xref: /illumos-gate/usr/src/uts/common/io/fibre-channel/fca/qlge/qlge.c (revision dd72704bd9e794056c558153663c739e2012d721)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 
22 /*
23  * Copyright 2010 QLogic Corporation. All rights reserved.
24  */
25 
26 /*
27  * Copyright (c) 2018, Joyent, Inc.
28  */
29 
30 #include <qlge.h>
31 #include <sys/atomic.h>
32 #include <sys/strsubr.h>
33 #include <sys/pattr.h>
34 #include <netinet/in.h>
35 #include <netinet/ip.h>
36 #include <netinet/ip6.h>
37 #include <netinet/tcp.h>
38 #include <netinet/udp.h>
39 #include <inet/ip.h>
40 
41 
42 
43 /*
44  * Local variables
45  */
46 static struct ether_addr ql_ether_broadcast_addr =
47 	{0xff, 0xff, 0xff, 0xff, 0xff, 0xff};
48 static char version[] = "GLDv3 QLogic 81XX " VERSIONSTR;
49 
50 /*
51  * Local function prototypes
52  */
53 static void ql_free_resources(qlge_t *);
54 static void ql_fini_kstats(qlge_t *);
55 static uint32_t ql_get_link_state(qlge_t *);
56 static void ql_read_conf(qlge_t *);
57 static int ql_alloc_phys(dev_info_t *, ddi_dma_handle_t *,
58     ddi_device_acc_attr_t *, uint_t, ddi_acc_handle_t *,
59     size_t, size_t, caddr_t *, ddi_dma_cookie_t *);
60 static int ql_alloc_phys_rbuf(dev_info_t *, ddi_dma_handle_t *,
61     ddi_device_acc_attr_t *, uint_t, ddi_acc_handle_t *,
62     size_t, size_t, caddr_t *, ddi_dma_cookie_t *);
63 static void ql_free_phys(ddi_dma_handle_t *, ddi_acc_handle_t *);
64 static int ql_set_routing_reg(qlge_t *, uint32_t, uint32_t, int);
65 static int ql_attach(dev_info_t *, ddi_attach_cmd_t);
66 static int ql_detach(dev_info_t *, ddi_detach_cmd_t);
67 static int ql_bringdown_adapter(qlge_t *);
68 static int ql_bringup_adapter(qlge_t *);
69 static int ql_asic_reset(qlge_t *);
70 static void ql_wake_mpi_reset_soft_intr(qlge_t *);
71 static void ql_stop_timer(qlge_t *qlge);
72 static void ql_fm_fini(qlge_t *qlge);
73 int ql_clean_outbound_rx_ring(struct rx_ring *rx_ring);
74 
75 /*
76  * TX dma maping handlers allow multiple sscatter-gather lists
77  */
78 ddi_dma_attr_t  tx_mapping_dma_attr = {
79 	DMA_ATTR_V0,			/* dma_attr_version */
80 	QL_DMA_LOW_ADDRESS,		/* low DMA address range */
81 	QL_DMA_HIGH_64BIT_ADDRESS,	/* high DMA address range */
82 	QL_DMA_XFER_COUNTER,		/* DMA counter register */
83 	QL_DMA_ADDRESS_ALIGNMENT,	/* DMA address alignment, default - 8 */
84 	QL_DMA_BURSTSIZES,		/* DMA burstsizes */
85 	QL_DMA_MIN_XFER_SIZE,		/* min effective DMA size */
86 	QL_DMA_MAX_XFER_SIZE,		/* max DMA xfer size */
87 	QL_DMA_SEGMENT_BOUNDARY,	/* segment boundary */
88 	QL_MAX_TX_DMA_HANDLES,		/* s/g list length */
89 	QL_DMA_GRANULARITY,		/* granularity of device */
90 	DDI_DMA_RELAXED_ORDERING	/* DMA transfer flags */
91 };
92 
93 /*
94  * Receive buffers and Request/Response queues do not allow scatter-gather lists
95  */
96 ddi_dma_attr_t  dma_attr = {
97 	DMA_ATTR_V0,			/* dma_attr_version */
98 	QL_DMA_LOW_ADDRESS,		/* low DMA address range */
99 	QL_DMA_HIGH_64BIT_ADDRESS,	/* high DMA address range */
100 	QL_DMA_XFER_COUNTER,		/* DMA counter register */
101 	QL_DMA_ADDRESS_ALIGNMENT,	/* DMA address alignment, default - 8 */
102 	QL_DMA_BURSTSIZES,		/* DMA burstsizes */
103 	QL_DMA_MIN_XFER_SIZE,		/* min effective DMA size */
104 	QL_DMA_MAX_XFER_SIZE,		/* max DMA xfer size */
105 	QL_DMA_SEGMENT_BOUNDARY,	/* segment boundary */
106 	1,				/* s/g list length, i.e no sg list */
107 	QL_DMA_GRANULARITY,		/* granularity of device */
108 	QL_DMA_XFER_FLAGS		/* DMA transfer flags */
109 };
110 /*
111  * Receive buffers do not allow scatter-gather lists
112  */
113 ddi_dma_attr_t  dma_attr_rbuf = {
114 	DMA_ATTR_V0,			/* dma_attr_version */
115 	QL_DMA_LOW_ADDRESS,		/* low DMA address range */
116 	QL_DMA_HIGH_64BIT_ADDRESS,	/* high DMA address range */
117 	QL_DMA_XFER_COUNTER,		/* DMA counter register */
118 	0x1,				/* DMA address alignment, default - 8 */
119 	QL_DMA_BURSTSIZES,		/* DMA burstsizes */
120 	QL_DMA_MIN_XFER_SIZE,		/* min effective DMA size */
121 	QL_DMA_MAX_XFER_SIZE,		/* max DMA xfer size */
122 	QL_DMA_SEGMENT_BOUNDARY,	/* segment boundary */
123 	1,				/* s/g list length, i.e no sg list */
124 	QL_DMA_GRANULARITY,		/* granularity of device */
125 	DDI_DMA_RELAXED_ORDERING	/* DMA transfer flags */
126 };
127 /*
128  * DMA access attribute structure.
129  */
130 /* device register access from host */
131 ddi_device_acc_attr_t ql_dev_acc_attr = {
132 	DDI_DEVICE_ATTR_V0,
133 	DDI_STRUCTURE_LE_ACC,
134 	DDI_STRICTORDER_ACC
135 };
136 
137 /* host ring descriptors */
138 ddi_device_acc_attr_t ql_desc_acc_attr = {
139 	DDI_DEVICE_ATTR_V0,
140 	DDI_NEVERSWAP_ACC,
141 	DDI_STRICTORDER_ACC
142 };
143 
144 /* host ring buffer */
145 ddi_device_acc_attr_t ql_buf_acc_attr = {
146 	DDI_DEVICE_ATTR_V0,
147 	DDI_NEVERSWAP_ACC,
148 	DDI_STRICTORDER_ACC
149 };
150 
151 /*
152  * Hash key table for Receive Side Scaling (RSS) support
153  */
154 const uint8_t key_data[] = {
155 	0x23, 0x64, 0xa1, 0xaa, 0x37, 0xc0, 0xed, 0x05, 0x2b, 0x36,
156 	0x50, 0x5c, 0x45, 0x1e, 0x7e, 0xc8, 0x5d, 0x2a, 0x54, 0x2f,
157 	0xe4, 0x3d, 0x0f, 0xbb, 0x91, 0xd9, 0x25, 0x60, 0xd4, 0xf8,
158 	0x12, 0xa0, 0x59, 0x4b, 0x9e, 0x8a, 0x51, 0xda, 0xcd, 0x49};
159 
160 /*
161  * Shadow Registers:
162  * Outbound queues have a consumer index that is maintained by the chip.
163  * Inbound queues have a producer index that is maintained by the chip.
164  * For lower overhead, these registers are "shadowed" to host memory
165  * which allows the device driver to track the queue progress without
166  * PCI reads. When an entry is placed on an inbound queue, the chip will
167  * update the relevant index register and then copy the value to the
168  * shadow register in host memory.
169  * Currently, ql_read_sh_reg only read Inbound queues'producer index.
170  */
171 
172 static inline unsigned int
173 ql_read_sh_reg(qlge_t *qlge, struct rx_ring *rx_ring)
174 {
175 	uint32_t rtn;
176 
177 	/* re-synchronize shadow prod index dma buffer before reading */
178 	(void) ddi_dma_sync(qlge->host_copy_shadow_dma_attr.dma_handle,
179 	    rx_ring->prod_idx_sh_reg_offset,
180 	    sizeof (uint32_t), DDI_DMA_SYNC_FORKERNEL);
181 
182 	rtn = ddi_get32(qlge->host_copy_shadow_dma_attr.acc_handle,
183 	    (uint32_t *)rx_ring->prod_idx_sh_reg);
184 
185 	return (rtn);
186 }
187 
188 /*
189  * Read 32 bit atomically
190  */
191 uint32_t
192 ql_atomic_read_32(volatile uint32_t *target)
193 {
194 	/*
195 	 * atomic_add_32_nv returns the new value after the add,
196 	 * we are adding 0 so we should get the original value
197 	 */
198 	return (atomic_add_32_nv(target, 0));
199 }
200 
201 /*
202  * Set 32 bit atomically
203  */
204 void
205 ql_atomic_set_32(volatile uint32_t *target, uint32_t newval)
206 {
207 	(void) atomic_swap_32(target, newval);
208 }
209 
210 
211 /*
212  * Setup device PCI configuration registers.
213  * Kernel context.
214  */
215 static void
216 ql_pci_config(qlge_t *qlge)
217 {
218 	uint16_t w;
219 
220 	qlge->vendor_id = (uint16_t)pci_config_get16(qlge->pci_handle,
221 	    PCI_CONF_VENID);
222 	qlge->device_id = (uint16_t)pci_config_get16(qlge->pci_handle,
223 	    PCI_CONF_DEVID);
224 
225 	/*
226 	 * we want to respect framework's setting of PCI
227 	 * configuration space command register and also
228 	 * want to make sure that all bits of interest to us
229 	 * are properly set in PCI Command register(0x04).
230 	 * PCI_COMM_IO		0x1	 I/O access enable
231 	 * PCI_COMM_MAE		0x2	 Memory access enable
232 	 * PCI_COMM_ME		0x4	 bus master enable
233 	 * PCI_COMM_MEMWR_INVAL	0x10	 memory write and invalidate enable.
234 	 */
235 	w = (uint16_t)pci_config_get16(qlge->pci_handle, PCI_CONF_COMM);
236 	w = (uint16_t)(w & (~PCI_COMM_IO));
237 	w = (uint16_t)(w | PCI_COMM_MAE | PCI_COMM_ME |
238 	    /* PCI_COMM_MEMWR_INVAL | */
239 	    PCI_COMM_PARITY_DETECT | PCI_COMM_SERR_ENABLE);
240 
241 	pci_config_put16(qlge->pci_handle, PCI_CONF_COMM, w);
242 
243 	w = pci_config_get16(qlge->pci_handle, 0x54);
244 	w = (uint16_t)(w & (~0x7000));
245 	w = (uint16_t)(w | 0x5000);
246 	pci_config_put16(qlge->pci_handle, 0x54, w);
247 
248 	ql_dump_pci_config(qlge);
249 }
250 
251 /*
252  * This routine parforms the neccessary steps to set GLD mac information
253  * such as Function number, xgmac mask and shift bits
254  */
255 static int
256 ql_set_mac_info(qlge_t *qlge)
257 {
258 	uint32_t value;
259 	int rval = DDI_FAILURE;
260 	uint32_t fn0_net, fn1_net;
261 
262 	/* set default value */
263 	qlge->fn0_net = FN0_NET;
264 	qlge->fn1_net = FN1_NET;
265 
266 	if (ql_read_processor_data(qlge, MPI_REG, &value) != DDI_SUCCESS) {
267 		cmn_err(CE_WARN, "%s(%d) read MPI register failed",
268 		    __func__, qlge->instance);
269 		goto exit;
270 	} else {
271 		fn0_net = (value >> 1) & 0x07;
272 		fn1_net = (value >> 5) & 0x07;
273 		if ((fn0_net > 4) || (fn1_net > 4) || (fn0_net == fn1_net)) {
274 			cmn_err(CE_WARN, "%s(%d) bad mpi register value %x, \n"
275 			    "nic0 function number %d,"
276 			    "nic1 function number %d "
277 			    "use default\n",
278 			    __func__, qlge->instance, value, fn0_net, fn1_net);
279 			goto exit;
280 		} else {
281 			qlge->fn0_net = fn0_net;
282 			qlge->fn1_net = fn1_net;
283 		}
284 	}
285 
286 	/* Get the function number that the driver is associated with */
287 	value = ql_read_reg(qlge, REG_STATUS);
288 	qlge->func_number = (uint8_t)((value >> 6) & 0x03);
289 	QL_PRINT(DBG_INIT, ("status register is:%x, func_number: %d\n",
290 	    value, qlge->func_number));
291 
292 	/* The driver is loaded on a non-NIC function? */
293 	if ((qlge->func_number != qlge->fn0_net) &&
294 	    (qlge->func_number != qlge->fn1_net)) {
295 		cmn_err(CE_WARN,
296 		    "Invalid function number = 0x%x\n", qlge->func_number);
297 		goto exit;
298 	}
299 	/* network port 0? */
300 	if (qlge->func_number == qlge->fn0_net) {
301 		qlge->xgmac_sem_mask = QL_PORT0_XGMAC_SEM_MASK;
302 		qlge->xgmac_sem_bits = QL_PORT0_XGMAC_SEM_BITS;
303 	} else {
304 		qlge->xgmac_sem_mask = QL_PORT1_XGMAC_SEM_MASK;
305 		qlge->xgmac_sem_bits = QL_PORT1_XGMAC_SEM_BITS;
306 	}
307 	rval = DDI_SUCCESS;
308 exit:
309 	return (rval);
310 
311 }
312 
313 /*
314  * write to doorbell register
315  */
316 void
317 ql_write_doorbell_reg(qlge_t *qlge, uint32_t *addr, uint32_t data)
318 {
319 	ddi_put32(qlge->dev_doorbell_reg_handle, addr, data);
320 }
321 
322 /*
323  * read from doorbell register
324  */
325 uint32_t
326 ql_read_doorbell_reg(qlge_t *qlge, uint32_t *addr)
327 {
328 	uint32_t ret;
329 
330 	ret = ddi_get32(qlge->dev_doorbell_reg_handle, addr);
331 
332 	return	(ret);
333 }
334 
335 /*
336  * This function waits for a specific bit to come ready
337  * in a given register.  It is used mostly by the initialize
338  * process, but is also used in kernel thread API such as
339  * netdev->set_multi, netdev->set_mac_address, netdev->vlan_rx_add_vid.
340  */
341 static int
342 ql_wait_reg_rdy(qlge_t *qlge, uint32_t reg, uint32_t bit, uint32_t err_bit)
343 {
344 	uint32_t temp;
345 	int count = UDELAY_COUNT;
346 
347 	while (count) {
348 		temp = ql_read_reg(qlge, reg);
349 
350 		/* check for errors */
351 		if ((temp & err_bit) != 0) {
352 			break;
353 		} else if ((temp & bit) != 0)
354 			return (DDI_SUCCESS);
355 		qlge_delay(UDELAY_DELAY);
356 		count--;
357 	}
358 	cmn_err(CE_WARN,
359 	    "Waiting for reg %x to come ready failed.", reg);
360 	if (qlge->fm_enable) {
361 		ql_fm_ereport(qlge, DDI_FM_DEVICE_NO_RESPONSE);
362 		atomic_or_32(&qlge->flags, ADAPTER_ERROR);
363 	}
364 	return (DDI_FAILURE);
365 }
366 
367 /*
368  * The CFG register is used to download TX and RX control blocks
369  * to the chip. This function waits for an operation to complete.
370  */
371 static int
372 ql_wait_cfg(qlge_t *qlge, uint32_t bit)
373 {
374 	return (ql_wait_reg_bit(qlge, REG_CONFIGURATION, bit, BIT_RESET, 0));
375 }
376 
377 
378 /*
379  * Used to issue init control blocks to hw. Maps control block,
380  * sets address, triggers download, waits for completion.
381  */
382 static int
383 ql_write_cfg(qlge_t *qlge, uint32_t bit, uint64_t phy_addr, uint16_t q_id)
384 {
385 	int status = DDI_SUCCESS;
386 	uint32_t mask;
387 	uint32_t value;
388 
389 	status = ql_sem_spinlock(qlge, SEM_ICB_MASK);
390 	if (status != DDI_SUCCESS) {
391 		goto exit;
392 	}
393 	status = ql_wait_cfg(qlge, bit);
394 	if (status != DDI_SUCCESS) {
395 		goto exit;
396 	}
397 
398 	ql_write_reg(qlge, REG_ICB_ACCESS_ADDRESS_LOWER, LS_64BITS(phy_addr));
399 	ql_write_reg(qlge, REG_ICB_ACCESS_ADDRESS_UPPER, MS_64BITS(phy_addr));
400 
401 	mask = CFG_Q_MASK | (bit << 16);
402 	value = bit | (q_id << CFG_Q_SHIFT);
403 	ql_write_reg(qlge, REG_CONFIGURATION, (mask | value));
404 
405 	/*
406 	 * Wait for the bit to clear after signaling hw.
407 	 */
408 	status = ql_wait_cfg(qlge, bit);
409 	ql_sem_unlock(qlge, SEM_ICB_MASK); /* does flush too */
410 
411 exit:
412 	return (status);
413 }
414 
415 /*
416  * Initialize adapter instance
417  */
418 static int
419 ql_init_instance(qlge_t *qlge)
420 {
421 	int i;
422 
423 	/* Default value */
424 	qlge->mac_flags = QL_MAC_INIT;
425 	qlge->mtu = ETHERMTU;		/* set normal size as default */
426 	qlge->page_size = VM_PAGE_SIZE;	/* default page size */
427 
428 	for (i = 0; i < MAX_RX_RINGS; i++) {
429 		qlge->rx_polls[i] = 0;
430 		qlge->rx_interrupts[i] = 0;
431 	}
432 
433 	/*
434 	 * Set up the operating parameters.
435 	 */
436 	qlge->multicast_list_count = 0;
437 
438 	/*
439 	 * Set up the max number of unicast list
440 	 */
441 	qlge->unicst_total = MAX_UNICAST_LIST_SIZE;
442 	qlge->unicst_avail = MAX_UNICAST_LIST_SIZE;
443 
444 	/*
445 	 * read user defined properties in .conf file
446 	 */
447 	ql_read_conf(qlge); /* mtu, pause, LSO etc */
448 	qlge->rx_ring_count = qlge->tx_ring_count + qlge->rss_ring_count;
449 
450 	QL_PRINT(DBG_INIT, ("mtu is %d \n", qlge->mtu));
451 
452 	/* choose Memory Space mapping and get Vendor Id, Device ID etc */
453 	ql_pci_config(qlge);
454 	qlge->ip_hdr_offset = 0;
455 
456 	if (qlge->device_id == 0x8000) {
457 		/* Schultz card */
458 		qlge->cfg_flags |= CFG_CHIP_8100;
459 		/* enable just ipv4 chksum offload for Schultz */
460 		qlge->cfg_flags |= CFG_CKSUM_FULL_IPv4;
461 		/*
462 		 * Schultz firmware does not do pseduo IP header checksum
463 		 * calculation, needed to be done by driver
464 		 */
465 		qlge->cfg_flags |= CFG_HW_UNABLE_PSEUDO_HDR_CKSUM;
466 		if (qlge->lso_enable)
467 			qlge->cfg_flags |= CFG_LSO;
468 		qlge->cfg_flags |= CFG_SUPPORT_SCATTER_GATHER;
469 		/* Schultz must split packet header */
470 		qlge->cfg_flags |= CFG_ENABLE_SPLIT_HEADER;
471 		qlge->max_read_mbx = 5;
472 		qlge->ip_hdr_offset = 2;
473 	}
474 
475 	/* Set Function Number and some of the iocb mac information */
476 	if (ql_set_mac_info(qlge) != DDI_SUCCESS)
477 		return (DDI_FAILURE);
478 
479 	/* Read network settings from NVRAM */
480 	/* After nvram is read successfully, update dev_addr */
481 	if (ql_get_flash_params(qlge) == DDI_SUCCESS) {
482 		QL_PRINT(DBG_INIT, ("mac%d address is \n", qlge->func_number));
483 		for (i = 0; i < ETHERADDRL; i++) {
484 			qlge->dev_addr.ether_addr_octet[i] =
485 			    qlge->nic_config.factory_MAC[i];
486 		}
487 	} else {
488 		cmn_err(CE_WARN, "%s(%d): Failed to read flash memory",
489 		    __func__, qlge->instance);
490 		return (DDI_FAILURE);
491 	}
492 
493 	bcopy(qlge->dev_addr.ether_addr_octet,
494 	    qlge->unicst_addr[0].addr.ether_addr_octet,
495 	    ETHERADDRL);
496 	QL_DUMP(DBG_INIT, "\t flash mac address dump:\n",
497 	    &qlge->dev_addr.ether_addr_octet[0], 8, ETHERADDRL);
498 
499 	qlge->port_link_state = LS_DOWN;
500 
501 	return (DDI_SUCCESS);
502 }
503 
504 
505 /*
506  * This hardware semaphore provides the mechanism for exclusive access to
507  * resources shared between the NIC driver, MPI firmware,
508  * FCOE firmware and the FC driver.
509  */
510 static int
511 ql_sem_trylock(qlge_t *qlge, uint32_t sem_mask)
512 {
513 	uint32_t sem_bits = 0;
514 
515 	switch (sem_mask) {
516 	case SEM_XGMAC0_MASK:
517 		sem_bits = SEM_SET << SEM_XGMAC0_SHIFT;
518 		break;
519 	case SEM_XGMAC1_MASK:
520 		sem_bits = SEM_SET << SEM_XGMAC1_SHIFT;
521 		break;
522 	case SEM_ICB_MASK:
523 		sem_bits = SEM_SET << SEM_ICB_SHIFT;
524 		break;
525 	case SEM_MAC_ADDR_MASK:
526 		sem_bits = SEM_SET << SEM_MAC_ADDR_SHIFT;
527 		break;
528 	case SEM_FLASH_MASK:
529 		sem_bits = SEM_SET << SEM_FLASH_SHIFT;
530 		break;
531 	case SEM_PROBE_MASK:
532 		sem_bits = SEM_SET << SEM_PROBE_SHIFT;
533 		break;
534 	case SEM_RT_IDX_MASK:
535 		sem_bits = SEM_SET << SEM_RT_IDX_SHIFT;
536 		break;
537 	case SEM_PROC_REG_MASK:
538 		sem_bits = SEM_SET << SEM_PROC_REG_SHIFT;
539 		break;
540 	default:
541 		cmn_err(CE_WARN, "Bad Semaphore mask!.");
542 		return (DDI_FAILURE);
543 	}
544 
545 	ql_write_reg(qlge, REG_SEMAPHORE, sem_bits | sem_mask);
546 	return (!(ql_read_reg(qlge, REG_SEMAPHORE) & sem_bits));
547 }
548 
549 /*
550  * Lock a specific bit of Semaphore register to gain
551  * access to a particular shared register
552  */
553 int
554 ql_sem_spinlock(qlge_t *qlge, uint32_t sem_mask)
555 {
556 	unsigned int wait_count = 30;
557 
558 	while (wait_count) {
559 		if (!ql_sem_trylock(qlge, sem_mask))
560 			return (DDI_SUCCESS);
561 		qlge_delay(100);
562 		wait_count--;
563 	}
564 	cmn_err(CE_WARN, "%s(%d) sem_mask 0x%x lock timeout ",
565 	    __func__, qlge->instance, sem_mask);
566 	return (DDI_FAILURE);
567 }
568 
569 /*
570  * Unock a specific bit of Semaphore register to release
571  * access to a particular shared register
572  */
573 void
574 ql_sem_unlock(qlge_t *qlge, uint32_t sem_mask)
575 {
576 	ql_write_reg(qlge, REG_SEMAPHORE, sem_mask);
577 	(void) ql_read_reg(qlge, REG_SEMAPHORE);	/* flush */
578 }
579 
580 /*
581  * Get property value from configuration file.
582  *
583  * string = property string pointer.
584  *
585  * Returns:
586  * 0xFFFFFFFF = no property else property value.
587  */
588 static uint32_t
589 ql_get_prop(qlge_t *qlge, char *string)
590 {
591 	char buf[256];
592 	uint32_t data;
593 
594 	/* Get adapter instance parameter. */
595 	(void) sprintf(buf, "hba%d-%s", qlge->instance, string);
596 	data = (uint32_t)ddi_prop_get_int(DDI_DEV_T_ANY, qlge->dip, 0, buf,
597 	    (int)0xffffffff);
598 
599 	/* Adapter instance parameter found? */
600 	if (data == 0xffffffff) {
601 		/* No, get default parameter. */
602 		data = (uint32_t)ddi_prop_get_int(DDI_DEV_T_ANY, qlge->dip, 0,
603 		    string, (int)0xffffffff);
604 	}
605 
606 	return (data);
607 }
608 
609 /*
610  * Read user setting from configuration file.
611  */
612 static void
613 ql_read_conf(qlge_t *qlge)
614 {
615 	uint32_t data;
616 
617 	/* clear configuration flags */
618 	qlge->cfg_flags = 0;
619 
620 	/* Set up the default ring sizes. */
621 	qlge->tx_ring_size = NUM_TX_RING_ENTRIES;
622 	data = ql_get_prop(qlge, "tx_ring_size");
623 	/* if data is valid */
624 	if ((data != 0xffffffff) && data) {
625 		if (qlge->tx_ring_size != data) {
626 			qlge->tx_ring_size = (uint16_t)data;
627 		}
628 	}
629 
630 	qlge->rx_ring_size = NUM_RX_RING_ENTRIES;
631 	data = ql_get_prop(qlge, "rx_ring_size");
632 	/* if data is valid */
633 	if ((data != 0xffffffff) && data) {
634 		if (qlge->rx_ring_size != data) {
635 			qlge->rx_ring_size = (uint16_t)data;
636 		}
637 	}
638 
639 	qlge->tx_ring_count = 8;
640 	data = ql_get_prop(qlge, "tx_ring_count");
641 	/* if data is valid */
642 	if ((data != 0xffffffff) && data) {
643 		if (qlge->tx_ring_count != data) {
644 			qlge->tx_ring_count = (uint16_t)data;
645 		}
646 	}
647 
648 	qlge->rss_ring_count = 8;
649 	data = ql_get_prop(qlge, "rss_ring_count");
650 	/* if data is valid */
651 	if ((data != 0xffffffff) && data) {
652 		if (qlge->rss_ring_count != data) {
653 			qlge->rss_ring_count = (uint16_t)data;
654 		}
655 	}
656 
657 	/* Get default rx_copy enable/disable. */
658 	if ((data = ql_get_prop(qlge, "force-rx-copy")) == 0xffffffff ||
659 	    data == 0) {
660 		qlge->rx_copy = B_FALSE;
661 		QL_PRINT(DBG_INIT, ("rx copy mode disabled\n"));
662 	} else if (data == 1) {
663 		qlge->rx_copy = B_TRUE;
664 		QL_PRINT(DBG_INIT, ("rx copy mode enabled\n"));
665 	}
666 
667 	qlge->rx_copy_threshold = qlge->rx_ring_size / 4;
668 	data = ql_get_prop(qlge, "rx_copy_threshold");
669 	if ((data != 0xffffffff) && (data != 0)) {
670 		qlge->rx_copy_threshold = data;
671 		cmn_err(CE_NOTE, "!new rx_copy_threshold %d \n",
672 		    qlge->rx_copy_threshold);
673 	}
674 
675 	/* Get mtu packet size. */
676 	data = ql_get_prop(qlge, "mtu");
677 	if ((data == ETHERMTU) || (data == JUMBO_MTU)) {
678 		if (qlge->mtu != data) {
679 			qlge->mtu = data;
680 			cmn_err(CE_NOTE, "new mtu is %d\n", qlge->mtu);
681 		}
682 	}
683 
684 	if (qlge->mtu == JUMBO_MTU) {
685 		qlge->rx_coalesce_usecs = DFLT_RX_COALESCE_WAIT_JUMBO;
686 		qlge->tx_coalesce_usecs = DFLT_TX_COALESCE_WAIT_JUMBO;
687 		qlge->rx_max_coalesced_frames = DFLT_RX_INTER_FRAME_WAIT_JUMBO;
688 		qlge->tx_max_coalesced_frames = DFLT_TX_INTER_FRAME_WAIT_JUMBO;
689 	}
690 
691 
692 	/* Get pause mode, default is Per Priority mode. */
693 	qlge->pause = PAUSE_MODE_PER_PRIORITY;
694 	data = ql_get_prop(qlge, "pause");
695 	if (data <= PAUSE_MODE_PER_PRIORITY) {
696 		if (qlge->pause != data) {
697 			qlge->pause = data;
698 			cmn_err(CE_NOTE, "new pause mode %d\n", qlge->pause);
699 		}
700 	}
701 	/* Receive interrupt delay */
702 	qlge->rx_coalesce_usecs = DFLT_RX_COALESCE_WAIT;
703 	data = ql_get_prop(qlge, "rx_intr_delay");
704 	/* if data is valid */
705 	if ((data != 0xffffffff) && data) {
706 		if (qlge->rx_coalesce_usecs != data) {
707 			qlge->rx_coalesce_usecs = (uint16_t)data;
708 		}
709 	}
710 	/* Rx inter-packet delay. */
711 	qlge->rx_max_coalesced_frames = DFLT_RX_INTER_FRAME_WAIT;
712 	data = ql_get_prop(qlge, "rx_ipkt_delay");
713 	/* if data is valid */
714 	if ((data != 0xffffffff) && data) {
715 		if (qlge->rx_max_coalesced_frames != data) {
716 			qlge->rx_max_coalesced_frames = (uint16_t)data;
717 		}
718 	}
719 	/* Transmit interrupt delay */
720 	qlge->tx_coalesce_usecs = DFLT_TX_COALESCE_WAIT;
721 	data = ql_get_prop(qlge, "tx_intr_delay");
722 	/* if data is valid */
723 	if ((data != 0xffffffff) && data) {
724 		if (qlge->tx_coalesce_usecs != data) {
725 			qlge->tx_coalesce_usecs = (uint16_t)data;
726 		}
727 	}
728 	/* Tx inter-packet delay. */
729 	qlge->tx_max_coalesced_frames = DFLT_TX_INTER_FRAME_WAIT;
730 	data = ql_get_prop(qlge, "tx_ipkt_delay");
731 	/* if data is valid */
732 	if ((data != 0xffffffff) && data) {
733 		if (qlge->tx_max_coalesced_frames != data) {
734 			qlge->tx_max_coalesced_frames = (uint16_t)data;
735 		}
736 	}
737 
738 	/* Get split header payload_copy_thresh. */
739 	qlge->payload_copy_thresh = DFLT_PAYLOAD_COPY_THRESH;
740 	data = ql_get_prop(qlge, "payload_copy_thresh");
741 	/* if data is valid */
742 	if ((data != 0xffffffff) && (data != 0)) {
743 		if (qlge->payload_copy_thresh != data) {
744 			qlge->payload_copy_thresh = data;
745 		}
746 	}
747 
748 	/* large send offload (LSO) capability. */
749 	qlge->lso_enable = 1;
750 	data = ql_get_prop(qlge, "lso_enable");
751 	/* if data is valid */
752 	if ((data == 0) || (data == 1)) {
753 		if (qlge->lso_enable != data) {
754 			qlge->lso_enable = (uint16_t)data;
755 		}
756 	}
757 
758 	/* dcbx capability. */
759 	qlge->dcbx_enable = 1;
760 	data = ql_get_prop(qlge, "dcbx_enable");
761 	/* if data is valid */
762 	if ((data == 0) || (data == 1)) {
763 		if (qlge->dcbx_enable != data) {
764 			qlge->dcbx_enable = (uint16_t)data;
765 		}
766 	}
767 	/* fault management enable */
768 	qlge->fm_enable = B_TRUE;
769 	data = ql_get_prop(qlge, "fm-enable");
770 	if ((data == 0x1) || (data == 0)) {
771 		qlge->fm_enable = (boolean_t)data;
772 	}
773 
774 }
775 
776 /*
777  * Enable global interrupt
778  */
779 static void
780 ql_enable_global_interrupt(qlge_t *qlge)
781 {
782 	ql_write_reg(qlge, REG_INTERRUPT_ENABLE,
783 	    (INTR_EN_EI << 16) | INTR_EN_EI);
784 	qlge->flags |= INTERRUPTS_ENABLED;
785 }
786 
787 /*
788  * Disable global interrupt
789  */
790 static void
791 ql_disable_global_interrupt(qlge_t *qlge)
792 {
793 	ql_write_reg(qlge, REG_INTERRUPT_ENABLE, (INTR_EN_EI << 16));
794 	qlge->flags &= ~INTERRUPTS_ENABLED;
795 }
796 
797 /*
798  * Enable one ring interrupt
799  */
800 void
801 ql_enable_completion_interrupt(qlge_t *qlge, uint32_t intr)
802 {
803 	struct intr_ctx *ctx = qlge->intr_ctx + intr;
804 
805 	QL_PRINT(DBG_INTR, ("%s(%d): To enable intr %d, irq_cnt %d \n",
806 	    __func__, qlge->instance, intr, ctx->irq_cnt));
807 
808 	if ((qlge->intr_type == DDI_INTR_TYPE_MSIX) && intr) {
809 		/*
810 		 * Always enable if we're MSIX multi interrupts and
811 		 * it's not the default (zeroeth) interrupt.
812 		 */
813 		ql_write_reg(qlge, REG_INTERRUPT_ENABLE, ctx->intr_en_mask);
814 		return;
815 	}
816 
817 	if (!atomic_dec_32_nv(&ctx->irq_cnt)) {
818 		mutex_enter(&qlge->hw_mutex);
819 		ql_write_reg(qlge, REG_INTERRUPT_ENABLE, ctx->intr_en_mask);
820 		mutex_exit(&qlge->hw_mutex);
821 		QL_PRINT(DBG_INTR,
822 		    ("%s(%d): write %x to intr enable register \n",
823 		    __func__, qlge->instance, ctx->intr_en_mask));
824 	}
825 }
826 
827 /*
828  * ql_forced_disable_completion_interrupt
829  * Used by call from OS, may be called without
830  * a pending interrupt so force the disable
831  */
832 uint32_t
833 ql_forced_disable_completion_interrupt(qlge_t *qlge, uint32_t intr)
834 {
835 	uint32_t var = 0;
836 	struct intr_ctx *ctx = qlge->intr_ctx + intr;
837 
838 	QL_PRINT(DBG_INTR, ("%s(%d): To disable intr %d, irq_cnt %d \n",
839 	    __func__, qlge->instance, intr, ctx->irq_cnt));
840 
841 	if ((qlge->intr_type == DDI_INTR_TYPE_MSIX) && intr) {
842 		ql_write_reg(qlge, REG_INTERRUPT_ENABLE, ctx->intr_dis_mask);
843 		var = ql_read_reg(qlge, REG_STATUS);
844 		return (var);
845 	}
846 
847 	mutex_enter(&qlge->hw_mutex);
848 	ql_write_reg(qlge, REG_INTERRUPT_ENABLE, ctx->intr_dis_mask);
849 	var = ql_read_reg(qlge, REG_STATUS);
850 	mutex_exit(&qlge->hw_mutex);
851 
852 	return (var);
853 }
854 
855 /*
856  * Disable a completion interrupt
857  */
858 void
859 ql_disable_completion_interrupt(qlge_t *qlge, uint32_t intr)
860 {
861 	struct intr_ctx *ctx;
862 
863 	ctx = qlge->intr_ctx + intr;
864 	QL_PRINT(DBG_INTR, ("%s(%d): To disable intr %d, irq_cnt %d \n",
865 	    __func__, qlge->instance, intr, ctx->irq_cnt));
866 	/*
867 	 * HW disables for us if we're MSIX multi interrupts and
868 	 * it's not the default (zeroeth) interrupt.
