot_id **sidpp; 949 dev_t mdev; 950 dev_info_t *mdip; 951 int error; 952 953 minor = getminor(dev); 954 955 /* if this is the control device just check for .conf properties */ 956 if (minor == SNAP_CTL_MINOR) 957 return (ddi_prop_op(dev, dip, prop_op, flags, name, 958 valuep, lengthp)); 959 960 /* check to see if there is a master device plumbed */ 961 sidpp = ddi_get_soft_state(statep, minor); 962 if (sidpp == NULL || *sidpp == NULL) { 963 cmn_err(CE_WARN, 964 "snap_prop_op: could not find state for " 965 "snapshot %d.", minor); 966 return (DDI_PROP_NOT_FOUND); 967 } 968 969 if (((*sidpp)->sid_fvp == NULL) || ((*sidpp)->sid_fvp->v_vfsp == NULL)) 970 return (ddi_prop_op(dev, dip, prop_op, flags, name, 971 valuep, lengthp)); 972 973 /* hold master device and pass operation down */ 974 mdev = (*sidpp)->sid_fvp->v_vfsp->vfs_dev; 975 if (mdip = e_ddi_hold_devi_by_dev(mdev, 0)) { 976 977 /* get size information from the master device. */ 978 error = cdev_prop_op(mdev, mdip, 979 prop_op, flags, name, valuep, lengthp); 980 ddi_release_devi(mdip); 981 if (error == DDI_PROP_SUCCESS) 982 return (error); 983 } 984 985 /* master device did not service the request, try framework */ 986 return (ddi_prop_op(dev, dip, prop_op, flags, name, valuep, lengthp)); 987 988 } 989 990 /* 991 * snap_ioctl() - snapshot driver ioctl(9E) routine 992 * 993 * only applies to the control device. The control device accepts two 994 * ioctl requests: create a snapshot or delete a snapshot. In either 995 * case, the vnode for the requested file system is extracted, and the 996 * request is passed on to the file system via the same ioctl. The file 997 * system is responsible for doing the things necessary for creating or 998 * destroying a snapshot, including any file system specific operations 999 * that must be performed as well as setting up and deleting the snapshot 1000 * state through the fssnap interfaces. 1001 */ 1002 static int 1003 snap_ioctl(dev_t dev, int cmd, intptr_t arg, int mode, cred_t *credp, 1004 int *rvalp) 1005 { 1006 minor_t minor; 1007 int error = 0; 1008 1009 minor = getminor(dev); 1010 1011 if (minor != SNAP_CTL_MINOR) { 1012 return (EINVAL); 1013 } 1014 1015 switch (cmd) { 1016 case _FIOSNAPSHOTCREATE: 1017 { 1018 struct fiosnapcreate fc; 1019 struct file *fp; 1020 struct vnode *vp; 1021 1022 if (ddi_copyin((void *)arg, &fc, sizeof (fc), mode)) 1023 return (EFAULT); 1024 1025 /* get vnode for file system mount point */ 1026 if ((fp = getf(fc.rootfiledesc)) == NULL) 1027 return (EBADF); 1028 1029 ASSERT(fp->f_vnode); 1030 vp = fp->f_vnode; 1031 VN_HOLD(vp); 1032 releasef(fc.rootfiledesc); 1033 1034 /* pass ioctl request to file system */ 1035 error = VOP_IOCTL(vp, cmd, arg, 0, credp, rvalp, NULL); 1036 VN_RELE(vp); 1037 break; 1038 } 1039 case _FIOSNAPSHOTCREATE_MULTI: 1040 { 1041 struct fiosnapcreate_multi fc; 1042 struct file *fp; 1043 struct vnode *vp; 1044 1045 if (ddi_copyin((void *)arg, &fc, sizeof (fc), mode)) 1046 return (EFAULT); 1047 1048 /* get vnode for file system mount point */ 1049 if ((fp = getf(fc.rootfiledesc)) == NULL) 1050 return (EBADF); 1051 1052 ASSERT(fp->f_vnode); 1053 vp = fp->f_vnode; 1054 VN_HOLD(vp); 1055 releasef(fc.rootfiledesc); 1056 1057 /* pass ioctl request to file system */ 1058 error = VOP_IOCTL(vp, cmd, arg, 0, credp, rvalp, NULL); 1059 VN_RELE(vp); 1060 break; 1061 } 1062 case _FIOSNAPSHOTDELETE: 1063 { 1064 major_t major; 1065 struct fiosnapdelete fc; 1066 snapshot_id_t *sidp = NULL; 1067 snapshot_id_t *sidnextp = NULL; 1068 struct file *fp = NULL; 1069 struct vnode *vp = NULL; 1070 struct vfs *vfsp = NULL; 1071 vfsops_t *vfsops = EIO_vfsops; 1072 1073 if (ddi_copyin((void *)arg, &fc, sizeof (fc), mode)) 1074 return (EFAULT); 1075 1076 /* get vnode for file system mount point */ 1077 if ((fp = getf(fc.rootfiledesc)) == NULL) 1078 return (EBADF); 1079 1080 ASSERT(fp->f_vnode); 1081 vp = fp->f_vnode; 1082 VN_HOLD(vp); 1083 releasef(fc.rootfiledesc); 1084 /* 1085 * Test for two formats of delete and set correct minor/vp: 1086 * pseudo device: 1087 * fssnap -d [/dev/fssnap/x] 1088 * or 1089 * mount point: 1090 * fssnap -d [/mntpt] 1091 * Note that minor is verified to be equal to SNAP_CTL_MINOR 1092 * at this point which is an invalid minor number. 1093 */ 1094 ASSERT(fssnap_dip != NULL); 1095 major = ddi_driver_major(fssnap_dip); 1096 mutex_enter(&snapshot_mutex); 1097 for (sidp = snapshot; sidp != NULL; sidp = sidnextp) { 1098 rw_enter(&sidp->sid_rwlock, RW_READER); 1099 sidnextp = sidp->sid_next; 1100 /* pseudo device: */ 1101 if (major == getmajor(vp->v_rdev)) { 1102 minor = getminor(vp->v_rdev); 1103 if (sidp->sid_snapnumber == (uint_t)minor && 1104 sidp->sid_fvp) { 1105 VN_RELE(vp); 1106 vp = sidp->sid_fvp; 1107 VN_HOLD(vp); 1108 rw_exit(&sidp->sid_rwlock); 1109 break; 1110 } 1111 /* Mount point: */ 1112 } else { 1113 if (sidp->sid_fvp == vp) { 1114 minor = sidp->sid_snapnumber; 1115 rw_exit(&sidp->sid_rwlock); 1116 break; 1117 } 1118 } 1119 rw_exit(&sidp->sid_rwlock); 1120 } 1121 mutex_exit(&snapshot_mutex); 1122 /* Verify minor got set correctly above */ 1123 if (minor == SNAP_CTL_MINOR) { 1124 VN_RELE(vp); 1125 return (EINVAL); 1126 } 1127 dev = makedevice(major, minor); 1128 /* 1129 * Create dummy vfs entry 1130 * to use as a locking semaphore across the IOCTL 1131 * for mount in progress cases... 