1 /* 2 * This file is provided under a CDDLv1 license. When using or 3 * redistributing this file, you may do so under this license. 4 * In redistributing this file this license must be included 5 * and no other modification of this header file is permitted. 6 * 7 * CDDL LICENSE SUMMARY 8 * 9 * Copyright(c) 1999 - 2009 Intel Corporation. All rights reserved. 10 * 11 * The contents of this file are subject to the terms of Version 12 * 1.0 of the Common Development and Distribution License (the "License"). 13 * 14 * You should have received a copy of the License with this software. 15 * You can obtain a copy of the License at 16 * http://www.opensolaris.org/os/licensing. 17 * See the License for the specific language governing permissions 18 * and limitations under the License. 19 */ 20 21 /* 22 * Copyright 2009 Sun Microsystems, Inc. All rights reserved. 23 * Use is subject to license terms. 24 */ 25 26 /* 27 * ********************************************************************** 28 * * 29 * Module Name: * 30 * e1000g_tx.c * 31 * * 32 * Abstract: * 33 * This file contains some routines that take care of Transmit, * 34 * make the hardware to send the data pointed by the packet out * 35 * on to the physical medium. * 36 * * 37 * ********************************************************************** 38 */ 39 40 #include "e1000g_sw.h" 41 #include "e1000g_debug.h" 42 43 static boolean_t e1000g_send(struct e1000g *, mblk_t *); 44 static int e1000g_tx_copy(e1000g_tx_ring_t *, 45 p_tx_sw_packet_t, mblk_t *, boolean_t); 46 static int e1000g_tx_bind(e1000g_tx_ring_t *, 47 p_tx_sw_packet_t, mblk_t *); 48 static boolean_t e1000g_retrieve_context(mblk_t *, context_data_t *, size_t); 49 static boolean_t e1000g_check_context(e1000g_tx_ring_t *, context_data_t *); 50 static int e1000g_fill_tx_ring(e1000g_tx_ring_t *, LIST_DESCRIBER *, 51 context_data_t *); 52 static void e1000g_fill_context_descriptor(context_data_t *, 53 struct e1000_context_desc *); 54 static int e1000g_fill_tx_desc(e1000g_tx_ring_t *, 55 p_tx_sw_packet_t, uint64_t, size_t); 56 static uint32_t e1000g_fill_82544_desc(uint64_t Address, size_t Length, 57 p_desc_array_t desc_array); 58 static int e1000g_tx_workaround_PCIX_82544(p_tx_sw_packet_t, uint64_t, size_t); 59 static int e1000g_tx_workaround_jumbo_82544(p_tx_sw_packet_t, uint64_t, size_t); 60 static void e1000g_82547_timeout(void *); 61 static void e1000g_82547_tx_move_tail(e1000g_tx_ring_t *); 62 static void e1000g_82547_tx_move_tail_work(e1000g_tx_ring_t *); 63 64 #ifndef E1000G_DEBUG 65 #pragma inline(e1000g_tx_copy) 66 #pragma inline(e1000g_tx_bind) 67 #pragma inline(e1000g_retrieve_context) 68 #pragma inline(e1000g_check_context) 69 #pragma inline(e1000g_fill_tx_ring) 70 #pragma inline(e1000g_fill_context_descriptor) 71 #pragma inline(e1000g_fill_tx_desc) 72 #pragma inline(e1000g_fill_82544_desc) 73 #pragma inline(e1000g_tx_workaround_PCIX_82544) 74 #pragma inline(e1000g_tx_workaround_jumbo_82544) 75 #pragma inline(e1000g_free_tx_swpkt) 76 #endif 77 78 /* 79 * e1000g_free_tx_swpkt - free up the tx sw packet 80 * 81 * Unbind the previously bound DMA handle for a given 82 * transmit sw packet. And reset the sw packet data. 83 */ 84 void 85 e1000g_free_tx_swpkt(register p_tx_sw_packet_t packet) 86 { 87 switch (packet->data_transfer_type) { 88 case USE_BCOPY: 89 packet->tx_buf->len = 0; 90 break; 91 #ifdef __sparc 92 case USE_DVMA: 93 dvma_unload(packet->tx_dma_handle, 0, -1); 94 break; 95 #endif 96 case USE_DMA: 97 (void) ddi_dma_unbind_handle(packet->tx_dma_handle); 98 break; 99 default: 100 break; 101 } 102 103 /* 104 * The mblk has been stripped off the sw packet 105 * and will be freed in a triggered soft intr. 106 */ 107 ASSERT(packet->mp == NULL); 108 109 packet->data_transfer_type = USE_NONE; 110 packet->num_mblk_frag = 0; 111 packet->num_desc = 0; 112 } 113 114 mblk_t * 115 e1000g_m_tx(void *arg, mblk_t *mp) 116 { 117 struct e1000g *Adapter = (struct e1000g *)arg; 118 mblk_t *next; 119 120 rw_enter(&Adapter->chip_lock, RW_READER); 121 122 if ((Adapter->e1000g_state & E1000G_SUSPENDED) || 123 !(Adapter->e1000g_state & E1000G_STARTED) || 124 (Adapter->link_state != LINK_STATE_UP)) { 125 freemsgchain(mp); 126 mp = NULL; 127 } 128 129 while (mp != NULL) { 130 next = mp->b_next; 131 mp->b_next = NULL; 132 133 if (!e1000g_send(Adapter, mp)) { 134 mp->b_next = next; 135 break; 136 } 137 138 mp = next; 139 } 140 141 rw_exit(&Adapter->chip_lock); 142 return (mp); 143 } 144 145 /* 146 * e1000g_send - send packets onto the wire 147 * 148 * Called from e1000g_m_tx with an mblk ready to send. this 149 * routine sets up the transmit descriptors and sends data to 150 * the wire. It also pushes the just transmitted packet to 151 * the used tx sw packet list. 152 */ 153 static boolean_t 154 e1000g_send(struct e1000g *Adapter, mblk_t *mp) 155 { 156 p_tx_sw_packet_t packet; 157 LIST_DESCRIBER pending_list; 158 size_t len; 159 size_t msg_size; 160 uint32_t frag_count; 161 int desc_count; 162 uint32_t desc_total; 163 uint32_t bcopy_thresh; 164 uint32_t hdr_frag_len; 165 boolean_t tx_undersize_flag; 166 mblk_t *nmp; 167 mblk_t *tmp; 168 mblk_t *new_mp; 169 mblk_t *pre_mp; 170 e1000g_tx_ring_t *tx_ring; 171 context_data_t cur_context; 172 173 tx_ring = Adapter->tx_ring; 174 bcopy_thresh = Adapter->tx_bcopy_thresh; 175 176 /* Get the total size and frags number of the message */ 177 tx_undersize_flag = B_FALSE; 178 frag_count = 0; 179 msg_size = 0; 180 for (nmp = mp; nmp; nmp = nmp->b_cont) { 181 frag_count++; 182 msg_size += MBLKL(nmp); 183 } 184 185 /* retrieve and compute information for context descriptor */ 186 if (!e1000g_retrieve_context(mp, &cur_context, msg_size)) { 187 freemsg(mp); 188 return (B_TRUE); 189 } 190 191 /* 192 * Make sure the packet is less than the allowed size 193 */ 194 if (!cur_context.lso_flag && 195 (msg_size > Adapter->max_frame_size - ETHERFCSL)) { 196 /* 197 * For the over size packet, we'll just drop it. 198 * So we return B_TRUE here. 199 */ 200 E1000G_DEBUGLOG_1(Adapter, E1000G_WARN_LEVEL, 201 "Tx packet out of bound. length = %d \n", msg_size); 202 E1000G_STAT(tx_ring->stat_over_size); 203 freemsg(mp); 204 return (B_TRUE); 205 } 206 207 /* 208 * Check and reclaim tx descriptors. 