869 	 */
870 	if ((qlge->intr_type == DDI_INTR_TYPE_MSIX) && (intr != 0))
871 		return;
872 
873 	if (ql_atomic_read_32(&ctx->irq_cnt) == 0) {
874 		mutex_enter(&qlge->hw_mutex);
875 		ql_write_reg(qlge, REG_INTERRUPT_ENABLE, ctx->intr_dis_mask);
876 		mutex_exit(&qlge->hw_mutex);
877 	}
878 	atomic_inc_32(&ctx->irq_cnt);
879 }
880 
881 /*
882  * Enable all completion interrupts
883  */
884 static void
885 ql_enable_all_completion_interrupts(qlge_t *qlge)
886 {
887 	int i;
888 	uint32_t value = 1;
889 
890 	for (i = 0; i < qlge->intr_cnt; i++) {
891 		/*
892 		 * Set the count to 1 for Legacy / MSI interrupts or for the
893 		 * default interrupt (0)
894 		 */
895 		if ((qlge->intr_type != DDI_INTR_TYPE_MSIX) || i == 0) {
896 			ql_atomic_set_32(&qlge->intr_ctx[i].irq_cnt, value);
897 		}
898 		ql_enable_completion_interrupt(qlge, i);
899 	}
900 }
901 
902 /*
903  * Disable all completion interrupts
904  */
905 static void
906 ql_disable_all_completion_interrupts(qlge_t *qlge)
907 {
908 	int i;
909 	uint32_t value = 0;
910 
911 	for (i = 0; i < qlge->intr_cnt; i++) {
912 
913 		/*
914 		 * Set the count to 0 for Legacy / MSI interrupts or for the
915 		 * default interrupt (0)
916 		 */
917 		if ((qlge->intr_type != DDI_INTR_TYPE_MSIX) || i == 0)
918 			ql_atomic_set_32(&qlge->intr_ctx[i].irq_cnt, value);
919 
920 		ql_disable_completion_interrupt(qlge, i);
921 	}
922 }
923 
924 /*
925  * Update small buffer queue producer index
926  */
927 static void
928 ql_update_sbq_prod_idx(qlge_t *qlge, struct rx_ring *rx_ring)
929 {
930 	/* Update the buffer producer index */
931 	QL_PRINT(DBG_RX, ("sbq: updating prod idx = %d.\n",
932 	    rx_ring->sbq_prod_idx));
933 	ql_write_doorbell_reg(qlge, rx_ring->sbq_prod_idx_db_reg,
934 	    rx_ring->sbq_prod_idx);
935 }
936 
937 /*
938  * Update large buffer queue producer index
939  */
940 static void
941 ql_update_lbq_prod_idx(qlge_t *qlge, struct rx_ring *rx_ring)
942 {
943 	/* Update the buffer producer index */
944 	QL_PRINT(DBG_RX, ("lbq: updating prod idx = %d.\n",
945 	    rx_ring->lbq_prod_idx));
946 	ql_write_doorbell_reg(qlge, rx_ring->lbq_prod_idx_db_reg,
947 	    rx_ring->lbq_prod_idx);
948 }
949 
950 /*
951  * Adds a small buffer descriptor to end of its in use list,
952  * assumes sbq_lock is already taken
953  */
954 static void
955 ql_add_sbuf_to_in_use_list(struct rx_ring *rx_ring,
956     struct bq_desc *sbq_desc)
957 {
958 	uint32_t inuse_idx = rx_ring->sbq_use_tail;
959 
960 	rx_ring->sbuf_in_use[inuse_idx] = sbq_desc;
961 	inuse_idx++;
962 	if (inuse_idx >= rx_ring->sbq_len)
963 		inuse_idx = 0;
964 	rx_ring->sbq_use_tail = inuse_idx;
965 	atomic_inc_32(&rx_ring->sbuf_in_use_count);
966 	ASSERT(rx_ring->sbuf_in_use_count <= rx_ring->sbq_len);
967 }
968 
969 /*
970  * Get a small buffer descriptor from its in use list
971  */
972 static struct bq_desc *
973 ql_get_sbuf_from_in_use_list(struct rx_ring *rx_ring)
974 {
975 	struct bq_desc *sbq_desc = NULL;
976 	uint32_t inuse_idx;
977 
978 	/* Pick from head of in use list */
979 	inuse_idx = rx_ring->sbq_use_head;
980 	sbq_desc = rx_ring->sbuf_in_use[inuse_idx];
981 	rx_ring->sbuf_in_use[inuse_idx] = NULL;
982 
983 	if (sbq_desc != NULL) {
984 		inuse_idx++;
985 		if (inuse_idx >= rx_ring->sbq_len)
986 			inuse_idx = 0;
987 		rx_ring->sbq_use_head = inuse_idx;
988 		atomic_dec_32(&rx_ring->sbuf_in_use_count);
989 		atomic_inc_32(&rx_ring->rx_indicate);
990 		sbq_desc->upl_inuse = 1;
991 		/* if mp is NULL */
992 		if (sbq_desc->mp == NULL) {
993 			/* try to remap mp again */
994 			sbq_desc->mp =
995 			    desballoc((unsigned char *)(sbq_desc->bd_dma.vaddr),
996 			    rx_ring->sbq_buf_size, 0, &sbq_desc->rx_recycle);
997 		}
998 	}
999 
1000 	return (sbq_desc);
1001 }
1002 
1003 /*
1004  * Add a small buffer descriptor to its free list
1005  */
1006 static void
1007 ql_add_sbuf_to_free_list(struct rx_ring *rx_ring,
1008     struct bq_desc *sbq_desc)
1009 {
1010 	uint32_t free_idx;
1011 
1012 	/* Add to the end of free list */
1013 	free_idx = rx_ring->sbq_free_tail;
1014 	rx_ring->sbuf_free[free_idx] = sbq_desc;
1015 	ASSERT(rx_ring->sbuf_free_count <= rx_ring->sbq_len);
1016 	free_idx++;
1017 	if (free_idx >= rx_ring->sbq_len)
1018 		free_idx = 0;
1019 	rx_ring->sbq_free_tail = free_idx;
1020 	atomic_inc_32(&rx_ring->sbuf_free_count);
1021 }
1022 
1023 /*
1024  * Get a small buffer descriptor from its free list
1025  */
1026 static struct bq_desc *
1027 ql_get_sbuf_from_free_list(struct rx_ring *rx_ring)
1028 {
1029 	struct bq_desc *sbq_desc;
1030 	uint32_t free_idx;
1031 
1032 	free_idx = rx_ring->sbq_free_head;
1033 	/* Pick from top of free list */
1034 	sbq_desc = rx_ring->sbuf_free[free_idx];
1035 	rx_ring->sbuf_free[free_idx] = NULL;
1036 	if (sbq_desc != NULL) {
1037 		free_idx++;
1038 		if (free_idx >= rx_ring->sbq_len)
1039 			free_idx = 0;
1040 		rx_ring->sbq_free_head = free_idx;
1041 		atomic_dec_32(&rx_ring->sbuf_free_count);
1042 	}
1043 	return (sbq_desc);
1044 }
1045 
1046 /*
1047  * Add a large buffer descriptor to its in use list
1048  */
1049 static void
1050 ql_add_lbuf_to_in_use_list(struct rx_ring *rx_ring,
1051     struct bq_desc *lbq_desc)
1052 {
1053 	uint32_t inuse_idx;
1054 
1055 	inuse_idx = rx_ring->lbq_use_tail;
1056 
1057 	rx_ring->lbuf_in_use[inuse_idx] = lbq_desc;
1058 	inuse_idx++;
1059 	if (inuse_idx >= rx_ring->lbq_len)
1060 		inuse_idx = 0;
1061 	rx_ring->lbq_use_tail = inuse_idx;
1062 	atomic_inc_32(&rx_ring->lbuf_in_use_count);
1063 }
1064 
1065 /*
1066  * Get a large buffer descriptor from in use list
1067  */
1068 static struct bq_desc *
1069 ql_get_lbuf_from_in_use_list(struct rx_ring *rx_ring)
1070 {
1071 	struct bq_desc *lbq_desc;
1072 	uint32_t inuse_idx;
1073 
1074 	/* Pick from head of in use list */
1075 	inuse_idx = rx_ring->lbq_use_head;
1076 	lbq_desc = rx_ring->lbuf_in_use[inuse_idx];
1077 	rx_ring->lbuf_in_use[inuse_idx] = NULL;
1078 
1079 	if (lbq_desc != NULL) {
1080 		inuse_idx++;
1081 		if (inuse_idx >= rx_ring->lbq_len)
1082 			inuse_idx = 0;
1083 		rx_ring->lbq_use_head = inuse_idx;
1084 		atomic_dec_32(&rx_ring->lbuf_in_use_count);
1085 		atomic_inc_32(&rx_ring->rx_indicate);
1086 		lbq_desc->upl_inuse = 1;
1087 
1088 		/* if mp is NULL */
1089 		if (lbq_desc->mp == NULL) {
1090 			/* try to remap mp again */
1091 			lbq_desc->mp =
1092 			    desballoc((unsigned char *)(lbq_desc->bd_dma.vaddr),
1093 			    rx_ring->lbq_buf_size, 0, &lbq_desc->rx_recycle);
1094 		}
1095 	}
1096 	return (lbq_desc);
1097 }
1098 
1099 /*
1100  * Add a large buffer descriptor to free list
1101  */
1102 static void
1103 ql_add_lbuf_to_free_list(struct rx_ring *rx_ring,
1104     struct bq_desc *lbq_desc)
1105 {
1106 	uint32_t free_idx;
1107 
1108 	/* Add to the end of free list */
1109 	free_idx = rx_ring->lbq_free_tail;
1110 	rx_ring->lbuf_free[free_idx] = lbq_desc;
1111 	free_idx++;
1112 	if (free_idx >= rx_ring->lbq_len)
1113 		free_idx = 0;
1114 	rx_ring->lbq_free_tail = free_idx;
1115 	atomic_inc_32(&rx_ring->lbuf_free_count);
1116 	ASSERT(rx_ring->lbuf_free_count <= rx_ring->lbq_len);
1117 }
1118 
1119 /*
1120  * Get a large buffer descriptor from its free list
1121  */
1122 static struct bq_desc *
1123 ql_get_lbuf_from_free_list(struct rx_ring *rx_ring)
1124 {
1125 	struct bq_desc *lbq_desc;
1126 	uint32_t free_idx;
1127 
1128 	free_idx = rx_ring->lbq_free_head;
1129 	/* Pick from head of free list */
1130 	lbq_desc = rx_ring->lbuf_free[free_idx];
1131 	rx_ring->lbuf_free[free_idx] = NULL;
1132 
1133 	if (lbq_desc != NULL) {
1134 		free_idx++;
1135 		if (free_idx >= rx_ring->lbq_len)
1136 			free_idx = 0;
1137 		rx_ring->lbq_free_head = free_idx;
1138 		atomic_dec_32(&rx_ring->lbuf_free_count);
1139 	}
1140 	return (lbq_desc);
1141 }
1142 
1143 /*
1144  * Add a small buffer descriptor to free list
1145  */
1146 static void
1147 ql_refill_sbuf_free_list(struct bq_desc *sbq_desc, boolean_t alloc_memory)
1148 {
1149 	struct rx_ring *rx_ring = sbq_desc->rx_ring;
1150 	uint64_t *sbq_entry;
1151 	qlge_t *qlge = (qlge_t *)rx_ring->qlge;
1152 	/*
1153 	 * Sync access
1154 	 */
1155 	mutex_enter(&rx_ring->sbq_lock);
1156 
1157 	sbq_desc->upl_inuse = 0;
1158 
1159 	/*
1160 	 * If we are freeing the buffers as a result of adapter unload, get out
1161 	 */
1162 	if ((sbq_desc->free_buf != 0) ||
1163 	    (qlge->mac_flags == QL_MAC_DETACH)) {
1164 		if (sbq_desc->free_buf == 0)
1165 			atomic_dec_32(&rx_ring->rx_indicate);
1166 		mutex_exit(&rx_ring->sbq_lock);
1167 		return;
1168 	}
1169 #ifdef QLGE_LOAD_UNLOAD
1170 	if (rx_ring->rx_indicate == 0)
1171 		cmn_err(CE_WARN, "sbq: indicate wrong");
1172 #endif
1173 #ifdef QLGE_TRACK_BUFFER_USAGE
1174 	uint32_t sb_consumer_idx;
1175 	uint32_t sb_producer_idx;
1176 	uint32_t num_free_buffers;
1177 	uint32_t temp;
1178 
1179 	temp = ql_read_doorbell_reg(qlge, rx_ring->sbq_prod_idx_db_reg);
1180 	sb_producer_idx = temp & 0x0000ffff;
1181 	sb_consumer_idx = (temp >> 16);
1182 
1183 	if (sb_consumer_idx > sb_producer_idx)
1184 		num_free_buffers = NUM_SMALL_BUFFERS -
1185 		    (sb_consumer_idx - sb_producer_idx);
1186 	else
1187 		num_free_buffers = sb_producer_idx - sb_consumer_idx;
1188 
1189 	if (num_free_buffers < qlge->rx_sb_low_count[rx_ring->cq_id])
1190 		qlge->rx_sb_low_count[rx_ring->cq_id] = num_free_buffers;
1191 
1192 #endif
1193 
1194 #ifdef QLGE_LOAD_UNLOAD
1195 	if (rx_ring->rx_indicate > 0xFF000000)
1196 		cmn_err(CE_WARN, "sbq: indicate(%d) wrong: %d mac_flags %d,"
1197 		    " sbq_desc index %d.",
1198 		    rx_ring->cq_id, rx_ring->rx_indicate, rx_ring->mac_flags,
1199 		    sbq_desc->index);
1200 #endif
1201 	if (alloc_memory) {
1202 		sbq_desc->mp =
1203 		    desballoc((unsigned char *)(sbq_desc->bd_dma.vaddr),
1204 		    rx_ring->sbq_buf_size, 0, &sbq_desc->rx_recycle);
1205 		if (sbq_desc->mp == NULL) {
1206 			rx_ring->rx_failed_sbq_allocs++;
1207 		}
1208 	}
1209 
1210 	/* Got the packet from the stack decrement rx_indicate count */
1211 	atomic_dec_32(&rx_ring->rx_indicate);
1212 
1213 	ql_add_sbuf_to_free_list(rx_ring, sbq_desc);
1214 
1215 	/* Rearm if possible */
1216 	if ((rx_ring->sbuf_free_count >= MIN_BUFFERS_FREE_COUNT) &&
1217 	    (qlge->mac_flags == QL_MAC_STARTED)) {
1218 		sbq_entry = rx_ring->sbq_dma.vaddr;
1219 		sbq_entry += rx_ring->sbq_prod_idx;
1220 
1221 		while (rx_ring->sbuf_free_count > MIN_BUFFERS_ARM_COUNT) {
1222 			/* Get first one from free list */
1223 			sbq_desc = ql_get_sbuf_from_free_list(rx_ring);
1224 
1225 			*sbq_entry = cpu_to_le64(sbq_desc->bd_dma.dma_addr);
1226 			sbq_entry++;
1227 			rx_ring->sbq_prod_idx++;
1228 			if (rx_ring->sbq_prod_idx >= rx_ring->sbq_len) {
1229 				rx_ring->sbq_prod_idx = 0;
1230 				sbq_entry = rx_ring->sbq_dma.vaddr;
1231 			}
1232 			/* Add to end of in use list */
1233 			ql_add_sbuf_to_in_use_list(rx_ring, sbq_desc);
1234 		}
1235 
1236 		/* Update small buffer queue producer index */
1237 		ql_update_sbq_prod_idx(qlge, rx_ring);
1238 	}
1239 
1240 	mutex_exit(&rx_ring->sbq_lock);
1241 	QL_PRINT(DBG_RX_RING, ("%s(%d) exited, sbuf_free_count %d\n",
1242 	    __func__, qlge->instance, rx_ring->sbuf_free_count));
1243 }
1244 
1245 /*
1246  * rx recycle call back function
1247  */
1248 static void
1249 ql_release_to_sbuf_free_list(caddr_t p)
1250 {
1251 	struct bq_desc *sbq_desc = (struct bq_desc *)(void *)p;
1252 
1253 	if (sbq_desc == NULL)
1254 		return;
1255 	ql_refill_sbuf_free_list(sbq_desc, B_TRUE);
1256 }
1257 
1258 /*
1259  * Add a large buffer descriptor to free list
1260  */
1261 static void
1262 ql_refill_lbuf_free_list(struct bq_desc *lbq_desc, boolean_t alloc_memory)
1263 {
1264 	struct rx_ring *rx_ring = lbq_desc->rx_ring;
1265 	uint64_t *lbq_entry;
1266 	qlge_t *qlge = rx_ring->qlge;
1267 
1268 	/* Sync access */
1269 	mutex_enter(&rx_ring->lbq_lock);
1270 
1271 	lbq_desc->upl_inuse = 0;
1272 	/*
1273 	 * If we are freeing the buffers as a result of adapter unload, get out
1274 	 */
1275 	if ((lbq_desc->free_buf != 0) ||
1276 	    (qlge->mac_flags == QL_MAC_DETACH)) {
1277 		if (lbq_desc->free_buf == 0)
1278 			atomic_dec_32(&rx_ring->rx_indicate);
1279 		mutex_exit(&rx_ring->lbq_lock);
1280 		return;
1281 	}
1282 #ifdef QLGE_LOAD_UNLOAD
1283 	if (rx_ring->rx_indicate == 0)
1284 		cmn_err(CE_WARN, "lbq: indicate wrong");
1285 #endif
1286 #ifdef QLGE_TRACK_BUFFER_USAGE
1287 	uint32_t lb_consumer_idx;
1288 	uint32_t lb_producer_idx;
1289 	uint32_t num_free_buffers;
1290 	uint32_t temp;
1291 
1292 	temp = ql_read_doorbell_reg(qlge, rx_ring->lbq_prod_idx_db_reg);
1293 
1294 	lb_producer_idx = temp & 0x0000ffff;
1295 	lb_consumer_idx = (temp >> 16);
1296 
1297 	if (lb_consumer_idx > lb_producer_idx)
1298 		num_free_buffers = NUM_LARGE_BUFFERS -
1299 		    (lb_consumer_idx - lb_producer_idx);
1300 	else
1301 		num_free_buffers = lb_producer_idx - lb_consumer_idx;
1302 
1303 	if (num_free_buffers < qlge->rx_lb_low_count[rx_ring->cq_id]) {
1304 		qlge->rx_lb_low_count[rx_ring->cq_id] = num_free_buffers;
1305 	}
1306 #endif
1307 
1308 #ifdef QLGE_LOAD_UNLOAD
1309 	if (rx_ring->rx_indicate > 0xFF000000)
1310 		cmn_err(CE_WARN, "lbq: indicate(%d) wrong: %d mac_flags %d,"
1311 		    "lbq_desc index %d",
1312 		    rx_ring->cq_id, rx_ring->rx_indicate, rx_ring->mac_flags,
1313 		    lbq_desc->index);
1314 #endif
1315 	if (alloc_memory) {
1316 		lbq_desc->mp =
1317 		    desballoc((unsigned char *)(lbq_desc->bd_dma.vaddr),
1318 		    rx_ring->lbq_buf_size, 0, &lbq_desc->rx_recycle);
1319 		if (lbq_desc->mp == NULL) {
1320 			rx_ring->rx_failed_lbq_allocs++;
1321 		}
1322 	}
1323 
1324 	/* Got the packet from the stack decrement rx_indicate count */
1325 	atomic_dec_32(&rx_ring->rx_indicate);
1326 
1327 	ql_add_lbuf_to_free_list(rx_ring, lbq_desc);
1328 
1329 	/* Rearm if possible */
1330 	if ((rx_ring->lbuf_free_count >= MIN_BUFFERS_FREE_COUNT) &&
1331 	    (qlge->mac_flags == QL_MAC_STARTED)) {
1332 		lbq_entry = rx_ring->lbq_dma.vaddr;
1333 		lbq_entry += rx_ring->lbq_prod_idx;
1334 		while (rx_ring->lbuf_free_count > MIN_BUFFERS_ARM_COUNT) {
1335 			/* Get first one from free list */
1336 			lbq_desc = ql_get_lbuf_from_free_list(rx_ring);
1337 
1338 			*lbq_entry = cpu_to_le64(lbq_desc->bd_dma.dma_addr);
1339 			lbq_entry++;
1340 			rx_ring->lbq_prod_idx++;
1341 			if (rx_ring->lbq_prod_idx >= rx_ring->lbq_len) {
1342 				rx_ring->lbq_prod_idx = 0;
1343 				lbq_entry = rx_ring->lbq_dma.vaddr;
1344 			}
1345 
1346 			/* Add to end of in use list */
1347 			ql_add_lbuf_to_in_use_list(rx_ring, lbq_desc);
1348 		}
1349 
1350 		/* Update large buffer queue producer index */
1351 		ql_update_lbq_prod_idx(rx_ring->qlge, rx_ring);
1352 	}
1353 
1354 	mutex_exit(&rx_ring->lbq_lock);
1355 	QL_PRINT(DBG_RX_RING, ("%s exitd, lbuf_free_count %d\n",
1356 	    __func__, rx_ring->lbuf_free_count));
1357 }
1358 /*
1359  * rx recycle call back function
1360  */
1361 static void
1362 ql_release_to_lbuf_free_list(caddr_t p)
1363 {
1364 	struct bq_desc *lbq_desc = (struct bq_desc *)(void *)p;
1365 
1366 	if (lbq_desc == NULL)
1367 		return;
1368 	ql_refill_lbuf_free_list(lbq_desc, B_TRUE);
1369 }
1370 
1371 /*
1372  * free small buffer queue buffers
1373  */
1374 static void
1375 ql_free_sbq_buffers(struct rx_ring *rx_ring)
1376 {
1377 	struct bq_desc *sbq_desc;
1378 	uint32_t i;
1379 	uint32_t j = rx_ring->sbq_free_head;
1380 	int  force_cnt = 0;
1381 
1382 	for (i = 0; i < rx_ring->sbuf_free_count; i++) {
1383 		sbq_desc = rx_ring->sbuf_free[j];
1384 		sbq_desc->free_buf = 1;
1385 		j++;
1386 		if (j >= rx_ring->sbq_len) {
1387 			j = 0;
1388 		}
1389 		if (sbq_desc->mp != NULL) {
1390 			freemsg(sbq_desc->mp);
1391 			sbq_desc->mp = NULL;
1392 		}
1393 	}
1394 	rx_ring->sbuf_free_count = 0;
1395 
1396 	j = rx_ring->sbq_use_head;
1397 	for (i = 0; i < rx_ring->sbuf_in_use_count; i++) {
1398 		sbq_desc = rx_ring->sbuf_in_use[j];
1399 		sbq_desc->free_buf = 1;
1400 		j++;
1401 		if (j >= rx_ring->sbq_len) {
1402 			j = 0;
1403 		}
1404 		if (sbq_desc->mp != NULL) {
1405 			freemsg(sbq_desc->mp);
1406 			sbq_desc->mp = NULL;
1407 		}
1408 	}
1409 	rx_ring->sbuf_in_use_count = 0;
1410 
1411 	sbq_desc = &rx_ring->sbq_desc[0];
1412 	for (i = 0; i < rx_ring->sbq_len; i++, sbq_desc++) {
1413 		/*
1414 		 * Set flag so that the callback does not allocate a new buffer
1415 		 */
1416 		sbq_desc->free_buf = 1;
1417 		if (sbq_desc->upl_inuse != 0) {
1418 			force_cnt++;
1419 		}
1420 		if (sbq_desc->bd_dma.dma_handle != NULL) {
1421 			ql_free_phys(&sbq_desc->bd_dma.dma_handle,
1422 			    &sbq_desc->bd_dma.acc_handle);
1423 			sbq_desc->bd_dma.dma_handle = NULL;
1424 			sbq_desc->bd_dma.acc_handle = NULL;
1425 		}
1426 	}
1427 #ifdef QLGE_LOAD_UNLOAD
1428 	cmn_err(CE_NOTE, "sbq: free %d inuse %d force %d\n",
1429 	    rx_ring->sbuf_free_count, rx_ring->sbuf_in_use_count, force_cnt);
1430 #endif
1431 	if (rx_ring->sbuf_in_use != NULL) {
1432 		kmem_free(rx_ring->sbuf_in_use, (rx_ring->sbq_len *
1433 		    sizeof (struct bq_desc *)));
1434 		rx_ring->sbuf_in_use = NULL;
1435 	}
1436 
1437 	if (rx_ring->sbuf_free != NULL) {
1438 		kmem_free(rx_ring->sbuf_free, (rx_ring->sbq_len *
1439 		    sizeof (struct bq_desc *)));
1440 		rx_ring->sbuf_free = NULL;
1441 	}
1442 }
1443 
1444 /* Allocate small buffers */
1445 static int
1446 ql_alloc_sbufs(qlge_t *qlge, struct rx_ring *rx_ring)
1447 {
1448 	struct bq_desc *sbq_desc;
1449 	int i;
1450 	ddi_dma_cookie_t dma_cookie;
1451 
1452 	rx_ring->sbq_use_head = 0;
1453 	rx_ring->sbq_use_tail = 0;
1454 	rx_ring->sbuf_in_use_count = 0;
1455 	rx_ring->sbq_free_head = 0;
1456 	rx_ring->sbq_free_tail = 0;
1457 	rx_ring->sbuf_free_count = 0;
1458 	rx_ring->sbuf_free = kmem_zalloc(rx_ring->sbq_len *
1459 	    sizeof (struct bq_desc *), KM_NOSLEEP);
1460 	if (rx_ring->sbuf_free == NULL) {
1461 		cmn_err(CE_WARN,
1462 		    "!%s: sbuf_free_list alloc: failed",
1463 		    __func__);
1464 		goto alloc_sbuf_err;
1465 	}
1466 
1467 	rx_ring->sbuf_in_use = kmem_zalloc(rx_ring->sbq_len *
1468 	    sizeof (struct bq_desc *), KM_NOSLEEP);
1469 	if (rx_ring->sbuf_in_use == NULL) {
1470 		cmn_err(CE_WARN,
1471 		    "!%s: sbuf_inuse_list alloc: failed",
1472 		    __func__);
1473 		goto alloc_sbuf_err;
1474 	}
1475 
1476 	sbq_desc = &rx_ring->sbq_desc[0];
1477 
1478 	for (i = 0; i < rx_ring->sbq_len; i++, sbq_desc++) {
1479 		/* Allocate buffer */
1480 		if (ql_alloc_phys_rbuf(qlge->dip, &sbq_desc->bd_dma.dma_handle,
1481 		    &ql_buf_acc_attr,
1482 		    DDI_DMA_READ | DDI_DMA_STREAMING,
1483 		    &sbq_desc->bd_dma.acc_handle,
1484 		    (size_t)rx_ring->sbq_buf_size,	/* mem size */
1485 		    (size_t)0,				/* default alignment */
1486 		    (caddr_t *)&sbq_desc->bd_dma.vaddr,
1487 		    &dma_cookie) != 0) {
1488 			cmn_err(CE_WARN,
1489 			    "!%s: ddi_dma_alloc_handle: failed",
1490 			    __func__);
1491 			goto alloc_sbuf_err;
1492 		}
1493 
1494 		/* Set context for Return buffer callback */
1495 		sbq_desc->bd_dma.dma_addr = dma_cookie.dmac_laddress;
1496 		sbq_desc->rx_recycle.free_func = ql_release_to_sbuf_free_list;
1497 		sbq_desc->rx_recycle.free_arg  = (caddr_t)sbq_desc;
1498 		sbq_desc->rx_ring = rx_ring;
1499 		sbq_desc->upl_inuse = 0;
1500 		sbq_desc->free_buf = 0;
1501 
1502 		sbq_desc->mp =
1503 		    desballoc((unsigned char *)(sbq_desc->bd_dma.vaddr),
1504 		    rx_ring->sbq_buf_size, 0, &sbq_desc->rx_recycle);
1505 		if (sbq_desc->mp == NULL) {
1506 			cmn_err(CE_WARN, "%s: desballoc() failed", __func__);
1507 			goto alloc_sbuf_err;
1508 		}
1509 		ql_add_sbuf_to_free_list(rx_ring, sbq_desc);
1510 	}
1511 
1512 	return (DDI_SUCCESS);
1513 
1514 alloc_sbuf_err:
1515 	ql_free_sbq_buffers(rx_ring);
1516 	return (DDI_FAILURE);
1517 }
1518 
1519 static void
1520 ql_free_lbq_buffers(struct rx_ring *rx_ring)
1521 {
1522 	struct bq_desc *lbq_desc;
1523 	uint32_t i, j;
1524 	int force_cnt = 0;
1525 
1526 	j = rx_ring->lbq_free_head;
1527 	for (i = 0; i < rx_ring->lbuf_free_count; i++) {
1528 		lbq_desc = rx_ring->lbuf_free[j];
1529 		lbq_desc->free_buf = 1;
1530 		j++;
1531 		if (j >= rx_ring->lbq_len)
1532 			j = 0;
1533 		if (lbq_desc->mp != NULL) {
1534 			freemsg(lbq_desc->mp);
1535 			lbq_desc->mp = NULL;
1536 		}
1537 	}
1538 	rx_ring->lbuf_free_count = 0;
1539 
1540 	j = rx_ring->lbq_use_head;
1541 	for (i = 0; i < rx_ring->lbuf_in_use_count; i++) {
1542 		lbq_desc = rx_ring->lbuf_in_use[j];
1543 		lbq_desc->free_buf = 1;
1544 		j++;
1545 		if (j >= rx_ring->lbq_len) {
1546 			j = 0;
1547 		}
1548 		if (lbq_desc->mp != NULL) {
1549 			freemsg(lbq_desc->mp);
1550 			lbq_desc->mp = NULL;
1551 		}
1552 	}
1553 	rx_ring->lbuf_in_use_count = 0;
1554 
1555 	lbq_desc = &rx_ring->lbq_desc[0];
1556 	for (i = 0; i < rx_ring->lbq_len; i++, lbq_desc++) {
1557 		/* Set flag so that callback will not allocate a new buffer */
1558 		lbq_desc->free_buf = 1;
1559 		if (lbq_desc->upl_inuse != 0) {
1560 			force_cnt++;
1561 		}
1562 		if (lbq_desc->bd_dma.dma_handle != NULL) {
1563 			ql_free_phys(&lbq_desc->bd_dma.dma_handle,
1564 			    &lbq_desc->bd_dma.acc_handle);
1565 			lbq_desc->bd_dma.dma_handle = NULL;
1566 			lbq_desc->bd_dma.acc_handle = NULL;
1567 		}
1568 	}
1569 #ifdef QLGE_LOAD_UNLOAD
1570 	if (force_cnt) {
1571 		cmn_err(CE_WARN, "lbq: free %d inuse %d force %d",
1572 		    rx_ring->lbuf_free_count, rx_ring->lbuf_in_use_count,
1573 		    force_cnt);
1574 	}
1575 #endif
1576 	if (rx_ring->lbuf_in_use != NULL) {
1577 		kmem_free(rx_ring->lbuf_in_use, (rx_ring->lbq_len *
1578 		    sizeof (struct bq_desc *)));
1579 		rx_ring->lbuf_in_use = NULL;
1580 	}
1581 
1582 	if (rx_ring->lbuf_free != NULL) {
1583 		kmem_free(rx_ring->lbuf_free, (rx_ring->lbq_len *
1584 		    sizeof (struct bq_desc *)));
1585 		rx_ring->lbuf_free = NULL;
1586 	}
1587 }
1588 
1589 /* Allocate large buffers */
1590 static int
1591 ql_alloc_lbufs(qlge_t *qlge, struct rx_ring *rx_ring)
1592 {
1593 	struct bq_desc *lbq_desc;
1594 	ddi_dma_cookie_t dma_cookie;
1595 	int i;
1596 	uint32_t lbq_buf_size;
1597 
1598 	rx_ring->lbq_use_head = 0;
1599 	rx_ring->lbq_use_tail = 0;
1600 	rx_ring->lbuf_in_use_count = 0;
1601 	rx_ring->lbq_free_head = 0;
1602 	rx_ring->lbq_free_tail = 0;
1603 	rx_ring->lbuf_free_count = 0;
1604 	rx_ring->lbuf_free = kmem_zalloc(rx_ring->lbq_len *
1605 	    sizeof (struct bq_desc *), KM_NOSLEEP);
1606 	if (rx_ring->lbuf_free == NULL) {
1607 		cmn_err(CE_WARN,
1608 		    "!%s: lbuf_free_list alloc: failed",
1609 		    __func__);
1610 		goto alloc_lbuf_err;
1611 	}
1612 
1613 	rx_ring->lbuf_in_use = kmem_zalloc(rx_ring->lbq_len *
1614 	    sizeof (struct bq_desc *), KM_NOSLEEP);
1615 
1616 	if (rx_ring->lbuf_in_use == NULL) {
1617 		cmn_err(CE_WARN,
1618 		    "!%s: lbuf_inuse_list alloc: failed",
1619 		    __func__);
1620 		goto alloc_lbuf_err;
1621 	}
1622 
1623 	lbq_buf_size = (qlge->mtu == ETHERMTU) ?
1624 	    LRG_BUF_NORMAL_SIZE : LRG_BUF_JUMBO_SIZE;
1625 
1626 	lbq_desc = &rx_ring->lbq_desc[0];
1627 	for (i = 0; i < rx_ring->lbq_len; i++, lbq_desc++) {
1628 		rx_ring->lbq_buf_size = lbq_buf_size;
1629 		/* Allocate buffer */
1630 		if (ql_alloc_phys_rbuf(qlge->dip, &lbq_desc->bd_dma.dma_handle,
1631 		    &ql_buf_acc_attr,
1632 		    DDI_DMA_READ | DDI_DMA_STREAMING,
1633 		    &lbq_desc->bd_dma.acc_handle,
1634 		    (size_t)rx_ring->lbq_buf_size,  /* mem size */
1635 		    (size_t)0, /* default alignment */
1636 		    (caddr_t *)&lbq_desc->bd_dma.vaddr,
1637 		    &dma_cookie) != 0) {
1638 			cmn_err(CE_WARN,
1639 			    "!%s: ddi_dma_alloc_handle: failed",
1640 			    __func__);
1641 			goto alloc_lbuf_err;
1642 		}
1643 
1644 		/* Set context for Return buffer callback */
1645 		lbq_desc->bd_dma.dma_addr = dma_cookie.dmac_laddress;
1646 		lbq_desc->rx_recycle.free_func = ql_release_to_lbuf_free_list;
1647 		lbq_desc->rx_recycle.free_arg  = (caddr_t)lbq_desc;
1648 		lbq_desc->rx_ring = rx_ring;
1649 		lbq_desc->upl_inuse = 0;
1650 		lbq_desc->free_buf = 0;
1651 
1652 		lbq_desc->mp =
1653 		    desballoc((unsigned char *)(lbq_desc->bd_dma.vaddr),
1654 		    rx_ring->lbq_buf_size, 0, &lbq_desc->rx_recycle);
1655 		if (lbq_desc->mp == NULL) {
1656 			cmn_err(CE_WARN, "%s: desballoc() failed", __func__);
1657 			goto alloc_lbuf_err;
1658 		}
1659 		ql_add_lbuf_to_free_list(rx_ring, lbq_desc);
1660 	} /* For all large buffers */
1661 
1662 	return (DDI_SUCCESS);
1663 
1664 alloc_lbuf_err:
1665 	ql_free_lbq_buffers(rx_ring);
1666 	return (DDI_FAILURE);
1667 }
1668 
1669 /*
1670  * Free rx buffers
1671  */
1672 static void
1673 ql_free_rx_buffers(qlge_t *qlge)
1674 {
1675 	int i;
1676 	struct rx_ring *rx_ring;
1677 
1678 	for (i = 0; i < qlge->rx_ring_count; i++) {
1679 		rx_ring = &qlge->rx_ring[i];
1680 		if (rx_ring->type != TX_Q) {
1681 			ql_free_lbq_buffers(rx_ring);
1682 			ql_free_sbq_buffers(rx_ring);
1683 		}
1684 	}
1685 }
1686 
1687 /*
1688  * Allocate rx buffers
1689  */
1690 static int
1691 ql_alloc_rx_buffers(qlge_t *qlge)
1692 {
1693 	struct rx_ring *rx_ring;
1694 	int i;
1695 
1696 	for (i = 0; i < qlge->rx_ring_count; i++) {
1697 		rx_ring = &qlge->rx_ring[i];
1698 		if (rx_ring->type != TX_Q) {
1699 			if (ql_alloc_sbufs(qlge, rx_ring) != DDI_SUCCESS)
1700 				goto alloc_err;
1701 			if (ql_alloc_lbufs(qlge, rx_ring) != DDI_SUCCESS)
1702 				goto alloc_err;
1703 		}
1704 	}
1705 #ifdef QLGE_TRACK_BUFFER_USAGE
1706 	for (i = 0; i < qlge->rx_ring_count; i++) {
1707 		if (qlge->rx_ring[i].type == RX_Q) {
1708 			qlge->rx_sb_low_count[i] = NUM_SMALL_BUFFERS;
1709 			qlge->rx_lb_low_count[i] = NUM_LARGE_BUFFERS;
1710 		}
1711 		qlge->cq_low_count[i] = NUM_RX_RING_ENTRIES;
1712 	}
1713 #endif
1714 	return (DDI_SUCCESS);
1715 
1716 alloc_err:
1717 	ql_free_rx_buffers(qlge);
1718 	return (DDI_FAILURE);
1719 }
1720 
1721 /*
1722  * Initialize large buffer queue ring
1723  */
1724 static void
1725 ql_init_lbq_ring(struct rx_ring *rx_ring)
1726 {
1727 	uint16_t i;
1728 	struct bq_desc *lbq_desc;
1729 
1730 	bzero(rx_ring->lbq_desc, rx_ring->lbq_len * sizeof (struct bq_desc));
1731 	for (i = 0; i < rx_ring->lbq_len; i++) {
1732 		lbq_desc = &rx_ring->lbq_desc[i];
1733 		lbq_desc->index = i;
1734 	}
1735 }
1736 
1737 /*
1738  * Initialize small buffer queue ring
1739  */
1740 static void
1741 ql_init_sbq_ring(struct rx_ring *rx_ring)
1742 {
1743 	uint16_t i;
1744 	struct bq_desc *sbq_desc;
1745 
1746 	bzero(rx_ring->sbq_desc, rx_ring->sbq_len * sizeof (struct bq_desc));
1747 	for (i = 0; i < rx_ring->sbq_len; i++) {
1748 		sbq_desc = &rx_ring->sbq_desc[i];
1749 		sbq_desc->index = i;
1750 	}
1751 }
1752 
1753 /*
1754  * Calculate the pseudo-header checksum if hardware can not do
1755  */
1756 static void
1757 ql_pseudo_cksum(uint8_t *buf)
1758 {
1759 	uint32_t cksum;
1760 	uint16_t iphl;
1761 	uint16_t proto;
1762 
1763 	iphl = (uint16_t)(4 * (buf[0] & 0xF));
1764 	cksum = (((uint16_t)buf[2])<<8) + buf[3] - iphl;
1765 	cksum += proto = buf[9];
1766 	cksum += (((uint16_t)buf[12])<<8) + buf[13];
1767 	cksum += (((uint16_t)buf[14])<<8) + buf[15];
1768 	cksum += (((uint16_t)buf[16])<<8) + buf[17];
1769 	cksum += (((uint16_t)buf[18])<<8) + buf[19];
1770 	cksum = (cksum>>16) + (cksum & 0xFFFF);
1771 	cksum = (cksum>>16) + (cksum & 0xFFFF);
1772 
1773 	/*
1774 	 * Point it to the TCP/UDP header, and
1775 	 * update the checksum field.
1776 	 */
1777 	buf += iphl + ((proto == IPPROTO_TCP) ?
1778 	    TCP_CKSUM_OFFSET : UDP_CKSUM_OFFSET);
1779 
1780 	*(uint16_t *)(void *)buf = (uint16_t)htons((uint16_t)cksum);
1781 
1782 }
1783 
1784 /*
1785  * Transmit an incoming packet.
1786  */
1787 mblk_t *
1788 ql_ring_tx(void *arg, mblk_t *mp)
1789 {
1790 	struct tx_ring *tx_ring = (struct tx_ring *)arg;
1791 	qlge_t *qlge = tx_ring->qlge;
1792 	mblk_t *next;
1793 	int rval;
1794 	uint32_t tx_count = 0;
1795 
1796 	if (qlge->port_link_state == LS_DOWN) {
1797 		/* can not send message while link is down */
1798 		mblk_t *tp;
1799 
1800 		while (mp != NULL) {
1801 			tp = mp->b_next;
1802 			mp->b_next = NULL;
1803 			freemsg(mp);
1804 			mp = tp;
1805 		}
1806 		goto exit;
1807 	}
1808 
1809 	mutex_enter(&tx_ring->tx_lock);
1810 	/* if mac is not started, driver is not ready, can not send */
1811 	if (tx_ring->mac_flags != QL_MAC_STARTED) {
1812 		cmn_err(CE_WARN, "%s(%d)ring not started, mode %d "
1813 		    " return packets",
1814 		    __func__, qlge->instance, tx_ring->mac_flags);
1815 		mutex_exit(&tx_ring->tx_lock);
1816 		goto exit;
1817 	}
1818 
1819 	/* we must try to send all */
1820 	while (mp != NULL) {
1821 		/*
1822 		 * if number of available slots is less than a threshold,
1823 		 * then quit
1824 		 */
1825 		if (tx_ring->tx_free_count <= TX_STOP_THRESHOLD) {
1826 			tx_ring->queue_stopped = 1;
1827 			rval = DDI_FAILURE;
1828 #ifdef QLGE_LOAD_UNLOAD
1829 			cmn_err(CE_WARN, "%s(%d) no resources",
1830 			    __func__, qlge->instance);
1831 #endif
1832 			tx_ring->defer++;
1833 			/*
1834 			 * If we return the buffer back we are expected to call
1835 			 * mac_tx_ring_update() when resources are available
1836 			 */
1837 			break;
1838 		}
1839 
1840 		next = mp->b_next;
1841 		mp->b_next = NULL;
1842 
1843 		rval = ql_send_common(tx_ring, mp);
1844 
1845 		if (rval != DDI_SUCCESS) {
1846 			mp->b_next = next;
1847 			break;
1848 		}
1849 		tx_count++;
1850 		mp = next;
1851 	}
1852 
1853 	/*
1854 	 * After all msg blocks are mapped or copied to tx buffer,
1855 	 * trigger the hardware to send!
1856 	 */
1857 	if (tx_count > 0) {
1858 		ql_write_doorbell_reg(tx_ring->qlge, tx_ring->prod_idx_db_reg,
1859 		    tx_ring->prod_idx);
1860 	}
1861 
1862 	mutex_exit(&tx_ring->tx_lock);
1863 exit:
1864 	return (mp);
1865 }
1866 
1867 
1868 /*
1869  * This function builds an mblk list for the given inbound
1870  * completion.
1871  */
1872 
1873 static mblk_t *
1874 ql_build_rx_mp(qlge_t *qlge, struct rx_ring *rx_ring,
1875     struct ib_mac_iocb_rsp *ib_mac_rsp)
1876 {
1877 	mblk_t *mp = NULL;
1878 	mblk_t *mp1 = NULL;	/* packet header */
1879 	mblk_t *mp2 = NULL;	/* packet content */
1880 	struct bq_desc *lbq_desc;
1881 	struct bq_desc *sbq_desc;
1882 	uint32_t err_flag = (ib_mac_rsp->flags2 & IB_MAC_IOCB_RSP_ERR_MASK);
1883 	uint32_t payload_len = le32_to_cpu(ib_mac_rsp->data_len);
1884 	uint32_t header_len = le32_to_cpu(ib_mac_rsp->hdr_len);
1885 	uint32_t pkt_len = payload_len + header_len;
1886 	uint32_t done;
1887 	uint64_t *curr_ial_ptr;
1888 	uint32_t ial_data_addr_low;
1889 	uint32_t actual_data_addr_low;
1890 	mblk_t *mp_ial = NULL;	/* ial chained packets */
1891 	uint32_t size;
1892 	uint32_t cp_offset;
1893 	boolean_t rx_copy = B_FALSE;
1894 	mblk_t *tp = NULL;
1895 
1896 	/*
1897 	 * Check if error flags are set
1898 	 */
1899 	if (err_flag != 0) {
1900 		if ((err_flag & IB_MAC_IOCB_RSP_ERR_OVERSIZE) != 0)
1901 			rx_ring->frame_too_long++;
1902 		if ((err_flag & IB_MAC_IOCB_RSP_ERR_UNDERSIZE) != 0)
1903 			rx_ring->frame_too_short++;
1904 		if ((err_flag & IB_MAC_IOCB_RSP_ERR_CRC) != 0)
1905 			rx_ring->fcs_err++;
1906 #ifdef QLGE_LOAD_UNLOAD
1907 		cmn_err(CE_WARN, "bad packet, type 0x%x", err_flag);
1908 #endif
1909 		QL_DUMP(DBG_RX, "qlge_ring_rx: bad response iocb dump\n",
1910 		    (uint8_t *)ib_mac_rsp, 8,
1911 		    (size_t)sizeof (struct ib_mac_iocb_rsp));
1912 	}
1913 
1914 	/* header should not be in large buffer */
1915 	if (ib_mac_rsp->flags4 & IB_MAC_IOCB_RSP_HL) {
1916 		cmn_err(CE_WARN, "header in large buffer or invalid!");
1917 		err_flag |= 1;
1918 	}
1919 	/* if whole packet is too big than rx buffer size */
1920 	if (pkt_len > qlge->max_frame_size) {
1921 		cmn_err(CE_WARN, "ql_build_rx_mpframe too long(%d)!", pkt_len);
1922 		err_flag |= 1;
1923 	}
1924 	if (qlge->rx_copy ||
1925 	    (rx_ring->sbuf_in_use_count <= qlge->rx_copy_threshold) ||
1926 	    (rx_ring->lbuf_in_use_count <= qlge->rx_copy_threshold)) {
1927 		rx_copy = B_TRUE;
1928 	}
1929 
1930 	/* if using rx copy mode, we need to allocate a big enough buffer */
1931 	if (rx_copy) {
1932 		qlge->stats.norcvbuf++;
1933 		tp = allocb(payload_len + header_len + qlge->ip_hdr_offset,
1934 		    BPRI_MED);
1935 		if (tp == NULL) {
1936 			cmn_err(CE_WARN, "rx copy failed to allocate memory");
1937 		} else {
1938 			tp->b_rptr += qlge->ip_hdr_offset;
1939 		}
1940 	}
1941 	/*
1942 	 * Handle the header buffer if present.
1943 	 * packet header must be valid and saved in one small buffer
1944 	 * broadcast/multicast packets' headers not splitted
1945 	 */
1946 	if ((ib_mac_rsp->flags4 & IB_MAC_IOCB_RSP_HV) &&
1947 	    (ib_mac_rsp->flags4 & IB_MAC_IOCB_RSP_HS)) {
1948 		QL_PRINT(DBG_RX, ("Header of %d bytes in small buffer.\n",
1949 		    header_len));
1950 		/* Sync access */
1951 		sbq_desc = ql_get_sbuf_from_in_use_list(rx_ring);
1952 
1953 		ASSERT(sbq_desc != NULL);
1954 
1955 		/*
1956 		 * Validate addresses from the ASIC with the
1957 		 * expected sbuf address
1958 		 */
1959 		if (cpu_to_le64(sbq_desc->bd_dma.dma_addr)
1960 		    != ib_mac_rsp->hdr_addr) {
1961 			/* Small buffer address mismatch */
1962 			cmn_err(CE_WARN, "%s(%d) ring%d packet saved"
1963 			    " in wrong small buffer",
1964 			    __func__, qlge->instance, rx_ring->cq_id);
1965 			goto fatal_error;
1966 		}
1967 		/* get this packet */
1968 		mp1 = sbq_desc->mp;
1969 		/* Flush DMA'd data */
1970 		(void) ddi_dma_sync(sbq_desc->bd_dma.dma_handle,
1971 		    0, header_len, DDI_DMA_SYNC_FORKERNEL);
1972 
1973 		if ((err_flag != 0)|| (mp1 == NULL)) {
1974 			/* failed on this packet, put it back for re-arming */
1975 #ifdef QLGE_LOAD_UNLOAD
1976 			cmn_err(CE_WARN, "get header from small buffer fail");
1977 #endif
1978 			ql_refill_sbuf_free_list(sbq_desc, B_FALSE);
1979 			mp1 = NULL;
1980 		} else if (rx_copy) {
1981 			if (tp != NULL) {
1982 				bcopy(sbq_desc->bd_dma.vaddr, tp->b_rptr,
1983 				    header_len);
1984 			}
1985 			ql_refill_sbuf_free_list(sbq_desc, B_FALSE);
1986 			mp1 = NULL;
1987 		} else {
1988 			if ((qlge->ip_hdr_offset != 0)&&
1989 			    (header_len < SMALL_BUFFER_SIZE)) {
1990 				/*
1991 				 * copy entire header to a 2 bytes boundary
1992 				 * address for 8100 adapters so that the IP
1993 				 * header can be on a 4 byte boundary address
1994 				 */
1995 				bcopy(mp1->b_rptr,
1996 				    (mp1->b_rptr + SMALL_BUFFER_SIZE +
1997 				    qlge->ip_hdr_offset),
1998 				    header_len);
1999 				mp1->b_rptr += SMALL_BUFFER_SIZE +
2000 				    qlge->ip_hdr_offset;
2001 			}
2002 
2003 			/*
2004 			 * Adjust the mp payload_len to match
2005 			 * the packet header payload_len
2006 			 */
2007 			mp1->b_wptr = mp1->b_rptr + header_len;
2008 			mp1->b_next = mp1->b_cont = NULL;
2009 			QL_DUMP(DBG_RX, "\t RX packet header dump:\n",
2010 			    (uint8_t *)mp1->b_rptr, 8, header_len);
2011 		}
2012 	}
2013 
2014 	/*
2015 	 * packet data or whole packet can be in small or one or
2016 	 * several large buffer(s)
2017 	 */
2018 	if (ib_mac_rsp->flags3 & IB_MAC_IOCB_RSP_DS) {
2019 		/*
2020 		 * The data is in a single small buffer.
2021 		 */
2022 		sbq_desc = ql_get_sbuf_from_in_use_list(rx_ring);
2023 
2024 		ASSERT(sbq_desc != NULL);
2025 
2026 		QL_PRINT(DBG_RX,
2027 		    ("%d bytes in a single small buffer, sbq_desc = %p, "
2028 		    "sbq_desc->bd_dma.dma_addr = %x,"
2029 		    " ib_mac_rsp->data_addr = %x, mp = %p\n",
2030 		    payload_len, sbq_desc, sbq_desc->bd_dma.dma_addr,
2031 		    ib_mac_rsp->data_addr, sbq_desc->mp));
2032 
2033 		/*
2034 		 * Validate  addresses from the ASIC with the
2035 		 * expected sbuf address
2036 		 */
2037 		if (cpu_to_le64(sbq_desc->bd_dma.dma_addr)
2038 		    != ib_mac_rsp->data_addr) {
2039 			/* Small buffer address mismatch */
2040 			cmn_err(CE_WARN, "%s(%d) ring%d packet saved"
2041 			    " in wrong small buffer",
2042 			    __func__, qlge->instance, rx_ring->cq_id);
2043 			goto fatal_error;
2044 		}
2045 		/* get this packet */
2046 		mp2 = sbq_desc->mp;
2047 		(void) ddi_dma_sync(sbq_desc->bd_dma.dma_handle,
2048 		    0, payload_len, DDI_DMA_SYNC_FORKERNEL);
2049 		if ((err_flag != 0) || (mp2 == NULL)) {
2050 #ifdef QLGE_LOAD_UNLOAD
2051 			/* failed on this packet, put it back for re-arming */
2052 			cmn_err(CE_WARN, "ignore bad data from small buffer");
2053 #endif
2054 			ql_refill_sbuf_free_list(sbq_desc, B_FALSE);
2055 			mp2 = NULL;
2056 		} else if (rx_copy) {
2057 			if (tp != NULL) {
2058 				bcopy(sbq_desc->bd_dma.vaddr,
2059 				    tp->b_rptr + header_len, payload_len);
2060 				tp->b_wptr =
2061 				    tp->b_rptr + header_len + payload_len;
2062 			}
2063 			ql_refill_sbuf_free_list(sbq_desc, B_FALSE);
2064 			mp2 = NULL;
2065 		} else {
2066 			/* Adjust the buffer length to match the payload_len */
2067 			mp2->b_wptr = mp2->b_rptr + payload_len;
2068 			mp2->b_next = mp2->b_cont = NULL;
2069 			/* Flush DMA'd data */
2070 			QL_DUMP(DBG_RX, "\t RX packet payload dump:\n",
2071 			    (uint8_t *)mp2->b_rptr, 8, payload_len);
2072 			/*
2073 			 * if payload is too small , copy to
2074 			 * the end of packet header
2075 			 */
2076 			if ((mp1 != NULL) &&
2077 			    (payload_len <= qlge->payload_copy_thresh) &&
2078 			    (pkt_len <
2079 			    (SMALL_BUFFER_SIZE - qlge->ip_hdr_offset))) {
2080 				bcopy(mp2->b_rptr, mp1->b_wptr, payload_len);
2081 				mp1->b_wptr += payload_len;
2082 				freemsg(mp2);
2083 				mp2 = NULL;
2084 			}
2085 		}
2086 	} else if (ib_mac_rsp->flags3 & IB_MAC_IOCB_RSP_DL) {
2087 		/*
2088 		 * The data is in a single large buffer.
