xref: /illumos-gate/usr/src/uts/common/io/ena/ena.c (revision ed093b41a93e8563e6e1e5dae0768dda2a7bcc27)
1 /*
2  * This file and its contents are supplied under the terms of the
3  * Common Development and Distribution License ("CDDL"), version 1.0.
4  * You may only use this file in accordance with the terms of version
5  * 1.0 of the CDDL.
6  *
7  * A full copy of the text of the CDDL should have accompanied this
8  * source.  A copy of the CDDL is also available via the Internet at
9  * http://www.illumos.org/license/CDDL.
10  */
11 
12 /*
13  * Copyright 2021 Oxide Computer Company
14  */
15 
16 #include "ena_hw.h"
17 #include "ena.h"
18 
19 /*
20  * Elastic Network Adapter (ENA) Driver
21  * ------------------------------------
22  *
23  * The ena driver provides support for the AWS ENA device, also
24  * referred to as their "enhanced networking". This device is present
25  * on "Nitro"-based instances. It presents itself with the following
26  * PCI Vendor/Device IDs
27  *
28  * o 1d0f:0ec2 -- ENA PF
29  * o 1d0f:1ec2 -- ENA PF (Reserved)
30  * o 1d0f:ec20 -- ENA VF
31  * o 1d0f:ec21 -- ENA VF (Reserved)
32  *
33  * This driver provides support for only the essential features needed
34  * to drive traffic on an ENA device. Support for the following
35  * features IS NOT currently implemented.
36  *
37  *    o Admin Queue Interrupts: queue completion events are always polled
38  *    o AENQ keep alive
39  *    o FMA
40  *    o Rx checksum offloads
41  *    o Tx checksum offloads
42  *    o Tx DMA bind (borrow buffers)
43  *    o Rx DMA bind (loaned buffers)
44  *    o TSO
45  *    o RSS
46  *    o Low Latency Queues (LLQ)
47  *    o Support for different Tx complection policies
48  *    o More controlled Tx recycling and Rx refill
49  *
50  * Even without these features the ena driver should perform
51  * reasonably well.
52  *
53  * Driver vs. Hardware Types
54  * -------------------------
55  *
56  * To properly communicate with the ENA device the driver must
57  * populate memory (registers and buffers) with specific types. These
58  * types are defined by the device and are found under the "common"
59  * (ena_com) code of the AWS Linux and FreeBSD drivers [1]. We have
60  * simplified this a bit by defining all device-specific types in the
61  * ena_hw.h file. Furthermore, all device-specific types are given an
62  * "enahw" prefix. This makes it clear when we are dealing with a
63  * device type and when we are dealing with a driver type.
64  *
65  * [1]: https://github.com/amzn/amzn-drivers
66  *
67  * Groups, Rings (Queues), and Interrupts
68  * --------------------------------------
69  *
70  * The ENA device presents one mac group. This single mac group
71  * represents the single unicast address that this device represents
72  * in your AWS instance. The ENA device presents no option for
73  * configuring additional MAC addresses, multicast, or promisc mode --
74  * you receive only what AWS wants you to receive.
75  *
76  * This single mac group may have one or more rings. The ENA driver
77  * refers to rings as queues, for no special reason other than it was
78  * the dominant language in the Linux and FreeBSD drivers, and it
79  * spilled over into this port. The upper bound on number of queues is
80  * presented by the device. However, we don't just go with whatever
81  * number of queues the device reports; but rather we limit the queues
82  * based on other factors such as an absolute maximum, number of
83  * online CPUs, and number of available interrupts. The upper bound is
84  * calculated by ena_set_max_io_queues(), and that is used and
85  * possibly further restricted in ena_attach_intr_alloc(). As this
86  * point, ultimately, it is the number of available interrupts (minus
87  * one for the admin queue) that determines the number of queues: one
88  * Tx and one Rx on each I/O interrupt.
89  *
90  * NOTE: Perhaps it is overly restrictive to limit the number of
91  * queues to the number of I/O interrupts. Something worth considering
92  * on larger instances if they present far less interrupts than they
93  * do queues + CPUs.
94  *
95  * The ENA device presents MSI-X interrupts only. During attach the
96  * driver queries the number of available interrupts and sets aside
97  * one for admin/AENQ (vector 0) and the rest for I/O (vector 1 to N).
98  * This means that a Tx/Rx queue at index 0 will map to vector 1, and
99  * so on.
100  *
101  * NOTE: The ENA driver currently doesn't make use of the Admin Queue
102  * interrupt. This interrupt is used to notify a the driver that a
103  * command response is read. The ENA driver always polls the Admin
104  * Queue for responses.
105  *
106  * Tx Queue Workings
107  * -----------------
108  *
109  * A single Tx queue (ena_txq_t) is made up of one submission queue
110  * (SQ) and its paired completion queue (CQ). These two queues form a
111  * logical descriptor ring which is used to send packets out of the
112  * device -- where each SQ entry describes the packet to be sent
113  * (enahw_tx_desc_t) and each CQ entry describes the result of sending
114  * a packet (enahw_tx_cdesc_t). For this to work the host and device
115  * must agree on which descriptors are currently owned by the host
116  * (free for sending) and which are owned by the device (pending
117  * device completion). This state is tracked on the host side via head
118  * and tail indexes along with a phase value.
119  *
120  * The head and tail values represent the head and tail of the FIFO
121  * queue of pending packets -- the next packet to be sent by the
122  * device is head, and all descriptors up to tail are ready for
123  * sending. The phase allows the host to determine which CQ
124  * descriptors represent completed events when using per-SQ completion
125  * events (as opposed to queue head pointer updates). As the queues
126  * represent a logical ring buffer, the phase must alternate on
127  * wrap-around. The device initializes the phase to zero, and the host
128  * starts with a phase of 1. The first packet descriptor writes, and
129  * their corresponding completions, are indicated with a phase of 1.
130  *
131  *
132  * For example, the diagram below represents the SQ/CQ state after the
133  * first 6 packets have been sent by the host and 2 of them have been
134  * completed by the device (and these completions have been processed
135  * by the driver). In this state the host could send 4 more packets
136  * before needing to wait on completion events.
137  *
138  *
139  *    +---+---+---+---+---+---+---+---+
140  * SQ | 1 | 1 | 1 | 1 | 1 | 1 | 0 | 0 |   phase = 1
141  *    +---+---+---+---+---+---+---+---+
142  *                              ^
143  *                              |
144  *                            tail
145  *            head
146  *              |
147  *              v
148  *    +---+---+---+---+---+---+---+---+
149  * CQ | 1 | 1 | 0 | 0 | 0 | 0 | 0 | 0 |   phase = 1
150  *    +---+---+---+---+---+---+---+---+
151  *
152  *
153  * The next diagram shows how the state changes as 5 more packets are
154  * sent (for a total of 11) and 7 more are completed (for a total of
155  * 9). Notice that as the SQ and CQ have wrapped around their phases
156  * have been complemented. In this state the host could send 6 more
157  * packets before needing to wait on completion events.
158  *
159  *    +---+---+---+---+---+---+---+---+
160  * SQ | 0 | 0 | 0 | 1 | 1 | 1 | 1 | 1 |   phase = 0
161  *    +---+---+---+---+---+---+---+---+
162  *                  ^
163  *                  |
164  *                tail
165  *        head
166  *          |
167  *          v
168  *    +---+---+---+---+---+---+---+---+
169  * CQ | 0 | 1 | 1 | 1 | 1 | 1 | 1 | 1 |   phase = 0
170  *    +---+---+---+---+---+---+---+---+
171  *
172  *
173  * Currently, all packets are copied for Tx. At ring start we allocate
174  * a Tx Control Buffer (TCB) for each queue descriptor. Each TCB has
175  * DMA buffer associated with it; and each buffer is large enough to
176  * hold the MTU. Therefore, Tx descriptors and TCBs currently have a
177  * 1:1 mapping. When a packet is sent, the mblk's buffer is copied to
178  * the TCB's DMA buffer, and a new descriptor is written to the SQ
179  * describing said TCB buffer. If and when we add more advanced
180  * features like DMA binding of mblks and TSO, this 1:1 guarantee will
181  * no longer hold.
182  *
183  * Rx Queue Workings
184  * -----------------
185  *
186  * In terms of implementing the logical descriptor ring, the Rx queues
187  * are very much like the Tx queues. There is a paired SQ and CQ for
188  * each logical ring. The difference is that in Rx the SQ is for
189  * handing buffers to the device to fill, and the CQ is for describing
190  * the contents of those buffers for a given received frame. At Rx
191  * ring start we allocate a Rx Control Buffer (RCB) for each
192  * descriptor in the ring. Each RCB has a DMA buffer associated with
193  * it; and each buffer is large enough to hold the MTU. For each
194  * received frame we copy the contents out of the RCB and into its own
195  * mblk, immediately returning the RCB for reuse. As with Tx, this
196  * gives us a simple 1:1 mapping currently, but if more advanced
197  * features are implemented later this could change.
198  *
199  * Asynchronous Event Notification Queue (AENQ)
200  * --------------------------------------------
201  *
202  * Each ENA device comes with a mechanism for sending out-of-band
203  * notifications to the driver. This includes events like link state
204  * changes, fatal errors, and a watchdog/keep alive signal. The AENQ
205  * delivery mechanism is via interrupt, handled by the ena_aenq_work()
206  * function, which dispatches via the eaenq_hdlrs table. If no handler
207  * is registered, the ena_aenq_default_hdlr() handler is used. A given
208  * device may not support all the different event types
209  * (enahw_aenq_groups_t); and the driver may choose to enable a subset
210  * of the supported events. During attach we call ena_setup_aenq() to
211  * negotiate the supported/enabled events. The enabled group is stored
212  * at ena_aenq_enabled_groups.
213  *
214  * Queues and Unsigned Wraparound
215  * ------------------------------
216  *
217  * All the queues use a uint16_t value as their head/tail values, e.g.
218  * the Rx queue's er_cq_head_idx value. You might notice that we only
219  * ever increment these values, letting them perform implicit unsigned
220  * integer wraparound. This is intended. This is the same behavior as
221  * the common code, and seems to be what the hardware expects. Of
222  * course, when accessing our own descriptor arrays we must make sure
223  * to first perform a modulo of this value or risk running off into
224  * space.
225  *
226  * Attach Sequencing
227  * -----------------
228  *
229  * Most drivers implement their attach/detach/cleanup functions as a
230  * sequential stream of function calls used to allocate and initialize
231  * resources in an order determined by the device's programming manual
232  * combined with any requirements imposed by the kernel and its
233  * relevant modules. These functions can become quite long. It is
234  * often hard to see the order in which steps are taken, and even
235  * harder to tell if detach/cleanup undoes them in the correct order,
236  * or even if it undoes them at all! The only sure way to understand
237  * the flow is to take good notes while closely inspecting each line
238  * of code. Even then, it's easy for attach and detach to get out of
239  * sync.
240  *
241  * Some more recent drivers have improved on this situation by using a
242  * bit vector to track the sequence of events in attach/detach. Each
243  * bit is declared in as an enum value, in the same order it is
244  * expected attach would run, and thus detach would run in the exact
245  * opposite order. This has three main benefits:
246  *
247  *    1. It makes it easier to determine sequence order at a
248  *       glance.