209 * This low water mark check should be done all the time as 210 * Transmit interrupt delay can produce Transmit interrupts little 211 * late and that may cause few problems related to reaping Tx 212 * Descriptors... As you may run short of them before getting any 213 * transmit interrupt... 214 */ 215 if (tx_ring->tbd_avail < DEFAULT_TX_NO_RESOURCE) { 216 (void) e1000g_recycle(tx_ring); 217 E1000G_DEBUG_STAT(tx_ring->stat_recycle); 218 219 if (tx_ring->tbd_avail < DEFAULT_TX_NO_RESOURCE) { 220 E1000G_DEBUG_STAT(tx_ring->stat_lack_desc); 221 goto tx_no_resource; 222 } 223 } 224 225 /* 226 * If the message size is less than the minimum ethernet packet size, 227 * we'll use bcopy to send it, and padd it to 60 bytes later. 228 */ 229 if (msg_size < ETHERMIN) { 230 E1000G_DEBUG_STAT(tx_ring->stat_under_size); 231 tx_undersize_flag = B_TRUE; 232 } 233 234 /* Initialize variables */ 235 desc_count = 1; /* The initial value should be greater than 0 */ 236 desc_total = 0; 237 QUEUE_INIT_LIST(&pending_list); 238 239 /* Process each mblk fragment and fill tx descriptors */ 240 /* 241 * The software should guarantee LSO packet header(MAC+IP+TCP) 242 * to be within one descriptor. Here we reallocate and refill the 243 * the header if it's physical memory non-contiguous. 244 */ 245 if (cur_context.lso_flag) { 246 /* find the last fragment of the header */ 247 len = MBLKL(mp); 248 ASSERT(len > 0); 249 nmp = mp; 250 pre_mp = NULL; 251 while (len < cur_context.hdr_len) { 252 pre_mp = nmp; 253 nmp = nmp->b_cont; 254 len += MBLKL(nmp); 255 } 256 /* 257 * If the header and the payload are in different mblks, 258 * we simply force the header to be copied into pre-allocated 259 * page-aligned buffer. 260 */ 261 if (len == cur_context.hdr_len) 262 goto adjust_threshold; 263 264 hdr_frag_len = cur_context.hdr_len - (len - MBLKL(nmp)); 265 /* 266 * There are two cases we need to reallocate a mblk for the 267 * last header fragment: 268 * 1. the header is in multiple mblks and the last fragment 269 * share the same mblk with the payload 270 * 2. the header is in a single mblk shared with the payload 271 * and the header is physical memory non-contiguous 272 */ 273 if ((nmp != mp) || 274 (P2NPHASE((uintptr_t)nmp->b_rptr, Adapter->sys_page_sz) 275 < len)) { 276 E1000G_DEBUG_STAT(tx_ring->stat_lso_header_fail); 277 /* 278 * reallocate the mblk for the last header fragment, 279 * expect to bcopy into pre-allocated page-aligned 280 * buffer 281 */ 282 new_mp = allocb(hdr_frag_len, NULL); 283 if (!new_mp) 284 return (B_FALSE); 285 bcopy(nmp->b_rptr, new_mp->b_rptr, hdr_frag_len); 286 /* link the new header fragment with the other parts */ 287 new_mp->b_wptr = new_mp->b_rptr + hdr_frag_len; 288 new_mp->b_cont = nmp; 289 if (pre_mp) 290 pre_mp->b_cont = new_mp; 291 nmp->b_rptr += hdr_frag_len; 292 if (hdr_frag_len == cur_context.hdr_len) 293 mp = new_mp; 294 frag_count ++; 295 } 296 adjust_threshold: 297 /* 298 * adjust the bcopy threshhold to guarantee 299 * the header to use bcopy way 300 */ 301 if (bcopy_thresh < cur_context.hdr_len) 302 bcopy_thresh = cur_context.hdr_len; 303 } 304 305 packet = NULL; 306 nmp = mp; 307 while (nmp) { 308 tmp = nmp->b_cont; 309 310 len = MBLKL(nmp); 311 /* Check zero length mblks */ 312 if (len == 0) { 313 E1000G_DEBUG_STAT(tx_ring->stat_empty_frags); 314 /* 315 * If there're no packet buffers have been used, 316 * or we just completed processing a buffer, then 317 * skip the empty mblk fragment. 318 * Otherwise, there's still a pending buffer that 319 * needs to be processed (tx_copy). 320 */ 321 if (desc_count > 0) { 322 nmp = tmp; 323 continue; 324 } 325 } 326 327 /* 328 * Get a new TxSwPacket to process mblk buffers. 329 */ 330 if (desc_count > 0) { 331 mutex_enter(&tx_ring->freelist_lock); 332 packet = (p_tx_sw_packet_t) 333 QUEUE_POP_HEAD(&tx_ring->free_list); 334 mutex_exit(&tx_ring->freelist_lock); 335 336 if (packet == NULL) { 337 E1000G_DEBUGLOG_0(Adapter, E1000G_INFO_LEVEL, 338 "No Tx SwPacket available\n"); 339 E1000G_STAT(tx_ring->stat_no_swpkt); 340 goto tx_send_failed; 341 } 342 QUEUE_PUSH_TAIL(&pending_list, &packet->Link); 343 } 344 345 ASSERT(packet); 346 /* 347 * If the size of the fragment is less than the tx_bcopy_thresh 348 * we'll use bcopy; Otherwise, we'll use DMA binding. 349 */ 350 if ((len <= bcopy_thresh) || tx_undersize_flag) { 351 desc_count = 352 e1000g_tx_copy(tx_ring, packet, nmp, 353 tx_undersize_flag); 354 E1000G_DEBUG_STAT(tx_ring->stat_copy); 355 } else { 356 desc_count = 357 e1000g_tx_bind(tx_ring, packet, nmp); 358 E1000G_DEBUG_STAT(tx_ring->stat_bind); 359 } 360 361 if (desc_count > 0) 362 desc_total += desc_count; 363 else if (desc_count < 0) 364 goto tx_send_failed; 365 366 nmp = tmp; 367 } 368 369 /* Assign the message to the last sw packet */ 370 ASSERT(packet); 371 ASSERT(packet->mp == NULL); 372 packet->mp = mp; 373 374 /* Try to recycle the tx descriptors again */ 375 if (tx_ring->tbd_avail < (desc_total + 2)) { 376 E1000G_DEBUG_STAT(tx_ring->stat_recycle_retry); 377 (void) e1000g_recycle(tx_ring); 378 } 379 380 mutex_enter(&tx_ring->tx_lock); 381 382 /* 383 * If the number of available tx descriptors is not enough for transmit 384 * (one redundant descriptor and one hw checksum context descriptor are 385 * included), then return failure. 386 */ 387 if (tx_ring->tbd_avail < (desc_total + 2)) { 388 E1000G_DEBUGLOG_0(Adapter, E1000G_INFO_LEVEL, 389 "No Enough Tx descriptors\n"); 390 E1000G_STAT(tx_ring->stat_no_desc); 391 mutex_exit(&tx_ring->tx_lock); 392 goto tx_send_failed; 393 } 394 395 desc_count = e1000g_fill_tx_ring(tx_ring, &pending_list, &cur_context); 396 397 mutex_exit(&tx_ring->tx_lock); 398 399 ASSERT(desc_count > 0); 400 401 /* Send successful */ 402 return (B_TRUE); 403 404 tx_send_failed: 405 /* 406 * Enable Transmit interrupts, so that the interrupt routine can 407 * call mac_tx_update() when transmit descriptors become available. 