1 /* 2 * This file is provided under a CDDLv1 license. When using or 3 * redistributing this file, you may do so under this license. 4 * In redistributing this file this license must be included 5 * and no other modification of this header file is permitted. 6 * 7 * CDDL LICENSE SUMMARY 8 * 9 * Copyright(c) 1999 - 2007 Intel Corporation. All rights reserved. 10 * 11 * The contents of this file are subject to the terms of Version 12 * 1.0 of the Common Development and Distribution License (the "License"). 13 * 14 * You should have received a copy of the License with this software. 15 * You can obtain a copy of the License at 16 * http://www.opensolaris.org/os/licensing. 17 * See the License for the specific language governing permissions 18 * and limitations under the License. 19 */ 20 21 /* 22 * Copyright 2007 Sun Microsystems, Inc. All rights reserved. 23 * Use is subject to license terms of the CDDLv1. 24 */ 25 26 #pragma ident "%Z%%M% %I% %E% SMI" 27 28 /* 29 * ********************************************************************** 30 * * 31 * Module Name: * 32 * e1000g_tx.c * 33 * * 34 * Abstract: * 35 * This file contains some routines that takes care of Transmit * 36 * interrupt and also makes the hardware to send the data pointed * 37 * by the packet out on to the physical medium. * 38 * * 39 * * 40 * Environment: * 41 * Kernel Mode - * 42 * * 43 * Source History: * 44 * The code in this file is based somewhat on the "send" code * 45 * developed for the Intel Pro/100 family(Speedo1 and Speedo3) by * 46 * Steve Lindsay, and partly on some sample DDK code * 47 * of solaris. * 48 * * 49 * March 12, 1997 Steve Lindsay * 50 * 1st created - Ported from E100B send.c file * 51 * * 52 * ********************************************************************** 53 */ 54 55 #include "e1000g_sw.h" 56 #include "e1000g_debug.h" 57 58 static boolean_t e1000g_send(struct e1000g *, mblk_t *); 59 static int e1000g_tx_copy(struct e1000g *, PTX_SW_PACKET, mblk_t *, uint32_t); 60 static int e1000g_tx_bind(struct e1000g *, PTX_SW_PACKET, mblk_t *); 61 static boolean_t check_cksum_context(e1000g_tx_ring_t *, cksum_data_t *); 62 static int e1000g_fill_tx_ring(e1000g_tx_ring_t *, LIST_DESCRIBER *, 63 cksum_data_t *); 64 static void e1000g_fill_context_descriptor(cksum_data_t *, 65 struct e1000_context_desc *); 66 static int e1000g_fill_tx_desc(struct e1000g *, 67 PTX_SW_PACKET, uint64_t, size_t); 68 static uint32_t e1000g_fill_82544_desc(uint64_t Address, size_t Length, 69 PDESC_ARRAY desc_array); 70 static int e1000g_tx_workaround_PCIX_82544(struct e1000g *, 71 PTX_SW_PACKET, uint64_t, size_t); 72 static int e1000g_tx_workaround_jumbo_82544(struct e1000g *, 73 PTX_SW_PACKET, uint64_t, size_t); 74 static uint32_t e1000g_tx_free_desc_num(e1000g_tx_ring_t *); 75 static void e1000g_82547_timeout(void *); 76 static void e1000g_82547_tx_move_tail(e1000g_tx_ring_t *); 77 static void e1000g_82547_tx_move_tail_work(e1000g_tx_ring_t *); 78 79 #ifndef e1000g_DEBUG 80 #pragma inline(e1000g_tx_copy) 81 #pragma inline(e1000g_tx_bind) 82 #pragma inline(check_cksum_context) 83 #pragma inline(e1000g_fill_tx_ring) 84 #pragma inline(e1000g_fill_context_descriptor) 85 #pragma inline(e1000g_fill_tx_desc) 86 #pragma inline(e1000g_fill_82544_desc) 87 #pragma inline(e1000g_tx_workaround_PCIX_82544) 88 #pragma inline(e1000g_tx_workaround_jumbo_82544) 89 #pragma inline(FreeTxSwPacket) 90 #pragma inline(e1000g_tx_free_desc_num) 91 #endif 92 93 /* 94 * ********************************************************************** 95 * Name: FreeTxSwPacket * 96 * * 97 * Description: * 98 * Frees up the previusly allocated Dma handle for given * 99 * transmit sw packet. * 100 * * 101 * Parameter Passed: * 102 * * 103 * Return Value: * 104 * * 105 * Functions called: * 106 * * 107 * ********************************************************************** 108 */ 109 void 110 FreeTxSwPacket(register PTX_SW_PACKET packet) 111 { 112 switch (packet->data_transfer_type) { 113 case USE_BCOPY: 114 packet->tx_buf->len = 0; 115 break; 116 #ifdef __sparc 117 case USE_DVMA: 118 dvma_unload(packet->tx_dma_handle, 0, -1); 119 break; 120 #endif 121 case USE_DMA: 122 ddi_dma_unbind_handle(packet->tx_dma_handle); 123 break; 124 default: 125 break; 126 } 127 128 /* 129 * The mblk has been stripped off the sw packet 130 * and will be freed in a triggered soft intr. 131 */ 132 ASSERT(packet->mp == NULL); 133 134 packet->data_transfer_type = USE_NONE; 135 packet->num_mblk_frag = 0; 136 packet->num_desc = 0; 137 } 138 139 uint_t 140 e1000g_tx_freemsg(caddr_t arg1, caddr_t arg2) 141 { 142 struct e1000g *Adapter; 143 mblk_t *mp; 144 145 Adapter = (struct e1000g *)arg1; 146 147 if ((Adapter == NULL) || (arg2 != NULL)) 148 return (DDI_INTR_UNCLAIMED); 149 150 if (!mutex_tryenter(&Adapter->tx_msg_chain->lock)) 151 return (DDI_INTR_CLAIMED); 152 153 mp = Adapter->tx_msg_chain->head; 154 Adapter->tx_msg_chain->head = NULL; 155 Adapter->tx_msg_chain->tail = NULL; 156 157 mutex_exit(&Adapter->tx_msg_chain->lock); 158 159 freemsgchain(mp); 160 161 return (DDI_INTR_CLAIMED); 162 } 163 164 static uint32_t 165 e1000g_tx_free_desc_num(e1000g_tx_ring_t *tx_ring) 166 { 167 struct e1000g *Adapter; 168 int num; 169 170 Adapter = tx_ring->adapter; 171 172 num = tx_ring->tbd_oldest - tx_ring->tbd_next; 173 if (num <= 0) 174 num += Adapter->NumTxDescriptors; 175 176 return (num); 177 } 178 179 mblk_t * 180 e1000g_m_tx(void *arg, mblk_t *mp) 181 { 182 struct e1000g *Adapter = (struct e1000g *)arg; 183 mblk_t *next; 184 185 rw_enter(&Adapter->chip_lock, RW_READER); 186 187 if (!Adapter->started || (Adapter->link_state != LINK_STATE_UP)) { 188 freemsgchain(mp); 189 mp = NULL; 190 } 191 192 while (mp != NULL) { 193 next = mp->b_next; 194 mp->b_next = NULL; 195 196 