249  *
250  *    2. It gives a better idea of what state the device is in during
251  *       debugging (the sequence bit vector is kept with the instance
252  *       state).
253  *
254  *    3. The detach function can verify that all sequence bits are
255  *       cleared, indicating that everything done in attach was
256  *       successfully undone.
257  *
258  * These are great improvements. However, the attach/detach functions
259  * can still become unruly, and there is still no guarantee that
260  * detach is done in opposite order of attach (this is not always
261  * strictly required, but is probably the best way to write detach).
262  * There is still a lot of boilerplate and chance for programmer
263  * error.
264  *
265  * The ena driver takes the sequence idea a bit further, creating a
266  * descriptor table of the attach sequence (ena_attach_tbl). This
267  * table is used by attach/detach to generically, declaratively, and
268  * programmaticaly enforce the precise sequence order and verify that
269  * anything that is done is undone. This provides several benefits:
270  *
271  *    o Correct order is enforced implicitly by the descriptor table.
272  *      It is impossible for the detach sequence to run in any other
273  *      order other than opposite that of attach.
274  *
275  *    o It is obvious what the precise attach sequence is. While the
276  *      bit vector enum helps a lot with this it doesn't prevent
277  *      programmer error. With the sequence defined as a declarative
278  *      table it makes it easy for the programmer to see the order and
279  *      know it's followed exactly.
280  *
281  *    o It is impossible to modify the attach sequence without also
282  *      specifying a callback for its dual in the detach sequence.
283  *
284  *    o Common and repetitive code like error checking, logging, and bit
285  *      vector modification is eliminated and centralized, again
286  *      reducing the chance of programmer error.
287  *
288  * The ena attach sequence is defined under ena_attach_seq_t. The
289  * descriptor table is defined under ena_attach_tbl.
290  */
291 
292 /*
293  * These are some basic data layout invariants on which development
294  * assumptions where made.
295  */
296 CTASSERT(sizeof (enahw_aenq_desc_t) == 64);
297 /* TODO: Why doesn't this work? */
298 /* CTASSERT(sizeof (enahw_tx_data_desc_t) == 64); */
299 CTASSERT(sizeof (enahw_tx_data_desc_t) == sizeof (enahw_tx_meta_desc_t));
300 CTASSERT(sizeof (enahw_tx_data_desc_t) == sizeof (enahw_tx_desc_t));
301 CTASSERT(sizeof (enahw_tx_meta_desc_t) == sizeof (enahw_tx_desc_t));
302 /*
303  * We add this here as an extra safety check to make sure that any
304  * addition to the AENQ group enum also updates the groups array num
305  * value.
306  */
307 CTASSERT(ENAHW_AENQ_GROUPS_ARR_NUM == 6);
308 
309 /*
310  * Amazon does not specify the endianess of the ENA device. We assume
311  * it's the same as the bus, and we assume the CPU/bus is always
312  * little endian.
313  */
314 #ifdef _BIG_ENDIAN
315 #error "ENA driver is little-endian only"
316 #endif
317 
318 /*
319  * These values are used to communicate the driver version to the AWS
320  * hypervisor via the ena_set_host_info() function. We don't know what
321  * exactly AWS does with this info, but it's fairly safe to assume
322  * it's used solely for debug/informational purposes. The Linux driver
323  * updates these values frequently as bugs are fixed and features are
324  * added.
325  */
326 #define	ENA_DRV_VER_MAJOR	1
327 #define	ENA_DRV_VER_MINOR	0
328 #define	ENA_DRV_VER_SUBMINOR	0
329 
330 uint64_t ena_admin_cmd_timeout_ns = ENA_ADMIN_CMD_DEF_TIMEOUT;
331 
332 /*
333  * Log an error message. We leave the destination (console or system
334  * log) up to the caller
335  */
336 void
337 ena_err(const ena_t *ena, const char *fmt, ...)
338 {
339 	va_list ap;
340 
341 	va_start(ap, fmt);
342 	if (ena != NULL && ena->ena_dip != NULL) {
343 		vdev_err(ena->ena_dip, CE_WARN, fmt, ap);
344 	} else {
345 		vcmn_err(CE_WARN, fmt, ap);
346 	}
347 	va_end(ap);
348 }
349 
350 /*
351  * Set this to B_TRUE to enable debug messages.
352  */
353 boolean_t ena_debug = B_FALSE;
354 
355 /*
356  * Log a debug message. We force all debug messages to go to the
357  * system log.
358  */
359 void
360 ena_dbg(const ena_t *ena, const char *fmt, ...)
361 {
362 	va_list ap;
363 
364 	if (ena_debug) {
365 		char msg[1024];
366 
367 		va_start(ap, fmt);
368 		(void) vsnprintf(msg, sizeof (msg), fmt, ap);
369 		va_end(ap);
370 
371 		if (ena != NULL && ena->ena_dip != NULL) {
372 			dev_err(ena->ena_dip, CE_NOTE, "!%s", msg);
373 		} else {
374 			cmn_err(CE_NOTE, "!%s", msg);
375 		}
376 	}
377 }
378 
379 ena_aenq_grpstr_t ena_groups_str[ENAHW_AENQ_GROUPS_ARR_NUM] = {
380 	{ .eag_type = ENAHW_AENQ_GROUP_LINK_CHANGE, .eag_str = "LINK CHANGE" },
381 	{ .eag_type = ENAHW_AENQ_GROUP_FATAL_ERROR, .eag_str = "FATAL ERROR" },
382 	{ .eag_type = ENAHW_AENQ_GROUP_WARNING, .eag_str = "WARNING" },
383 	{
384 		.eag_type = ENAHW_AENQ_GROUP_NOTIFICATION,
385 		.eag_str = "NOTIFICATION"
386 	},
387 	{ .eag_type = ENAHW_AENQ_GROUP_KEEP_ALIVE, .eag_str = "KEEP ALIVE" },
388 	{
389 		.eag_type = ENAHW_AENQ_GROUP_REFRESH_CAPABILITIES,
390 		.eag_str = "REFRESH CAPABILITIES"
391 	},
392 };
393 
394 void
395 ena_aenq_work(ena_t *ena)
396 {
397 	ena_aenq_t *aenq = &ena->ena_aenq;
398 	uint16_t head_mod = aenq->eaenq_head & (aenq->eaenq_num_descs - 1);
399 	boolean_t processed = B_FALSE;
400 	enahw_aenq_desc_t *desc = &aenq->eaenq_descs[head_mod];
401 	uint64_t ts;
402 
403 	ts = ((uint64_t)desc->ead_ts_high << 32) | (uint64_t)desc->ead_ts_low;
404 	ENA_DMA_SYNC(aenq->eaenq_dma, DDI_DMA_SYNC_FORKERNEL);
405 
406 	while (ENAHW_AENQ_DESC_PHASE(desc) == aenq->eaenq_phase) {
407 		ena_aenq_hdlr_t hdlr;
408 
409 		ASSERT3U(desc->ead_group, <, ENAHW_AENQ_GROUPS_ARR_NUM);
410 		processed = B_TRUE;
411 		ena_dbg(ena, "AENQ Group: (0x%x) %s Syndrome: 0x%x ts: %" PRIu64
412 		    " us", desc->ead_group,
413 		    ena_groups_str[desc->ead_group].eag_str, desc->ead_syndrome,
414 		    ts);
415 
416 		hdlr = ena->ena_aenq.eaenq_hdlrs[desc->ead_group];
417 		hdlr(ena, desc);
418 
419 		aenq->eaenq_head++;
420 		head_mod = aenq->eaenq_head & (aenq->eaenq_num_descs - 1);
421 
422 		if (head_mod == 0) {
423 			aenq->eaenq_phase = !aenq->eaenq_phase;
424 		}
425 
426 		desc = &aenq->eaenq_descs[head_mod];
427 	}
428 
429 	if (processed) {
430 		ena_hw_bar_write32(ena, ENAHW_REG_AENQ_HEAD_DB,
431 		    aenq->eaenq_head);
432 	}
433 }
434 
435 /*
436  * Use for attach sequences which perform no resource allocation (or
437  * global state modification) and thus require no subsequent
438  * deallocation.
439  */
440 static void
441 ena_no_cleanup(ena_t *ena)
442 {
443 }
444 
445 static boolean_t
446 ena_attach_pci(ena_t *ena)
447 {
448 	ddi_acc_handle_t hdl;
449 
450 	if (pci_config_setup(ena->ena_dip, &hdl) != 0) {
451 		return (B_FALSE);
452 	}
453 
454 	ena->ena_pci_hdl = hdl;
455 	ena->ena_pci_vid = pci_config_get16(hdl, PCI_CONF_VENID);
456 	ena->ena_pci_did = pci_config_get16(hdl, PCI_CONF_DEVID);
457 	ena->ena_pci_rev = pci_config_get8(hdl, PCI_CONF_REVID);
458 	ena->ena_pci_svid = pci_config_get16(hdl, PCI_CONF_SUBVENID);
459 	ena->ena_pci_sdid = pci_config_get16(hdl, PCI_CONF_SUBSYSID);
460 	ena_dbg(ena, "vid: 0x%x did: 0x%x rev: 0x%x svid: 0x%x sdid: 0x%x",
461 	    ena->ena_pci_vid, ena->ena_pci_did, ena->ena_pci_rev,
462 	    ena->ena_pci_svid, ena->ena_pci_sdid);
463 
464 	return (B_TRUE);
465 }
466 
467 static void
468 ena_cleanup_pci(ena_t *ena)
469 {
470 	pci_config_teardown(&ena->ena_pci_hdl);
471 }
472 
473 static void
474 ena_cleanup_regs_map(ena_t *ena)
475 {
476 	ddi_regs_map_free(&ena->ena_reg_hdl);
477 }
478 
479 static boolean_t
480 ena_attach_regs_map(ena_t *ena)
481 {
482 	int ret = 0;
483 
484 	if (ddi_dev_regsize(ena->ena_dip, ENA_REG_NUMBER, &ena->ena_reg_size) !=
485 	    DDI_SUCCESS) {
486 		ena_err(ena, "failed to get register set %d size",
487 		    ENA_REG_NUMBER);
488 		return (B_FALSE);
489 	}
490 
491 	ena_dbg(ena, "register size: %ld", ena->ena_reg_size);
492 	bzero(&ena->ena_reg_attr, sizeof (ena->ena_reg_attr));
493 	ena->ena_reg_attr.devacc_attr_version = DDI_DEVICE_ATTR_V1;
494 	ena->ena_reg_attr.devacc_attr_endian_flags = DDI_NEVERSWAP_ACC;
495 	ena->ena_reg_attr.devacc_attr_dataorder = DDI_STRICTORDER_ACC;
496 
497 	/*
498 	 * This function can return several different failure values,
499 	 * so we make sure to capture its return value for the purpose
500 	 * of logging.