1132 */ 1133 vfsp = vfs_alloc(KM_SLEEP); 1134 VFS_INIT(vfsp, vfsops, NULL); 1135 VFS_HOLD(vfsp); 1136 vfs_addmip(dev, vfsp); 1137 if ((vfs_devmounting(dev, vfsp)) || 1138 (vfs_devismounted(dev))) { 1139 vfs_delmip(vfsp); 1140 VFS_RELE(vfsp); 1141 VN_RELE(vp); 1142 return (EBUSY); 1143 } 1144 /* 1145 * Nobody mounted but do not release mount in progress lock 1146 * until IOCTL complete to prohibit a mount sneaking 1147 * in 1148 */ 1149 error = VOP_IOCTL(vp, cmd, arg, 0, credp, rvalp, NULL); 1150 vfs_delmip(vfsp); 1151 VFS_RELE(vfsp); 1152 VN_RELE(vp); 1153 break; 1154 } 1155 default: 1156 cmn_err(CE_WARN, "snap_ioctl: Invalid ioctl cmd %d, minor %d.", 1157 cmd, minor); 1158 return (EINVAL); 1159 } 1160 1161 return (error); 1162 } 1163 1164 1165 /* ************************************************************************ */ 1166 1167 /* 1168 * Translation Table Routines 1169 * 1170 * These support routines implement a simple doubly linked list 1171 * to keep track of chunks that are currently in memory. The maximum 1172 * size of the list is determined by the fssnap_max_mem_chunks variable. 1173 * The cmap_rwlock is used to protect the linkage of the list. 1174 */ 1175 1176 /* 1177 * transtbl_add() - add a node to the translation table 1178 * 1179 * allocates a new node and points it at the buffer passed in. The node 1180 * is added to the beginning of the doubly linked list and the head of 1181 * the list is moved. The cmap_rwlock must be held as a writer through 1182 * this operation. 1183 */ 1184 static cow_map_node_t * 1185 transtbl_add(cow_map_t *cmap, chunknumber_t chunk, caddr_t buf) 1186 { 1187 cow_map_node_t *cmnode; 1188 1189 ASSERT(RW_WRITE_HELD(&cmap->cmap_rwlock)); 1190 1191 cmnode = kmem_alloc(sizeof (cow_map_node_t), KM_SLEEP); 1192 1193 /* 1194 * insert new translations at the beginning so cmn_table is always 1195 * the first node. 1196 */ 1197 cmnode->cmn_chunk = chunk; 1198 cmnode->cmn_buf = buf; 1199 cmnode->cmn_prev = NULL; 1200 cmnode->cmn_next = cmap->cmap_table; 1201 if (cmnode->cmn_next) 1202 cmnode->cmn_next->cmn_prev = cmnode; 1203 cmap->cmap_table = cmnode; 1204 1205 return (cmnode); 1206 } 1207 1208 /* 1209 * transtbl_get() - look up a node in the translation table 1210 * 1211 * called by the snapshot driver to find data that has been translated. 1212 * The lookup is done by the chunk number, and the node is returned. 1213 * If the node was not found, NULL is returned. 1214 */ 1215 static cow_map_node_t * 1216 transtbl_get(cow_map_t *cmap, chunknumber_t chunk) 1217 { 1218 cow_map_node_t *cmn; 1219 1220 ASSERT(RW_READ_HELD(&cmap->cmap_rwlock)); 1221 ASSERT(cmap); 1222 1223 /* search the translation table */ 1224 for (cmn = cmap->cmap_table; cmn != NULL; cmn = cmn->cmn_next) { 1225 if (cmn->cmn_chunk == chunk) 1226 return (cmn); 1227 } 1228 1229 /* not found */ 1230 return (NULL); 1231 } 1232 1233 /* 1234 * transtbl_delete() - delete a node from the translation table 1235 * 1236 * called when a node's data has been written out to disk. The 1237 * cmap_rwlock must be held as a writer for this operation. If the node 1238 * being deleted is the head of the list, then the head is moved to the 1239 * next node. Both the node's data and the node itself are freed. 1240 */ 1241 static void 1242 transtbl_delete(cow_map_t *cmap, cow_map_node_t *cmn) 1243 { 1244 ASSERT(RW_WRITE_HELD(&cmap->cmap_rwlock)); 1245 ASSERT(cmn); 1246 ASSERT(cmap->cmap_table); 1247 1248 /* if the head of the list is being deleted, then move the head up */ 1249 if (cmap->cmap_table == cmn) { 1250 ASSERT(cmn->cmn_prev == NULL); 1251 cmap->cmap_table = cmn->cmn_next; 1252 } 1253 1254 1255 /* make previous node's next pointer skip over current node */ 1256 if (cmn->cmn_prev != NULL) { 1257 ASSERT(cmn->cmn_prev->cmn_next == cmn); 1258 cmn->cmn_prev->cmn_next = cmn->cmn_next; 1259 } 1260 1261 /* make next node's previous pointer skip over current node */ 1262 if (cmn->cmn_next != NULL) { 1263 ASSERT(cmn->cmn_next->cmn_prev == cmn); 1264 cmn->cmn_next->cmn_prev = cmn->cmn_prev; 1265 } 1266 1267 /* free the data and the node */ 1268 ASSERT(cmn->cmn_buf); 1269 kmem_free(cmn->cmn_buf, cmap->cmap_chunksz); 1270 kmem_free(cmn, sizeof (cow_map_node_t)); 1271 } 1272 1273 /* 1274 * transtbl_free() - free the entire translation table 1275 * 1276 * called when the snapshot is deleted. This frees all of the nodes in 1277 * the translation table (but not the bitmaps). 1278 */ 1279 static void 1280 transtbl_free(cow_map_t *cmap) 1281 { 1282 cow_map_node_t *curnode; 1283 cow_map_node_t *tempnode; 1284 1285 for (curnode = cmap->cmap_table; curnode != NULL; curnode = tempnode) { 1286 tempnode = curnode->cmn_next; 1287 1288 kmem_free(curnode->cmn_buf, cmap->cmap_chunksz); 1289 kmem_free(curnode, sizeof (cow_map_node_t)); 1290 } 1291 } 1292 1293 1294 /* ************************************************************************ */ 1295 1296 /* 1297 * Interface Implementation Routines 1298 * 1299 * The following functions implement snapshot interface routines that are 1300 * called by the file system to create, delete, and use a snapshot. The 1301 * interfaces are defined in fssnap_if.c and are filled in by this driver 1302 * when it is loaded. This technique allows the file system to depend on 1303 * the interface module without having to load the full implementation and 1304 * snapshot device drivers. 1305 */ 1306 1307 /* 1308 * fssnap_strategy_impl() - strategy routine called by the file system 1309 * 1310 * called by the file system to handle copy-on-write when necessary. All 1311 * reads and writes that the file system performs should go through this 1312 * function. If the file system calls the underlying device's strategy 1313 * routine without going through fssnap_strategy() (eg. by calling 1314 * bdev_strategy()), the snapshot may not be consistent. 1315 * 1316 * This function starts by doing significant sanity checking to insure 1317 * the snapshot was not deleted out from under it or deleted and then 1318 * recreated. To do this, it checks the actual pointer passed into it 1319 * (ie. the handle held by the file system). NOTE that the parameter is 1320 * a POINTER TO A POINTER to the snapshot id. Once the snapshot id is 1321 * locked, it knows things are ok and that this snapshot is really for 1322 * this file system. 