if (!e1000g_send(Adapter, mp)) { 197 mp->b_next = next; 198 break; 199 } 200 201 mp = next; 202 } 203 204 rw_exit(&Adapter->chip_lock); 205 return (mp); 206 } 207 208 /* 209 * ********************************************************************** 210 * Name: e1000g_send * 211 * * 212 * Description: * 213 * Called from e1000g_m_tx with an mp ready to send. this * 214 * routine sets up the transmit descriptors and sends to * 215 * the wire. It also pushes the just transmitted packet to * 216 * the used tx sw packet list * 217 * * 218 * Arguments: * 219 * Pointer to the mblk to be sent, pointer to this adapter * 220 * * 221 * Returns: * 222 * B_TRUE, B_FALSE * 223 * * 224 * Modification log: * 225 * Date Who Description * 226 * -------- --- ----------------------------------------------------- * 227 * ********************************************************************** 228 */ 229 static boolean_t 230 e1000g_send(struct e1000g *Adapter, mblk_t *mp) 231 { 232 PTX_SW_PACKET packet; 233 LIST_DESCRIBER pending_list; 234 size_t len; 235 size_t msg_size; 236 uint32_t frag_count; 237 int desc_count; 238 uint32_t desc_total; 239 uint32_t force_bcopy; 240 mblk_t *nmp; 241 mblk_t *tmp; 242 e1000g_tx_ring_t *tx_ring; 243 cksum_data_t cksum; 244 245 /* Get the total size and frags number of the message */ 246 force_bcopy = 0; 247 frag_count = 0; 248 msg_size = 0; 249 for (nmp = mp; nmp; nmp = nmp->b_cont) { 250 frag_count++; 251 msg_size += MBLKL(nmp); 252 } 253 254 /* Empty packet */ 255 if (msg_size == 0) { 256 freemsg(mp); 257 return (B_TRUE); 258 } 259 260 /* Make sure packet is less than the max frame size */ 261 if (msg_size > Adapter->Shared.max_frame_size + VLAN_TAGSZ) { 262 /* 263 * For the over size packet, we'll just drop it. 264 * So we return B_TRUE here. 265 */ 266 e1000g_DEBUGLOG_1(Adapter, e1000g_INFO_LEVEL, 267 "Tx packet out of bound. length = %d \n", msg_size); 268 freemsg(mp); 269 Adapter->tx_over_size++; 270 return (B_TRUE); 271 } 272 273 tx_ring = Adapter->tx_ring; 274 275 /* 276 * Check and reclaim tx descriptors. 277 * This low water mark check should be done all the time as 278 * Transmit interrupt delay can produce Transmit interrupts little 279 * late and that may cause few problems related to reaping Tx 280 * Descriptors... As you may run short of them before getting any 281 * transmit interrupt... 282 */ 283 if ((Adapter->NumTxDescriptors - e1000g_tx_free_desc_num(tx_ring)) > 284 Adapter->tx_recycle_low_water) { 285 if (Adapter->Shared.mac_type == e1000_82547) { 286 mutex_enter(&tx_ring->tx_lock); 287 e1000g_82547_tx_move_tail(tx_ring); 288 mutex_exit(&tx_ring->tx_lock); 289 } 290 Adapter->tx_recycle++; 291 (void) e1000g_recycle(tx_ring); 292 } 293 294 if (e1000g_tx_free_desc_num(tx_ring) < MAX_TX_DESC_PER_PACKET) { 295 Adapter->tx_lack_desc++; 296 goto tx_no_resource; 297 } 298 299 /* 300 * If there are many frags of the message, then bcopy them 301 * into one tx descriptor buffer will get better performance. 302 */ 303 if ((frag_count >= Adapter->tx_frags_limit) && 304 (msg_size <= Adapter->TxBufferSize)) { 305 Adapter->tx_exceed_frags++; 306 force_bcopy |= FORCE_BCOPY_EXCEED_FRAGS; 307 } 308 309 /* 310 * If the message size is less than the minimum ethernet packet size, 311 * we'll use bcopy to send it, and padd it to 60 bytes later. 312 */ 313 if (msg_size < MINIMUM_ETHERNET_PACKET_SIZE) { 314 Adapter->tx_under_size++; 315 force_bcopy |= FORCE_BCOPY_UNDER_SIZE; 316 } 317 318 /* Initialize variables */ 319 desc_count = 1; /* The initial value should be greater than 0 */ 320 desc_total = 0; 321 QUEUE_INIT_LIST(&pending_list); 322 323 /* Retrieve checksum info */ 324 hcksum_retrieve(mp, NULL, NULL, &cksum.cksum_start, &cksum.cksum_stuff, 325 NULL, NULL, &cksum.cksum_flags); 326 327 if (((struct ether_vlan_header *)mp->b_rptr)->ether_tpid == 328 htons(ETHERTYPE_VLAN)) 329 cksum.ether_header_size = sizeof (struct ether_vlan_header); 330 else 331 cksum.ether_header_size = sizeof (struct ether_header); 332 333 /* Process each mblk fragment and fill tx descriptors */ 334 packet = NULL; 335 nmp = mp; 336 while (nmp) { 337 tmp = nmp->b_cont; 338 339 len = MBLKL(nmp); 340 /* Check zero length mblks */ 341 if (len == 0) { 342 Adapter->tx_empty_frags++; 343 /* 344 * If there're no packet buffers have been used, 345 * or we just completed processing a buffer, then 346 * skip the empty mblk fragment. 347 * Otherwise, there's still a pending buffer that 348 * needs to be processed (tx_copy). 349 */ 350 if (desc_count > 0) { 351 nmp = tmp; 352 continue; 353 } 354 } 355 356 /* 357 * Get a new TxSwPacket to process mblk buffers. 358 */ 359 if (desc_count > 0) { 360 361 mutex_enter(&tx_ring->freelist_lock); 362 packet = (PTX_SW_PACKET) 363 QUEUE_POP_HEAD(&tx_ring->free_list); 364 mutex_exit(&tx_ring->freelist_lock); 365 366 if (packet == NULL) { 367 e1000g_DEBUGLOG_0(Adapter, e1000g_INFO_LEVEL, 368 "No Tx SwPacket available\n"); 369 Adapter->tx_no_swpkt++; 370 goto tx_send_failed; 371 } 372 QUEUE_PUSH_TAIL(&pending_list, &packet->Link); 373 } 374 375 ASSERT(packet); 376 /* 377 * If the size of the fragment is less than the tx_bcopy_thresh 378 * we'll use bcopy; Otherwise, we'll use DMA binding. 379 */ 380 if ((len <= Adapter->tx_bcopy_thresh) || force_bcopy) { 381 desc_count = 382 e1000g_tx_copy(Adapter, packet, nmp, force_bcopy); 383 Adapter->tx_copy++; 384 } else { 385 desc_count = 386 e1000g_tx_bind(Adapter, packet, nmp); 387 Adapter->tx_bind++; 388 } 389 390 if (desc_count < 0) 391 goto tx_send_failed; 392 393 if (desc_count > 0) 394 desc_total += desc_count; 395 396 nmp = tmp; 397 } 398 399 /* Assign the message to the last sw packet */ 400 ASSERT(packet); 401 ASSERT(packet->mp == NULL); 402 packet->mp = mp; 403 404 /* Try to recycle the tx descriptors again */ 405 if (e1000g_tx_free_desc_num(tx_ring) < MAX_TX_DESC_PER_PACKET) { 406 Adapter->tx_recycle_retry++; 407 (void) e1000g_recycle(tx_ring); 408 } 409 410 mutex_enter(&tx_ring->tx_lock); 411 412 /* 413 * If the number of available tx descriptors is not enough for transmit 414 * (one redundant descriptor and one hw checksum context descriptor are 415 * included), then return failure. 