501 	 */
502 	ret = ddi_regs_map_setup(ena->ena_dip, ENA_REG_NUMBER,
503 	    &ena->ena_reg_base, 0, ena->ena_reg_size, &ena->ena_reg_attr,
504 	    &ena->ena_reg_hdl);
505 
506 	if (ret != DDI_SUCCESS) {
507 		ena_err(ena, "failed to map register set %d: %d",
508 		    ENA_REG_NUMBER, ret);
509 		return (B_FALSE);
510 	}
511 
512 	ena_dbg(ena, "registers mapped to base: 0x%p",
513 	    (void *)ena->ena_reg_base);
514 
515 	return (B_TRUE);
516 }
517 
518 /*
519  * Free any resources related to the admin submission queue.
520  */
521 static void
522 ena_admin_sq_free(ena_t *ena)
523 {
524 	ena_dma_free(&ena->ena_aq.ea_sq.eas_dma);
525 }
526 
527 /*
528  * Initialize the admin submission queue.
529  */
530 static boolean_t
531 ena_admin_sq_init(ena_t *ena)
532 {
533 	ena_adminq_t *aq = &ena->ena_aq;
534 	ena_dma_buf_t *dma = &aq->ea_sq.eas_dma;
535 	size_t size = aq->ea_qlen * sizeof (*aq->ea_sq.eas_entries);
536 	uint32_t addr_low, addr_high, wval;
537 	ena_dma_conf_t conf = {
538 		.edc_size = size,
539 		.edc_align = ENAHW_ADMIN_SQ_DESC_BUF_ALIGNMENT,
540 		.edc_sgl = 1,
541 		.edc_endian = DDI_NEVERSWAP_ACC,
542 		.edc_stream = B_FALSE,
543 	};
544 
545 	if (!ena_dma_alloc(ena, dma, &conf, size)) {
546 		ena_err(ena, "failed to allocate DMA for Admin SQ");
547 		return (B_FALSE);
548 	}
549 
550 	aq->ea_sq.eas_entries = (void *)dma->edb_va;
551 	aq->ea_sq.eas_tail = 0;
552 	aq->ea_sq.eas_phase = 1;
553 	aq->ea_sq.eas_dbaddr =
554 	    (uint32_t *)(ena->ena_reg_base + ENAHW_REG_ASQ_DB);
555 	ENA_DMA_VERIFY_ADDR(ena, dma->edb_cookie->dmac_laddress);
556 	addr_low = (uint32_t)(dma->edb_cookie->dmac_laddress);
557 	addr_high = (uint32_t)(dma->edb_cookie->dmac_laddress >> 32);
558 	ena_hw_bar_write32(ena, ENAHW_REG_ASQ_BASE_LO, addr_low);
559 	ena_hw_bar_write32(ena, ENAHW_REG_ASQ_BASE_HI, addr_high);
560 	wval = ENAHW_ASQ_CAPS_DEPTH(aq->ea_qlen) |
561 	    ENAHW_ASQ_CAPS_ENTRY_SIZE(sizeof (*aq->ea_sq.eas_entries));
562 	ena_hw_bar_write32(ena, ENAHW_REG_ASQ_CAPS, wval);
563 	return (B_TRUE);
564 }
565 
566 /*
567  * Free any resources related to the admin completion queue.
568  */
569 static void
570 ena_admin_cq_free(ena_t *ena)
571 {
572 	ena_dma_free(&ena->ena_aq.ea_cq.eac_dma);
573 }
574 
575 /*
576  * Initialize the admin completion queue.
577  */
578 static boolean_t
579 ena_admin_cq_init(ena_t *ena)
580 {
581 	ena_adminq_t *aq = &ena->ena_aq;
582 	ena_dma_buf_t *dma = &aq->ea_cq.eac_dma;
583 	size_t size = aq->ea_qlen * sizeof (*aq->ea_cq.eac_entries);
584 	uint32_t addr_low, addr_high, wval;
585 	ena_dma_conf_t conf = {
586 		.edc_size = size,
587 		.edc_align = ENAHW_ADMIN_CQ_DESC_BUF_ALIGNMENT,
588 		.edc_sgl = 1,
589 		.edc_endian = DDI_NEVERSWAP_ACC,
590 		.edc_stream = B_FALSE,
591 	};
592 
593 	if (!ena_dma_alloc(ena, dma, &conf, size)) {
594 		ena_err(ena, "failed to allocate DMA for Admin CQ");
595 		return (B_FALSE);
596 	}
597 
598 	aq->ea_cq.eac_entries = (void *)dma->edb_va;
599 	aq->ea_cq.eac_head = 0;
600 	aq->ea_cq.eac_phase = 1;
601 	ENA_DMA_VERIFY_ADDR(ena, dma->edb_cookie->dmac_laddress);
602 	addr_low = (uint32_t)(dma->edb_cookie->dmac_laddress);
603 	addr_high = (uint32_t)(dma->edb_cookie->dmac_laddress >> 32);
604 	ena_hw_bar_write32(ena, ENAHW_REG_ACQ_BASE_LO, addr_low);
605 	ena_hw_bar_write32(ena, ENAHW_REG_ACQ_BASE_HI, addr_high);
606 	wval = ENAHW_ACQ_CAPS_DEPTH(aq->ea_qlen) |
607 	    ENAHW_ACQ_CAPS_ENTRY_SIZE(sizeof (*aq->ea_cq.eac_entries));
608 	ena_hw_bar_write32(ena, ENAHW_REG_ACQ_CAPS, wval);
609 	return (B_TRUE);
610 }
611 
612 static void
613 ena_aenq_default_hdlr(void *data, enahw_aenq_desc_t *desc)
614 {
615 	ena_t *ena = data;
616 
617 	ena->ena_aenq_stat.eaes_default.value.ui64++;
618 	ena_dbg(ena, "unimplemented handler for aenq group: %s",
619 	    ena_groups_str[desc->ead_group].eag_str);
620 }
621 
622 static void
623 ena_aenq_link_change_hdlr(void *data, enahw_aenq_desc_t *desc)
624 {
625 	ena_t *ena = data;
626 	boolean_t is_up = (desc->ead_payload.link_change.flags &
627 	    ENAHW_AENQ_LINK_CHANGE_LINK_STATUS_MASK) != 0;
628 
629 	/*
630 	 * The interupts are not enabled until after we register mac,
631 	 * so the mac handle should be valid.
632 	 */
633 	ASSERT3U(ena->ena_attach_seq, >=, ENA_ATTACH_MAC_REGISTER);
634 	ena->ena_aenq_stat.eaes_link_change.value.ui64++;
635 
636 	mutex_enter(&ena->ena_lock);
637 
638 	/*
639 	 * Notify mac only on an actual change in status.
640 	 */
641 	if (ena->ena_link_up != is_up) {
642 		if (is_up) {
643 			mac_link_update(ena->ena_mh, LINK_STATE_UP);
644 		} else {
645 			mac_link_update(ena->ena_mh, LINK_STATE_DOWN);
646 		}
647 	}
648 
649 	ena->ena_link_up = is_up;
650 
651 	mutex_exit(&ena->ena_lock);
652 }
653 
654 /*
655  * Free any resources related to the Async Event Notification Queue.
656  */
657 static void
658 ena_aenq_free(ena_t *ena)
659 {
660 	ena_dma_free(&ena->ena_aenq.eaenq_dma);
661 }
662 
663 static void
664 ena_aenq_set_def_hdlrs(ena_aenq_t *aenq)
665 {
666 	aenq->eaenq_hdlrs[ENAHW_AENQ_GROUP_LINK_CHANGE] = ena_aenq_default_hdlr;
667 	aenq->eaenq_hdlrs[ENAHW_AENQ_GROUP_FATAL_ERROR] = ena_aenq_default_hdlr;
668 	aenq->eaenq_hdlrs[ENAHW_AENQ_GROUP_WARNING] = ena_aenq_default_hdlr;
669 	aenq->eaenq_hdlrs[ENAHW_AENQ_GROUP_NOTIFICATION] =
670 	    ena_aenq_default_hdlr;
671 	aenq->eaenq_hdlrs[ENAHW_AENQ_GROUP_KEEP_ALIVE] = ena_aenq_default_hdlr;
672 	aenq->eaenq_hdlrs[ENAHW_AENQ_GROUP_REFRESH_CAPABILITIES] =
673 	    ena_aenq_default_hdlr;
674 }
675 /*
676  * Initialize the Async Event Notification Queue.
677  */
678 static boolean_t
679 ena_aenq_init(ena_t *ena)
680 {
681 	ena_aenq_t *aenq = &ena->ena_aenq;
682 	size_t size;
683 	uint32_t addr_low, addr_high, wval;
684 	ena_dma_conf_t conf;
685 
686 	aenq->eaenq_num_descs = ENA_AENQ_NUM_DESCS;
687 	size = aenq->eaenq_num_descs * sizeof (*aenq->eaenq_descs);
688 
689 	conf = (ena_dma_conf_t) {
690 		.edc_size = size,
691 		.edc_align = ENAHW_AENQ_DESC_BUF_ALIGNMENT,
692 		.edc_sgl = 1,
693 		.edc_endian = DDI_NEVERSWAP_ACC,
694 		.edc_stream = B_FALSE,
695 	};
696 
697 	if (!ena_dma_alloc(ena, &aenq->eaenq_dma, &conf, size)) {
698 		ena_err(ena, "failed to allocate DMA for AENQ");
699 		return (B_FALSE);
700 	}
701 
702 	aenq->eaenq_descs = (void *)aenq->eaenq_dma.edb_va;
703 	aenq->eaenq_head = 0;
704 	aenq->eaenq_phase = 1;
705 	bzero(aenq->eaenq_descs, size);
706 	ena_aenq_set_def_hdlrs(aenq);
707 
708 	aenq->eaenq_hdlrs[ENAHW_AENQ_GROUP_LINK_CHANGE] =
709 	    ena_aenq_link_change_hdlr;
710 
711 	ENA_DMA_VERIFY_ADDR(ena, aenq->eaenq_dma.edb_cookie->dmac_laddress);
712 	addr_low = (uint32_t)(aenq->eaenq_dma.edb_cookie->dmac_laddress);
713 	addr_high = (uint32_t)(aenq->eaenq_dma.edb_cookie->dmac_laddress >> 32);
714 	ena_hw_bar_write32(ena, ENAHW_REG_AENQ_BASE_LO, addr_low);
715 	ena_hw_bar_write32(ena, ENAHW_REG_AENQ_BASE_HI, addr_high);
716 	ENA_DMA_SYNC(aenq->eaenq_dma, DDI_DMA_SYNC_FORDEV);
717 	wval = ENAHW_AENQ_CAPS_DEPTH(aenq->eaenq_num_descs) |
718 	    ENAHW_AENQ_CAPS_ENTRY_SIZE(sizeof (*aenq->eaenq_descs));
719 	ena_hw_bar_write32(ena, ENAHW_REG_AENQ_CAPS, wval);
720 	return (B_TRUE);
721 }
722 
723 /*
724  * We limit the max number of I/O queues based on several aspects of
725  * the underlying hardware.
726  *
727  * 1. The absolute upper limit is set by ENAHW_MAX_NUM_IO_QUEUES,
728  *    which comes from the common code and presumably is based on device
729  *    constraints.
