xref: /illumos-gate/usr/src/uts/common/io/e1000g/e1000g_tx.c (revision ca4eed8b351c42874d1c1d9360d832914a0ffd1b)
1 /*
2  * This file is provided under a CDDLv1 license.  When using or
3  * redistributing this file, you may do so under this license.
4  * In redistributing this file this license must be included
5  * and no other modification of this header file is permitted.
6  *
7  * CDDL LICENSE SUMMARY
8  *
9  * Copyright(c) 1999 - 2008 Intel Corporation. All rights reserved.
10  *
11  * The contents of this file are subject to the terms of Version
12  * 1.0 of the Common Development and Distribution License (the "License").
13  *
14  * You should have received a copy of the License with this software.
15  * You can obtain a copy of the License at
16  *	http://www.opensolaris.org/os/licensing.
17  * See the License for the specific language governing permissions
18  * and limitations under the License.
19  */
20 
21 /*
22  * Copyright 2008 Sun Microsystems, Inc.  All rights reserved.
23  * Use is subject to license terms of the CDDLv1.
24  */
25 
26 /*
27  * **********************************************************************
28  *									*
29  * Module Name:								*
30  *   e1000g_tx.c							*
31  *									*
32  * Abstract:								*
33  *   This file contains some routines that take care of Transmit,	*
34  *   make the hardware to send the data pointed by the packet out	*
35  *   on to the physical medium.						*
36  *									*
37  * **********************************************************************
38  */
39 
40 #include "e1000g_sw.h"
41 #include "e1000g_debug.h"
42 
43 static boolean_t e1000g_send(struct e1000g *, mblk_t *);
44 static int e1000g_tx_copy(e1000g_tx_ring_t *,
45     p_tx_sw_packet_t, mblk_t *, boolean_t);
46 static int e1000g_tx_bind(e1000g_tx_ring_t *,
47     p_tx_sw_packet_t, mblk_t *);
48 static boolean_t e1000g_retrieve_context(mblk_t *, context_data_t *, size_t);
49 static boolean_t e1000g_check_context(e1000g_tx_ring_t *, context_data_t *);
50 static int e1000g_fill_tx_ring(e1000g_tx_ring_t *, LIST_DESCRIBER *,
51     context_data_t *);
52 static void e1000g_fill_context_descriptor(context_data_t *,
53     struct e1000_context_desc *);
54 static int e1000g_fill_tx_desc(e1000g_tx_ring_t *,
55     p_tx_sw_packet_t, uint64_t, size_t);
56 static uint32_t e1000g_fill_82544_desc(uint64_t Address, size_t Length,
57     p_desc_array_t desc_array);
58 static int e1000g_tx_workaround_PCIX_82544(p_tx_sw_packet_t, uint64_t, size_t);
59 static int e1000g_tx_workaround_jumbo_82544(p_tx_sw_packet_t, uint64_t, size_t);
60 static void e1000g_82547_timeout(void *);
61 static void e1000g_82547_tx_move_tail(e1000g_tx_ring_t *);
62 static void e1000g_82547_tx_move_tail_work(e1000g_tx_ring_t *);
63 
64 #ifndef E1000G_DEBUG
65 #pragma inline(e1000g_tx_copy)
66 #pragma inline(e1000g_tx_bind)
67 #pragma inline(e1000g_retrieve_context)
68 #pragma inline(e1000g_check_context)
69 #pragma inline(e1000g_fill_tx_ring)
70 #pragma inline(e1000g_fill_context_descriptor)
71 #pragma inline(e1000g_fill_tx_desc)
72 #pragma inline(e1000g_fill_82544_desc)
73 #pragma inline(e1000g_tx_workaround_PCIX_82544)
74 #pragma inline(e1000g_tx_workaround_jumbo_82544)
75 #pragma inline(e1000g_free_tx_swpkt)
76 #endif
77 
78 /*
79  * e1000g_free_tx_swpkt	- free up the tx sw packet
80  *
81  * Unbind the previously bound DMA handle for a given
82  * transmit sw packet. And reset the sw packet data.
83  */
84 void
85 e1000g_free_tx_swpkt(register p_tx_sw_packet_t packet)
86 {
87 	switch (packet->data_transfer_type) {
88 	case USE_BCOPY:
89 		packet->tx_buf->len = 0;
90 		break;
91 #ifdef __sparc
92 	case USE_DVMA:
93 		dvma_unload(packet->tx_dma_handle, 0, -1);
94 		break;
95 #endif
96 	case USE_DMA:
97 		(void) ddi_dma_unbind_handle(packet->tx_dma_handle);
98 		break;
99 	default:
100 		break;
101 	}
102 
103 	/*
104 	 * The mblk has been stripped off the sw packet
105 	 * and will be freed in a triggered soft intr.
106 	 */
107 	ASSERT(packet->mp == NULL);
108 
109 	packet->data_transfer_type = USE_NONE;
110 	packet->num_mblk_frag = 0;
111 	packet->num_desc = 0;
112 }
113 
114 mblk_t *
115 e1000g_m_tx(void *arg, mblk_t *mp)
116 {
117 	struct e1000g *Adapter = (struct e1000g *)arg;
118 	mblk_t *next;
119 
120 	rw_enter(&Adapter->chip_lock, RW_READER);
121 
122 	if ((Adapter->chip_state != E1000G_START) ||
123 	    (Adapter->link_state != LINK_STATE_UP)) {
124 		freemsgchain(mp);
125 		mp = NULL;
126 	}
127 
128 	while (mp != NULL) {
129 		next = mp->b_next;
130 		mp->b_next = NULL;
131 
132 		if (!e1000g_send(Adapter, mp)) {
133 			mp->b_next = next;
134 			break;
135 		}
136 
137 		mp = next;
138 	}
139 
140 	rw_exit(&Adapter->chip_lock);
141 	return (mp);
142 }
143 
144 /*
145  * e1000g_send -  send packets onto the wire
146  *
147  * Called from e1000g_m_tx with an mblk ready to send. this
148  * routine sets up the transmit descriptors and sends data to
149  * the wire. It also pushes the just transmitted packet to
150  * the used tx sw packet list.
151  */
152 static boolean_t
153 e1000g_send(struct e1000g *Adapter, mblk_t *mp)
154 {
155 	p_tx_sw_packet_t packet;
156 	LIST_DESCRIBER pending_list;
157 	size_t len;
158 	size_t msg_size;
159 	uint32_t frag_count;
160 	int desc_count;
161 	uint32_t desc_total;
162 	uint32_t bcopy_thresh;
163 	uint32_t hdr_frag_len;
164 	boolean_t tx_undersize_flag;
165 	mblk_t *nmp;
166 	mblk_t *tmp;
167 	mblk_t *new_mp;
168 	mblk_t *pre_mp;
169 	e1000g_tx_ring_t *tx_ring;
170 	context_data_t cur_context;
171 
172 	tx_ring = Adapter->tx_ring;
173 	bcopy_thresh = Adapter->tx_bcopy_thresh;
174 
175 	/* Get the total size and frags number of the message */
176 	tx_undersize_flag = B_FALSE;
177 	frag_count = 0;
178 	msg_size = 0;
179 	for (nmp = mp; nmp; nmp = nmp->b_cont) {
180 		frag_count++;
181 		msg_size += MBLKL(nmp);
182 	}
183 
184 	/* retrieve and compute information for context descriptor */
185 	if (!e1000g_retrieve_context(mp, &cur_context, msg_size)) {
186 		freemsg(mp);
187 		return (B_TRUE);
188 	}
189 
190 	/*
191 	 * Make sure the packet is less than the allowed size
192 	 */
193 	if (!cur_context.lso_flag &&
194 	    (msg_size > Adapter->max_frame_size - ETHERFCSL)) {
195 		/*
196 		 * For the over size packet, we'll just drop it.
197 		 * So we return B_TRUE here.
198 		 */
199 		E1000G_DEBUGLOG_1(Adapter, E1000G_WARN_LEVEL,
200 		    "Tx packet out of bound. length = %d \n", msg_size);
201 		E1000G_STAT(tx_ring->stat_over_size);
202 		freemsg(mp);
203 		return (B_TRUE);
204 	}
205 
206 	/*
207 	 * Check and reclaim tx descriptors.
208 	 * This low water mark check should be done all the time as
209 	 * Transmit interrupt delay can produce Transmit interrupts little
210 	 * late and that may cause few problems related to reaping Tx
211 	 * Descriptors... As you may run short of them before getting any
212 	 * transmit interrupt...