2089 		 */
2090 		lbq_desc = ql_get_lbuf_from_in_use_list(rx_ring);
2091 
2092 		QL_PRINT(DBG_RX,
2093 		    ("%d bytes in a single large buffer, lbq_desc = %p, "
2094 		    "lbq_desc->bd_dma.dma_addr = %x,"
2095 		    " ib_mac_rsp->data_addr = %x, mp = %p\n",
2096 		    payload_len, lbq_desc, lbq_desc->bd_dma.dma_addr,
2097 		    ib_mac_rsp->data_addr, lbq_desc->mp));
2098 
2099 		ASSERT(lbq_desc != NULL);
2100 
2101 		/*
2102 		 * Validate  addresses from the ASIC with
2103 		 * the expected lbuf address
2104 		 */
2105 		if (cpu_to_le64(lbq_desc->bd_dma.dma_addr)
2106 		    != ib_mac_rsp->data_addr) {
2107 			/* Large buffer address mismatch */
2108 			cmn_err(CE_WARN, "%s(%d) ring%d packet saved"
2109 			    " in wrong large buffer",
2110 			    __func__, qlge->instance, rx_ring->cq_id);
2111 			goto fatal_error;
2112 		}
2113 		mp2 = lbq_desc->mp;
2114 		/* Flush DMA'd data */
2115 		(void) ddi_dma_sync(lbq_desc->bd_dma.dma_handle,
2116 		    0, payload_len, DDI_DMA_SYNC_FORKERNEL);
2117 		if ((err_flag != 0) || (mp2 == NULL)) {
2118 #ifdef QLGE_LOAD_UNLOAD
2119 			cmn_err(CE_WARN, "ignore bad data from large buffer");
2120 #endif
2121 			/* failed on this packet, put it back for re-arming */
2122 			ql_refill_lbuf_free_list(lbq_desc, B_FALSE);
2123 			mp2 = NULL;
2124 		} else if (rx_copy) {
2125 			if (tp != NULL) {
2126 				bcopy(lbq_desc->bd_dma.vaddr,
2127 				    tp->b_rptr + header_len, payload_len);
2128 				tp->b_wptr =
2129 				    tp->b_rptr + header_len + payload_len;
2130 			}
2131 			ql_refill_lbuf_free_list(lbq_desc, B_FALSE);
2132 			mp2 = NULL;
2133 		} else {
2134 			/*
2135 			 * Adjust the buffer length to match
2136 			 * the packet payload_len
2137 			 */
2138 			mp2->b_wptr = mp2->b_rptr + payload_len;
2139 			mp2->b_next = mp2->b_cont = NULL;
2140 			QL_DUMP(DBG_RX, "\t RX packet payload dump:\n",
2141 			    (uint8_t *)mp2->b_rptr, 8, payload_len);
2142 			/*
2143 			 * if payload is too small , copy to
2144 			 * the end of packet header
2145 			 */
2146 			if ((mp1 != NULL) &&
2147 			    (payload_len <= qlge->payload_copy_thresh) &&
2148 			    (pkt_len<
2149 			    (SMALL_BUFFER_SIZE - qlge->ip_hdr_offset))) {
2150 				bcopy(mp2->b_rptr, mp1->b_wptr, payload_len);
2151 				mp1->b_wptr += payload_len;
2152 				freemsg(mp2);
2153 				mp2 = NULL;
2154 			}
2155 		}
2156 	} else if (payload_len) { /* ial case */
2157 		/*
2158 		 * payload available but not in sml nor lrg buffer,
2159 		 * so, it is saved in IAL
2160 		 */
2161 #ifdef QLGE_LOAD_UNLOAD
2162 		cmn_err(CE_NOTE, "packet chained in IAL \n");
2163 #endif
2164 		/* lrg buf addresses are saved in one small buffer */
2165 		sbq_desc = ql_get_sbuf_from_in_use_list(rx_ring);
2166 		curr_ial_ptr = (uint64_t *)sbq_desc->bd_dma.vaddr;
2167 		done = 0;
2168 		cp_offset = 0;
2169 
2170 		while (!done) {
2171 			ial_data_addr_low =
2172 			    (uint32_t)(le64_to_cpu(*curr_ial_ptr) &
2173 			    0xFFFFFFFE);
2174 			/* check if this is the last packet fragment */
2175 			done = (uint32_t)(le64_to_cpu(*curr_ial_ptr) & 1);
2176 			curr_ial_ptr++;
2177 			/*
2178 			 * The data is in one or several large buffer(s).
2179 			 */
2180 			lbq_desc = ql_get_lbuf_from_in_use_list(rx_ring);
2181 			actual_data_addr_low =
2182 			    (uint32_t)(lbq_desc->bd_dma.dma_addr &
2183 			    0xFFFFFFFE);
2184 			if (ial_data_addr_low != actual_data_addr_low) {
2185 				cmn_err(CE_WARN,
2186 				    "packet saved in wrong ial lrg buffer"
2187 				    " expected %x, actual %lx",
2188 				    ial_data_addr_low,
2189 				    (uintptr_t)lbq_desc->bd_dma.dma_addr);
2190 				goto fatal_error;
2191 			}
2192 
2193 			size = (payload_len < rx_ring->lbq_buf_size)?
2194 			    payload_len : rx_ring->lbq_buf_size;
2195 			payload_len -= size;
2196 			mp2 = lbq_desc->mp;
2197 			if ((err_flag != 0) || (mp2 == NULL)) {
2198 #ifdef QLGE_LOAD_UNLOAD
2199 				cmn_err(CE_WARN,
2200 				    "ignore bad data from large buffer");
2201 #endif
2202 				ql_refill_lbuf_free_list(lbq_desc, B_FALSE);
2203 				mp2 = NULL;
2204 			} else if (rx_copy) {
2205 				if (tp != NULL) {
2206 					(void) ddi_dma_sync(
2207 					    lbq_desc->bd_dma.dma_handle,
2208 					    0, size, DDI_DMA_SYNC_FORKERNEL);
2209 					bcopy(lbq_desc->bd_dma.vaddr,
2210 					    tp->b_rptr + header_len + cp_offset,
2211 					    size);
2212 					tp->b_wptr =
2213 					    tp->b_rptr + size + cp_offset +
2214 					    header_len;
2215 					cp_offset += size;
2216 				}
2217 				ql_refill_lbuf_free_list(lbq_desc, B_FALSE);
2218 				mp2 = NULL;
2219 			} else {
2220 				if (mp_ial == NULL) {
2221 					mp_ial = mp2;
2222 				} else {
2223 					linkb(mp_ial, mp2);
2224 				}
2225 
2226 				mp2->b_next = NULL;
2227 				mp2->b_cont = NULL;
2228 				mp2->b_wptr = mp2->b_rptr + size;
2229 				/* Flush DMA'd data */
2230 				(void) ddi_dma_sync(lbq_desc->bd_dma.dma_handle,
2231 				    0, size, DDI_DMA_SYNC_FORKERNEL);
2232 				QL_PRINT(DBG_RX, ("ial %d payload received \n",
2233 				    size));
2234 				QL_DUMP(DBG_RX, "\t Mac data dump:\n",
2235 				    (uint8_t *)mp2->b_rptr, 8, size);
2236 			}
2237 		}
2238 		if (err_flag != 0) {
2239 #ifdef QLGE_LOAD_UNLOAD
2240 			/* failed on this packet, put it back for re-arming */
2241 			cmn_err(CE_WARN, "ignore bad data from small buffer");
2242 #endif
2243 			ql_refill_sbuf_free_list(sbq_desc, B_FALSE);
2244 		} else {
2245 			mp2 = mp_ial;
2246 			freemsg(sbq_desc->mp);
2247 		}
2248 	}
2249 	/*
2250 	 * some packets' hdr not split, then send mp2 upstream, otherwise,
2251 	 * concatenate message block mp2 to the tail of message header, mp1
2252 	 */
2253 	if (!err_flag) {
2254 		if (rx_copy) {
2255 			if (tp != NULL) {
2256 				tp->b_next = NULL;
2257 				tp->b_cont = NULL;
2258 				tp->b_wptr = tp->b_rptr +
2259 				    header_len + payload_len;
2260 			}
2261 			mp = tp;
2262 		} else {
2263 			if (mp1) {
2264 				if (mp2) {
2265 					QL_PRINT(DBG_RX,
2266 					    ("packet in mp1 and mp2\n"));
2267 					/* mp1->b_cont = mp2; */
2268 					linkb(mp1, mp2);
2269 					mp = mp1;
2270 				} else {
2271 					QL_PRINT(DBG_RX,
2272 					    ("packet in mp1 only\n"));
2273 					mp = mp1;
2274 				}
2275 			} else if (mp2) {
2276 				QL_PRINT(DBG_RX, ("packet in mp2 only\n"));
2277 				mp = mp2;
2278 			}
2279 		}
2280 	}
2281 	return (mp);
2282 
2283 fatal_error:
2284 	/* fatal Error! */
2285 	if (qlge->fm_enable) {
2286 		ddi_fm_service_impact(qlge->dip, DDI_SERVICE_DEGRADED);
2287 		ql_fm_ereport(qlge, DDI_FM_DEVICE_INVAL_STATE);
2288 		atomic_or_32(&qlge->flags, ADAPTER_ERROR);
2289 	}
2290 	if (tp) {
2291 		freemsg(tp);
2292 	}
2293 
2294 	/* *mp->b_wptr = 0; */
2295 	ql_wake_asic_reset_soft_intr(qlge);
2296 	return (NULL);
2297 
2298 }
2299 
2300 /*
2301  * Bump completion queue consumer index.
2302  */
2303 static void
2304 ql_update_cq(struct rx_ring *rx_ring)
2305 {
2306 	rx_ring->cnsmr_idx++;
2307 	rx_ring->curr_entry++;
2308 	if (rx_ring->cnsmr_idx >= rx_ring->cq_len) {
2309 		rx_ring->cnsmr_idx = 0;
2310 		rx_ring->curr_entry = rx_ring->cq_dma.vaddr;
2311 	}
2312 }
2313 
2314 /*
2315  * Update completion queue consumer index.
2316  */
2317 static void
2318 ql_write_cq_idx(struct rx_ring *rx_ring)
2319 {
2320 	qlge_t *qlge = rx_ring->qlge;
2321 
2322 	ql_write_doorbell_reg(qlge, rx_ring->cnsmr_idx_db_reg,
2323 	    rx_ring->cnsmr_idx);
2324 }
2325 
2326 /*
2327  * Processes a SYS-Chip Event Notification Completion Event.
2328  * The incoming notification event that describes a link up/down
2329  * or some sorts of error happens.
2330  */
2331 static void
2332 ql_process_chip_ae_intr(qlge_t *qlge,
2333     struct ib_sys_event_iocb_rsp *ib_sys_event_rsp_ptr)
2334 {
2335 	uint8_t eventType = ib_sys_event_rsp_ptr->event_type;
2336 	uint32_t soft_req = 0;
2337 
2338 	switch (eventType) {
2339 		case SYS_EVENT_PORT_LINK_UP:	/* 0x0h */
2340 			QL_PRINT(DBG_MBX, ("Port Link Up\n"));
2341 			break;
2342 
2343 		case SYS_EVENT_PORT_LINK_DOWN:	/* 0x1h */
2344 			QL_PRINT(DBG_MBX, ("Port Link Down\n"));
2345 			break;
2346 
2347 		case SYS_EVENT_MULTIPLE_CAM_HITS : /* 0x6h */
2348 			cmn_err(CE_WARN, "A multiple CAM hits look up error "
2349 			    "occurred");
2350 			soft_req |= NEED_HW_RESET;
2351 			break;
2352 
2353 		case SYS_EVENT_SOFT_ECC_ERR:	/* 0x7h */
2354 			cmn_err(CE_WARN, "Soft ECC error detected");
2355 			soft_req |= NEED_HW_RESET;
2356 			break;
2357 
2358 		case SYS_EVENT_MGMT_FATAL_ERR:	/* 0x8h */
2359 			cmn_err(CE_WARN, "Management (MPI) Processor fatal"
2360 			    " error occured");
2361 			soft_req |= NEED_MPI_RESET;
2362 			break;
2363 
2364 		case SYS_EVENT_MAC_INTERRUPT:	/* 0x9h */
2365 			QL_PRINT(DBG_MBX, ("MAC Interrupt"));
2366 			break;
2367 
2368 		case SYS_EVENT_PCI_ERR_READING_SML_LRG_BUF:	/* 0x40h */
2369 			cmn_err(CE_WARN, "PCI Error reading small/large "
2370 			    "buffers occured");
2371 			soft_req |= NEED_HW_RESET;
2372 			break;
2373 
2374 		default:
2375 			QL_PRINT(DBG_RX, ("%s(%d) unknown Sys Event: "
2376 			    "type 0x%x occured",
2377 			    __func__, qlge->instance, eventType));
2378 			break;
2379 	}
2380 
2381 	if ((soft_req & NEED_MPI_RESET) != 0) {
2382 		ql_wake_mpi_reset_soft_intr(qlge);
2383 		if (qlge->fm_enable) {
2384 			ql_fm_ereport(qlge, DDI_FM_DEVICE_INVAL_STATE);
2385 			ddi_fm_service_impact(qlge->dip, DDI_SERVICE_DEGRADED);
2386 		}
2387 	} else if ((soft_req & NEED_HW_RESET) != 0) {
2388 		ql_wake_asic_reset_soft_intr(qlge);
2389 		if (qlge->fm_enable) {
2390 			ql_fm_ereport(qlge, DDI_FM_DEVICE_INVAL_STATE);
2391 			ddi_fm_service_impact(qlge->dip, DDI_SERVICE_DEGRADED);
2392 		}
2393 	}
2394 }
2395 
2396 /*
2397  * set received packet checksum flag
2398  */
2399 void
2400 ql_set_rx_cksum(mblk_t *mp, struct ib_mac_iocb_rsp *net_rsp)
2401 {
2402 	uint32_t flags;
2403 
2404 	/* Not TCP or UDP packet? nothing more to do */
2405 	if (((net_rsp->flags2 & IB_MAC_IOCB_RSP_T) == 0) &&
2406 	    ((net_rsp->flags2 & IB_MAC_IOCB_RSP_U) == 0))
2407 		return;
2408 
2409 	/* No CKO support for IPv6 */
2410 	if ((net_rsp->flags3 & IB_MAC_IOCB_RSP_V6) != 0)
2411 		return;
2412 
2413 	/*
2414 	 * If checksum error, don't set flags; stack will calculate
2415 	 * checksum, detect the error and update statistics
2416 	 */
2417 	if (((net_rsp->flags1 & IB_MAC_IOCB_RSP_TE) != 0) ||
2418 	    ((net_rsp->flags1 & IB_MAC_IOCB_RSP_IE) != 0))
2419 		return;
2420 
2421 	/* TCP or UDP packet and checksum valid */
2422 	if (((net_rsp->flags2 & IB_MAC_IOCB_RSP_T) != 0) &&
2423 	    ((net_rsp->flags1 & IB_MAC_IOCB_RSP_NU) == 0)) {
2424 		flags = HCK_FULLCKSUM_OK;
2425 		mac_hcksum_set(mp, 0, 0, 0, 0, flags);
2426 	}
2427 	if (((net_rsp->flags2 & IB_MAC_IOCB_RSP_U) != 0) &&
2428 	    ((net_rsp->flags1 & IB_MAC_IOCB_RSP_NU) == 0)) {
2429 		flags = HCK_FULLCKSUM_OK;
2430 		mac_hcksum_set(mp, 0, 0, 0, 0, flags);
2431 	}
2432 }
2433 
2434 /*
2435  * This function goes through h/w descriptor in one specified rx ring,
2436  * receives the data if the descriptor status shows the data is ready.
2437  * It returns a chain of mblks containing the received data, to be
2438  * passed up to mac_rx_ring().
2439  */
2440 mblk_t *
2441 ql_ring_rx(struct rx_ring *rx_ring, int poll_bytes)
2442 {
2443 	qlge_t *qlge = rx_ring->qlge;
2444 	uint32_t prod = ql_read_sh_reg(qlge, rx_ring);
2445 	struct ib_mac_iocb_rsp *net_rsp;
2446 	mblk_t *mp;
2447 	mblk_t *mblk_head;
2448 	mblk_t **mblk_tail;
2449 	uint32_t received_bytes = 0;
2450 	uint32_t length;
2451 #ifdef QLGE_PERFORMANCE
2452 	uint32_t pkt_ct = 0;
2453 #endif
2454 
2455 #ifdef QLGE_TRACK_BUFFER_USAGE
2456 	uint32_t consumer_idx;
2457 	uint32_t producer_idx;
2458 	uint32_t num_free_entries;
2459 	uint32_t temp;
2460 
2461 	temp = ql_read_doorbell_reg(qlge, rx_ring->cnsmr_idx_db_reg);
2462 	consumer_idx = temp & 0x0000ffff;
2463 	producer_idx = (temp >> 16);
2464 
2465 	if (consumer_idx > producer_idx)
2466 		num_free_entries = (consumer_idx - producer_idx);
2467 	else
2468 		num_free_entries = NUM_RX_RING_ENTRIES - (
2469 		    producer_idx - consumer_idx);
2470 
2471 	if (num_free_entries < qlge->cq_low_count[rx_ring->cq_id])
2472 		qlge->cq_low_count[rx_ring->cq_id] = num_free_entries;
2473 
2474 #endif
2475 	mblk_head = NULL;
2476 	mblk_tail = &mblk_head;
2477 
2478 	while ((prod != rx_ring->cnsmr_idx)) {
2479 		QL_PRINT(DBG_RX,
2480 		    ("%s cq_id = %d, prod = %d, cnsmr = %d.\n",
2481 		    __func__, rx_ring->cq_id, prod, rx_ring->cnsmr_idx));
2482 
2483 		net_rsp = (struct ib_mac_iocb_rsp *)rx_ring->curr_entry;
2484 		(void) ddi_dma_sync(rx_ring->cq_dma.dma_handle,
2485 		    (off_t)((uintptr_t)net_rsp -
2486 		    (uintptr_t)rx_ring->cq_dma.vaddr),
2487 		    (size_t)sizeof (*net_rsp), DDI_DMA_SYNC_FORKERNEL);
2488 		QL_DUMP(DBG_RX, "qlge_ring_rx: rx completion iocb\n",
2489 		    rx_ring->curr_entry, 8, (size_t)sizeof (*net_rsp));
2490 
2491 		switch (net_rsp->opcode) {
2492 
2493 		case OPCODE_IB_MAC_IOCB:
2494 			/* Adding length of pkt header and payload */
2495 			length = le32_to_cpu(net_rsp->data_len) +
2496 			    le32_to_cpu(net_rsp->hdr_len);
2497 			if ((poll_bytes != QLGE_POLL_ALL) &&
2498 			    ((received_bytes + length) > poll_bytes)) {
2499 				continue;
2500 			}
2501 			received_bytes += length;
2502 
2503 #ifdef QLGE_PERFORMANCE
2504 			pkt_ct++;
2505 #endif
2506 			mp = ql_build_rx_mp(qlge, rx_ring, net_rsp);
2507 			if (mp != NULL) {
2508 				if (rx_ring->mac_flags != QL_MAC_STARTED) {
2509 					/*
2510 					 * Increment number of packets we have
2511 					 * indicated to the stack, should be
2512 					 * decremented when we get it back
2513 					 * or when freemsg is called
2514 					 */
2515 					ASSERT(rx_ring->rx_indicate
2516 					    <= rx_ring->cq_len);
2517 #ifdef QLGE_LOAD_UNLOAD
2518 					cmn_err(CE_WARN, "%s do not send to OS,"
2519 					    " mac_flags %d, indicate %d",
2520 					    __func__, rx_ring->mac_flags,
2521 					    rx_ring->rx_indicate);
2522 #endif
2523 					QL_PRINT(DBG_RX,
2524 					    ("cq_id = %d, packet "
2525 					    "dropped, mac not "
2526 					    "enabled.\n",
2527 					    rx_ring->cq_id));
2528 					rx_ring->rx_pkt_dropped_mac_unenabled++;
2529 
2530 					/* rx_lock is expected to be held */
2531 					mutex_exit(&rx_ring->rx_lock);
2532 					freemsg(mp);
2533 					mutex_enter(&rx_ring->rx_lock);
2534 					mp = NULL;
2535 				}
2536 
2537 				if (mp != NULL) {
2538 					/*
2539 					 * IP full packet has been
2540 					 * successfully verified by
2541 					 * H/W and is correct
2542 					 */
2543 					ql_set_rx_cksum(mp, net_rsp);
2544 
2545 					rx_ring->rx_packets++;
2546 					rx_ring->rx_bytes += length;
2547 					*mblk_tail = mp;
2548 					mblk_tail = &mp->b_next;
2549 				}
2550 			} else {
2551 				QL_PRINT(DBG_RX,
2552 				    ("cq_id = %d, packet dropped\n",
2553 				    rx_ring->cq_id));
2554 				rx_ring->rx_packets_dropped_no_buffer++;
2555 			}
2556 			break;
2557 
2558 		case OPCODE_IB_SYS_EVENT_IOCB:
2559 			ql_process_chip_ae_intr(qlge,
2560 			    (struct ib_sys_event_iocb_rsp *)
2561 			    net_rsp);
2562 			break;
2563 
2564 		default:
2565 			cmn_err(CE_WARN,
2566 			    "%s Ring(%d)Hit default case, not handled!"
2567 			    " dropping the packet, "
2568 			    "opcode = %x.", __func__, rx_ring->cq_id,
2569 			    net_rsp->opcode);
2570 			break;
2571 		}
2572 		/* increment cnsmr_idx and curr_entry */
2573 		ql_update_cq(rx_ring);
2574 		prod = ql_read_sh_reg(qlge, rx_ring);
2575 
2576 	}
2577 
2578 #ifdef QLGE_PERFORMANCE
2579 	if (pkt_ct >= 7)
2580 		rx_ring->hist[7]++;
2581 	else if (pkt_ct == 6)
2582 		rx_ring->hist[6]++;
2583 	else if (pkt_ct == 5)
2584 		rx_ring->hist[5]++;
2585 	else if (pkt_ct == 4)
2586 		rx_ring->hist[4]++;
2587 	else if (pkt_ct == 3)
2588 		rx_ring->hist[3]++;
2589 	else if (pkt_ct == 2)
2590 		rx_ring->hist[2]++;
2591 	else if (pkt_ct == 1)
2592 		rx_ring->hist[1]++;
2593 	else if (pkt_ct == 0)
2594 		rx_ring->hist[0]++;
2595 #endif
2596 
2597 	/* update cnsmr_idx */
2598 	ql_write_cq_idx(rx_ring);
2599 	/* do not enable interrupt for polling mode */
2600 	if (poll_bytes == QLGE_POLL_ALL)
2601 		ql_enable_completion_interrupt(rx_ring->qlge, rx_ring->irq);
2602 	return (mblk_head);
2603 }
2604 
2605 /* Process an outbound completion from an rx ring. */
2606 static void
2607 ql_process_mac_tx_intr(qlge_t *qlge, struct ob_mac_iocb_rsp *mac_rsp)
2608 {
2609 	struct tx_ring *tx_ring;
2610 	struct tx_ring_desc *tx_ring_desc;
2611 	int j;
2612 
2613 	tx_ring = &qlge->tx_ring[mac_rsp->txq_idx];
2614 	tx_ring_desc = tx_ring->wq_desc;
2615 	tx_ring_desc += mac_rsp->tid;
2616 
2617 	if (tx_ring_desc->tx_type == USE_DMA) {
2618 		QL_PRINT(DBG_TX, ("%s(%d): tx type USE_DMA\n",
2619 		    __func__, qlge->instance));
2620 
2621 		/*
2622 		 * Release the DMA resource that is used for
2623 		 * DMA binding.
2624 		 */
2625 		for (j = 0; j < tx_ring_desc->tx_dma_handle_used; j++) {
2626 			(void) ddi_dma_unbind_handle(
2627 			    tx_ring_desc->tx_dma_handle[j]);
2628 		}
2629 
2630 		tx_ring_desc->tx_dma_handle_used = 0;
2631 		/*
2632 		 * Free the mblk after sending completed
2633 		 */
2634 		if (tx_ring_desc->mp != NULL) {
2635 			freemsg(tx_ring_desc->mp);
2636 			tx_ring_desc->mp = NULL;
2637 		}
2638 	}
2639 
2640 	tx_ring->obytes += tx_ring_desc->tx_bytes;
2641 	tx_ring->opackets++;
2642 
2643 	if (mac_rsp->flags1 & (OB_MAC_IOCB_RSP_E | OB_MAC_IOCB_RSP_S |
2644 	    OB_MAC_IOCB_RSP_L | OB_MAC_IOCB_RSP_B)) {
2645 		tx_ring->errxmt++;
2646 		if (mac_rsp->flags1 & OB_MAC_IOCB_RSP_E) {
2647 			/* EMPTY */
2648 			QL_PRINT(DBG_TX,
2649 			    ("Total descriptor length did not match "
2650 			    "transfer length.\n"));
2651 		}
2652 		if (mac_rsp->flags1 & OB_MAC_IOCB_RSP_S) {
2653 			/* EMPTY */
2654 			QL_PRINT(DBG_TX,
2655 			    ("Frame too short to be legal, not sent.\n"));
2656 		}
2657 		if (mac_rsp->flags1 & OB_MAC_IOCB_RSP_L) {
2658 			/* EMPTY */
2659 			QL_PRINT(DBG_TX,
2660 			    ("Frame too long, but sent anyway.\n"));
2661 		}
2662 		if (mac_rsp->flags3 & OB_MAC_IOCB_RSP_B) {
2663 			/* EMPTY */
2664 			QL_PRINT(DBG_TX,
2665 			    ("PCI backplane error. Frame not sent.\n"));
2666 		}
2667 	}
2668 	atomic_inc_32(&tx_ring->tx_free_count);
2669 }
2670 
2671 /*
2672  * clean up tx completion iocbs
2673  */
2674 int
2675 ql_clean_outbound_rx_ring(struct rx_ring *rx_ring)
2676 {
2677 	qlge_t *qlge = rx_ring->qlge;
2678 	uint32_t prod = ql_read_sh_reg(qlge, rx_ring);
2679 	struct ob_mac_iocb_rsp *net_rsp = NULL;
2680 	int count = 0;
2681 	struct tx_ring *tx_ring;
2682 	boolean_t resume_tx = B_FALSE;
2683 
2684 	mutex_enter(&rx_ring->rx_lock);
2685 #ifdef QLGE_TRACK_BUFFER_USAGE
2686 	{
2687 	uint32_t consumer_idx;
2688 	uint32_t producer_idx;
2689 	uint32_t num_free_entries;
2690 	uint32_t temp;
2691 
2692 	temp = ql_read_doorbell_reg(qlge, rx_ring->cnsmr_idx_db_reg);
2693 	consumer_idx = temp & 0x0000ffff;
2694 	producer_idx = (temp >> 16);
2695 
2696 	if (consumer_idx > producer_idx)
2697 		num_free_entries = (consumer_idx - producer_idx);
2698 	else
2699 		num_free_entries = NUM_RX_RING_ENTRIES -
2700 		    (producer_idx - consumer_idx);
2701 
2702 	if (num_free_entries < qlge->cq_low_count[rx_ring->cq_id])
2703 		qlge->cq_low_count[rx_ring->cq_id] = num_free_entries;
2704 
2705 	}
2706 #endif
2707 	/* While there are entries in the completion queue. */
2708 	while (prod != rx_ring->cnsmr_idx) {
2709 
2710 		QL_PRINT(DBG_RX,
2711 		    ("%s cq_id = %d, prod = %d, cnsmr = %d.\n", __func__,
2712 		    rx_ring->cq_id, prod, rx_ring->cnsmr_idx));
2713 
2714 		net_rsp = (struct ob_mac_iocb_rsp *)rx_ring->curr_entry;
2715 		(void) ddi_dma_sync(rx_ring->cq_dma.dma_handle,
2716 		    (off_t)((uintptr_t)net_rsp -
2717 		    (uintptr_t)rx_ring->cq_dma.vaddr),
2718 		    (size_t)sizeof (*net_rsp), DDI_DMA_SYNC_FORKERNEL);
2719 
2720 		QL_DUMP(DBG_RX, "ql_clean_outbound_rx_ring: "
2721 		    "response packet data\n",
2722 		    rx_ring->curr_entry, 8,
2723 		    (size_t)sizeof (*net_rsp));
2724 
2725 		switch (net_rsp->opcode) {
2726 
2727 		case OPCODE_OB_MAC_OFFLOAD_IOCB:
2728 		case OPCODE_OB_MAC_IOCB:
2729 			ql_process_mac_tx_intr(qlge, net_rsp);
2730 			break;
2731 
2732 		default:
2733 			cmn_err(CE_WARN,
2734 			    "%s Hit default case, not handled! "
2735 			    "dropping the packet,"
2736 			    " opcode = %x.",
2737 			    __func__, net_rsp->opcode);
2738 			break;
2739 		}
2740 		count++;
2741 		ql_update_cq(rx_ring);
2742 		prod = ql_read_sh_reg(qlge, rx_ring);
2743 	}
2744 	ql_write_cq_idx(rx_ring);
2745 
2746 	mutex_exit(&rx_ring->rx_lock);
2747 
2748 	net_rsp = (struct ob_mac_iocb_rsp *)rx_ring->curr_entry;
2749 	tx_ring = &qlge->tx_ring[net_rsp->txq_idx];
2750 
2751 	mutex_enter(&tx_ring->tx_lock);
2752 
2753 	if (tx_ring->queue_stopped &&
2754 	    (tx_ring->tx_free_count > TX_RESUME_THRESHOLD)) {
2755 		/*
2756 		 * The queue got stopped because the tx_ring was full.
2757 		 * Wake it up, because it's now at least 25% empty.
2758 		 */
2759 		tx_ring->queue_stopped = 0;
2760 		resume_tx = B_TRUE;
2761 	}
2762 
2763 	mutex_exit(&tx_ring->tx_lock);
2764 	/* Don't hold the lock during OS callback */
2765 	if (resume_tx)
2766 		RESUME_TX(tx_ring);
2767 	return (count);
2768 }
2769 
2770 /*
2771  * reset asic when error happens
2772  */
2773 /* ARGSUSED */
2774 static uint_t
2775 ql_asic_reset_work(caddr_t arg1, caddr_t arg2)
2776 {
2777 	qlge_t *qlge = (qlge_t *)((void *)arg1);
2778 	int status;
2779 
2780 	mutex_enter(&qlge->gen_mutex);
2781 	(void) ql_do_stop(qlge);
2782 	/*
2783 	 * Write default ethernet address to chip register Mac
2784 	 * Address slot 0 and Enable Primary Mac Function.
2785 	 */
2786 	mutex_enter(&qlge->hw_mutex);
2787 	(void) ql_unicst_set(qlge,
2788 	    (uint8_t *)qlge->unicst_addr[0].addr.ether_addr_octet, 0);
2789 	mutex_exit(&qlge->hw_mutex);
2790 	qlge->mac_flags = QL_MAC_INIT;
2791 	status = ql_do_start(qlge);
2792 	if (status != DDI_SUCCESS)
2793 		goto error;
2794 	qlge->mac_flags = QL_MAC_STARTED;
2795 	mutex_exit(&qlge->gen_mutex);
2796 	ddi_fm_service_impact(qlge->dip, DDI_SERVICE_RESTORED);
2797 
2798 	return (DDI_INTR_CLAIMED);
2799 
2800 error:
2801 	mutex_exit(&qlge->gen_mutex);
2802 	cmn_err(CE_WARN,
2803 	    "qlge up/down cycle failed, closing device");
2804 	if (qlge->fm_enable) {
2805 		ql_fm_ereport(qlge, DDI_FM_DEVICE_INVAL_STATE);
2806 		ddi_fm_service_impact(qlge->dip, DDI_SERVICE_LOST);
2807 		atomic_or_32(&qlge->flags, ADAPTER_ERROR);
2808 	}
2809 	return (DDI_INTR_CLAIMED);
2810 }
2811 
2812 /*
2813  * Reset MPI
2814  */
2815 /* ARGSUSED */
2816 static uint_t
2817 ql_mpi_reset_work(caddr_t arg1, caddr_t arg2)
2818 {
2819 	qlge_t *qlge = (qlge_t *)((void *)arg1);
2820 
2821 	(void) ql_reset_mpi_risc(qlge);
2822 	return (DDI_INTR_CLAIMED);
2823 }
2824 
2825 /*
2826  * Process MPI mailbox messages
2827  */
2828 /* ARGSUSED */
2829 static uint_t
2830 ql_mpi_event_work(caddr_t arg1, caddr_t arg2)
2831 {
2832 	qlge_t *qlge = (qlge_t *)((void *)arg1);
2833 
2834 	ql_do_mpi_intr(qlge);
2835 	return (DDI_INTR_CLAIMED);
2836 }
2837 
2838 /* Fire up a handler to reset the MPI processor. */
2839 void
2840 ql_wake_asic_reset_soft_intr(qlge_t *qlge)
2841 {
2842 	(void) ddi_intr_trigger_softint(qlge->asic_reset_intr_hdl, NULL);
2843 }
2844 
2845 static void
2846 ql_wake_mpi_reset_soft_intr(qlge_t *qlge)
2847 {
2848 	(void) ddi_intr_trigger_softint(qlge->mpi_reset_intr_hdl, NULL);
2849 }
2850 
2851 static void
2852 ql_wake_mpi_event_soft_intr(qlge_t *qlge)
2853 {
2854 	(void) ddi_intr_trigger_softint(qlge->mpi_event_intr_hdl, NULL);
2855 }
2856 
2857 /*
2858  * This handles a fatal error, MPI activity, and the default
2859  * rx_ring in an MSI-X multiple interrupt vector environment.
2860  * In MSI/Legacy environment it also process the rest of
2861  * the rx_rings.
2862  */
2863 /* ARGSUSED */
2864 static uint_t
2865 ql_isr(caddr_t arg1, caddr_t arg2)
2866 {
2867 	struct rx_ring *rx_ring = (struct rx_ring *)((void *)arg1);
2868 	struct rx_ring *ob_ring;
2869 	qlge_t *qlge = rx_ring->qlge;
2870 	struct intr_ctx *intr_ctx = &qlge->intr_ctx[0];
2871 	uint32_t var, prod;
2872 	int i;
2873 	int work_done = 0;
2874 
2875 	mblk_t *mp;
2876 
2877 	_NOTE(ARGUNUSED(arg2));
2878 
2879 	++qlge->rx_interrupts[rx_ring->cq_id];
2880 
2881 	if (ql_atomic_read_32(&qlge->intr_ctx[0].irq_cnt)) {
2882 		ql_write_reg(qlge, REG_RSVD7, 0xfeed0002);
2883 		var = ql_read_reg(qlge, REG_ERROR_STATUS);
2884 		var = ql_read_reg(qlge, REG_STATUS);
2885 		var = ql_read_reg(qlge, REG_INTERRUPT_STATUS_1);
2886 		return (DDI_INTR_CLAIMED);
2887 	}
2888 
2889 	ql_disable_completion_interrupt(qlge, intr_ctx->intr);
2890 
2891 	/*
2892 	 * process send completes on first stride tx ring if available
2893 	 */
2894 	if (qlge->isr_stride) {
2895 		ob_ring = &qlge->rx_ring[qlge->isr_stride];
2896 		if (ql_read_sh_reg(qlge, ob_ring) !=
2897 		    ob_ring->cnsmr_idx) {
2898 			(void) ql_clean_outbound_rx_ring(ob_ring);
2899 		}
2900 	}
2901 	/*
2902 	 * Check the default queue and wake handler if active.
2903 	 */
2904 	rx_ring = &qlge->rx_ring[0];
2905 	prod = ql_read_sh_reg(qlge, rx_ring);
2906 	QL_PRINT(DBG_INTR, ("rx-ring[0] prod index 0x%x, consumer 0x%x ",
2907 	    prod, rx_ring->cnsmr_idx));
2908 	/* check if interrupt is due to incoming packet */
2909 	if (prod != rx_ring->cnsmr_idx) {
2910 		QL_PRINT(DBG_INTR, ("Waking handler for rx_ring[0].\n"));
2911 		ql_disable_completion_interrupt(qlge, intr_ctx->intr);
2912 		mutex_enter(&rx_ring->rx_lock);
2913 		mp = ql_ring_rx(rx_ring, QLGE_POLL_ALL);
2914 		mutex_exit(&rx_ring->rx_lock);
2915 
2916 		if (mp != NULL)
2917 			RX_UPSTREAM(rx_ring, mp);
2918 		work_done++;
2919 	} else {
2920 		/*
2921 		 * If interrupt is not due to incoming packet, read status
2922 		 * register to see if error happens or mailbox interrupt.
2923 		 */
2924 		var = ql_read_reg(qlge, REG_STATUS);
2925 		if ((var & STATUS_FE) != 0) {
2926 			ql_write_reg(qlge, REG_RSVD7, 0xfeed0003);
2927 			if (qlge->fm_enable) {
2928 				atomic_or_32(&qlge->flags, ADAPTER_ERROR);
2929 				ql_fm_ereport(qlge, DDI_FM_DEVICE_INVAL_STATE);
2930 				ddi_fm_service_impact(qlge->dip,
2931 				    DDI_SERVICE_LOST);
2932 			}
2933 			cmn_err(CE_WARN, "Got fatal error, STS = %x.", var);
2934 			var = ql_read_reg(qlge, REG_ERROR_STATUS);
2935 			cmn_err(CE_WARN,
2936 			    "Resetting chip. Error Status Register = 0x%x",
2937 			    var);
2938 			ql_wake_asic_reset_soft_intr(qlge);
2939 			return (DDI_INTR_CLAIMED);
2940 		}
2941 
2942 		/*
2943 		 * Check MPI processor activity.
2944 		 */
2945 		if ((var & STATUS_PI) != 0) {
2946 			/*
2947 			 * We've got an async event or mailbox completion.
2948 			 * Handle it and clear the source of the interrupt.
2949 			 */
2950 			ql_write_reg(qlge, REG_RSVD7, 0xfeed0004);
2951 
2952 			QL_PRINT(DBG_INTR, ("Got MPI processor interrupt.\n"));
2953 			ql_disable_completion_interrupt(qlge, intr_ctx->intr);
2954 			ql_wake_mpi_event_soft_intr(qlge);
2955 			work_done++;
2956 		}
2957 	}
2958 
2959 
2960 	if (qlge->intr_type != DDI_INTR_TYPE_MSIX) {
2961 		/*
2962 		 * Start the DPC for each active queue.
2963 		 */
2964 		for (i = 1; i < qlge->rx_ring_count; i++) {
2965 			rx_ring = &qlge->rx_ring[i];
2966 
2967 			if (ql_read_sh_reg(qlge, rx_ring) !=
2968 			    rx_ring->cnsmr_idx) {
2969 				QL_PRINT(DBG_INTR,
2970 				    ("Waking handler for rx_ring[%d].\n", i));
2971 
2972 				ql_disable_completion_interrupt(qlge,
2973 				    rx_ring->irq);
2974 				if (rx_ring->type == TX_Q) {
2975 					(void) ql_clean_outbound_rx_ring(
2976 					    rx_ring);
2977 					ql_enable_completion_interrupt(
2978 					    rx_ring->qlge, rx_ring->irq);
2979 				} else {
2980 					mutex_enter(&rx_ring->rx_lock);
2981 					mp = ql_ring_rx(rx_ring, QLGE_POLL_ALL);
2982 					mutex_exit(&rx_ring->rx_lock);
2983 					if (mp != NULL)
2984 						RX_UPSTREAM(rx_ring, mp);
2985 #ifdef QLGE_LOAD_UNLOAD
2986 					if (rx_ring->mac_flags ==
2987 					    QL_MAC_STOPPED)
2988 						cmn_err(CE_NOTE,
2989 						    "%s rx_indicate(%d) %d\n",
2990 						    __func__, i,
2991 						    rx_ring->rx_indicate);
2992 #endif
2993 				}
2994 				work_done++;
2995 			}
2996 		}
2997 	}
2998 
2999 	ql_enable_completion_interrupt(qlge, intr_ctx->intr);
3000 
3001 	return (work_done ? DDI_INTR_CLAIMED : DDI_INTR_UNCLAIMED);
3002 }
3003 
3004 /*
3005  * MSI-X Multiple Vector Interrupt Handler for outbound (TX) completions.
3006  */
3007 /* ARGSUSED */
3008 static uint_t
3009 ql_msix_tx_isr(caddr_t arg1, caddr_t arg2)
3010 {
3011 	struct rx_ring *rx_ring = (struct rx_ring *)((void *)arg1);
3012 	qlge_t *qlge = rx_ring->qlge;
3013 	_NOTE(ARGUNUSED(arg2));
3014 
3015 	++qlge->rx_interrupts[rx_ring->cq_id];
3016 	(void) ql_clean_outbound_rx_ring(rx_ring);
3017 	ql_enable_completion_interrupt(rx_ring->qlge, rx_ring->irq);
3018 
3019 	return (DDI_INTR_CLAIMED);
3020 }
3021 
3022 /*
3023  * MSI-X Multiple Vector Interrupt Handler
3024  */
3025 /* ARGSUSED */
3026 static uint_t
3027 ql_msix_isr(caddr_t arg1, caddr_t arg2)
3028 {
3029 	struct rx_ring *rx_ring = (struct rx_ring *)((void *)arg1);
3030 	struct rx_ring *ob_ring;
3031 	qlge_t *qlge = rx_ring->qlge;
3032 	mblk_t *mp;
3033 	_NOTE(ARGUNUSED(arg2));
3034 
3035 	QL_PRINT(DBG_INTR, ("%s for ring %d\n", __func__, rx_ring->cq_id));
3036 
3037 	ql_disable_completion_interrupt(qlge, rx_ring->irq);
3038 
3039 	/*
3040 	 * process send completes on stride tx ring if available
3041 	 */
3042 	if (qlge->isr_stride) {
3043 		ob_ring = rx_ring + qlge->isr_stride;
3044 		if (ql_read_sh_reg(qlge, ob_ring) !=
3045 		    ob_ring->cnsmr_idx) {
3046 			++qlge->rx_interrupts[ob_ring->cq_id];
3047 			(void) ql_clean_outbound_rx_ring(ob_ring);
3048 		}
3049 	}
3050 
3051 	++qlge->rx_interrupts[rx_ring->cq_id];
3052 
3053 	mutex_enter(&rx_ring->rx_lock);
3054 	mp = ql_ring_rx(rx_ring, QLGE_POLL_ALL);
3055 	mutex_exit(&rx_ring->rx_lock);
3056 
3057 	if (mp != NULL)
3058 		RX_UPSTREAM(rx_ring, mp);
3059 
3060 	return (DDI_INTR_CLAIMED);
3061 }
3062 
3063 /*
3064  * Poll n_bytes of chained incoming packets
3065  */
3066 mblk_t *
3067 ql_ring_rx_poll(void *arg, int n_bytes)
3068 {
3069 	struct rx_ring *rx_ring = (struct rx_ring *)arg;
3070 	qlge_t *qlge = rx_ring->qlge;
3071 	mblk_t *mp = NULL;
3072 	uint32_t var;
3073 
3074 	ASSERT(n_bytes >= 0);
3075 	QL_PRINT(DBG_GLD, ("%s for ring(%d) to read max %d bytes\n",
3076 	    __func__, rx_ring->cq_id, n_bytes));
3077 
3078 	++qlge->rx_polls[rx_ring->cq_id];
3079 
3080 	if (n_bytes == 0)
3081 		return (mp);
3082 	mutex_enter(&rx_ring->rx_lock);
3083 	mp = ql_ring_rx(rx_ring, n_bytes);
3084 	mutex_exit(&rx_ring->rx_lock);
3085 
3086 	if ((rx_ring->cq_id == 0) && (mp == NULL)) {
3087 		var = ql_read_reg(qlge, REG_STATUS);
3088 		/*
3089 		 * Check for fatal error.
3090 		 */
3091 		if ((var & STATUS_FE) != 0) {
3092 			ql_write_reg(qlge, REG_RSVD7, 0xfeed0003);
3093 			var = ql_read_reg(qlge, REG_ERROR_STATUS);
3094 			cmn_err(CE_WARN, "Got fatal error %x.", var);
3095 			ql_wake_asic_reset_soft_intr(qlge);
3096 			if (qlge->fm_enable) {
3097 				atomic_or_32(&qlge->flags, ADAPTER_ERROR);
3098 				ql_fm_ereport(qlge, DDI_FM_DEVICE_INVAL_STATE);
3099 				ddi_fm_service_impact(qlge->dip,
3100 				    DDI_SERVICE_LOST);
3101 			}
3102 		}
3103 		/*
3104 		 * Check MPI processor activity.
3105 		 */
3106 		if ((var & STATUS_PI) != 0) {
3107 			/*
3108 			 * We've got an async event or mailbox completion.
3109 			 * Handle it and clear the source of the interrupt.
3110 			 */
3111 			ql_write_reg(qlge, REG_RSVD7, 0xfeed0004);
3112 			ql_do_mpi_intr(qlge);
3113 		}
3114 	}
3115 
3116 	return (mp);
3117 }
3118 
3119 /*
3120  * MSI-X Multiple Vector Interrupt Handler for inbound (RX) completions.