730  *
731  * 2. Next we latch the number of I/O queues to the number of online
732  *    CPUs. The idea being that each queue is a parallel work stream,
733  *    and having more queues than CPUs to flush them will not improve
734  *    performance. The number of online CPUs can change dynamically,
735  *    and that's okay, everything should still work fine, it just
736  *    might not be ideal.
737  *
738  * 3. Next we latch the number of I/O queues to the smallest of the
739  *    max Tx queues and max Rx queues. We could probably loosen this
740  *    restriction in the future, and have separate max I/O queues for
741  *    Tx and Rx. This is what Linux does, and seems like a fine place
742  *    to start.
743  */
744 static void
745 ena_set_max_io_queues(ena_t *ena)
746 {
747 	uint32_t max = ENAHW_MAX_NUM_IO_QUEUES;
748 
749 	max = MIN(ncpus_online, max);
750 	/*
751 	 * Supposedly a device could present a different number of SQs
752 	 * and CQs. This driver is desinged in a way that requires
753 	 * each SQ to have a corresponding and dedicated CQ (how would
754 	 * it work otherwise). Therefore, we must check both values
755 	 * and find the minimum between them.
756 	 */
757 	max = MIN(ena->ena_tx_max_sq_num, max);
758 	max = MIN(ena->ena_tx_max_cq_num, max);
759 	max = MIN(ena->ena_rx_max_sq_num, max);
760 	max = MIN(ena->ena_rx_max_cq_num, max);
761 
762 
763 	/* This shouldn't happen, but just in case. */
764 	if (max == 0) {
765 		max = 1;
766 	}
767 
768 	ena->ena_max_io_queues = max;
769 }
770 
771 /*
772  * We require that an Rx or Tx buffer be able to hold the maximum MTU
773  * along with the maximum frame header length. In this case we know
774  * ENA is presenting us an Ethernet frame so we add the size of an
775  * Ethernet VLAN header. Rx has the additional requirement of needing
776  * additional margin for the sake of IP header alignment.
777  */
778 static void
779 ena_update_buf_sizes(ena_t *ena)
780 {
781 	ena->ena_max_frame_hdr = sizeof (struct ether_vlan_header);
782 	ena->ena_max_frame_total = ena->ena_max_frame_hdr + ena->ena_mtu;
783 	ena->ena_tx_buf_sz = P2ROUNDUP_TYPED(ena->ena_max_frame_total,
784 	    ena->ena_page_sz, uint32_t);
785 	ena->ena_rx_buf_sz = P2ROUNDUP_TYPED(ena->ena_max_frame_total +
786 	    ENA_RX_BUF_IPHDR_ALIGNMENT, ena->ena_page_sz, uint32_t);
787 }
788 
789 static boolean_t
790 ena_get_offloads(ena_t *ena)
791 {
792 	int ret = 0;
793 	enahw_resp_desc_t resp;
794 	enahw_feat_offload_t *feat = &resp.erd_resp.erd_get_feat.ergf_offload;
795 
796 	ena->ena_tx_l3_ipv4_csum = B_FALSE;
797 
798 	ena->ena_tx_l4_ipv4_part_csum = B_FALSE;
799 	ena->ena_tx_l4_ipv4_full_csum = B_FALSE;
800 	ena->ena_tx_l4_ipv4_lso = B_FALSE;
801 
802 	ena->ena_tx_l4_ipv6_part_csum = B_FALSE;
803 	ena->ena_tx_l4_ipv6_full_csum = B_FALSE;
804 	ena->ena_tx_l4_ipv6_lso = B_FALSE;
805 
806 	ena->ena_rx_l3_ipv4_csum = B_FALSE;
807 	ena->ena_rx_l4_ipv4_csum = B_FALSE;
808 	ena->ena_rx_l4_ipv6_csum = B_FALSE;
809 	ena->ena_rx_hash = B_FALSE;
810 
811 	bzero(&resp, sizeof (resp));
812 	ret = ena_get_feature(ena, &resp, ENAHW_FEAT_STATELESS_OFFLOAD_CONFIG,
813 	    ENAHW_FEAT_STATELESS_OFFLOAD_CONFIG_VER);
814 
815 	if (ret == ENOTSUP) {
816 		/*
817 		 * In this case the device does not support querying
818 		 * for hardware offloads. We take that as a sign that
819 		 * the device provides no offloads.
820 		 */
821 		return (B_TRUE);
822 	} else if (ret != 0) {
823 		ena_err(ena, "error getting stateless offload: %d", ret);
824 		return (B_FALSE);
825 	}
826 
827 	ena->ena_tx_l3_ipv4_csum = ENAHW_FEAT_OFFLOAD_TX_L3_IPV4_CSUM(feat);
828 
829 	ena->ena_tx_l4_ipv4_part_csum =
830 	    ENAHW_FEAT_OFFLOAD_TX_L4_IPV4_CSUM_PART(feat);
831 	ena->ena_tx_l4_ipv4_full_csum =
832 	    ENAHW_FEAT_OFFLOAD_TX_L4_IPV4_CSUM_FULL(feat);
833 	ena->ena_tx_l4_ipv4_lso = ENAHW_FEAT_OFFLOAD_TSO_IPV4(feat);
834 
835 	ena->ena_tx_l4_ipv6_part_csum =
836 	    ENAHW_FEAT_OFFLOAD_TX_L4_IPV6_CSUM_PART(feat);
837 	ena->ena_tx_l4_ipv6_full_csum =
838 	    ENAHW_FEAT_OFFLOAD_TX_L4_IPV6_CSUM_FULL(feat);
839 	ena->ena_tx_l4_ipv6_lso = ENAHW_FEAT_OFFLOAD_TSO_IPV6(feat);
840 
841 	ena->ena_rx_l3_ipv4_csum = ENAHW_FEAT_OFFLOAD_RX_L3_IPV4_CSUM(feat);
842 	ena->ena_rx_l4_ipv4_csum = ENAHW_FEAT_OFFLOAD_RX_L4_IPV4_CSUM(feat);
843 	ena->ena_rx_l4_ipv6_csum = ENAHW_FEAT_OFFLOAD_RX_L4_IPV6_CSUM(feat);
844 	return (B_TRUE);
845 }
846 
847 static int
848 ena_get_prop(ena_t *ena, char *propname, const int minval, const int maxval,
849     const int defval)
850 {
851 	int value = ddi_prop_get_int(DDI_DEV_T_ANY, ena->ena_dip,
852 	    DDI_PROP_DONTPASS, propname, defval);
853 
854 	if (value > maxval) {
855 		ena_err(ena, "user value %s=%d exceeded maximum, setting to %d",
856 		    propname, value, maxval);
857 		value = maxval;
858 	}
859 
860 	if (value < minval) {
861 		ena_err(ena, "user value %s=%d below minimum, setting to %d",
862 		    propname, value, minval);
863 		value = minval;
864 	}
865 
866 	return (value);
867 }
868 
869 static boolean_t
870 ena_set_mtu(ena_t *ena)
871 {
872 	int ret = 0;
873 	enahw_cmd_desc_t cmd;
874 	enahw_feat_mtu_t *feat = &cmd.ecd_cmd.ecd_set_feat.ecsf_feat.ecsf_mtu;
875 	enahw_resp_desc_t resp;
876 
877 	bzero(&cmd, sizeof (cmd));
878 	bzero(&resp, sizeof (resp));
879 	feat->efm_mtu = ena->ena_mtu;
880 
881 	if ((ret = ena_set_feature(ena, &cmd, &resp, ENAHW_FEAT_MTU,
882 	    ENAHW_FEAT_MTU_VER)) != 0) {
883 		ena_err(ena, "failed to set device MTU to %u: %d", ena->ena_mtu,
884 		    ret);
885 		return (B_FALSE);
886 	}
887 
888 	return (B_TRUE);
889 }
890 
891 static void
892 ena_get_link_config(ena_t *ena)
893 {
894 	enahw_resp_desc_t resp;
895 	enahw_feat_link_conf_t *feat =
896 	    &resp.erd_resp.erd_get_feat.ergf_link_conf;
897 	boolean_t full_duplex;
898 
899 	bzero(&resp, sizeof (resp));
900 
901 	if (ena_get_feature(ena, &resp, ENAHW_FEAT_LINK_CONFIG,
902 	    ENAHW_FEAT_LINK_CONFIG_VER) != 0) {
903 		/*
904 		 * Some ENA devices do no support this feature. In
905 		 * those cases we report a 1Gbps link, full duplex.
906 		 * For the most accurate information on bandwidth
907 		 * limits see the official AWS documentation.
908 		 */
909 		ena->ena_link_speed_mbits = 1 * 1000 * 1000;
910 		ena->ena_link_speeds = ENAHW_LINK_SPEED_1G;
911 		ena->ena_link_duplex = LINK_DUPLEX_FULL;
912 		ena->ena_link_autoneg = B_TRUE;
913 		return;
914 	}
915 
916 	ena->ena_link_speed_mbits = feat->eflc_speed;
917 	ena->ena_link_speeds = feat->eflc_supported;
918 	full_duplex = ENAHW_FEAT_LINK_CONF_FULL_DUPLEX(feat);
919 	ena->ena_link_duplex = full_duplex ? LINK_DUPLEX_FULL :
920 	    LINK_DUPLEX_HALF;
921 	ena->ena_link_autoneg = ENAHW_FEAT_LINK_CONF_AUTONEG(feat);
922 }
923 
924 /*
925  * Retrieve all configuration values which are modifiable via
926  * ena.conf, and set ena_t members accordingly. While the conf values
927  * have priority, they may be implicitly modified by the driver to
928  * meet resource constraints on a given platform. If no value is
929  * specified in the conf file, the driver will attempt to use the
930  * largest value supported. While there should be no value large
931  * enough, keep in mind that ena_get_prop() will cast the values to an
932  * int.
933  *
934  * This function should be called after the device is initialized,
935  * admin queue is established, and the hardware features/capabs have
936  * been queried; it should be called before mac registration.
937  */
938 static boolean_t
939 ena_attach_read_conf(ena_t *ena)
940 {
941 	uint32_t gcv;	/* Greatest Common Value */
942 
943 	/*
944 	 * We expect that the queue lengths are the same for both the
945 	 * CQ and SQ, but technically the device could return
946 	 * different lengths. For now the driver locks them together.
947 	 */
948 	gcv = min(ena->ena_rx_max_sq_num_descs, ena->ena_rx_max_cq_num_descs);
949 	ASSERT3U(gcv, <=, INT_MAX);
950 	ena->ena_rxq_num_descs = ena_get_prop(ena, ENA_PROP_RXQ_NUM_DESCS,
951 	    ENA_PROP_RXQ_NUM_DESCS_MIN, gcv, gcv);
952 
953 	ena->ena_rxq_intr_limit = ena_get_prop(ena, ENA_PROP_RXQ_INTR_LIMIT,
954 	    ENA_PROP_RXQ_INTR_LIMIT_MIN, ENA_PROP_RXQ_INTR_LIMIT_MAX,
955 	    ENA_PROP_RXQ_INTR_LIMIT_DEF);
956 
957 	gcv = min(ena->ena_tx_max_sq_num_descs, ena->ena_tx_max_cq_num_descs);
958 	ASSERT3U(gcv, <=, INT_MAX);
959 	ena->ena_txq_num_descs = ena_get_prop(ena, ENA_PROP_TXQ_NUM_DESCS,
960 	    ENA_PROP_TXQ_NUM_DESCS_MIN, gcv, gcv);
961 
962 	return (B_TRUE);
963 }
964 
965 /*
966  * Perform any necessary device configuration after the driver.conf
967  * has been read.