213 	 */
214 	if (tx_ring->resched_needed ||
215 	    (tx_ring->tbd_avail < Adapter->tx_recycle_thresh)) {
216 		(void) e1000g_recycle(tx_ring);
217 		E1000G_DEBUG_STAT(tx_ring->stat_recycle);
218 
219 		if (tx_ring->tbd_avail < DEFAULT_TX_NO_RESOURCE) {
220 			E1000G_DEBUG_STAT(tx_ring->stat_lack_desc);
221 			goto tx_no_resource;
222 		}
223 	}
224 
225 	/*
226 	 * If the message size is less than the minimum ethernet packet size,
227 	 * we'll use bcopy to send it, and padd it to 60 bytes later.
228 	 */
229 	if (msg_size < ETHERMIN) {
230 		E1000G_DEBUG_STAT(tx_ring->stat_under_size);
231 		tx_undersize_flag = B_TRUE;
232 	}
233 
234 	/* Initialize variables */
235 	desc_count = 1;	/* The initial value should be greater than 0 */
236 	desc_total = 0;
237 	QUEUE_INIT_LIST(&pending_list);
238 
239 	/* Process each mblk fragment and fill tx descriptors */
240 	/*
241 	 * The software should guarantee LSO packet header(MAC+IP+TCP)
242 	 * to be within one descriptor. Here we reallocate and refill the
243 	 * the header if it's physical memory non-contiguous.
244 	 */
245 	if (cur_context.lso_flag) {
246 		/* find the last fragment of the header */
247 		len = MBLKL(mp);
248 		ASSERT(len > 0);
249 		nmp = mp;
250 		pre_mp = NULL;
251 		while (len < cur_context.hdr_len) {
252 			pre_mp = nmp;
253 			nmp = nmp->b_cont;
254 			len += MBLKL(nmp);
255 		}
256 		/*
257 		 * If the header and the payload are in different mblks,
258 		 * we simply force the header to be copied into pre-allocated
259 		 * page-aligned buffer.
260 		 */
261 		if (len == cur_context.hdr_len)
262 			goto adjust_threshold;
263 
264 		hdr_frag_len = cur_context.hdr_len - (len - MBLKL(nmp));
265 		/*
266 		 * There are two cases we need to reallocate a mblk for the
267 		 * last header fragment:
268 		 * 1. the header is in multiple mblks and the last fragment
269 		 * share the same mblk with the payload
270 		 * 2. the header is in a single mblk shared with the payload
271 		 * and the header is physical memory non-contiguous
272 		 */
273 		if ((nmp != mp) ||
274 		    (P2NPHASE((uintptr_t)nmp->b_rptr, Adapter->sys_page_sz)
275 		    < len)) {
276 			E1000G_DEBUG_STAT(tx_ring->stat_lso_header_fail);
277 			/*
278 			 * reallocate the mblk for the last header fragment,
279 			 * expect to bcopy into pre-allocated page-aligned
280 			 * buffer
281 			 */
282 			new_mp = allocb(hdr_frag_len, NULL);
283 			if (!new_mp)
284 				return (B_FALSE);
285 			bcopy(nmp->b_rptr, new_mp->b_rptr, hdr_frag_len);
286 			/* link the new header fragment with the other parts */
287 			new_mp->b_wptr = new_mp->b_rptr + hdr_frag_len;
288 			new_mp->b_cont = nmp;
289 			if (pre_mp)
290 				pre_mp->b_cont = new_mp;
291 			nmp->b_rptr += hdr_frag_len;
292 			if (hdr_frag_len == cur_context.hdr_len)
293 				mp = new_mp;
294 			frag_count ++;
295 		}
296 adjust_threshold:
297 		/*
298 		 * adjust the bcopy threshhold to guarantee
299 		 * the header to use bcopy way
300 		 */
301 		if (bcopy_thresh < cur_context.hdr_len)
302 			bcopy_thresh = cur_context.hdr_len;
303 	}
304 
305 	packet = NULL;
306 	nmp = mp;
307 	while (nmp) {
308 		tmp = nmp->b_cont;
309 
310 		len = MBLKL(nmp);
311 		/* Check zero length mblks */
312 		if (len == 0) {
313 			E1000G_DEBUG_STAT(tx_ring->stat_empty_frags);
314 			/*
315 			 * If there're no packet buffers have been used,
316 			 * or we just completed processing a buffer, then
317 			 * skip the empty mblk fragment.
318 			 * Otherwise, there's still a pending buffer that
319 			 * needs to be processed (tx_copy).
320 			 */
321 			if (desc_count > 0) {
322 				nmp = tmp;
323 				continue;
324 			}
325 		}
326 
327 		/*
328 		 * Get a new TxSwPacket to process mblk buffers.
329 		 */
330 		if (desc_count > 0) {
331 			mutex_enter(&tx_ring->freelist_lock);
332 			packet = (p_tx_sw_packet_t)
333 			    QUEUE_POP_HEAD(&tx_ring->free_list);
334 			mutex_exit(&tx_ring->freelist_lock);
335 
336 			if (packet == NULL) {
337 				E1000G_DEBUGLOG_0(Adapter, E1000G_INFO_LEVEL,
338 				    "No Tx SwPacket available\n");
339 				E1000G_STAT(tx_ring->stat_no_swpkt);
340 				goto tx_send_failed;
341 			}
342 			QUEUE_PUSH_TAIL(&pending_list, &packet->Link);
343 		}
344 
345 		ASSERT(packet);
346 		/*
347 		 * If the size of the fragment is less than the tx_bcopy_thresh
348 		 * we'll use bcopy; Otherwise, we'll use DMA binding.
349 		 */
350 		if ((len <= bcopy_thresh) || tx_undersize_flag) {
351 			desc_count =
352 			    e1000g_tx_copy(tx_ring, packet, nmp,
353 			    tx_undersize_flag);
354 			E1000G_DEBUG_STAT(tx_ring->stat_copy);
355 		} else {
356 			desc_count =
357 			    e1000g_tx_bind(tx_ring, packet, nmp);
358 			E1000G_DEBUG_STAT(tx_ring->stat_bind);
359 		}
360 
361 		if (desc_count > 0)
362 			desc_total += desc_count;
363 		else if (desc_count < 0)
364 			goto tx_send_failed;
365 
366 		nmp = tmp;
367 	}
368 
369 	/* Assign the message to the last sw packet */
370 	ASSERT(packet);
371 	ASSERT(packet->mp == NULL);
372 	packet->mp = mp;
373 
374 	/* Try to recycle the tx descriptors again */
375 	if (tx_ring->tbd_avail < (desc_total + 2)) {
376 		E1000G_DEBUG_STAT(tx_ring->stat_recycle_retry);
377 		(void) e1000g_recycle(tx_ring);
378 	}
379 
380 	mutex_enter(&tx_ring->tx_lock);
381 
382 	/*
383 	 * If the number of available tx descriptors is not enough for transmit
384 	 * (one redundant descriptor and one hw checksum context descriptor are
385 	 * included), then return failure.
386 	 */
387 	if (tx_ring->tbd_avail < (desc_total + 2)) {
388 		E1000G_DEBUGLOG_0(Adapter, E1000G_INFO_LEVEL,
389 		    "No Enough Tx descriptors\n");
390 		E1000G_STAT(tx_ring->stat_no_desc);
391 		mutex_exit(&tx_ring->tx_lock);
392 		goto tx_send_failed;
393 	}
394 
395 	desc_count = e1000g_fill_tx_ring(tx_ring, &pending_list, &cur_context);
396 
397 	mutex_exit(&tx_ring->tx_lock);
398 
399 	ASSERT(desc_count > 0);
400 
401 	/* Send successful */
402 	return (B_TRUE);
403 
404 tx_send_failed:
405 	/*
406 	 * Enable Transmit interrupts, so that the interrupt routine can
407 	 * call mac_tx_update() when transmit descriptors become available.
408 	 */
409 	tx_ring->resched_needed = B_TRUE;
410 	if (!Adapter->tx_intr_enable)
411 		e1000g_mask_tx_interrupt(Adapter);
412 
413 	/* Free pending TxSwPackets */
414 	packet = (p_tx_sw_packet_t)QUEUE_GET_HEAD(&pending_list);
415 	while (packet) {
416 		packet->mp = NULL;
417 		e1000g_free_tx_swpkt(packet);
418 		packet = (p_tx_sw_packet_t)
419 		    QUEUE_GET_NEXT(&pending_list, &packet->Link);
420 	}
421 
422 	/* Return pending TxSwPackets to the "Free" list */
423 	mutex_enter(&tx_ring->freelist_lock);
424 	QUEUE_APPEND(&tx_ring->free_list, &pending_list);
425 	mutex_exit(&tx_ring->freelist_lock);
426 
427 	E1000G_STAT(tx_ring->stat_send_fail);
428 
429 	/* Message will be scheduled for re-transmit */
430 	return (B_FALSE);
431 
432 tx_no_resource:
433 	/*
434 	 * Enable Transmit interrupts, so that the interrupt routine can
435 	 * call mac_tx_update() when transmit descriptors become available.