3121  */
3122 /* ARGSUSED */
3123 static uint_t
3124 ql_msix_rx_isr(caddr_t arg1, caddr_t arg2)
3125 {
3126 	struct rx_ring *rx_ring = (struct rx_ring *)((void *)arg1);
3127 	qlge_t *qlge = rx_ring->qlge;
3128 	mblk_t *mp;
3129 	_NOTE(ARGUNUSED(arg2));
3130 
3131 	QL_PRINT(DBG_INTR, ("%s for ring %d\n", __func__, rx_ring->cq_id));
3132 
3133 	++qlge->rx_interrupts[rx_ring->cq_id];
3134 
3135 	mutex_enter(&rx_ring->rx_lock);
3136 	mp = ql_ring_rx(rx_ring, QLGE_POLL_ALL);
3137 	mutex_exit(&rx_ring->rx_lock);
3138 
3139 	if (mp != NULL)
3140 		RX_UPSTREAM(rx_ring, mp);
3141 
3142 	return (DDI_INTR_CLAIMED);
3143 }
3144 
3145 
3146 /*
3147  *
3148  * Allocate DMA Buffer for ioctl service
3149  *
3150  */
3151 static int
3152 ql_alloc_ioctl_dma_buf(qlge_t *qlge)
3153 {
3154 	uint64_t phy_addr;
3155 	uint64_t alloc_size;
3156 	ddi_dma_cookie_t dma_cookie;
3157 
3158 	alloc_size = qlge->ioctl_buf_dma_attr.mem_len =
3159 	    max(WCS_MPI_CODE_RAM_LENGTH, MEMC_MPI_RAM_LENGTH);
3160 	if (ql_alloc_phys(qlge->dip, &qlge->ioctl_buf_dma_attr.dma_handle,
3161 	    &ql_buf_acc_attr,
3162 	    DDI_DMA_RDWR | DDI_DMA_CONSISTENT,
3163 	    &qlge->ioctl_buf_dma_attr.acc_handle,
3164 	    (size_t)alloc_size,  /* mem size */
3165 	    (size_t)0,  /* alignment */
3166 	    (caddr_t *)&qlge->ioctl_buf_dma_attr.vaddr,
3167 	    &dma_cookie) != 0) {
3168 		cmn_err(CE_WARN, "%s(%d): ioctl DMA allocation failed.",
3169 		    __func__, qlge->instance);
3170 		return (DDI_FAILURE);
3171 	}
3172 
3173 	phy_addr = dma_cookie.dmac_laddress;
3174 
3175 	if (qlge->ioctl_buf_dma_attr.vaddr == NULL) {
3176 		cmn_err(CE_WARN, "%s(%d): failed.", __func__, qlge->instance);
3177 		return (DDI_FAILURE);
3178 	}
3179 
3180 	qlge->ioctl_buf_dma_attr.dma_addr = phy_addr;
3181 
3182 	QL_PRINT(DBG_MBX, ("%s: ioctl_dma_buf_virt_addr = 0x%lx, "
3183 	    "phy_addr = 0x%lx\n",
3184 	    __func__, qlge->ioctl_buf_dma_attr.vaddr, phy_addr));
3185 
3186 	return (DDI_SUCCESS);
3187 }
3188 
3189 
3190 /*
3191  * Function to free physical memory.
3192  */
3193 static void
3194 ql_free_phys(ddi_dma_handle_t *dma_handle, ddi_acc_handle_t *acc_handle)
3195 {
3196 	if (*dma_handle != NULL) {
3197 		(void) ddi_dma_unbind_handle(*dma_handle);
3198 		if (*acc_handle != NULL)
3199 			ddi_dma_mem_free(acc_handle);
3200 		ddi_dma_free_handle(dma_handle);
3201 		*acc_handle = NULL;
3202 		*dma_handle = NULL;
3203 	}
3204 }
3205 
3206 /*
3207  * Function to free ioctl dma buffer.
3208  */
3209 static void
3210 ql_free_ioctl_dma_buf(qlge_t *qlge)
3211 {
3212 	if (qlge->ioctl_buf_dma_attr.dma_handle != NULL) {
3213 		ql_free_phys(&qlge->ioctl_buf_dma_attr.dma_handle,
3214 		    &qlge->ioctl_buf_dma_attr.acc_handle);
3215 
3216 		qlge->ioctl_buf_dma_attr.vaddr = NULL;
3217 		qlge->ioctl_buf_dma_attr.dma_handle = NULL;
3218 	}
3219 }
3220 
3221 /*
3222  * Free shadow register space used for request and completion queues
3223  */
3224 static void
3225 ql_free_shadow_space(qlge_t *qlge)
3226 {
3227 	if (qlge->host_copy_shadow_dma_attr.dma_handle != NULL) {
3228 		ql_free_phys(&qlge->host_copy_shadow_dma_attr.dma_handle,
3229 		    &qlge->host_copy_shadow_dma_attr.acc_handle);
3230 		bzero(&qlge->host_copy_shadow_dma_attr,
3231 		    sizeof (qlge->host_copy_shadow_dma_attr));
3232 	}
3233 
3234 	if (qlge->buf_q_ptr_base_addr_dma_attr.dma_handle != NULL) {
3235 		ql_free_phys(&qlge->buf_q_ptr_base_addr_dma_attr.dma_handle,
3236 		    &qlge->buf_q_ptr_base_addr_dma_attr.acc_handle);
3237 		bzero(&qlge->buf_q_ptr_base_addr_dma_attr,
3238 		    sizeof (qlge->buf_q_ptr_base_addr_dma_attr));
3239 	}
3240 }
3241 
3242 /*
3243  * Allocate shadow register space for request and completion queues
3244  */
3245 static int
3246 ql_alloc_shadow_space(qlge_t *qlge)
3247 {
3248 	ddi_dma_cookie_t dma_cookie;
3249 
3250 	if (ql_alloc_phys(qlge->dip,
3251 	    &qlge->host_copy_shadow_dma_attr.dma_handle,
3252 	    &ql_dev_acc_attr,
3253 	    DDI_DMA_RDWR | DDI_DMA_CONSISTENT,
3254 	    &qlge->host_copy_shadow_dma_attr.acc_handle,
3255 	    (size_t)VM_PAGE_SIZE,  /* mem size */
3256 	    (size_t)4, /* 4 bytes alignment */
3257 	    (caddr_t *)&qlge->host_copy_shadow_dma_attr.vaddr,
3258 	    &dma_cookie) != 0) {
3259 		bzero(&qlge->host_copy_shadow_dma_attr,
3260 		    sizeof (qlge->host_copy_shadow_dma_attr));
3261 
3262 		cmn_err(CE_WARN, "%s(%d): Unable to allocate DMA memory for "
3263 		    "response shadow registers", __func__, qlge->instance);
3264 		return (DDI_FAILURE);
3265 	}
3266 
3267 	qlge->host_copy_shadow_dma_attr.dma_addr = dma_cookie.dmac_laddress;
3268 
3269 	if (ql_alloc_phys(qlge->dip,
3270 	    &qlge->buf_q_ptr_base_addr_dma_attr.dma_handle,
3271 	    &ql_desc_acc_attr,
3272 	    DDI_DMA_RDWR | DDI_DMA_CONSISTENT,
3273 	    &qlge->buf_q_ptr_base_addr_dma_attr.acc_handle,
3274 	    (size_t)VM_PAGE_SIZE,  /* mem size */
3275 	    (size_t)4, /* 4 bytes alignment */
3276 	    (caddr_t *)&qlge->buf_q_ptr_base_addr_dma_attr.vaddr,
3277 	    &dma_cookie) != 0) {
3278 		bzero(&qlge->buf_q_ptr_base_addr_dma_attr,
3279 		    sizeof (qlge->buf_q_ptr_base_addr_dma_attr));
3280 
3281 		cmn_err(CE_WARN, "%s(%d): Unable to allocate DMA memory "
3282 		    "for request shadow registers",
3283 		    __func__, qlge->instance);
3284 		goto err_wqp_sh_area;
3285 	}
3286 	qlge->buf_q_ptr_base_addr_dma_attr.dma_addr = dma_cookie.dmac_laddress;
3287 
3288 	return (DDI_SUCCESS);
3289 
3290 err_wqp_sh_area:
3291 	ql_free_phys(&qlge->host_copy_shadow_dma_attr.dma_handle,
3292 	    &qlge->host_copy_shadow_dma_attr.acc_handle);
3293 	bzero(&qlge->host_copy_shadow_dma_attr,
3294 	    sizeof (qlge->host_copy_shadow_dma_attr));
3295 
3296 	return (DDI_FAILURE);
3297 }
3298 
3299 /*
3300  * Initialize a tx ring
3301  */
3302 static void
3303 ql_init_tx_ring(struct tx_ring *tx_ring)
3304 {
3305 	int i;
3306 	struct ob_mac_iocb_req *mac_iocb_ptr = tx_ring->wq_dma.vaddr;
3307 	struct tx_ring_desc *tx_ring_desc = tx_ring->wq_desc;
3308 
3309 	for (i = 0; i < tx_ring->wq_len; i++) {
3310 		tx_ring_desc->index = i;
3311 		tx_ring_desc->queue_entry = mac_iocb_ptr;
3312 		mac_iocb_ptr++;
3313 		tx_ring_desc++;
3314 	}
3315 	tx_ring->tx_free_count = tx_ring->wq_len;
3316 	tx_ring->queue_stopped = 0;
3317 }
3318 
3319 /*
3320  * Free one tx ring resources
3321  */
3322 static void
3323 ql_free_tx_resources(struct tx_ring *tx_ring)
3324 {
3325 	struct tx_ring_desc *tx_ring_desc;
3326 	int i, j;
3327 
3328 	if (tx_ring->wq_dma.dma_handle != NULL) {
3329 		ql_free_phys(&tx_ring->wq_dma.dma_handle,
3330 		    &tx_ring->wq_dma.acc_handle);
3331 		bzero(&tx_ring->wq_dma, sizeof (tx_ring->wq_dma));
3332 	}
3333 	if (tx_ring->wq_desc != NULL) {
3334 		tx_ring_desc = tx_ring->wq_desc;
3335 		for (i = 0; i < tx_ring->wq_len; i++, tx_ring_desc++) {
3336 			for (j = 0; j < QL_MAX_TX_DMA_HANDLES; j++) {
3337 				if (tx_ring_desc->tx_dma_handle[j]) {
3338 					/*
3339 					 * The unbinding will happen in tx
3340 					 * completion, here we just free the
3341 					 * handles
3342 					 */
3343 					ddi_dma_free_handle(
3344 					    &(tx_ring_desc->tx_dma_handle[j]));
3345 					tx_ring_desc->tx_dma_handle[j] = NULL;
3346 				}
3347 			}
3348 			if (tx_ring_desc->oal != NULL) {
3349 				tx_ring_desc->oal_dma_addr = 0;
3350 				tx_ring_desc->oal = NULL;
3351 				tx_ring_desc->copy_buffer = NULL;
3352 				tx_ring_desc->copy_buffer_dma_addr = 0;
3353 
3354 				ql_free_phys(&tx_ring_desc->oal_dma.dma_handle,
3355 				    &tx_ring_desc->oal_dma.acc_handle);
3356 			}
3357 		}
3358 		kmem_free(tx_ring->wq_desc,
3359 		    tx_ring->wq_len * sizeof (struct tx_ring_desc));
3360 		tx_ring->wq_desc = NULL;
3361 	}
3362 	/* free the wqicb struct */
3363 	if (tx_ring->wqicb_dma.dma_handle) {
3364 		ql_free_phys(&tx_ring->wqicb_dma.dma_handle,
3365 		    &tx_ring->wqicb_dma.acc_handle);
3366 		bzero(&tx_ring->wqicb_dma, sizeof (tx_ring->wqicb_dma));
3367 	}
3368 }
3369 
3370 /*
3371  * Allocate work (request) queue memory and transmit
3372  * descriptors for this transmit ring
3373  */
3374 static int
3375 ql_alloc_tx_resources(qlge_t *qlge, struct tx_ring *tx_ring)
3376 {
3377 	ddi_dma_cookie_t dma_cookie;
3378 	struct tx_ring_desc *tx_ring_desc;
3379 	int i, j;
3380 	uint32_t length;
3381 
3382 	/* allocate dma buffers for obiocbs */
3383 	if (ql_alloc_phys(qlge->dip, &tx_ring->wq_dma.dma_handle,
3384 	    &ql_desc_acc_attr,
3385 	    DDI_DMA_RDWR | DDI_DMA_CONSISTENT,
3386 	    &tx_ring->wq_dma.acc_handle,
3387 	    (size_t)tx_ring->wq_size,	/* mem size */
3388 	    (size_t)128, /* alignment:128 bytes boundary */
3389 	    (caddr_t *)&tx_ring->wq_dma.vaddr,
3390 	    &dma_cookie) != 0) {
3391 		bzero(&tx_ring->wq_dma, sizeof (tx_ring->wq_dma));
3392 		cmn_err(CE_WARN, "%s(%d): reqQ allocation failed.",
3393 		    __func__, qlge->instance);
3394 		return (DDI_FAILURE);
3395 	}
3396 	tx_ring->wq_dma.dma_addr = dma_cookie.dmac_laddress;
3397 
3398 	tx_ring->wq_desc =
3399 	    kmem_zalloc(tx_ring->wq_len * sizeof (struct tx_ring_desc),
3400 	    KM_NOSLEEP);
3401 	if (tx_ring->wq_desc == NULL) {
3402 		goto err;
3403 	} else {
3404 		tx_ring_desc = tx_ring->wq_desc;
3405 		/*
3406 		 * Allocate a large enough structure to hold the following
3407 		 * 1. oal buffer MAX_SGELEMENTS * sizeof (oal_entry) bytes
3408 		 * 2. copy buffer of QL_MAX_COPY_LENGTH bytes
3409 		 */
3410 		length = (sizeof (struct oal_entry) * MAX_SG_ELEMENTS)
3411 		    + QL_MAX_COPY_LENGTH;
3412 		for (i = 0; i < tx_ring->wq_len; i++, tx_ring_desc++) {
3413 
3414 			if (ql_alloc_phys(qlge->dip,
3415 			    &tx_ring_desc->oal_dma.dma_handle,
3416 			    &ql_desc_acc_attr,
3417 			    DDI_DMA_RDWR | DDI_DMA_CONSISTENT,
3418 			    &tx_ring_desc->oal_dma.acc_handle,
3419 			    (size_t)length,	/* mem size */
3420 			    (size_t)0, /* default alignment:8 bytes boundary */
3421 			    (caddr_t *)&tx_ring_desc->oal_dma.vaddr,
3422 			    &dma_cookie) != 0) {
3423 				bzero(&tx_ring_desc->oal_dma,
3424 				    sizeof (tx_ring_desc->oal_dma));
3425 				cmn_err(CE_WARN, "%s(%d): reqQ tx buf &"
3426 				    "oal alloc failed.",
3427 				    __func__, qlge->instance);
3428 				goto err;
3429 			}
3430 
3431 			tx_ring_desc->oal = tx_ring_desc->oal_dma.vaddr;
3432 			tx_ring_desc->oal_dma_addr = dma_cookie.dmac_laddress;
3433 			tx_ring_desc->copy_buffer =
3434 			    (caddr_t)((uint8_t *)tx_ring_desc->oal
3435 			    + (sizeof (struct oal_entry) * MAX_SG_ELEMENTS));
3436 			tx_ring_desc->copy_buffer_dma_addr =
3437 			    (tx_ring_desc->oal_dma_addr
3438 			    + (sizeof (struct oal_entry) * MAX_SG_ELEMENTS));
3439 
3440 			/* Allocate dma handles for transmit buffers */
3441 			for (j = 0; j < QL_MAX_TX_DMA_HANDLES; j++) {
3442 				if (ddi_dma_alloc_handle(qlge->dip,
3443 				    &tx_mapping_dma_attr,
3444 				    DDI_DMA_DONTWAIT,
3445 				    0, &tx_ring_desc->tx_dma_handle[j])
3446 				    != DDI_SUCCESS) {
3447 					tx_ring_desc->tx_dma_handle[j] = NULL;
3448 					cmn_err(CE_WARN,
3449 					    "!%s: ddi_dma_alloc_handle: "
3450 					    "tx_dma_handle "
3451 					    "alloc failed", __func__);
3452 					ql_free_phys(
3453 					    &tx_ring_desc->oal_dma.dma_handle,
3454 					    &tx_ring_desc->oal_dma.acc_handle);
3455 					goto err;
3456 				}
3457 			}
3458 		}
3459 	}
3460 	/* alloc a wqicb control block to load this tx ring to hw */
3461 	if (ql_alloc_phys(qlge->dip, &tx_ring->wqicb_dma.dma_handle,
3462 	    &ql_desc_acc_attr,
3463 	    DDI_DMA_RDWR | DDI_DMA_CONSISTENT,
3464 	    &tx_ring->wqicb_dma.acc_handle,
3465 	    (size_t)sizeof (struct wqicb_t),	/* mem size */
3466 	    (size_t)0, /* alignment:128 bytes boundary */
3467 	    (caddr_t *)&tx_ring->wqicb_dma.vaddr,
3468 	    &dma_cookie) != 0) {
3469 		bzero(&tx_ring->wqicb_dma, sizeof (tx_ring->wqicb_dma));
3470 		cmn_err(CE_WARN, "%s(%d): wqicb allocation failed.",
3471 		    __func__, qlge->instance);
3472 		goto err;
3473 	}
3474 	tx_ring->wqicb_dma.dma_addr = dma_cookie.dmac_laddress;
3475 
3476 	return (DDI_SUCCESS);
3477 
3478 err:
3479 	ql_free_tx_resources(tx_ring);
3480 	return (DDI_FAILURE);
3481 }
3482 
3483 /*
3484  * Free one rx ring resources
3485  */
3486 static void
3487 ql_free_rx_resources(struct rx_ring *rx_ring)
3488 {
3489 	/* Free the small buffer queue. */
3490 	if (rx_ring->sbq_dma.dma_handle) {
3491 		ql_free_phys(&rx_ring->sbq_dma.dma_handle,
3492 		    &rx_ring->sbq_dma.acc_handle);
3493 		bzero(&rx_ring->sbq_dma, sizeof (rx_ring->sbq_dma));
3494 	}
3495 
3496 	/* Free the small buffer queue control blocks. */
3497 	if (rx_ring->sbq_desc != NULL) {
3498 		kmem_free(rx_ring->sbq_desc, rx_ring->sbq_len *
3499 		    sizeof (struct bq_desc));
3500 		rx_ring->sbq_desc = NULL;
3501 	}
3502 
3503 	/* Free the large buffer queue. */
3504 	if (rx_ring->lbq_dma.dma_handle) {
3505 		ql_free_phys(&rx_ring->lbq_dma.dma_handle,
3506 		    &rx_ring->lbq_dma.acc_handle);
3507 		bzero(&rx_ring->lbq_dma, sizeof (rx_ring->lbq_dma));
3508 	}
3509 
3510 	/* Free the large buffer queue control blocks. */
3511 	if (rx_ring->lbq_desc != NULL) {
3512 		kmem_free(rx_ring->lbq_desc, rx_ring->lbq_len *
3513 		    sizeof (struct bq_desc));
3514 		rx_ring->lbq_desc = NULL;
3515 	}
3516 
3517 	/* Free cqicb struct */
3518 	if (rx_ring->cqicb_dma.dma_handle) {
3519 		ql_free_phys(&rx_ring->cqicb_dma.dma_handle,
3520 		    &rx_ring->cqicb_dma.acc_handle);
3521 		bzero(&rx_ring->cqicb_dma, sizeof (rx_ring->cqicb_dma));
3522 	}
3523 	/* Free the rx queue. */
3524 	if (rx_ring->cq_dma.dma_handle) {
3525 		ql_free_phys(&rx_ring->cq_dma.dma_handle,
3526 		    &rx_ring->cq_dma.acc_handle);
3527 		bzero(&rx_ring->cq_dma, sizeof (rx_ring->cq_dma));
3528 	}
3529 }
3530 
3531 /*
3532  * Allocate queues and buffers for this completions queue based
3533  * on the values in the parameter structure.
3534  */
3535 static int
3536 ql_alloc_rx_resources(qlge_t *qlge, struct rx_ring *rx_ring)
3537 {
3538 	ddi_dma_cookie_t dma_cookie;
3539 
3540 	if (ql_alloc_phys(qlge->dip, &rx_ring->cq_dma.dma_handle,
3541 	    &ql_desc_acc_attr,
3542 	    DDI_DMA_RDWR | DDI_DMA_CONSISTENT,
3543 	    &rx_ring->cq_dma.acc_handle,
3544 	    (size_t)rx_ring->cq_size,  /* mem size */
3545 	    (size_t)128, /* alignment:128 bytes boundary */
3546 	    (caddr_t *)&rx_ring->cq_dma.vaddr,
3547 	    &dma_cookie) != 0)	{
3548 		bzero(&rx_ring->cq_dma, sizeof (rx_ring->cq_dma));
3549 		cmn_err(CE_WARN, "%s(%d): rspQ allocation failed.",
3550 		    __func__, qlge->instance);
3551 		return (DDI_FAILURE);
3552 	}
3553 	rx_ring->cq_dma.dma_addr = dma_cookie.dmac_laddress;
3554 
3555 	if (rx_ring->sbq_len != 0) {
3556 		/*
3557 		 * Allocate small buffer queue.
3558 		 */
3559 		if (ql_alloc_phys(qlge->dip, &rx_ring->sbq_dma.dma_handle,
3560 		    &ql_desc_acc_attr,
3561 		    DDI_DMA_RDWR | DDI_DMA_CONSISTENT,
3562 		    &rx_ring->sbq_dma.acc_handle,
3563 		    (size_t)rx_ring->sbq_size,  /* mem size */
3564 		    (size_t)128, /* alignment:128 bytes boundary */
3565 		    (caddr_t *)&rx_ring->sbq_dma.vaddr,
3566 		    &dma_cookie) != 0) {
3567 			bzero(&rx_ring->sbq_dma, sizeof (rx_ring->sbq_dma));
3568 			cmn_err(CE_WARN,
3569 			    "%s(%d): small buffer queue allocation failed.",
3570 			    __func__, qlge->instance);
3571 			goto err_mem;
3572 		}
3573 		rx_ring->sbq_dma.dma_addr = dma_cookie.dmac_laddress;
3574 
3575 		/*
3576 		 * Allocate small buffer queue control blocks.
3577 		 */
3578 		rx_ring->sbq_desc =
3579 		    kmem_zalloc(rx_ring->sbq_len * sizeof (struct bq_desc),
3580 		    KM_NOSLEEP);
3581 		if (rx_ring->sbq_desc == NULL) {
3582 			cmn_err(CE_WARN,
3583 			    "sbq control block allocation failed.");
3584 			goto err_mem;
3585 		}
3586 
3587 		ql_init_sbq_ring(rx_ring);
3588 	}
3589 
3590 	if (rx_ring->lbq_len != 0) {
3591 		/*
3592 		 * Allocate large buffer queue.
3593 		 */
3594 		if (ql_alloc_phys(qlge->dip, &rx_ring->lbq_dma.dma_handle,
3595 		    &ql_desc_acc_attr,
3596 		    DDI_DMA_RDWR | DDI_DMA_CONSISTENT,
3597 		    &rx_ring->lbq_dma.acc_handle,
3598 		    (size_t)rx_ring->lbq_size,  /* mem size */
3599 		    (size_t)128, /* alignment:128 bytes boundary */
3600 		    (caddr_t *)&rx_ring->lbq_dma.vaddr,
3601 		    &dma_cookie) != 0) {
3602 			bzero(&rx_ring->lbq_dma, sizeof (rx_ring->lbq_dma));
3603 			cmn_err(CE_WARN, "%s(%d): lbq allocation failed.",
3604 			    __func__, qlge->instance);
3605 			goto err_mem;
3606 		}
3607 		rx_ring->lbq_dma.dma_addr = dma_cookie.dmac_laddress;
3608 
3609 		/*
3610 		 * Allocate large buffer queue control blocks.
3611 		 */
3612 		rx_ring->lbq_desc =
3613 		    kmem_zalloc(rx_ring->lbq_len * sizeof (struct bq_desc),
3614 		    KM_NOSLEEP);
3615 		if (rx_ring->lbq_desc == NULL) {
3616 			cmn_err(CE_WARN,
3617 			    "Large buffer queue control block allocation "
3618 			    "failed.");
3619 			goto err_mem;
3620 		}
3621 		ql_init_lbq_ring(rx_ring);
3622 	}
3623 
3624 	if (ql_alloc_phys(qlge->dip, &rx_ring->cqicb_dma.dma_handle,
3625 	    &ql_desc_acc_attr,
3626 	    DDI_DMA_RDWR | DDI_DMA_CONSISTENT,
3627 	    &rx_ring->cqicb_dma.acc_handle,
3628 	    (size_t)sizeof (struct cqicb_t),  /* mem size */
3629 	    (size_t)0, /* alignment:128 bytes boundary */
3630 	    (caddr_t *)&rx_ring->cqicb_dma.vaddr,
3631 	    &dma_cookie) != 0) {
3632 		bzero(&rx_ring->cqicb_dma, sizeof (rx_ring->cqicb_dma));
3633 		cmn_err(CE_WARN, "%s(%d): cqicb allocation failed.",
3634 		    __func__, qlge->instance);
3635 		goto err_mem;
3636 	}
3637 	rx_ring->cqicb_dma.dma_addr = dma_cookie.dmac_laddress;
3638 
3639 	return (DDI_SUCCESS);
3640 
3641 err_mem:
3642 	ql_free_rx_resources(rx_ring);
3643 	return (DDI_FAILURE);
3644 }
3645 
3646 /*
3647  * Frees tx/rx queues memory resources
3648  */
3649 static void
3650 ql_free_mem_resources(qlge_t *qlge)
3651 {
3652 	int i;
3653 
3654 	if (qlge->ricb_dma.dma_handle) {
3655 		/* free the ricb struct */
3656 		ql_free_phys(&qlge->ricb_dma.dma_handle,
3657 		    &qlge->ricb_dma.acc_handle);
3658 		bzero(&qlge->ricb_dma, sizeof (qlge->ricb_dma));
3659 	}
3660 
3661 	ql_free_rx_buffers(qlge);
3662 
3663 	ql_free_ioctl_dma_buf(qlge);
3664 
3665 	for (i = 0; i < qlge->tx_ring_count; i++)
3666 		ql_free_tx_resources(&qlge->tx_ring[i]);
3667 
3668 	for (i = 0; i < qlge->rx_ring_count; i++)
3669 		ql_free_rx_resources(&qlge->rx_ring[i]);
3670 
3671 	ql_free_shadow_space(qlge);
3672 }
3673 
3674 /*
3675  * Allocate buffer queues, large buffers and small buffers etc
3676  *
3677  * This API is called in the gld_attach member function. It is called
3678  * only once.  Later reset,reboot should not re-allocate all rings and
3679  * buffers.
3680  */
3681 static int
3682 ql_alloc_mem_resources(qlge_t *qlge)
3683 {
3684 	int i;
3685 	ddi_dma_cookie_t dma_cookie;
3686 
3687 	/* Allocate space for our shadow registers */
3688 	if (ql_alloc_shadow_space(qlge))
3689 		return (DDI_FAILURE);
3690 
3691 	for (i = 0; i < qlge->rx_ring_count; i++) {
3692 		if (ql_alloc_rx_resources(qlge, &qlge->rx_ring[i]) != 0) {
3693 			cmn_err(CE_WARN, "RX resource allocation failed.");
3694 			goto err_mem;
3695 		}
3696 	}
3697 	/* Allocate tx queue resources */
3698 	for (i = 0; i < qlge->tx_ring_count; i++) {
3699 		if (ql_alloc_tx_resources(qlge, &qlge->tx_ring[i]) != 0) {
3700 			cmn_err(CE_WARN, "Tx resource allocation failed.");
3701 			goto err_mem;
3702 		}
3703 	}
3704 
3705 	if (ql_alloc_ioctl_dma_buf(qlge) != DDI_SUCCESS) {
3706 		goto err_mem;
3707 	}
3708 
3709 	if (ql_alloc_rx_buffers(qlge) != DDI_SUCCESS) {
3710 		cmn_err(CE_WARN, "?%s(%d): ql_alloc_rx_buffers failed",
3711 		    __func__, qlge->instance);
3712 		goto err_mem;
3713 	}
3714 
3715 	qlge->sequence |= INIT_ALLOC_RX_BUF;
3716 
3717 	if (ql_alloc_phys(qlge->dip, &qlge->ricb_dma.dma_handle,
3718 	    &ql_desc_acc_attr,
3719 	    DDI_DMA_RDWR | DDI_DMA_CONSISTENT,
3720 	    &qlge->ricb_dma.acc_handle,
3721 	    (size_t)sizeof (struct ricb),  /* mem size */
3722 	    (size_t)0, /* alignment:128 bytes boundary */
3723 	    (caddr_t *)&qlge->ricb_dma.vaddr,
3724 	    &dma_cookie) != 0) {
3725 		bzero(&qlge->ricb_dma, sizeof (qlge->ricb_dma));
3726 		cmn_err(CE_WARN, "%s(%d): ricb allocation failed.",
3727 		    __func__, qlge->instance);
3728 		goto err_mem;
3729 	}
3730 	qlge->ricb_dma.dma_addr = dma_cookie.dmac_laddress;
3731 
3732 	return (DDI_SUCCESS);
3733 
3734 err_mem:
3735 	ql_free_mem_resources(qlge);
3736 	return (DDI_FAILURE);
3737 }
3738 
3739 
3740 /*
3741  * Function used to allocate physical memory and zero it.
3742  */
3743 
3744 static int
3745 ql_alloc_phys_rbuf(dev_info_t *dip, ddi_dma_handle_t *dma_handle,
3746     ddi_device_acc_attr_t *device_acc_attr,
3747     uint_t dma_flags,
3748     ddi_acc_handle_t *acc_handle,
3749     size_t size,
3750     size_t alignment,
3751     caddr_t *vaddr,
3752     ddi_dma_cookie_t *dma_cookie)
3753 {
3754 	size_t rlen;
3755 	uint_t cnt;
3756 
3757 	/*
3758 	 * Workaround for SUN XMITS buffer must end and start on 8 byte
3759 	 * boundary. Else, hardware will overrun the buffer. Simple fix is
3760 	 * to make sure buffer has enough room for overrun.
3761 	 */
3762 	if (size & 7) {
3763 		size += 8 - (size & 7);
3764 	}
3765 
3766 	/* Adjust the alignment if requested */
3767 	if (alignment) {
3768 		dma_attr.dma_attr_align = alignment;
3769 	}
3770 
3771 	/*
3772 	 * Allocate DMA handle
3773 	 */
3774 	if (ddi_dma_alloc_handle(dip, &dma_attr_rbuf, DDI_DMA_DONTWAIT, NULL,
3775 	    dma_handle) != DDI_SUCCESS) {
3776 		cmn_err(CE_WARN, QL_BANG "%s:  ddi_dma_alloc_handle FAILED",
3777 		    __func__);
3778 		*dma_handle = NULL;
3779 		return (QL_ERROR);
3780 	}
3781 	/*
3782 	 * Allocate DMA memory
3783 	 */
3784 	if (ddi_dma_mem_alloc(*dma_handle, size, device_acc_attr,
3785 	    dma_flags & (DDI_DMA_CONSISTENT|DDI_DMA_STREAMING),
3786 	    DDI_DMA_DONTWAIT,
3787 	    NULL, vaddr, &rlen, acc_handle) != DDI_SUCCESS) {
3788 		cmn_err(CE_WARN, "alloc_phys: DMA Memory alloc Failed");
3789 		ddi_dma_free_handle(dma_handle);
3790 		*acc_handle = NULL;
3791 		*dma_handle = NULL;
3792 		return (QL_ERROR);
3793 	}
3794 
3795 	if (ddi_dma_addr_bind_handle(*dma_handle, NULL, *vaddr, rlen,
3796 	    dma_flags, DDI_DMA_DONTWAIT, NULL,
3797 	    dma_cookie, &cnt) != DDI_DMA_MAPPED) {
3798 		ddi_dma_mem_free(acc_handle);
3799 
3800 		ddi_dma_free_handle(dma_handle);
3801 		cmn_err(CE_WARN, "%s ddi_dma_addr_bind_handle FAILED",
3802 		    __func__);
3803 		*acc_handle = NULL;
3804 		*dma_handle = NULL;
3805 		return (QL_ERROR);
3806 	}
3807 
3808 	if (cnt != 1) {
3809 
3810 		ql_free_phys(dma_handle, acc_handle);
3811 
3812 		cmn_err(CE_WARN, "%s: cnt != 1; Failed segment count",
3813 		    __func__);
3814 		return (QL_ERROR);
3815 	}
3816 
3817 	bzero((caddr_t)*vaddr, rlen);
3818 
3819 	return (0);
3820 }
3821 
3822 /*
3823  * Function used to allocate physical memory and zero it.
3824  */
3825 static int
3826 ql_alloc_phys(dev_info_t *dip, ddi_dma_handle_t *dma_handle,
3827     ddi_device_acc_attr_t *device_acc_attr,
3828     uint_t dma_flags,
3829     ddi_acc_handle_t *acc_handle,
3830     size_t size,
3831     size_t alignment,
3832     caddr_t *vaddr,
3833     ddi_dma_cookie_t *dma_cookie)
3834 {
3835 	size_t rlen;
3836 	uint_t cnt;
3837 
3838 	/*
3839 	 * Workaround for SUN XMITS buffer must end and start on 8 byte
3840 	 * boundary. Else, hardware will overrun the buffer. Simple fix is
3841 	 * to make sure buffer has enough room for overrun.
3842 	 */
3843 	if (size & 7) {
3844 		size += 8 - (size & 7);
3845 	}
3846 
3847 	/* Adjust the alignment if requested */
3848 	if (alignment) {
3849 		dma_attr.dma_attr_align = alignment;
3850 	}
3851 
3852 	/*
3853 	 * Allocate DMA handle
3854 	 */
3855 	if (ddi_dma_alloc_handle(dip, &dma_attr, DDI_DMA_DONTWAIT, NULL,
3856 	    dma_handle) != DDI_SUCCESS) {
3857 		cmn_err(CE_WARN, QL_BANG "%s:  ddi_dma_alloc_handle FAILED",
3858 		    __func__);
3859 		*dma_handle = NULL;
3860 		return (QL_ERROR);
3861 	}
3862 	/*
3863 	 * Allocate DMA memory
3864 	 */
3865 	if (ddi_dma_mem_alloc(*dma_handle, size, device_acc_attr,
3866 	    dma_flags & (DDI_DMA_CONSISTENT|DDI_DMA_STREAMING),
3867 	    DDI_DMA_DONTWAIT,
3868 	    NULL, vaddr, &rlen, acc_handle) != DDI_SUCCESS) {
3869 		cmn_err(CE_WARN, "alloc_phys: DMA Memory alloc Failed");
3870 		ddi_dma_free_handle(dma_handle);
3871 		*acc_handle = NULL;
3872 		*dma_handle = NULL;
3873 		return (QL_ERROR);
3874 	}
3875 
3876 	if (ddi_dma_addr_bind_handle(*dma_handle, NULL, *vaddr, rlen,
3877 	    dma_flags, DDI_DMA_DONTWAIT, NULL,
3878 	    dma_cookie, &cnt) != DDI_DMA_MAPPED) {
3879 		ddi_dma_mem_free(acc_handle);
3880 		ddi_dma_free_handle(dma_handle);
3881 		cmn_err(CE_WARN, "%s ddi_dma_addr_bind_handle FAILED",
3882 		    __func__);
3883 		*acc_handle = NULL;
3884 		*dma_handle = NULL;
3885 		return (QL_ERROR);
3886 	}
3887 
3888 	if (cnt != 1) {
3889 
3890 		ql_free_phys(dma_handle, acc_handle);
3891 
3892 		cmn_err(CE_WARN, "%s: cnt != 1; Failed segment count",
3893 		    __func__);
3894 		return (QL_ERROR);
3895 	}
3896 
3897 	bzero((caddr_t)*vaddr, rlen);
3898 
3899 	return (0);
3900 }
3901 
3902 /*
3903  * Add interrupt handlers based on the interrupt type.
3904  * Before adding the interrupt handlers, the interrupt vectors should
3905  * have been allocated, and the rx/tx rings have also been allocated.
3906  */
3907 static int
3908 ql_add_intr_handlers(qlge_t *qlge)
3909 {
3910 	int vector = 0;
3911 	int rc, i;
3912 	uint32_t value;
3913 	struct intr_ctx *intr_ctx = &qlge->intr_ctx[0];
3914 
3915 	switch (qlge->intr_type) {
3916 	case DDI_INTR_TYPE_MSIX:
3917 		/*
3918 		 * Add interrupt handler for rx and tx rings: vector[0 -
3919 		 * (qlge->intr_cnt -1)].
3920 		 */
3921 		value = 0;
3922 		for (vector = 0; vector < qlge->intr_cnt; vector++) {
3923 			ql_atomic_set_32(&intr_ctx->irq_cnt, value);
3924 
3925 			/*
3926 			 * associate interrupt vector with interrupt handler
3927 			 */
3928 			rc = ddi_intr_add_handler(qlge->htable[vector],
3929 			    (ddi_intr_handler_t *)intr_ctx->handler,
3930 			    (void *)&qlge->rx_ring[vector], NULL);
3931 
3932 			QL_PRINT(DBG_INIT, ("rx_ring[%d] 0x%p\n",
3933 			    vector, &qlge->rx_ring[vector]));
3934 			if (rc != DDI_SUCCESS) {
3935 				QL_PRINT(DBG_INIT,
3936 				    ("Add rx interrupt handler failed. "
3937 				    "return: %d, vector: %d", rc, vector));
3938 				for (vector--; vector >= 0; vector--) {
3939 					(void) ddi_intr_remove_handler(
3940 					    qlge->htable[vector]);
3941 				}
3942 				return (DDI_FAILURE);
3943 			}
3944 			intr_ctx++;
3945 		}
3946 		break;
3947 
3948 	case DDI_INTR_TYPE_MSI:
3949 		/*
3950 		 * Add interrupt handlers for the only vector
3951 		 */
3952 		ql_atomic_set_32(&intr_ctx->irq_cnt, value);
3953 
3954 		rc = ddi_intr_add_handler(qlge->htable[vector],
3955 		    ql_isr,
3956 		    (caddr_t)&qlge->rx_ring[0], NULL);
3957 
3958 		if (rc != DDI_SUCCESS) {
3959 			QL_PRINT(DBG_INIT,
3960 			    ("Add MSI interrupt handler failed: %d\n", rc));
3961 			return (DDI_FAILURE);
3962 		}
3963 		break;
3964 
3965 	case DDI_INTR_TYPE_FIXED:
3966 		/*
3967 		 * Add interrupt handlers for the only vector
3968 		 */
3969 		ql_atomic_set_32(&intr_ctx->irq_cnt, value);
3970 
3971 		rc = ddi_intr_add_handler(qlge->htable[vector],
3972 		    ql_isr,
3973 		    (caddr_t)&qlge->rx_ring[0], NULL);
3974 
3975 		if (rc != DDI_SUCCESS) {
3976 			QL_PRINT(DBG_INIT,
3977 			    ("Add legacy interrupt handler failed: %d\n", rc));
3978 			return (DDI_FAILURE);
3979 		}
3980 		break;
3981 
3982 	default:
3983 		return (DDI_FAILURE);
3984 	}
3985 
3986 	/* Enable interrupts */
3987 	/* Block enable */
3988 	if (qlge->intr_cap & DDI_INTR_FLAG_BLOCK) {
3989 		QL_PRINT(DBG_INIT, ("Block enabling %d interrupt(s)\n",
3990 		    qlge->intr_cnt));
3991 		(void) ddi_intr_block_enable(qlge->htable, qlge->intr_cnt);
3992 	} else { /* Non block enable */
3993 		for (i = 0; i < qlge->intr_cnt; i++) {
3994 			QL_PRINT(DBG_INIT, ("Non Block Enabling interrupt %d "
3995 			    "handle 0x%x\n", i, qlge->htable[i]));
3996 			(void) ddi_intr_enable(qlge->htable[i]);
3997 		}
3998 	}
3999 	qlge->sequence |= INIT_INTR_ENABLED;
4000 
4001 	return (DDI_SUCCESS);
4002 }
4003 
4004 /*
4005  * Here we build the intr_ctx structures based on
4006  * our rx_ring count and intr vector count.
4007  * The intr_ctx structure is used to hook each vector
4008  * to possibly different handlers.
4009  */
4010 static void
4011 ql_resolve_queues_to_irqs(qlge_t *qlge)
4012 {
4013 	int i = 0;
4014 	struct intr_ctx *intr_ctx = &qlge->intr_ctx[0];
4015 
4016 	if (qlge->intr_type == DDI_INTR_TYPE_MSIX) {
4017 		/*
4018 		 * Each rx_ring has its own intr_ctx since we
4019 		 * have separate vectors for each queue.
4020 		 * This only true when MSI-X is enabled.
4021 		 */
4022 		for (i = 0; i < qlge->intr_cnt; i++, intr_ctx++) {
4023 			qlge->rx_ring[i].irq = i;
4024 			intr_ctx->intr = i;
4025 			intr_ctx->qlge = qlge;
4026 
4027 			/*
4028 			 * We set up each vectors enable/disable/read bits so
4029 			 * there's no bit/mask calculations in critical path.
4030 			 */
4031 			intr_ctx->intr_en_mask =
4032 			    INTR_EN_TYPE_MASK | INTR_EN_INTR_MASK |
4033 			    INTR_EN_TYPE_ENABLE | INTR_EN_IHD_MASK |
4034 			    INTR_EN_IHD | i;
4035 			intr_ctx->intr_dis_mask =
4036 			    INTR_EN_TYPE_MASK | INTR_EN_INTR_MASK |
4037 			    INTR_EN_TYPE_DISABLE | INTR_EN_IHD_MASK |
4038 			    INTR_EN_IHD | i;
4039 			intr_ctx->intr_read_mask =
4040 			    INTR_EN_TYPE_MASK | INTR_EN_INTR_MASK |
4041 			    INTR_EN_TYPE_READ | INTR_EN_IHD_MASK | INTR_EN_IHD
4042 			    | i;
4043 
4044 			if (i == 0) {
4045 				/*
4046 				 * Default queue handles bcast/mcast plus
4047 				 * async events.
4048 				 */
4049 				intr_ctx->handler = ql_isr;
4050 			} else if (qlge->rx_ring[i].type == TX_Q) {
4051 				/*
4052 				 * Outbound queue is for outbound completions
4053 				 * only.
4054 				 */
4055 				if (qlge->isr_stride)
4056 					intr_ctx->handler = ql_msix_isr;
4057 				else
4058 					intr_ctx->handler = ql_msix_tx_isr;
4059 			} else {
4060 				/*
4061 				 * Inbound queues handle unicast frames only.
4062 				 */
4063 				if (qlge->isr_stride)
4064 					intr_ctx->handler = ql_msix_isr;
4065 				else
4066 					intr_ctx->handler = ql_msix_rx_isr;
4067 			}
4068 		}
4069 		i = qlge->intr_cnt;
4070 		for (; i < qlge->rx_ring_count; i++, intr_ctx++) {
4071 			int iv = i - qlge->isr_stride;
4072 			qlge->rx_ring[i].irq = iv;
4073 			intr_ctx->intr = iv;
4074 			intr_ctx->qlge = qlge;
4075 
4076 			/*
4077 			 * We set up each vectors enable/disable/read bits so
4078 			 * there's no bit/mask calculations in critical path.
4079 			 */
4080 			intr_ctx->intr_en_mask =
4081 			    INTR_EN_TYPE_MASK | INTR_EN_INTR_MASK |
4082 			    INTR_EN_TYPE_ENABLE | INTR_EN_IHD_MASK |
4083 			    INTR_EN_IHD | iv;
4084 			intr_ctx->intr_dis_mask =
4085 			    INTR_EN_TYPE_MASK | INTR_EN_INTR_MASK |
4086 			    INTR_EN_TYPE_DISABLE | INTR_EN_IHD_MASK |
4087 			    INTR_EN_IHD | iv;
4088 			intr_ctx->intr_read_mask =
4089 			    INTR_EN_TYPE_MASK | INTR_EN_INTR_MASK |
4090 			    INTR_EN_TYPE_READ | INTR_EN_IHD_MASK | INTR_EN_IHD
4091 			    | iv;
4092 
4093 			if (qlge->rx_ring[i].type == TX_Q) {
4094 				/*
4095 				 * Outbound queue is for outbound completions
4096 				 * only.
4097 				 */
4098 				intr_ctx->handler = ql_msix_isr;
4099 			} else {
4100 				/*
4101 				 * Inbound queues handle unicast frames only.
4102 				 */
4103 				intr_ctx->handler = ql_msix_rx_isr;
4104 			}
4105 		}
4106 	} else {
4107 		/*
4108 		 * All rx_rings use the same intr_ctx since
4109 		 * there is only one vector.
4110 		 */
4111 		intr_ctx->intr = 0;
4112 		intr_ctx->qlge = qlge;
4113 		/*
4114 		 * We set up each vectors enable/disable/read bits so
4115 		 * there's no bit/mask calculations in the critical path.
4116 		 */
4117 		intr_ctx->intr_en_mask =
4118 		    INTR_EN_TYPE_MASK | INTR_EN_INTR_MASK |
4119 		    INTR_EN_TYPE_ENABLE;
4120 		intr_ctx->intr_dis_mask =
4121 		    INTR_EN_TYPE_MASK | INTR_EN_INTR_MASK |
4122 		    INTR_EN_TYPE_DISABLE;
4123 		intr_ctx->intr_read_mask =
4124 		    INTR_EN_TYPE_MASK | INTR_EN_INTR_MASK |
4125 		    INTR_EN_TYPE_READ;
4126 		/*
4127 		 * Single interrupt means one handler for all rings.