968  */
969 static boolean_t
970 ena_attach_dev_cfg(ena_t *ena)
971 {
972 	ASSERT3U(ena->ena_attach_seq, >=, ENA_ATTACH_READ_CONF);
973 
974 	if (!ena_set_mtu(ena)) {
975 		/*
976 		 * We don't expect this to fail, but we try a fallback
977 		 * first before failing the attach sequence.
978 		 */
979 		ena->ena_mtu = 1500;
980 		ena_err(ena, "trying fallback MTU: %u", ena->ena_mtu);
981 
982 		if (!ena_set_mtu(ena)) {
983 			return (B_FALSE);
984 		}
985 	}
986 
987 	return (B_TRUE);
988 }
989 
990 static boolean_t
991 ena_check_versions(ena_t *ena)
992 {
993 	uint32_t dev_vsn = ena_hw_bar_read32(ena, ENAHW_REG_VERSION);
994 	uint32_t ctrl_vsn =
995 	    ena_hw_bar_read32(ena, ENAHW_REG_CONTROLLER_VERSION);
996 
997 	ena->ena_dev_major_vsn = ENAHW_DEV_MAJOR_VSN(dev_vsn);
998 	ena->ena_dev_minor_vsn = ENAHW_DEV_MINOR_VSN(dev_vsn);
999 
1000 	ena->ena_ctrl_major_vsn = ENAHW_CTRL_MAJOR_VSN(ctrl_vsn);
1001 	ena->ena_ctrl_minor_vsn = ENAHW_CTRL_MINOR_VSN(ctrl_vsn);
1002 	ena->ena_ctrl_subminor_vsn = ENAHW_CTRL_SUBMINOR_VSN(ctrl_vsn);
1003 	ena->ena_ctrl_impl_id = ENAHW_CTRL_IMPL_ID(ctrl_vsn);
1004 
1005 	if (ena->ena_ctrl_subminor_vsn < ENA_CTRL_SUBMINOR_VSN_MIN) {
1006 		ena_err(ena, "unsupported controller version: %u.%u.%u",
1007 		    ena->ena_ctrl_major_vsn, ena->ena_ctrl_minor_vsn,
1008 		    ena->ena_ctrl_subminor_vsn);
1009 		return (B_FALSE);
1010 	}
1011 
1012 	return (B_TRUE);
1013 }
1014 
1015 boolean_t
1016 ena_setup_aenq(ena_t *ena)
1017 {
1018 	enahw_cmd_desc_t cmd;
1019 	enahw_feat_aenq_t *cmd_feat =
1020 	    &cmd.ecd_cmd.ecd_set_feat.ecsf_feat.ecsf_aenq;
1021 	enahw_resp_desc_t resp;
1022 	enahw_feat_aenq_t *resp_feat = &resp.erd_resp.erd_get_feat.ergf_aenq;
1023 	enahw_aenq_groups_t to_enable;
1024 
1025 	bzero(&resp, sizeof (resp));
1026 	if (ena_get_feature(ena, &resp, ENAHW_FEAT_AENQ_CONFIG,
1027 	    ENAHW_FEAT_AENQ_CONFIG_VER) != 0) {
1028 		return (B_FALSE);
1029 	}
1030 
1031 	to_enable = BIT(ENAHW_AENQ_GROUP_LINK_CHANGE) |
1032 	    BIT(ENAHW_AENQ_GROUP_FATAL_ERROR) |
1033 	    BIT(ENAHW_AENQ_GROUP_WARNING) |
1034 	    BIT(ENAHW_AENQ_GROUP_NOTIFICATION);
1035 	to_enable &= resp_feat->efa_supported_groups;
1036 
1037 	bzero(&cmd, sizeof (cmd));
1038 	bzero(&resp, sizeof (cmd));
1039 	cmd_feat->efa_enabled_groups = to_enable;
1040 
1041 	if (ena_set_feature(ena, &cmd, &resp, ENAHW_FEAT_AENQ_CONFIG,
1042 	    ENAHW_FEAT_AENQ_CONFIG_VER) != 0) {
1043 		return (B_FALSE);
1044 	}
1045 
1046 	bzero(&resp, sizeof (resp));
1047 	if (ena_get_feature(ena, &resp, ENAHW_FEAT_AENQ_CONFIG,
1048 	    ENAHW_FEAT_AENQ_CONFIG_VER) != 0) {
1049 		return (B_FALSE);
1050 	}
1051 
1052 	ena->ena_aenq_supported_groups = resp_feat->efa_supported_groups;
1053 	ena->ena_aenq_enabled_groups = resp_feat->efa_enabled_groups;
1054 
1055 	for (uint_t i = 0; i < ENAHW_AENQ_GROUPS_ARR_NUM; i++) {
1056 		ena_aenq_grpstr_t *grpstr = &ena_groups_str[i];
1057 		boolean_t supported = BIT(grpstr->eag_type) &
1058 		    resp_feat->efa_supported_groups;
1059 		boolean_t enabled = BIT(grpstr->eag_type) &
1060 		    resp_feat->efa_enabled_groups;
1061 
1062 		ena_dbg(ena, "%s supported: %s enabled: %s", grpstr->eag_str,
1063 		    supported ? "Y" : "N", enabled ? "Y" : "N");
1064 	}
1065 
1066 	return (B_TRUE);
1067 }
1068 
1069 /*
1070  * Free all resources allocated as part of ena_device_init().
1071  */
1072 static void
1073 ena_cleanup_device_init(ena_t *ena)
1074 {
1075 	ena_adminq_t *aq = &ena->ena_aq;
1076 
1077 	ena_free_host_info(ena);
1078 	mutex_destroy(&aq->ea_sq_lock);
1079 	mutex_destroy(&aq->ea_cq_lock);
1080 	mutex_destroy(&aq->ea_stat_lock);
1081 	list_destroy(&aq->ea_cmd_ctxs_free);
1082 	kmem_free(aq->ea_cmd_ctxs, sizeof (ena_cmd_ctx_t) * aq->ea_qlen);
1083 	ena_admin_sq_free(ena);
1084 	ena_admin_cq_free(ena);
1085 	ena_aenq_free(ena);
1086 	ena_stat_device_basic_cleanup(ena);
1087 	ena_stat_device_extended_cleanup(ena);
1088 	ena_stat_aenq_cleanup(ena);
1089 }
1090 
1091 static boolean_t
1092 ena_attach_device_init(ena_t *ena)
1093 {
1094 	ena_adminq_t *aq = &ena->ena_aq;
1095 	uint32_t rval, wval;
1096 	uint8_t dma_width;
1097 	hrtime_t timeout, cmd_timeout;
1098 	hrtime_t expired;
1099 	enahw_resp_desc_t resp;
1100 	enahw_feat_dev_attr_t *feat = &resp.erd_resp.erd_get_feat.ergf_dev_attr;
1101 	uint8_t *maddr;
1102 	uint32_t supported_features;
1103 	int ret = 0;
1104 
1105 	rval = ena_hw_bar_read32(ena, ENAHW_REG_DEV_STS);
1106 	if ((rval & ENAHW_DEV_STS_READY_MASK) == 0) {
1107 		ena_err(ena, "device is not ready");
1108 		return (B_FALSE);
1109 	}
1110 
1111 	rval = ena_hw_bar_read32(ena, ENAHW_REG_CAPS);
1112 
1113 	/*
1114 	 * The device stores the reset timeout at 100ms resolution; we
1115 	 * normalize that to nanoseconds.
1116 	 */
1117 	timeout = MSEC2NSEC(ENAHW_CAPS_RESET_TIMEOUT(rval) * 100);
1118 
1119 	if (timeout == 0) {
1120 		ena_err(ena, "device gave invalid reset timeout");
1121 		return (B_FALSE);
1122 	}
1123 
1124 	expired = gethrtime() + timeout;
1125 
1126 	wval = ENAHW_DEV_CTL_DEV_RESET_MASK;
1127 	wval |= (ENAHW_RESET_NORMAL << ENAHW_DEV_CTL_RESET_REASON_SHIFT) &
1128 	    ENAHW_DEV_CTL_RESET_REASON_MASK;
1129 	ena_hw_bar_write32(ena, ENAHW_REG_DEV_CTL, wval);
1130 
1131 	/*
1132 	 * Make sure reset is in progress.
1133 	 */
1134 	while (1) {
1135 		rval = ena_hw_bar_read32(ena, ENAHW_REG_DEV_STS);
1136 
1137 		if ((rval & ENAHW_DEV_STS_RESET_IN_PROGRESS_MASK) != 0) {
1138 			break;
1139 		}
1140 
1141 		if (gethrtime() > expired) {
1142 			ena_err(ena, "device reset start timed out");
1143 			return (B_FALSE);
1144 		}
1145 
1146 		/* Sleep for 100 milliseconds. */
1147 		delay(drv_usectohz(100 * 1000));
1148 	}
1149 
1150 	/*
1151 	 * Reset the timeout counter for the next device request.
1152 	 */
1153 	expired = gethrtime() + timeout;
1154 
1155 	/*
1156 	 * Wait for the device reset to finish.
1157 	 */
1158 	ena_hw_bar_write32(ena, ENAHW_REG_DEV_CTL, 0);
1159 	while (1) {
1160 		rval = ena_hw_bar_read32(ena, ENAHW_REG_DEV_STS);
1161 
1162 		if ((rval & ENAHW_DEV_STS_RESET_IN_PROGRESS_MASK) == 0) {
1163 			break;
1164 		}
1165 
1166 		if (gethrtime() > expired) {
1167 			ena_err(ena, "device reset timed out");
1168 			return (B_FALSE);
1169 		}
1170 
1171 		/* Sleep for 100 milliseconds. */
1172 		delay(drv_usectohz(100 * 1000));
1173 	}
1174 
1175 	if (!ena_check_versions(ena)) {
1176 		return (B_FALSE);
1177 	}
1178 
1179 	rval = ena_hw_bar_read32(ena, ENAHW_REG_CAPS);
1180 	dma_width = ENAHW_CAPS_DMA_ADDR_WIDTH(rval);
1181 	ena->ena_dma_width = dma_width;
1182 
1183 	/*
1184 	 * As we are not using an interrupt for admin queue completion
1185 	 * signaling, we do not need a priority on these mutexes. If
1186 	 * that changes, we will have to rejigger some code to create
1187 	 * the admin queue interrupt before this function.