408 */ 409 tx_ring->resched_timestamp = ddi_get_lbolt(); 410 tx_ring->resched_needed = B_TRUE; 411 if (!Adapter->tx_intr_enable) 412 e1000g_mask_tx_interrupt(Adapter); 413 414 /* Free pending TxSwPackets */ 415 packet = (p_tx_sw_packet_t)QUEUE_GET_HEAD(&pending_list); 416 while (packet) { 417 packet->mp = NULL; 418 e1000g_free_tx_swpkt(packet); 419 packet = (p_tx_sw_packet_t) 420 QUEUE_GET_NEXT(&pending_list, &packet->Link); 421 } 422 423 /* Return pending TxSwPackets to the "Free" list */ 424 mutex_enter(&tx_ring->freelist_lock); 425 QUEUE_APPEND(&tx_ring->free_list, &pending_list); 426 mutex_exit(&tx_ring->freelist_lock); 427 428 E1000G_STAT(tx_ring->stat_send_fail); 429 430 /* Message will be scheduled for re-transmit */ 431 return (B_FALSE); 432 433 tx_no_resource: 434 /* 435 * Enable Transmit interrupts, so that the interrupt routine can 436 * call mac_tx_update() when transmit descriptors become available. 437 */ 438 tx_ring->resched_timestamp = ddi_get_lbolt(); 439 tx_ring->resched_needed = B_TRUE; 440 if (!Adapter->tx_intr_enable) 441 e1000g_mask_tx_interrupt(Adapter); 442 443 /* Message will be scheduled for re-transmit */ 444 return (B_FALSE); 445 } 446 447 static boolean_t 448 e1000g_retrieve_context(mblk_t *mp, context_data_t *cur_context, 449 size_t msg_size) 450 { 451 uintptr_t ip_start; 452 uintptr_t tcp_start; 453 mblk_t *nmp; 454 uint32_t lsoflags; 455 uint32_t mss; 456 457 bzero(cur_context, sizeof (context_data_t)); 458 459 /* first check lso information */ 460 lso_info_get(mp, &mss, &lsoflags); 461 462 /* retrieve checksum info */ 463 hcksum_retrieve(mp, NULL, NULL, &cur_context->cksum_start, 464 &cur_context->cksum_stuff, NULL, NULL, &cur_context->cksum_flags); 465 /* retrieve ethernet header size */ 466 if (((struct ether_vlan_header *)(uintptr_t)mp->b_rptr)->ether_tpid == 467 htons(ETHERTYPE_VLAN)) 468 cur_context->ether_header_size = 469 sizeof (struct ether_vlan_header); 470 else 471 cur_context->ether_header_size = 472 sizeof (struct ether_header); 473 474 if (lsoflags & HW_LSO) { 475 ASSERT(mss != 0); 476 477 /* free the invalid packet */ 478 if (mss == 0 || 479 !((cur_context->cksum_flags & HCK_PARTIALCKSUM) && 480 (cur_context->cksum_flags & HCK_IPV4_HDRCKSUM))) { 481 return (B_FALSE); 482 } 483 cur_context->mss = (uint16_t)mss; 484 cur_context->lso_flag = B_TRUE; 485 486 /* 487 * Some fields are cleared for the hardware to fill 488 * in. We don't assume Ethernet header, IP header and 489 * TCP header are always in the same mblk fragment, 490 * while we assume each header is always within one 491 * mblk fragment and Ethernet header is always in the 492 * first mblk fragment. 493 */ 494 nmp = mp; 495 ip_start = (uintptr_t)(nmp->b_rptr) 496 + cur_context->ether_header_size; 497 if (ip_start >= (uintptr_t)(nmp->b_wptr)) { 498 ip_start = (uintptr_t)nmp->b_cont->b_rptr 499 + (ip_start - (uintptr_t)(nmp->b_wptr)); 500 nmp = nmp->b_cont; 501 } 502 tcp_start = ip_start + 503 IPH_HDR_LENGTH((ipha_t *)ip_start); 504 if (tcp_start >= (uintptr_t)(nmp->b_wptr)) { 505 tcp_start = (uintptr_t)nmp->b_cont->b_rptr 506 + (tcp_start - (uintptr_t)(nmp->b_wptr)); 507 nmp = nmp->b_cont; 508 } 509 cur_context->hdr_len = cur_context->ether_header_size 510 + IPH_HDR_LENGTH((ipha_t *)ip_start) 511 + TCP_HDR_LENGTH((tcph_t *)tcp_start); 512 ((ipha_t *)ip_start)->ipha_length = 0; 513 ((ipha_t *)ip_start)->ipha_hdr_checksum = 0; 514 /* calculate the TCP packet payload length */ 515 cur_context->pay_len = msg_size - cur_context->hdr_len; 516 } 517 return (B_TRUE); 518 } 519 520 static boolean_t 521 e1000g_check_context(e1000g_tx_ring_t *tx_ring, context_data_t *cur_context) 522 { 523 boolean_t context_reload; 524 context_data_t *pre_context; 525 struct e1000g *Adapter; 526 527 context_reload = B_FALSE; 528 pre_context = &tx_ring->pre_context; 529 Adapter = tx_ring->adapter; 530 531 /* 532 * The following code determine if the context descriptor is 533 * needed to be reloaded. The sequence of the conditions is 534 * made by their possibilities of changing. 535 */ 536 /* 537 * workaround for 82546EB, context descriptor must be reloaded 538 * per LSO/hw_cksum packet if LSO is enabled. 539 */ 540 if (Adapter->lso_premature_issue && 541 Adapter->lso_enable && 542 (cur_context->cksum_flags != 0)) { 543 544 context_reload = B_TRUE; 545 } else if (cur_context->lso_flag) { 546 if ((cur_context->lso_flag != pre_context->lso_flag) || 547 (cur_context->cksum_flags != pre_context->cksum_flags) || 548 (cur_context->pay_len != pre_context->pay_len) || 549 (cur_context->mss != pre_context->mss) || 550 (cur_context->hdr_len != pre_context->hdr_len) || 551 (cur_context->cksum_stuff != pre_context->cksum_stuff) || 552 (cur_context->cksum_start != pre_context->cksum_start) || 553 (cur_context->ether_header_size != 554 pre_context->ether_header_size)) { 555 556 context_reload = B_TRUE; 557 } 558 } else if (cur_context->cksum_flags != 0) { 559 if ((cur_context->lso_flag != pre_context->lso_flag) || 560 (cur_context->cksum_flags != pre_context->cksum_flags) || 561 (cur_context->cksum_stuff != pre_context->cksum_stuff) || 562 (cur_context->cksum_start != pre_context->cksum_start) || 563 (cur_context->ether_header_size != 564 pre_context->ether_header_size)) { 565 566 context_reload = B_TRUE; 567 } 568 } 569 570 return (context_reload); 571 } 572 573 static int 574 e1000g_fill_tx_ring(e1000g_tx_ring_t *tx_ring, LIST_DESCRIBER *pending_list, 575 context_data_t *cur_context) 576 { 577 struct e1000g *Adapter; 578 struct e1000_hw *hw; 579 p_tx_sw_packet_t first_packet; 580 p_tx_sw_packet_t packet; 581 p_tx_sw_packet_t previous_packet; 582 boolean_t context_reload; 583 struct e1000_tx_desc *first_data_desc; 584 struct e1000_tx_desc *next_desc; 585 struct e1000_tx_desc *descriptor; 586 int desc_count; 587 boolean_t buff_overrun_flag; 588 int i; 589 590 Adapter = tx_ring->adapter; 591 hw = &Adapter->shared; 592 593 desc_count = 0; 594 first_packet = NULL; 595 first_data_desc = NULL; 596 descriptor = NULL; 597 first_packet = NULL; 598 packet = NULL; 599 buff_overrun_flag = B_FALSE; 600 601 next_desc = tx_ring->tbd_next; 602 603 /* Context descriptor reload check */ 604 context_reload = e1000g_check_context(tx_ring, cur_context); 605 606 if (context_reload) { 607 first_packet = (p_tx_sw_packet_t)QUEUE_GET_HEAD(pending_list); 608 609 descriptor = next_desc; 610 611 e1000g_fill_context_descriptor(cur_context, 612 (struct e1000_context_desc *)descriptor); 613 614 /* Check the wrap-around case */ 615 if (descriptor == tx_ring->tbd_last) 616 next_desc = tx_ring->tbd_first; 617 else 618 next_desc++; 619 620 desc_count++; 621 } 622 623 first_data_desc = next_desc; 624 625 packet = (p_tx_sw_packet_t)QUEUE_GET_HEAD(pending_list); 626 while (packet) { 627 ASSERT(packet->num_desc); 628 629 for (i = 0; i < packet->num_desc; i++) { 630 ASSERT(tx_ring->tbd_avail > 0); 631 632 descriptor = next_desc; 633 descriptor->buffer_addr = 634 packet->desc[i].address; 635 descriptor->lower.data = 636 packet->desc[i].length; 637 638 /* Zero out status */ 639 descriptor->upper.data = 0; 640 641 descriptor->lower.data |= 642 E1000_TXD_CMD_DEXT | E1000_TXD_DTYP_D; 643 /* must set RS on every outgoing descriptor */ 644 descriptor->lower.data |= 645 E1000_TXD_CMD_RS; 646 647 if (cur_context->lso_flag) 648 descriptor->lower.data |= E1000_TXD_CMD_TSE; 649 650 /* Check the wrap-around case */ 651 if (descriptor == tx_ring->tbd_last) 652 next_desc = tx_ring->tbd_first; 653 else 654 next_desc++; 655 656 desc_count++; 657 658 /* 659 * workaround for 82546EB errata 33, hang in PCI-X 660 * systems due to 2k Buffer Overrun during Transmit 661 * Operation. The workaround applies to all the Intel 662 * PCI-X chips. 663 */ 664 if (hw->bus.type == e1000_bus_type_pcix && 665 descriptor == first_data_desc && 666 ((descriptor->lower.data & E1000G_TBD_LENGTH_MASK) 667 > E1000_TX_BUFFER_OEVRRUN_THRESHOLD)) { 668 /* modified the first descriptor */ 669 descriptor->lower.data &= 670 ~E1000G_TBD_LENGTH_MASK; 671 descriptor->lower.flags.length = 672 E1000_TX_BUFFER_OEVRRUN_THRESHOLD; 673 674 /* insert a new descriptor */ 675 ASSERT(tx_ring->tbd_avail > 0); 676 next_desc->buffer_addr = 677 packet->desc[0].address + 678 E1000_TX_BUFFER_OEVRRUN_THRESHOLD; 679 next_desc->lower.data = 680 packet->desc[0].length - 681 E1000_TX_BUFFER_OEVRRUN_THRESHOLD; 682 683 /* Zero out status */ 684 next_desc->upper.data = 0; 685 686 next_desc->lower.data |= 687 E1000_TXD_CMD_DEXT | E1000_TXD_DTYP_D; 688 /* must set RS on every outgoing descriptor */ 689 next_desc->lower.data |= 690 E1000_TXD_CMD_RS; 691 692 if (cur_context->lso_flag) 693 next_desc->lower.data |= 694 E1000_TXD_CMD_TSE; 695 696 descriptor = next_desc; 697 698 /* Check the wrap-around case */ 699 if (next_desc == tx_ring->tbd_last) 700 next_desc = tx_ring->tbd_first; 701 else 702 next_desc++; 703 704 desc_count++; 705 buff_overrun_flag = B_TRUE; 706 } 707 } 708 709 if (buff_overrun_flag) { 710 packet->num_desc++; 711 buff_overrun_flag = B_FALSE; 712 } 713 714 if (first_packet != NULL) { 715 /* 716 * Count the checksum context descriptor for 717 * the first SwPacket. 718 */ 719 first_packet->num_desc++; 720 first_packet = NULL; 721 } 722 723 previous_packet = packet; 724 packet = (p_tx_sw_packet_t) 725 QUEUE_GET_NEXT(pending_list, &packet->Link); 726 } 727 728 /* 729 * workaround for 82546EB errata 21, LSO Premature Descriptor Write Back 730 */ 731 if (Adapter->lso_premature_issue && cur_context->lso_flag && 732 ((descriptor->lower.data & E1000G_TBD_LENGTH_MASK) > 8)) { 733 /* modified the previous descriptor */ 734 descriptor->lower.data -= 4; 735 736 /* insert a new descriptor */ 737 ASSERT(tx_ring->tbd_avail > 0); 738 /* the lower 20 bits of lower.data is the length field */ 739 next_desc->buffer_addr = 740 descriptor->buffer_addr + 741 (descriptor->lower.data & E1000G_TBD_LENGTH_MASK); 742 next_desc->lower.data = 4; 743 744 /* Zero out status */ 745 next_desc->upper.data = 0; 746 /* It must be part of a LSO packet */ 747 next_desc->lower.data |= 748 E1000_TXD_CMD_DEXT | E1000_TXD_DTYP_D | 749 E1000_TXD_CMD_RS | E1000_TXD_CMD_TSE; 750 751 descriptor = next_desc; 752 753 /* Check the wrap-around case */ 754 if (descriptor == tx_ring->tbd_last) 755 next_desc = tx_ring->tbd_first; 756 else 757 next_desc++; 758 759 desc_count++; 760 /* update the number of descriptors */ 761 previous_packet->num_desc++; 762 } 763 764 ASSERT(descriptor); 765 766 if (cur_context->cksum_flags) { 767 if (cur_context->cksum_flags & HCK_IPV4_HDRCKSUM) 768 ((struct e1000_data_desc *)first_data_desc)-> 769 upper.fields.popts |= E1000_TXD_POPTS_IXSM; 770 if (cur_context->cksum_flags & HCK_PARTIALCKSUM) 771 ((struct e1000_data_desc *)first_data_desc)-> 772 upper.fields.popts |= E1000_TXD_POPTS_TXSM; 773 } 774 775 /* 776 * Last Descriptor of Packet needs End Of Packet (EOP), Report 777 * Status (RS) set. 778 */ 779 if (Adapter->tx_intr_delay) { 780 descriptor->lower.data |= E1000_TXD_CMD_IDE | 781 E1000_TXD_CMD_EOP; 782 } else { 783 descriptor->lower.data |= E1000_TXD_CMD_EOP; 784 } 785 786 /* Set append Ethernet CRC (IFCS) bits */ 787 if (cur_context->lso_flag) { 788 first_data_desc->lower.data |= E1000_TXD_CMD_IFCS; 789 } else { 790 descriptor->lower.data |= E1000_TXD_CMD_IFCS; 791 } 792 793 /* 794 * Sync the Tx descriptors DMA buffer 795 */ 796 (void) ddi_dma_sync(tx_ring->tbd_dma_handle, 797 0, 0, DDI_DMA_SYNC_FORDEV); 798 799 tx_ring->tbd_next = next_desc; 800 801 /* 802 * Advance the Transmit Descriptor Tail (Tdt), this tells the 803 * FX1000 that this frame is available to transmit. 804 */ 805 if (hw->mac.type == e1000_82547) 806 e1000g_82547_tx_move_tail(tx_ring); 807 else 808 E1000_WRITE_REG(hw, E1000_TDT(0), 809 (uint32_t)(next_desc - tx_ring->tbd_first)); 810 811 if (e1000g_check_acc_handle(Adapter->osdep.reg_handle) != DDI_FM_OK) { 812 ddi_fm_service_impact(Adapter->dip, DDI_SERVICE_DEGRADED); 813 Adapter->e1000g_state |= E1000G_ERROR; 814 } 815 816 /* Put the pending SwPackets to the "Used" list */ 817 mutex_enter(&tx_ring->usedlist_lock); 818 QUEUE_APPEND(&tx_ring->used_list, pending_list); 819 tx_ring->tbd_avail -= desc_count; 820 mutex_exit(&tx_ring->usedlist_lock); 821 822 /* update LSO related data */ 823 if (context_reload) 824 tx_ring->pre_context = *cur_context; 825 826 return (desc_count); 827 } 828 829 /* 830 * e1000g_tx_setup - setup tx data structures 831 * 832 * This routine initializes all of the transmit related 833 * structures. This includes the Transmit descriptors, 834 * and the tx_sw_packet structures. 