4128 		 */
4129 		intr_ctx->handler = ql_isr;
4130 		for (i = 0; i < qlge->rx_ring_count; i++)
4131 			qlge->rx_ring[i].irq = 0;
4132 	}
4133 }
4134 
4135 
4136 /*
4137  * Free allocated interrupts.
4138  */
4139 static void
4140 ql_free_irq_vectors(qlge_t *qlge)
4141 {
4142 	int i;
4143 	int rc;
4144 
4145 	if (qlge->sequence & INIT_INTR_ENABLED) {
4146 		/* Disable all interrupts */
4147 		if (qlge->intr_cap & DDI_INTR_FLAG_BLOCK) {
4148 			/* Call ddi_intr_block_disable() */
4149 			(void) ddi_intr_block_disable(qlge->htable,
4150 			    qlge->intr_cnt);
4151 		} else {
4152 			for (i = 0; i < qlge->intr_cnt; i++) {
4153 				(void) ddi_intr_disable(qlge->htable[i]);
4154 			}
4155 		}
4156 
4157 		qlge->sequence &= ~INIT_INTR_ENABLED;
4158 	}
4159 
4160 	for (i = 0; i < qlge->intr_cnt; i++) {
4161 
4162 		if (qlge->sequence & INIT_ADD_INTERRUPT)
4163 			(void) ddi_intr_remove_handler(qlge->htable[i]);
4164 
4165 		if (qlge->sequence & INIT_INTR_ALLOC) {
4166 			rc = ddi_intr_free(qlge->htable[i]);
4167 			if (rc != DDI_SUCCESS) {
4168 				/* EMPTY */
4169 				QL_PRINT(DBG_INIT, ("Free intr failed: %d",
4170 				    rc));
4171 			}
4172 		}
4173 	}
4174 	if (qlge->sequence & INIT_INTR_ALLOC)
4175 		qlge->sequence &= ~INIT_INTR_ALLOC;
4176 
4177 	if (qlge->sequence & INIT_ADD_INTERRUPT)
4178 		qlge->sequence &= ~INIT_ADD_INTERRUPT;
4179 
4180 	if (qlge->htable) {
4181 		kmem_free(qlge->htable, qlge->intr_size);
4182 		qlge->htable = NULL;
4183 	}
4184 }
4185 
4186 /*
4187  * Allocate interrupt vectors
4188  * For legacy and MSI, only 1 handle is needed.
4189  * For MSI-X, if fewer than 2 vectors are available, return failure.
4190  * Upon success, this maps the vectors to rx and tx rings for
4191  * interrupts.
4192  */
4193 static int
4194 ql_request_irq_vectors(qlge_t *qlge, int intr_type)
4195 {
4196 	dev_info_t *devinfo;
4197 	uint32_t request, orig;
4198 	int count, avail, actual;
4199 	int minimum;
4200 	int rc;
4201 
4202 	devinfo = qlge->dip;
4203 
4204 	switch (intr_type) {
4205 	case DDI_INTR_TYPE_FIXED:
4206 		request = 1;	/* Request 1 legacy interrupt handle */
4207 		minimum = 1;
4208 		QL_PRINT(DBG_INIT, ("interrupt type: legacy\n"));
4209 		break;
4210 
4211 	case DDI_INTR_TYPE_MSI:
4212 		request = 1;	/* Request 1 MSI interrupt handle */
4213 		minimum = 1;
4214 		QL_PRINT(DBG_INIT, ("interrupt type: MSI\n"));
4215 		break;
4216 
4217 	case DDI_INTR_TYPE_MSIX:
4218 		/*
4219 		 * Ideal number of vectors for the adapter is
4220 		 * # rss rings + tx completion rings for default completion
4221 		 * queue.
4222 		 */
4223 		request = qlge->rx_ring_count;
4224 
4225 		orig = request;
4226 		if (request > (MAX_RX_RINGS))
4227 			request = MAX_RX_RINGS;
4228 		minimum = 2;
4229 		QL_PRINT(DBG_INIT, ("interrupt type: MSI-X\n"));
4230 		break;
4231 
4232 	default:
4233 		QL_PRINT(DBG_INIT, ("Invalid parameter\n"));
4234 		return (DDI_FAILURE);
4235 	}
4236 
4237 	QL_PRINT(DBG_INIT, ("interrupt handles requested: %d  minimum: %d\n",
4238 	    request, minimum));
4239 
4240 	/*
4241 	 * Get number of supported interrupts
4242 	 */
4243 	rc = ddi_intr_get_nintrs(devinfo, intr_type, &count);
4244 	if ((rc != DDI_SUCCESS) || (count < minimum)) {
4245 		QL_PRINT(DBG_INIT, ("Get interrupt number failed. Return: %d, "
4246 		    "count: %d\n", rc, count));
4247 		return (DDI_FAILURE);
4248 	}
4249 	QL_PRINT(DBG_INIT, ("interrupts supported: %d\n", count));
4250 
4251 	/*
4252 	 * Get number of available interrupts
4253 	 */
4254 	rc = ddi_intr_get_navail(devinfo, intr_type, &avail);
4255 	if ((rc != DDI_SUCCESS) || (avail < minimum)) {
4256 		QL_PRINT(DBG_INIT,
4257 		    ("Get interrupt available number failed. Return:"
4258 		    " %d, available: %d\n", rc, avail));
4259 		return (DDI_FAILURE);
4260 	}
4261 	QL_PRINT(DBG_INIT, ("interrupts available: %d\n", avail));
4262 
4263 	if (avail < request) {
4264 		QL_PRINT(DBG_INIT, ("Request %d handles, %d available\n",
4265 		    request, avail));
4266 		request = avail;
4267 	}
4268 
4269 	actual = 0;
4270 	qlge->intr_cnt = 0;
4271 
4272 	/*
4273 	 * Allocate an array of interrupt handles
4274 	 */
4275 	qlge->intr_size = (size_t)(request * sizeof (ddi_intr_handle_t));
4276 	qlge->htable = kmem_alloc(qlge->intr_size, KM_SLEEP);
4277 
4278 	rc = ddi_intr_alloc(devinfo, qlge->htable, intr_type, 0,
4279 	    (int)request, &actual, DDI_INTR_ALLOC_NORMAL);
4280 	if (rc != DDI_SUCCESS) {
4281 		cmn_err(CE_WARN, "%s(%d) Allocate interrupts failed. return:"
4282 		    " %d, request: %d, actual: %d",
4283 		    __func__, qlge->instance, rc, request, actual);
4284 		goto ql_intr_alloc_fail;
4285 	}
4286 	qlge->intr_cnt = actual;
4287 
4288 	qlge->sequence |= INIT_INTR_ALLOC;
4289 
4290 	/*
4291 	 * If the actual number of vectors is less than the minumum
4292 	 * then fail.
4293 	 */
4294 	if (actual < minimum) {
4295 		cmn_err(CE_WARN,
4296 		    "Insufficient interrupt handles available: %d", actual);
4297 		goto ql_intr_alloc_fail;
4298 	}
4299 
4300 	/*
4301 	 * For MSI-X, actual might force us to reduce number of tx & rx rings
4302 	 */
4303 	if ((intr_type == DDI_INTR_TYPE_MSIX) && (orig > actual)) {
4304 		if (actual >= (orig / 2)) {
4305 			count = orig / 2;
4306 			qlge->rss_ring_count = count;
4307 			qlge->tx_ring_count = count;
4308 			qlge->isr_stride = count;
4309 		} else if (actual >= (orig / 4)) {
4310 			count = orig / 4;
4311 			qlge->rss_ring_count = count;
4312 			qlge->tx_ring_count = count;
4313 			qlge->isr_stride = count;
4314 		} else if (actual >= (orig / 8)) {
4315 			count = orig / 8;
4316 			qlge->rss_ring_count = count;
4317 			qlge->tx_ring_count = count;
4318 			qlge->isr_stride = count;
4319 		} else if (actual < MAX_RX_RINGS) {
4320 			qlge->tx_ring_count = 1;
4321 			qlge->rss_ring_count = actual - 1;
4322 		}
4323 		qlge->intr_cnt = count;
4324 		qlge->rx_ring_count = qlge->tx_ring_count +
4325 		    qlge->rss_ring_count;
4326 	}
4327 	cmn_err(CE_NOTE, "!qlge(%d) tx %d, rss %d, stride %d\n", qlge->instance,
4328 	    qlge->tx_ring_count, qlge->rss_ring_count, qlge->isr_stride);
4329 
4330 	/*
4331 	 * Get priority for first vector, assume remaining are all the same
4332 	 */
4333 	rc = ddi_intr_get_pri(qlge->htable[0], &qlge->intr_pri);
4334 	if (rc != DDI_SUCCESS) {
4335 		QL_PRINT(DBG_INIT, ("Get interrupt priority failed: %d\n", rc));
4336 		goto ql_intr_alloc_fail;
4337 	}
4338 
4339 	rc = ddi_intr_get_cap(qlge->htable[0], &qlge->intr_cap);
4340 	if (rc != DDI_SUCCESS) {
4341 		QL_PRINT(DBG_INIT, ("Get interrupt cap failed: %d\n", rc));
4342 		goto ql_intr_alloc_fail;
4343 	}
4344 
4345 	qlge->intr_type = intr_type;
4346 
4347 	return (DDI_SUCCESS);
4348 
4349 ql_intr_alloc_fail:
4350 	ql_free_irq_vectors(qlge);
4351 
4352 	return (DDI_FAILURE);
4353 }
4354 
4355 /*
4356  * Allocate interrupt vector(s) for one of the following interrupt types, MSI-X,
4357  * MSI or Legacy. In MSI and Legacy modes we only support a single receive and
4358  * transmit queue.
4359  */
4360 int
4361 ql_alloc_irqs(qlge_t *qlge)
4362 {
4363 	int intr_types;
4364 	int rval;
4365 
4366 	/*
4367 	 * Get supported interrupt types
4368 	 */
4369 	if (ddi_intr_get_supported_types(qlge->dip, &intr_types)
4370 	    != DDI_SUCCESS) {
4371 		cmn_err(CE_WARN, "%s(%d):ddi_intr_get_supported_types failed",
4372 		    __func__, qlge->instance);
4373 
4374 		return (DDI_FAILURE);
4375 	}
4376 
4377 	QL_PRINT(DBG_INIT, ("%s(%d) Interrupt types supported %d\n",
4378 	    __func__, qlge->instance, intr_types));
4379 
4380 	/* Install MSI-X interrupts */
4381 	if ((intr_types & DDI_INTR_TYPE_MSIX) != 0) {
4382 		QL_PRINT(DBG_INIT, ("%s(%d) MSI-X interrupt supported %d\n",
4383 		    __func__, qlge->instance, intr_types));
4384 		rval = ql_request_irq_vectors(qlge, DDI_INTR_TYPE_MSIX);
4385 		if (rval == DDI_SUCCESS) {
4386 			return (rval);
4387 		}
4388 		QL_PRINT(DBG_INIT, ("%s(%d) MSI-X interrupt allocation failed,"
4389 		    " trying MSI interrupts ...\n", __func__, qlge->instance));
4390 	}
4391 
4392 	/*
4393 	 * We will have 2 completion queues in MSI / Legacy mode,
4394 	 * Queue 0 for default completions
4395 	 * Queue 1 for transmit completions
4396 	 */
4397 	qlge->rss_ring_count = 1; /* Default completion queue (0) for all */
4398 	qlge->tx_ring_count = 1; /* Single tx completion queue */
4399 	qlge->rx_ring_count = qlge->tx_ring_count + qlge->rss_ring_count;
4400 
4401 	QL_PRINT(DBG_INIT, ("%s(%d) Falling back to single completion queue \n",
4402 	    __func__, qlge->instance));
4403 	/*
4404 	 * Add the h/w interrupt handler and initialise mutexes
4405 	 */
4406 	rval = DDI_FAILURE;
4407 
4408 	/*
4409 	 * If OS supports MSIX interrupt but fails to allocate, then try
4410 	 * MSI interrupt. If MSI interrupt allocation fails also, then roll
4411 	 * back to fixed interrupt.
4412 	 */
4413 	if (intr_types & DDI_INTR_TYPE_MSI) {
4414 		rval = ql_request_irq_vectors(qlge, DDI_INTR_TYPE_MSI);
4415 		if (rval == DDI_SUCCESS) {
4416 			qlge->intr_type = DDI_INTR_TYPE_MSI;
4417 			QL_PRINT(DBG_INIT, ("%s(%d) use MSI Interrupt \n",
4418 			    __func__, qlge->instance));
4419 		}
4420 	}
4421 
4422 	/* Try Fixed interrupt Legacy mode */
4423 	if (rval != DDI_SUCCESS) {
4424 		rval = ql_request_irq_vectors(qlge, DDI_INTR_TYPE_FIXED);
4425 		if (rval != DDI_SUCCESS) {
4426 			cmn_err(CE_WARN, "%s(%d):Legacy mode interrupt "
4427 			    "allocation failed",
4428 			    __func__, qlge->instance);
4429 		} else {
4430 			qlge->intr_type = DDI_INTR_TYPE_FIXED;
4431 			QL_PRINT(DBG_INIT, ("%s(%d) use Fixed Interrupt \n",
4432 			    __func__, qlge->instance));
4433 		}
4434 	}
4435 
4436 	return (rval);
4437 }
4438 
4439 static void
4440 ql_free_rx_tx_locks(qlge_t *qlge)
4441 {
4442 	int i;
4443 	struct rx_ring *rx_ring;
4444 	struct tx_ring *tx_ring;
4445 
4446 	for (i = 0; i < qlge->tx_ring_count; i++) {
4447 		tx_ring = &qlge->tx_ring[i];
4448 		mutex_destroy(&tx_ring->tx_lock);
4449 	}
4450 
4451 	for (i = 0; i < qlge->rx_ring_count; i++) {
4452 		rx_ring = &qlge->rx_ring[i];
4453 		mutex_destroy(&rx_ring->rx_lock);
4454 		mutex_destroy(&rx_ring->sbq_lock);
4455 		mutex_destroy(&rx_ring->lbq_lock);
4456 	}
4457 }
4458 
4459 /*
4460  * Frees all resources allocated during attach.
4461  *
4462  * Input:
4463  * dip = pointer to device information structure.
4464  * sequence = bits indicating resources to free.
4465  *
4466  * Context:
4467  * Kernel context.
4468  */
4469 static void
4470 ql_free_resources(qlge_t *qlge)
4471 {
4472 
4473 	/* Disable driver timer */
4474 	ql_stop_timer(qlge);
4475 
4476 	if (qlge->sequence & INIT_MAC_REGISTERED) {
4477 		(void) mac_unregister(qlge->mh);
4478 		qlge->sequence &= ~INIT_MAC_REGISTERED;
4479 	}
4480 
4481 	if (qlge->sequence & INIT_MAC_ALLOC) {
4482 		/* Nothing to do, macp is already freed */
4483 		qlge->sequence &= ~INIT_MAC_ALLOC;
4484 	}
4485 
4486 	if (qlge->sequence & INIT_PCI_CONFIG_SETUP) {
4487 		pci_config_teardown(&qlge->pci_handle);
4488 		qlge->sequence &= ~INIT_PCI_CONFIG_SETUP;
4489 	}
4490 
4491 	if (qlge->sequence & INIT_INTR_ALLOC) {
4492 		ql_free_irq_vectors(qlge);
4493 		qlge->sequence &= ~INIT_ADD_INTERRUPT;
4494 	}
4495 
4496 	if (qlge->sequence & INIT_ADD_SOFT_INTERRUPT) {
4497 		(void) ddi_intr_remove_softint(qlge->mpi_event_intr_hdl);
4498 		(void) ddi_intr_remove_softint(qlge->mpi_reset_intr_hdl);
4499 		(void) ddi_intr_remove_softint(qlge->asic_reset_intr_hdl);
4500 		qlge->sequence &= ~INIT_ADD_SOFT_INTERRUPT;
4501 	}
4502 
4503 	if (qlge->sequence & INIT_KSTATS) {
4504 		ql_fini_kstats(qlge);
4505 		qlge->sequence &= ~INIT_KSTATS;
4506 	}
4507 
4508 	if (qlge->sequence & INIT_MUTEX) {
4509 		mutex_destroy(&qlge->gen_mutex);
4510 		mutex_destroy(&qlge->hw_mutex);
4511 		mutex_destroy(&qlge->mbx_mutex);
4512 		cv_destroy(&qlge->cv_mbx_intr);
4513 		qlge->sequence &= ~INIT_MUTEX;
4514 	}
4515 
4516 	if (qlge->sequence & INIT_LOCKS_CREATED) {
4517 		ql_free_rx_tx_locks(qlge);
4518 		qlge->sequence &= ~INIT_LOCKS_CREATED;
4519 	}
4520 
4521 	if (qlge->sequence & INIT_MEMORY_ALLOC) {
4522 		ql_free_mem_resources(qlge);
4523 		qlge->sequence &= ~INIT_MEMORY_ALLOC;
4524 	}
4525 
4526 	if (qlge->sequence & INIT_REGS_SETUP) {
4527 		ddi_regs_map_free(&qlge->dev_handle);
4528 		qlge->sequence &= ~INIT_REGS_SETUP;
4529 	}
4530 
4531 	if (qlge->sequence & INIT_DOORBELL_REGS_SETUP) {
4532 		ddi_regs_map_free(&qlge->dev_doorbell_reg_handle);
4533 		qlge->sequence &= ~INIT_DOORBELL_REGS_SETUP;
4534 	}
4535 
4536 	/*
4537 	 * free flash flt table that allocated in attach stage
4538 	 */
4539 	if ((qlge->flt.ql_flt_entry_ptr != NULL)&&
4540 	    (qlge->flt.header.length != 0)) {
4541 		kmem_free(qlge->flt.ql_flt_entry_ptr, qlge->flt.header.length);
4542 		qlge->flt.ql_flt_entry_ptr = NULL;
4543 	}
4544 
4545 	if (qlge->sequence & INIT_FM) {
4546 		ql_fm_fini(qlge);
4547 		qlge->sequence &= ~INIT_FM;
4548 	}
4549 
4550 	ddi_prop_remove_all(qlge->dip);
4551 	ddi_set_driver_private(qlge->dip, NULL);
4552 
4553 	/* finally, free qlge structure */
4554 	if (qlge->sequence & INIT_SOFTSTATE_ALLOC) {
4555 		kmem_free(qlge, sizeof (qlge_t));
4556 	}
4557 }
4558 
4559 /*
4560  * Set promiscuous mode of the driver
4561  * Caller must catch HW_LOCK
4562  */
4563 void
4564 ql_set_promiscuous(qlge_t *qlge, int mode)
4565 {
4566 	if (mode) {
4567 		(void) ql_set_routing_reg(qlge, RT_IDX_PROMISCUOUS_SLOT,
4568 		    RT_IDX_VALID, 1);
4569 	} else {
4570 		(void) ql_set_routing_reg(qlge, RT_IDX_PROMISCUOUS_SLOT,
4571 		    RT_IDX_VALID, 0);
4572 	}
4573 }
4574 /*
4575  * Write 'data1' to Mac Protocol Address Index Register and
4576  * 'data2' to Mac Protocol Address Data Register
4577  *  Assuming that the Mac Protocol semaphore lock has been acquired.
4578  */
4579 static int
4580 ql_write_mac_proto_regs(qlge_t *qlge, uint32_t data1, uint32_t data2)
4581 {
4582 	int return_value = DDI_SUCCESS;
4583 
4584 	if (ql_wait_reg_bit(qlge, REG_MAC_PROTOCOL_ADDRESS_INDEX,
4585 	    MAC_PROTOCOL_ADDRESS_INDEX_MW, BIT_SET, 5) != DDI_SUCCESS) {
4586 		cmn_err(CE_WARN, "Wait for MAC_PROTOCOL Address Register "
4587 		    "timeout.");
4588 		return_value = DDI_FAILURE;
4589 		goto out;
4590 	}
4591 	ql_write_reg(qlge, REG_MAC_PROTOCOL_ADDRESS_INDEX /* A8 */, data1);
4592 	ql_write_reg(qlge, REG_MAC_PROTOCOL_DATA /* 0xAC */, data2);
4593 out:
4594 	return (return_value);
4595 }
4596 /*
4597  * Enable the 'index'ed multicast address in the host memory's multicast_list
4598  */
4599 int
4600 ql_add_multicast_address(qlge_t *qlge, int index)
4601 {
4602 	int rtn_val = DDI_FAILURE;
4603 	uint32_t offset;
4604 	uint32_t value1, value2;
4605 
4606 	/* Acquire the required semaphore */
4607 	if (ql_sem_spinlock(qlge, QL_MAC_PROTOCOL_SEM_MASK) != DDI_SUCCESS) {
4608 		return (rtn_val);
4609 	}
4610 
4611 	/* Program Offset0 - lower 32 bits of the MAC address */
4612 	offset = 0;
4613 	value1 = MAC_PROTOCOL_ADDRESS_ENABLE | MAC_PROTOCOL_TYPE_MULTICAST |
4614 	    (index << 4) | offset;
4615 	value2 = ((qlge->multicast_list[index].addr.ether_addr_octet[2] << 24)
4616 	    |(qlge->multicast_list[index].addr.ether_addr_octet[3] << 16)
4617 	    |(qlge->multicast_list[index].addr.ether_addr_octet[4] << 8)
4618 	    |(qlge->multicast_list[index].addr.ether_addr_octet[5]));
4619 	if (ql_write_mac_proto_regs(qlge, value1, value2) != DDI_SUCCESS)
4620 		goto out;
4621 
4622 	/* Program offset1: upper 16 bits of the MAC address */
4623 	offset = 1;
4624 	value1 = MAC_PROTOCOL_ADDRESS_ENABLE | MAC_PROTOCOL_TYPE_MULTICAST |
4625 	    (index<<4) | offset;
4626 	value2 = ((qlge->multicast_list[index].addr.ether_addr_octet[0] << 8)
4627 	    |qlge->multicast_list[index].addr.ether_addr_octet[1]);
4628 	if (ql_write_mac_proto_regs(qlge, value1, value2) != DDI_SUCCESS) {
4629 		goto out;
4630 	}
4631 	rtn_val = DDI_SUCCESS;
4632 out:
4633 	ql_sem_unlock(qlge, QL_MAC_PROTOCOL_SEM_MASK);
4634 	return (rtn_val);
4635 }
4636 
4637 /*
4638  * Disable the 'index'ed multicast address in the host memory's multicast_list
4639  */
4640 int
4641 ql_remove_multicast_address(qlge_t *qlge, int index)
4642 {
4643 	int rtn_val = DDI_FAILURE;
4644 	uint32_t offset;
4645 	uint32_t value1, value2;
4646 
4647 	/* Acquire the required semaphore */
4648 	if (ql_sem_spinlock(qlge, QL_MAC_PROTOCOL_SEM_MASK) != DDI_SUCCESS) {
4649 		return (rtn_val);
4650 	}
4651 	/* Program Offset0 - lower 32 bits of the MAC address */
4652 	offset = 0;
4653 	value1 = (MAC_PROTOCOL_TYPE_MULTICAST | offset)|(index<<4);
4654 	value2 =
4655 	    ((qlge->multicast_list[index].addr.ether_addr_octet[2] << 24)
4656 	    |(qlge->multicast_list[index].addr.ether_addr_octet[3] << 16)
4657 	    |(qlge->multicast_list[index].addr.ether_addr_octet[4] << 8)
4658 	    |(qlge->multicast_list[index].addr.ether_addr_octet[5]));
4659 	if (ql_write_mac_proto_regs(qlge, value1, value2) != DDI_SUCCESS) {
4660 		goto out;
4661 	}
4662 	/* Program offset1: upper 16 bits of the MAC address */
4663 	offset = 1;
4664 	value1 = (MAC_PROTOCOL_TYPE_MULTICAST | offset)|(index<<4);
4665 	value2 = 0;
4666 	if (ql_write_mac_proto_regs(qlge, value1, value2) != DDI_SUCCESS) {
4667 		goto out;
4668 	}
4669 	rtn_val = DDI_SUCCESS;
4670 out:
4671 	ql_sem_unlock(qlge, QL_MAC_PROTOCOL_SEM_MASK);
4672 	return (rtn_val);
4673 }
4674 
4675 /*
4676  * Add a new multicast address to the list of supported list
4677  * This API is called after OS called gld_set_multicast (GLDv2)
4678  * or m_multicst (GLDv3)
4679  *
4680  * Restriction:
4681  * The number of maximum multicast address is limited by hardware.
4682  */
4683 int
4684 ql_add_to_multicast_list(qlge_t *qlge, uint8_t *ep)
4685 {
4686 	uint32_t index = qlge->multicast_list_count;
4687 	int rval = DDI_SUCCESS;
4688 	int status;
4689 
4690 	if ((ep[0] & 01) == 0) {
4691 		rval = EINVAL;
4692 		goto exit;
4693 	}
4694 
4695 	/* if there is an availabe space in multicast_list, then add it */
4696 	if (index < MAX_MULTICAST_LIST_SIZE) {
4697 		bcopy(ep, qlge->multicast_list[index].addr.ether_addr_octet,
4698 		    ETHERADDRL);
4699 		/* increment the total number of addresses in multicast list */
4700 		(void) ql_add_multicast_address(qlge, index);
4701 		qlge->multicast_list_count++;
4702 		QL_PRINT(DBG_GLD,
4703 		    ("%s(%d): added to index of multicast list= 0x%x, "
4704 		    "total %d\n", __func__, qlge->instance, index,
4705 		    qlge->multicast_list_count));
4706 
4707 		if (index > MAX_MULTICAST_HW_SIZE) {
4708 			if (!qlge->multicast_promisc) {
4709 				status = ql_set_routing_reg(qlge,
4710 				    RT_IDX_ALLMULTI_SLOT,
4711 				    RT_IDX_MCAST, 1);
4712 				if (status) {
4713 					cmn_err(CE_WARN,
4714 					    "Failed to init routing reg "
4715 					    "for mcast promisc mode.");
4716 					rval = ENOENT;
4717 					goto exit;
4718 				}
4719 				qlge->multicast_promisc = B_TRUE;
4720 			}
4721 		}
4722 	} else {
4723 		rval = ENOENT;
4724 	}
4725 exit:
4726 	return (rval);
4727 }
4728 
4729 /*
4730  * Remove an old multicast address from the list of supported multicast
4731  * addresses. This API is called after OS called gld_set_multicast (GLDv2)
4732  * or m_multicst (GLDv3)
4733  * The number of maximum multicast address is limited by hardware.
4734  */
4735 int
4736 ql_remove_from_multicast_list(qlge_t *qlge, uint8_t *ep)
4737 {
4738 	uint32_t total = qlge->multicast_list_count;
4739 	int i = 0;
4740 	int rmv_index = 0;
4741 	size_t length = sizeof (ql_multicast_addr);
4742 	int status;
4743 
4744 	for (i = 0; i < total; i++) {
4745 		if (bcmp(ep, &qlge->multicast_list[i].addr, ETHERADDRL) != 0) {
4746 			continue;
4747 		}
4748 
4749 		rmv_index = i;
4750 		/* block move the reset of other multicast address forward */
4751 		length = ((total -1) -i) * sizeof (ql_multicast_addr);
4752 		if (length > 0) {
4753 			bcopy(&qlge->multicast_list[i+1],
4754 			    &qlge->multicast_list[i], length);
4755 		}
4756 		qlge->multicast_list_count--;
4757 		if (qlge->multicast_list_count <= MAX_MULTICAST_HW_SIZE) {
4758 			/*
4759 			 * there is a deletion in multicast list table,
4760 			 * re-enable them
4761 			 */
4762 			for (i = rmv_index; i < qlge->multicast_list_count;
4763 			    i++) {
4764 				(void) ql_add_multicast_address(qlge, i);
4765 			}
4766 			/* and disable the last one */
4767 			(void) ql_remove_multicast_address(qlge, i);
4768 
4769 			/* disable multicast promiscuous mode */
4770 			if (qlge->multicast_promisc) {
4771 				status = ql_set_routing_reg(qlge,
4772 				    RT_IDX_ALLMULTI_SLOT,
4773 				    RT_IDX_MCAST, 0);
4774 				if (status) {
4775 					cmn_err(CE_WARN,
4776 					    "Failed to init routing reg for "
4777 					    "mcast promisc mode.");
4778 					goto exit;
4779 				}
4780 				/* write to config register */
4781 				qlge->multicast_promisc = B_FALSE;
4782 			}
4783 		}
4784 		break;
4785 	}
4786 exit:
4787 	return (DDI_SUCCESS);
4788 }
4789 
4790 /*
4791  * Read a XGMAC register
4792  */
4793 int
4794 ql_read_xgmac_reg(qlge_t *qlge, uint32_t addr, uint32_t *val)
4795 {
4796 	int rtn_val = DDI_FAILURE;
4797 
4798 	/* wait for XGMAC Address register RDY bit set */
4799 	if (ql_wait_reg_bit(qlge, REG_XGMAC_ADDRESS, XGMAC_ADDRESS_RDY,
4800 	    BIT_SET, 10) != DDI_SUCCESS) {
4801 		goto out;
4802 	}
4803 	/* start rx transaction */
4804 	ql_write_reg(qlge, REG_XGMAC_ADDRESS, addr|XGMAC_ADDRESS_READ_TRANSACT);
4805 
4806 	/*
4807 	 * wait for XGMAC Address register RDY bit set,
4808 	 * which indicates data is ready
4809 	 */
4810 	if (ql_wait_reg_bit(qlge, REG_XGMAC_ADDRESS, XGMAC_ADDRESS_RDY,
4811 	    BIT_SET, 10) != DDI_SUCCESS) {
4812 		goto out;
4813 	}
4814 	/* read data from XGAMC_DATA register */
4815 	*val = ql_read_reg(qlge, REG_XGMAC_DATA);
4816 	rtn_val = DDI_SUCCESS;
4817 out:
4818 	return (rtn_val);
4819 }
4820 
4821 /*
4822  * Implement checksum offload for IPv4 IP packets
4823  */
4824 static void
4825 ql_hw_csum_setup(qlge_t *qlge, uint32_t pflags, caddr_t bp,
4826     struct ob_mac_iocb_req *mac_iocb_ptr)
4827 {
4828 	struct ip *iphdr = NULL;
4829 	struct ether_header *ethhdr;
4830 	struct ether_vlan_header *ethvhdr;
4831 	struct tcphdr *tcp_hdr;
4832 	uint32_t etherType;
4833 	int mac_hdr_len, ip_hdr_len, tcp_udp_hdr_len;
4834 	int ip_hdr_off, tcp_udp_hdr_off, hdr_off;
4835 
4836 	ethhdr  = (struct ether_header *)((void *)bp);
4837 	ethvhdr = (struct ether_vlan_header *)((void *)bp);
4838 	/* Is this vlan packet? */
4839 	if (ntohs(ethvhdr->ether_tpid) == ETHERTYPE_VLAN) {
4840 		mac_hdr_len = sizeof (struct ether_vlan_header);
4841 		etherType = ntohs(ethvhdr->ether_type);
4842 	} else {
4843 		mac_hdr_len = sizeof (struct ether_header);
4844 		etherType = ntohs(ethhdr->ether_type);
4845 	}
4846 	/* Is this IPv4 or IPv6 packet? */
4847 	if (IPH_HDR_VERSION((ipha_t *)(void *)(bp+mac_hdr_len)) ==
4848 	    IPV4_VERSION) {
4849 		if (etherType == ETHERTYPE_IP /* 0800 */) {
4850 			iphdr = (struct ip *)(void *)(bp+mac_hdr_len);
4851 		} else {
4852 			/* EMPTY */
4853 			QL_PRINT(DBG_TX,
4854 			    ("%s(%d) : IPv4 None IP packet type 0x%x\n",
4855 			    __func__, qlge->instance, etherType));
4856 		}
4857 	}
4858 	/* ipV4 packets */
4859 	if (iphdr != NULL) {
4860 
4861 		ip_hdr_len = IPH_HDR_LENGTH(iphdr);
4862 		QL_PRINT(DBG_TX,
4863 		    ("%s(%d) : IPv4 header length using IPH_HDR_LENGTH:"
4864 		    " %d bytes \n", __func__, qlge->instance, ip_hdr_len));
4865 
4866 		ip_hdr_off = mac_hdr_len;
4867 		QL_PRINT(DBG_TX, ("%s(%d) : ip_hdr_len=%d\n",
4868 		    __func__, qlge->instance, ip_hdr_len));
4869 
4870 		mac_iocb_ptr->flag0 = (uint8_t)(mac_iocb_ptr->flag0 |
4871 		    OB_MAC_IOCB_REQ_IPv4);
4872 
4873 		if (pflags & HCK_IPV4_HDRCKSUM) {
4874 			QL_PRINT(DBG_TX, ("%s(%d) : Do IPv4 header checksum\n",
4875 			    __func__, qlge->instance));
4876 			mac_iocb_ptr->opcode = OPCODE_OB_MAC_OFFLOAD_IOCB;
4877 			mac_iocb_ptr->flag2 = (uint8_t)(mac_iocb_ptr->flag2 |
4878 			    OB_MAC_IOCB_REQ_IC);
4879 			iphdr->ip_sum = 0;
4880 			mac_iocb_ptr->hdr_off = (uint16_t)
4881 			    cpu_to_le16(ip_hdr_off);
4882 		}
4883 		if (pflags & HCK_FULLCKSUM) {
4884 			if (iphdr->ip_p == IPPROTO_TCP) {
4885 				tcp_hdr =
4886 				    (struct tcphdr *)(void *)
4887 				    ((uint8_t *)(void *)iphdr + ip_hdr_len);
4888 				QL_PRINT(DBG_TX, ("%s(%d) : Do TCP checksum\n",
4889 				    __func__, qlge->instance));
4890 				mac_iocb_ptr->opcode =
4891 				    OPCODE_OB_MAC_OFFLOAD_IOCB;
4892 				mac_iocb_ptr->flag1 =
4893 				    (uint8_t)(mac_iocb_ptr->flag1 |
4894 				    OB_MAC_IOCB_REQ_TC);
4895 				mac_iocb_ptr->flag2 =
4896 				    (uint8_t)(mac_iocb_ptr->flag2 |
4897 				    OB_MAC_IOCB_REQ_IC);
4898 				iphdr->ip_sum = 0;
4899 				tcp_udp_hdr_off = mac_hdr_len+ip_hdr_len;
4900 				tcp_udp_hdr_len = tcp_hdr->th_off*4;
4901 				QL_PRINT(DBG_TX, ("%s(%d): tcp header len:%d\n",
4902 				    __func__, qlge->instance, tcp_udp_hdr_len));
4903 				hdr_off = ip_hdr_off;
4904 				tcp_udp_hdr_off <<= 6;
4905 				hdr_off |= tcp_udp_hdr_off;
4906 				mac_iocb_ptr->hdr_off =
4907 				    (uint16_t)cpu_to_le16(hdr_off);
4908 				mac_iocb_ptr->protocol_hdr_len = (uint16_t)
4909 				    cpu_to_le16(mac_hdr_len + ip_hdr_len +
4910 				    tcp_udp_hdr_len);
4911 
4912 				/*
4913 				 * if the chip is unable to do pseudo header
4914 				 * cksum calculation, do it in then put the
4915 				 * result to the data passed to the chip
4916 				 */
4917 				if (qlge->cfg_flags &
4918 				    CFG_HW_UNABLE_PSEUDO_HDR_CKSUM) {
4919 					ql_pseudo_cksum((uint8_t *)iphdr);
4920 				}
4921 			} else if (iphdr->ip_p == IPPROTO_UDP) {
4922 				QL_PRINT(DBG_TX, ("%s(%d) : Do UDP checksum\n",
4923 				    __func__, qlge->instance));
4924 				mac_iocb_ptr->opcode =
4925 				    OPCODE_OB_MAC_OFFLOAD_IOCB;
4926 				mac_iocb_ptr->flag1 =
4927 				    (uint8_t)(mac_iocb_ptr->flag1 |
4928 				    OB_MAC_IOCB_REQ_UC);
4929 				mac_iocb_ptr->flag2 =
4930 				    (uint8_t)(mac_iocb_ptr->flag2 |
4931 				    OB_MAC_IOCB_REQ_IC);
4932 				iphdr->ip_sum = 0;
4933 				tcp_udp_hdr_off = mac_hdr_len + ip_hdr_len;
4934 				tcp_udp_hdr_len = sizeof (struct udphdr);
4935 				QL_PRINT(DBG_TX, ("%s(%d):udp header len:%d\n",
4936 				    __func__, qlge->instance, tcp_udp_hdr_len));
4937 				hdr_off = ip_hdr_off;
4938 				tcp_udp_hdr_off <<= 6;
4939 				hdr_off |= tcp_udp_hdr_off;
4940 				mac_iocb_ptr->hdr_off =
4941 				    (uint16_t)cpu_to_le16(hdr_off);
4942 				mac_iocb_ptr->protocol_hdr_len = (uint16_t)
4943 				    cpu_to_le16(mac_hdr_len + ip_hdr_len
4944 				    + tcp_udp_hdr_len);
4945 
4946 				/*
4947 				 * if the chip is unable to calculate pseudo
4948 				 * hdr cksum,do it in then put the result to
4949 				 * the data passed to the chip
4950 				 */
4951 				if (qlge->cfg_flags &
4952 				    CFG_HW_UNABLE_PSEUDO_HDR_CKSUM) {
4953 					ql_pseudo_cksum((uint8_t *)iphdr);
4954 				}
4955 			}
4956 		}
4957 	}
4958 }
4959 
4960 /*
4961  * For TSO/LSO:
4962  * MAC frame transmission with TCP large segment offload is performed in the
4963  * same way as the MAC frame transmission with checksum offload with the
4964  * exception that the maximum TCP segment size (MSS) must be specified to
4965  * allow the chip to segment the data into legal sized frames.
4966  * The host also needs to calculate a pseudo-header checksum over the
4967  * following fields:
4968  * Source IP Address, Destination IP Address, and the Protocol.
4969  * The TCP length is not included in the pseudo-header calculation.
4970  * The pseudo-header checksum is place in the TCP checksum field of the
4971  * prototype header.
4972  */
4973 static void
4974 ql_lso_pseudo_cksum(uint8_t *buf)
4975 {
4976 	uint32_t cksum;
4977 	uint16_t iphl;
4978 	uint16_t proto;
4979 
4980 	/*
4981 	 * Calculate the LSO pseudo-header checksum.
4982 	 */
4983 	iphl = (uint16_t)(4 * (buf[0] & 0xF));
4984 	cksum = proto = buf[9];
4985 	cksum += (((uint16_t)buf[12])<<8) + buf[13];
4986 	cksum += (((uint16_t)buf[14])<<8) + buf[15];
4987 	cksum += (((uint16_t)buf[16])<<8) + buf[17];
4988 	cksum += (((uint16_t)buf[18])<<8) + buf[19];
4989 	cksum = (cksum>>16) + (cksum & 0xFFFF);
4990 	cksum = (cksum>>16) + (cksum & 0xFFFF);
4991 
4992 	/*
4993 	 * Point it to the TCP/UDP header, and
4994 	 * update the checksum field.
4995 	 */
4996 	buf += iphl + ((proto == IPPROTO_TCP) ?
4997 	    TCP_CKSUM_OFFSET : UDP_CKSUM_OFFSET);
4998 
4999 	*(uint16_t *)(void *)buf = (uint16_t)htons((uint16_t)cksum);
5000 }
5001 
5002 /*
5003  * For IPv4 IP packets, distribute the tx packets evenly among tx rings
5004  */
5005 typedef	uint32_t	ub4; /* unsigned 4-byte quantities */
5006 typedef	uint8_t		ub1;
5007 
5008 #define	hashsize(n)	((ub4)1<<(n))
5009 #define	hashmask(n)	(hashsize(n)-1)
5010 
5011 #define	mix(a, b, c) \
5012 { \
5013 	a -= b; a -= c; a ^= (c>>13); \
5014 	b -= c; b -= a; b ^= (a<<8); \
5015 	c -= a; c -= b; c ^= (b>>13); \
5016 	a -= b; a -= c; a ^= (c>>12);  \
5017 	b -= c; b -= a; b ^= (a<<16); \
5018 	c -= a; c -= b; c ^= (b>>5); \
5019 	a -= b; a -= c; a ^= (c>>3);  \
5020 	b -= c; b -= a; b ^= (a<<10); \
5021 	c -= a; c -= b; c ^= (b>>15); \
5022 }
5023 
5024 ub4
5025 hash(ub1 *k, ub4 length, ub4 initval)
5026 {
5027 	ub4 a, b, c, len;
5028 
5029 	/* Set up the internal state */
5030 	len = length;
5031 	a = b = 0x9e3779b9;	/* the golden ratio; an arbitrary value */
5032 	c = initval;		/* the previous hash value */
5033 
5034 	/* handle most of the key */
5035 	while (len >= 12) {
5036 		a += (k[0] +((ub4)k[1]<<8) +((ub4)k[2]<<16) +((ub4)k[3]<<24));
5037 		b += (k[4] +((ub4)k[5]<<8) +((ub4)k[6]<<16) +((ub4)k[7]<<24));
5038 		c += (k[8] +((ub4)k[9]<<8) +((ub4)k[10]<<16)+((ub4)k[11]<<24));
5039 		mix(a, b, c);
5040 		k += 12;
5041 		len -= 12;
5042 	}
5043 
5044 	/* handle the last 11 bytes */
5045 	c += length;
5046 	/* all the case statements fall through */
5047 	switch (len) {
5048 		/* FALLTHRU */
5049 	case 11: c += ((ub4)k[10]<<24);
5050 		/* FALLTHRU */
5051 	case 10: c += ((ub4)k[9]<<16);
5052 		/* FALLTHRU */
5053 	case 9 : c += ((ub4)k[8]<<8);
5054 	/* the first byte of c is reserved for the length */
5055 		/* FALLTHRU */
5056 	case 8 : b += ((ub4)k[7]<<24);
5057 		/* FALLTHRU */
5058 	case 7 : b += ((ub4)k[6]<<16);
5059 		/* FALLTHRU */
5060 	case 6 : b += ((ub4)k[5]<<8);
5061 		/* FALLTHRU */
5062 	case 5 : b += k[4];
5063 		/* FALLTHRU */
5064 	case 4 : a += ((ub4)k[3]<<24);
5065 		/* FALLTHRU */
5066 	case 3 : a += ((ub4)k[2]<<16);
5067 		/* FALLTHRU */
5068 	case 2 : a += ((ub4)k[1]<<8);
5069 		/* FALLTHRU */
5070 	case 1 : a += k[0];
5071 	/* case 0: nothing left to add */
5072 	}
5073 	mix(a, b, c);
5074 	/* report the result */
5075 	return (c);
5076 }
5077 
5078 uint8_t
5079 ql_tx_hashing(qlge_t *qlge, caddr_t bp)
5080 {
5081 	struct ip *iphdr = NULL;
5082 	struct ether_header *ethhdr;
5083 	struct ether_vlan_header *ethvhdr;
5084 	struct tcphdr *tcp_hdr;
5085 	struct udphdr *udp_hdr;
5086 	uint32_t etherType;
5087 	int mac_hdr_len, ip_hdr_len;
5088 	uint32_t h = 0; /* 0 by default */
5089 	uint8_t tx_ring_id = 0;
5090 	uint32_t ip_src_addr = 0;
5091 	uint32_t ip_desc_addr = 0;
5092 	uint16_t src_port = 0;
5093 	uint16_t dest_port = 0;
5094 	uint8_t key[12];
5095 	QL_PRINT(DBG_TX, ("%s(%d) entered \n", __func__, qlge->instance));
5096 
5097 	ethhdr = (struct ether_header *)((void *)bp);
5098 	ethvhdr = (struct ether_vlan_header *)((void *)bp);
5099 
5100 	if (qlge->tx_ring_count == 1)
5101 		return (tx_ring_id);
5102 
5103 	/* Is this vlan packet? */
5104 	if (ntohs(ethvhdr->ether_tpid) == ETHERTYPE_VLAN) {
5105 		mac_hdr_len = sizeof (struct ether_vlan_header);
5106 		etherType = ntohs(ethvhdr->ether_type);
5107 	} else {
5108 		mac_hdr_len = sizeof (struct ether_header);
5109 		etherType = ntohs(ethhdr->ether_type);
5110 	}
5111 	/* Is this IPv4 or IPv6 packet? */
5112 	if (etherType == ETHERTYPE_IP /* 0800 */) {
5113 		if (IPH_HDR_VERSION((ipha_t *)(void *)(bp+mac_hdr_len))
5114 		    == IPV4_VERSION) {
5115 			iphdr = (struct ip *)(void *)(bp+mac_hdr_len);
5116 		}
5117 		if (((unsigned long)iphdr) & 0x3) {
5118 			/*  IP hdr not 4-byte aligned */
5119 			return (tx_ring_id);
5120 		}
5121 	}
5122 	/* ipV4 packets */
5123 	if (iphdr) {
5124 
5125 		ip_hdr_len = IPH_HDR_LENGTH(iphdr);
5126 		ip_src_addr = iphdr->ip_src.s_addr;
5127 		ip_desc_addr = iphdr->ip_dst.s_addr;
5128 
5129 		if (iphdr->ip_p == IPPROTO_TCP) {
5130 			tcp_hdr = (struct tcphdr *)(void *)
5131 			    ((uint8_t *)iphdr + ip_hdr_len);
5132 			src_port = tcp_hdr->th_sport;
5133 			dest_port = tcp_hdr->th_dport;
5134 		} else if (iphdr->ip_p == IPPROTO_UDP) {
5135 			udp_hdr = (struct udphdr *)(void *)
5136 			    ((uint8_t *)iphdr + ip_hdr_len);
5137 			src_port = udp_hdr->uh_sport;
5138 			dest_port = udp_hdr->uh_dport;
5139 		}
5140 		key[0] = (uint8_t)((ip_src_addr) &0xFF);
5141 		key[1] = (uint8_t)((ip_src_addr >> 8) &0xFF);
5142 		key[2] = (uint8_t)((ip_src_addr >> 16) &0xFF);
5143 		key[3] = (uint8_t)((ip_src_addr >> 24) &0xFF);
5144 		key[4] = (uint8_t)((ip_desc_addr) &0xFF);
5145 		key[5] = (uint8_t)((ip_desc_addr >> 8) &0xFF);
5146 		key[6] = (uint8_t)((ip_desc_addr >> 16) &0xFF);
5147 		key[7] = (uint8_t)((ip_desc_addr >> 24) &0xFF);
5148 		key[8] = (uint8_t)((src_port) &0xFF);
5149 		key[9] = (uint8_t)((src_port >> 8) &0xFF);
5150 		key[10] = (uint8_t)((dest_port) &0xFF);
5151 		key[11] = (uint8_t)((dest_port >> 8) &0xFF);
5152 		h = hash(key, 12, 0); /* return 32 bit */
5153 		tx_ring_id = (h & (qlge->tx_ring_count - 1));
5154 		if (tx_ring_id >= qlge->tx_ring_count) {
5155 			cmn_err(CE_WARN, "%s bad tx_ring_id %d\n",
5156 			    __func__, tx_ring_id);
5157 			tx_ring_id = 0;
5158 		}
5159 	}
5160 	return (tx_ring_id);
5161 }
5162 
5163 /*
5164  * Tell the hardware to do Large Send Offload (LSO)
5165  *
5166  * Some fields in ob_mac_iocb need to be set so hardware can know what is
5167  * the incoming packet, TCP or UDP, whether a VLAN tag needs to be inserted
5168  * in the right place of the packet etc, thus, hardware can process the
5169  * packet correctly.