1188 	 */
1189 	mutex_init(&aq->ea_sq_lock, NULL, MUTEX_DRIVER, NULL);
1190 	mutex_init(&aq->ea_cq_lock, NULL, MUTEX_DRIVER, NULL);
1191 	mutex_init(&aq->ea_stat_lock, NULL, MUTEX_DRIVER, NULL);
1192 	aq->ea_qlen = ENA_ADMINQ_DEPTH;
1193 	aq->ea_pending_cmds = 0;
1194 
1195 	aq->ea_cmd_ctxs = kmem_zalloc(sizeof (ena_cmd_ctx_t) * aq->ea_qlen,
1196 	    KM_SLEEP);
1197 	list_create(&aq->ea_cmd_ctxs_free, sizeof (ena_cmd_ctx_t),
1198 	    offsetof(ena_cmd_ctx_t, ectx_node));
1199 
1200 	for (uint_t i = 0; i < aq->ea_qlen; i++) {
1201 		ena_cmd_ctx_t *ctx = &aq->ea_cmd_ctxs[i];
1202 
1203 		ctx->ectx_id = i;
1204 		ctx->ectx_pending = B_FALSE;
1205 		ctx->ectx_cmd_opcode = ENAHW_CMD_NONE;
1206 		ctx->ectx_resp = NULL;
1207 		list_insert_tail(&aq->ea_cmd_ctxs_free, ctx);
1208 	}
1209 
1210 	/*
1211 	 * The value stored in the device register is in the
1212 	 * resolution of 100 milliseconds. We normalize that to
1213 	 * nanoseconds.
1214 	 */
1215 	cmd_timeout = MSEC2NSEC(ENAHW_CAPS_ADMIN_CMD_TIMEOUT(rval) * 100);
1216 	aq->ea_cmd_timeout_ns = max(cmd_timeout, ena_admin_cmd_timeout_ns);
1217 
1218 	if (aq->ea_cmd_timeout_ns == 0) {
1219 		aq->ea_cmd_timeout_ns = ENA_ADMIN_CMD_DEF_TIMEOUT;
1220 	}
1221 
1222 	if (!ena_admin_sq_init(ena)) {
1223 		return (B_FALSE);
1224 	}
1225 
1226 	if (!ena_admin_cq_init(ena)) {
1227 		return (B_FALSE);
1228 	}
1229 
1230 	if (!ena_aenq_init(ena)) {
1231 		return (B_FALSE);
1232 	}
1233 
1234 	/*
1235 	 * While the Linux driver prefers to use interrupts to deliver
1236 	 * admin queue completions, we just poll -- it seems to work
1237 	 * just fine.
1238 	 */
1239 	ena_hw_bar_write32(ena, ENAHW_REG_INTERRUPT_MASK, 0);
1240 	aq->ea_poll_mode = B_TRUE;
1241 
1242 	bzero(&resp, sizeof (resp));
1243 	ret = ena_get_feature(ena, &resp, ENAHW_FEAT_DEVICE_ATTRIBUTES,
1244 	    ENAHW_FEAT_DEVICE_ATTRIBUTES_VER);
1245 
1246 	if (ret != 0) {
1247 		ena_err(ena, "failed to get device attributes: %d", ret);
1248 		return (B_FALSE);
1249 	}
1250 
1251 	ena_dbg(ena, "impl ID: %u", feat->efda_impl_id);
1252 	ena_dbg(ena, "device version: %u", feat->efda_device_version);
1253 	ena_dbg(ena, "supported features: 0x%x",
1254 	    feat->efda_supported_features);
1255 	ena_dbg(ena, "phys addr width: %u", feat->efda_phys_addr_width);
1256 	ena_dbg(ena, "virt addr width: %u", feat->efda_virt_addr_with);
1257 	maddr = feat->efda_mac_addr;
1258 	ena_dbg(ena, "mac addr: %x:%x:%x:%x:%x:%x", maddr[0], maddr[1],
1259 	    maddr[2], maddr[3], maddr[4], maddr[5]);
1260 	ena_dbg(ena, "max MTU: %u", feat->efda_max_mtu);
1261 
1262 	bcopy(maddr, ena->ena_mac_addr, ETHERADDRL);
1263 	ena->ena_max_mtu = feat->efda_max_mtu;
1264 	supported_features = feat->efda_supported_features;
1265 	ena->ena_supported_features = supported_features;
1266 	feat = NULL;
1267 	bzero(&resp, sizeof (resp));
1268 
1269 	if (supported_features & BIT(ENAHW_FEAT_MAX_QUEUES_EXT)) {
1270 		enahw_feat_max_queue_ext_t *feat_mqe =
1271 		    &resp.erd_resp.erd_get_feat.ergf_max_queue_ext;
1272 
1273 		ret = ena_get_feature(ena, &resp, ENAHW_FEAT_MAX_QUEUES_EXT,
1274 		    ENAHW_FEAT_MAX_QUEUES_EXT_VER);
1275 
1276 		if (ret != 0) {
1277 			ena_err(ena, "failed to query max queues ext: %d", ret);
1278 			return (B_FALSE);
1279 		}
1280 
1281 		ena->ena_tx_max_sq_num = feat_mqe->efmqe_max_tx_sq_num;
1282 		ena->ena_tx_max_sq_num_descs = feat_mqe->efmqe_max_tx_sq_depth;
1283 		ena->ena_tx_max_cq_num = feat_mqe->efmqe_max_tx_cq_num;
1284 		ena->ena_tx_max_cq_num_descs = feat_mqe->efmqe_max_tx_cq_depth;
1285 		ena->ena_tx_max_desc_per_pkt =
1286 		    feat_mqe->efmqe_max_per_packet_tx_descs;
1287 		ena->ena_tx_max_hdr_len = feat_mqe->efmqe_max_tx_header_size;
1288 
1289 		ena->ena_rx_max_sq_num = feat_mqe->efmqe_max_rx_sq_num;
1290 		ena->ena_rx_max_sq_num_descs = feat_mqe->efmqe_max_rx_sq_depth;
1291 		ena->ena_rx_max_cq_num = feat_mqe->efmqe_max_rx_cq_num;
1292 		ena->ena_rx_max_cq_num_descs = feat_mqe->efmqe_max_rx_cq_depth;
1293 		ena->ena_rx_max_desc_per_pkt =
1294 		    feat_mqe->efmqe_max_per_packet_rx_descs;
1295 
1296 		ena_set_max_io_queues(ena);
1297 	} else {
1298 		enahw_feat_max_queue_t *feat_mq =
1299 		    &resp.erd_resp.erd_get_feat.ergf_max_queue;
1300 
1301 		ret = ena_get_feature(ena, &resp, ENAHW_FEAT_MAX_QUEUES_NUM,
1302 		    ENAHW_FEAT_MAX_QUEUES_NUM_VER);
1303 
1304 		if (ret != 0) {
1305 			ena_err(ena, "failed to query max queues: %d", ret);
1306 			return (B_FALSE);
1307 		}
1308 
1309 		ena->ena_tx_max_sq_num = feat_mq->efmq_max_sq_num;
1310 		ena->ena_tx_max_sq_num_descs = feat_mq->efmq_max_sq_depth;
1311 		ena->ena_tx_max_cq_num = feat_mq->efmq_max_cq_num;
1312 		ena->ena_tx_max_cq_num_descs = feat_mq->efmq_max_cq_depth;
1313 		ena->ena_tx_max_desc_per_pkt =
1314 		    feat_mq->efmq_max_per_packet_tx_descs;
1315 		ena->ena_tx_max_hdr_len = feat_mq->efmq_max_header_size;
1316 
1317 		ena->ena_rx_max_sq_num = feat_mq->efmq_max_sq_num;
1318 		ena->ena_rx_max_sq_num_descs = feat_mq->efmq_max_sq_depth;
1319 		ena->ena_rx_max_cq_num = feat_mq->efmq_max_cq_num;
1320 		ena->ena_rx_max_cq_num_descs = feat_mq->efmq_max_cq_depth;
1321 		ena->ena_rx_max_desc_per_pkt =
1322 		    feat_mq->efmq_max_per_packet_rx_descs;
1323 
1324 		ena_set_max_io_queues(ena);
1325 	}
1326 
1327 	ena->ena_mtu = ena->ena_max_mtu;
1328 	ena_update_buf_sizes(ena);
1329 	/*
1330 	 * We could use ENAHW_FEAT_HW_HINTS to determine actual SGL
1331 	 * sizes, for now we just force everything to use one
1332 	 * segment.
1333 	 */
1334 	ena->ena_tx_sgl_max_sz = 1;
1335 	ena->ena_rx_sgl_max_sz = 1;
1336 
1337 	if (!ena_init_host_info(ena)) {
1338 		return (B_FALSE);
1339 	}
1340 
1341 	if (!ena_setup_aenq(ena)) {
1342 		return (B_FALSE);
1343 	}
1344 
1345 	ena_get_link_config(ena);
1346 
1347 	if (!ena_get_offloads(ena)) {
1348 		return (B_FALSE);
1349 	}
1350 
1351 	if (!ena_stat_device_basic_init(ena)) {
1352 		return (B_FALSE);
1353 	}
1354 
1355 	if (!ena_stat_device_extended_init(ena)) {
1356 		return (B_FALSE);
1357 	}
1358 
1359 	if (!ena_stat_aenq_init(ena)) {
1360 		return (B_FALSE);
1361 	}
1362 
1363 	return (B_TRUE);
1364 }
1365 
1366 static void
1367 ena_cleanup_intr_alloc(ena_t *ena)
1368 {
1369 	for (int i = 0; i < ena->ena_num_intrs; i++) {
1370 		int ret = ddi_intr_free(ena->ena_intr_handles[i]);
1371 		if (ret != DDI_SUCCESS) {
1372 			ena_err(ena, "failed to free interrupt %d: %d", i, ret);
1373 		}
1374 	}
1375 
1376 	if (ena->ena_intr_handles != NULL) {
1377 		kmem_free(ena->ena_intr_handles, ena->ena_intr_handles_sz);
1378 		ena->ena_intr_handles = NULL;
1379 		ena->ena_intr_handles_sz = 0;
1380 	}
1381 }
1382 
1383 /*
1384  * The Linux driver supports only MSI-X interrupts. We do the same,
1385  * with the assumption that it's the only type of interrupt the device
1386  * can present.