1323 * 1324 * If the request is a write, fssnap_translate() is called to determine 1325 * whether a copy-on-write is required. If it is a read, the read is 1326 * simply passed on to the underlying device. 1327 */ 1328 static void 1329 fssnap_strategy_impl(void *snapshot_id, buf_t *bp) 1330 { 1331 struct snapshot_id **sidpp; 1332 struct snapshot_id *sidp; 1333 int error; 1334 1335 /* read requests are always passed through */ 1336 if (bp->b_flags & B_READ) { 1337 (void) bdev_strategy(bp); 1338 return; 1339 } 1340 1341 /* 1342 * Because we were not able to take the snapshot read lock BEFORE 1343 * checking for a snapshot back in the file system, things may have 1344 * drastically changed out from under us. For instance, the snapshot 1345 * may have been deleted, deleted and recreated, or worse yet, deleted 1346 * for this file system but now the snapshot number is in use by another 1347 * file system. 1348 * 1349 * Having a pointer to the file system's snapshot id pointer allows us 1350 * to sanity check most of this, though it assumes the file system is 1351 * keeping track of a pointer to the snapshot_id somewhere. 1352 */ 1353 sidpp = (struct snapshot_id **)snapshot_id; 1354 sidp = *sidpp; 1355 1356 /* 1357 * if this file system's snapshot was disabled, just pass the 1358 * request through. 1359 */ 1360 if (sidp == NULL) { 1361 (void) bdev_strategy(bp); 1362 return; 1363 } 1364 1365 /* 1366 * Once we have the reader lock the snapshot will not magically go 1367 * away. But things may have changed on us before this so double check. 1368 */ 1369 rw_enter(&sidp->sid_rwlock, RW_READER); 1370 1371 /* 1372 * if an error was founds somewhere the DELETE flag will be 1373 * set to indicate the snapshot should be deleted and no new 1374 * translations should occur. 1375 */ 1376 if (sidp->sid_flags & SID_DELETE) { 1377 rw_exit(&sidp->sid_rwlock); 1378 (void) fssnap_delete_impl(sidpp); 1379 (void) bdev_strategy(bp); 1380 return; 1381 } 1382 1383 /* 1384 * If the file system is no longer pointing to the snapshot we were 1385 * called with, then it should not attempt to translate this buffer as 1386 * it may be going to a snapshot for a different file system. 1387 * Even if the file system snapshot pointer is still the same, the 1388 * snapshot may have been disabled before we got the reader lock. 1389 */ 1390 if (sidp != *sidpp || SID_INACTIVE(sidp)) { 1391 rw_exit(&sidp->sid_rwlock); 1392 (void) bdev_strategy(bp); 1393 return; 1394 } 1395 1396 /* 1397 * At this point we're sure the snapshot will not go away while the 1398 * reader lock is held, and we are reasonably certain that we are 1399 * writing to the correct snapshot. 1400 */ 1401 if ((error = fssnap_translate(sidpp, bp)) != 0) { 1402 /* 1403 * fssnap_translate can release the reader lock if it 1404 * has to wait for a semaphore. In this case it is possible 1405 * for the snapshot to be deleted in this time frame. If this 1406 * happens just sent the buf thru to the filesystems device. 1407 */ 1408 if (sidp != *sidpp || SID_INACTIVE(sidp)) { 1409 rw_exit(&sidp->sid_rwlock); 1410 (void) bdev_strategy(bp); 1411 return; 1412 } 1413 bioerror(bp, error); 1414 biodone(bp); 1415 } 1416 rw_exit(&sidp->sid_rwlock); 1417 } 1418 1419 /* 1420 * fssnap_translate() - helper function for fssnap_strategy() 1421 * 1422 * performs the actual copy-on-write for write requests, if required. 1423 * This function does the real work of the file system side of things. 1424 * 1425 * It first checks the candidate bitmap to quickly determine whether any 1426 * action is necessary. If the candidate bitmap indicates the chunk was 1427 * allocated when the snapshot was created, then it checks to see whether 1428 * a translation already exists. If a translation already exists then no 1429 * action is required. If the chunk is a candidate for copy-on-write, 1430 * and a translation does not already exist, then the chunk is read in 1431 * and a node is added to the translation table. 1432 * 1433 * Once all of the chunks in the request range have been copied (if they 1434 * needed to be), then the original request can be satisfied and the old 1435 * data can be overwritten. 1436 */ 1437 static int 1438 fssnap_translate(struct snapshot_id **sidpp, struct buf *wbp) 1439 { 1440 snapshot_id_t *sidp = *sidpp; 1441 struct buf *oldbp; /* buffer to store old data in */ 1442 struct cow_info *cowp = sidp->sid_cowinfo; 1443 cow_map_t *cmap = &cowp->cow_map; 1444 cow_map_node_t *cmn; 1445 chunknumber_t cowchunk, startchunk, endchunk; 1446 int error; 1447 int throttle_write = 0; 1448 1449 /* make sure the snapshot is active */ 1450 ASSERT(RW_READ_HELD(&sidp->sid_rwlock)); 1451 1452 startchunk = dbtocowchunk(cmap, wbp->b_lblkno); 1453 endchunk = dbtocowchunk(cmap, wbp->b_lblkno + 1454 ((wbp->b_bcount-1) >> DEV_BSHIFT)); 1455 1456 /* 1457 * Do not throttle the writes of the fssnap taskq thread and 1458 * the log roll (trans_roll) thread. Furthermore the writes to 1459 * the on-disk log are also not subject to throttling. 1460 * The fssnap_write_taskq thread's write can block on the throttling 1461 * semaphore which leads to self-deadlock as this same thread 1462 * releases the throttling semaphore after completing the IO. 1463 * If the trans_roll thread's write is throttled then we can deadlock 1464 * because the fssnap_taskq_thread which releases the throttling 1465 * semaphore can block waiting for log space which can only be 1466 * released by the trans_roll thread. 1467 */ 1468 1469 throttle_write = !(taskq_member(cowp->cow_taskq, curthread) || 1470 tsd_get(bypass_snapshot_throttle_key)); 1471 1472 /* 1473 * Iterate through all chunks covered by this write and perform the 1474 * copy-aside if necessary. Once all chunks have been safely 1475 * stowed away, the new data may be written in a single sweep. 