416 */ 417 if (e1000g_tx_free_desc_num(tx_ring) < (desc_total + 2)) { 418 e1000g_DEBUGLOG_0(Adapter, e1000g_INFO_LEVEL, 419 "No Enough Tx descriptors\n"); 420 Adapter->tx_no_desc++; 421 mutex_exit(&tx_ring->tx_lock); 422 goto tx_send_failed; 423 } 424 425 desc_count = e1000g_fill_tx_ring(tx_ring, &pending_list, &cksum); 426 427 mutex_exit(&tx_ring->tx_lock); 428 429 ASSERT(desc_count > 0); 430 431 /* Update statistic counters */ 432 if (Adapter->ProfileJumboTraffic) { 433 if ((msg_size > ETHERMAX) && 434 (msg_size <= FRAME_SIZE_UPTO_4K)) 435 Adapter->JumboTx_4K++; 436 437 if ((msg_size > FRAME_SIZE_UPTO_4K) && 438 (msg_size <= FRAME_SIZE_UPTO_8K)) 439 Adapter->JumboTx_8K++; 440 441 if ((msg_size > FRAME_SIZE_UPTO_8K) && 442 (msg_size <= FRAME_SIZE_UPTO_16K)) 443 Adapter->JumboTx_16K++; 444 } 445 446 /* Send successful */ 447 return (B_TRUE); 448 449 tx_send_failed: 450 /* Free pending TxSwPackets */ 451 packet = (PTX_SW_PACKET) QUEUE_GET_HEAD(&pending_list); 452 while (packet) { 453 packet->mp = NULL; 454 FreeTxSwPacket(packet); 455 packet = (PTX_SW_PACKET) 456 QUEUE_GET_NEXT(&pending_list, &packet->Link); 457 } 458 459 /* Return pending TxSwPackets to the "Free" list */ 460 mutex_enter(&tx_ring->freelist_lock); 461 QUEUE_APPEND(&tx_ring->free_list, &pending_list); 462 mutex_exit(&tx_ring->freelist_lock); 463 464 Adapter->tx_send_fail++; 465 466 freemsg(mp); 467 468 /* Send failed, message dropped */ 469 return (B_TRUE); 470 471 tx_no_resource: 472 /* 473 * Enable Transmit interrupts, so that the interrupt routine can 474 * call mac_tx_update() when transmit descriptors become available. 475 */ 476 Adapter->resched_needed = B_TRUE; 477 if (!Adapter->tx_intr_enable) 478 e1000g_EnableTxInterrupt(Adapter); 479 480 /* Message will be scheduled for re-transmit */ 481 return (B_FALSE); 482 } 483 484 static boolean_t 485 check_cksum_context(e1000g_tx_ring_t *tx_ring, cksum_data_t *cksum) 486 { 487 boolean_t cksum_load; 488 cksum_data_t *last; 489 490 cksum_load = B_FALSE; 491 last = &tx_ring->cksum_data; 492 493 if (cksum->cksum_flags != 0) { 494 if ((cksum->ether_header_size != last->ether_header_size) || 495 (cksum->cksum_flags != last->cksum_flags) || 496 (cksum->cksum_stuff != last->cksum_stuff) || 497 (cksum->cksum_start != last->cksum_start)) { 498 499 cksum_load = B_TRUE; 500 } 501 } 502 503 return (cksum_load); 504 } 505 506 static int 507 e1000g_fill_tx_ring(e1000g_tx_ring_t *tx_ring, LIST_DESCRIBER *pending_list, 508 cksum_data_t *cksum) 509 { 510 struct e1000g *Adapter; 511 PTX_SW_PACKET first_packet; 512 PTX_SW_PACKET packet; 513 boolean_t cksum_load; 514 struct e1000_tx_desc *first_data_desc; 515 struct e1000_tx_desc *next_desc; 516 struct e1000_tx_desc *descriptor; 517 uint32_t sync_offset; 518 int sync_len; 519 int desc_count; 520 int i; 521 522 Adapter = tx_ring->adapter; 523 524 desc_count = 0; 525 first_packet = NULL; 526 first_data_desc = NULL; 527 descriptor = NULL; 528 529 next_desc = tx_ring->tbd_next; 530 531 /* IP Head/TCP/UDP checksum offload */ 532 cksum_load = check_cksum_context(tx_ring, cksum); 533 534 if (cksum_load) { 535 first_packet = (PTX_SW_PACKET) QUEUE_GET_HEAD(pending_list); 536 537 descriptor = next_desc; 538 539 e1000g_fill_context_descriptor(cksum, 540 (struct e1000_context_desc *)descriptor); 541 542 /* Check the wrap-around case */ 543 if (descriptor == tx_ring->tbd_last) 544 next_desc = tx_ring->tbd_first; 545 else 546 next_desc++; 547 548 desc_count++; 549 } 550 551 first_data_desc = next_desc; 552 553 packet = (PTX_SW_PACKET) QUEUE_GET_HEAD(pending_list); 554 while (packet) { 555 ASSERT(packet->num_desc); 556 557 for (i = 0; i < packet->num_desc; i++) { 558 ASSERT(e1000g_tx_free_desc_num(tx_ring) > 0); 559 560 descriptor = next_desc; 561 #ifdef __sparc 562 descriptor->buffer_addr = 563 DWORD_SWAP(packet->desc[i].Address); 564 #else 565 descriptor->buffer_addr = 566 packet->desc[i].Address; 567 #endif 568 descriptor->lower.data = 569 packet->desc[i].Length; 570 571 /* Zero out status */ 572 descriptor->upper.data = 0; 573 574 descriptor->lower.data |= 575 E1000_TXD_CMD_DEXT | E1000_TXD_DTYP_D; 576 /* must set RS on every outgoing descriptor */ 577 descriptor->lower.data |= 578 E1000_TXD_CMD_RS; 579 580 /* Check the wrap-around case */ 581 if (descriptor == tx_ring->tbd_last) 582 next_desc = tx_ring->tbd_first; 583 else 584 next_desc++; 585 586 desc_count++; 587 } 588 589 if (first_packet != NULL) { 590 /* 591 * Count the checksum context descriptor for 592 * the first SwPacket. 593 */ 594 first_packet->num_desc++; 595 first_packet = NULL; 596 } 597 598 packet = (PTX_SW_PACKET) 599 QUEUE_GET_NEXT(pending_list, &packet->Link); 600 } 601 602 ASSERT(descriptor); 603 604 if (cksum->cksum_flags) { 605 if (cksum->cksum_flags & HCK_IPV4_HDRCKSUM) 606 ((struct e1000_data_desc *)first_data_desc)-> 607 upper.fields.popts |= E1000_TXD_POPTS_IXSM; 608 if (cksum->cksum_flags & HCK_PARTIALCKSUM) 609 ((struct e1000_data_desc *)first_data_desc)-> 610 upper.fields.popts |= E1000_TXD_POPTS_TXSM; 611 } 612 613 /* 614 * Last Descriptor of Packet needs End Of Packet (EOP), Report 615 * Status (RS) and append Ethernet CRC (IFCS) bits set. 616 */ 617 if (Adapter->TxInterruptDelay) { 618 descriptor->lower.data |= E1000_TXD_CMD_IDE | 619 E1000_TXD_CMD_EOP | E1000_TXD_CMD_IFCS; 620 } else { 621 descriptor->lower.data |= 622 E1000_TXD_CMD_EOP | E1000_TXD_CMD_IFCS; 