835 */ 836 void 837 e1000g_tx_setup(struct e1000g *Adapter) 838 { 839 struct e1000_hw *hw; 840 p_tx_sw_packet_t packet; 841 uint32_t i; 842 uint32_t buf_high; 843 uint32_t buf_low; 844 uint32_t reg_tipg; 845 uint32_t reg_tctl; 846 int size; 847 e1000g_tx_ring_t *tx_ring; 848 849 hw = &Adapter->shared; 850 tx_ring = Adapter->tx_ring; 851 852 /* init the lists */ 853 /* 854 * Here we don't need to protect the lists using the 855 * usedlist_lock and freelist_lock, for they have 856 * been protected by the chip_lock. 857 */ 858 QUEUE_INIT_LIST(&tx_ring->used_list); 859 QUEUE_INIT_LIST(&tx_ring->free_list); 860 861 /* Go through and set up each SW_Packet */ 862 packet = tx_ring->packet_area; 863 for (i = 0; i < Adapter->tx_freelist_num; i++, packet++) { 864 /* Initialize this tx_sw_apcket area */ 865 e1000g_free_tx_swpkt(packet); 866 /* Add this tx_sw_packet to the free list */ 867 QUEUE_PUSH_TAIL(&tx_ring->free_list, 868 &packet->Link); 869 } 870 871 /* Setup TX descriptor pointers */ 872 tx_ring->tbd_next = tx_ring->tbd_first; 873 tx_ring->tbd_oldest = tx_ring->tbd_first; 874 875 /* 876 * Setup Hardware TX Registers 877 */ 878 /* Setup the Transmit Control Register (TCTL). */ 879 reg_tctl = E1000_READ_REG(hw, E1000_TCTL); 880 reg_tctl |= E1000_TCTL_PSP | E1000_TCTL_EN | 881 (E1000_COLLISION_THRESHOLD << E1000_CT_SHIFT) | 882 (E1000_COLLISION_DISTANCE << E1000_COLD_SHIFT) | 883 E1000_TCTL_RTLC; 884 885 /* Enable the MULR bit */ 886 if (hw->bus.type == e1000_bus_type_pci_express) 887 reg_tctl |= E1000_TCTL_MULR; 888 889 E1000_WRITE_REG(hw, E1000_TCTL, reg_tctl); 890 891 /* Setup HW Base and Length of Tx descriptor area */ 892 size = (Adapter->tx_desc_num * sizeof (struct e1000_tx_desc)); 893 E1000_WRITE_REG(hw, E1000_TDLEN(0), size); 894 size = E1000_READ_REG(hw, E1000_TDLEN(0)); 895 896 buf_low = (uint32_t)tx_ring->tbd_dma_addr; 897 buf_high = (uint32_t)(tx_ring->tbd_dma_addr >> 32); 898 899 /* 900 * Write the highest location first and work backward to the lowest. 901 * This is necessary for some adapter types to 902 * prevent write combining from occurring. 903 */ 904 E1000_WRITE_REG(hw, E1000_TDBAH(0), buf_high); 905 E1000_WRITE_REG(hw, E1000_TDBAL(0), buf_low); 906 907 /* Setup our HW Tx Head & Tail descriptor pointers */ 908 E1000_WRITE_REG(hw, E1000_TDH(0), 0); 909 E1000_WRITE_REG(hw, E1000_TDT(0), 0); 910 911 /* Set the default values for the Tx Inter Packet Gap timer */ 912 if ((hw->mac.type == e1000_82542) && 913 ((hw->revision_id == E1000_REVISION_2) || 914 (hw->revision_id == E1000_REVISION_3))) { 915 reg_tipg = DEFAULT_82542_TIPG_IPGT; 916 reg_tipg |= 917 DEFAULT_82542_TIPG_IPGR1 << E1000_TIPG_IPGR1_SHIFT; 918 reg_tipg |= 919 DEFAULT_82542_TIPG_IPGR2 << E1000_TIPG_IPGR2_SHIFT; 920 } else if (hw->mac.type == e1000_80003es2lan) { 921 reg_tipg = DEFAULT_82543_TIPG_IPGR1; 922 reg_tipg |= DEFAULT_80003ES2LAN_TIPG_IPGR2 << 923 E1000_TIPG_IPGR2_SHIFT; 924 } else { 925 if (hw->phy.media_type == e1000_media_type_fiber) 926 reg_tipg = DEFAULT_82543_TIPG_IPGT_FIBER; 927 else 928 reg_tipg = DEFAULT_82543_TIPG_IPGT_COPPER; 929 reg_tipg |= 930 DEFAULT_82543_TIPG_IPGR1 << E1000_TIPG_IPGR1_SHIFT; 931 reg_tipg |= 932 DEFAULT_82543_TIPG_IPGR2 << E1000_TIPG_IPGR2_SHIFT; 933 } 934 E1000_WRITE_REG(hw, E1000_TIPG, reg_tipg); 935 936 /* Setup Transmit Interrupt Delay Value */ 937 E1000_WRITE_REG(hw, E1000_TIDV, Adapter->tx_intr_delay); 938 E1000G_DEBUGLOG_1(Adapter, E1000G_INFO_LEVEL, 939 "E1000_TIDV: 0x%x\n", Adapter->tx_intr_delay); 940 941 if (hw->mac.type >= e1000_82540) { 942 E1000_WRITE_REG(&Adapter->shared, E1000_TADV, 943 Adapter->tx_intr_abs_delay); 944 E1000G_DEBUGLOG_1(Adapter, E1000G_INFO_LEVEL, 945 "E1000_TADV: 0x%x\n", Adapter->tx_intr_abs_delay); 946 } 947 948 tx_ring->tbd_avail = Adapter->tx_desc_num; 949 950 /* Initialize stored context information */ 951 bzero(&(tx_ring->pre_context), sizeof (context_data_t)); 952 } 953 954 /* 955 * e1000g_recycle - recycle the tx descriptors and tx sw packets 956 */ 957 int 958 e1000g_recycle(e1000g_tx_ring_t *tx_ring) 959 { 960 struct e1000g *Adapter; 961 LIST_DESCRIBER pending_list; 962 p_tx_sw_packet_t packet; 963 mblk_t *mp; 964 mblk_t *nmp; 965 struct e1000_tx_desc *descriptor; 966 int desc_count; 967 968 /* 969 * This function will examine each TxSwPacket in the 'used' queue 970 * if the e1000g is done with it then the associated resources (Tx 971 * Descriptors) will be "freed" and the TxSwPacket will be 972 * returned to the 'free' queue. 973 */ 974 Adapter = tx_ring->adapter; 975 976 packet = (p_tx_sw_packet_t)QUEUE_GET_HEAD(&tx_ring->used_list); 977 if (packet == NULL) { 978 tx_ring->recycle_fail = 0; 979 tx_ring->stall_watchdog = 0; 980 return (0); 981 } 982 983 desc_count = 0; 984 QUEUE_INIT_LIST(&pending_list); 985 986 /* Sync the Tx descriptor DMA buffer */ 987 (void) ddi_dma_sync(tx_ring->tbd_dma_handle, 988 0, 0, DDI_DMA_SYNC_FORKERNEL); 989 if (e1000g_check_dma_handle( 990 tx_ring->tbd_dma_handle) != DDI_FM_OK) { 991 ddi_fm_service_impact(Adapter->dip, DDI_SERVICE_DEGRADED); 992 Adapter->e1000g_state |= E1000G_ERROR; 993 return (0); 994 } 995 996 /* 997 * While there are still TxSwPackets in the used queue check them 998 */ 999 mutex_enter(&tx_ring->usedlist_lock); 1000 while ((packet = 1001 (p_tx_sw_packet_t)QUEUE_GET_HEAD(&tx_ring->used_list)) != NULL) { 1002 1003 /* 1004 * Get hold of the next descriptor that the e1000g will 1005 * report status back to (this will be the last descriptor 1006 * of a given sw packet). We only want to free the 1007 * sw packet (and it resources) if the e1000g is done 1008 * with ALL of the descriptors. If the e1000g is done 1009 * with the last one then it is done with all of them. 1010 */ 1011 ASSERT(packet->num_desc); 1012 descriptor = tx_ring->tbd_oldest + (packet->num_desc - 1); 1013 1014 /* Check for wrap case */ 1015 if (descriptor > tx_ring->tbd_last) 1016 descriptor -= Adapter->tx_desc_num; 1017 1018 /* 1019 * If the descriptor done bit is set free TxSwPacket and 1020 * associated resources 1021 */ 1022 if (descriptor->upper.fields.status & E1000_TXD_STAT_DD) { 1023 QUEUE_POP_HEAD(&tx_ring->used_list); 1024 QUEUE_PUSH_TAIL(&pending_list, &packet->Link); 1025 1026 if (descriptor == tx_ring->tbd_last) 1027 tx_ring->tbd_oldest = 1028 tx_ring->tbd_first; 1029 else 1030 tx_ring->tbd_oldest = 1031 descriptor + 1; 1032 1033 desc_count += packet->num_desc; 1034 } else { 1035 /* 1036 * Found a sw packet that the e1000g is not done 1037 * with then there is no reason to check the rest 1038 * of the queue. 