436 	 */
437 	tx_ring->resched_needed = B_TRUE;
438 	if (!Adapter->tx_intr_enable)
439 		e1000g_mask_tx_interrupt(Adapter);
440 
441 	/* Message will be scheduled for re-transmit */
442 	return (B_FALSE);
443 }
444 
445 static boolean_t
446 e1000g_retrieve_context(mblk_t *mp, context_data_t *cur_context,
447     size_t msg_size)
448 {
449 	uintptr_t ip_start;
450 	uintptr_t tcp_start;
451 	mblk_t *nmp;
452 
453 	bzero(cur_context, sizeof (context_data_t));
454 
455 	/* retrieve checksum info */
456 	hcksum_retrieve(mp, NULL, NULL, &cur_context->cksum_start,
457 	    &cur_context->cksum_stuff, NULL, NULL, &cur_context->cksum_flags);
458 	/* retrieve ethernet header size */
459 	if (((struct ether_vlan_header *)(uintptr_t)mp->b_rptr)->ether_tpid ==
460 	    htons(ETHERTYPE_VLAN))
461 		cur_context->ether_header_size =
462 		    sizeof (struct ether_vlan_header);
463 	else
464 		cur_context->ether_header_size =
465 		    sizeof (struct ether_header);
466 
467 	if (cur_context->cksum_flags & HW_LSO) {
468 		if ((cur_context->mss = DB_LSOMSS(mp)) != 0) {
469 			/* free the invaid packet */
470 			if (!((cur_context->cksum_flags & HCK_PARTIALCKSUM) &&
471 			    (cur_context->cksum_flags & HCK_IPV4_HDRCKSUM))) {
472 				return (B_FALSE);
473 			}
474 			cur_context->lso_flag = B_TRUE;
475 			/*
476 			 * Some fields are cleared for the hardware to fill
477 			 * in. We don't assume Ethernet header, IP header and
478 			 * TCP header are always in the same mblk fragment,
479 			 * while we assume each header is always within one
480 			 * mblk fragment and Ethernet header is always in the
481 			 * first mblk fragment.
482 			 */
483 			nmp = mp;
484 			ip_start = (uintptr_t)(nmp->b_rptr)
485 			    + cur_context->ether_header_size;
486 			if (ip_start >= (uintptr_t)(nmp->b_wptr)) {
487 				ip_start = (uintptr_t)nmp->b_cont->b_rptr
488 				    + (ip_start - (uintptr_t)(nmp->b_wptr));
489 				nmp = nmp->b_cont;
490 			}
491 			tcp_start = ip_start +
492 			    IPH_HDR_LENGTH((ipha_t *)ip_start);
493 			if (tcp_start >= (uintptr_t)(nmp->b_wptr)) {
494 				tcp_start = (uintptr_t)nmp->b_cont->b_rptr
495 				    + (tcp_start - (uintptr_t)(nmp->b_wptr));
496 				nmp = nmp->b_cont;
497 			}
498 			cur_context->hdr_len = cur_context->ether_header_size
499 			    + IPH_HDR_LENGTH((ipha_t *)ip_start)
500 			    + TCP_HDR_LENGTH((tcph_t *)tcp_start);
501 			((ipha_t *)ip_start)->ipha_length = 0;
502 			((ipha_t *)ip_start)->ipha_hdr_checksum = 0;
503 			/* calculate the TCP packet payload length */
504 			cur_context->pay_len = msg_size - cur_context->hdr_len;
505 		}
506 	}
507 	return (B_TRUE);
508 }
509 
510 static boolean_t
511 e1000g_check_context(e1000g_tx_ring_t *tx_ring, context_data_t *cur_context)
512 {
513 	boolean_t context_reload;
514 	context_data_t *pre_context;
515 	struct e1000g *Adapter;
516 
517 	context_reload = B_FALSE;
518 	pre_context = &tx_ring->pre_context;
519 	Adapter = tx_ring->adapter;
520 
521 	/*
522 	 * The following code determine if the context descriptor is
523 	 * needed to be reloaded. The sequence of the conditions is
524 	 * made by their possibilities of changing.
525 	 */
526 	/*
527 	 * workaround for 82546EB, context descriptor must be reloaded
528 	 * per LSO/hw_cksum packet if LSO is enabled.
529 	 */
530 	if (Adapter->lso_premature_issue &&
531 	    Adapter->lso_enable &&
532 	    (cur_context->cksum_flags != 0)) {
533 
534 		context_reload = B_TRUE;
535 	} else if (cur_context->lso_flag) {
536 		if ((cur_context->lso_flag != pre_context->lso_flag) ||
537 		    (cur_context->cksum_flags != pre_context->cksum_flags) ||
538 		    (cur_context->pay_len != pre_context->pay_len) ||
539 		    (cur_context->mss != pre_context->mss) ||
540 		    (cur_context->hdr_len != pre_context->hdr_len) ||
541 		    (cur_context->cksum_stuff != pre_context->cksum_stuff) ||
542 		    (cur_context->cksum_start != pre_context->cksum_start) ||
543 		    (cur_context->ether_header_size !=
544 		    pre_context->ether_header_size)) {
545 
546 			context_reload = B_TRUE;
547 		}
548 	} else if (cur_context->cksum_flags != 0) {
549 		if ((cur_context->lso_flag != pre_context->lso_flag) ||
550 		    (cur_context->cksum_flags != pre_context->cksum_flags) ||
551 		    (cur_context->cksum_stuff != pre_context->cksum_stuff) ||
552 		    (cur_context->cksum_start != pre_context->cksum_start) ||
553 		    (cur_context->ether_header_size !=
554 		    pre_context->ether_header_size)) {
555 
556 			context_reload = B_TRUE;
557 		}
558 	}
559 
560 	return (context_reload);
561 }
562 
563 static int
564 e1000g_fill_tx_ring(e1000g_tx_ring_t *tx_ring, LIST_DESCRIBER *pending_list,
565     context_data_t *cur_context)
566 {
567 	struct e1000g *Adapter;
568 	struct e1000_hw *hw;
569 	p_tx_sw_packet_t first_packet;
570 	p_tx_sw_packet_t packet;
571 	p_tx_sw_packet_t previous_packet;
572 	boolean_t context_reload;
573 	struct e1000_tx_desc *first_data_desc;
574 	struct e1000_tx_desc *next_desc;
575 	struct e1000_tx_desc *descriptor;
576 	int desc_count;
577 	boolean_t buff_overrun_flag;
578 	int i;
579 
580 	Adapter = tx_ring->adapter;
581 	hw = &Adapter->shared;
582 
583 	desc_count = 0;
584 	first_packet = NULL;
585 	first_data_desc = NULL;
586 	descriptor = NULL;
587 	first_packet = NULL;
588 	packet = NULL;
589 	buff_overrun_flag = B_FALSE;
590 
591 	next_desc = tx_ring->tbd_next;
592 
593 	/* Context descriptor reload check */
594 	context_reload = e1000g_check_context(tx_ring, cur_context);
595 
596 	if (context_reload) {
597 		first_packet = (p_tx_sw_packet_t)QUEUE_GET_HEAD(pending_list);
598 
599 		descriptor = next_desc;
600 
601 		e1000g_fill_context_descriptor(cur_context,
602 		    (struct e1000_context_desc *)descriptor);
603 
604 		/* Check the wrap-around case */
605 		if (descriptor == tx_ring->tbd_last)
606 			next_desc = tx_ring->tbd_first;
607 		else
608 			next_desc++;
609 
610 		desc_count++;
611 	}
612 
613 	first_data_desc = next_desc;
614 
615 	packet = (p_tx_sw_packet_t)QUEUE_GET_HEAD(pending_list);
616 	while (packet) {
617 		ASSERT(packet->num_desc);
618 
619 		for (i = 0; i < packet->num_desc; i++) {
620 			ASSERT(tx_ring->tbd_avail > 0);
621 
622 			descriptor = next_desc;
623 			descriptor->buffer_addr =
624 			    packet->desc[i].address;
625 			descriptor->lower.data =
626 			    packet->desc[i].length;
627 
628 			/* Zero out status */
629 			descriptor->upper.data = 0;
630 
631 			descriptor->lower.data |=
632 			    E1000_TXD_CMD_DEXT | E1000_TXD_DTYP_D;
633 			/* must set RS on every outgoing descriptor */
634 			descriptor->lower.data |=
635 			    E1000_TXD_CMD_RS;
636 
637 			if (cur_context->lso_flag)
638 				descriptor->lower.data |= E1000_TXD_CMD_TSE;
639 
640 			/* Check the wrap-around case */
641 			if (descriptor == tx_ring->tbd_last)
642 				next_desc = tx_ring->tbd_first;
643 			else
644 				next_desc++;
645 
646 			desc_count++;
647 
648 			/*
649 			 * workaround for 82546EB errata 33, hang in PCI-X
650 			 * systems due to 2k Buffer Overrun during Transmit
651 			 * Operation. The workaround applies to all the Intel
652 			 * PCI-X chips.