623 } 624 625 /* 626 * Sync the Tx descriptors DMA buffer 627 */ 628 sync_offset = tx_ring->tbd_next - tx_ring->tbd_first; 629 sync_len = descriptor - tx_ring->tbd_next + 1; 630 /* Check the wrap-around case */ 631 if (sync_len > 0) { 632 (void) ddi_dma_sync(tx_ring->tbd_dma_handle, 633 sync_offset * sizeof (struct e1000_tx_desc), 634 sync_len * sizeof (struct e1000_tx_desc), 635 DDI_DMA_SYNC_FORDEV); 636 } else { 637 (void) ddi_dma_sync(tx_ring->tbd_dma_handle, 638 sync_offset * sizeof (struct e1000_tx_desc), 639 0, 640 DDI_DMA_SYNC_FORDEV); 641 sync_len = descriptor - tx_ring->tbd_first + 1; 642 (void) ddi_dma_sync(tx_ring->tbd_dma_handle, 643 0, 644 sync_len * sizeof (struct e1000_tx_desc), 645 DDI_DMA_SYNC_FORDEV); 646 } 647 648 tx_ring->tbd_next = next_desc; 649 650 /* 651 * Advance the Transmit Descriptor Tail (Tdt), this tells the 652 * FX1000 that this frame is available to transmit. 653 */ 654 if (Adapter->Shared.mac_type == e1000_82547) 655 e1000g_82547_tx_move_tail(tx_ring); 656 else 657 E1000_WRITE_REG(&Adapter->Shared, TDT, 658 (uint32_t)(next_desc - tx_ring->tbd_first)); 659 660 /* Put the pending SwPackets to the "Used" list */ 661 mutex_enter(&tx_ring->usedlist_lock); 662 QUEUE_APPEND(&tx_ring->used_list, pending_list); 663 mutex_exit(&tx_ring->usedlist_lock); 664 665 /* Store the cksum data */ 666 if (cksum_load) 667 tx_ring->cksum_data = *cksum; 668 669 return (desc_count); 670 } 671 672 673 /* 674 * ********************************************************************** 675 * Name: SetupTransmitStructures * 676 * * 677 * Description: This routine initializes all of the transmit related * 678 * structures. This includes the Transmit descriptors, the * 679 * coalesce buffers, and the TX_SW_PACKETs structures. * 680 * * 681 * NOTE -- The device must have been reset before this * 682 * routine is called. * 683 * * 684 * Author: Hari Seshadri * 685 * Functions Called : get_32bit_value * 686 * * 687 * * 688 * * 689 * Arguments: * 690 * Adapter - A pointer to our context sensitive "Adapter" * 691 * structure. * 692 * * 693 * Returns: * 694 * (none) * 695 * * 696 * Modification log: * 697 * Date Who Description * 698 * -------- --- ----------------------------------------------------- * 699 * * 700 * ********************************************************************** 701 */ 702 void 703 SetupTransmitStructures(struct e1000g *Adapter) 704 { 705 struct e1000_hw *hw; 706 PTX_SW_PACKET packet; 707 UINT i; 708 uint32_t buf_high; 709 uint32_t buf_low; 710 uint32_t reg_tipg; 711 uint32_t reg_tctl; 712 uint32_t reg_tarc; 713 uint16_t speed, duplex; 714 int size; 715 e1000g_tx_ring_t *tx_ring; 716 717 hw = &Adapter->Shared; 718 tx_ring = Adapter->tx_ring; 719 720 /* init the lists */ 721 /* 722 * Here we don't need to protect the lists using the 723 * tx_usedlist_lock and tx_freelist_lock, for they have 724 * been protected by the chip_lock. 725 */ 726 QUEUE_INIT_LIST(&tx_ring->used_list); 727 QUEUE_INIT_LIST(&tx_ring->free_list); 728 729 /* Go through and set up each SW_Packet */ 730 packet = tx_ring->packet_area; 731 for (i = 0; i < Adapter->NumTxSwPacket; i++, packet++) { 732 /* Initialize this TX_SW_PACKET area */ 733 FreeTxSwPacket(packet); 734 /* Add this TX_SW_PACKET to the free list */ 735 QUEUE_PUSH_TAIL(&tx_ring->free_list, 736 &packet->Link); 737 } 738 739 /* Setup TX descriptor pointers */ 740 tx_ring->tbd_next = tx_ring->tbd_first; 741 tx_ring->tbd_oldest = tx_ring->tbd_first; 742 743 /* 744 * Setup Hardware TX Registers 745 */ 746 /* Setup the Transmit Control Register (TCTL). */ 747 reg_tctl = E1000_TCTL_PSP | E1000_TCTL_EN | 748 (E1000_COLLISION_THRESHOLD << E1000_CT_SHIFT) | 749 (E1000_FDX_COLLISION_DISTANCE << E1000_COLD_SHIFT); 750 751 /* Enable the MULR bit */ 752 if (hw->bus_type == e1000_bus_type_pci_express) 753 reg_tctl |= E1000_TCTL_MULR; 754 755 E1000_WRITE_REG(hw, TCTL, reg_tctl); 756 757 if ((hw->mac_type == e1000_82571) || (hw->mac_type == e1000_82572)) { 758 e1000_get_speed_and_duplex(hw, &speed, &duplex); 759 760 reg_tarc = E1000_READ_REG(hw, TARC0); 761 reg_tarc |= (1 << 25); 762 if (speed == SPEED_1000) 763 reg_tarc |= (1 << 21); 764 E1000_WRITE_REG(hw, TARC0, reg_tarc); 765 766 reg_tarc = E1000_READ_REG(hw, TARC1); 767 reg_tarc |= (1 << 25); 768 if (reg_tctl & E1000_TCTL_MULR) 769 reg_tarc &= ~(1 << 28); 770 else 771 reg_tarc |= (1 << 28); 772 E1000_WRITE_REG(hw, TARC1, reg_tarc); 773 774 } else if (hw->mac_type == e1000_80003es2lan) { 775 reg_tarc = E1000_READ_REG(hw, TARC0); 776 reg_tarc |= 1; 777 if (hw->media_type == e1000_media_type_internal_serdes) 778 reg_tarc |= (1 << 20); 779 E1000_WRITE_REG(hw, TARC0, reg_tarc); 780 781 reg_tarc = E1000_READ_REG(hw, TARC1); 782 reg_tarc |= 1; 783 E1000_WRITE_REG(hw, TARC1, reg_tarc); 784 } 785 786 /* Setup HW Base and Length of Tx descriptor area */ 787 size = (Adapter->NumTxDescriptors * sizeof (struct e1000_tx_desc)); 788 E1000_WRITE_REG(hw, TDLEN, size); 789 size = E1000_READ_REG(hw, TDLEN); 790 791 buf_low = (uint32_t)tx_ring->tbd_dma_addr; 792 buf_high = (uint32_t)(tx_ring->tbd_dma_addr >> 32); 793 794 E1000_WRITE_REG(hw, TDBAL, buf_low); 795 E1000_WRITE_REG(hw, TDBAH, buf_high); 796 797 /* Setup our HW Tx Head & Tail descriptor pointers */ 798 E1000_WRITE_REG(hw, TDH, 0); 799 E1000_WRITE_REG(hw, TDT, 0); 800 801 /* Set the default values for the Tx Inter Packet Gap timer */ 802 switch (hw->mac_type) { 803 case e1000_82542_rev2_0: 804 case e1000_82542_rev2_1: 805 reg_tipg = DEFAULT_82542_TIPG_IPGT; 806 reg_tipg |= 807 DEFAULT_82542_TIPG_IPGR1 << E1000_TIPG_IPGR1_SHIFT; 808 reg_tipg |= 809 DEFAULT_82542_TIPG_IPGR2 << E1000_TIPG_IPGR2_SHIFT; 810 break; 811 default: 812 if (hw->media_type == e1000_media_type_fiber) 813 reg_tipg = DEFAULT_82543_TIPG_IPGT_FIBER; 814 else 815 