1039 */ 1040 break; 1041 } 1042 } 1043 1044 tx_ring->tbd_avail += desc_count; 1045 Adapter->tx_pkt_cnt += desc_count; 1046 1047 mutex_exit(&tx_ring->usedlist_lock); 1048 1049 if (desc_count == 0) { 1050 tx_ring->recycle_fail++; 1051 E1000G_DEBUG_STAT(tx_ring->stat_recycle_none); 1052 return (0); 1053 } 1054 1055 tx_ring->recycle_fail = 0; 1056 tx_ring->stall_watchdog = 0; 1057 1058 mp = NULL; 1059 nmp = NULL; 1060 packet = (p_tx_sw_packet_t)QUEUE_GET_HEAD(&pending_list); 1061 ASSERT(packet != NULL); 1062 while (packet != NULL) { 1063 if (packet->mp != NULL) { 1064 ASSERT(packet->mp->b_next == NULL); 1065 /* Assemble the message chain */ 1066 if (mp == NULL) { 1067 mp = packet->mp; 1068 nmp = packet->mp; 1069 } else { 1070 nmp->b_next = packet->mp; 1071 nmp = packet->mp; 1072 } 1073 /* Disconnect the message from the sw packet */ 1074 packet->mp = NULL; 1075 } 1076 1077 /* Free the TxSwPackets */ 1078 e1000g_free_tx_swpkt(packet); 1079 1080 packet = (p_tx_sw_packet_t) 1081 QUEUE_GET_NEXT(&pending_list, &packet->Link); 1082 } 1083 1084 /* Return the TxSwPackets back to the FreeList */ 1085 mutex_enter(&tx_ring->freelist_lock); 1086 QUEUE_APPEND(&tx_ring->free_list, &pending_list); 1087 mutex_exit(&tx_ring->freelist_lock); 1088 1089 if (mp != NULL) 1090 freemsgchain(mp); 1091 1092 return (desc_count); 1093 } 1094 /* 1095 * 82544 Coexistence issue workaround: 1096 * There are 2 issues. 1097 * 1. If a 32 bit split completion happens from P64H2 and another 1098 * agent drives a 64 bit request/split completion after ONLY 1099 * 1 idle clock (BRCM/Emulex/Adaptec fiber channel cards) then 1100 * 82544 has a problem where in to clock all the data in, it 1101 * looks at REQ64# signal and since it has changed so fast (i.e. 1 1102 * idle clock turn around), it will fail to clock all the data in. 1103 * Data coming from certain ending addresses has exposure to this issue. 1104 * 1105 * To detect this issue, following equation can be used... 1106 * SIZE[3:0] + ADDR[2:0] = SUM[3:0]. 1107 * If SUM[3:0] is in between 1 to 4, we will have this issue. 1108 * 1109 * ROOT CAUSE: 1110 * The erratum involves the 82544 PCIX elasticity FIFO implementations as 1111 * 64-bit FIFO's and flushing of the final partial-bytes corresponding 1112 * to the end of a requested read burst. Under a specific burst condition 1113 * of ending-data alignment and 32-byte split-completions, the final 1114 * byte(s) of split-completion data require an extra clock cycle to flush 1115 * into 64-bit FIFO orientation. An incorrect logic dependency on the 1116 * REQ64# signal occurring during during this clock cycle may cause the 1117 * residual byte(s) to be lost, thereby rendering the internal DMA client 1118 * forever awaiting the final byte(s) for an outbound data-fetch. The 1119 * erratum is confirmed to *only* occur if certain subsequent external 1120 * 64-bit PCIX bus transactions occur immediately (minimum possible bus 1121 * turn- around) following the odd-aligned 32-bit split-completion 1122 * containing the final byte(s). Intel has confirmed that this has been 1123 * seen only with chipset/bridges which have the capability to provide 1124 * 32-bit split-completion data, and in the presence of newer PCIX bus 1125 * agents which fully-optimize the inter-transaction turn-around (zero 1126 * additional initiator latency when pre-granted bus ownership). 1127 * 1128 * This issue does not exist in PCI bus mode, when any agent is operating 1129 * in 32 bit only mode or on chipsets that do not do 32 bit split 1130 * completions for 64 bit read requests (Serverworks chipsets). P64H2 does 1131 * 32 bit split completions for any read request that has bit 2 set to 1 1132 * for the requested address and read request size is more than 8 bytes. 1133 * 1134 * 2. Another issue is related to 82544 driving DACs under the similar 1135 * scenario (32 bit split completion followed by 64 bit transaction with 1136 * only 1 cycle turnaround). This issue is still being root caused. We 1137 * think that both of these issues can be avoided if following workaround 1138 * is implemented. It seems DAC issues is related to ending addresses being 1139 * 0x9, 0xA, 0xB, 0xC and hence ending up at odd boundaries in elasticity 1140 * FIFO which does not get flushed due to REQ64# dependency. We will only 1141 * know the full story after it has been simulated successfully by HW team. 1142 * 1143 * WORKAROUND: 1144 * Make sure we do not have ending address as 1,2,3,4(Hang) or 9,a,b,c(DAC) 1145 */ 1146 static uint32_t 1147 e1000g_fill_82544_desc(uint64_t address, 1148 size_t length, p_desc_array_t desc_array) 1149 { 1150 /* 1151 * Since issue is sensitive to length and address. 1152 * Let us first check the address... 1153 */ 1154 uint32_t safe_terminator; 1155 1156 if (length <= 4) { 1157 desc_array->descriptor[0].address = address; 1158 desc_array->descriptor[0].length = (uint32_t)length; 1159 desc_array->elements = 1; 1160 return (desc_array->elements); 1161 } 1162 safe_terminator = 1163 (uint32_t)((((uint32_t)address & 0x7) + 1164 (length & 0xF)) & 0xF); 1165 /* 1166 * if it does not fall between 0x1 to 0x4 and 0x9 to 0xC then 1167 * return 1168 */ 1169 if (safe_terminator == 0 || 1170 (safe_terminator > 4 && safe_terminator < 9) || 1171 (safe_terminator > 0xC && safe_terminator <= 0xF)) { 1172 desc_array->descriptor[0].address = address; 1173 desc_array->descriptor[0].length = (uint32_t)length; 1174 desc_array->elements = 1; 1175 return (desc_array->elements); 1176 } 1177 1178 desc_array->descriptor[0].address = address; 1179 desc_array->descriptor[0].length = length - 4; 1180 desc_array->descriptor[1].address = address + (length - 4); 1181 desc_array->descriptor[1].length = 4; 1182 desc_array->elements = 2; 1183 return (desc_array->elements); 1184 } 1185 1186 static int 1187 e1000g_tx_copy(e1000g_tx_ring_t *tx_ring, p_tx_sw_packet_t packet, 1188 mblk_t *mp, boolean_t tx_undersize_flag) 1189 { 1190 size_t len; 1191 size_t len1; 1192 dma_buffer_t *tx_buf; 1193 mblk_t *nmp; 1194 boolean_t finished; 1195 int desc_count; 1196 1197 desc_count = 0; 1198 tx_buf = packet->tx_buf; 