1476 * 1477 * For each chunk in the range, the following sequence is performed: 1478 * - Is the chunk a candidate for translation? 1479 * o If not, then no translation is necessary, continue 1480 * - If it is a candidate, then does it already have a translation? 1481 * o If so, then no translation is necessary, continue 1482 * - If it is a candidate, but does not yet have a translation, 1483 * then read the old data and schedule an asynchronous taskq 1484 * to write the old data to the backing file. 1485 * 1486 * Once this has been performed over the entire range of chunks, then 1487 * it is safe to overwrite the data that is there. 1488 * 1489 * Note that no lock is required to check the candidate bitmap because 1490 * it never changes once the snapshot is created. The reader lock is 1491 * taken to check the hastrans bitmap since it may change. If it 1492 * turns out a copy is required, then the lock is upgraded to a 1493 * writer, and the bitmap is re-checked as it may have changed while 1494 * the lock was released. Finally, the write lock is held while 1495 * reading the old data to make sure it is not translated out from 1496 * under us. 1497 * 1498 * This locking mechanism should be sufficient to handle multiple 1499 * threads writing to overlapping chunks simultaneously. 1500 */ 1501 for (cowchunk = startchunk; cowchunk <= endchunk; cowchunk++) { 1502 /* 1503 * If the cowchunk is outside of the range of our 1504 * candidate maps, then simply break out of the 1505 * loop and pass the I/O through to bdev_strategy. 1506 * This would occur if the file system has grown 1507 * larger since the snapshot was taken. 1508 */ 1509 if (cowchunk >= (cmap->cmap_bmsize * NBBY)) 1510 break; 1511 1512 /* 1513 * If no disk blocks were allocated in this chunk when the 1514 * snapshot was created then no copy-on-write will be 1515 * required. Since this bitmap is read-only no locks are 1516 * necessary. 1517 */ 1518 if (isclr(cmap->cmap_candidate, cowchunk)) { 1519 continue; 1520 } 1521 1522 /* 1523 * If a translation already exists, the data can be written 1524 * through since the old data has already been saved off. 1525 */ 1526 if (isset(cmap->cmap_hastrans, cowchunk)) { 1527 continue; 1528 } 1529 1530 1531 /* 1532 * Throttle translations if there are too many outstanding 1533 * chunks in memory. The semaphore is sema_v'd by the taskq. 1534 * 1535 * You can't keep the sid_rwlock if you would go to sleep. 1536 * This will result in deadlock when someone tries to delete 1537 * the snapshot (wants the sid_rwlock as a writer, but can't 1538 * get it). 1539 */ 1540 if (throttle_write) { 1541 if (sema_tryp(&cmap->cmap_throttle_sem) == 0) { 1542 rw_exit(&sidp->sid_rwlock); 1543 atomic_add_32(&cmap->cmap_waiters, 1); 1544 sema_p(&cmap->cmap_throttle_sem); 1545 atomic_add_32(&cmap->cmap_waiters, -1); 1546 rw_enter(&sidp->sid_rwlock, RW_READER); 1547 1548 /* 1549 * Now since we released the sid_rwlock the state may 1550 * have transitioned underneath us. so check that again. 1551 */ 1552 if (sidp != *sidpp || SID_INACTIVE(sidp)) { 1553 sema_v(&cmap->cmap_throttle_sem); 1554 return (ENXIO); 1555 } 1556 } 1557 } 1558 1559 /* 1560 * Acquire the lock as a writer and check to see if a 1561 * translation has been added in the meantime. 1562 */ 1563 rw_enter(&cmap->cmap_rwlock, RW_WRITER); 1564 if (isset(cmap->cmap_hastrans, cowchunk)) { 1565 if (throttle_write) 1566 sema_v(&cmap->cmap_throttle_sem); 1567 rw_exit(&cmap->cmap_rwlock); 1568 continue; /* go to the next chunk */ 1569 } 1570 1571 /* 1572 * read a full chunk of data from the requested offset rounded 1573 * down to the nearest chunk size. 1574 */ 1575 oldbp = getrbuf(KM_SLEEP); 1576 oldbp->b_lblkno = cowchunktodb(cmap, cowchunk); 1577 oldbp->b_edev = wbp->b_edev; 1578 oldbp->b_bcount = cmap->cmap_chunksz; 1579 oldbp->b_bufsize = cmap->cmap_chunksz; 1580 oldbp->b_iodone = NULL; 1581 oldbp->b_proc = NULL; 1582 oldbp->b_flags = B_READ; 1583 oldbp->b_un.b_addr = kmem_alloc(cmap->cmap_chunksz, KM_SLEEP); 1584 1585 (void) bdev_strategy(oldbp); 1586 (void) biowait(oldbp); 1587 1588 /* 1589 * It's ok to bail in the middle of translating the range 1590 * because the extra copy-asides will not hurt anything 1591 * (except by using extra space in the backing store). 1592 */ 1593 if ((error = geterror(oldbp)) != 0) { 1594 cmn_err(CE_WARN, "fssnap_translate: error reading " 1595 "old data for snapshot %d, chunk %llu, disk block " 1596 "%lld, size %lu, error %d.", sidp->sid_snapnumber, 1597 cowchunk, oldbp->b_lblkno, oldbp->b_bcount, error); 1598 kmem_free(oldbp->b_un.b_addr, cmap->cmap_chunksz); 1599 freerbuf(oldbp); 1600 rw_exit(&cmap->cmap_rwlock); 1601 if (throttle_write) 1602 sema_v(&cmap->cmap_throttle_sem); 1603 return (error); 1604 } 1605 1606 /* 1607 * add the node to the translation table and save a reference 1608 * to pass to the taskq for writing out to the backing file 1609 */ 1610 cmn = transtbl_add(cmap, cowchunk, oldbp->b_un.b_addr); 1611 freerbuf(oldbp); 1612 1613 /* 1614 * Add a reference to the snapshot id so the lower level 1615 * processing (ie. the taskq) can get back to the state 1616 * information. 1617 */ 1618 cmn->cmn_sid = sidp; 1619 cmn->release_sem = throttle_write; 1620 setbit(cmap->cmap_hastrans, cowchunk); 1621 1622 rw_exit(&cmap->cmap_rwlock); 1623 1624 /* 1625 * schedule the asynchronous write to the backing file 1626 */ 1627 if (cowp->cow_backfile_array != NULL) 1628 (void) taskq_dispatch(cowp->cow_taskq, 1629 fssnap_write_taskq, cmn, TQ_SLEEP); 1630 } 1631 1632 /* 1633 * Write new data in place of the old data. At this point all of the 1634 * chunks touched by this write have been copied aside and so the new 1635 * data can be written out all at once. 1636 */ 1637 (void) bdev_strategy(wbp); 1638 1639 return (0); 1640 } 1641 1642 /* 1643 * fssnap_write_taskq() - write in-memory translations to the backing file 1644 * 1645 * writes in-memory translations to the backing file asynchronously. A 1646 * task is dispatched each time a new translation is created. The task 1647 * writes the data to the backing file and removes it from the memory 1648 * list. The throttling semaphore is released only if the particular 1649 * translation was throttled in fssnap_translate. 