653 			 */
654 			if (hw->bus.type == e1000_bus_type_pcix &&
655 			    descriptor == first_data_desc &&
656 			    ((descriptor->lower.data & E1000G_TBD_LENGTH_MASK)
657 			    > E1000_TX_BUFFER_OEVRRUN_THRESHOLD)) {
658 				/* modified the first descriptor */
659 				descriptor->lower.data &=
660 				    ~E1000G_TBD_LENGTH_MASK;
661 				descriptor->lower.flags.length =
662 				    E1000_TX_BUFFER_OEVRRUN_THRESHOLD;
663 
664 				/* insert a new descriptor */
665 				ASSERT(tx_ring->tbd_avail > 0);
666 				next_desc->buffer_addr =
667 				    packet->desc[0].address +
668 				    E1000_TX_BUFFER_OEVRRUN_THRESHOLD;
669 				next_desc->lower.data =
670 				    packet->desc[0].length -
671 				    E1000_TX_BUFFER_OEVRRUN_THRESHOLD;
672 
673 				/* Zero out status */
674 				next_desc->upper.data = 0;
675 
676 				next_desc->lower.data |=
677 				    E1000_TXD_CMD_DEXT | E1000_TXD_DTYP_D;
678 				/* must set RS on every outgoing descriptor */
679 				next_desc->lower.data |=
680 				    E1000_TXD_CMD_RS;
681 
682 				if (cur_context->lso_flag)
683 					next_desc->lower.data |=
684 					    E1000_TXD_CMD_TSE;
685 
686 				descriptor = next_desc;
687 
688 				/* Check the wrap-around case */
689 				if (next_desc == tx_ring->tbd_last)
690 					next_desc = tx_ring->tbd_first;
691 				else
692 					next_desc++;
693 
694 				desc_count++;
695 				buff_overrun_flag = B_TRUE;
696 			}
697 		}
698 
699 		if (buff_overrun_flag) {
700 			packet->num_desc++;
701 			buff_overrun_flag = B_FALSE;
702 		}
703 
704 		if (first_packet != NULL) {
705 			/*
706 			 * Count the checksum context descriptor for
707 			 * the first SwPacket.
708 			 */
709 			first_packet->num_desc++;
710 			first_packet = NULL;
711 		}
712 
713 		previous_packet = packet;
714 		packet = (p_tx_sw_packet_t)
715 		    QUEUE_GET_NEXT(pending_list, &packet->Link);
716 	}
717 
718 	/*
719 	 * workaround for 82546EB errata 21, LSO Premature Descriptor Write Back
720 	 */
721 	if (Adapter->lso_premature_issue && cur_context->lso_flag &&
722 	    ((descriptor->lower.data & E1000G_TBD_LENGTH_MASK) > 8)) {
723 		/* modified the previous descriptor */
724 		descriptor->lower.data -= 4;
725 
726 		/* insert a new descriptor */
727 		ASSERT(tx_ring->tbd_avail > 0);
728 		/* the lower 20 bits of lower.data is the length field */
729 		next_desc->buffer_addr =
730 		    descriptor->buffer_addr +
731 		    (descriptor->lower.data & E1000G_TBD_LENGTH_MASK);
732 		next_desc->lower.data = 4;
733 
734 		/* Zero out status */
735 		next_desc->upper.data = 0;
736 		/* It must be part of a LSO packet */
737 		next_desc->lower.data |=
738 		    E1000_TXD_CMD_DEXT | E1000_TXD_DTYP_D |
739 		    E1000_TXD_CMD_RS | E1000_TXD_CMD_TSE;
740 
741 		descriptor = next_desc;
742 
743 		/* Check the wrap-around case */
744 		if (descriptor == tx_ring->tbd_last)
745 			next_desc = tx_ring->tbd_first;
746 		else
747 			next_desc++;
748 
749 		desc_count++;
750 		/* update the number of descriptors */
751 		previous_packet->num_desc++;
752 	}
753 
754 	ASSERT(descriptor);
755 
756 	if (cur_context->cksum_flags) {
757 		if (cur_context->cksum_flags & HCK_IPV4_HDRCKSUM)
758 			((struct e1000_data_desc *)first_data_desc)->
759 			    upper.fields.popts |= E1000_TXD_POPTS_IXSM;
760 		if (cur_context->cksum_flags & HCK_PARTIALCKSUM)
761 			((struct e1000_data_desc *)first_data_desc)->
762 			    upper.fields.popts |= E1000_TXD_POPTS_TXSM;
763 	}
764 
765 	/*
766 	 * Last Descriptor of Packet needs End Of Packet (EOP), Report
767 	 * Status (RS) set.
768 	 */
769 	if (Adapter->tx_intr_delay) {
770 		descriptor->lower.data |= E1000_TXD_CMD_IDE |
771 		    E1000_TXD_CMD_EOP;
772 	} else {
773 		descriptor->lower.data |= E1000_TXD_CMD_EOP;
774 	}
775 
776 	/* Set append Ethernet CRC (IFCS) bits */
777 	if (cur_context->lso_flag) {
778 		first_data_desc->lower.data |= E1000_TXD_CMD_IFCS;
779 	} else {
780 		descriptor->lower.data |= E1000_TXD_CMD_IFCS;
781 	}
782 
783 	/*
784 	 * Sync the Tx descriptors DMA buffer
785 	 */
786 	(void) ddi_dma_sync(tx_ring->tbd_dma_handle,
787 	    0, 0, DDI_DMA_SYNC_FORDEV);
788 
789 	tx_ring->tbd_next = next_desc;
790 
791 	/*
792 	 * Advance the Transmit Descriptor Tail (Tdt), this tells the
793 	 * FX1000 that this frame is available to transmit.
794 	 */
795 	if (hw->mac.type == e1000_82547)
796 		e1000g_82547_tx_move_tail(tx_ring);
797 	else
798 		E1000_WRITE_REG(hw, E1000_TDT(0),
799 		    (uint32_t)(next_desc - tx_ring->tbd_first));
800 
801 	if (e1000g_check_acc_handle(Adapter->osdep.reg_handle) != DDI_FM_OK) {
802 		ddi_fm_service_impact(Adapter->dip, DDI_SERVICE_DEGRADED);
803 		Adapter->chip_state = E1000G_ERROR;
804 	}
805 
806 	/* Put the pending SwPackets to the "Used" list */
807 	mutex_enter(&tx_ring->usedlist_lock);
808 	QUEUE_APPEND(&tx_ring->used_list, pending_list);
809 	tx_ring->tbd_avail -= desc_count;
810 	mutex_exit(&tx_ring->usedlist_lock);
811 
812 	/* update LSO related data */
813 	if (context_reload)
814 		tx_ring->pre_context = *cur_context;
815 
816 	return (desc_count);
817 }
818 
819 
820 /*
821  * e1000g_tx_setup - setup tx data structures
822  *
823  * This routine initializes all of the transmit related
824  * structures. This includes the Transmit descriptors,
825  * and the tx_sw_packet structures.
826  */
827 void
828 e1000g_tx_setup(struct e1000g *Adapter)
829 {
830 	struct e1000_hw *hw;
831 	p_tx_sw_packet_t packet;
832 	uint32_t i;
833 	uint32_t buf_high;
834 	uint32_t buf_low;
835 	uint32_t reg_tipg;
836 	uint32_t reg_tctl;
837 	int size;
838 	e1000g_tx_ring_t *tx_ring;
839 
840 	hw = &Adapter->shared;
841 	tx_ring = Adapter->tx_ring;
842 
843 	/* init the lists */
844 	/*
845 	 * Here we don't need to protect the lists using the
846 	 * usedlist_lock and freelist_lock, for they have
847 	 * been protected by the chip_lock.