reg_tipg = DEFAULT_82543_TIPG_IPGT_COPPER; 816 reg_tipg |= 817 DEFAULT_82543_TIPG_IPGR1 << E1000_TIPG_IPGR1_SHIFT; 818 reg_tipg |= 819 DEFAULT_82543_TIPG_IPGR2 << E1000_TIPG_IPGR2_SHIFT; 820 break; 821 } 822 E1000_WRITE_REG(hw, TIPG, reg_tipg); 823 824 /* Setup Transmit Interrupt Delay Value */ 825 if (Adapter->TxInterruptDelay) { 826 E1000_WRITE_REG(hw, TIDV, Adapter->TxInterruptDelay); 827 } 828 829 /* For TCP/UDP checksum offload */ 830 tx_ring->cksum_data.cksum_stuff = 0; 831 tx_ring->cksum_data.cksum_start = 0; 832 tx_ring->cksum_data.cksum_flags = 0; 833 tx_ring->cksum_data.ether_header_size = 0; 834 835 /* Initialize tx parameters */ 836 Adapter->tx_bcopy_thresh = DEFAULTTXBCOPYTHRESHOLD; 837 Adapter->tx_recycle_low_water = DEFAULTTXRECYCLELOWWATER; 838 Adapter->tx_recycle_num = DEFAULTTXRECYCLENUM; 839 Adapter->tx_intr_enable = B_TRUE; 840 Adapter->tx_frags_limit = 841 (Adapter->Shared.max_frame_size / Adapter->tx_bcopy_thresh) + 2; 842 if (Adapter->tx_frags_limit > (MAX_TX_DESC_PER_PACKET >> 1)) 843 Adapter->tx_frags_limit = (MAX_TX_DESC_PER_PACKET >> 1); 844 } 845 846 /* 847 * ********************************************************************** 848 * Name: e1000g_recycle * 849 * * 850 * Description: This routine cleans transmit packets. * 851 * * 852 * * 853 * * 854 * Arguments: * 855 * Adapter - A pointer to our context sensitive "Adapter" * 856 * structure. * 857 * * 858 * Returns: * 859 * (none) * 860 * Functions Called: * 861 * None * 862 * * 863 * Modification log: * 864 * Date Who Description * 865 * -------- --- ----------------------------------------------------- * 866 * * 867 * ********************************************************************** 868 */ 869 int 870 e1000g_recycle(e1000g_tx_ring_t *tx_ring) 871 { 872 struct e1000g *Adapter; 873 LIST_DESCRIBER pending_list; 874 PTX_SW_PACKET packet; 875 e1000g_msg_chain_t *msg_chain; 876 mblk_t *mp; 877 mblk_t *nmp; 878 struct e1000_tx_desc *descriptor; 879 int desc_count; 880 881 /* 882 * This function will examine each TxSwPacket in the 'used' queue 883 * if the e1000g is done with it then the associated resources (Tx 884 * Descriptors) will be "freed" and the TxSwPacket will be 885 * returned to the 'free' queue. 886 */ 887 Adapter = tx_ring->adapter; 888 889 desc_count = 0; 890 QUEUE_INIT_LIST(&pending_list); 891 892 mutex_enter(&tx_ring->usedlist_lock); 893 894 packet = (PTX_SW_PACKET) QUEUE_GET_HEAD(&tx_ring->used_list); 895 if (packet == NULL) { 896 mutex_exit(&tx_ring->usedlist_lock); 897 Adapter->tx_recycle_fail = 0; 898 Adapter->StallWatchdog = 0; 899 return (0); 900 } 901 902 /* 903 * While there are still TxSwPackets in the used queue check them 904 */ 905 while (packet = 906 (PTX_SW_PACKET) QUEUE_GET_HEAD(&tx_ring->used_list)) { 907 908 /* 909 * Get hold of the next descriptor that the e1000g will 910 * report status back to (this will be the last descriptor 911 * of a given TxSwPacket). We only want to free the 912 * TxSwPacket (and it resources) if the e1000g is done 913 * with ALL of the descriptors. If the e1000g is done 914 * with the last one then it is done with all of them. 915 */ 916 ASSERT(packet->num_desc); 917 descriptor = tx_ring->tbd_oldest + 918 (packet->num_desc - 1); 919 920 /* Check for wrap case */ 921 if (descriptor > tx_ring->tbd_last) 922 descriptor -= Adapter->NumTxDescriptors; 923 924 /* Sync the Tx descriptor DMA buffer */ 925 (void) ddi_dma_sync(tx_ring->tbd_dma_handle, 926 (descriptor - tx_ring->tbd_first) * 927 sizeof (struct e1000_tx_desc), 928 sizeof (struct e1000_tx_desc), 929 DDI_DMA_SYNC_FORCPU); 930 931 /* 932 * If the descriptor done bit is set free TxSwPacket and 933 * associated resources 934 */ 935 if (descriptor->upper.fields.status & E1000_TXD_STAT_DD) { 936 QUEUE_POP_HEAD(&tx_ring->used_list); 937 QUEUE_PUSH_TAIL(&pending_list, &packet->Link); 938 939 if (descriptor == tx_ring->tbd_last) 940 tx_ring->tbd_oldest = 941 tx_ring->tbd_first; 942 else 943 tx_ring->tbd_oldest = 944 descriptor + 1; 945 946 desc_count += packet->num_desc; 947 948 if (desc_count >= Adapter->tx_recycle_num) 949 break; 950 } else { 951 /* 952 * Found a TxSwPacket that the e1000g is not done 953 * with then there is no reason to check the rest 954 * of the queue. 955 */ 956 break; 957 } 958 } 959 960 mutex_exit(&tx_ring->usedlist_lock); 961 962 if (desc_count == 0) { 963 Adapter->tx_recycle_fail++; 964 Adapter->tx_recycle_none++; 965 return (0); 966 } 967 968 Adapter->tx_recycle_fail = 0; 969 Adapter->StallWatchdog = 0; 970 971 mp = NULL; 972 nmp = NULL; 973 packet = (PTX_SW_PACKET) QUEUE_GET_HEAD(&pending_list); 974 ASSERT(packet != NULL); 975 while (packet != NULL) { 976 if (packet->mp != NULL) { 977 ASSERT(packet->mp->b_next == NULL); 978 /* Assemble the message chain */ 979 if (mp == NULL) { 980 mp = packet->mp; 981 nmp = packet->mp; 982 } else { 983 nmp->b_next = packet->mp; 984 nmp = packet->mp; 985 } 986 /* Disconnect the message from the sw packet */ 987 packet->mp = NULL; 988 } 989 990 /* Free the TxSwPackets */ 991 FreeTxSwPacket(packet); 992 993 packet = (PTX_SW_PACKET) 994 QUEUE_GET_NEXT(&pending_list, &packet->Link); 995 } 996 997 /* Save the message chain */ 998 if (mp != NULL) { 999 msg_chain = Adapter->tx_msg_chain; 1000 mutex_enter(&msg_chain->lock); 1001 if (msg_chain->head == NULL) { 1002 msg_chain->head = mp; 1003 msg_chain->tail = nmp; 1004 } else { 1005 msg_chain->tail->b_next = mp; 1006 msg_chain->tail = nmp; 1007 } 1008 mutex_exit(&msg_chain->lock); 1009 1010 /* 1011 * If the tx interrupt is enabled, the messages will be freed 1012 * in the tx interrupt; Otherwise, they are freed here by 1013 * triggering a soft interrupt. 