1650 */ 1651 static void 1652 fssnap_write_taskq(void *arg) 1653 { 1654 cow_map_node_t *cmn = (cow_map_node_t *)arg; 1655 snapshot_id_t *sidp = cmn->cmn_sid; 1656 cow_info_t *cowp = sidp->sid_cowinfo; 1657 cow_map_t *cmap = &cowp->cow_map; 1658 int error; 1659 int bf_index; 1660 int release_sem = cmn->release_sem; 1661 1662 /* 1663 * The sid_rwlock does not need to be held here because the taskqs 1664 * are destroyed explicitly by fssnap_delete (with the sid_rwlock 1665 * held as a writer). taskq_destroy() will flush all of the tasks 1666 * out before fssnap_delete frees up all of the structures. 1667 */ 1668 1669 /* if the snapshot was disabled from under us, drop the request. */ 1670 rw_enter(&sidp->sid_rwlock, RW_READER); 1671 if (SID_INACTIVE(sidp)) { 1672 rw_exit(&sidp->sid_rwlock); 1673 if (release_sem) 1674 sema_v(&cmap->cmap_throttle_sem); 1675 return; 1676 } 1677 rw_exit(&sidp->sid_rwlock); 1678 1679 atomic_add_64((uint64_t *)&cmap->cmap_nchunks, 1); 1680 1681 if ((cmap->cmap_maxsize != 0) && 1682 ((cmap->cmap_nchunks * cmap->cmap_chunksz) > cmap->cmap_maxsize)) { 1683 cmn_err(CE_WARN, "fssnap_write_taskq: snapshot %d (%s) has " 1684 "reached the maximum backing file size specified (%llu " 1685 "bytes) and will be deleted.", sidp->sid_snapnumber, 1686 (char *)cowp->cow_kstat_mntpt->ks_data, 1687 cmap->cmap_maxsize); 1688 if (release_sem) 1689 sema_v(&cmap->cmap_throttle_sem); 1690 atomic_or_uint(&sidp->sid_flags, SID_DELETE); 1691 return; 1692 } 1693 1694 /* perform the write */ 1695 bf_index = cmn->cmn_chunk / cmap->cmap_chunksperbf; 1696 1697 if (error = vn_rdwr(UIO_WRITE, (cowp->cow_backfile_array)[bf_index], 1698 cmn->cmn_buf, cmap->cmap_chunksz, 1699 (cmn->cmn_chunk % cmap->cmap_chunksperbf) * cmap->cmap_chunksz, 1700 UIO_SYSSPACE, 0, RLIM64_INFINITY, kcred, (ssize_t *)NULL)) { 1701 cmn_err(CE_WARN, "fssnap_write_taskq: error writing to " 1702 "backing file. DELETING SNAPSHOT %d, backing file path " 1703 "%s, offset %llu bytes, error %d.", sidp->sid_snapnumber, 1704 (char *)cowp->cow_kstat_bfname->ks_data, 1705 cmn->cmn_chunk * cmap->cmap_chunksz, error); 1706 if (release_sem) 1707 sema_v(&cmap->cmap_throttle_sem); 1708 atomic_or_uint(&sidp->sid_flags, SID_DELETE); 1709 return; 1710 } 1711 1712 /* 1713 * now remove the node and buffer from memory 1714 */ 1715 rw_enter(&cmap->cmap_rwlock, RW_WRITER); 1716 transtbl_delete(cmap, cmn); 1717 rw_exit(&cmap->cmap_rwlock); 1718 1719 /* Allow more translations */ 1720 if (release_sem) 1721 sema_v(&cmap->cmap_throttle_sem); 1722 1723 } 1724 1725 /* 1726 * fssnap_create_impl() - called from the file system to create a new snapshot 1727 * 1728 * allocates and initializes the structures needed for a new snapshot. 1729 * This is called by the file system when it receives an ioctl request to 1730 * create a new snapshot. An unused snapshot identifier is either found 1731 * or created, and eventually returned as the opaque handle the file 1732 * system will use to identify this snapshot. The snapshot number 1733 * associated with the snapshot identifier is the same as the minor 1734 * number for the snapshot device that is used to access that snapshot. 1735 * 1736 * The snapshot can not be used until the candidate bitmap is populated 1737 * by the file system (see fssnap_set_candidate_impl()), and the file 1738 * system finishes the setup process by calling fssnap_create_done(). 1739 * Nearly all of the snapshot locks are held for the duration of the 1740 * create, and are not released until fssnap_create_done is called(). 1741 */ 1742 static void * 1743 fssnap_create_impl(chunknumber_t nchunks, uint_t chunksz, u_offset_t maxsize, 1744 struct vnode *fsvp, int backfilecount, struct vnode **bfvpp, char *backpath, 1745 u_offset_t max_backfile_size) 1746 { 1747 refstr_t *mountpoint; 1748 char taskqname[50]; 1749 struct cow_info *cowp; 1750 struct cow_map *cmap; 1751 struct snapshot_id *sidp; 1752 int lastsnap; 1753 1754 /* 1755 * Sanity check the parameters we care about 1756 * (we don't care about the informational parameters) 1757 */ 1758 if ((nchunks == 0) || 1759 ((chunksz % DEV_BSIZE) != 0) || 1760 (bfvpp == NULL)) { 1761 return (NULL); 1762 } 1763 1764 /* 1765 * Look for unused snapshot identifiers. Snapshot ids are never 1766 * freed, but deleted snapshot ids will be recycled as needed. 1767 */ 1768 mutex_enter(&snapshot_mutex); 1769 1770 findagain: 1771 lastsnap = 0; 1772 for (sidp = snapshot; sidp != NULL; sidp = sidp->sid_next) { 1773 if (sidp->sid_snapnumber > lastsnap) 1774 lastsnap = sidp->sid_snapnumber; 1775 1776 /* 1777 * The sid_rwlock is taken as a reader initially so that 1778 * activity on each snapshot is not stalled while searching 1779 * for a free snapshot id. 1780 */ 1781 rw_enter(&sidp->sid_rwlock, RW_READER); 1782 1783 /* 1784 * If the snapshot has been deleted and nobody is using the 1785 * snapshot device than we can reuse this snapshot_id. If 1786 * the snapshot is marked to be deleted (SID_DELETE), then 1787 * it hasn't been deleted yet so don't reuse it. 1788 */ 1789 if (SID_AVAILABLE(sidp)) 1790 break; /* This spot is unused, so take it */ 1791 rw_exit(&sidp->sid_rwlock); 1792 } 1793 1794 /* 1795 * add a new snapshot identifier if there are no deleted 1796 * entries. Since it doesn't matter what order the entries 1797 * are in we can just add it to the beginning of the list. 1798 */ 1799 if (sidp) { 1800 if (rw_tryupgrade(&sidp->sid_rwlock) == 0) { 1801 /* someone else grabbed it as a writer, try again */ 1802 rw_exit(&sidp->sid_rwlock); 1803 goto findagain; 1804 } 1805 } else { 1806 /* Create a new node if we didn't find an unused one */ 1807 sidp = kmem_alloc(sizeof (struct snapshot_id), KM_SLEEP); 1808 rw_init(&sidp->sid_rwlock, NULL, RW_DEFAULT, NULL); 1809 rw_enter(&sidp->sid_rwlock, RW_WRITER); 1810 sidp->sid_snapnumber = (snapshot == NULL) ? 