1387  */
1388 static boolean_t
1389 ena_attach_intr_alloc(ena_t *ena)
1390 {
1391 	int ret;
1392 	int types;
1393 	int min, req, ideal, avail, actual;
1394 
1395 	ret = ddi_intr_get_supported_types(ena->ena_dip, &types);
1396 	if (ret != DDI_SUCCESS) {
1397 		ena_err(ena, "failed to get interrupt types: %d", ret);
1398 		return (B_FALSE);
1399 	}
1400 
1401 	ena_dbg(ena, "supported interrupt types: 0x%x", types);
1402 	if ((types & DDI_INTR_TYPE_MSIX) == 0) {
1403 		ena_err(ena, "the ena driver only supports MSI-X interrupts");
1404 		return (B_FALSE);
1405 	}
1406 
1407 	/* One for I/O, one for adminq. */
1408 	min = 2;
1409 	ideal = ena->ena_max_io_queues + 1;
1410 	ret = ddi_intr_get_nintrs(ena->ena_dip, DDI_INTR_TYPE_MSIX, &avail);
1411 	if (ret != DDI_SUCCESS) {
1412 		ena_err(ena, "failed to get number of MSI-X interrupts: %d",
1413 		    ret);
1414 		return (B_FALSE);
1415 	}
1416 
1417 	if (avail < min) {
1418 		ena_err(ena, "number of MSI-X interrupts is %d, but the driver "
1419 		    "requires a minimum of %d", avail, min);
1420 		return (B_FALSE);
1421 	}
1422 
1423 	ena_dbg(ena, "%d MSI-X interrupts available", avail);
1424 
1425 	ret = ddi_intr_get_navail(ena->ena_dip, DDI_INTR_TYPE_MSIX, &avail);
1426 	if (ret != DDI_SUCCESS) {
1427 		ena_err(ena, "failed to get available interrupts: %d", ret);
1428 		return (B_FALSE);
1429 	}
1430 
1431 	if (avail < min) {
1432 		ena_err(ena, "number of available MSI-X interrupts is %d, "
1433 		    "but the driver requires a minimum of %d", avail, min);
1434 		return (B_FALSE);
1435 	}
1436 
1437 	req = MIN(ideal, avail);
1438 	ena->ena_intr_handles_sz = req * sizeof (ddi_intr_handle_t);
1439 	ena->ena_intr_handles = kmem_zalloc(ena->ena_intr_handles_sz, KM_SLEEP);
1440 
1441 	ret = ddi_intr_alloc(ena->ena_dip, ena->ena_intr_handles,
1442 	    DDI_INTR_TYPE_MSIX, 0, req, &actual, DDI_INTR_ALLOC_NORMAL);
1443 	if (ret != DDI_SUCCESS) {
1444 		ena_err(ena, "failed to allocate %d MSI-X interrupts: %d",
1445 		    req, ret);
1446 		return (B_FALSE);
1447 	}
1448 
1449 	if (actual < min) {
1450 		ena_err(ena, "number of allocated interrupts is %d, but the "
1451 		    "driver requires a minimum of %d", actual, min);
1452 		return (B_FALSE);
1453 	}
1454 
1455 	ena->ena_num_intrs = actual;
1456 
1457 	ret = ddi_intr_get_cap(ena->ena_intr_handles[0], &ena->ena_intr_caps);
1458 	if (ret != DDI_SUCCESS) {
1459 		ena_err(ena, "failed to get interrupt capability: %d", ret);
1460 		return (B_FALSE);
1461 	}
1462 
1463 	ret = ddi_intr_get_pri(ena->ena_intr_handles[0], &ena->ena_intr_pri);
1464 	if (ret != DDI_SUCCESS) {
1465 		ena_err(ena, "failed to get interrupt priority: %d", ret);
1466 		return (B_FALSE);
1467 	}
1468 
1469 	ena_dbg(ena, "MSI-X interrupts allocated: %d, cap: 0x%x, pri: %u",
1470 	    actual, ena->ena_intr_caps, ena->ena_intr_pri);
1471 
1472 	/*
1473 	 * The ena_lock should not be held in the datapath, but it is
1474 	 * held as part of the AENQ handler, which runs in interrupt
1475 	 * context. Therefore, we delayed the initilization of this
1476 	 * mutex until after the interrupts are allocated.
1477 	 */
1478 	mutex_init(&ena->ena_lock, NULL, MUTEX_DRIVER,
1479 	    DDI_INTR_PRI(ena->ena_intr_pri));
1480 
1481 	return (B_TRUE);
1482 }
1483 
1484 /*
1485  * Allocate the parent Rx queue structures. More importantly, this is
1486  * NOT allocating the queue descriptors or data buffers. Those are
1487  * allocated on demand as queues are started.
1488  */
1489 static boolean_t
1490 ena_attach_alloc_rxqs(ena_t *ena)
1491 {
1492 	/* We rely on the interrupt priority for initializing the mutexes. */
1493 	VERIFY3U(ena->ena_attach_seq, >=, ENA_ATTACH_INTR_ALLOC);
1494 	ena->ena_num_rxqs = ena->ena_num_intrs - 1;
1495 	ASSERT3U(ena->ena_num_rxqs, >, 0);
1496 	ena->ena_rxqs = kmem_zalloc(ena->ena_num_rxqs * sizeof (*ena->ena_rxqs),
1497 	    KM_SLEEP);
1498 
1499 	for (uint_t i = 0; i < ena->ena_num_rxqs; i++) {
1500 		ena_rxq_t *rxq = &ena->ena_rxqs[i];
1501 
1502 		rxq->er_rxqs_idx = i;
1503 		/* The 0th vector is for Admin + AENQ. */
1504 		rxq->er_intr_vector = i + 1;
1505 		rxq->er_mrh = NULL;
1506 
1507 		mutex_init(&rxq->er_lock, NULL, MUTEX_DRIVER,
1508 		    DDI_INTR_PRI(ena->ena_intr_pri));
1509 		mutex_init(&rxq->er_stat_lock, NULL, MUTEX_DRIVER,
1510 		    DDI_INTR_PRI(ena->ena_intr_pri));
1511 
1512 		rxq->er_ena = ena;
1513 		rxq->er_sq_num_descs = ena->ena_rxq_num_descs;
1514 		rxq->er_cq_num_descs = ena->ena_rxq_num_descs;
1515 
1516 		if (!ena_stat_rxq_init(rxq)) {
1517 			return (B_FALSE);
1518 		}
1519 
1520 		if (!ena_alloc_rxq(rxq)) {
1521 			return (B_FALSE);
1522 		}
1523 	}
1524 
1525 	return (B_TRUE);
1526 }
1527 
1528 static void
1529 ena_cleanup_rxqs(ena_t *ena)
1530 {
1531 	for (uint_t i = 0; i < ena->ena_num_rxqs; i++) {
1532 		ena_rxq_t *rxq = &ena->ena_rxqs[i];
1533 
1534 		ena_cleanup_rxq(rxq);
1535 		mutex_destroy(&rxq->er_lock);
1536 		mutex_destroy(&rxq->er_stat_lock);
1537 		ena_stat_rxq_cleanup(rxq);
1538 	}
1539 
1540 	kmem_free(ena->ena_rxqs, ena->ena_num_rxqs * sizeof (*ena->ena_rxqs));
1541 }
1542 
1543 /*
1544  * Allocate the parent Tx queue structures. More importantly, this is
1545  * NOT allocating the queue descriptors or data buffers. Those are
1546  * allocated on demand as a queue is started.
1547  */
1548 static boolean_t
1549 ena_attach_alloc_txqs(ena_t *ena)
1550 {
1551 	/* We rely on the interrupt priority for initializing the mutexes. */
1552 	VERIFY3U(ena->ena_attach_seq, >=, ENA_ATTACH_INTR_ALLOC);
1553 	ena->ena_num_txqs = ena->ena_num_intrs - 1;
1554 	ASSERT3U(ena->ena_num_txqs, >, 0);
1555 	ena->ena_txqs = kmem_zalloc(ena->ena_num_txqs * sizeof (*ena->ena_txqs),
1556 	    KM_SLEEP);
1557 
1558 	for (uint_t i = 0; i < ena->ena_num_txqs; i++) {
1559 		ena_txq_t *txq = &ena->ena_txqs[i];
1560 
1561 		txq->et_txqs_idx = i;
1562 		/* The 0th vector is for Admin + AENQ. */
1563 		txq->et_intr_vector = i + 1;
1564 		txq->et_mrh = NULL;
1565 
1566 		mutex_init(&txq->et_lock, NULL, MUTEX_DRIVER,
1567 		    DDI_INTR_PRI(ena->ena_intr_pri));
1568 		mutex_init(&txq->et_stat_lock, NULL, MUTEX_DRIVER,
1569 		    DDI_INTR_PRI(ena->ena_intr_pri));
1570 
1571 		txq->et_ena = ena;
1572 		txq->et_sq_num_descs = ena->ena_txq_num_descs;
1573 		txq->et_cq_num_descs = ena->ena_txq_num_descs;
1574 
1575 		if (!ena_stat_txq_init(txq)) {
1576 			return (B_FALSE);
1577 		}
1578 
1579 		if (!ena_alloc_txq(txq)) {
1580 			return (B_FALSE);
1581 		}
1582 	}
1583 
1584 	return (B_TRUE);
1585 }
1586 
1587 static void
1588 ena_cleanup_txqs(ena_t *ena)
1589 {
1590 	for (uint_t i = 0; i < ena->ena_num_rxqs; i++) {
1591 		ena_txq_t *txq = &ena->ena_txqs[i];
1592 
1593 		ena_cleanup_txq(txq);
1594 		mutex_destroy(&txq->et_lock);
1595 		mutex_destroy(&txq->et_stat_lock);
1596 		ena_stat_txq_cleanup(txq);
1597 	}
1598 
1599 	kmem_free(ena->ena_txqs, ena->ena_num_txqs * sizeof (*ena->ena_txqs));
1600 }
1601 
1602 ena_attach_desc_t ena_attach_tbl[ENA_ATTACH_NUM_ENTRIES] = {
1603 	{
1604 		.ead_seq = ENA_ATTACH_PCI,
1605 		.ead_name = "PCI config",
1606 		.ead_attach_fn = ena_attach_pci,
1607 		.ead_attach_hard_fail = B_TRUE,
1608 		.ead_cleanup_fn = ena_cleanup_pci,
1609 	},
1610 
1611 	{
1612 		.ead_seq = ENA_ATTACH_REGS,
1613 		.ead_name = "BAR mapping",
1614 		.ead_attach_fn = ena_attach_regs_map,
1615 		.ead_attach_hard_fail = B_TRUE,
1616 		.ead_cleanup_fn = ena_cleanup_regs_map,
1617 	},
1618 
1619 	{
1620 		.ead_seq = ENA_ATTACH_DEV_INIT,
1621 		.ead_name = "device initialization",
1622 		.ead_attach_fn = ena_attach_device_init,
1623 		.ead_attach_hard_fail = B_TRUE,
1624 		.ead_cleanup_fn = ena_cleanup_device_init,
1625 	},
1626 
1627 	{
1628 		.ead_seq = ENA_ATTACH_READ_CONF,
1629 		.ead_name = "ena.conf",
1630 		.ead_attach_fn = ena_attach_read_conf,
1631 		.ead_attach_hard_fail = B_TRUE,
1632 		.ead_cleanup_fn = ena_no_cleanup,
1633 	},
1634 
1635 	{
1636 		.ead_seq = ENA_ATTACH_DEV_CFG,
1637 		.ead_name = "device config",
1638 		.ead_attach_fn = ena_attach_dev_cfg,
1639 		.ead_attach_hard_fail = B_TRUE,
1640 		.ead_cleanup_fn = ena_no_cleanup,
1641 	},
1642 
1643 	{
1644 		.ead_seq = ENA_ATTACH_INTR_ALLOC,
1645 		.ead_name = "interrupt allocation",
1646 		.ead_attach_fn = ena_attach_intr_alloc,
1647 		.ead_attach_hard_fail = B_TRUE,
1648 		.ead_cleanup_fn = ena_cleanup_intr_alloc,
1649 	},
1650 
1651 	{
1652 		.ead_seq = ENA_ATTACH_INTR_HDLRS,
1653 		.ead_name = "interrupt handlers",
1654 		.ead_attach_fn = ena_intr_add_handlers,
1655 		.ead_attach_hard_fail = B_TRUE,
1656 		.ead_cleanup_fn = ena_intr_remove_handlers,
1657 	},
1658 
1659 	{
1660 		.ead_seq = ENA_ATTACH_TXQS_ALLOC,
1661 		.ead_name = "Tx queues",
1662 		.ead_attach_fn = ena_attach_alloc_txqs,
1663 		.ead_attach_hard_fail = B_TRUE,
1664 		.ead_cleanup_fn = ena_cleanup_txqs,
1665 	},
1666 
1667 	{
1668 		.ead_seq = ENA_ATTACH_RXQS_ALLOC,
1669 		.ead_name = "Rx queues",
1670 		.ead_attach_fn = ena_attach_alloc_rxqs,
1671 		.ead_attach_hard_fail = B_TRUE,
1672 		.ead_cleanup_fn = ena_cleanup_rxqs,
1673 	},
1674 
1675 	/*
1676 	 * The chance of mac_unregister() failure poses a problem to
1677 	 * cleanup. We address interrupt disablement and mac
1678 	 * unregistration explicitly in the attach/detach routines.