5170  */
5171 static void
5172 ql_hw_lso_setup(qlge_t *qlge, uint32_t mss, caddr_t bp,
5173     struct ob_mac_iocb_req *mac_iocb_ptr)
5174 {
5175 	struct ip *iphdr = NULL;
5176 	struct ether_header *ethhdr;
5177 	struct ether_vlan_header *ethvhdr;
5178 	struct tcphdr *tcp_hdr;
5179 	struct udphdr *udp_hdr;
5180 	uint32_t etherType;
5181 	uint16_t mac_hdr_len, ip_hdr_len, tcp_udp_hdr_len;
5182 	uint16_t ip_hdr_off, tcp_udp_hdr_off, hdr_off;
5183 
5184 	ethhdr = (struct ether_header *)(void *)bp;
5185 	ethvhdr = (struct ether_vlan_header *)(void *)bp;
5186 
5187 	/* Is this vlan packet? */
5188 	if (ntohs(ethvhdr->ether_tpid) == ETHERTYPE_VLAN) {
5189 		mac_hdr_len = sizeof (struct ether_vlan_header);
5190 		etherType = ntohs(ethvhdr->ether_type);
5191 	} else {
5192 		mac_hdr_len = sizeof (struct ether_header);
5193 		etherType = ntohs(ethhdr->ether_type);
5194 	}
5195 	/* Is this IPv4 or IPv6 packet? */
5196 	if (IPH_HDR_VERSION((ipha_t *)(void *)(bp + mac_hdr_len)) ==
5197 	    IPV4_VERSION) {
5198 		if (etherType == ETHERTYPE_IP /* 0800 */) {
5199 			iphdr = (struct ip *)(void *)(bp+mac_hdr_len);
5200 		} else {
5201 			/* EMPTY */
5202 			QL_PRINT(DBG_TX, ("%s(%d) : IPv4 None IP packet"
5203 			    " type 0x%x\n",
5204 			    __func__, qlge->instance, etherType));
5205 		}
5206 	}
5207 
5208 	if (iphdr != NULL) { /* ipV4 packets */
5209 		ip_hdr_len = (uint16_t)IPH_HDR_LENGTH(iphdr);
5210 		QL_PRINT(DBG_TX,
5211 		    ("%s(%d) : IPv4 header length using IPH_HDR_LENGTH: %d"
5212 		    " bytes \n", __func__, qlge->instance, ip_hdr_len));
5213 
5214 		ip_hdr_off = mac_hdr_len;
5215 		QL_PRINT(DBG_TX, ("%s(%d) : ip_hdr_len=%d\n",
5216 		    __func__, qlge->instance, ip_hdr_len));
5217 
5218 		mac_iocb_ptr->flag0 = (uint8_t)(mac_iocb_ptr->flag0 |
5219 		    OB_MAC_IOCB_REQ_IPv4);
5220 		if (qlge->cfg_flags & CFG_CKSUM_FULL_IPv4) {
5221 			if (iphdr->ip_p == IPPROTO_TCP) {
5222 				tcp_hdr = (struct tcphdr *)(void *)
5223 				    ((uint8_t *)(void *)iphdr +
5224 				    ip_hdr_len);
5225 				QL_PRINT(DBG_TX, ("%s(%d) : Do TSO on TCP "
5226 				    "packet\n",
5227 				    __func__, qlge->instance));
5228 				mac_iocb_ptr->opcode =
5229 				    OPCODE_OB_MAC_OFFLOAD_IOCB;
5230 				mac_iocb_ptr->flag1 =
5231 				    (uint8_t)(mac_iocb_ptr->flag1 |
5232 				    OB_MAC_IOCB_REQ_LSO);
5233 				iphdr->ip_sum = 0;
5234 				tcp_udp_hdr_off =
5235 				    (uint16_t)(mac_hdr_len+ip_hdr_len);
5236 				tcp_udp_hdr_len =
5237 				    (uint16_t)(tcp_hdr->th_off*4);
5238 				QL_PRINT(DBG_TX, ("%s(%d): tcp header len:%d\n",
5239 				    __func__, qlge->instance, tcp_udp_hdr_len));
5240 				hdr_off = ip_hdr_off;
5241 				tcp_udp_hdr_off <<= 6;
5242 				hdr_off |= tcp_udp_hdr_off;
5243 				mac_iocb_ptr->hdr_off =
5244 				    (uint16_t)cpu_to_le16(hdr_off);
5245 				mac_iocb_ptr->protocol_hdr_len = (uint16_t)
5246 				    cpu_to_le16(mac_hdr_len + ip_hdr_len +
5247 				    tcp_udp_hdr_len);
5248 				mac_iocb_ptr->mss = (uint16_t)cpu_to_le16(mss);
5249 
5250 				/*
5251 				 * if the chip is unable to calculate pseudo
5252 				 * header checksum, do it in then put the result
5253 				 * to the data passed to the chip
5254 				 */
5255 				if (qlge->cfg_flags &
5256 				    CFG_HW_UNABLE_PSEUDO_HDR_CKSUM)
5257 					ql_lso_pseudo_cksum((uint8_t *)iphdr);
5258 			} else if (iphdr->ip_p == IPPROTO_UDP) {
5259 				udp_hdr = (struct udphdr *)(void *)
5260 				    ((uint8_t *)(void *)iphdr
5261 				    + ip_hdr_len);
5262 				QL_PRINT(DBG_TX, ("%s(%d) : Do TSO on UDP "
5263 				    "packet\n",
5264 				    __func__, qlge->instance));
5265 				mac_iocb_ptr->opcode =
5266 				    OPCODE_OB_MAC_OFFLOAD_IOCB;
5267 				mac_iocb_ptr->flag1 =
5268 				    (uint8_t)(mac_iocb_ptr->flag1 |
5269 				    OB_MAC_IOCB_REQ_LSO);
5270 				iphdr->ip_sum = 0;
5271 				tcp_udp_hdr_off =
5272 				    (uint16_t)(mac_hdr_len+ip_hdr_len);
5273 				tcp_udp_hdr_len =
5274 				    (uint16_t)(udp_hdr->uh_ulen*4);
5275 				QL_PRINT(DBG_TX, ("%s(%d):udp header len:%d\n",
5276 				    __func__, qlge->instance, tcp_udp_hdr_len));
5277 				hdr_off = ip_hdr_off;
5278 				tcp_udp_hdr_off <<= 6;
5279 				hdr_off |= tcp_udp_hdr_off;
5280 				mac_iocb_ptr->hdr_off =
5281 				    (uint16_t)cpu_to_le16(hdr_off);
5282 				mac_iocb_ptr->protocol_hdr_len = (uint16_t)
5283 				    cpu_to_le16(mac_hdr_len + ip_hdr_len +
5284 				    tcp_udp_hdr_len);
5285 				mac_iocb_ptr->mss = (uint16_t)cpu_to_le16(mss);
5286 
5287 				/*
5288 				 * if the chip is unable to do pseudo header
5289 				 * checksum calculation, do it here then put the
5290 				 * result to the data passed to the chip
5291 				 */
5292 				if (qlge->cfg_flags &
5293 				    CFG_HW_UNABLE_PSEUDO_HDR_CKSUM)
5294 					ql_lso_pseudo_cksum((uint8_t *)iphdr);
5295 			}
5296 		}
5297 	}
5298 }
5299 
5300 /*
5301  * Generic packet sending function which is used to send one packet.
5302  */
5303 int
5304 ql_send_common(struct tx_ring *tx_ring, mblk_t *mp)
5305 {
5306 	struct tx_ring_desc *tx_cb;
5307 	struct ob_mac_iocb_req *mac_iocb_ptr;
5308 	mblk_t *tp;
5309 	size_t msg_len = 0;
5310 	size_t off;
5311 	caddr_t bp;
5312 	size_t nbyte, total_len;
5313 	uint_t i = 0;
5314 	int j = 0, frags = 0;
5315 	uint32_t phy_addr_low, phy_addr_high;
5316 	uint64_t phys_addr;
5317 	clock_t now;
5318 	uint32_t pflags = 0;
5319 	uint32_t mss = 0;
5320 	enum tx_mode_t tx_mode;
5321 	struct oal_entry *oal_entry;
5322 	int status;
5323 	uint_t ncookies, oal_entries, max_oal_entries;
5324 	size_t max_seg_len = 0;
5325 	boolean_t use_lso = B_FALSE;
5326 	struct oal_entry *tx_entry = NULL;
5327 	struct oal_entry *last_oal_entry;
5328 	qlge_t *qlge = tx_ring->qlge;
5329 	ddi_dma_cookie_t dma_cookie;
5330 	size_t tx_buf_len = QL_MAX_COPY_LENGTH;
5331 	int force_pullup = 0;
5332 
5333 	tp = mp;
5334 	total_len = msg_len = 0;
5335 	max_oal_entries = TX_DESC_PER_IOCB + MAX_SG_ELEMENTS-1;
5336 
5337 	/* Calculate number of data and segments in the incoming message */
5338 	for (tp = mp; tp != NULL; tp = tp->b_cont) {
5339 		nbyte = MBLKL(tp);
5340 		total_len += nbyte;
5341 		max_seg_len = max(nbyte, max_seg_len);
5342 		QL_PRINT(DBG_TX, ("Requested sending data in %d segments, "
5343 		    "total length: %d\n", frags, nbyte));
5344 		frags++;
5345 	}
5346 
5347 	if (total_len >= QL_LSO_MAX) {
5348 		freemsg(mp);
5349 #ifdef QLGE_LOAD_UNLOAD
5350 		cmn_err(CE_NOTE, "%s: quit, packet oversize %d\n",
5351 		    __func__, (int)total_len);
5352 #endif
5353 		return (0);
5354 	}
5355 
5356 	bp = (caddr_t)mp->b_rptr;
5357 	if (bp[0] & 1) {
5358 		if (bcmp(bp, ql_ether_broadcast_addr.ether_addr_octet,
5359 		    ETHERADDRL) == 0) {
5360 			QL_PRINT(DBG_TX, ("Broadcast packet\n"));
5361 			tx_ring->brdcstxmt++;
5362 		} else {
5363 			QL_PRINT(DBG_TX, ("multicast packet\n"));
5364 			tx_ring->multixmt++;
5365 		}
5366 	}
5367 
5368 	tx_ring->obytes += total_len;
5369 	tx_ring->opackets ++;
5370 
5371 	QL_PRINT(DBG_TX, ("total requested sending data length: %d, in %d segs,"
5372 	    " max seg len: %d\n", total_len, frags, max_seg_len));
5373 
5374 	/* claim a free slot in tx ring */
5375 	tx_cb = &tx_ring->wq_desc[tx_ring->prod_idx];
5376 
5377 	/* get the tx descriptor */
5378 	mac_iocb_ptr = tx_cb->queue_entry;
5379 
5380 	bzero((void *)mac_iocb_ptr, 20);
5381 
5382 	ASSERT(tx_cb->mp == NULL);
5383 
5384 	/*
5385 	 * Decide to use DMA map or copy mode.
5386 	 * DMA map mode must be used when the total msg length is more than the
5387 	 * tx buffer length.
5388 	 */
5389 
5390 	if (total_len > tx_buf_len)
5391 		tx_mode = USE_DMA;
5392 	else if	(max_seg_len > QL_MAX_COPY_LENGTH)
5393 		tx_mode = USE_DMA;
5394 	else
5395 		tx_mode = USE_COPY;
5396 
5397 	if (qlge->chksum_cap) {
5398 		mac_hcksum_get(mp, NULL, NULL, NULL, NULL, &pflags);
5399 		QL_PRINT(DBG_TX, ("checksum flag is :0x%x, card capability "
5400 		    "is 0x%x \n", pflags, qlge->chksum_cap));
5401 		if (qlge->lso_enable) {
5402 			uint32_t lso_flags = 0;
5403 			mac_lso_get(mp, &mss, &lso_flags);
5404 			use_lso = (lso_flags == HW_LSO);
5405 		}
5406 		QL_PRINT(DBG_TX, ("mss :%d, use_lso %x \n",
5407 		    mss, use_lso));
5408 	}
5409 
5410 do_pullup:
5411 
5412 	/* concatenate all frags into one large packet if too fragmented */
5413 	if (((tx_mode == USE_DMA)&&(frags > QL_MAX_TX_DMA_HANDLES)) ||
5414 	    force_pullup) {
5415 		mblk_t *mp1;
5416 		if ((mp1 = msgpullup(mp, -1)) != NULL) {
5417 			freemsg(mp);
5418 			mp = mp1;
5419 			frags = 1;
5420 		} else {
5421 			tx_ring->tx_fail_dma_bind++;
5422 			goto bad;
5423 		}
5424 	}
5425 
5426 	tx_cb->tx_bytes = (uint32_t)total_len;
5427 	tx_cb->mp = mp;
5428 	tx_cb->tx_dma_handle_used = 0;
5429 
5430 	if (tx_mode == USE_DMA) {
5431 		msg_len = total_len;
5432 
5433 		mac_iocb_ptr->opcode = OPCODE_OB_MAC_IOCB;
5434 		mac_iocb_ptr->tid = tx_ring->prod_idx;
5435 		mac_iocb_ptr->frame_len = (uint32_t)cpu_to_le32(msg_len);
5436 		mac_iocb_ptr->txq_idx = tx_ring->wq_id;
5437 
5438 		tx_entry = &mac_iocb_ptr->oal_entry[0];
5439 		oal_entry = NULL;
5440 
5441 		for (tp = mp, oal_entries = j = 0; tp != NULL;
5442 		    tp = tp->b_cont) {
5443 			/* if too many tx dma handles needed */
5444 			if (j >= QL_MAX_TX_DMA_HANDLES) {
5445 				tx_ring->tx_no_dma_handle++;
5446 				if (!force_pullup) {
5447 					force_pullup = 1;
5448 					goto do_pullup;
5449 				} else {
5450 					goto bad;
5451 				}
5452 			}
5453 			nbyte = (uint16_t)MBLKL(tp);
5454 			if (nbyte == 0)
5455 				continue;
5456 
5457 			status = ddi_dma_addr_bind_handle(
5458 			    tx_cb->tx_dma_handle[j], NULL,
5459 			    (caddr_t)tp->b_rptr, nbyte,
5460 			    DDI_DMA_WRITE | DDI_DMA_STREAMING, DDI_DMA_DONTWAIT,
5461 			    0, &dma_cookie, &ncookies);
5462 
5463 			QL_PRINT(DBG_TX, ("map sending data segment: %d, "
5464 			    "length: %d, spans in %d cookies\n",
5465 			    j, nbyte, ncookies));
5466 
5467 			if (status != DDI_DMA_MAPPED) {
5468 				goto bad;
5469 			}
5470 			/*
5471 			 * Each fragment can span several cookies. One cookie
5472 			 * will use one tx descriptor to transmit.
5473 			 */
5474 			for (i = ncookies; i > 0; i--, tx_entry++,
5475 			    oal_entries++) {
5476 				/*
5477 				 * The number of TX descriptors that can be
5478 				 *  saved in tx iocb and oal list is limited
5479 				 */
5480 				if (oal_entries > max_oal_entries) {
5481 					tx_ring->tx_no_dma_cookie++;
5482 					if (!force_pullup) {
5483 						force_pullup = 1;
5484 						goto do_pullup;
5485 					} else {
5486 						goto bad;
5487 					}
5488 				}
5489 
5490 				if ((oal_entries == TX_DESC_PER_IOCB) &&
5491 				    !oal_entry) {
5492 					/*
5493 					 * Time to switch to an oal list
5494 					 * The last entry should be copied
5495 					 * to first entry in the oal list
5496 					 */
5497 					oal_entry = tx_cb->oal;
5498 					tx_entry =
5499 					    &mac_iocb_ptr->oal_entry[
5500 					    TX_DESC_PER_IOCB-1];
5501 					bcopy(tx_entry, oal_entry,
5502 					    sizeof (*oal_entry));
5503 
5504 					/*
5505 					 * last entry should be updated to
5506 					 * point to the extended oal list itself
5507 					 */
5508 					tx_entry->buf_addr_low =
5509 					    cpu_to_le32(
5510 					    LS_64BITS(tx_cb->oal_dma_addr));
5511 					tx_entry->buf_addr_high =
5512 					    cpu_to_le32(
5513 					    MS_64BITS(tx_cb->oal_dma_addr));
5514 					/*
5515 					 * Point tx_entry to the oal list
5516 					 * second entry
5517 					 */
5518 					tx_entry = &oal_entry[1];
5519 				}
5520 
5521 				tx_entry->buf_len =
5522 				    (uint32_t)cpu_to_le32(dma_cookie.dmac_size);
5523 				phys_addr = dma_cookie.dmac_laddress;
5524 				tx_entry->buf_addr_low =
5525 				    cpu_to_le32(LS_64BITS(phys_addr));
5526 				tx_entry->buf_addr_high =
5527 				    cpu_to_le32(MS_64BITS(phys_addr));
5528 
5529 				last_oal_entry = tx_entry;
5530 
5531 				if (i > 1)
5532 					ddi_dma_nextcookie(
5533 					    tx_cb->tx_dma_handle[j],
5534 					    &dma_cookie);
5535 			}
5536 			j++;
5537 		}
5538 		/*
5539 		 * if OAL is used, the last oal entry in tx iocb indicates
5540 		 * number of additional address/len pairs in OAL
5541 		 */
5542 		if (oal_entries > TX_DESC_PER_IOCB) {
5543 			tx_entry = &mac_iocb_ptr->oal_entry[TX_DESC_PER_IOCB-1];
5544 			tx_entry->buf_len = (uint32_t)
5545 			    (cpu_to_le32((sizeof (struct oal_entry) *
5546 			    (oal_entries -TX_DESC_PER_IOCB+1))|OAL_CONT_ENTRY));
5547 		}
5548 		last_oal_entry->buf_len = cpu_to_le32(
5549 		    le32_to_cpu(last_oal_entry->buf_len)|OAL_LAST_ENTRY);
5550 
5551 		tx_cb->tx_dma_handle_used = j;
5552 		QL_PRINT(DBG_TX, ("total tx_dma_handle_used %d cookies %d \n",
5553 		    j, oal_entries));
5554 
5555 		bp = (caddr_t)mp->b_rptr;
5556 	}
5557 	if (tx_mode == USE_COPY) {
5558 		bp = tx_cb->copy_buffer;
5559 		off = 0;
5560 		nbyte = 0;
5561 		frags = 0;
5562 		/*
5563 		 * Copy up to tx_buf_len of the transmit data
5564 		 * from mp to tx buffer
5565 		 */
5566 		for (tp = mp; tp != NULL; tp = tp->b_cont) {
5567 			nbyte = MBLKL(tp);
5568 			if ((off + nbyte) <= tx_buf_len) {
5569 				bcopy(tp->b_rptr, &bp[off], nbyte);
5570 				off += nbyte;
5571 				frags ++;
5572 			}
5573 		}
5574 
5575 		msg_len = off;
5576 
5577 		mac_iocb_ptr->opcode = OPCODE_OB_MAC_IOCB;
5578 		mac_iocb_ptr->tid = tx_ring->prod_idx;
5579 		mac_iocb_ptr->frame_len = (uint32_t)cpu_to_le32(msg_len);
5580 		mac_iocb_ptr->txq_idx = tx_ring->wq_id;
5581 
5582 		QL_PRINT(DBG_TX, ("Copy Mode:actual sent data length is: %d, "
5583 		    "from %d segaments\n", msg_len, frags));
5584 
5585 		phys_addr = tx_cb->copy_buffer_dma_addr;
5586 		phy_addr_low = cpu_to_le32(LS_64BITS(phys_addr));
5587 		phy_addr_high = cpu_to_le32(MS_64BITS(phys_addr));
5588 
5589 		QL_DUMP(DBG_TX, "\t requested sending data:\n",
5590 		    (uint8_t *)tx_cb->copy_buffer, 8, total_len);
5591 
5592 		mac_iocb_ptr->oal_entry[0].buf_len = (uint32_t)
5593 		    cpu_to_le32(msg_len | OAL_LAST_ENTRY);
5594 		mac_iocb_ptr->oal_entry[0].buf_addr_low  = phy_addr_low;
5595 		mac_iocb_ptr->oal_entry[0].buf_addr_high = phy_addr_high;
5596 
5597 		freemsg(mp); /* no need, we have copied */
5598 		tx_cb->mp = NULL;
5599 	} /* End of Copy Mode */
5600 
5601 	/* Do TSO/LSO on TCP packet? */
5602 	if (use_lso && mss) {
5603 		ql_hw_lso_setup(qlge, mss, bp, mac_iocb_ptr);
5604 	} else if (pflags & qlge->chksum_cap) {
5605 		/* Do checksum offloading */
5606 		ql_hw_csum_setup(qlge, pflags, bp, mac_iocb_ptr);
5607 	}
5608 
5609 	/* let device know the latest outbound IOCB */
5610 	(void) ddi_dma_sync(tx_ring->wq_dma.dma_handle,
5611 	    (off_t)((uintptr_t)mac_iocb_ptr - (uintptr_t)tx_ring->wq_dma.vaddr),
5612 	    (size_t)sizeof (*mac_iocb_ptr), DDI_DMA_SYNC_FORDEV);
5613 
5614 	if (tx_mode == USE_DMA) {
5615 		/* let device know the latest outbound OAL if necessary */
5616 		if (oal_entries > TX_DESC_PER_IOCB) {
5617 			(void) ddi_dma_sync(tx_cb->oal_dma.dma_handle,
5618 			    (off_t)0,
5619 			    (sizeof (struct oal_entry) *
5620 			    (oal_entries -TX_DESC_PER_IOCB+1)),
5621 			    DDI_DMA_SYNC_FORDEV);
5622 		}
5623 	} else { /* for USE_COPY mode, tx buffer has changed */
5624 		/* let device know the latest change */
5625 		(void) ddi_dma_sync(tx_cb->oal_dma.dma_handle,
5626 		/* copy buf offset */
5627 		    (off_t)(sizeof (oal_entry) * MAX_SG_ELEMENTS),
5628 		    msg_len, DDI_DMA_SYNC_FORDEV);
5629 	}
5630 
5631 	/* save how the packet was sent */
5632 	tx_cb->tx_type = tx_mode;
5633 
5634 	QL_DUMP_REQ_PKT(qlge, mac_iocb_ptr, tx_cb->oal, oal_entries);
5635 	/* reduce the number of available tx slot */
5636 	atomic_dec_32(&tx_ring->tx_free_count);
5637 
5638 	tx_ring->prod_idx++;
5639 	if (tx_ring->prod_idx >= tx_ring->wq_len)
5640 		tx_ring->prod_idx = 0;
5641 
5642 	now = ddi_get_lbolt();
5643 	qlge->last_tx_time = now;
5644 
5645 	return (DDI_SUCCESS);
5646 
5647 bad:
5648 	/*
5649 	 * if for any reason driver can not send, delete
5650 	 * the message pointer, mp
5651 	 */
5652 	now = ddi_get_lbolt();
5653 	freemsg(mp);
5654 	mp = NULL;
5655 	tx_cb->mp = NULL;
5656 	for (i = 0; i < j; i++)
5657 		(void) ddi_dma_unbind_handle(tx_cb->tx_dma_handle[i]);
5658 
5659 	QL_PRINT(DBG_TX, ("%s(%d) failed at 0x%x",
5660 	    __func__, qlge->instance, (int)now));
5661 
5662 	return (DDI_SUCCESS);
5663 }
5664 
5665 
5666 /*
5667  * Initializes hardware and driver software flags before the driver
5668  * is finally ready to work.
5669  */
5670 int
5671 ql_do_start(qlge_t *qlge)
5672 {
5673 	int i;
5674 	struct rx_ring *rx_ring;
5675 	uint16_t lbq_buf_size;
5676 	int rings_done;
5677 
5678 	ASSERT(qlge != NULL);
5679 
5680 	mutex_enter(&qlge->hw_mutex);
5681 
5682 	/* Reset adapter */
5683 	(void) ql_asic_reset(qlge);
5684 
5685 	lbq_buf_size = (uint16_t)
5686 	    ((qlge->mtu == ETHERMTU)? LRG_BUF_NORMAL_SIZE : LRG_BUF_JUMBO_SIZE);
5687 	if (qlge->rx_ring[0].lbq_buf_size != lbq_buf_size) {
5688 #ifdef QLGE_LOAD_UNLOAD
5689 		cmn_err(CE_NOTE, "realloc buffers old: %d new: %d\n",
5690 		    qlge->rx_ring[0].lbq_buf_size, lbq_buf_size);
5691 #endif
5692 		/*
5693 		 * Check if any ring has buffers still with upper layers
5694 		 * If buffers are pending with upper layers, we use the
5695 		 * existing buffers and don't reallocate new ones
5696 		 * Unfortunately there is no way to evict buffers from
5697 		 * upper layers. Using buffers with the current size may
5698 		 * cause slightly sub-optimal performance, but that seems
5699 		 * to be the easiest way to handle this situation.
5700 		 */
5701 		rings_done = 0;
5702 		for (i = 0; i < qlge->rx_ring_count; i++) {
5703 			rx_ring = &qlge->rx_ring[i];
5704 			if (rx_ring->rx_indicate == 0)
5705 				rings_done++;
5706 			else
5707 				break;
5708 		}
5709 		/*
5710 		 * No buffers pending with upper layers;
5711 		 * reallocte them for new MTU size
5712 		 */
5713 		if (rings_done >= qlge->rx_ring_count) {
5714 			/* free large buffer pool */
5715 			for (i = 0; i < qlge->rx_ring_count; i++) {
5716 				rx_ring = &qlge->rx_ring[i];
5717 				if (rx_ring->type != TX_Q) {
5718 					ql_free_sbq_buffers(rx_ring);
5719 					ql_free_lbq_buffers(rx_ring);
5720 				}
5721 			}
5722 			/* reallocate large buffer pool */
5723 			for (i = 0; i < qlge->rx_ring_count; i++) {
5724 				rx_ring = &qlge->rx_ring[i];
5725 				if (rx_ring->type != TX_Q) {
5726 					(void) ql_alloc_sbufs(qlge, rx_ring);
5727 					(void) ql_alloc_lbufs(qlge, rx_ring);
5728 				}
5729 			}
5730 		}
5731 	}
5732 
5733 	if (ql_bringup_adapter(qlge) != DDI_SUCCESS) {
5734 		cmn_err(CE_WARN, "qlge bringup adapter failed");
5735 		mutex_exit(&qlge->hw_mutex);
5736 		if (qlge->fm_enable) {
5737 			atomic_or_32(&qlge->flags, ADAPTER_ERROR);
5738 			ddi_fm_service_impact(qlge->dip, DDI_SERVICE_LOST);
5739 		}
5740 		return (DDI_FAILURE);
5741 	}
5742 
5743 	mutex_exit(&qlge->hw_mutex);
5744 	/* if adapter is up successfully but was bad before */
5745 	if (qlge->flags & ADAPTER_ERROR) {
5746 		atomic_and_32(&qlge->flags, ~ADAPTER_ERROR);
5747 		if (qlge->fm_enable) {
5748 			ddi_fm_service_impact(qlge->dip, DDI_SERVICE_RESTORED);
5749 		}
5750 	}
5751 
5752 	/* Get current link state */
5753 	qlge->port_link_state = ql_get_link_state(qlge);
5754 
5755 	if (qlge->port_link_state == LS_UP) {
5756 		QL_PRINT(DBG_GLD, ("%s(%d) Link UP !!\n",
5757 		    __func__, qlge->instance));
5758 		/* If driver detects a carrier on */
5759 		CARRIER_ON(qlge);
5760 	} else {
5761 		QL_PRINT(DBG_GLD, ("%s(%d) Link down\n",
5762 		    __func__, qlge->instance));
5763 		/* If driver detects a lack of carrier */
5764 		CARRIER_OFF(qlge);
5765 	}
5766 	qlge->mac_flags = QL_MAC_STARTED;
5767 	return (DDI_SUCCESS);
5768 }
5769 
5770 /*
5771  * Stop currently running driver
5772  * Driver needs to stop routing new packets to driver and wait until
5773  * all pending tx/rx buffers to be free-ed.
5774  */
5775 int
5776 ql_do_stop(qlge_t *qlge)
5777 {
5778 	int rc = DDI_FAILURE;
5779 	uint32_t i, j, k;
5780 	struct bq_desc *sbq_desc, *lbq_desc;
5781 	struct rx_ring *rx_ring;
5782 
5783 	ASSERT(qlge != NULL);
5784 
5785 	CARRIER_OFF(qlge);
5786 
5787 	rc = ql_bringdown_adapter(qlge);
5788 	if (rc != DDI_SUCCESS) {
5789 		cmn_err(CE_WARN, "qlge bringdown adapter failed.");
5790 	} else
5791 		rc = DDI_SUCCESS;
5792 
5793 	for (k = 0; k < qlge->rx_ring_count; k++) {
5794 		rx_ring = &qlge->rx_ring[k];
5795 		if (rx_ring->type != TX_Q) {
5796 			j = rx_ring->lbq_use_head;
5797 #ifdef QLGE_LOAD_UNLOAD
5798 			cmn_err(CE_NOTE, "ring %d: move %d lbufs in use list"
5799 			    " to free list %d\n total %d\n",
5800 			    k, rx_ring->lbuf_in_use_count,
5801 			    rx_ring->lbuf_free_count,
5802 			    rx_ring->lbuf_in_use_count +
5803 			    rx_ring->lbuf_free_count);
5804 #endif
5805 			for (i = 0; i < rx_ring->lbuf_in_use_count; i++) {
5806 				lbq_desc = rx_ring->lbuf_in_use[j];
5807 				j++;
5808 				if (j >= rx_ring->lbq_len) {
5809 					j = 0;
5810 				}
5811 				if (lbq_desc->mp) {
5812 					atomic_inc_32(&rx_ring->rx_indicate);
5813 					freemsg(lbq_desc->mp);
5814 				}
5815 			}
5816 			rx_ring->lbq_use_head = j;
5817 			rx_ring->lbq_use_tail = j;
5818 			rx_ring->lbuf_in_use_count = 0;
5819 			j = rx_ring->sbq_use_head;
5820 #ifdef QLGE_LOAD_UNLOAD
5821 			cmn_err(CE_NOTE, "ring %d: move %d sbufs in use list,"
5822 			    " to free list %d\n total %d \n",
5823 			    k, rx_ring->sbuf_in_use_count,
5824 			    rx_ring->sbuf_free_count,
5825 			    rx_ring->sbuf_in_use_count +
5826 			    rx_ring->sbuf_free_count);
5827 #endif
5828 			for (i = 0; i < rx_ring->sbuf_in_use_count; i++) {
5829 				sbq_desc = rx_ring->sbuf_in_use[j];
5830 				j++;
5831 				if (j >= rx_ring->sbq_len) {
5832 					j = 0;
5833 				}
5834 				if (sbq_desc->mp) {
5835 					atomic_inc_32(&rx_ring->rx_indicate);
5836 					freemsg(sbq_desc->mp);
5837 				}
5838 			}
5839 			rx_ring->sbq_use_head = j;
5840 			rx_ring->sbq_use_tail = j;
5841 			rx_ring->sbuf_in_use_count = 0;
5842 		}
5843 	}
5844 
5845 	qlge->mac_flags = QL_MAC_STOPPED;
5846 
5847 	return (rc);
5848 }
5849 
5850 /*
5851  * Support
5852  */
5853 
5854 void
5855 ql_disable_isr(qlge_t *qlge)
5856 {
5857 	/*
5858 	 * disable the hardware interrupt
5859 	 */
5860 	ISP_DISABLE_GLOBAL_INTRS(qlge);
5861 
5862 	qlge->flags &= ~INTERRUPTS_ENABLED;
5863 }
5864 
5865 
5866 
5867 /*
5868  * busy wait for 'usecs' microseconds.
5869  */
5870 void
5871 qlge_delay(clock_t usecs)
5872 {
5873 	drv_usecwait(usecs);
5874 }
5875 
5876 /*
5877  * retrieve firmware details.
5878  */
5879 
5880 pci_cfg_t *
5881 ql_get_pci_config(qlge_t *qlge)
5882 {
5883 	return (&(qlge->pci_cfg));
5884 }
5885 
5886 /*
5887  * Get current Link status
5888  */
5889 static uint32_t
5890 ql_get_link_state(qlge_t *qlge)
5891 {
5892 	uint32_t bitToCheck = 0;
5893 	uint32_t temp, linkState;
5894 
5895 	if (qlge->func_number == qlge->fn0_net) {
5896 		bitToCheck = STS_PL0;
5897 	} else {
5898 		bitToCheck = STS_PL1;
5899 	}
5900 	temp = ql_read_reg(qlge, REG_STATUS);
5901 	QL_PRINT(DBG_GLD, ("%s(%d) chip status reg: 0x%x\n",
5902 	    __func__, qlge->instance, temp));
5903 
5904 	if (temp & bitToCheck) {
5905 		linkState = LS_UP;
5906 	} else {
5907 		linkState = LS_DOWN;
5908 	}
5909 	if (CFG_IST(qlge, CFG_CHIP_8100)) {
5910 		/* for Schultz, link Speed is fixed to 10G, full duplex */
5911 		qlge->speed  = SPEED_10G;
5912 		qlge->duplex = 1;
5913 	}
5914 	return (linkState);
5915 }
5916 /*
5917  * Get current link status and report to OS
5918  */
5919 static void
5920 ql_get_and_report_link_state(qlge_t *qlge)
5921 {
5922 	uint32_t cur_link_state;
5923 
5924 	/* Get current link state */
5925 	cur_link_state = ql_get_link_state(qlge);
5926 	/* if link state has changed */
5927 	if (cur_link_state != qlge->port_link_state) {
5928 
5929 		qlge->port_link_state = cur_link_state;
5930 
5931 		if (qlge->port_link_state == LS_UP) {
5932 			QL_PRINT(DBG_GLD, ("%s(%d) Link UP !!\n",
5933 			    __func__, qlge->instance));
5934 			/* If driver detects a carrier on */
5935 			CARRIER_ON(qlge);
5936 		} else {
5937 			QL_PRINT(DBG_GLD, ("%s(%d) Link down\n",
5938 			    __func__, qlge->instance));
5939 			/* If driver detects a lack of carrier */
5940 			CARRIER_OFF(qlge);
5941 		}
5942 	}
5943 }
5944 
5945 /*
5946  * timer callback function executed after timer expires
5947  */
5948 static void
5949 ql_timer(void* arg)
5950 {
5951 	ql_get_and_report_link_state((qlge_t *)arg);
5952 }
5953 
5954 /*
5955  * stop the running timer if activated
5956  */
5957 static void
5958 ql_stop_timer(qlge_t *qlge)
5959 {
5960 	timeout_id_t timer_id;
5961 	/* Disable driver timer */
5962 	if (qlge->ql_timer_timeout_id != NULL) {
5963 		timer_id = qlge->ql_timer_timeout_id;
5964 		qlge->ql_timer_timeout_id = NULL;
5965 		(void) untimeout(timer_id);
5966 	}
5967 }
5968 
5969 /*
5970  * stop then restart timer
5971  */
5972 void
5973 ql_restart_timer(qlge_t *qlge)
5974 {
5975 	ql_stop_timer(qlge);
5976 	qlge->ql_timer_ticks = TICKS_PER_SEC / 4;
5977 	qlge->ql_timer_timeout_id = timeout(ql_timer,
5978 	    (void *)qlge, qlge->ql_timer_ticks);
5979 }
5980 
5981 /* ************************************************************************* */
5982 /*
5983  *		Hardware K-Stats Data Structures and Subroutines
5984  */
5985 /* ************************************************************************* */
5986 static const ql_ksindex_t ql_kstats_hw[] = {
5987 	/* PCI related hardware information */
5988 	{ 0, "Vendor Id"			},
5989 	{ 1, "Device Id"			},
5990 	{ 2, "Command"				},
5991 	{ 3, "Status"				},
5992 	{ 4, "Revision Id"			},
5993 	{ 5, "Cache Line Size"			},
5994 	{ 6, "Latency Timer"			},
5995 	{ 7, "Header Type"			},
5996 	{ 9, "I/O base addr"			},
5997 	{ 10, "Control Reg Base addr low"	},
5998 	{ 11, "Control Reg Base addr high"	},
5999 	{ 12, "Doorbell Reg Base addr low"	},
6000 	{ 13, "Doorbell Reg Base addr high"	},
6001 	{ 14, "Subsystem Vendor Id"		},
6002 	{ 15, "Subsystem Device ID"		},
6003 	{ 16, "PCIe Device Control"		},
6004 	{ 17, "PCIe Link Status"		},
6005 
6006 	{ -1,	NULL				},
6007 };
6008 
6009 /*
6010  * kstat update function for PCI registers
6011  */
6012 static int
6013 ql_kstats_get_pci_regs(kstat_t *ksp, int flag)
6014 {
6015 	qlge_t *qlge;
6016 	kstat_named_t *knp;
6017 
6018 	if (flag != KSTAT_READ)
6019 		return (EACCES);
6020 
6021 	qlge = ksp->ks_private;
6022 	knp = ksp->ks_data;
6023 	(knp++)->value.ui32 = qlge->pci_cfg.vendor_id;
6024 	(knp++)->value.ui32 = qlge->pci_cfg.device_id;
6025 	(knp++)->value.ui32 = qlge->pci_cfg.command;
6026 	(knp++)->value.ui32 = qlge->pci_cfg.status;
6027 	(knp++)->value.ui32 = qlge->pci_cfg.revision;
6028 	(knp++)->value.ui32 = qlge->pci_cfg.cache_line_size;
6029 	(knp++)->value.ui32 = qlge->pci_cfg.latency_timer;
6030 	(knp++)->value.ui32 = qlge->pci_cfg.header_type;
6031 	(knp++)->value.ui32 = qlge->pci_cfg.io_base_address;
6032 	(knp++)->value.ui32 =
6033 	    qlge->pci_cfg.pci_cntl_reg_set_mem_base_address_lower;
6034 	(knp++)->value.ui32 =
6035 	    qlge->pci_cfg.pci_cntl_reg_set_mem_base_address_upper;
6036 	(knp++)->value.ui32 =
6037 	    qlge->pci_cfg.pci_doorbell_mem_base_address_lower;
6038 	(knp++)->value.ui32 =
6039 	    qlge->pci_cfg.pci_doorbell_mem_base_address_upper;
6040 	(knp++)->value.ui32 = qlge->pci_cfg.sub_vendor_id;
6041 	(knp++)->value.ui32 = qlge->pci_cfg.sub_device_id;
6042 	(knp++)->value.ui32 = qlge->pci_cfg.pcie_device_control;
6043 	(knp++)->value.ui32 = qlge->pci_cfg.link_status;
6044 
6045 	return (0);
6046 }
6047 
6048 static const ql_ksindex_t ql_kstats_mii[] = {
6049 	/* MAC/MII related hardware information */
6050 	{ 0, "mtu"},
6051 
6052 	{ -1, NULL},
6053 };
6054 
6055 
6056 /*
6057  * kstat update function for MII related information.