0 : lastsnap + 1; 1811 sidp->sid_cowinfo = NULL; 1812 sidp->sid_flags = 0; 1813 sidp->sid_next = snapshot; 1814 snapshot = sidp; 1815 } 1816 1817 ASSERT(RW_WRITE_HELD(&sidp->sid_rwlock)); 1818 ASSERT(sidp->sid_cowinfo == NULL); 1819 ASSERT(sidp->sid_snapnumber <= (lastsnap + 1)); 1820 1821 sidp->sid_flags |= SID_CREATING; 1822 /* The root vnode is held until snap_delete_impl() is called */ 1823 VN_HOLD(fsvp); 1824 sidp->sid_fvp = fsvp; 1825 num_snapshots++; 1826 1827 /* allocate and initialize structures */ 1828 1829 cowp = kmem_zalloc(sizeof (struct cow_info), KM_SLEEP); 1830 1831 cowp->cow_backfile_array = bfvpp; 1832 cowp->cow_backcount = backfilecount; 1833 cowp->cow_backfile_sz = max_backfile_size; 1834 1835 /* 1836 * Initialize task queues for this snapshot. Only a small number 1837 * of threads are required because they will be serialized on the 1838 * backing file's reader/writer lock anyway. 1839 */ 1840 (void) snprintf(taskqname, sizeof (taskqname), "%s_taskq_%d", snapname, 1841 sidp->sid_snapnumber); 1842 cowp->cow_taskq = taskq_create(taskqname, fssnap_taskq_nthreads, 1843 minclsyspri, 1, fssnap_taskq_maxtasks, 0); 1844 1845 /* don't allow tasks to start until after everything is ready */ 1846 taskq_suspend(cowp->cow_taskq); 1847 1848 /* initialize translation table */ 1849 cmap = &cowp->cow_map; 1850 rw_init(&cmap->cmap_rwlock, NULL, RW_DEFAULT, NULL); 1851 rw_enter(&cmap->cmap_rwlock, RW_WRITER); 1852 1853 sema_init(&cmap->cmap_throttle_sem, fssnap_max_mem_chunks, NULL, 1854 SEMA_DEFAULT, NULL); 1855 1856 cmap->cmap_chunksz = chunksz; 1857 cmap->cmap_maxsize = maxsize; 1858 cmap->cmap_chunksperbf = max_backfile_size / chunksz; 1859 1860 /* 1861 * allocate one bit per chunk for the bitmaps, round up 1862 */ 1863 cmap->cmap_bmsize = (nchunks + (NBBY - 1)) / NBBY; 1864 cmap->cmap_hastrans = kmem_zalloc(cmap->cmap_bmsize, KM_SLEEP); 1865 cmap->cmap_candidate = kmem_zalloc(cmap->cmap_bmsize, KM_SLEEP); 1866 1867 sidp->sid_cowinfo = cowp; 1868 1869 /* initialize kstats for this snapshot */ 1870 mountpoint = vfs_getmntpoint(fsvp->v_vfsp); 1871 fssnap_create_kstats(sidp, sidp->sid_snapnumber, 1872 refstr_value(mountpoint), backpath); 1873 refstr_rele(mountpoint); 1874 1875 mutex_exit(&snapshot_mutex); 1876 1877 /* 1878 * return with snapshot id rwlock held as a writer until 1879 * fssnap_create_done is called 1880 */ 1881 return (sidp); 1882 } 1883 1884 /* 1885 * fssnap_set_candidate_impl() - mark a chunk as a candidate for copy-on-write 1886 * 1887 * sets a bit in the candidate bitmap that indicates that a chunk is a 1888 * candidate for copy-on-write. Typically, chunks that are allocated on 1889 * the file system at the time the snapshot is taken are candidates, 1890 * while chunks that have no allocated data do not need to be copied. 1891 * Chunks containing metadata must be marked as candidates as well. 1892 */ 1893 static void 1894 fssnap_set_candidate_impl(void *snapshot_id, chunknumber_t chunknumber) 1895 { 1896 struct snapshot_id *sid = snapshot_id; 1897 struct cow_info *cowp = sid->sid_cowinfo; 1898 struct cow_map *cmap = &cowp->cow_map; 1899 1900 /* simple bitmap operation for now */ 1901 ASSERT(chunknumber < (cmap->cmap_bmsize * NBBY)); 1902 setbit(cmap->cmap_candidate, chunknumber); 1903 } 1904 1905 /* 1906 * fssnap_is_candidate_impl() - check whether a chunk is a candidate 1907 * 1908 * returns 0 if the chunk is not a candidate and 1 if the chunk is a 1909 * candidate. This can be used by the file system to change behavior for 1910 * chunks that might induce a copy-on-write. The offset is specified in 1911 * bytes since the chunk size may not be known by the file system. 1912 */ 1913 static int 1914 fssnap_is_candidate_impl(void *snapshot_id, u_offset_t off) 1915 { 1916 struct snapshot_id *sid = snapshot_id; 1917 struct cow_info *cowp = sid->sid_cowinfo; 1918 struct cow_map *cmap = &cowp->cow_map; 1919 ulong_t chunknumber = off / cmap->cmap_chunksz; 1920 1921 /* simple bitmap operation for now */ 1922 ASSERT(chunknumber < (cmap->cmap_bmsize * NBBY)); 1923 return (isset(cmap->cmap_candidate, chunknumber)); 1924 } 1925 1926 /* 1927 * fssnap_create_done_impl() - complete the snapshot setup process 1928 * 1929 * called when the file system is done populating the candidate bitmap 1930 * and it is ready to start using the snapshot. This routine releases 1931 * the snapshot locks, allows taskq tasks to start processing, and 1932 * creates the device minor nodes associated with the snapshot. 