1679 	 */
1680 	{
1681 		.ead_seq = ENA_ATTACH_MAC_REGISTER,
1682 		.ead_name = "mac registration",
1683 		.ead_attach_fn = ena_mac_register,
1684 		.ead_attach_hard_fail = B_TRUE,
1685 		.ead_cleanup_fn = ena_no_cleanup,
1686 	},
1687 
1688 	{
1689 		.ead_seq = ENA_ATTACH_INTRS_ENABLE,
1690 		.ead_name = "enable interrupts",
1691 		.ead_attach_fn = ena_intrs_enable,
1692 		.ead_attach_hard_fail = B_TRUE,
1693 		.ead_cleanup_fn = ena_no_cleanup,
1694 	}
1695 };
1696 
1697 /*
1698  * This function undoes any work done by ena_attach(), either in
1699  * response to a failed attach or a planned detach. At the end of this
1700  * function ena_attach_seq should be zero, otherwise it means
1701  * something has not be freed/uninitialized.
1702  */
1703 static void
1704 ena_cleanup(ena_t *ena)
1705 {
1706 	if (ena == NULL || ena->ena_attach_seq == 0) {
1707 		return;
1708 	}
1709 
1710 	/*
1711 	 * We VERIFY this because if the seq is greater than entries
1712 	 * we drift into space and execute god knows what.
1713 	 */
1714 	VERIFY3U(ena->ena_attach_seq, <, ENA_ATTACH_NUM_ENTRIES);
1715 
1716 	while (ena->ena_attach_seq > 0) {
1717 		int idx = ena->ena_attach_seq - 1;
1718 		ena_attach_desc_t *desc = &ena_attach_tbl[idx];
1719 
1720 		ena_dbg(ena, "running cleanup sequence: %s (%d)",
1721 		    desc->ead_name, idx);
1722 
1723 		desc->ead_cleanup_fn(ena);
1724 		ena->ena_attach_seq--;
1725 	}
1726 
1727 	ASSERT3U(ena->ena_attach_seq, ==, 0);
1728 	mutex_destroy(&ena->ena_lock);
1729 }
1730 
1731 static int
1732 ena_attach(dev_info_t *dip, ddi_attach_cmd_t cmd)
1733 {
1734 	ena_t *ena;
1735 
1736 	if (cmd != DDI_ATTACH) {
1737 		return (DDI_FAILURE);
1738 	}
1739 
1740 	ena = kmem_zalloc(sizeof (ena_t), KM_SLEEP);
1741 	ena->ena_instance = ddi_get_instance(dip);
1742 	ena->ena_dip = dip;
1743 	ena->ena_instance = ddi_get_instance(dip);
1744 	ena->ena_page_sz = ddi_ptob(dip, 1);
1745 
1746 	for (int i = 0; i < ENA_ATTACH_NUM_ENTRIES; i++) {
1747 		boolean_t success;
1748 		ena_attach_desc_t *desc = &ena_attach_tbl[i];
1749 
1750 		ena_dbg(ena, "running attach sequence: %s (%d)", desc->ead_name,
1751 		    i);
1752 
1753 		if (!(success = desc->ead_attach_fn(ena))) {
1754 			ena_err(ena, "attach sequence failed: %s (%d)",
1755 			    desc->ead_name, i);
1756 
1757 			if (ena->ena_attach_seq == ENA_ATTACH_MAC_REGISTER) {
1758 				/*
1759 				 * In this specific case
1760 				 * ENA_ATTACH_INTRS_ENABLE has failed,
1761 				 * and we may or may not be able to
1762 				 * unregister the mac, depending on if
1763 				 * something in userspace has created
1764 				 * a client on top.
1765 				 *
1766 				 * NOTE: Something that would be nice
1767 				 * to add to mac is the ability to
1768 				 * register a provider separate from
1769 				 * "publishing" it to the rest of the
1770 				 * system. This would allow a driver
1771 				 * to register its mac, do some
1772 				 * additional work that might fail,
1773 				 * and then unregister if that work
1774 				 * fails without concern for any
1775 				 * chance of failure when calling
1776 				 * unregister. This would remove the
1777 				 * complexity of the situation we are
1778 				 * trying to address here, as we would
1779 				 * know that until the mac has been
1780 				 * "published", there is no chance for
1781 				 * mac_unregister() to fail.
1782 				 */
1783 				if (ena_mac_unregister(ena) != 0) {
1784 					return (DDI_FAILURE);
1785 				}
1786 
1787 				ena->ena_attach_seq--;
1788 			} else {
1789 				/*
1790 				 * Since the ead_seq is predicated on
1791 				 * successful ead_attach_fn we must
1792 				 * run the specific cleanup handler
1793 				 * before calling the global cleanup
1794 				 * routine. This also means that all
1795 				 * cleanup functions must be able to
1796 				 * deal with partial success of the
1797 				 * corresponding ead_attach_fn.
1798 				 */
1799 				desc->ead_cleanup_fn(ena);
1800 			}
1801 
1802 			ena_cleanup(ena);
1803 			kmem_free(ena, sizeof (ena_t));
1804 			return (DDI_FAILURE);
1805 		}
1806 
1807 		if (success) {
1808 			ena_dbg(ena, "attach sequence completed: %s (%d)",
1809 			    desc->ead_name, i);
1810 		}
1811 
1812 		ena->ena_attach_seq = desc->ead_seq;
1813 	}
1814 
1815 	/*
1816 	 * Now that interrupts are enabled make sure to tell the
1817 	 * device that all AENQ descriptors are ready for writing.
1818 	 */
1819 	ena_hw_bar_write32(ena, ENAHW_REG_AENQ_HEAD_DB,
1820 	    ena->ena_aenq.eaenq_num_descs);
1821 
1822 	ddi_set_driver_private(dip, ena);
1823 	return (DDI_SUCCESS);
1824 }
1825 
1826 static int
1827 ena_detach(dev_info_t *dip, ddi_detach_cmd_t cmd)
1828 {
1829 	ena_t *ena = ddi_get_driver_private(dip);
1830 
1831 	if (ena == NULL) {
1832 		return (DDI_FAILURE);
1833 	}
1834 
1835 	/*
1836 	 * Before we can proceed to cleanup we have to treat
1837 	 * mac_unregister() explicitly -- if there are still
1838 	 * outstanding clients, then we can't proceed with detach or
1839 	 * cleanup.
1840 	 */
1841 
1842 	/*
1843 	 * Why this would fail I don't know, but if we proceed to mac
1844 	 * unregister, then there is a good chance we will panic in
1845 	 * the Rx interrupt handler when calling mac_rx_ring()
1846 	 */
1847 	if (!ena_intrs_disable(ena)) {
1848 		return (DDI_FAILURE);
1849 	}
1850 
1851 	/* We can't detach if clients are actively using the device. */
1852 	if (ena_mac_unregister(ena) != 0) {
1853 		(void) ena_intrs_enable(ena);
1854 		return (DDI_FAILURE);
1855 	}
1856 
1857 	/*
1858 	 * At this point we can proceed with the rest of cleanup on a
1859 	 * best-effort basis.
1860 	 */
1861 	ena->ena_attach_seq = ENA_ATTACH_RXQS_ALLOC;
1862 	ena_cleanup(ena);
1863 	ddi_set_driver_private(dip, NULL);
1864 	kmem_free(ena, sizeof (ena_t));
1865 	return (DDI_SUCCESS);
1866 }
1867 
1868 static struct cb_ops ena_cb_ops = {
1869 	.cb_open = nodev,
1870 	.cb_close = nodev,
1871 	.cb_strategy = nodev,
1872 	.cb_print = nodev,
1873 	.cb_dump = nodev,
1874 	.cb_read = nodev,
1875 	.cb_write = nodev,
1876 	.cb_ioctl = nodev,
1877 	.cb_devmap = nodev,
1878 	.cb_mmap = nodev,
1879 	.cb_segmap = nodev,
1880 	.cb_chpoll = nochpoll,
1881 	.cb_prop_op = ddi_prop_op,
1882 	.cb_flag = D_MP,
1883 	.cb_rev = CB_REV,
1884 	.cb_aread = nodev,
1885 	.cb_awrite = nodev
1886 };
1887 
1888 static struct dev_ops ena_dev_ops = {
1889 	.devo_rev = DEVO_REV,
1890 	.devo_refcnt = 0,
1891 	.devo_getinfo = NULL,
1892 	.devo_identify = nulldev,
1893 	.devo_probe = nulldev,
1894 	.devo_attach = ena_attach,
1895 	.devo_detach = ena_detach,
1896 	.devo_reset = nodev,
1897 	.devo_quiesce = ddi_quiesce_not_supported,
1898 	.devo_cb_ops = &ena_cb_ops
1899 };
1900 
1901 static struct modldrv ena_modldrv = {
1902 	.drv_modops = &mod_driverops,
1903 	.drv_linkinfo = "AWS ENA Ethernet",
1904 	.drv_dev_ops = &ena_dev_ops
1905 };
1906 
1907 static struct modlinkage ena_modlinkage = {
1908 	.ml_rev = MODREV_1,
1909 	.ml_linkage = { &ena_modldrv, NULL }
1910 };
1911 
1912 int
1913 _init(void)
1914 {
1915 	int ret;
1916 
1917 	mac_init_ops(&ena_dev_ops, ENA_MODULE_NAME);
1918 
1919 	if ((ret = mod_install(&ena_modlinkage)) != 0) {
1920 		mac_fini_ops(&ena_dev_ops);
1921 		return (ret);
1922 	}
1923 
1924 	return (ret);
1925 }
1926 
1927 int
1928 _info(struct modinfo *modinfop)
1929 {
1930 	return (mod_info(&ena_modlinkage, modinfop));
1931 }
1932 
1933 int
1934 _fini(void)
1935 {
1936 	int ret;
1937 
1938 	if ((ret = mod_remove(&ena_modlinkage)) != 0) {
1939 		return (ret);
1940 	}
1941 
1942 	mac_fini_ops(&ena_dev_ops);
1943 	return (ret);
1944 }
1945