848 	 */
849 	QUEUE_INIT_LIST(&tx_ring->used_list);
850 	QUEUE_INIT_LIST(&tx_ring->free_list);
851 
852 	/* Go through and set up each SW_Packet */
853 	packet = tx_ring->packet_area;
854 	for (i = 0; i < Adapter->tx_freelist_num; i++, packet++) {
855 		/* Initialize this tx_sw_apcket area */
856 		e1000g_free_tx_swpkt(packet);
857 		/* Add this tx_sw_packet to the free list */
858 		QUEUE_PUSH_TAIL(&tx_ring->free_list,
859 		    &packet->Link);
860 	}
861 
862 	/* Setup TX descriptor pointers */
863 	tx_ring->tbd_next = tx_ring->tbd_first;
864 	tx_ring->tbd_oldest = tx_ring->tbd_first;
865 
866 	/*
867 	 * Setup Hardware TX Registers
868 	 */
869 	/* Setup the Transmit Control Register (TCTL). */
870 	reg_tctl = E1000_READ_REG(hw, E1000_TCTL);
871 	reg_tctl |= E1000_TCTL_PSP | E1000_TCTL_EN |
872 	    (E1000_COLLISION_THRESHOLD << E1000_CT_SHIFT) |
873 	    (E1000_COLLISION_DISTANCE << E1000_COLD_SHIFT) |
874 	    E1000_TCTL_RTLC;
875 
876 	/* Enable the MULR bit */
877 	if (hw->bus.type == e1000_bus_type_pci_express)
878 		reg_tctl |= E1000_TCTL_MULR;
879 
880 	E1000_WRITE_REG(hw, E1000_TCTL, reg_tctl);
881 
882 	/* Setup HW Base and Length of Tx descriptor area */
883 	size = (Adapter->tx_desc_num * sizeof (struct e1000_tx_desc));
884 	E1000_WRITE_REG(hw, E1000_TDLEN(0), size);
885 	size = E1000_READ_REG(hw, E1000_TDLEN(0));
886 
887 	buf_low = (uint32_t)tx_ring->tbd_dma_addr;
888 	buf_high = (uint32_t)(tx_ring->tbd_dma_addr >> 32);
889 
890 	E1000_WRITE_REG(hw, E1000_TDBAL(0), buf_low);
891 	E1000_WRITE_REG(hw, E1000_TDBAH(0), buf_high);
892 
893 	/* Setup our HW Tx Head & Tail descriptor pointers */
894 	E1000_WRITE_REG(hw, E1000_TDH(0), 0);
895 	E1000_WRITE_REG(hw, E1000_TDT(0), 0);
896 
897 	/* Set the default values for the Tx Inter Packet Gap timer */
898 	if ((hw->mac.type == e1000_82542) &&
899 	    ((hw->revision_id == E1000_REVISION_2) ||
900 	    (hw->revision_id == E1000_REVISION_3))) {
901 		reg_tipg = DEFAULT_82542_TIPG_IPGT;
902 		reg_tipg |=
903 		    DEFAULT_82542_TIPG_IPGR1 << E1000_TIPG_IPGR1_SHIFT;
904 		reg_tipg |=
905 		    DEFAULT_82542_TIPG_IPGR2 << E1000_TIPG_IPGR2_SHIFT;
906 	} else if (hw->mac.type == e1000_80003es2lan) {
907 		reg_tipg = DEFAULT_82543_TIPG_IPGR1;
908 		reg_tipg |= DEFAULT_80003ES2LAN_TIPG_IPGR2 <<
909 		    E1000_TIPG_IPGR2_SHIFT;
910 	} else {
911 		if (hw->phy.media_type == e1000_media_type_fiber)
912 			reg_tipg = DEFAULT_82543_TIPG_IPGT_FIBER;
913 		else
914 			reg_tipg = DEFAULT_82543_TIPG_IPGT_COPPER;
915 		reg_tipg |=
916 		    DEFAULT_82543_TIPG_IPGR1 << E1000_TIPG_IPGR1_SHIFT;
917 		reg_tipg |=
918 		    DEFAULT_82543_TIPG_IPGR2 << E1000_TIPG_IPGR2_SHIFT;
919 	}
920 	E1000_WRITE_REG(hw, E1000_TIPG, reg_tipg);
921 
922 	/* Setup Transmit Interrupt Delay Value */
923 	E1000_WRITE_REG(hw, E1000_TIDV, Adapter->tx_intr_delay);
924 	E1000G_DEBUGLOG_1(Adapter, E1000G_INFO_LEVEL,
925 	    "E1000_TIDV: 0x%x\n", Adapter->tx_intr_delay);
926 
927 	if (hw->mac.type >= e1000_82540) {
928 		E1000_WRITE_REG(&Adapter->shared, E1000_TADV,
929 		    Adapter->tx_intr_abs_delay);
930 		E1000G_DEBUGLOG_1(Adapter, E1000G_INFO_LEVEL,
931 		    "E1000_TADV: 0x%x\n", Adapter->tx_intr_abs_delay);
932 	}
933 
934 	tx_ring->tbd_avail = Adapter->tx_desc_num;
935 
936 	/* Initialize stored context information */
937 	bzero(&(tx_ring->pre_context), sizeof (context_data_t));
938 }
939 
940 /*
941  * e1000g_recycle - recycle the tx descriptors and tx sw packets
942  */
943 int
944 e1000g_recycle(e1000g_tx_ring_t *tx_ring)
945 {
946 	struct e1000g *Adapter;
947 	LIST_DESCRIBER pending_list;
948 	p_tx_sw_packet_t packet;
949 	mblk_t *mp;
950 	mblk_t *nmp;
951 	struct e1000_tx_desc *descriptor;
952 	int desc_count;
953 	int is_intr;
954 
955 	/*
956 	 * This function will examine each TxSwPacket in the 'used' queue
957 	 * if the e1000g is done with it then the associated resources (Tx
958 	 * Descriptors) will be "freed" and the TxSwPacket will be
959 	 * returned to the 'free' queue.
960 	 */
961 	Adapter = tx_ring->adapter;
962 
963 	packet = (p_tx_sw_packet_t)QUEUE_GET_HEAD(&tx_ring->used_list);
964 	if (packet == NULL) {
965 		tx_ring->recycle_fail = 0;
966 		tx_ring->stall_watchdog = 0;
967 		return (0);
968 	}
969 
970 	is_intr = servicing_interrupt();
971 
972 	if (is_intr)
973 		mutex_enter(&tx_ring->usedlist_lock);
974 	else if (mutex_tryenter(&tx_ring->usedlist_lock) == 0)
975 		return (0);
976 
977 	desc_count = 0;
978 	QUEUE_INIT_LIST(&pending_list);
979 
980 	/* Sync the Tx descriptor DMA buffer */
981 	(void) ddi_dma_sync(tx_ring->tbd_dma_handle,
982 	    0, 0, DDI_DMA_SYNC_FORKERNEL);
983 	if (e1000g_check_dma_handle(
984 	    tx_ring->tbd_dma_handle) != DDI_FM_OK) {
985 		mutex_exit(&tx_ring->usedlist_lock);
986 		ddi_fm_service_impact(Adapter->dip, DDI_SERVICE_DEGRADED);
987 		Adapter->chip_state = E1000G_ERROR;
988 		return (0);
989 	}
990 
991 	/*
992 	 * While there are still TxSwPackets in the used queue check them
993 	 */
994 	while ((packet =
995 	    (p_tx_sw_packet_t)QUEUE_GET_HEAD(&tx_ring->used_list)) != NULL) {
996 
997 		/*
998 		 * Get hold of the next descriptor that the e1000g will
999 		 * report status back to (this will be the last descriptor
1000 		 * of a given sw packet). We only want to free the
1001 		 * sw packet (and it resources) if the e1000g is done
1002 		 * with ALL of the descriptors.  If the e1000g is done
1003 		 * with the last one then it is done with all of them.
1004 		 */
1005 		ASSERT(packet->num_desc);
1006 		descriptor = tx_ring->tbd_oldest + (packet->num_desc - 1);
1007 
1008 		/* Check for wrap case */
1009 		if (descriptor > tx_ring->tbd_last)
1010 			descriptor -= Adapter->tx_desc_num;
1011 
1012 		/*
1013 		 * If the descriptor done bit is set free TxSwPacket and
1014 		 * associated resources
1015 		 */
1016 		if (descriptor->upper.fields.status & E1000_TXD_STAT_DD) {
1017 			QUEUE_POP_HEAD(&tx_ring->used_list);
1018 			QUEUE_PUSH_TAIL(&pending_list, &packet->Link);
1019 
1020 			if (descriptor == tx_ring->tbd_last)
1021 				tx_ring->tbd_oldest =
1022 				    tx_ring->tbd_first;
1023 			else
1024 				tx_ring->tbd_oldest =
1025 				    descriptor + 1;
1026 
1027 			desc_count += packet->num_desc;
1028 
1029 			if (is_intr && (desc_count >= Adapter->tx_recycle_num))
1030 				break;
1031 		} else {
1032 			/*
1033 			 * Found a sw packet that the e1000g is not done
1034 			 * with then there is no reason to check the rest
1035 			 * of the queue.