1933 */ 1934 static int 1935 fssnap_create_done_impl(void *snapshot_id) 1936 { 1937 struct snapshot_id **sidpp, *sidp = snapshot_id; 1938 struct cow_info *cowp; 1939 struct cow_map *cmap; 1940 int snapnumber = -1; 1941 char name[20]; 1942 1943 /* sid rwlock and cmap rwlock should be taken from fssnap_create */ 1944 ASSERT(sidp); 1945 ASSERT(RW_WRITE_HELD(&sidp->sid_rwlock)); 1946 ASSERT(sidp->sid_cowinfo); 1947 1948 cowp = sidp->sid_cowinfo; 1949 cmap = &cowp->cow_map; 1950 1951 ASSERT(RW_WRITE_HELD(&cmap->cmap_rwlock)); 1952 1953 sidp->sid_flags &= ~(SID_CREATING | SID_DISABLED); 1954 snapnumber = sidp->sid_snapnumber; 1955 1956 /* allocate state structure and find new snapshot id */ 1957 if (ddi_soft_state_zalloc(statep, snapnumber) != DDI_SUCCESS) { 1958 cmn_err(CE_WARN, 1959 "snap_ioctl: create: could not allocate " 1960 "state for snapshot %d.", snapnumber); 1961 snapnumber = -1; 1962 goto out; 1963 } 1964 1965 sidpp = ddi_get_soft_state(statep, snapnumber); 1966 *sidpp = sidp; 1967 1968 /* create minor node based on snapshot number */ 1969 ASSERT(fssnap_dip != NULL); 1970 (void) snprintf(name, sizeof (name), "%d", snapnumber); 1971 if (ddi_create_minor_node(fssnap_dip, name, S_IFBLK, 1972 snapnumber, DDI_PSEUDO, 0) != DDI_SUCCESS) { 1973 cmn_err(CE_WARN, "snap_ioctl: could not create " 1974 "block minor node for snapshot %d.", snapnumber); 1975 snapnumber = -1; 1976 goto out; 1977 } 1978 1979 (void) snprintf(name, sizeof (name), "%d,raw", snapnumber); 1980 if (ddi_create_minor_node(fssnap_dip, name, S_IFCHR, 1981 snapnumber, DDI_PSEUDO, 0) != DDI_SUCCESS) { 1982 cmn_err(CE_WARN, "snap_ioctl: could not create " 1983 "character minor node for snapshot %d.", snapnumber); 1984 snapnumber = -1; 1985 } 1986 1987 out: 1988 rw_exit(&sidp->sid_rwlock); 1989 rw_exit(&cmap->cmap_rwlock); 1990 1991 /* let the taskq threads start processing */ 1992 taskq_resume(cowp->cow_taskq); 1993 1994 return (snapnumber); 1995 } 1996 1997 /* 1998 * fssnap_delete_impl() - delete a snapshot 1999 * 2000 * used when a snapshot is no longer needed. This is called by the file 2001 * system when it receives an ioctl request to delete a snapshot. It is 2002 * also called internally when error conditions such as disk full, errors 2003 * writing to the backing file, or backing file maxsize exceeded occur. 2004 * If the snapshot device is busy when the delete request is received, 2005 * all state will be deleted except for the soft state and device files 2006 * associated with the snapshot; they will be deleted when the snapshot 2007 * device is closed. 2008 * 2009 * NOTE this function takes a POINTER TO A POINTER to the snapshot id, 2010 * and expects to be able to set the handle held by the file system to 2011 * NULL. This depends on the file system checking that variable for NULL 2012 * before calling fssnap_strategy(). 2013 */ 2014 static int 2015 fssnap_delete_impl(void *snapshot_id) 2016 { 2017 struct snapshot_id **sidpp = (struct snapshot_id **)snapshot_id; 2018 struct snapshot_id *sidp; 2019 struct snapshot_id **statesidpp; 2020 struct cow_info *cowp; 2021 struct cow_map *cmap; 2022 char name[20]; 2023 int snapnumber = -1; 2024 vnode_t **vpp; 2025 2026 /* 2027 * sidp is guaranteed to be valid if sidpp is valid because 2028 * the snapshot list is append-only. 2029 */ 2030 if (sidpp == NULL) { 2031 return (-1); 2032 } 2033 2034 sidp = *sidpp; 2035 rw_enter(&sidp->sid_rwlock, RW_WRITER); 2036 2037 ASSERT(RW_WRITE_HELD(&sidp->sid_rwlock)); 2038 2039 /* 2040 * double check that the snapshot is still valid for THIS file system 2041 */ 2042 if (*sidpp == NULL) { 2043 rw_exit(&sidp->sid_rwlock); 2044 return (-1); 2045 } 2046 2047 /* 2048 * Now we know the snapshot is still valid and will not go away 2049 * because we have the write lock. Once the state is transitioned 2050 * to "disabling", the sid_rwlock can be released. Any pending I/O 2051 * waiting for the lock as a reader will check for this state and 2052 * abort without touching data that may be getting freed. 2053 */ 2054 sidp->sid_flags |= SID_DISABLING; 2055 if (sidp->sid_flags & SID_DELETE) { 2056 cmn_err(CE_WARN, "Snapshot %d automatically deleted.", 2057 sidp->sid_snapnumber); 2058 sidp->sid_flags &= ~(SID_DELETE); 2059 } 2060 2061 2062 /* 2063 * This is pointing into file system specific data! The assumption is 2064 * that fssnap_strategy() gets called from the file system based on 2065 * whether this reference to the snapshot_id is NULL or not. So 2066 * setting this to NULL should disable snapshots for the file system. 2067 */ 2068 *sidpp = NULL; 2069 2070 /* remove cowinfo */ 2071 cowp = sidp->sid_cowinfo; 2072 if (cowp == NULL) { 2073 rw_exit(&sidp->sid_rwlock); 2074 return (-1); 2075 } 2076 rw_exit(&sidp->sid_rwlock); 2077 2078 /* destroy task queues first so they don't reference freed data. */ 2079 if (cowp->cow_taskq) { 2080 taskq_destroy(cowp->cow_taskq); 2081 cowp->cow_taskq = NULL; 2082 } 2083 2084 if (cowp->cow_backfile_array != NULL) { 2085 for (vpp = cowp->cow_backfile_array; *vpp; vpp++) 2086 VN_RELE(*vpp); 2087 kmem_free(cowp->cow_backfile_array, 2088 (cowp->cow_backcount + 1) * sizeof (vnode_t *)); 2089 cowp->cow_backfile_array = NULL; 2090 } 2091 2092 sidp->sid_cowinfo = NULL; 2093 2094 /* remove cmap */ 2095 cmap = &cowp->cow_map; 2096 ASSERT(cmap); 2097 2098 if (cmap->cmap_candidate) 2099 kmem_free(cmap->cmap_candidate, cmap->cmap_bmsize); 2100 2101 if (cmap->cmap_hastrans) 2102 kmem_free(cmap->cmap_hastrans, cmap->cmap_bmsize); 2103 2104 if (cmap->cmap_table) 2105 transtbl_free(&cowp->cow_map); 2106 2107 rw_destroy(&cmap->cmap_rwlock); 2108 2109 while (cmap->cmap_waiters) { 2110 sema_p(&cmap->cmap_throttle_sem); 2111 sema_v(&cmap->cmap_throttle_sem); 2112 } 2113 sema_destroy(&cmap->cmap_throttle_sem); 2114 2115 /* remove kstats */ 2116 fssnap_delete_kstats(cowp); 2117 2118 kmem_free(cowp, sizeof (struct cow_info)); 2119 2120 statesidpp = ddi_get_soft_state(statep, sidp->sid_snapnumber); 2121 if (statesidpp == NULL || *statesidpp == NULL) { 2122 cmn_err(CE_WARN, 2123 "fssnap_delete_impl: could not find state for snapshot %d.", 2124 sidp->sid_snapnumber); 2125 } 2126 ASSERT(*statesidpp == sidp); 2127 2128 /* 2129 * Leave the node in the list marked DISABLED so it can be reused 2130 * and avoid many race conditions. Return the snapshot number 2131 * that was deleted. 