6058  */
6059 static int
6060 ql_kstats_mii_update(kstat_t *ksp, int flag)
6061 {
6062 	qlge_t *qlge;
6063 	kstat_named_t *knp;
6064 
6065 	if (flag != KSTAT_READ)
6066 		return (EACCES);
6067 
6068 	qlge = ksp->ks_private;
6069 	knp = ksp->ks_data;
6070 
6071 	(knp++)->value.ui32 = qlge->mtu;
6072 
6073 	return (0);
6074 }
6075 
6076 static const ql_ksindex_t ql_kstats_reg[] = {
6077 	/* Register information */
6078 	{ 0, "System (0x08)"			},
6079 	{ 1, "Reset/Fail Over(0x0Ch"		},
6080 	{ 2, "Function Specific Control(0x10)"	},
6081 	{ 3, "Status (0x30)"			},
6082 	{ 4, "Intr Enable (0x34)"		},
6083 	{ 5, "Intr Status1 (0x3C)"		},
6084 	{ 6, "Error Status (0x54)"		},
6085 	{ 7, "XGMAC Flow Control(0x11C)"	},
6086 	{ 8, "XGMAC Tx Pause Frames(0x230)"	},
6087 	{ 9, "XGMAC Rx Pause Frames(0x388)"	},
6088 	{ 10, "XGMAC Rx FIFO Drop Count(0x5B8)"	},
6089 	{ 11, "interrupts actually allocated"	},
6090 	{ 12, "interrupts on rx ring 0"		},
6091 	{ 13, "interrupts on rx ring 1"		},
6092 	{ 14, "interrupts on rx ring 2"		},
6093 	{ 15, "interrupts on rx ring 3"		},
6094 	{ 16, "interrupts on rx ring 4"		},
6095 	{ 17, "interrupts on rx ring 5"		},
6096 	{ 18, "interrupts on rx ring 6"		},
6097 	{ 19, "interrupts on rx ring 7"		},
6098 	{ 20, "polls on rx ring 0"		},
6099 	{ 21, "polls on rx ring 1"		},
6100 	{ 22, "polls on rx ring 2"		},
6101 	{ 23, "polls on rx ring 3"		},
6102 	{ 24, "polls on rx ring 4"		},
6103 	{ 25, "polls on rx ring 5"		},
6104 	{ 26, "polls on rx ring 6"		},
6105 	{ 27, "polls on rx ring 7"		},
6106 	{ 28, "tx no resource on ring 0"	},
6107 	{ 29, "tx dma bind fail on ring 0"	},
6108 	{ 30, "tx dma no handle on ring 0"	},
6109 	{ 31, "tx dma no cookie on ring 0"	},
6110 	{ 32, "MPI firmware major version"	},
6111 	{ 33, "MPI firmware minor version"	},
6112 	{ 34, "MPI firmware sub version"	},
6113 	{ 35, "rx no resource"			},
6114 
6115 	{ -1, NULL},
6116 };
6117 
6118 
6119 /*
6120  * kstat update function for device register set
6121  */
6122 static int
6123 ql_kstats_get_reg_and_dev_stats(kstat_t *ksp, int flag)
6124 {
6125 	qlge_t *qlge;
6126 	kstat_named_t *knp;
6127 	uint32_t val32;
6128 	int i = 0;
6129 	struct tx_ring *tx_ring;
6130 	struct rx_ring *rx_ring;
6131 
6132 	if (flag != KSTAT_READ)
6133 		return (EACCES);
6134 
6135 	qlge = ksp->ks_private;
6136 	knp = ksp->ks_data;
6137 
6138 	(knp++)->value.ui32 = ql_read_reg(qlge, REG_SYSTEM);
6139 	(knp++)->value.ui32 = ql_read_reg(qlge, REG_RESET_FAILOVER);
6140 	(knp++)->value.ui32 = ql_read_reg(qlge, REG_FUNCTION_SPECIFIC_CONTROL);
6141 	(knp++)->value.ui32 = ql_read_reg(qlge, REG_STATUS);
6142 	(knp++)->value.ui32 = ql_read_reg(qlge, REG_INTERRUPT_ENABLE);
6143 	(knp++)->value.ui32 = ql_read_reg(qlge, REG_INTERRUPT_STATUS_1);
6144 	(knp++)->value.ui32 = ql_read_reg(qlge, REG_ERROR_STATUS);
6145 
6146 	if (ql_sem_spinlock(qlge, qlge->xgmac_sem_mask)) {
6147 		return (0);
6148 	}
6149 	(void) ql_read_xgmac_reg(qlge, REG_XGMAC_FLOW_CONTROL, &val32);
6150 	(knp++)->value.ui32 = val32;
6151 
6152 	(void) ql_read_xgmac_reg(qlge, REG_XGMAC_MAC_TX_PAUSE_PKTS, &val32);
6153 	(knp++)->value.ui32 = val32;
6154 
6155 	(void) ql_read_xgmac_reg(qlge, REG_XGMAC_MAC_RX_PAUSE_PKTS, &val32);
6156 	(knp++)->value.ui32 = val32;
6157 
6158 	(void) ql_read_xgmac_reg(qlge, REG_XGMAC_MAC_RX_FIFO_DROPS, &val32);
6159 	(knp++)->value.ui32 = val32;
6160 
6161 	ql_sem_unlock(qlge, qlge->xgmac_sem_mask);
6162 
6163 	(knp++)->value.ui32 = qlge->intr_cnt;
6164 
6165 	for (i = 0; i < 8; i++) {
6166 		(knp++)->value.ui32 = qlge->rx_interrupts[i];
6167 	}
6168 
6169 	for (i = 0; i < 8; i++) {
6170 		(knp++)->value.ui32 = qlge->rx_polls[i];
6171 	}
6172 
6173 	tx_ring = &qlge->tx_ring[0];
6174 	(knp++)->value.ui32 = tx_ring->defer;
6175 	(knp++)->value.ui32 = tx_ring->tx_fail_dma_bind;
6176 	(knp++)->value.ui32 = tx_ring->tx_no_dma_handle;
6177 	(knp++)->value.ui32 = tx_ring->tx_no_dma_cookie;
6178 
6179 	(knp++)->value.ui32 = qlge->fw_version_info.major_version;
6180 	(knp++)->value.ui32 = qlge->fw_version_info.minor_version;
6181 	(knp++)->value.ui32 = qlge->fw_version_info.sub_minor_version;
6182 
6183 	for (i = 0; i < qlge->rx_ring_count; i++) {
6184 		rx_ring = &qlge->rx_ring[i];
6185 		val32 += rx_ring->rx_packets_dropped_no_buffer;
6186 	}
6187 	(knp++)->value.ui32 = val32;
6188 
6189 	return (0);
6190 }
6191 
6192 
6193 static kstat_t *
6194 ql_setup_named_kstat(qlge_t *qlge, int instance, char *name,
6195     const ql_ksindex_t *ksip, size_t size, int (*update)(kstat_t *, int))
6196 {
6197 	kstat_t *ksp;
6198 	kstat_named_t *knp;
6199 	char *np;
6200 	int type;
6201 
6202 	size /= sizeof (ql_ksindex_t);
6203 	ksp = kstat_create(ADAPTER_NAME, instance, name, "net",
6204 	    KSTAT_TYPE_NAMED, ((uint32_t)size) - 1, KSTAT_FLAG_PERSISTENT);
6205 	if (ksp == NULL)
6206 		return (NULL);
6207 
6208 	ksp->ks_private = qlge;
6209 	ksp->ks_update = update;
6210 	for (knp = ksp->ks_data; (np = ksip->name) != NULL; ++knp, ++ksip) {
6211 		switch (*np) {
6212 		default:
6213 			type = KSTAT_DATA_UINT32;
6214 			break;
6215 		case '&':
6216 			np += 1;
6217 			type = KSTAT_DATA_CHAR;
6218 			break;
6219 		}
6220 		kstat_named_init(knp, np, (uint8_t)type);
6221 	}
6222 	kstat_install(ksp);
6223 
6224 	return (ksp);
6225 }
6226 
6227 /*
6228  * Setup various kstat
6229  */
6230 int
6231 ql_init_kstats(qlge_t *qlge)
6232 {
6233 	/* Hardware KStats */
6234 	qlge->ql_kstats[QL_KSTAT_CHIP] = ql_setup_named_kstat(qlge,
6235 	    qlge->instance, "chip", ql_kstats_hw,
6236 	    sizeof (ql_kstats_hw), ql_kstats_get_pci_regs);
6237 	if (qlge->ql_kstats[QL_KSTAT_CHIP] == NULL) {
6238 		return (DDI_FAILURE);
6239 	}
6240 
6241 	/* MII KStats */
6242 	qlge->ql_kstats[QL_KSTAT_LINK] = ql_setup_named_kstat(qlge,
6243 	    qlge->instance, "mii", ql_kstats_mii,
6244 	    sizeof (ql_kstats_mii), ql_kstats_mii_update);
6245 	if (qlge->ql_kstats[QL_KSTAT_LINK] == NULL) {
6246 		return (DDI_FAILURE);
6247 	}
6248 
6249 	/* REG KStats */
6250 	qlge->ql_kstats[QL_KSTAT_REG] = ql_setup_named_kstat(qlge,
6251 	    qlge->instance, "reg", ql_kstats_reg,
6252 	    sizeof (ql_kstats_reg), ql_kstats_get_reg_and_dev_stats);
6253 	if (qlge->ql_kstats[QL_KSTAT_REG] == NULL) {
6254 		return (DDI_FAILURE);
6255 	}
6256 	return (DDI_SUCCESS);
6257 }
6258 
6259 /*
6260  * delete all kstat
6261  */
6262 void
6263 ql_fini_kstats(qlge_t *qlge)
6264 {
6265 	int i;
6266 
6267 	for (i = 0; i < QL_KSTAT_COUNT; i++) {
6268 		if (qlge->ql_kstats[i] != NULL)
6269 			kstat_delete(qlge->ql_kstats[i]);
6270 	}
6271 }
6272 
6273 /* ************************************************************************* */
6274 /*
6275  *                                 kstat end
6276  */
6277 /* ************************************************************************* */
6278 
6279 /*
6280  * Setup the parameters for receive and transmit rings including buffer sizes
6281  * and completion queue sizes
6282  */
6283 static int
6284 ql_setup_rings(qlge_t *qlge)
6285 {
6286 	uint8_t i;
6287 	struct rx_ring *rx_ring;
6288 	struct tx_ring *tx_ring;
6289 	uint16_t lbq_buf_size;
6290 
6291 	lbq_buf_size = (uint16_t)
6292 	    ((qlge->mtu == ETHERMTU)? LRG_BUF_NORMAL_SIZE : LRG_BUF_JUMBO_SIZE);
6293 
6294 	/*
6295 	 * rx_ring[0] is always the default queue.
6296 	 */
6297 	/*
6298 	 * qlge->rx_ring_count:
6299 	 * Total number of rx_rings. This includes a number
6300 	 * of outbound completion handler rx_rings, and a
6301 	 * number of inbound completion handler rx_rings.
6302 	 * rss is only enabled if we have more than 1 rx completion
6303 	 * queue. If we have a single rx completion queue
6304 	 * then all rx completions go to this queue and
6305 	 * the last completion queue
6306 	 */
6307 
6308 	qlge->tx_ring_first_cq_id = qlge->rss_ring_count;
6309 
6310 	for (i = 0; i < qlge->tx_ring_count; i++) {
6311 		tx_ring = &qlge->tx_ring[i];
6312 		bzero((void *)tx_ring, sizeof (*tx_ring));
6313 		tx_ring->qlge = qlge;
6314 		tx_ring->wq_id = i;
6315 		tx_ring->wq_len = qlge->tx_ring_size;
6316 		tx_ring->wq_size = (uint32_t)(
6317 		    tx_ring->wq_len * sizeof (struct ob_mac_iocb_req));
6318 
6319 		/*
6320 		 * The completion queue ID for the tx rings start
6321 		 * immediately after the last rss completion queue.
6322 		 */
6323 		tx_ring->cq_id = (uint16_t)(i + qlge->tx_ring_first_cq_id);
6324 	}
6325 
6326 	for (i = 0; i < qlge->rx_ring_count; i++) {
6327 		rx_ring = &qlge->rx_ring[i];
6328 		bzero((void *)rx_ring, sizeof (*rx_ring));
6329 		rx_ring->qlge = qlge;
6330 		rx_ring->cq_id = i;
6331 		if (i != 0)
6332 			rx_ring->cpu = (i) % qlge->rx_ring_count;
6333 		else
6334 			rx_ring->cpu = 0;
6335 
6336 		if (i < qlge->rss_ring_count) {
6337 			/*
6338 			 * Inbound completions (RSS) queues
6339 			 * Default queue is queue 0 which handles
6340 			 * unicast plus bcast/mcast and async events.
6341 			 * Other inbound queues handle unicast frames only.
6342 			 */
6343 			rx_ring->cq_len = qlge->rx_ring_size;
6344 			rx_ring->cq_size = (uint32_t)
6345 			    (rx_ring->cq_len * sizeof (struct net_rsp_iocb));
6346 			rx_ring->lbq_len = NUM_LARGE_BUFFERS;
6347 			rx_ring->lbq_size = (uint32_t)
6348 			    (rx_ring->lbq_len * sizeof (uint64_t));
6349 			rx_ring->lbq_buf_size = lbq_buf_size;
6350 			rx_ring->sbq_len = NUM_SMALL_BUFFERS;
6351 			rx_ring->sbq_size = (uint32_t)
6352 			    (rx_ring->sbq_len * sizeof (uint64_t));
6353 			rx_ring->sbq_buf_size = SMALL_BUFFER_SIZE * 2;
6354 			rx_ring->type = RX_Q;
6355 
6356 			QL_PRINT(DBG_GLD,
6357 			    ("%s(%d)Allocating rss completion queue %d "
6358 			    "on cpu %d\n", __func__, qlge->instance,
6359 			    rx_ring->cq_id, rx_ring->cpu));
6360 		} else {
6361 			/*
6362 			 * Outbound queue handles outbound completions only
6363 			 */
6364 			/* outbound cq is same size as tx_ring it services. */
6365 			QL_PRINT(DBG_INIT, ("rx_ring 0x%p i %d\n", rx_ring, i));
6366 			rx_ring->cq_len = qlge->tx_ring_size;
6367 			rx_ring->cq_size = (uint32_t)
6368 			    (rx_ring->cq_len * sizeof (struct net_rsp_iocb));
6369 			rx_ring->lbq_len = 0;
6370 			rx_ring->lbq_size = 0;
6371 			rx_ring->lbq_buf_size = 0;
6372 			rx_ring->sbq_len = 0;
6373 			rx_ring->sbq_size = 0;
6374 			rx_ring->sbq_buf_size = 0;
6375 			rx_ring->type = TX_Q;
6376 
6377 			QL_PRINT(DBG_GLD,
6378 			    ("%s(%d)Allocating TX completion queue %d on"
6379 			    " cpu %d\n", __func__, qlge->instance,
6380 			    rx_ring->cq_id, rx_ring->cpu));
6381 		}
6382 	}
6383 
6384 	return (DDI_SUCCESS);
6385 }
6386 
6387 static int
6388 ql_start_rx_ring(qlge_t *qlge, struct rx_ring *rx_ring)
6389 {
6390 	struct cqicb_t *cqicb = (struct cqicb_t *)rx_ring->cqicb_dma.vaddr;
6391 	void *shadow_reg = (uint8_t *)qlge->host_copy_shadow_dma_attr.vaddr +
6392 	    (rx_ring->cq_id * sizeof (uint64_t) * RX_TX_RING_SHADOW_SPACE)
6393 	/* first shadow area is used by wqicb's host copy of consumer index */
6394 	    + sizeof (uint64_t);
6395 	uint64_t shadow_reg_dma = qlge->host_copy_shadow_dma_attr.dma_addr +
6396 	    (rx_ring->cq_id * sizeof (uint64_t) * RX_TX_RING_SHADOW_SPACE)
6397 	    + sizeof (uint64_t);
6398 	/* lrg/sml bufq pointers */
6399 	uint8_t *buf_q_base_reg =
6400 	    (uint8_t *)qlge->buf_q_ptr_base_addr_dma_attr.vaddr +
6401 	    (rx_ring->cq_id * sizeof (uint64_t) * BUF_Q_PTR_SPACE);
6402 	uint64_t buf_q_base_reg_dma =
6403 	    qlge->buf_q_ptr_base_addr_dma_attr.dma_addr +
6404 	    (rx_ring->cq_id * sizeof (uint64_t) * BUF_Q_PTR_SPACE);
6405 	caddr_t doorbell_area =
6406 	    qlge->doorbell_reg_iobase + (VM_PAGE_SIZE * (128 + rx_ring->cq_id));
6407 	int err = 0;
6408 	uint16_t bq_len;
6409 	uint64_t tmp;
6410 	uint64_t *base_indirect_ptr;
6411 	int page_entries;
6412 
6413 	/* Set up the shadow registers for this ring. */
6414 	rx_ring->prod_idx_sh_reg = shadow_reg;
6415 	rx_ring->prod_idx_sh_reg_dma = shadow_reg_dma;
6416 	rx_ring->prod_idx_sh_reg_offset = (off_t)(((rx_ring->cq_id *
6417 	    sizeof (uint64_t) * RX_TX_RING_SHADOW_SPACE) + sizeof (uint64_t)));
6418 
6419 	rx_ring->lbq_base_indirect = (uint64_t *)(void *)buf_q_base_reg;
6420 	rx_ring->lbq_base_indirect_dma = buf_q_base_reg_dma;
6421 
6422 	QL_PRINT(DBG_INIT, ("%s rx ring(%d): prod_idx virtual addr = 0x%lx,"
6423 	    " phys_addr 0x%lx\n", __func__, rx_ring->cq_id,
6424 	    rx_ring->prod_idx_sh_reg, rx_ring->prod_idx_sh_reg_dma));
6425 
6426 	buf_q_base_reg += ((BUF_Q_PTR_SPACE / 2) * sizeof (uint64_t));
6427 	buf_q_base_reg_dma += ((BUF_Q_PTR_SPACE / 2) * sizeof (uint64_t));
6428 	rx_ring->sbq_base_indirect = (uint64_t *)(void *)buf_q_base_reg;
6429 	rx_ring->sbq_base_indirect_dma = buf_q_base_reg_dma;
6430 
6431 	/* PCI doorbell mem area + 0x00 for consumer index register */
6432 	rx_ring->cnsmr_idx_db_reg = (uint32_t *)(void *)doorbell_area;
6433 	rx_ring->cnsmr_idx = 0;
6434 	*rx_ring->prod_idx_sh_reg = 0;
6435 	rx_ring->curr_entry = rx_ring->cq_dma.vaddr;
6436 
6437 	/* PCI doorbell mem area + 0x04 for valid register */
6438 	rx_ring->valid_db_reg = (uint32_t *)(void *)
6439 	    ((uint8_t *)(void *)doorbell_area + 0x04);
6440 
6441 	/* PCI doorbell mem area + 0x18 for large buffer consumer */
6442 	rx_ring->lbq_prod_idx_db_reg = (uint32_t *)(void *)
6443 	    ((uint8_t *)(void *)doorbell_area + 0x18);
6444 
6445 	/* PCI doorbell mem area + 0x1c */
6446 	rx_ring->sbq_prod_idx_db_reg = (uint32_t *)(void *)
6447 	    ((uint8_t *)(void *)doorbell_area + 0x1c);
6448 
6449 	bzero((void *)cqicb, sizeof (*cqicb));
6450 
6451 	cqicb->msix_vect = (uint8_t)rx_ring->irq;
6452 
6453 	bq_len = (uint16_t)((rx_ring->cq_len == 65536) ?
6454 	    (uint16_t)0 : (uint16_t)rx_ring->cq_len);
6455 	cqicb->len = (uint16_t)cpu_to_le16(bq_len | LEN_V | LEN_CPP_CONT);
6456 
6457 	cqicb->cq_base_addr_lo =
6458 	    cpu_to_le32(LS_64BITS(rx_ring->cq_dma.dma_addr));
6459 	cqicb->cq_base_addr_hi =
6460 	    cpu_to_le32(MS_64BITS(rx_ring->cq_dma.dma_addr));
6461 
6462 	cqicb->prod_idx_addr_lo =
6463 	    cpu_to_le32(LS_64BITS(rx_ring->prod_idx_sh_reg_dma));
6464 	cqicb->prod_idx_addr_hi =
6465 	    cpu_to_le32(MS_64BITS(rx_ring->prod_idx_sh_reg_dma));
6466 
6467 	/*
6468 	 * Set up the control block load flags.
6469 	 */
6470 	cqicb->flags = FLAGS_LC | /* Load queue base address */
6471 	    FLAGS_LV | /* Load MSI-X vector */
6472 	    FLAGS_LI;  /* Load irq delay values */
6473 	if (rx_ring->lbq_len) {
6474 		/* Load lbq values */
6475 		cqicb->flags = (uint8_t)(cqicb->flags | FLAGS_LL);
6476 		tmp = (uint64_t)rx_ring->lbq_dma.dma_addr;
6477 		base_indirect_ptr = (uint64_t *)rx_ring->lbq_base_indirect;
6478 		page_entries = 0;
6479 		do {
6480 			*base_indirect_ptr = cpu_to_le64(tmp);
6481 			tmp += VM_PAGE_SIZE;
6482 			base_indirect_ptr++;
6483 			page_entries++;
6484 		} while (page_entries < (int)(
6485 		    ((rx_ring->lbq_len * sizeof (uint64_t)) / VM_PAGE_SIZE)));
6486 
6487 		cqicb->lbq_addr_lo =
6488 		    cpu_to_le32(LS_64BITS(rx_ring->lbq_base_indirect_dma));
6489 		cqicb->lbq_addr_hi =
6490 		    cpu_to_le32(MS_64BITS(rx_ring->lbq_base_indirect_dma));
6491 		bq_len = (uint16_t)((rx_ring->lbq_buf_size == 65536) ?
6492 		    (uint16_t)0 : (uint16_t)rx_ring->lbq_buf_size);
6493 		cqicb->lbq_buf_size = (uint16_t)cpu_to_le16(bq_len);
6494 		bq_len = (uint16_t)((rx_ring->lbq_len == 65536) ? (uint16_t)0 :
6495 		    (uint16_t)rx_ring->lbq_len);
6496 		cqicb->lbq_len = (uint16_t)cpu_to_le16(bq_len);
6497 		rx_ring->lbq_prod_idx = 0;
6498 		rx_ring->lbq_curr_idx = 0;
6499 	}
6500 	if (rx_ring->sbq_len) {
6501 		/* Load sbq values */
6502 		cqicb->flags = (uint8_t)(cqicb->flags | FLAGS_LS);
6503 		tmp = (uint64_t)rx_ring->sbq_dma.dma_addr;
6504 		base_indirect_ptr = (uint64_t *)rx_ring->sbq_base_indirect;
6505 		page_entries = 0;
6506 
6507 		do {
6508 			*base_indirect_ptr = cpu_to_le64(tmp);
6509 			tmp += VM_PAGE_SIZE;
6510 			base_indirect_ptr++;
6511 			page_entries++;
6512 		} while (page_entries < (uint32_t)
6513 		    (((rx_ring->sbq_len * sizeof (uint64_t)) / VM_PAGE_SIZE)));
6514 
6515 		cqicb->sbq_addr_lo =
6516 		    cpu_to_le32(LS_64BITS(rx_ring->sbq_base_indirect_dma));
6517 		cqicb->sbq_addr_hi =
6518 		    cpu_to_le32(MS_64BITS(rx_ring->sbq_base_indirect_dma));
6519 		cqicb->sbq_buf_size = (uint16_t)
6520 		    cpu_to_le16((uint16_t)(rx_ring->sbq_buf_size/2));
6521 		bq_len = (uint16_t)((rx_ring->sbq_len == 65536) ?
6522 		    (uint16_t)0 : (uint16_t)rx_ring->sbq_len);
6523 		cqicb->sbq_len = (uint16_t)cpu_to_le16(bq_len);
6524 		rx_ring->sbq_prod_idx = 0;
6525 		rx_ring->sbq_curr_idx = 0;
6526 	}
6527 	switch (rx_ring->type) {
6528 	case TX_Q:
6529 		cqicb->irq_delay = (uint16_t)
6530 		    cpu_to_le16(qlge->tx_coalesce_usecs);
6531 		cqicb->pkt_delay = (uint16_t)
6532 		    cpu_to_le16(qlge->tx_max_coalesced_frames);
6533 		break;
6534 
6535 	case DEFAULT_Q:
6536 		cqicb->irq_delay = (uint16_t)
6537 		    cpu_to_le16(qlge->rx_coalesce_usecs);
6538 		cqicb->pkt_delay = (uint16_t)
6539 		    cpu_to_le16(qlge->rx_max_coalesced_frames);
6540 		break;
6541 
6542 	case RX_Q:
6543 		/*
6544 		 * Inbound completion handling rx_rings run in
6545 		 * separate NAPI contexts.
6546 		 */
6547 		cqicb->irq_delay = (uint16_t)
6548 		    cpu_to_le16(qlge->rx_coalesce_usecs);
6549 		cqicb->pkt_delay = (uint16_t)
6550 		    cpu_to_le16(qlge->rx_max_coalesced_frames);
6551 		break;
6552 	default:
6553 		cmn_err(CE_WARN, "Invalid rx_ring->type = %d.",
6554 		    rx_ring->type);
6555 	}
6556 	QL_PRINT(DBG_INIT, ("Initializing rx completion queue %d.\n",
6557 	    rx_ring->cq_id));
6558 	/* QL_DUMP_CQICB(qlge, cqicb); */
6559 	err = ql_write_cfg(qlge, CFG_LCQ, rx_ring->cqicb_dma.dma_addr,
6560 	    rx_ring->cq_id);
6561 	if (err) {
6562 		cmn_err(CE_WARN, "Failed to load CQICB.");
6563 		return (err);
6564 	}
6565 
6566 	rx_ring->rx_packets_dropped_no_buffer = 0;
6567 	rx_ring->rx_pkt_dropped_mac_unenabled = 0;
6568 	rx_ring->rx_failed_sbq_allocs = 0;
6569 	rx_ring->rx_failed_lbq_allocs = 0;
6570 	rx_ring->rx_packets = 0;
6571 	rx_ring->rx_bytes = 0;
6572 	rx_ring->frame_too_long = 0;
6573 	rx_ring->frame_too_short = 0;
6574 	rx_ring->fcs_err = 0;
6575 
6576 	return (err);
6577 }
6578 
6579 /*
6580  * start RSS
6581  */
6582 static int
6583 ql_start_rss(qlge_t *qlge)
6584 {
6585 	struct ricb *ricb = (struct ricb *)qlge->ricb_dma.vaddr;
6586 	int status = 0;
6587 	int i;
6588 	uint8_t *hash_id = (uint8_t *)ricb->hash_cq_id;
6589 
6590 	bzero((void *)ricb, sizeof (*ricb));
6591 
6592 	ricb->base_cq = RSS_L4K;
6593 	ricb->flags =
6594 	    (RSS_L6K | RSS_LI | RSS_LB | RSS_LM | RSS_RI4 | RSS_RI6 | RSS_RT4 |
6595 	    RSS_RT6);
6596 	ricb->mask = (uint16_t)cpu_to_le16(RSS_HASH_CQ_ID_MAX - 1);
6597 
6598 	/*
6599 	 * Fill out the Indirection Table.
6600 	 */
6601 	for (i = 0; i < RSS_HASH_CQ_ID_MAX; i++)
6602 		hash_id[i] = (uint8_t)(i & (qlge->rss_ring_count - 1));
6603 
6604 	(void) memcpy(&ricb->ipv6_hash_key[0], key_data, 40);
6605 	(void) memcpy(&ricb->ipv4_hash_key[0], key_data, 16);
6606 
6607 	QL_PRINT(DBG_INIT, ("Initializing RSS.\n"));
6608 
6609 	status = ql_write_cfg(qlge, CFG_LR, qlge->ricb_dma.dma_addr, 0);
6610 	if (status) {
6611 		cmn_err(CE_WARN, "Failed to load RICB.");
6612 		return (status);
6613 	}
6614 
6615 	return (status);
6616 }
6617 
6618 /*
6619  * load a tx ring control block to hw and start this ring
6620  */
6621 static int
6622 ql_start_tx_ring(qlge_t *qlge, struct tx_ring *tx_ring)
6623 {
6624 	struct wqicb_t *wqicb = (struct wqicb_t *)tx_ring->wqicb_dma.vaddr;
6625 	caddr_t doorbell_area =
6626 	    qlge->doorbell_reg_iobase + (VM_PAGE_SIZE * tx_ring->wq_id);
6627 	void *shadow_reg = (uint8_t *)qlge->host_copy_shadow_dma_attr.vaddr +
6628 	    (tx_ring->wq_id * sizeof (uint64_t)) * RX_TX_RING_SHADOW_SPACE;
6629 	uint64_t shadow_reg_dma = qlge->host_copy_shadow_dma_attr.dma_addr +
6630 	    (tx_ring->wq_id * sizeof (uint64_t)) * RX_TX_RING_SHADOW_SPACE;
6631 	int err = 0;
6632 
6633 	/*
6634 	 * Assign doorbell registers for this tx_ring.
6635 	 */
6636 
6637 	/* TX PCI doorbell mem area for tx producer index */
6638 	tx_ring->prod_idx_db_reg = (uint32_t *)(void *)doorbell_area;
6639 	tx_ring->prod_idx = 0;
6640 	/* TX PCI doorbell mem area + 0x04 */
6641 	tx_ring->valid_db_reg = (uint32_t *)(void *)
6642 	    ((uint8_t *)(void *)doorbell_area + 0x04);
6643 
6644 	/*
6645 	 * Assign shadow registers for this tx_ring.
6646 	 */
6647 	tx_ring->cnsmr_idx_sh_reg = shadow_reg;
6648 	tx_ring->cnsmr_idx_sh_reg_dma = shadow_reg_dma;
6649 	*tx_ring->cnsmr_idx_sh_reg = 0;
6650 
6651 	QL_PRINT(DBG_INIT, ("%s tx ring(%d): cnsmr_idx virtual addr = 0x%lx,"
6652 	    " phys_addr 0x%lx\n",
6653 	    __func__, tx_ring->wq_id, tx_ring->cnsmr_idx_sh_reg,
6654 	    tx_ring->cnsmr_idx_sh_reg_dma));
6655 
6656 	wqicb->len =
6657 	    (uint16_t)cpu_to_le16(tx_ring->wq_len | Q_LEN_V | Q_LEN_CPP_CONT);
6658 	wqicb->flags = cpu_to_le16(Q_FLAGS_LC |
6659 	    Q_FLAGS_LB | Q_FLAGS_LI | Q_FLAGS_LO);
6660 	wqicb->cq_id_rss = (uint16_t)cpu_to_le16(tx_ring->cq_id);
6661 	wqicb->rid = 0;
6662 	wqicb->wq_addr_lo = cpu_to_le32(LS_64BITS(tx_ring->wq_dma.dma_addr));
6663 	wqicb->wq_addr_hi = cpu_to_le32(MS_64BITS(tx_ring->wq_dma.dma_addr));
6664 	wqicb->cnsmr_idx_addr_lo =
6665 	    cpu_to_le32(LS_64BITS(tx_ring->cnsmr_idx_sh_reg_dma));
6666 	wqicb->cnsmr_idx_addr_hi =
6667 	    cpu_to_le32(MS_64BITS(tx_ring->cnsmr_idx_sh_reg_dma));
6668 
6669 	ql_init_tx_ring(tx_ring);
6670 	/* QL_DUMP_WQICB(qlge, wqicb); */
6671 	err = ql_write_cfg(qlge, CFG_LRQ, tx_ring->wqicb_dma.dma_addr,
6672 	    tx_ring->wq_id);
6673 
6674 	if (err) {
6675 		cmn_err(CE_WARN, "Failed to load WQICB.");
6676 		return (err);
6677 	}
6678 	return (err);
6679 }
6680 
6681 /*
6682  * Set up a MAC, multicast or VLAN address for the
6683  * inbound frame matching.
6684  */
6685 int
6686 ql_set_mac_addr_reg(qlge_t *qlge, uint8_t *addr, uint32_t type,
6687     uint16_t index)
6688 {
6689 	uint32_t offset = 0;
6690 	int status = DDI_SUCCESS;
6691 
6692 	switch (type) {
6693 	case MAC_ADDR_TYPE_MULTI_MAC:
6694 	case MAC_ADDR_TYPE_CAM_MAC: {
6695 		uint32_t cam_output;
6696 		uint32_t upper = (addr[0] << 8) | addr[1];
6697 		uint32_t lower =
6698 		    (addr[2] << 24) | (addr[3] << 16) | (addr[4] << 8) |
6699 		    (addr[5]);
6700 
6701 		QL_PRINT(DBG_INIT, ("Adding %s ", (type ==
6702 		    MAC_ADDR_TYPE_MULTI_MAC) ?
6703 		    "MULTICAST" : "UNICAST"));
6704 		QL_PRINT(DBG_INIT,
6705 		    ("addr %02x %02x %02x %02x %02x %02x at index %d in "
6706 		    "the CAM.\n",
6707 		    addr[0], addr[1], addr[2], addr[3], addr[4],
6708 		    addr[5], index));
6709 
6710 		status = ql_wait_reg_rdy(qlge,
6711 		    REG_MAC_PROTOCOL_ADDRESS_INDEX, MAC_ADDR_MW, 0);
6712 		if (status)
6713 			goto exit;
6714 		/* offset 0 - lower 32 bits of the MAC address */
6715 		ql_write_reg(qlge, REG_MAC_PROTOCOL_ADDRESS_INDEX,
6716 		    (offset++) |
6717 		    (index << MAC_ADDR_IDX_SHIFT) | /* index */
6718 		    type);	/* type */
6719 		ql_write_reg(qlge, REG_MAC_PROTOCOL_DATA, lower);
6720 		status = ql_wait_reg_rdy(qlge,
6721 		    REG_MAC_PROTOCOL_ADDRESS_INDEX, MAC_ADDR_MW, 0);
6722 		if (status)
6723 			goto exit;
6724 		/* offset 1 - upper 16 bits of the MAC address */
6725 		ql_write_reg(qlge, REG_MAC_PROTOCOL_ADDRESS_INDEX,
6726 		    (offset++) |
6727 		    (index << MAC_ADDR_IDX_SHIFT) | /* index */
6728 		    type);	/* type */
6729 		ql_write_reg(qlge, REG_MAC_PROTOCOL_DATA, upper);
6730 		status = ql_wait_reg_rdy(qlge,
6731 		    REG_MAC_PROTOCOL_ADDRESS_INDEX, MAC_ADDR_MW, 0);
6732 		if (status)
6733 			goto exit;
6734 		/* offset 2 - CQ ID associated with this MAC address */
6735 		ql_write_reg(qlge, REG_MAC_PROTOCOL_ADDRESS_INDEX,
6736 		    (offset) | (index << MAC_ADDR_IDX_SHIFT) |	/* index */
6737 		    type);	/* type */
6738 		/*
6739 		 * This field should also include the queue id
6740 		 * and possibly the function id.  Right now we hardcode
6741 		 * the route field to NIC core.
6742 		 */
6743 		if (type == MAC_ADDR_TYPE_CAM_MAC) {
6744 			cam_output = (CAM_OUT_ROUTE_NIC |
6745 			    (qlge->func_number << CAM_OUT_FUNC_SHIFT) |
6746 			    (0 <<
6747 			    CAM_OUT_CQ_ID_SHIFT));
6748 
6749 			/* route to NIC core */
6750 			ql_write_reg(qlge, REG_MAC_PROTOCOL_DATA,
6751 			    cam_output);
6752 			}
6753 		break;
6754 		}
6755 	default:
6756 		cmn_err(CE_WARN,
6757 		    "Address type %d not yet supported.", type);
6758 		status = DDI_FAILURE;
6759 	}
6760 exit:
6761 	return (status);
6762 }
6763 
6764 /*
6765  * The NIC function for this chip has 16 routing indexes.  Each one can be used
6766  * to route different frame types to various inbound queues.  We send broadcast
6767  * multicast/error frames to the default queue for slow handling,
6768  * and CAM hit/RSS frames to the fast handling queues.
6769  */
6770 static int
6771 ql_set_routing_reg(qlge_t *qlge, uint32_t index, uint32_t mask, int enable)
6772 {
6773 	int status;
6774 	uint32_t value = 0;
6775 
6776 	QL_PRINT(DBG_INIT,
6777 	    ("%s %s%s%s%s%s%s%s%s%s%s%s%s%s%s%s%s mask %s the routing reg.\n",
6778 	    (enable ? "Adding" : "Removing"),
6779 	    ((index == RT_IDX_ALL_ERR_SLOT) ? "MAC ERROR/ALL ERROR" : ""),
6780 	    ((index == RT_IDX_IP_CSUM_ERR_SLOT) ? "IP CSUM ERROR" : ""),
6781 	    ((index ==
6782 	    RT_IDX_TCP_UDP_CSUM_ERR_SLOT) ? "TCP/UDP CSUM ERROR" : ""),
6783 	    ((index == RT_IDX_BCAST_SLOT) ? "BROADCAST" : ""),
6784 	    ((index == RT_IDX_MCAST_MATCH_SLOT) ? "MULTICAST MATCH" : ""),
6785 	    ((index == RT_IDX_ALLMULTI_SLOT) ? "ALL MULTICAST MATCH" : ""),
6786 	    ((index == RT_IDX_UNUSED6_SLOT) ? "UNUSED6" : ""),
6787 	    ((index == RT_IDX_UNUSED7_SLOT) ? "UNUSED7" : ""),
6788 	    ((index == RT_IDX_RSS_MATCH_SLOT) ? "RSS ALL/IPV4 MATCH" : ""),
6789 	    ((index == RT_IDX_RSS_IPV6_SLOT) ? "RSS IPV6" : ""),
6790 	    ((index == RT_IDX_RSS_TCP4_SLOT) ? "RSS TCP4" : ""),
6791 	    ((index == RT_IDX_RSS_TCP6_SLOT) ? "RSS TCP6" : ""),
6792 	    ((index == RT_IDX_CAM_HIT_SLOT) ? "CAM HIT" : ""),
6793 	    ((index == RT_IDX_UNUSED013) ? "UNUSED13" : ""),
6794 	    ((index == RT_IDX_UNUSED014) ? "UNUSED14" : ""),
6795 	    ((index == RT_IDX_PROMISCUOUS_SLOT) ? "PROMISCUOUS" : ""),
6796 	    (enable ? "to" : "from")));
6797 
6798 	switch (mask) {
6799 	case RT_IDX_CAM_HIT:
6800 		value = RT_IDX_DST_CAM_Q | /* dest */
6801 		    RT_IDX_TYPE_NICQ | /* type */
6802 		    (RT_IDX_CAM_HIT_SLOT << RT_IDX_IDX_SHIFT); /* index */
6803 		break;
6804 
6805 	case RT_IDX_VALID: /* Promiscuous Mode frames. */
6806 		value = RT_IDX_DST_DFLT_Q |	/* dest */
6807 		    RT_IDX_TYPE_NICQ |	/* type */
6808 		    (RT_IDX_PROMISCUOUS_SLOT << RT_IDX_IDX_SHIFT); /* index */
6809 		break;
6810 
6811 	case RT_IDX_ERR:	/* Pass up MAC,IP,TCP/UDP error frames. */
6812 		value = RT_IDX_DST_DFLT_Q |	/* dest */
6813 		    RT_IDX_TYPE_NICQ |	/* type */
6814 		    (RT_IDX_ALL_ERR_SLOT << RT_IDX_IDX_SHIFT); /* index */
6815 		break;
6816 
6817 	case RT_IDX_BCAST:	/* Pass up Broadcast frames to default Q. */
6818 		value = RT_IDX_DST_DFLT_Q |	/* dest */
6819 		    RT_IDX_TYPE_NICQ |	/* type */
6820 		    (RT_IDX_BCAST_SLOT << RT_IDX_IDX_SHIFT); /* index */
6821 		break;
6822 
6823 	case RT_IDX_MCAST:	/* Pass up All Multicast frames. */
6824 		value = RT_IDX_DST_CAM_Q |	/* dest */
6825 		    RT_IDX_TYPE_NICQ |	/* type */
6826 		    (RT_IDX_ALLMULTI_SLOT << RT_IDX_IDX_SHIFT); /* index */
6827 		break;
6828 
6829 	case RT_IDX_MCAST_MATCH:	/* Pass up matched Multicast frames. */
6830 		value = RT_IDX_DST_CAM_Q |	/* dest */
6831 		    RT_IDX_TYPE_NICQ |	/* type */
6832 		    (RT_IDX_MCAST_MATCH_SLOT << RT_IDX_IDX_SHIFT); /* index */
6833 		break;
6834 
6835 	case RT_IDX_RSS_MATCH:	/* Pass up matched RSS frames. */
6836 		value = RT_IDX_DST_RSS |	/* dest */
6837 		    RT_IDX_TYPE_NICQ |	/* type */
6838 		    (RT_IDX_RSS_MATCH_SLOT << RT_IDX_IDX_SHIFT); /* index */
6839 		break;
6840 
6841 	case 0:	/* Clear the E-bit on an entry. */
6842 		value = RT_IDX_DST_DFLT_Q |	/* dest */
6843 		    RT_IDX_TYPE_NICQ |	/* type */
6844 		    (index << RT_IDX_IDX_SHIFT); /* index */
6845 		break;
6846 
6847 	default:
6848 		cmn_err(CE_WARN, "Mask type %d not yet supported.",
6849 		    mask);
6850 		status = -EPERM;
6851 		goto exit;
6852 	}
6853 
6854 	if (value != 0) {
6855 		status = ql_wait_reg_rdy(qlge, REG_ROUTING_INDEX, RT_IDX_MW, 0);
6856 		if (status)
6857 			goto exit;
6858 		value |= (enable ? RT_IDX_E : 0);
6859 		ql_write_reg(qlge, REG_ROUTING_INDEX, value);
6860 		ql_write_reg(qlge, REG_ROUTING_DATA, enable ? mask : 0);
6861 	}
6862 
6863 exit:
6864 	return (status);
6865 }
6866 
6867 /*
6868  * Clear all the entries in the routing table.
6869  * Caller must get semaphore in advance.
6870  */
6871 
6872 static int
6873 ql_stop_routing(qlge_t *qlge)
6874 {
6875 	int status = 0;
6876 	int i;
6877 	/* Clear all the entries in the routing table. */
6878 	for (i = 0; i < 16; i++) {
6879 		status = ql_set_routing_reg(qlge, i, 0, 0);
6880 		if (status) {
6881 			cmn_err(CE_WARN, "Stop routing failed. ");
6882 		}
6883 	}
6884 	return (status);
6885 }
6886 
6887 /* Initialize the frame-to-queue routing. */
6888 int
6889 ql_route_initialize(qlge_t *qlge)
6890 {
6891 	int status = 0;
6892 
6893 	status = ql_sem_spinlock(qlge, SEM_RT_IDX_MASK);
6894 	if (status != DDI_SUCCESS)
6895 		return (status);
6896 
6897 	/* Clear all the entries in the routing table. */
6898 	status = ql_stop_routing(qlge);
6899 	if (status) {
6900 		goto exit;
6901 	}
6902 	status = ql_set_routing_reg(qlge, RT_IDX_BCAST_SLOT, RT_IDX_BCAST, 1);
6903 	if (status) {
6904 		cmn_err(CE_WARN,
6905 		    "Failed to init routing register for broadcast packets.");
6906 		goto exit;
6907 	}
6908 	/*
6909 	 * If we have more than one inbound queue, then turn on RSS in the
6910 	 * routing block.
6911 	 */
6912 	if (qlge->rss_ring_count > 1) {
6913 		status = ql_set_routing_reg(qlge, RT_IDX_RSS_MATCH_SLOT,
6914 		    RT_IDX_RSS_MATCH, 1);
6915 		if (status) {
6916 			cmn_err(CE_WARN,
6917 			    "Failed to init routing register for MATCH RSS "
6918 			    "packets.");
6919 			goto exit;
6920 		}
6921 	}
6922 
6923 	status = ql_set_routing_reg(qlge, RT_IDX_CAM_HIT_SLOT,
6924 	    RT_IDX_CAM_HIT, 1);
6925 	if (status) {
6926 		cmn_err(CE_WARN,
6927 		    "Failed to init routing register for CAM packets.");
6928 		goto exit;
6929 	}
6930 
6931 	status = ql_set_routing_reg(qlge, RT_IDX_MCAST_MATCH_SLOT,
6932 	    RT_IDX_MCAST_MATCH, 1);
6933 	if (status) {
6934 		cmn_err(CE_WARN,
6935 		    "Failed to init routing register for Multicast "
6936 		    "packets.");
6937 	}
6938 
6939 exit:
6940 	ql_sem_unlock(qlge, SEM_RT_IDX_MASK);
6941 	return (status);
6942 }
6943 
6944 /*
6945  * Initialize hardware
6946  */
6947 static int
6948 ql_device_initialize(qlge_t *qlge)
6949 {
6950 	uint32_t value, mask;
6951 	int i;
6952 	int status = 0;
6953 	uint16_t pause = PAUSE_MODE_DISABLED;
6954 	boolean_t update_port_config = B_FALSE;
6955 	uint32_t pause_bit_mask;
6956 	boolean_t dcbx_enable = B_FALSE;
6957 	uint32_t dcbx_bit_mask = 0x10;
6958 	/*
6959 	 * Set up the System register to halt on errors.
6960 	 */
6961 	value = SYS_EFE | SYS_FAE;
6962 	mask = value << 16;
6963 	ql_write_reg(qlge, REG_SYSTEM, mask | value);
6964 
6965 	/* Set the default queue. */
6966 	value = NIC_RCV_CFG_DFQ;
6967 	mask = NIC_RCV_CFG_DFQ_MASK;
6968 
6969 	ql_write_reg(qlge, REG_NIC_RECEIVE_CONFIGURATION, mask | value);
6970 
6971 	/* Enable the MPI interrupt. */
6972 	ql_write_reg(qlge, REG_INTERRUPT_MASK, (INTR_MASK_PI << 16)
6973 	    | INTR_MASK_PI);
6974 	/* Enable the function, set pagesize, enable error checking. */
6975 	value = FSC_FE | FSC_EPC_INBOUND | FSC_EPC_OUTBOUND |
6976 	    FSC_EC | FSC_VM_PAGE_4K | FSC_DBRST_1024;
6977 	/* Set/clear header splitting. */
6978 	if (CFG_IST(qlge, CFG_ENABLE_SPLIT_HEADER)) {
6979 		value |= FSC_SH;
6980 		ql_write_reg(qlge, REG_SPLIT_HEADER, SMALL_BUFFER_SIZE);
6981 	}
6982 	mask = FSC_VM_PAGESIZE_MASK |
6983 	    FSC_DBL_MASK | FSC_DBRST_MASK | (value << 16);
6984 	ql_write_reg(qlge, REG_FUNCTION_SPECIFIC_CONTROL, mask | value);
6985 	/*
6986 	 * check current port max frame size, if different from OS setting,
6987 	 * then we need to change
6988 	 */
6989 	qlge->max_frame_size =
6990 	    (qlge->mtu == ETHERMTU)? NORMAL_FRAME_SIZE : JUMBO_FRAME_SIZE;
6991 
6992 	mutex_enter(&qlge->mbx_mutex);
6993 	status = ql_get_port_cfg(qlge);
6994 	mutex_exit(&qlge->mbx_mutex);
6995 
6996 	if (status == DDI_SUCCESS) {
6997 		/* if current frame size is smaller than required size */
6998 		if (qlge->port_cfg_info.max_frame_size <
6999 		    qlge->max_frame_size) {
7000 			QL_PRINT(DBG_MBX,
7001 			    ("update frame size, current %d, new %d\n",
7002 			    qlge->port_cfg_info.max_frame_size,
7003 			    qlge->max_frame_size));
7004 			qlge->port_cfg_info.max_frame_size =
7005 			    qlge->max_frame_size;
7006 			qlge->port_cfg_info.link_cfg |= ENABLE_JUMBO;
7007 			update_port_config = B_TRUE;
7008 		}
7009 
7010 		if (qlge->port_cfg_info.link_cfg & STD_PAUSE)
7011 			pause = PAUSE_MODE_STANDARD;
7012 		else if (qlge->port_cfg_info.link_cfg & PP_PAUSE)
7013 			pause = PAUSE_MODE_PER_PRIORITY;
7014 
7015 		if (pause != qlge->pause) {
7016 			pause_bit_mask = 0x60;	/* bit 5-6 */
7017 			/* clear pause bits */
7018 			qlge->port_cfg_info.link_cfg &= ~pause_bit_mask;
7019 			if (qlge->pause == PAUSE_MODE_STANDARD)
7020 				qlge->port_cfg_info.link_cfg |= STD_PAUSE;
7021 			else if (qlge->pause == PAUSE_MODE_PER_PRIORITY)
7022 				qlge->port_cfg_info.link_cfg |= PP_PAUSE;
7023 			update_port_config = B_TRUE;
7024 		}
7025 
7026 		if (qlge->port_cfg_info.link_cfg & DCBX_ENABLE)
7027 			dcbx_enable = B_TRUE;
7028 		if (dcbx_enable != qlge->dcbx_enable) {
7029 			qlge->port_cfg_info.link_cfg &= ~dcbx_bit_mask;
7030 			if (qlge->dcbx_enable)
7031 				qlge->port_cfg_info.link_cfg |= DCBX_ENABLE;
7032 		}
7033 
7034 		update_port_config = B_TRUE;
7035 
7036 		/* if need to update port configuration */
7037 		if (update_port_config) {
7038 			mutex_enter(&qlge->mbx_mutex);
7039 			(void) ql_set_mpi_port_config(qlge,
7040 			    qlge->port_cfg_info);
7041 			mutex_exit(&qlge->mbx_mutex);
7042 		}
7043 	} else
7044 		cmn_err(CE_WARN, "ql_get_port_cfg failed");
7045 
7046 	/* Start up the rx queues. */
7047 	for (i = 0; i < qlge->rx_ring_count; i++) {
7048 		status = ql_start_rx_ring(qlge, &qlge->rx_ring[i]);
7049 		if (status) {
7050 			cmn_err(CE_WARN,
7051 			    "Failed to start rx ring[%d]", i);
7052 			return (status);
7053 		}
7054 	}
7055 
7056 	/*
7057 	 * If there is more than one inbound completion queue
7058 	 * then download a RICB to configure RSS.