1014 */ 1015 if (!Adapter->tx_intr_enable) 1016 ddi_intr_trigger_softint(Adapter->tx_softint_handle, 1017 NULL); 1018 } 1019 1020 /* Return the TxSwPackets back to the FreeList */ 1021 mutex_enter(&tx_ring->freelist_lock); 1022 QUEUE_APPEND(&tx_ring->free_list, &pending_list); 1023 mutex_exit(&tx_ring->freelist_lock); 1024 1025 return (desc_count); 1026 } 1027 1028 /* 1029 * 82544 Coexistence issue workaround: 1030 * There are 2 issues. 1031 * 1. If a 32 bit split completion happens from P64H2 and another 1032 * agent drives a 64 bit request/split completion after ONLY 1033 * 1 idle clock (BRCM/Emulex/Adaptec fiber channel cards) then 1034 * 82544 has a problem where in to clock all the data in, it 1035 * looks at REQ64# signal and since it has changed so fast (i.e. 1 1036 * idle clock turn around), it will fail to clock all the data in. 1037 * Data coming from certain ending addresses has exposure to this issue. 1038 * 1039 * To detect this issue, following equation can be used... 1040 * SIZE[3:0] + ADDR[2:0] = SUM[3:0]. 1041 * If SUM[3:0] is in between 1 to 4, we will have this issue. 1042 * 1043 * ROOT CAUSE: 1044 * The erratum involves the 82544 PCIX elasticity FIFO implementations as 1045 * 64-bit FIFO's and flushing of the final partial-bytes corresponding 1046 * to the end of a requested read burst. Under a specific burst condition 1047 * of ending-data alignment and 32-byte split-completions, the final 1048 * byte(s) of split-completion data require an extra clock cycle to flush 1049 * into 64-bit FIFO orientation. An incorrect logic dependency on the 1050 * REQ64# signal occurring during during this clock cycle may cause the 1051 * residual byte(s) to be lost, thereby rendering the internal DMA client 1052 * forever awaiting the final byte(s) for an outbound data-fetch. The 1053 * erratum is confirmed to *only* occur if certain subsequent external 1054 * 64-bit PCIX bus transactions occur immediately (minimum possible bus 1055 * turn- around) following the odd-aligned 32-bit split-completion 1056 * containing the final byte(s). Intel has confirmed that this has been 1057 * seen only with chipset/bridges which have the capability to provide 1058 * 32-bit split-completion data, and in the presence of newer PCIX bus 1059 * agents which fully-optimize the inter-transaction turn-around (zero 1060 * additional initiator latency when pre-granted bus ownership). 1061 * 1062 * This issue does not exist in PCI bus mode, when any agent is operating 1063 * in 32 bit only mode or on chipsets that do not do 32 bit split 1064 * completions for 64 bit read requests (Serverworks chipsets). P64H2 does 1065 * 32 bit split completions for any read request that has bit 2 set to 1 1066 * for the requested address and read request size is more than 8 bytes. 1067 * 1068 * 2. Another issue is related to 82544 driving DACs under the similar 1069 * scenario (32 bit split completion followed by 64 bit transaction with 1070 * only 1 cycle turnaround). This issue is still being root caused. We 1071 * think that both of these issues can be avoided if following workaround 1072 * is implemented. It seems DAC issues is related to ending addresses being 1073 * 0x9, 0xA, 0xB, 0xC and hence ending up at odd boundaries in elasticity 1074 * FIFO which does not get flushed due to REQ64# dependency. We will only 1075 * know the full story after it has been simulated successfully by HW team. 1076 * 1077 * WORKAROUND: 1078 * Make sure we do not have ending address as 1,2,3,4(Hang) or 9,a,b,c(DAC) 1079 */ 1080 static uint32_t 1081 e1000g_fill_82544_desc(uint64_t Address, 1082 size_t Length, PDESC_ARRAY desc_array) 1083 { 1084 /* 1085 * Since issue is sensitive to length and address. 1086 * Let us first check the address... 1087 */ 1088 uint32_t safe_terminator; 1089 1090 if (Length <= 4) { 1091 desc_array->Descriptor[0].Address = Address; 1092 desc_array->Descriptor[0].Length = Length; 1093 desc_array->Elements = 1; 1094 return (desc_array->Elements); 1095 } 1096 safe_terminator = 1097 (uint32_t)((((uint32_t)Address & 0x7) + 1098 (Length & 0xF)) & 0xF); 1099 /* 1100 * if it does not fall between 0x1 to 0x4 and 0x9 to 0xC then 1101 * return 1102 */ 1103 if (safe_terminator == 0 || 1104 (safe_terminator > 4 && 1105 safe_terminator < 9) || 1106 (safe_terminator > 0xC && safe_terminator <= 0xF)) { 1107 desc_array->Descriptor[0].Address = Address; 1108 desc_array->Descriptor[0].Length = Length; 1109 desc_array->Elements = 1; 1110 return (desc_array->Elements); 1111 } 1112 1113 desc_array->Descriptor[0].Address = Address; 1114 desc_array->Descriptor[0].Length = Length - 4; 1115 desc_array->Descriptor[1].Address = Address + (Length - 4); 1116 desc_array->Descriptor[1].Length = 4; 1117 desc_array->Elements = 2; 1118 return (desc_array->Elements); 1119 } 1120 1121 static int 1122 e1000g_tx_copy(struct e1000g *Adapter, PTX_SW_PACKET packet, 1123 mblk_t *mp, uint32_t force_bcopy) 1124 { 1125 size_t len; 1126 size_t len1; 1127 dma_buffer_t *tx_buf; 1128 mblk_t *nmp; 1129 boolean_t finished; 1130 int desc_count; 1131 1132 desc_count = 0; 1133 tx_buf = packet->tx_buf; 1134 len = MBLKL(mp); 1135 1136 ASSERT((tx_buf->len + len) <= tx_buf->size); 1137 1138 if (len > 0) { 1139 bcopy(mp->b_rptr, 1140 tx_buf->address + tx_buf->len, 1141 len); 1142 tx_buf->len += len; 1143 1144 packet->num_mblk_frag++; 1145 } 1146 1147 nmp = mp->b_cont; 1148 if (nmp == NULL) { 1149 finished = B_TRUE; 1150 } else { 1151 len1 = MBLKL(nmp); 1152 if ((tx_buf->len + len1) > tx_buf->size) 1153 finished = B_TRUE; 1154 else if (force_bcopy) 1155 finished = B_FALSE; 1156 else if (len1 > Adapter->tx_bcopy_thresh) 1157 finished = B_TRUE; 1158 else 1159 finished = B_FALSE; 1160 } 1161 1162 if (finished) { 1163 if (tx_buf->len > len) 1164 Adapter->tx_multi_copy++; 1165 1166 /* 1167 * If the packet is smaller than 64 bytes, which is the 1168 * minimum ethernet