1199 len = MBLKL(mp); 1200 1201 ASSERT((tx_buf->len + len) <= tx_buf->size); 1202 1203 if (len > 0) { 1204 bcopy(mp->b_rptr, 1205 tx_buf->address + tx_buf->len, 1206 len); 1207 tx_buf->len += len; 1208 1209 packet->num_mblk_frag++; 1210 } 1211 1212 nmp = mp->b_cont; 1213 if (nmp == NULL) { 1214 finished = B_TRUE; 1215 } else { 1216 len1 = MBLKL(nmp); 1217 if ((tx_buf->len + len1) > tx_buf->size) 1218 finished = B_TRUE; 1219 else if (tx_undersize_flag) 1220 finished = B_FALSE; 1221 else if (len1 > tx_ring->adapter->tx_bcopy_thresh) 1222 finished = B_TRUE; 1223 else 1224 finished = B_FALSE; 1225 } 1226 1227 if (finished) { 1228 E1000G_DEBUG_STAT_COND(tx_ring->stat_multi_copy, 1229 (tx_buf->len > len)); 1230 1231 /* 1232 * If the packet is smaller than 64 bytes, which is the 1233 * minimum ethernet packet size, pad the packet to make 1234 * it at least 60 bytes. The hardware will add 4 bytes 1235 * for CRC. 1236 */ 1237 if (tx_undersize_flag) { 1238 ASSERT(tx_buf->len < ETHERMIN); 1239 1240 bzero(tx_buf->address + tx_buf->len, 1241 ETHERMIN - tx_buf->len); 1242 tx_buf->len = ETHERMIN; 1243 } 1244 1245 #ifdef __sparc 1246 if (packet->dma_type == USE_DVMA) 1247 dvma_sync(tx_buf->dma_handle, 0, DDI_DMA_SYNC_FORDEV); 1248 else 1249 (void) ddi_dma_sync(tx_buf->dma_handle, 0, 1250 tx_buf->len, DDI_DMA_SYNC_FORDEV); 1251 #else 1252 (void) ddi_dma_sync(tx_buf->dma_handle, 0, 1253 tx_buf->len, DDI_DMA_SYNC_FORDEV); 1254 #endif 1255 1256 packet->data_transfer_type = USE_BCOPY; 1257 1258 desc_count = e1000g_fill_tx_desc(tx_ring, 1259 packet, 1260 tx_buf->dma_address, 1261 tx_buf->len); 1262 1263 if (desc_count <= 0) 1264 return (-1); 1265 } 1266 1267 return (desc_count); 1268 } 1269 1270 static int 1271 e1000g_tx_bind(e1000g_tx_ring_t *tx_ring, p_tx_sw_packet_t packet, mblk_t *mp) 1272 { 1273 int j; 1274 int mystat; 1275 size_t len; 1276 ddi_dma_cookie_t dma_cookie; 1277 uint_t ncookies; 1278 int desc_count; 1279 uint32_t desc_total; 1280 1281 desc_total = 0; 1282 len = MBLKL(mp); 1283 1284 /* 1285 * ddi_dma_addr_bind_handle() allocates DMA resources for a 1286 * memory object such that a device can perform DMA to or from 1287 * the object. DMA resources are allocated considering the 1288 * device's DMA attributes as expressed by ddi_dma_attr(9S) 1289 * (see ddi_dma_alloc_handle(9F)). 1290 * 1291 * ddi_dma_addr_bind_handle() fills in the first DMA cookie 1292 * pointed to by cookiep with the appropriate address, length, 1293 * and bus type. *ccountp is set to the number of DMA cookies 1294 * representing this DMA object. Subsequent DMA cookies must be 1295 * retrieved by calling ddi_dma_nextcookie(9F) the number of 1296 * times specified by *countp - 1. 1297 */ 1298 switch (packet->dma_type) { 1299 #ifdef __sparc 1300 case USE_DVMA: 1301 dvma_kaddr_load(packet->tx_dma_handle, 1302 (caddr_t)mp->b_rptr, len, 0, &dma_cookie); 1303 1304 dvma_sync(packet->tx_dma_handle, 0, 1305 DDI_DMA_SYNC_FORDEV); 1306 1307 ncookies = 1; 1308 packet->data_transfer_type = USE_DVMA; 1309 break; 1310 #endif 1311 case USE_DMA: 1312 if ((mystat = ddi_dma_addr_bind_handle( 1313 packet->tx_dma_handle, NULL, 1314 (caddr_t)mp->b_rptr, len, 1315 DDI_DMA_WRITE | DDI_DMA_STREAMING, 1316 DDI_DMA_DONTWAIT, 0, &dma_cookie, 1317 &ncookies)) != DDI_DMA_MAPPED) { 1318 1319 e1000g_log(tx_ring->adapter, CE_WARN, 1320 "Couldn't bind mblk buffer to Tx DMA handle: " 1321 "return: %X, Pkt: %X\n", 1322 mystat, packet); 1323 return (-1); 1324 } 1325 1326 /* 1327 * An implicit ddi_dma_sync() is done when the 1328 * ddi_dma_addr_bind_handle() is called. So we 1329 * don't need to explicitly call ddi_dma_sync() 1330 * here any more. 1331 */ 1332 ASSERT(ncookies); 1333 E1000G_DEBUG_STAT_COND(tx_ring->stat_multi_cookie, 1334 (ncookies > 1)); 1335 1336 /* 1337 * The data_transfer_type value must be set after the handle 1338 * has been bound, for it will be used in e1000g_free_tx_swpkt() 1339 * to decide whether we need to unbind the handle. 1340 */ 1341 packet->data_transfer_type = USE_DMA; 1342 break; 1343 default: 1344 ASSERT(B_FALSE); 1345 break; 1346 } 1347 1348 packet->num_mblk_frag++; 1349 1350 /* 1351 * Each address could span thru multpile cookie.. 1352 * Each cookie will have one descriptor 1353 */ 1354 for (j = ncookies; j != 0; j--) { 1355 1356 desc_count = e1000g_fill_tx_desc(tx_ring, 1357 packet, 1358 dma_cookie.dmac_laddress, 1359 dma_cookie.dmac_size); 1360 1361 if (desc_count <= 0) 1362 return (-1); 1363 1364 desc_total += desc_count; 1365 1366 /* 1367 * ddi_dma_nextcookie() retrieves subsequent DMA 1368 * cookies for a DMA object. 1369 * ddi_dma_nextcookie() fills in the 1370 * ddi_dma_cookie(9S) structure pointed to by 1371 * cookiep. The ddi_dma_cookie(9S) structure 1372 * must be allocated prior to calling 1373 * ddi_dma_nextcookie(). The DMA cookie count 1374 * returned by ddi_dma_buf_bind_handle(9F), 1375 * ddi_dma_addr_bind_handle(9F), or 1376 * ddi_dma_getwin(9F) indicates the number of DMA 1377 * cookies a DMA object consists of. If the 1378 * resulting cookie count, N, is larger than 1, 1379 * ddi_dma_nextcookie() must be called N-1 times 1380 * to retrieve all DMA cookies. 1381 */ 1382 if (j > 1) { 1383 ddi_dma_nextcookie(packet->tx_dma_handle, 1384 &dma_cookie); 1385 } 1386 } 1387 1388 return (desc_total); 1389 } 1390 1391 static void 1392 e1000g_fill_context_descriptor(context_data_t *cur_context, 1393 struct e1000_context_desc *context_desc) 1394 { 1395 if (cur_context->cksum_flags & HCK_IPV4_HDRCKSUM) { 1396 context_desc->lower_setup.ip_fields.ipcss = 1397 cur_context->ether_header_size; 1398 context_desc->lower_setup.ip_fields.ipcso = 1399 cur_context->ether_header_size + 1400 offsetof(struct ip, ip_sum); 1401 context_desc->lower_setup.ip_fields.ipcse = 1402 cur_context->ether_header_size + 1403 cur_context->cksum_start - 1; 1404 } else 1405 context_desc->lower_setup.ip_config = 0; 1406 1407 if (cur_context->cksum_flags & HCK_PARTIALCKSUM) { 1408 /* 1409 * The packet with same protocol has the following 1410 * stuff and start offset: 1411 * | Protocol | Stuff | Start | Checksum 1412 * | | Offset | Offset | Enable 1413 * | IPv4 + TCP | 0x24 | 0x14 | Yes 1414 * | IPv4 + UDP | 0x1A | 0x14 | Yes 1415 * | IPv6 + TCP | 0x20 | 0x10 | No 1416 * | IPv6 + UDP | 0x14 | 0x10 | No 1417 */ 1418 context_desc->upper_setup.tcp_fields.tucss = 1419 cur_context->cksum_start + cur_context->ether_header_size; 1420 context_desc->upper_setup.tcp_fields.tucso = 1421 cur_context->cksum_stuff + cur_context->ether_header_size; 1422 context_desc->upper_setup.tcp_fields.tucse = 0; 1423 } else 1424 context_desc->upper_setup.tcp_config = 0; 1425 1426 if (cur_context->lso_flag) { 1427 context_desc->tcp_seg_setup.fields.mss = cur_context->mss; 1428 context_desc->tcp_seg_setup.fields.hdr_len = 1429 cur_context->hdr_len; 1430 /* 1431 * workaround for 82546EB errata 23, status-writeback 1432 * reporting (RS) should not be set on context or 1433 * Null descriptors 1434 */ 1435 context_desc->cmd_and_length = E1000_TXD_CMD_DEXT 1436 | E1000_TXD_CMD_TSE | E1000_TXD_CMD_IP | E1000_TXD_CMD_TCP 1437 | E1000_TXD_DTYP_C | cur_context->pay_len; 1438 } else { 1439 context_desc->cmd_and_length = E1000_TXD_CMD_DEXT 1440 | E1000_TXD_DTYP_C; 1441 /* 1442 * Zero out the options for TCP Segmentation Offload 1443 */ 1444 context_desc->tcp_seg_setup.data = 0; 1445 } 1446 } 1447 1448 static int 1449 e1000g_fill_tx_desc(e1000g_tx_ring_t *tx_ring, 1450 p_tx_sw_packet_t packet, uint64_t address, size_t size) 1451 { 1452 struct e1000_hw *hw = &tx_ring->adapter->shared; 1453 p_sw_desc_t desc; 1454 1455 if (hw->mac.type == e1000_82544) { 1456 if (hw->bus.type == e1000_bus_type_pcix) 1457 return (e1000g_tx_workaround_PCIX_82544(packet, 1458 address, size)); 1459 1460 if (size > JUMBO_FRAG_LENGTH) 1461 return (e1000g_tx_workaround_jumbo_82544(packet, 1462 address, size)); 1463 } 1464 1465 ASSERT(packet->num_desc < MAX_TX_DESC_PER_PACKET); 1466 1467 desc = &packet->desc[packet->num_desc]; 1468 desc->address = address; 1469 desc->length = (uint32_t)size; 1470 1471 packet->num_desc++; 1472 1473 return (1); 1474 } 1475 1476 static int 1477 e1000g_tx_workaround_PCIX_82544(p_tx_sw_packet_t packet, 1478 uint64_t address, size_t size) 1479 { 1480 p_sw_desc_t desc; 1481 int desc_count; 1482 long size_left; 1483 size_t len; 1484 uint32_t counter; 1485 uint32_t array_elements; 1486 desc_array_t desc_array; 1487 1488 /* 1489 * Coexist Workaround for cordova: RP: 07/04/03 1490 * 1491 * RP: ERRATA: Workaround ISSUE: 1492 * 8kb_buffer_Lockup CONTROLLER: Cordova Breakup 1493 * Eachbuffer in to 8kb pieces until the 1494 * remainder is < 8kb 1495 */ 1496 size_left = size; 1497 desc_count = 0; 1498 1499 while (size_left > 0) { 1500 if (size_left > MAX_TX_BUF_SIZE) 1501 len = MAX_TX_BUF_SIZE; 1502 else 1503 len = size_left; 1504 1505 array_elements = e1000g_fill_82544_desc(address, 1506 len, &desc_array); 1507 1508 for (counter = 0; counter < array_elements; counter++) { 1509 ASSERT(packet->num_desc < MAX_TX_DESC_PER_PACKET); 1510 /* 1511 * Put in the buffer address 1512 */ 1513 desc = &packet->desc[packet->num_desc]; 1514 1515 desc->address = 1516 desc_array.descriptor[counter].address; 1517 desc->length = 1518 desc_array.descriptor[counter].length; 1519 1520 packet->num_desc++; 1521 desc_count++; 1522 } /* for */ 1523 1524 /* 1525 * Update the buffer address and length 1526 */ 1527 address += MAX_TX_BUF_SIZE; 1528 size_left -= MAX_TX_BUF_SIZE; 1529 } /* while */ 1530 1531 return (desc_count); 1532 } 1533 1534 static int 1535 e1000g_tx_workaround_jumbo_82544(p_tx_sw_packet_t packet, 1536 uint64_t address, size_t size) 1537 { 1538 p_sw_desc_t desc; 1539 int desc_count; 1540 long size_left; 1541 uint32_t offset; 1542 1543 /* 1544 * Workaround for Jumbo Frames on Cordova 1545 * PSD 06/01/2001 1546 */ 1547 size_left = size; 1548 desc_count = 0; 1549 offset = 0; 1550 while (size_left > 0) { 1551 ASSERT(packet->num_desc < MAX_TX_DESC_PER_PACKET); 1552 1553 desc = &packet->desc[packet->num_desc]; 1554 1555 desc->address = address + offset; 1556 1557 if (size_left > JUMBO_FRAG_LENGTH) 1558 desc->length = JUMBO_FRAG_LENGTH; 1559 else 1560 desc->length = (uint32_t)size_left; 1561 1562 packet->num_desc++; 1563 desc_count++; 1564 1565 offset += desc->length; 1566 size_left -= JUMBO_FRAG_LENGTH; 1567 } 1568 1569 return (desc_count); 1570 } 1571 1572 #pragma inline(e1000g_82547_tx_move_tail_work) 1573 1574 static void 1575 e1000g_82547_tx_move_tail_work(e1000g_tx_ring_t *tx_ring) 1576 { 1577 struct e1000_hw *hw; 1578 uint16_t hw_tdt; 1579 uint16_t sw_tdt; 1580 struct e1000_tx_desc *tx_desc; 1581 uint16_t length = 0; 1582 boolean_t eop = B_FALSE; 1583 struct e1000g *Adapter; 1584 1585 Adapter = tx_ring->adapter; 1586 hw = &Adapter->shared; 1587 1588 hw_tdt = E1000_READ_REG(hw, E1000_TDT(0)); 1589 sw_tdt = tx_ring->tbd_next - tx_ring->tbd_first; 1590 1591 while (hw_tdt != sw_tdt) { 1592 tx_desc = &(tx_ring->tbd_first[hw_tdt]); 1593 length += tx_desc->lower.flags.length; 1594 eop = tx_desc->lower.data & E1000_TXD_CMD_EOP; 1595 if (++hw_tdt == Adapter->tx_desc_num) 1596 hw_tdt = 0; 1597 1598 if (eop) { 1599 if ((Adapter->link_duplex == HALF_DUPLEX) && 1600 (e1000_fifo_workaround_82547(hw, length) 1601 != E1000_SUCCESS)) { 1602 if (tx_ring->timer_enable_82547) { 1603 ASSERT(tx_ring->timer_id_82547 == 0); 1604 tx_ring->timer_id_82547 = 1605 timeout(e1000g_82547_timeout, 1606 (void *)tx_ring, 1607 drv_usectohz(10000)); 1608 } 1609 return; 1610 1611 } else { 1612 E1000_WRITE_REG(hw, E1000_TDT(0), hw_tdt); 1613 e1000_update_tx_fifo_head_82547(hw, length); 1614 length = 0; 1615 } 1616 } 1617 } 1618 } 1619 1620 static void 1621 e1000g_82547_timeout(void *arg) 1622 { 1623 e1000g_tx_ring_t *tx_ring; 1624 1625 tx_ring = (e1000g_tx_ring_t *)arg; 1626 1627 mutex_enter(&tx_ring->tx_lock); 1628 1629 tx_ring->timer_id_82547 = 0; 1630 e1000g_82547_tx_move_tail_work(tx_ring); 1631 1632 mutex_exit(&tx_ring->tx_lock); 1633 } 1634 1635 static void 1636 e1000g_82547_tx_move_tail(e1000g_tx_ring_t *tx_ring) 1637 { 1638 timeout_id_t tid; 1639 1640 ASSERT(MUTEX_HELD(&tx_ring->tx_lock)); 1641 1642 tid = tx_ring->timer_id_82547; 1643 tx_ring->timer_id_82547 = 0; 1644 if (tid != 0) { 1645 tx_ring->timer_enable_82547 = B_FALSE; 1646 mutex_exit(&tx_ring->tx_lock); 1647 1648 (void) untimeout(tid); 1649 1650 mutex_enter(&tx_ring->tx_lock); 1651 } 1652 tx_ring->timer_enable_82547 = B_TRUE; 1653 e1000g_82547_tx_move_tail_work(tx_ring); 1654 } 1655