1036 			 */
1037 			break;
1038 		}
1039 	}
1040 
1041 	tx_ring->tbd_avail += desc_count;
1042 	Adapter->tx_pkt_cnt += desc_count;
1043 
1044 	mutex_exit(&tx_ring->usedlist_lock);
1045 
1046 	if (desc_count == 0) {
1047 		tx_ring->recycle_fail++;
1048 		E1000G_DEBUG_STAT(tx_ring->stat_recycle_none);
1049 		return (0);
1050 	}
1051 
1052 	tx_ring->recycle_fail = 0;
1053 	tx_ring->stall_watchdog = 0;
1054 
1055 	mp = NULL;
1056 	nmp = NULL;
1057 	packet = (p_tx_sw_packet_t)QUEUE_GET_HEAD(&pending_list);
1058 	ASSERT(packet != NULL);
1059 	while (packet != NULL) {
1060 		if (packet->mp != NULL) {
1061 			ASSERT(packet->mp->b_next == NULL);
1062 			/* Assemble the message chain */
1063 			if (mp == NULL) {
1064 				mp = packet->mp;
1065 				nmp = packet->mp;
1066 			} else {
1067 				nmp->b_next = packet->mp;
1068 				nmp = packet->mp;
1069 			}
1070 			/* Disconnect the message from the sw packet */
1071 			packet->mp = NULL;
1072 		}
1073 
1074 		/* Free the TxSwPackets */
1075 		e1000g_free_tx_swpkt(packet);
1076 
1077 		packet = (p_tx_sw_packet_t)
1078 		    QUEUE_GET_NEXT(&pending_list, &packet->Link);
1079 	}
1080 
1081 	/* Return the TxSwPackets back to the FreeList */
1082 	mutex_enter(&tx_ring->freelist_lock);
1083 	QUEUE_APPEND(&tx_ring->free_list, &pending_list);
1084 	mutex_exit(&tx_ring->freelist_lock);
1085 
1086 	if (mp != NULL)
1087 		freemsgchain(mp);
1088 
1089 	return (desc_count);
1090 }
1091 /*
1092  * 82544 Coexistence issue workaround:
1093  *    There are 2 issues.
1094  *    1. If a 32 bit split completion happens from P64H2 and another
1095  *	agent drives a 64 bit request/split completion after ONLY
1096  *	1 idle clock (BRCM/Emulex/Adaptec fiber channel cards) then
1097  *	82544 has a problem where in to clock all the data in, it
1098  *	looks at REQ64# signal and since it has changed so fast (i.e. 1
1099  *	idle clock turn around), it will fail to clock all the data in.
1100  *	Data coming from certain ending addresses has exposure to this issue.
1101  *
1102  * To detect this issue, following equation can be used...
1103  *	SIZE[3:0] + ADDR[2:0] = SUM[3:0].
1104  *	If SUM[3:0] is in between 1 to 4, we will have this issue.
1105  *
1106  * ROOT CAUSE:
1107  *	The erratum involves the 82544 PCIX elasticity FIFO implementations as
1108  *	64-bit FIFO's and flushing of the final partial-bytes corresponding
1109  *	to the end of a requested read burst. Under a specific burst condition
1110  *	of ending-data alignment and 32-byte split-completions, the final
1111  *	byte(s) of split-completion data require an extra clock cycle to flush
1112  *	into 64-bit FIFO orientation.  An incorrect logic dependency on the
1113  *	REQ64# signal occurring during during this clock cycle may cause the
1114  *	residual byte(s) to be lost, thereby rendering the internal DMA client
1115  *	forever awaiting the final byte(s) for an outbound data-fetch.  The
1116  *	erratum is confirmed to *only* occur if certain subsequent external
1117  *	64-bit PCIX bus transactions occur immediately (minimum possible bus
1118  *	turn- around) following the odd-aligned 32-bit split-completion
1119  *	containing the final byte(s).  Intel has confirmed that this has been
1120  *	seen only with chipset/bridges which have the capability to provide
1121  *	32-bit split-completion data, and in the presence of newer PCIX bus
1122  *	agents which fully-optimize the inter-transaction turn-around (zero
1123  *	additional initiator latency when pre-granted bus ownership).
1124  *
1125  *   	This issue does not exist in PCI bus mode, when any agent is operating
1126  *	in 32 bit only mode or on chipsets that do not do 32 bit split
1127  *	completions for 64 bit read requests (Serverworks chipsets). P64H2 does
1128  *	32 bit split completions for any read request that has bit 2 set to 1
1129  *	for the requested address and read request size is more than 8 bytes.
1130  *
1131  *   2. Another issue is related to 82544 driving DACs under the similar
1132  *	scenario (32 bit split completion followed by 64 bit transaction with
1133  *	only 1 cycle turnaround). This issue is still being root caused. We
1134  *	think that both of these issues can be avoided if following workaround
1135  *	is implemented. It seems DAC issues is related to ending addresses being
1136  *	0x9, 0xA, 0xB, 0xC and hence ending up at odd boundaries in elasticity
1137  *	FIFO which does not get flushed due to REQ64# dependency. We will only
1138  *	know the full story after it has been simulated successfully by HW team.
1139  *
1140  * WORKAROUND:
1141  *	Make sure we do not have ending address as 1,2,3,4(Hang) or 9,a,b,c(DAC)
1142  */
1143 static uint32_t
1144 e1000g_fill_82544_desc(uint64_t address,
1145     size_t length, p_desc_array_t desc_array)
1146 {
1147 	/*
1148 	 * Since issue is sensitive to length and address.
1149 	 * Let us first check the address...
1150 	 */
1151 	uint32_t safe_terminator;
1152 
1153 	if (length <= 4) {
1154 		desc_array->descriptor[0].address = address;
1155 		desc_array->descriptor[0].length = (uint32_t)length;
1156 		desc_array->elements = 1;
1157 		return (desc_array->elements);
1158 	}
1159 	safe_terminator =
1160 	    (uint32_t)((((uint32_t)address & 0x7) +
1161 	    (length & 0xF)) & 0xF);
1162 	/*
1163 	 * if it does not fall between 0x1 to 0x4 and 0x9 to 0xC then
1164 	 * return
1165 	 */
1166 	if (safe_terminator == 0 ||
1167 	    (safe_terminator > 4 && safe_terminator < 9) ||
1168 	    (safe_terminator > 0xC && safe_terminator <= 0xF)) {
1169 		desc_array->descriptor[0].address = address;
1170 		desc_array->descriptor[0].length = (uint32_t)length;
1171 		desc_array->elements = 1;
1172 		return (desc_array->elements);
1173 	}
1174 
1175 	desc_array->descriptor[0].address = address;
1176 	desc_array->descriptor[0].length = length - 4;
1177 	desc_array->descriptor[1].address = address + (length - 4);
1178 	desc_array->descriptor[1].length = 4;
1179 	desc_array->elements = 2;
1180 	return (desc_array->elements);
1181 }
1182 
1183 static int
1184 e1000g_tx_copy(e1000g_tx_ring_t *tx_ring, p_tx_sw_packet_t packet,
1185     mblk_t *mp, boolean_t tx_undersize_flag)
1186 {
1187 	size_t len;
1188 	size_t len1;
1189 	dma_buffer_t *tx_buf;
1190 	mblk_t *nmp;
1191 	boolean_t finished;
1192 	int desc_count;
1193 
1194 	desc_count = 0;
1195 	tx_buf = packet->tx_buf;
1196 	len = MBLKL(mp);
1197 
1198 	ASSERT((tx_buf->len + len) <= tx_buf->size);
1199 
1200 	if (len > 0) {
1201 		bcopy(mp->b_rptr,
1202 		    tx_buf->address + tx_buf->len,
1203 		    len);
1204 		tx_buf->len += len;
1205 
1206 		packet->num_mblk_frag++;
1207 	}
1208 
1209 	nmp = mp->b_cont;
1210 	if (nmp == NULL) {
1211 		finished = B_TRUE;
1212 	} else {
1213 		len1 = MBLKL(nmp);
1214 		if ((tx_buf->len + len1) > tx_buf->size)
1215 			finished = B_TRUE;
1216 		else if (tx_undersize_flag)
1217 			finished = B_FALSE;
1218 		else if (len1 > tx_ring->adapter->tx_bcopy_thresh)
1219 			finished = B_TRUE;
1220 		else
1221 			finished = B_FALSE;
1222 	}
1223 
1224 	if (finished) {
1225 		E1000G_DEBUG_STAT_COND(tx_ring->stat_multi_copy,
1226 		    (tx_buf->len > len));
1227 
1228 		/*
1229 		 * If the packet is smaller than 64 bytes, which is the
1230 		 * minimum ethernet packet size, pad the packet to make
1231 		 * it at least 60 bytes. The hardware will add 4 bytes
1232 		 * for CRC.