packet size, pad the packet to make 1169 * it at least 60 bytes. The hardware will add 4 bytes 1170 * for CRC. 1171 */ 1172 if (force_bcopy & FORCE_BCOPY_UNDER_SIZE) { 1173 ASSERT(tx_buf->len < MINIMUM_ETHERNET_PACKET_SIZE); 1174 1175 bzero(tx_buf->address + tx_buf->len, 1176 MINIMUM_ETHERNET_PACKET_SIZE - tx_buf->len); 1177 tx_buf->len = MINIMUM_ETHERNET_PACKET_SIZE; 1178 } 1179 1180 switch (packet->dma_type) { 1181 #ifdef __sparc 1182 case USE_DVMA: 1183 dvma_sync(tx_buf->dma_handle, 0, DDI_DMA_SYNC_FORDEV); 1184 break; 1185 #endif 1186 case USE_DMA: 1187 (void) ddi_dma_sync(tx_buf->dma_handle, 0, 1188 tx_buf->len, DDI_DMA_SYNC_FORDEV); 1189 break; 1190 default: 1191 ASSERT(B_FALSE); 1192 break; 1193 } 1194 1195 packet->data_transfer_type = USE_BCOPY; 1196 1197 desc_count = e1000g_fill_tx_desc(Adapter, 1198 packet, 1199 tx_buf->dma_address, 1200 tx_buf->len); 1201 1202 if (desc_count <= 0) 1203 return (-1); 1204 } 1205 1206 return (desc_count); 1207 } 1208 1209 static int 1210 e1000g_tx_bind(struct e1000g *Adapter, PTX_SW_PACKET packet, mblk_t *mp) 1211 { 1212 int j; 1213 int mystat; 1214 size_t len; 1215 ddi_dma_cookie_t dma_cookie; 1216 uint_t ncookies; 1217 int desc_count; 1218 uint32_t desc_total; 1219 1220 desc_total = 0; 1221 len = MBLKL(mp); 1222 1223 /* 1224 * ddi_dma_addr_bind_handle() allocates DMA resources for a 1225 * memory object such that a device can perform DMA to or from 1226 * the object. DMA resources are allocated considering the 1227 * device's DMA attributes as expressed by ddi_dma_attr(9S) 1228 * (see ddi_dma_alloc_handle(9F)). 1229 * 1230 * ddi_dma_addr_bind_handle() fills in the first DMA cookie 1231 * pointed to by cookiep with the appropriate address, length, 1232 * and bus type. *ccountp is set to the number of DMA cookies 1233 * representing this DMA object. Subsequent DMA cookies must be 1234 * retrieved by calling ddi_dma_nextcookie(9F) the number of 1235 * times specified by *countp - 1. 1236 */ 1237 switch (packet->dma_type) { 1238 #ifdef __sparc 1239 case USE_DVMA: 1240 dvma_kaddr_load(packet->tx_dma_handle, 1241 (caddr_t)mp->b_rptr, len, 0, &dma_cookie); 1242 1243 dvma_sync(packet->tx_dma_handle, 0, 1244 DDI_DMA_SYNC_FORDEV); 1245 1246 ncookies = 1; 1247 packet->data_transfer_type = USE_DVMA; 1248 break; 1249 #endif 1250 case USE_DMA: 1251 if ((mystat = ddi_dma_addr_bind_handle( 1252 packet->tx_dma_handle, NULL, 1253 (caddr_t)mp->b_rptr, len, 1254 DDI_DMA_WRITE | DDI_DMA_STREAMING, 1255 DDI_DMA_DONTWAIT, 0, &dma_cookie, 1256 &ncookies)) != DDI_DMA_MAPPED) { 1257 1258 e1000g_log(Adapter, CE_WARN, 1259 "Couldn't bind mblk buffer to Tx DMA handle: " 1260 "return: %X, Pkt: %X\n", 1261 mystat, packet); 1262 return (-1); 1263 } 1264 1265 /* 1266 * An implicit ddi_dma_sync() is done when the 1267 * ddi_dma_addr_bind_handle() is called. So we 1268 * don't need to explicitly call ddi_dma_sync() 1269 * here any more. 1270 */ 1271 ASSERT(ncookies); 1272 if (ncookies > 1) 1273 Adapter->tx_multi_cookie++; 1274 1275 /* 1276 * The data_transfer_type value must be set after the handle 1277 * has been bound, for it will be used in FreeTxSwPacket() 1278 * to decide whether we need to unbind the handle. 1279 */ 1280 packet->data_transfer_type = USE_DMA; 1281 break; 1282 default: 1283 ASSERT(B_FALSE); 1284 break; 1285 } 1286 1287 packet->num_mblk_frag++; 1288 1289 /* 1290 * Each address could span thru multpile cookie.. 1291 * Each cookie will have one descriptor 1292 */ 1293 for (j = ncookies; j != 0; j--) { 1294 1295 desc_count = e1000g_fill_tx_desc(Adapter, 1296 packet, 1297 dma_cookie.dmac_laddress, 1298 dma_cookie.dmac_size); 1299 1300 if (desc_count <= 0) 1301 return (-1); 1302 1303 desc_total += desc_count; 1304 1305 /* 1306 * ddi_dma_nextcookie() retrieves subsequent DMA 1307 * cookies for a DMA object. 1308 * ddi_dma_nextcookie() fills in the 1309 * ddi_dma_cookie(9S) structure pointed to by 1310 * cookiep. The ddi_dma_cookie(9S) structure 1311 * must be allocated prior to calling 1312 * ddi_dma_nextcookie(). The DMA cookie count 1313 * returned by ddi_dma_buf_bind_handle(9F), 1314 * ddi_dma_addr_bind_handle(9F), or 1315 * ddi_dma_getwin(9F) indicates the number of DMA 1316 * cookies a DMA object consists of. If the 1317 * resulting cookie count, N, is larger than 1, 1318 * ddi_dma_nextcookie() must be called N-1 times 1319 * to retrieve all DMA cookies. 1320 */ 1321 if (j > 1) { 1322 ddi_dma_nextcookie(packet->tx_dma_handle, 1323 &dma_cookie); 1324 } 1325 } 1326 1327 return (desc_total); 1328 } 1329 1330 static void 1331 e1000g_fill_context_descriptor(cksum_data_t *cksum, 1332 struct e1000_context_desc *cksum_desc) 1333 { 1334 if (cksum->cksum_flags & HCK_IPV4_HDRCKSUM) { 1335 cksum_desc->lower_setup.ip_fields.ipcss = 1336 cksum->ether_header_size; 1337 cksum_desc->lower_setup.ip_fields.ipcso = 1338 cksum->ether_header_size + 1339 offsetof(struct ip, ip_sum); 1340 cksum_desc->lower_setup.ip_fields.ipcse = 1341 cksum->ether_header_size + 1342 sizeof (struct ip) - 1; 1343 } else 1344 cksum_desc->lower_setup.ip_config = 0; 1345 1346 if (cksum->cksum_flags & HCK_PARTIALCKSUM) { 1347 /* 1348 * The packet with same protocol has the following 1349 * stuff and start offset: 1350 * | Protocol | Stuff | Start | Checksum 1351 * | | Offset | Offset | Enable 1352 * | IPv4 + TCP | 0x24 | 0x14 | Yes 1353 * | IPv4 + UDP | 0x1A | 0x14 | Yes 1354 * | IPv6 + TCP | 0x20 | 0x10 | No 1355 * | IPv6 + UDP | 0x14 | 0x10 | No 1356 */ 1357 cksum_desc->upper_setup.tcp_fields.tucss = 1358 cksum->cksum_start + cksum->ether_header_size; 1359 cksum_desc->upper_setup.tcp_fields.tucso = 1360 cksum->cksum_stuff + cksum->ether_header_size; 1361 cksum_desc->upper_setup.tcp_fields.tucse = 0; 1362 } else 1363 cksum_desc->upper_setup.tcp_config = 0; 1364 1365 