7059 	 */
7060 	if (qlge->rss_ring_count > 1) {
7061 		status = ql_start_rss(qlge);
7062 		if (status) {
7063 			cmn_err(CE_WARN, "Failed to start RSS.");
7064 			return (status);
7065 		}
7066 	}
7067 
7068 	/* Start up the tx queues. */
7069 	for (i = 0; i < qlge->tx_ring_count; i++) {
7070 		status = ql_start_tx_ring(qlge, &qlge->tx_ring[i]);
7071 		if (status) {
7072 			cmn_err(CE_WARN,
7073 			    "Failed to start tx ring[%d]", i);
7074 			return (status);
7075 		}
7076 	}
7077 	qlge->selected_tx_ring = 0;
7078 	/* Set the frame routing filter. */
7079 	status = ql_route_initialize(qlge);
7080 	if (status) {
7081 		cmn_err(CE_WARN,
7082 		    "Failed to init CAM/Routing tables.");
7083 		return (status);
7084 	}
7085 
7086 	return (status);
7087 }
7088 /*
7089  * Issue soft reset to chip.
7090  */
7091 static int
7092 ql_asic_reset(qlge_t *qlge)
7093 {
7094 	int status = DDI_SUCCESS;
7095 
7096 	ql_write_reg(qlge, REG_RESET_FAILOVER, FUNCTION_RESET_MASK
7097 	    |FUNCTION_RESET);
7098 
7099 	if (ql_wait_reg_bit(qlge, REG_RESET_FAILOVER, FUNCTION_RESET,
7100 	    BIT_RESET, 0) != DDI_SUCCESS) {
7101 		cmn_err(CE_WARN,
7102 		    "TIMEOUT!!! errored out of resetting the chip!");
7103 		status = DDI_FAILURE;
7104 	}
7105 
7106 	return (status);
7107 }
7108 
7109 /*
7110  * If there are more than MIN_BUFFERS_ARM_COUNT small buffer descriptors in
7111  * its free list, move xMIN_BUFFERS_ARM_COUNT descriptors to its in use list
7112  * to be used by hardware.
7113  */
7114 static void
7115 ql_arm_sbuf(qlge_t *qlge, struct rx_ring *rx_ring)
7116 {
7117 	struct bq_desc *sbq_desc;
7118 	int i;
7119 	uint64_t *sbq_entry = rx_ring->sbq_dma.vaddr;
7120 	uint32_t arm_count;
7121 
7122 	if (rx_ring->sbuf_free_count > rx_ring->sbq_len-MIN_BUFFERS_ARM_COUNT)
7123 		arm_count = (rx_ring->sbq_len-MIN_BUFFERS_ARM_COUNT);
7124 	else {
7125 		/* Adjust to a multiple of 16 */
7126 		arm_count = (rx_ring->sbuf_free_count / 16) * 16;
7127 #ifdef QLGE_LOAD_UNLOAD
7128 		cmn_err(CE_NOTE, "adjust sbuf arm_count %d\n", arm_count);
7129 #endif
7130 	}
7131 	for (i = 0; i < arm_count; i++) {
7132 		sbq_desc = ql_get_sbuf_from_free_list(rx_ring);
7133 		if (sbq_desc == NULL)
7134 			break;
7135 		/* Arm asic */
7136 		*sbq_entry = cpu_to_le64(sbq_desc->bd_dma.dma_addr);
7137 		sbq_entry++;
7138 
7139 		/* link the descriptors to in_use_list */
7140 		ql_add_sbuf_to_in_use_list(rx_ring, sbq_desc);
7141 		rx_ring->sbq_prod_idx++;
7142 	}
7143 	ql_update_sbq_prod_idx(qlge, rx_ring);
7144 }
7145 
7146 /*
7147  * If there are more than MIN_BUFFERS_ARM_COUNT large buffer descriptors in
7148  * its free list, move xMIN_BUFFERS_ARM_COUNT descriptors to its in use list
7149  * to be used by hardware.
7150  */
7151 static void
7152 ql_arm_lbuf(qlge_t *qlge, struct rx_ring *rx_ring)
7153 {
7154 	struct bq_desc *lbq_desc;
7155 	int i;
7156 	uint64_t *lbq_entry = rx_ring->lbq_dma.vaddr;
7157 	uint32_t arm_count;
7158 
7159 	if (rx_ring->lbuf_free_count > rx_ring->lbq_len-MIN_BUFFERS_ARM_COUNT)
7160 		arm_count = (rx_ring->lbq_len-MIN_BUFFERS_ARM_COUNT);
7161 	else {
7162 		/* Adjust to a multiple of 16 */
7163 		arm_count = (rx_ring->lbuf_free_count / 16) * 16;
7164 #ifdef QLGE_LOAD_UNLOAD
7165 		cmn_err(CE_NOTE, "adjust lbuf arm_count %d\n", arm_count);
7166 #endif
7167 	}
7168 	for (i = 0; i < arm_count; i++) {
7169 		lbq_desc = ql_get_lbuf_from_free_list(rx_ring);
7170 		if (lbq_desc == NULL)
7171 			break;
7172 		/* Arm asic */
7173 		*lbq_entry = cpu_to_le64(lbq_desc->bd_dma.dma_addr);
7174 		lbq_entry++;
7175 
7176 		/* link the descriptors to in_use_list */
7177 		ql_add_lbuf_to_in_use_list(rx_ring, lbq_desc);
7178 		rx_ring->lbq_prod_idx++;
7179 	}
7180 	ql_update_lbq_prod_idx(qlge, rx_ring);
7181 }
7182 
7183 
7184 /*
7185  * Initializes the adapter by configuring request and response queues,
7186  * allocates and ARMs small and large receive buffers to the
7187  * hardware
7188  */
7189 static int
7190 ql_bringup_adapter(qlge_t *qlge)
7191 {
7192 	int i;
7193 
7194 	if (ql_device_initialize(qlge) != DDI_SUCCESS) {
7195 		cmn_err(CE_WARN, "?%s(%d): ql_device_initialize failed",
7196 		    __func__, qlge->instance);
7197 		goto err_bringup;
7198 	}
7199 	qlge->sequence |= INIT_ADAPTER_UP;
7200 
7201 #ifdef QLGE_TRACK_BUFFER_USAGE
7202 	for (i = 0; i < qlge->rx_ring_count; i++) {
7203 		if (qlge->rx_ring[i].type != TX_Q) {
7204 			qlge->rx_sb_low_count[i] = NUM_SMALL_BUFFERS;
7205 			qlge->rx_lb_low_count[i] = NUM_LARGE_BUFFERS;
7206 		}
7207 		qlge->cq_low_count[i] = NUM_RX_RING_ENTRIES;
7208 	}
7209 #endif
7210 	/* Arm buffers */
7211 	for (i = 0; i < qlge->rx_ring_count; i++) {
7212 		if (qlge->rx_ring[i].type != TX_Q) {
7213 			ql_arm_sbuf(qlge, &qlge->rx_ring[i]);
7214 			ql_arm_lbuf(qlge, &qlge->rx_ring[i]);
7215 		}
7216 	}
7217 
7218 	/* Enable work/request queues */
7219 	for (i = 0; i < qlge->tx_ring_count; i++) {
7220 		if (qlge->tx_ring[i].valid_db_reg)
7221 			ql_write_doorbell_reg(qlge,
7222 			    qlge->tx_ring[i].valid_db_reg,
7223 			    REQ_Q_VALID);
7224 	}
7225 
7226 	/* Enable completion queues */
7227 	for (i = 0; i < qlge->rx_ring_count; i++) {
7228 		if (qlge->rx_ring[i].valid_db_reg)
7229 			ql_write_doorbell_reg(qlge,
7230 			    qlge->rx_ring[i].valid_db_reg,
7231 			    RSP_Q_VALID);
7232 	}
7233 
7234 	for (i = 0; i < qlge->tx_ring_count; i++) {
7235 		mutex_enter(&qlge->tx_ring[i].tx_lock);
7236 		qlge->tx_ring[i].mac_flags = QL_MAC_STARTED;
7237 		mutex_exit(&qlge->tx_ring[i].tx_lock);
7238 	}
7239 
7240 	for (i = 0; i < qlge->rx_ring_count; i++) {
7241 		mutex_enter(&qlge->rx_ring[i].rx_lock);
7242 		qlge->rx_ring[i].mac_flags = QL_MAC_STARTED;
7243 		mutex_exit(&qlge->rx_ring[i].rx_lock);
7244 	}
7245 
7246 	/* This mutex will get re-acquired in enable_completion interrupt */
7247 	mutex_exit(&qlge->hw_mutex);
7248 	/* Traffic can start flowing now */
7249 	ql_enable_all_completion_interrupts(qlge);
7250 	mutex_enter(&qlge->hw_mutex);
7251 
7252 	ql_enable_global_interrupt(qlge);
7253 
7254 	qlge->sequence |= ADAPTER_INIT;
7255 	return (DDI_SUCCESS);
7256 
7257 err_bringup:
7258 	(void) ql_asic_reset(qlge);
7259 	return (DDI_FAILURE);
7260 }
7261 
7262 /*
7263  * Initialize mutexes of each rx/tx rings
7264  */
7265 static int
7266 ql_init_rx_tx_locks(qlge_t *qlge)
7267 {
7268 	struct tx_ring *tx_ring;
7269 	struct rx_ring *rx_ring;
7270 	int i;
7271 
7272 	for (i = 0; i < qlge->tx_ring_count; i++) {
7273 		tx_ring = &qlge->tx_ring[i];
7274 		mutex_init(&tx_ring->tx_lock, NULL, MUTEX_DRIVER,
7275 		    DDI_INTR_PRI(qlge->intr_pri));
7276 	}
7277 
7278 	for (i = 0; i < qlge->rx_ring_count; i++) {
7279 		rx_ring = &qlge->rx_ring[i];
7280 		mutex_init(&rx_ring->rx_lock, NULL, MUTEX_DRIVER,
7281 		    DDI_INTR_PRI(qlge->intr_pri));
7282 		mutex_init(&rx_ring->sbq_lock, NULL, MUTEX_DRIVER,
7283 		    DDI_INTR_PRI(qlge->intr_pri));
7284 		mutex_init(&rx_ring->lbq_lock, NULL, MUTEX_DRIVER,
7285 		    DDI_INTR_PRI(qlge->intr_pri));
7286 	}
7287 
7288 	return (DDI_SUCCESS);
7289 }
7290 
7291 /*ARGSUSED*/
7292 /*
7293  * Simply call pci_ereport_post which generates ereports for errors
7294  * that occur in the PCI local bus configuration status registers.
7295  */
7296 static int
7297 ql_fm_error_cb(dev_info_t *dip, ddi_fm_error_t *err, const void *impl_data)
7298 {
7299 	pci_ereport_post(dip, err, NULL);
7300 	return (err->fme_status);
7301 }
7302 
7303 static void
7304 ql_fm_init(qlge_t *qlge)
7305 {
7306 	ddi_iblock_cookie_t iblk;
7307 
7308 	QL_PRINT(DBG_INIT, ("ql_fm_init(%d) entered, FMA capability %x\n",
7309 	    qlge->instance, qlge->fm_capabilities));
7310 	/*
7311 	 * Register capabilities with IO Fault Services. The capabilities
7312 	 * set above may not be supported by the parent nexus, in that case
7313 	 * some capability bits may be cleared.
7314 	 */
7315 	if (qlge->fm_capabilities)
7316 		ddi_fm_init(qlge->dip, &qlge->fm_capabilities, &iblk);
7317 
7318 	/*
7319 	 * Initialize pci ereport capabilities if ereport capable
7320 	 */
7321 	if (DDI_FM_EREPORT_CAP(qlge->fm_capabilities) ||
7322 	    DDI_FM_ERRCB_CAP(qlge->fm_capabilities)) {
7323 		pci_ereport_setup(qlge->dip);
7324 	}
7325 
7326 	/* Register error callback if error callback capable */
7327 	if (DDI_FM_ERRCB_CAP(qlge->fm_capabilities)) {
7328 		ddi_fm_handler_register(qlge->dip,
7329 		    ql_fm_error_cb, (void*) qlge);
7330 	}
7331 
7332 	/*
7333 	 * DDI_FLGERR_ACC indicates:
7334 	 *  Driver will check its access handle(s) for faults on
7335 	 *   a regular basis by calling ddi_fm_acc_err_get
7336 	 *  Driver is able to cope with incorrect results of I/O
7337 	 *   operations resulted from an I/O fault
7338 	 */
7339 	if (DDI_FM_ACC_ERR_CAP(qlge->fm_capabilities)) {
7340 		ql_dev_acc_attr.devacc_attr_access = DDI_FLAGERR_ACC;
7341 	}
7342 
7343 	/*
7344 	 * DDI_DMA_FLAGERR indicates:
7345 	 *  Driver will check its DMA handle(s) for faults on a
7346 	 *   regular basis using ddi_fm_dma_err_get
7347 	 *  Driver is able to cope with incorrect results of DMA
7348 	 *   operations resulted from an I/O fault
7349 	 */
7350 	if (DDI_FM_DMA_ERR_CAP(qlge->fm_capabilities)) {
7351 		tx_mapping_dma_attr.dma_attr_flags = DDI_DMA_FLAGERR;
7352 		dma_attr.dma_attr_flags = DDI_DMA_FLAGERR;
7353 	}
7354 	QL_PRINT(DBG_INIT, ("ql_fm_init(%d) done\n",
7355 	    qlge->instance));
7356 }
7357 
7358 static void
7359 ql_fm_fini(qlge_t *qlge)
7360 {
7361 	QL_PRINT(DBG_INIT, ("ql_fm_fini(%d) entered\n",
7362 	    qlge->instance));
7363 	/* Only unregister FMA capabilities if we registered some */
7364 	if (qlge->fm_capabilities) {
7365 
7366 		/*
7367 		 * Release any resources allocated by pci_ereport_setup()
7368 		 */
7369 		if (DDI_FM_EREPORT_CAP(qlge->fm_capabilities) ||
7370 		    DDI_FM_ERRCB_CAP(qlge->fm_capabilities))
7371 			pci_ereport_teardown(qlge->dip);
7372 
7373 		/*
7374 		 * Un-register error callback if error callback capable
7375 		 */
7376 		if (DDI_FM_ERRCB_CAP(qlge->fm_capabilities))
7377 			ddi_fm_handler_unregister(qlge->dip);
7378 
7379 		/* Unregister from IO Fault Services */
7380 		ddi_fm_fini(qlge->dip);
7381 	}
7382 	QL_PRINT(DBG_INIT, ("ql_fm_fini(%d) done\n",
7383 	    qlge->instance));
7384 }
7385 /*
7386  * ql_attach - Driver attach.
7387  */
7388 static int
7389 ql_attach(dev_info_t *dip, ddi_attach_cmd_t cmd)
7390 {
7391 	int instance;
7392 	qlge_t *qlge = NULL;
7393 	int rval;
7394 	uint16_t w;
7395 	mac_register_t *macp = NULL;
7396 	uint32_t data;
7397 
7398 	rval = DDI_FAILURE;
7399 
7400 	/* first get the instance */
7401 	instance = ddi_get_instance(dip);
7402 
7403 	switch (cmd) {
7404 	case DDI_ATTACH:
7405 		/*
7406 		 * Allocate our per-device-instance structure
7407 		 */
7408 		qlge = (qlge_t *)kmem_zalloc(sizeof (*qlge), KM_SLEEP);
7409 		ASSERT(qlge != NULL);
7410 		qlge->sequence |= INIT_SOFTSTATE_ALLOC;
7411 
7412 		qlge->dip = dip;
7413 		qlge->instance = instance;
7414 		/* Set up the coalescing parameters. */
7415 		qlge->ql_dbgprnt = 0;
7416 #if QL_DEBUG
7417 		qlge->ql_dbgprnt = QL_DEBUG;
7418 #endif /* QL_DEBUG */
7419 
7420 		/*
7421 		 * Initialize for fma support
7422 		 */
7423 		/* fault management (fm) capabilities. */
7424 		qlge->fm_capabilities =
7425 		    DDI_FM_EREPORT_CAPABLE | DDI_FM_ERRCB_CAPABLE;
7426 		data = ql_get_prop(qlge, "fm-capable");
7427 		if (data <= 0xf) {
7428 			qlge->fm_capabilities = data;
7429 		}
7430 		ql_fm_init(qlge);
7431 		qlge->sequence |= INIT_FM;
7432 		QL_PRINT(DBG_INIT, ("ql_attach(%d): fma init done\n",
7433 		    qlge->instance));
7434 
7435 		/*
7436 		 * Setup the ISP8x00 registers address mapping to be
7437 		 * accessed by this particular driver.
7438 		 * 0x0   Configuration Space
7439 		 * 0x1   I/O Space
7440 		 * 0x2   1st Memory Space address - Control Register Set
7441 		 * 0x3   2nd Memory Space address - Doorbell Memory Space
7442 		 */
7443 		w = 2;
7444 		if (ddi_regs_map_setup(dip, w, (caddr_t *)&qlge->iobase, 0,
7445 		    sizeof (dev_reg_t), &ql_dev_acc_attr,
7446 		    &qlge->dev_handle) != DDI_SUCCESS) {
7447 			cmn_err(CE_WARN, "%s(%d): Unable to map device "
7448 			    "registers", ADAPTER_NAME, instance);
7449 			break;
7450 		}
7451 		QL_PRINT(DBG_GLD, ("ql_attach: I/O base = 0x%x\n",
7452 		    qlge->iobase));
7453 		qlge->sequence |= INIT_REGS_SETUP;
7454 
7455 		/* map Doorbell memory space */
7456 		w = 3;
7457 		if (ddi_regs_map_setup(dip, w,
7458 		    (caddr_t *)&qlge->doorbell_reg_iobase, 0,
7459 		    0x100000 /* sizeof (dev_doorbell_reg_t) */,
7460 		    &ql_dev_acc_attr,
7461 		    &qlge->dev_doorbell_reg_handle) != DDI_SUCCESS) {
7462 			cmn_err(CE_WARN, "%s(%d): Unable to map Doorbell "
7463 			    "registers",
7464 			    ADAPTER_NAME, instance);
7465 			break;
7466 		}
7467 		QL_PRINT(DBG_GLD, ("ql_attach: Doorbell I/O base = 0x%x\n",
7468 		    qlge->doorbell_reg_iobase));
7469 		qlge->sequence |= INIT_DOORBELL_REGS_SETUP;
7470 
7471 		/*
7472 		 * Allocate a macinfo structure for this instance
7473 		 */
7474 		if ((macp = mac_alloc(MAC_VERSION)) == NULL) {
7475 			cmn_err(CE_WARN, "%s(%d): mac_alloc failed",
7476 			    __func__, instance);
7477 			break;
7478 		}
7479 		/* save adapter status to dip private data */
7480 		ddi_set_driver_private(dip, qlge);
7481 		QL_PRINT(DBG_INIT, ("%s(%d): Allocate macinfo structure done\n",
7482 		    ADAPTER_NAME, instance));
7483 		qlge->sequence |= INIT_MAC_ALLOC;
7484 
7485 		/*
7486 		 * Attach this instance of the device
7487 		 */
7488 		/* Setup PCI Local Bus Configuration resource. */
7489 		if (pci_config_setup(dip, &qlge->pci_handle) != DDI_SUCCESS) {
7490 			cmn_err(CE_WARN, "%s(%d):Unable to get PCI resources",
7491 			    ADAPTER_NAME, instance);
7492 			if (qlge->fm_enable) {
7493 				ql_fm_ereport(qlge, DDI_FM_DEVICE_INVAL_STATE);
7494 				ddi_fm_service_impact(qlge->dip,
7495 				    DDI_SERVICE_LOST);
7496 			}
7497 			break;
7498 		}
7499 		qlge->sequence |= INIT_PCI_CONFIG_SETUP;
7500 		QL_PRINT(DBG_GLD, ("ql_attach(%d): pci_config_setup done\n",
7501 		    instance));
7502 
7503 		if (ql_init_instance(qlge) != DDI_SUCCESS) {
7504 			cmn_err(CE_WARN, "%s(%d): Unable to initialize device "
7505 			    "instance", ADAPTER_NAME, instance);
7506 			if (qlge->fm_enable) {
7507 				ql_fm_ereport(qlge, DDI_FM_DEVICE_INVAL_STATE);
7508 				ddi_fm_service_impact(qlge->dip,
7509 				    DDI_SERVICE_LOST);
7510 			}
7511 			break;
7512 		}
7513 		QL_PRINT(DBG_GLD, ("ql_attach(%d): ql_init_instance done\n",
7514 		    instance));
7515 
7516 		/* Setup interrupt vectors */
7517 		if (ql_alloc_irqs(qlge) != DDI_SUCCESS) {
7518 			break;
7519 		}
7520 		qlge->sequence |= INIT_INTR_ALLOC;
7521 		QL_PRINT(DBG_GLD, ("ql_attach(%d): ql_alloc_irqs done\n",
7522 		    instance));
7523 
7524 		/* Configure queues */
7525 		if (ql_setup_rings(qlge) != DDI_SUCCESS) {
7526 			break;
7527 		}
7528 		qlge->sequence |= INIT_SETUP_RINGS;
7529 		QL_PRINT(DBG_GLD, ("ql_attach(%d): setup rings done\n",
7530 		    instance));
7531 
7532 		/*
7533 		 * Allocate memory resources
7534 		 */
7535 		if (ql_alloc_mem_resources(qlge) != DDI_SUCCESS) {
7536 			cmn_err(CE_WARN, "%s(%d): memory allocation failed",
7537 			    __func__, qlge->instance);
7538 			break;
7539 		}
7540 		qlge->sequence |= INIT_MEMORY_ALLOC;
7541 		QL_PRINT(DBG_GLD, ("ql_alloc_mem_resources(%d) done\n",
7542 		    instance));
7543 
7544 		/*
7545 		 * Map queues to interrupt vectors
7546 		 */
7547 		ql_resolve_queues_to_irqs(qlge);
7548 
7549 		/* Initialize mutex, need the interrupt priority */
7550 		(void) ql_init_rx_tx_locks(qlge);
7551 		qlge->sequence |= INIT_LOCKS_CREATED;
7552 		QL_PRINT(DBG_INIT, ("%s(%d): ql_init_rx_tx_locks done\n",
7553 		    ADAPTER_NAME, instance));
7554 
7555 		/*
7556 		 * Use a soft interrupt to do something that we do not want
7557 		 * to do in regular network functions or with mutexs being held
7558 		 */
7559 		if (ddi_intr_add_softint(qlge->dip, &qlge->mpi_event_intr_hdl,
7560 		    DDI_INTR_SOFTPRI_MIN, ql_mpi_event_work, (caddr_t)qlge)
7561 		    != DDI_SUCCESS) {
7562 			break;
7563 		}
7564 
7565 		if (ddi_intr_add_softint(qlge->dip, &qlge->asic_reset_intr_hdl,
7566 		    DDI_INTR_SOFTPRI_MIN, ql_asic_reset_work, (caddr_t)qlge)
7567 		    != DDI_SUCCESS) {
7568 			break;
7569 		}
7570 
7571 		if (ddi_intr_add_softint(qlge->dip, &qlge->mpi_reset_intr_hdl,
7572 		    DDI_INTR_SOFTPRI_MIN, ql_mpi_reset_work, (caddr_t)qlge)
7573 		    != DDI_SUCCESS) {
7574 			break;
7575 		}
7576 		qlge->sequence |= INIT_ADD_SOFT_INTERRUPT;
7577 		QL_PRINT(DBG_INIT, ("%s(%d): ddi_intr_add_softint done\n",
7578 		    ADAPTER_NAME, instance));
7579 
7580 		/*
7581 		 * mutex to protect the adapter state structure.
7582 		 * initialize mutexes according to the interrupt priority
7583 		 */
7584 		mutex_init(&qlge->gen_mutex, NULL, MUTEX_DRIVER,
7585 		    DDI_INTR_PRI(qlge->intr_pri));
7586 		mutex_init(&qlge->hw_mutex, NULL, MUTEX_DRIVER,
7587 		    DDI_INTR_PRI(qlge->intr_pri));
7588 		mutex_init(&qlge->mbx_mutex, NULL, MUTEX_DRIVER,
7589 		    DDI_INTR_PRI(qlge->intr_pri));
7590 
7591 		/* Mailbox wait and interrupt conditional variable. */
7592 		cv_init(&qlge->cv_mbx_intr, NULL, CV_DRIVER, NULL);
7593 		qlge->sequence |= INIT_MUTEX;
7594 		QL_PRINT(DBG_INIT, ("%s(%d): mutex_init done\n",
7595 		    ADAPTER_NAME, instance));
7596 
7597 		/*
7598 		 * KStats
7599 		 */
7600 		if (ql_init_kstats(qlge) != DDI_SUCCESS) {
7601 			cmn_err(CE_WARN, "%s(%d): KState initialization failed",
7602 			    ADAPTER_NAME, instance);
7603 			break;
7604 		}
7605 		qlge->sequence |= INIT_KSTATS;
7606 		QL_PRINT(DBG_INIT, ("%s(%d): ql_init_kstats done\n",
7607 		    ADAPTER_NAME, instance));
7608 
7609 		/*
7610 		 * Initialize gld macinfo structure
7611 		 */
7612 		ql_gld3_init(qlge, macp);
7613 		/*
7614 		 * Add interrupt handlers
7615 		 */
7616 		if (ql_add_intr_handlers(qlge) != DDI_SUCCESS) {
7617 			cmn_err(CE_WARN, "Failed to add interrupt "
7618 			    "handlers");
7619 			break;
7620 		}
7621 		qlge->sequence |= INIT_ADD_INTERRUPT;
7622 		QL_PRINT(DBG_INIT, ("%s(%d): Add interrupt handler done\n",
7623 		    ADAPTER_NAME, instance));
7624 
7625 		/*
7626 		 * MAC Register
7627 		 */
7628 		if (mac_register(macp, &qlge->mh) != DDI_SUCCESS) {
7629 			cmn_err(CE_WARN, "%s(%d): mac_register failed",
7630 			    __func__, instance);
7631 			break;
7632 		}
7633 		qlge->sequence |= INIT_MAC_REGISTERED;
7634 		QL_PRINT(DBG_GLD, ("%s(%d): mac_register done\n",
7635 		    ADAPTER_NAME, instance));
7636 
7637 		mac_free(macp);
7638 		macp = NULL;
7639 
7640 		qlge->mac_flags = QL_MAC_ATTACHED;
7641 
7642 		ddi_report_dev(dip);
7643 
7644 		rval = DDI_SUCCESS;
7645 
7646 	break;
7647 /*
7648  * DDI_RESUME
7649  * When called  with  cmd  set  to  DDI_RESUME,  attach()  must
7650  * restore  the hardware state of a device (power may have been
7651  * removed from the device), allow  pending  requests  to  con-
7652  * tinue,  and  service  new requests. In this case, the driver
7653  * must not  make  any  assumptions  about  the  state  of  the
7654  * hardware,  but  must  restore the state of the device except
7655  * for the power level of components.
7656  *
7657  */
7658 	case DDI_RESUME:
7659 
7660 		if ((qlge = (qlge_t *)QL_GET_DEV(dip)) == NULL)
7661 			return (DDI_FAILURE);
7662 
7663 		QL_PRINT(DBG_GLD, ("%s(%d)-DDI_RESUME\n",
7664 		    __func__, qlge->instance));
7665 
7666 		mutex_enter(&qlge->gen_mutex);
7667 		rval = ql_do_start(qlge);
7668 		mutex_exit(&qlge->gen_mutex);
7669 		break;
7670 
7671 	default:
7672 		break;
7673 	}
7674 
7675 	/* if failed to attach */
7676 	if ((cmd == DDI_ATTACH) && (rval != DDI_SUCCESS) && (qlge != NULL)) {
7677 		cmn_err(CE_WARN, "qlge driver attach failed, sequence %x",
7678 		    qlge->sequence);
7679 		ql_free_resources(qlge);
7680 	}
7681 
7682 	return (rval);
7683 }
7684 
7685 /*
7686  * Unbind all pending tx dma handles during driver bring down
7687  */
7688 static void
7689 ql_unbind_pending_tx_dma_handle(struct tx_ring *tx_ring)
7690 {
7691 	struct tx_ring_desc *tx_ring_desc;
7692 	int i, j;
7693 
7694 	if (tx_ring->wq_desc) {
7695 		tx_ring_desc = tx_ring->wq_desc;
7696 		for (i = 0; i < tx_ring->wq_len; i++, tx_ring_desc++) {
7697 			for (j = 0; j < tx_ring_desc->tx_dma_handle_used; j++) {
7698 				if (tx_ring_desc->tx_dma_handle[j]) {
7699 					(void) ddi_dma_unbind_handle(
7700 					    tx_ring_desc->tx_dma_handle[j]);
7701 				}
7702 			}
7703 			tx_ring_desc->tx_dma_handle_used = 0;
7704 		} /* end of for loop */
7705 	}
7706 }
7707 /*
7708  * Wait for all the packets sent to the chip to finish transmission
7709  * to prevent buffers to be unmapped before or during a transmit operation
7710  */
7711 static int
7712 ql_wait_tx_quiesce(qlge_t *qlge)
7713 {
7714 	int count = MAX_TX_WAIT_COUNT, i;
7715 	int rings_done;
7716 	volatile struct tx_ring *tx_ring;
7717 	uint32_t consumer_idx;
7718 	uint32_t producer_idx;
7719 	uint32_t temp;
7720 	int done = 0;
7721 	int rval = DDI_FAILURE;
7722 
7723 	while (!done) {
7724 		rings_done = 0;
7725 
7726 		for (i = 0; i < qlge->tx_ring_count; i++) {
7727 			tx_ring = &qlge->tx_ring[i];
7728 			temp = ql_read_doorbell_reg(qlge,
7729 			    tx_ring->prod_idx_db_reg);
7730 			producer_idx = temp & 0x0000ffff;
7731 			consumer_idx = (temp >> 16);
7732 
7733 			if (qlge->isr_stride) {
7734 				struct rx_ring *ob_ring;
7735 				ob_ring = &qlge->rx_ring[tx_ring->cq_id];
7736 				if (producer_idx != ob_ring->cnsmr_idx) {
7737 					cmn_err(CE_NOTE, " force clean \n");
7738 					(void) ql_clean_outbound_rx_ring(
7739 					    ob_ring);
7740 				}
7741 			}
7742 			/*
7743 			 * Get the pending iocb count, ones which have not been
7744 			 * pulled down by the chip
7745 			 */
7746 			if (producer_idx >= consumer_idx)
7747 				temp = (producer_idx - consumer_idx);
7748 			else
7749 				temp = (tx_ring->wq_len - consumer_idx) +
7750 				    producer_idx;
7751 
7752 			if ((tx_ring->tx_free_count + temp) >= tx_ring->wq_len)
7753 				rings_done++;
7754 			else {
7755 				done = 1;
7756 				break;
7757 			}
7758 		}
7759 
7760 		/* If all the rings are done */
7761 		if (rings_done >= qlge->tx_ring_count) {
7762 #ifdef QLGE_LOAD_UNLOAD
7763 			cmn_err(CE_NOTE, "%s(%d) done successfully \n",
7764 			    __func__, qlge->instance);
7765 #endif
7766 			rval = DDI_SUCCESS;
7767 			break;
7768 		}
7769 
7770 		qlge_delay(100);
7771 
7772 		count--;
7773 		if (!count) {
7774 
7775 			count = MAX_TX_WAIT_COUNT;
7776 #ifdef QLGE_LOAD_UNLOAD
7777 			volatile struct rx_ring *rx_ring;
7778 			cmn_err(CE_NOTE, "%s(%d): Waiting for %d pending"
7779 			    " Transmits on queue %d to complete .\n",
7780 			    __func__, qlge->instance,
7781 			    (qlge->tx_ring[i].wq_len -
7782 			    qlge->tx_ring[i].tx_free_count),
7783 			    i);
7784 
7785 			rx_ring = &qlge->rx_ring[i+1];
7786 			temp = ql_read_doorbell_reg(qlge,
7787 			    rx_ring->cnsmr_idx_db_reg);
7788 			consumer_idx = temp & 0x0000ffff;
7789 			producer_idx = (temp >> 16);
7790 			cmn_err(CE_NOTE, "%s(%d): Transmit completion queue %d,"
7791 			    " Producer %d, Consumer %d\n",
7792 			    __func__, qlge->instance,
7793 			    i+1,
7794 			    producer_idx, consumer_idx);
7795 
7796 			temp = ql_read_doorbell_reg(qlge,
7797 			    tx_ring->prod_idx_db_reg);
7798 			producer_idx = temp & 0x0000ffff;
7799 			consumer_idx = (temp >> 16);
7800 			cmn_err(CE_NOTE, "%s(%d): Transmit request queue %d,"
7801 			    " Producer %d, Consumer %d\n",
7802 			    __func__, qlge->instance, i,
7803 			    producer_idx, consumer_idx);
7804 #endif
7805 
7806 			/* For now move on */
7807 			break;
7808 		}
7809 	}
7810 	/* Stop the request queue */
7811 	mutex_enter(&qlge->hw_mutex);
7812 	for (i = 0; i < qlge->tx_ring_count; i++) {
7813 		if (qlge->tx_ring[i].valid_db_reg) {
7814 			ql_write_doorbell_reg(qlge,
7815 			    qlge->tx_ring[i].valid_db_reg, 0);
7816 		}
7817 	}
7818 	mutex_exit(&qlge->hw_mutex);
7819 	return (rval);
7820 }
7821 
7822 /*
7823  * Wait for all the receives indicated to the stack to come back
7824  */
7825 static int
7826 ql_wait_rx_complete(qlge_t *qlge)
7827 {
7828 	int i;
7829 	/* Disable all the completion queues */
7830 	mutex_enter(&qlge->hw_mutex);
7831 	for (i = 0; i < qlge->rx_ring_count; i++) {
7832 		if (qlge->rx_ring[i].valid_db_reg) {
7833 			ql_write_doorbell_reg(qlge,
7834 			    qlge->rx_ring[i].valid_db_reg, 0);
7835 		}
7836 	}
7837 	mutex_exit(&qlge->hw_mutex);
7838 
7839 	/* Wait for OS to return all rx buffers */
7840 	qlge_delay(QL_ONE_SEC_DELAY);
7841 	return (DDI_SUCCESS);
7842 }
7843 
7844 /*
7845  * stop the driver
7846  */
7847 static int
7848 ql_bringdown_adapter(qlge_t *qlge)
7849 {
7850 	int i;
7851 	int status = DDI_SUCCESS;
7852 
7853 	qlge->mac_flags = QL_MAC_BRINGDOWN;
7854 	if (qlge->sequence & ADAPTER_INIT) {
7855 		/* stop forwarding external packets to driver */
7856 		status = ql_sem_spinlock(qlge, SEM_RT_IDX_MASK);
7857 		if (status)
7858 			return (status);
7859 		(void) ql_stop_routing(qlge);
7860 		ql_sem_unlock(qlge, SEM_RT_IDX_MASK);
7861 		/*
7862 		 * Set the flag for receive and transmit
7863 		 * operations to cease
7864 		 */
7865 		for (i = 0; i < qlge->tx_ring_count; i++) {
7866 			mutex_enter(&qlge->tx_ring[i].tx_lock);
7867 			qlge->tx_ring[i].mac_flags = QL_MAC_STOPPED;
7868 			mutex_exit(&qlge->tx_ring[i].tx_lock);
7869 		}
7870 
7871 		for (i = 0; i < qlge->rx_ring_count; i++) {
7872 			mutex_enter(&qlge->rx_ring[i].rx_lock);
7873 			qlge->rx_ring[i].mac_flags = QL_MAC_STOPPED;
7874 			mutex_exit(&qlge->rx_ring[i].rx_lock);
7875 		}
7876 
7877 		/*
7878 		 * Need interrupts to be running while the transmit
7879 		 * completions are cleared. Wait for the packets
7880 		 * queued to the chip to be sent out
7881 		 */
7882 		(void) ql_wait_tx_quiesce(qlge);
7883 		/* Interrupts not needed from now */
7884 		ql_disable_all_completion_interrupts(qlge);
7885 
7886 		mutex_enter(&qlge->hw_mutex);
7887 		/* Disable Global interrupt */
7888 		ql_disable_global_interrupt(qlge);
7889 		mutex_exit(&qlge->hw_mutex);
7890 
7891 		/* Wait for all the indicated packets to come back */
7892 		status = ql_wait_rx_complete(qlge);
7893 
7894 		mutex_enter(&qlge->hw_mutex);
7895 		/* Reset adapter */
7896 		(void) ql_asic_reset(qlge);
7897 		/*
7898 		 * Unbind all tx dma handles to prevent pending tx descriptors'
7899 		 * dma handles from being re-used.
7900 		 */
7901 		for (i = 0; i < qlge->tx_ring_count; i++) {
7902 			ql_unbind_pending_tx_dma_handle(&qlge->tx_ring[i]);
7903 		}
7904 
7905 		qlge->sequence &= ~ADAPTER_INIT;
7906 
7907 		mutex_exit(&qlge->hw_mutex);
7908 	}
7909 	return (status);
7910 }
7911 
7912 /*
7913  * ql_detach
7914  * Used to remove all the states associated with a given
7915  * instances of a device node prior to the removal of that
7916  * instance from the system.
7917  */
7918 static int
7919 ql_detach(dev_info_t *dip, ddi_detach_cmd_t cmd)
7920 {
7921 	qlge_t *qlge;
7922 	int rval;
7923 
7924 	rval = DDI_SUCCESS;
7925 
7926 	switch (cmd) {
7927 	case DDI_DETACH:
7928 
7929 		if ((qlge = QL_GET_DEV(dip)) == NULL)
7930 			return (DDI_FAILURE);
7931 		rval = ql_bringdown_adapter(qlge);
7932 		if (rval != DDI_SUCCESS)
7933 			break;
7934 
7935 		qlge->mac_flags = QL_MAC_DETACH;
7936 
7937 		/* free memory resources */
7938 		if (qlge->sequence & INIT_MEMORY_ALLOC) {
7939 			ql_free_mem_resources(qlge);
7940 			qlge->sequence &= ~INIT_MEMORY_ALLOC;
7941 		}
7942 		ql_free_resources(qlge);
7943 
7944 		break;
7945 
7946 	case DDI_SUSPEND:
7947 		if ((qlge = QL_GET_DEV(dip)) == NULL)
7948 			return (DDI_FAILURE);
7949 
7950 		mutex_enter(&qlge->gen_mutex);
7951 		if ((qlge->mac_flags == QL_MAC_ATTACHED) ||
7952 		    (qlge->mac_flags == QL_MAC_STARTED)) {
7953 			(void) ql_do_stop(qlge);
7954 		}
7955 		qlge->mac_flags = QL_MAC_SUSPENDED;
7956 		mutex_exit(&qlge->gen_mutex);
7957 
7958 		break;
7959 	default:
7960 		rval = DDI_FAILURE;
7961 		break;
7962 	}
7963 
7964 	return (rval);
7965 }
7966 
7967 /*
7968  * quiesce(9E) entry point.
7969  *
7970  * This function is called when the system is single-threaded at high
7971  * PIL with preemption disabled. Therefore, this function must not be
7972  * blocked.
7973  *
7974  * This function returns DDI_SUCCESS on success, or DDI_FAILURE on failure.
7975  */
7976 int
7977 ql_quiesce(dev_info_t *dip)
7978 {
7979 	qlge_t *qlge;
7980 	int i;
7981 
7982 	if ((qlge = QL_GET_DEV(dip)) == NULL)
7983 		return (DDI_FAILURE);
7984 
7985 	if (CFG_IST(qlge, CFG_CHIP_8100)) {
7986 		/* stop forwarding external packets to driver */
7987 		(void) ql_sem_spinlock(qlge, SEM_RT_IDX_MASK);
7988 		(void) ql_stop_routing(qlge);
7989 		ql_sem_unlock(qlge, SEM_RT_IDX_MASK);
7990 		/* Stop all the request queues */
7991 		for (i = 0; i < qlge->tx_ring_count; i++) {
7992 			if (qlge->tx_ring[i].valid_db_reg) {
7993 				ql_write_doorbell_reg(qlge,
7994 				    qlge->tx_ring[i].valid_db_reg, 0);
7995 			}
7996 		}
7997 		qlge_delay(QL_ONE_SEC_DELAY/4);
7998 		/* Interrupts not needed from now */
7999 		/* Disable MPI interrupt */
8000 		ql_write_reg(qlge, REG_INTERRUPT_MASK,
8001 		    (INTR_MASK_PI << 16));
8002 		ql_disable_global_interrupt(qlge);
8003 
8004 		/* Disable all the rx completion queues */
8005 		for (i = 0; i < qlge->rx_ring_count; i++) {
8006 			if (qlge->rx_ring[i].valid_db_reg) {
8007 				ql_write_doorbell_reg(qlge,
8008 				    qlge->rx_ring[i].valid_db_reg, 0);
8009 			}
8010 		}
8011 		qlge_delay(QL_ONE_SEC_DELAY/4);
8012 		qlge->mac_flags = QL_MAC_STOPPED;
8013 		/* Reset adapter */
8014 		(void) ql_asic_reset(qlge);
8015 		qlge_delay(100);
8016 	}
8017 
8018 	return (DDI_SUCCESS);
8019 }
8020 
8021 QL_STREAM_OPS(ql_ops, ql_attach, ql_detach);
8022 
8023 /*
8024  * Loadable Driver Interface Structures.
8025  * Declare and initialize the module configuration section...
8026  */
8027 static struct modldrv modldrv = {
8028 	&mod_driverops,		/* type of module: driver */
8029 	version,		/* name of module */
8030 	&ql_ops			/* driver dev_ops */
8031 };
8032 
8033 static struct modlinkage modlinkage = {
8034 	MODREV_1,	&modldrv,	NULL
8035 };
8036 
8037 /*
8038  * Loadable Module Routines
8039  */
8040 
8041 /*
8042  * _init
8043  * Initializes a loadable module. It is called before any other
8044  * routine in a loadable module.
8045  */
8046 int
8047 _init(void)
8048 {
8049 	int rval;
8050 
8051 	mac_init_ops(&ql_ops, ADAPTER_NAME);
8052 	rval = mod_install(&modlinkage);
8053 	if (rval != DDI_SUCCESS) {
8054 		mac_fini_ops(&ql_ops);
8055 		cmn_err(CE_WARN, "?Unable to install/attach driver '%s'",
8056 		    ADAPTER_NAME);
8057 	}
8058 
8059 	return (rval);
8060 }
8061 
8062 /*
8063  * _fini
8064  * Prepares a module for unloading. It is called when the system
8065  * wants to unload a module. If the module determines that it can
8066  * be unloaded, then _fini() returns the value returned by
8067  * mod_remove(). Upon successful return from _fini() no other
8068  * routine in the module will be called before _init() is called.
8069  */
8070 int
8071 _fini(void)
8072 {
8073 	int rval;
8074 
8075 	rval = mod_remove(&modlinkage);
8076 	if (rval == DDI_SUCCESS) {
8077 		mac_fini_ops(&ql_ops);
8078 	}
8079 
8080 	return (rval);
8081 }
8082 
8083 /*
8084  * _info
8085  * Returns information about loadable module.
8086  */
8087 int
8088 _info(struct modinfo *modinfop)
8089 {
8090 	return (mod_info(&modlinkage, modinfop));
8091 }
8092