1233 		 */
1234 		if (tx_undersize_flag) {
1235 			ASSERT(tx_buf->len < ETHERMIN);
1236 
1237 			bzero(tx_buf->address + tx_buf->len,
1238 			    ETHERMIN - tx_buf->len);
1239 			tx_buf->len = ETHERMIN;
1240 		}
1241 
1242 #ifdef __sparc
1243 		if (packet->dma_type == USE_DVMA)
1244 			dvma_sync(tx_buf->dma_handle, 0, DDI_DMA_SYNC_FORDEV);
1245 		else
1246 			(void) ddi_dma_sync(tx_buf->dma_handle, 0,
1247 			    tx_buf->len, DDI_DMA_SYNC_FORDEV);
1248 #else
1249 		(void) ddi_dma_sync(tx_buf->dma_handle, 0,
1250 		    tx_buf->len, DDI_DMA_SYNC_FORDEV);
1251 #endif
1252 
1253 		packet->data_transfer_type = USE_BCOPY;
1254 
1255 		desc_count = e1000g_fill_tx_desc(tx_ring,
1256 		    packet,
1257 		    tx_buf->dma_address,
1258 		    tx_buf->len);
1259 
1260 		if (desc_count <= 0)
1261 			return (-1);
1262 	}
1263 
1264 	return (desc_count);
1265 }
1266 
1267 static int
1268 e1000g_tx_bind(e1000g_tx_ring_t *tx_ring, p_tx_sw_packet_t packet, mblk_t *mp)
1269 {
1270 	int j;
1271 	int mystat;
1272 	size_t len;
1273 	ddi_dma_cookie_t dma_cookie;
1274 	uint_t ncookies;
1275 	int desc_count;
1276 	uint32_t desc_total;
1277 
1278 	desc_total = 0;
1279 	len = MBLKL(mp);
1280 
1281 	/*
1282 	 * ddi_dma_addr_bind_handle() allocates  DMA  resources  for  a
1283 	 * memory  object such that a device can perform DMA to or from
1284 	 * the object.  DMA resources  are  allocated  considering  the
1285 	 * device's  DMA  attributes  as  expressed by ddi_dma_attr(9S)
1286 	 * (see ddi_dma_alloc_handle(9F)).
1287 	 *
1288 	 * ddi_dma_addr_bind_handle() fills in  the  first  DMA  cookie
1289 	 * pointed  to by cookiep with the appropriate address, length,
1290 	 * and bus type. *ccountp is set to the number of DMA  cookies
1291 	 * representing this DMA object. Subsequent DMA cookies must be
1292 	 * retrieved by calling ddi_dma_nextcookie(9F)  the  number  of
1293 	 * times specified by *countp - 1.
1294 	 */
1295 	switch (packet->dma_type) {
1296 #ifdef __sparc
1297 	case USE_DVMA:
1298 		dvma_kaddr_load(packet->tx_dma_handle,
1299 		    (caddr_t)mp->b_rptr, len, 0, &dma_cookie);
1300 
1301 		dvma_sync(packet->tx_dma_handle, 0,
1302 		    DDI_DMA_SYNC_FORDEV);
1303 
1304 		ncookies = 1;
1305 		packet->data_transfer_type = USE_DVMA;
1306 		break;
1307 #endif
1308 	case USE_DMA:
1309 		if ((mystat = ddi_dma_addr_bind_handle(
1310 		    packet->tx_dma_handle, NULL,
1311 		    (caddr_t)mp->b_rptr, len,
1312 		    DDI_DMA_WRITE | DDI_DMA_STREAMING,
1313 		    DDI_DMA_DONTWAIT, 0, &dma_cookie,
1314 		    &ncookies)) != DDI_DMA_MAPPED) {
1315 
1316 			e1000g_log(tx_ring->adapter, CE_WARN,
1317 			    "Couldn't bind mblk buffer to Tx DMA handle: "
1318 			    "return: %X, Pkt: %X\n",
1319 			    mystat, packet);
1320 			return (-1);
1321 		}
1322 
1323 		/*
1324 		 * An implicit ddi_dma_sync() is done when the
1325 		 * ddi_dma_addr_bind_handle() is called. So we
1326 		 * don't need to explicitly call ddi_dma_sync()
1327 		 * here any more.
1328 		 */
1329 		ASSERT(ncookies);
1330 		E1000G_DEBUG_STAT_COND(tx_ring->stat_multi_cookie,
1331 		    (ncookies > 1));
1332 
1333 		/*
1334 		 * The data_transfer_type value must be set after the handle
1335 		 * has been bound, for it will be used in e1000g_free_tx_swpkt()
1336 		 * to decide whether we need to unbind the handle.
1337 		 */
1338 		packet->data_transfer_type = USE_DMA;
1339 		break;
1340 	default:
1341 		ASSERT(B_FALSE);
1342 		break;
1343 	}
1344 
1345 	packet->num_mblk_frag++;
1346 
1347 	/*
1348 	 * Each address could span thru multpile cookie..
1349 	 * Each cookie will have one descriptor
1350 	 */
1351 	for (j = ncookies; j != 0; j--) {
1352 
1353 		desc_count = e1000g_fill_tx_desc(tx_ring,
1354 		    packet,
1355 		    dma_cookie.dmac_laddress,
1356 		    dma_cookie.dmac_size);
1357 
1358 		if (desc_count <= 0)
1359 			return (-1);
1360 
1361 		desc_total += desc_count;
1362 
1363 		/*
1364 		 * ddi_dma_nextcookie() retrieves subsequent DMA
1365 		 * cookies for a DMA object.
1366 		 * ddi_dma_nextcookie() fills in the
1367 		 * ddi_dma_cookie(9S) structure pointed to by
1368 		 * cookiep.  The ddi_dma_cookie(9S) structure
1369 		 * must be allocated prior to calling
1370 		 * ddi_dma_nextcookie(). The DMA cookie count
1371 		 * returned by ddi_dma_buf_bind_handle(9F),
1372 		 * ddi_dma_addr_bind_handle(9F), or
1373 		 * ddi_dma_getwin(9F) indicates the number of DMA
1374 		 * cookies a DMA object consists of.  If the
1375 		 * resulting cookie count, N, is larger than 1,
1376 		 * ddi_dma_nextcookie() must be called N-1 times
1377 		 * to retrieve all DMA cookies.