cksum_desc->cmd_and_length = E1000_TXD_CMD_DEXT; 1366 1367 /* 1368 * Zero out the options for TCP Segmentation Offload, 1369 * since we don't support it in this version 1370 */ 1371 cksum_desc->tcp_seg_setup.data = 0; 1372 } 1373 1374 static int 1375 e1000g_fill_tx_desc(struct e1000g *Adapter, 1376 PTX_SW_PACKET packet, uint64_t address, size_t size) 1377 { 1378 PADDRESS_LENGTH_PAIR desc; 1379 int desc_count; 1380 1381 desc_count = 0; 1382 1383 if ((Adapter->Shared.bus_type == e1000_bus_type_pcix) && 1384 (Adapter->Shared.mac_type == e1000_82544)) { 1385 1386 desc_count = e1000g_tx_workaround_PCIX_82544(Adapter, 1387 packet, address, size); 1388 1389 } else if ((Adapter->Shared.mac_type == e1000_82544) && 1390 (size > JUMBO_FRAG_LENGTH)) { 1391 1392 desc_count = e1000g_tx_workaround_jumbo_82544(Adapter, 1393 packet, address, size); 1394 1395 } else { 1396 ASSERT(packet->num_desc < MAX_TX_DESC_PER_PACKET); 1397 1398 desc = &packet->desc[packet->num_desc]; 1399 1400 desc->Address = address; 1401 desc->Length = size; 1402 1403 packet->num_desc++; 1404 desc_count++; 1405 } 1406 1407 return (desc_count); 1408 } 1409 1410 static int 1411 e1000g_tx_workaround_PCIX_82544(struct e1000g *Adapter, 1412 PTX_SW_PACKET packet, uint64_t address, size_t size) 1413 { 1414 PADDRESS_LENGTH_PAIR desc; 1415 int desc_count; 1416 long size_left; 1417 size_t len; 1418 uint32_t counter; 1419 uint32_t array_elements; 1420 DESC_ARRAY desc_array; 1421 1422 /* 1423 * Coexist Workaround for cordova: RP: 07/04/03 1424 * 1425 * RP: ERRATA: Workaround ISSUE: 1426 * 8kb_buffer_Lockup CONTROLLER: Cordova Breakup 1427 * Eachbuffer in to 8kb pieces until the 1428 * remainder is < 8kb 1429 */ 1430 size_left = size; 1431 desc_count = 0; 1432 1433 while (size_left > 0) { 1434 if (size_left > MAX_TX_BUF_SIZE) 1435 len = MAX_TX_BUF_SIZE; 1436 else 1437 len = size_left; 1438 1439 array_elements = e1000g_fill_82544_desc(address, 1440 len, &desc_array); 1441 1442 for (counter = 0; counter < array_elements; counter++) { 1443 ASSERT(packet->num_desc < MAX_TX_DESC_PER_PACKET); 1444 if (packet->num_desc >= MAX_TX_DESC_PER_PACKET) { 1445 e1000g_log(Adapter, CE_WARN, 1446 "No enough preparing tx descriptors"); 1447 return (-1); 1448 } 1449 /* 1450 * Put in the buffer address 1451 */ 1452 desc = &packet->desc[packet->num_desc]; 1453 1454 desc->Address = 1455 desc_array.Descriptor[counter].Address; 1456 desc->Length = 1457 desc_array.Descriptor[counter].Length; 1458 1459 packet->num_desc++; 1460 desc_count++; 1461 } /* for */ 1462 1463 /* 1464 * Update the buffer address and length 1465 */ 1466 address += MAX_TX_BUF_SIZE; 1467 size_left -= MAX_TX_BUF_SIZE; 1468 } /* while */ 1469 1470 return (desc_count); 1471 } 1472 1473 static int 1474 e1000g_tx_workaround_jumbo_82544(struct e1000g *Adapter, 1475 PTX_SW_PACKET packet, uint64_t address, size_t size) 1476 { 1477 PADDRESS_LENGTH_PAIR desc; 1478 int desc_count; 1479 long size_left; 1480 uint32_t offset; 1481 1482 /* 1483 * Workaround for Jumbo Frames on Cordova 1484 * PSD 06/01/2001 1485 */ 1486 size_left = size; 1487 desc_count = 0; 1488 offset = 0; 1489 while (size_left > 0) { 1490 ASSERT(packet->num_desc < MAX_TX_DESC_PER_PACKET); 1491 if (packet->num_desc >= MAX_TX_DESC_PER_PACKET) { 1492 e1000g_log(Adapter, CE_WARN, 1493 "No enough preparing tx descriptors"); 1494 return (-1); 1495 } 1496 1497 desc = &packet->desc[packet->num_desc]; 1498 1499 desc->Address = address + offset; 1500 1501 if (size_left > JUMBO_FRAG_LENGTH) 1502 desc->Length = JUMBO_FRAG_LENGTH; 1503 else 1504 desc->Length = size_left; 1505 1506 packet->num_desc++; 1507 desc_count++; 1508 1509 offset += desc->Length; 1510 size_left -= JUMBO_FRAG_LENGTH; 1511 } 1512 1513 return (desc_count); 1514 } 1515 1516 static void 1517 e1000g_82547_tx_move_tail_work(e1000g_tx_ring_t *tx_ring) 1518 { 1519 uint16_t hw_tdt; 1520 uint16_t sw_tdt; 1521 struct e1000_tx_desc *tx_desc; 1522 uint16_t length = 0; 1523 boolean_t eop = B_FALSE; 1524 struct e1000g *Adapter; 1525 1526 Adapter = tx_ring->adapter; 1527 1528 hw_tdt = E1000_READ_REG(&Adapter->Shared, TDT); 1529 sw_tdt = tx_ring->tbd_next - tx_ring->tbd_first; 1530 1531 while (hw_tdt != sw_tdt) { 1532 tx_desc = &(tx_ring->tbd_first[hw_tdt]); 1533 length += tx_desc->lower.flags.length; 1534 eop = tx_desc->lower.data & E1000_TXD_CMD_EOP; 1535 if (++hw_tdt == Adapter->NumTxDescriptors) 1536 hw_tdt = 0; 1537 1538 if (eop) { 1539 if ((Adapter->link_duplex == HALF_DUPLEX) && 1540 e1000_82547_fifo_workaround(&Adapter->Shared, 1541 length) != E1000_SUCCESS) { 1542 if (tx_ring->timer_enable_82547) { 1543 ASSERT(tx_ring->timer_id_82547 == 0); 1544 tx_ring->timer_id_82547 = 1545 timeout(e1000g_82547_timeout, 1546 (void *)tx_ring, 1547 drv_usectohz(10000)); 1548 } 1549 return; 1550 1551 } else { 1552 E1000_WRITE_REG(&Adapter->Shared, TDT, 1553 hw_tdt); 1554 e1000_update_tx_fifo_head(&Adapter->Shared, 1555 length); 1556 length = 0; 1557 } 1558 } 1559 } 1560 } 1561 1562 static void 1563 e1000g_82547_timeout(void *arg) 1564 { 1565 e1000g_tx_ring_t *tx_ring; 1566 1567 tx_ring = (e1000g_tx_ring_t *)arg; 1568 1569 mutex_enter(&tx_ring->tx_lock); 1570 1571 tx_ring->timer_id_82547 = 0; 1572 e1000g_82547_tx_move_tail_work(tx_ring); 1573 1574 mutex_exit(&tx_ring->tx_lock); 1575 } 1576 1577 static void 1578 e1000g_82547_tx_move_tail(e1000g_tx_ring_t *tx_ring) 1579 { 1580 timeout_id_t tid; 1581 1582 ASSERT(MUTEX_HELD(&tx_ring->tx_lock)); 1583 1584 tid = tx_ring->timer_id_82547; 1585 tx_ring->timer_id_82547 = 0; 1586 if (tid != 0) { 1587 tx_ring->timer_enable_82547 = B_FALSE; 1588 mutex_exit(&tx_ring->tx_lock); 1589 1590 (void) untimeout(tid); 1591 1592 mutex_enter(&tx_ring->tx_lock); 1593 } 1594 tx_ring->timer_enable_82547 = B_TRUE; 1595 e1000g_82547_tx_move_tail_work(tx_ring); 1596 } 1597