2132 */ 2133 mutex_enter(&snapshot_mutex); 2134 rw_enter(&sidp->sid_rwlock, RW_WRITER); 2135 sidp->sid_flags &= ~(SID_DISABLING); 2136 sidp->sid_flags |= SID_DISABLED; 2137 VN_RELE(sidp->sid_fvp); 2138 sidp->sid_fvp = NULL; 2139 snapnumber = sidp->sid_snapnumber; 2140 2141 /* 2142 * If the snapshot is not busy, free the device info now. Otherwise 2143 * the device nodes are freed in snap_close() when the device is 2144 * closed. The sid will not be reused until the device is not busy. 2145 */ 2146 if (SID_AVAILABLE(sidp)) { 2147 /* remove the device nodes */ 2148 ASSERT(fssnap_dip != NULL); 2149 (void) snprintf(name, sizeof (name), "%d", 2150 sidp->sid_snapnumber); 2151 ddi_remove_minor_node(fssnap_dip, name); 2152 (void) snprintf(name, sizeof (name), "%d,raw", 2153 sidp->sid_snapnumber); 2154 ddi_remove_minor_node(fssnap_dip, name); 2155 2156 /* delete the state structure */ 2157 ddi_soft_state_free(statep, sidp->sid_snapnumber); 2158 num_snapshots--; 2159 } 2160 2161 mutex_exit(&snapshot_mutex); 2162 rw_exit(&sidp->sid_rwlock); 2163 2164 return (snapnumber); 2165 } 2166 2167 /* 2168 * fssnap_create_kstats() - allocate and initialize snapshot kstats 2169 * 2170 */ 2171 static void 2172 fssnap_create_kstats(snapshot_id_t *sidp, int snapnum, 2173 const char *mountpoint, const char *backfilename) 2174 { 2175 kstat_t *num, *mntpoint, *bfname; 2176 kstat_named_t *hw; 2177 struct cow_info *cowp = sidp->sid_cowinfo; 2178 struct cow_kstat_num *stats; 2179 2180 /* update the high water mark */ 2181 if (fssnap_highwater_kstat == NULL) { 2182 cmn_err(CE_WARN, "fssnap_create_kstats: failed to lookup " 2183 "high water mark kstat."); 2184 return; 2185 } 2186 2187 hw = (kstat_named_t *)fssnap_highwater_kstat->ks_data; 2188 if (hw->value.ui32 < snapnum) 2189 hw->value.ui32 = snapnum; 2190 2191 /* initialize the mount point kstat */ 2192 kstat_delete_byname(snapname, snapnum, FSSNAP_KSTAT_MNTPT); 2193 2194 if (mountpoint != NULL) { 2195 mntpoint = kstat_create(snapname, snapnum, FSSNAP_KSTAT_MNTPT, 2196 "misc", KSTAT_TYPE_RAW, strlen(mountpoint) + 1, 0); 2197 if (mntpoint == NULL) { 2198 cowp->cow_kstat_mntpt = NULL; 2199 cmn_err(CE_WARN, "fssnap_create_kstats: failed to " 2200 "create mount point kstat"); 2201 } else { 2202 (void) strncpy(mntpoint->ks_data, mountpoint, 2203 strlen(mountpoint)); 2204 cowp->cow_kstat_mntpt = mntpoint; 2205 kstat_install(mntpoint); 2206 } 2207 } else { 2208 cowp->cow_kstat_mntpt = NULL; 2209 cmn_err(CE_WARN, "fssnap_create_kstats: mount point not " 2210 "specified."); 2211 } 2212 2213 /* initialize the backing file kstat */ 2214 kstat_delete_byname(snapname, snapnum, FSSNAP_KSTAT_BFNAME); 2215 2216 if (backfilename == NULL) { 2217 cowp->cow_kstat_bfname = NULL; 2218 } else { 2219 bfname = kstat_create(snapname, snapnum, FSSNAP_KSTAT_BFNAME, 2220 "misc", KSTAT_TYPE_RAW, strlen(backfilename) + 1, 0); 2221 if (bfname != NULL) { 2222 (void) strncpy(bfname->ks_data, backfilename, 2223 strlen(backfilename)); 2224 cowp->cow_kstat_bfname = bfname; 2225 kstat_install(bfname); 2226 } else { 2227 cowp->cow_kstat_bfname = NULL; 2228 cmn_err(CE_WARN, "fssnap_create_kstats: failed to " 2229 "create backing file name kstat"); 2230 } 2231 } 2232 2233 /* initialize numeric kstats */ 2234 kstat_delete_byname(snapname, snapnum, FSSNAP_KSTAT_NUM); 2235 2236 num = kstat_create(snapname, snapnum, FSSNAP_KSTAT_NUM, 2237 "misc", KSTAT_TYPE_NAMED, 2238 sizeof (struct cow_kstat_num) / sizeof (kstat_named_t), 2239 0); 2240 if (num == NULL) { 2241 cmn_err(CE_WARN, "fssnap_create_kstats: failed to create " 2242 "numeric kstats"); 2243 cowp->cow_kstat_num = NULL; 2244 return; 2245 } 2246 2247 cowp->cow_kstat_num = num; 2248 stats = num->ks_data; 2249 num->ks_update = fssnap_update_kstat_num; 2250 num->ks_private = sidp; 2251 2252 kstat_named_init(&stats->ckn_state, FSSNAP_KSTAT_NUM_STATE, 2253 KSTAT_DATA_INT32); 2254 kstat_named_init(&stats->ckn_bfsize, FSSNAP_KSTAT_NUM_BFSIZE, 2255 KSTAT_DATA_UINT64); 2256 kstat_named_init(&stats->ckn_maxsize, FSSNAP_KSTAT_NUM_MAXSIZE, 2257 KSTAT_DATA_UINT64); 2258 kstat_named_init(&stats->ckn_createtime, FSSNAP_KSTAT_NUM_CREATETIME, 2259 KSTAT_DATA_LONG); 2260 kstat_named_init(&stats->ckn_chunksize, FSSNAP_KSTAT_NUM_CHUNKSIZE, 2261 KSTAT_DATA_UINT32); 2262 2263 /* initialize the static kstats */ 2264 stats->ckn_chunksize.value.ui32 = cowp->cow_map.cmap_chunksz; 2265 stats->ckn_maxsize.value.ui64 = cowp->cow_map.cmap_maxsize; 2266 stats->ckn_createtime.value.l = gethrestime_sec(); 2267 2268 kstat_install(num); 2269 } 2270 2271 /* 2272 * fssnap_update_kstat_num() - update a numerical snapshot kstat value 2273 * 2274 */ 2275 int 2276 fssnap_update_kstat_num(kstat_t *ksp, int rw) 2277 { 2278 snapshot_id_t *sidp = (snapshot_id_t *)ksp->ks_private; 2279 struct cow_info *cowp = sidp->sid_cowinfo; 2280 struct cow_kstat_num *stats = ksp->ks_data; 2281 2282 if (rw == KSTAT_WRITE) 2283 return (EACCES); 2284 2285 /* state */ 2286 if (sidp->sid_flags & SID_CREATING) 2287 stats->ckn_state.value.i32 = COWSTATE_CREATING; 2288 else if (SID_INACTIVE(sidp)) 2289 stats->ckn_state.value.i32 = COWSTATE_DISABLED; 2290 else if (SID_BUSY(sidp)) 2291 stats->ckn_state.value.i32 = COWSTATE_ACTIVE; 2292 else 2293 stats->ckn_state.value.i32 = COWSTATE_IDLE; 2294 2295 /* bfsize */ 2296 stats->ckn_bfsize.value.ui64 = cowp->cow_map.cmap_nchunks * 2297 cowp->cow_map.cmap_chunksz; 2298 2299 return (0); 2300 } 2301 2302 /* 2303 * fssnap_delete_kstats() - deallocate snapshot kstats 2304 * 2305 */ 2306 void 2307 fssnap_delete_kstats(struct cow_info *cowp) 2308 { 2309 if (cowp->cow_kstat_num != NULL) { 2310 kstat_delete(cowp->cow_kstat_num); 2311 cowp->cow_kstat_num = NULL; 2312 } 2313 if (cowp->cow_kstat_mntpt != NULL) { 2314 kstat_delete(cowp->cow_kstat_mntpt); 2315 cowp->cow_kstat_mntpt = NULL; 2316 } 2317 if (cowp->cow_kstat_bfname != NULL) { 2318 kstat_delete(cowp->cow_kstat_bfname); 2319 cowp->cow_kstat_bfname = NULL; 2320 } 2321 } 2322