1378 		 */
1379 		if (j > 1) {
1380 			ddi_dma_nextcookie(packet->tx_dma_handle,
1381 			    &dma_cookie);
1382 		}
1383 	}
1384 
1385 	return (desc_total);
1386 }
1387 
1388 static void
1389 e1000g_fill_context_descriptor(context_data_t *cur_context,
1390     struct e1000_context_desc *context_desc)
1391 {
1392 	if (cur_context->cksum_flags & HCK_IPV4_HDRCKSUM) {
1393 		context_desc->lower_setup.ip_fields.ipcss =
1394 		    cur_context->ether_header_size;
1395 		context_desc->lower_setup.ip_fields.ipcso =
1396 		    cur_context->ether_header_size +
1397 		    offsetof(struct ip, ip_sum);
1398 		context_desc->lower_setup.ip_fields.ipcse =
1399 		    cur_context->ether_header_size +
1400 		    cur_context->cksum_start - 1;
1401 	} else
1402 		context_desc->lower_setup.ip_config = 0;
1403 
1404 	if (cur_context->cksum_flags & HCK_PARTIALCKSUM) {
1405 		/*
1406 		 * The packet with same protocol has the following
1407 		 * stuff and start offset:
1408 		 * |  Protocol  | Stuff  | Start  | Checksum
1409 		 * |		| Offset | Offset | Enable
1410 		 * | IPv4 + TCP |  0x24  |  0x14  |  Yes
1411 		 * | IPv4 + UDP |  0x1A  |  0x14  |  Yes
1412 		 * | IPv6 + TCP |  0x20  |  0x10  |  No
1413 		 * | IPv6 + UDP |  0x14  |  0x10  |  No
1414 		 */
1415 		context_desc->upper_setup.tcp_fields.tucss =
1416 		    cur_context->cksum_start + cur_context->ether_header_size;
1417 		context_desc->upper_setup.tcp_fields.tucso =
1418 		    cur_context->cksum_stuff + cur_context->ether_header_size;
1419 		context_desc->upper_setup.tcp_fields.tucse = 0;
1420 	} else
1421 		context_desc->upper_setup.tcp_config = 0;
1422 
1423 	if (cur_context->lso_flag) {
1424 		context_desc->tcp_seg_setup.fields.mss = cur_context->mss;
1425 		context_desc->tcp_seg_setup.fields.hdr_len =
1426 		    cur_context->hdr_len;
1427 		/*
1428 		 * workaround for 82546EB errata 23, status-writeback
1429 		 * reporting (RS) should not be set on context or
1430 		 * Null descriptors
1431 		 */
1432 		context_desc->cmd_and_length = E1000_TXD_CMD_DEXT
1433 		    | E1000_TXD_CMD_TSE | E1000_TXD_CMD_IP | E1000_TXD_CMD_TCP
1434 		    | E1000_TXD_DTYP_C | cur_context->pay_len;
1435 	} else {
1436 		context_desc->cmd_and_length = E1000_TXD_CMD_DEXT
1437 		    | E1000_TXD_DTYP_C;
1438 		/*
1439 		 * Zero out the options for TCP Segmentation Offload
1440 		 */
1441 		context_desc->tcp_seg_setup.data = 0;
1442 	}
1443 }
1444 
1445 static int
1446 e1000g_fill_tx_desc(e1000g_tx_ring_t *tx_ring,
1447     p_tx_sw_packet_t packet, uint64_t address, size_t size)
1448 {
1449 	struct e1000_hw *hw = &tx_ring->adapter->shared;
1450 	p_sw_desc_t desc;
1451 
1452 	if (hw->mac.type == e1000_82544) {
1453 		if (hw->bus.type == e1000_bus_type_pcix)
1454 			return (e1000g_tx_workaround_PCIX_82544(packet,
1455 			    address, size));
1456 
1457 		if (size > JUMBO_FRAG_LENGTH)
1458 			return (e1000g_tx_workaround_jumbo_82544(packet,
1459 			    address, size));
1460 	}
1461 
1462 	ASSERT(packet->num_desc < MAX_TX_DESC_PER_PACKET);
1463 
1464 	desc = &packet->desc[packet->num_desc];
1465 	desc->address = address;
1466 	desc->length = (uint32_t)size;
1467 
1468 	packet->num_desc++;
1469 
1470 	return (1);
1471 }
1472 
1473 static int
1474 e1000g_tx_workaround_PCIX_82544(p_tx_sw_packet_t packet,
1475     uint64_t address, size_t size)
1476 {
1477 	p_sw_desc_t desc;
1478 	int desc_count;
1479 	long size_left;
1480 	size_t len;
1481 	uint32_t counter;
1482 	uint32_t array_elements;
1483 	desc_array_t desc_array;
1484 
1485 	/*
1486 	 * Coexist Workaround for cordova: RP: 07/04/03
1487 	 *
1488 	 * RP: ERRATA: Workaround ISSUE:
1489 	 * 8kb_buffer_Lockup CONTROLLER: Cordova Breakup
1490 	 * Eachbuffer in to 8kb pieces until the
1491 	 * remainder is < 8kb
1492 	 */
1493 	size_left = size;
1494 	desc_count = 0;
1495 
1496 	while (size_left > 0) {
1497 		if (size_left > MAX_TX_BUF_SIZE)
1498 			len = MAX_TX_BUF_SIZE;
1499 		else
1500 			len = size_left;
1501 
1502 		array_elements = e1000g_fill_82544_desc(address,
1503 		    len, &desc_array);
1504 
1505 		for (counter = 0; counter < array_elements; counter++) {
1506 			ASSERT(packet->num_desc < MAX_TX_DESC_PER_PACKET);
1507 			/*
1508 			 * Put in the buffer address
1509 			 */
1510 			desc = &packet->desc[packet->num_desc];
1511 
1512 			desc->address =
1513 			    desc_array.descriptor[counter].address;
1514 			desc->length =
1515 			    desc_array.descriptor[counter].length;
1516 
1517 			packet->num_desc++;
1518 			desc_count++;
1519 		} /* for */
1520 
1521 		/*
1522 		 * Update the buffer address and length
1523 		 */
1524 		address += MAX_TX_BUF_SIZE;
1525 		size_left -= MAX_TX_BUF_SIZE;
1526 	} /* while */
1527 
1528 	return (desc_count);
1529 }
1530 
1531 static int
1532 e1000g_tx_workaround_jumbo_82544(p_tx_sw_packet_t packet,
1533     uint64_t address, size_t size)
1534 {
1535 	p_sw_desc_t desc;
1536 	int desc_count;
1537 	long size_left;
1538 	uint32_t offset;
1539 
1540 	/*
1541 	 * Workaround for Jumbo Frames on Cordova
1542 	 * PSD 06/01/2001
1543 	 */
1544 	size_left = size;
1545 	desc_count = 0;
1546 	offset = 0;
1547 	while (size_left > 0) {
1548 		ASSERT(packet->num_desc < MAX_TX_DESC_PER_PACKET);
1549 
1550 		desc = &packet->desc[packet->num_desc];
1551 
1552 		desc->address = address + offset;
1553 
1554 		if (size_left > JUMBO_FRAG_LENGTH)
1555 			desc->length = JUMBO_FRAG_LENGTH;
1556 		else
1557 			desc->length = (uint32_t)size_left;
1558 
1559 		packet->num_desc++;
1560 		desc_count++;
1561 
1562 		offset += desc->length;
1563 		size_left -= JUMBO_FRAG_LENGTH;
1564 	}
1565 
1566 	return (desc_count);
1567 }
1568 
1569 #pragma inline(e1000g_82547_tx_move_tail_work)
1570 
1571 static void
1572 e1000g_82547_tx_move_tail_work(e1000g_tx_ring_t *tx_ring)
1573 {
1574 	struct e1000_hw *hw;
1575 	uint16_t hw_tdt;
1576 	uint16_t sw_tdt;
1577 	struct e1000_tx_desc *tx_desc;
1578 	uint16_t length = 0;
1579 	boolean_t eop = B_FALSE;
1580 	struct e1000g *Adapter;
1581 
1582 	Adapter = tx_ring->adapter;
1583 	hw = &Adapter->shared;
1584 
1585 	hw_tdt = E1000_READ_REG(hw, E1000_TDT(0));
1586 	sw_tdt = tx_ring->tbd_next - tx_ring->tbd_first;
1587 
1588 	while (hw_tdt != sw_tdt) {
1589 		tx_desc = &(tx_ring->tbd_first[hw_tdt]);
1590 		length += tx_desc->lower.flags.length;
1591 		eop = tx_desc->lower.data & E1000_TXD_CMD_EOP;
1592 		if (++hw_tdt == Adapter->tx_desc_num)
1593 			hw_tdt = 0;
1594 
1595 		if (eop) {
1596 			if ((Adapter->link_duplex == HALF_DUPLEX) &&
1597 			    (e1000_fifo_workaround_82547(hw, length)
1598 			    != E1000_SUCCESS)) {
1599 				if (tx_ring->timer_enable_82547) {
1600 					ASSERT(tx_ring->timer_id_82547 == 0);
1601 					tx_ring->timer_id_82547 =
1602 					    timeout(e1000g_82547_timeout,
1603 					    (void *)tx_ring,
1604 					    drv_usectohz(10000));
1605 				}
1606 				return;
1607 
1608 			} else {
1609 				E1000_WRITE_REG(hw, E1000_TDT(0), hw_tdt);
1610 				e1000_update_tx_fifo_head_82547(hw, length);
1611 				length = 0;
1612 			}
1613 		}
1614 	}
1615 }
1616 
1617 static void
1618 e1000g_82547_timeout(void *arg)
1619 {
1620 	e1000g_tx_ring_t *tx_ring;
1621 
1622 	tx_ring = (e1000g_tx_ring_t *)arg;
1623 
1624 	mutex_enter(&tx_ring->tx_lock);
1625 
1626 	tx_ring->timer_id_82547 = 0;
1627 	e1000g_82547_tx_move_tail_work(tx_ring);
1628 
1629 	mutex_exit(&tx_ring->tx_lock);
1630 }
1631 
1632 static void
1633 e1000g_82547_tx_move_tail(e1000g_tx_ring_t *tx_ring)
1634 {
1635 	timeout_id_t tid;
1636 
1637 	ASSERT(MUTEX_HELD(&tx_ring->tx_lock));
1638 
1639 	tid = tx_ring->timer_id_82547;
1640 	tx_ring->timer_id_82547 = 0;
1641 	if (tid != 0) {
1642 		tx_ring->timer_enable_82547 = B_FALSE;
1643 		mutex_exit(&tx_ring->tx_lock);
1644 
1645 		(void) untimeout(tid);
1646 
1647 		mutex_enter(&tx_ring->tx_lock);
1648 	}
1649 	tx_ring->timer_enable_82547 = B_TRUE;
1650 	e1000g_82547_tx_move_tail_work(tx_ring);
1651 }
1652