xref: /illumos-gate/usr/src/uts/common/io/e1000g/e1000g_main.c (revision fdd3baea1de807613d7541b2fad475760768584b)
1 /*
2  * This file is provided under a CDDLv1 license.  When using or
3  * redistributing this file, you may do so under this license.
4  * In redistributing this file this license must be included
5  * and no other modification of this header file is permitted.
6  *
7  * CDDL LICENSE SUMMARY
8  *
9  * Copyright(c) 1999 - 2009 Intel Corporation. All rights reserved.
10  *
11  * The contents of this file are subject to the terms of Version
12  * 1.0 of the Common Development and Distribution License (the "License").
13  *
14  * You should have received a copy of the License with this software.
15  * You can obtain a copy of the License at
16  *	http://www.opensolaris.org/os/licensing.
17  * See the License for the specific language governing permissions
18  * and limitations under the License.
19  */
20 
21 /*
22  * Copyright (c) 2010, Oracle and/or its affiliates. All rights reserved.
23  */
24 
25 /*
26  * Copyright 2012 DEY Storage Systems, Inc.  All rights reserved.
27  * Copyright 2013 Nexenta Systems, Inc.  All rights reserved.
28  * Copyright (c) 2018, Joyent, Inc.
29  * Copyright 2024 Oxide Computer Company
30  */
31 
32 /*
33  * **********************************************************************
34  *									*
35  * Module Name:								*
36  *   e1000g_main.c							*
37  *									*
38  * Abstract:								*
39  *   This file contains the interface routines for the solaris OS.	*
40  *   It has all DDI entry point routines and GLD entry point routines.	*
41  *									*
42  *   This file also contains routines that take care of initialization	*
43  *   uninit routine and interrupt routine.				*
44  *									*
45  * **********************************************************************
46  */
47 
48 #include <sys/dlpi.h>
49 #include <sys/mac.h>
50 #include "e1000g_sw.h"
51 #include "e1000g_debug.h"
52 
53 static char ident[] = "Intel PRO/1000 Ethernet";
54 /* LINTED E_STATIC_UNUSED */
55 static char e1000g_version[] = "Driver Ver. 5.4.00";
56 
57 /*
58  * Proto types for DDI entry points
59  */
60 static int e1000g_attach(dev_info_t *, ddi_attach_cmd_t);
61 static int e1000g_detach(dev_info_t *, ddi_detach_cmd_t);
62 static int e1000g_quiesce(dev_info_t *);
63 
64 /*
65  * init and intr routines prototype
66  */
67 static int e1000g_resume(dev_info_t *);
68 static int e1000g_suspend(dev_info_t *);
69 static uint_t e1000g_intr_pciexpress(caddr_t, caddr_t);
70 static uint_t e1000g_intr(caddr_t, caddr_t);
71 static void e1000g_intr_work(struct e1000g *, uint32_t);
72 #pragma inline(e1000g_intr_work)
73 static int e1000g_init(struct e1000g *);
74 static int e1000g_start(struct e1000g *, boolean_t);
75 static void e1000g_stop(struct e1000g *, boolean_t);
76 static int e1000g_m_start(void *);
77 static void e1000g_m_stop(void *);
78 static int e1000g_m_promisc(void *, boolean_t);
79 static boolean_t e1000g_m_getcapab(void *, mac_capab_t, void *);
80 static int e1000g_m_multicst(void *, boolean_t, const uint8_t *);
81 static void e1000g_m_ioctl(void *, queue_t *, mblk_t *);
82 static int e1000g_m_setprop(void *, const char *, mac_prop_id_t,
83     uint_t, const void *);
84 static int e1000g_m_getprop(void *, const char *, mac_prop_id_t,
85 			    uint_t, void *);
86 static void e1000g_m_propinfo(void *, const char *, mac_prop_id_t,
87     mac_prop_info_handle_t);
88 static int e1000g_set_priv_prop(struct e1000g *, const char *, uint_t,
89     const void *);
90 static int e1000g_get_priv_prop(struct e1000g *, const char *, uint_t, void *);
91 static void e1000g_init_locks(struct e1000g *);
92 static void e1000g_destroy_locks(struct e1000g *);
93 static int e1000g_identify_hardware(struct e1000g *);
94 static int e1000g_regs_map(struct e1000g *);
95 static int e1000g_set_driver_params(struct e1000g *);
96 static void e1000g_set_bufsize(struct e1000g *);
97 static int e1000g_register_mac(struct e1000g *);
98 static boolean_t e1000g_rx_drain(struct e1000g *);
99 static boolean_t e1000g_tx_drain(struct e1000g *);
100 static void e1000g_init_unicst(struct e1000g *);
101 static int e1000g_unicst_set(struct e1000g *, const uint8_t *, int);
102 static int e1000g_alloc_rx_data(struct e1000g *);
103 static void e1000g_release_multicast(struct e1000g *);
104 static void e1000g_pch_limits(struct e1000g *);
105 static uint32_t e1000g_mtu2maxframe(uint32_t);
106 
107 /*
108  * Local routines
109  */
110 static boolean_t e1000g_reset_adapter(struct e1000g *);
111 static void e1000g_tx_clean(struct e1000g *);
112 static void e1000g_rx_clean(struct e1000g *);
113 static void e1000g_link_timer(void *);
114 static void e1000g_local_timer(void *);
115 static boolean_t e1000g_link_check(struct e1000g *);
116 static boolean_t e1000g_stall_check(struct e1000g *);
117 static void e1000g_smartspeed(struct e1000g *);
118 static void e1000g_get_conf(struct e1000g *);
119 static boolean_t e1000g_get_prop(struct e1000g *, char *, int, int, int,
120     int *);
121 static void enable_watchdog_timer(struct e1000g *);
122 static void disable_watchdog_timer(struct e1000g *);
123 static void start_watchdog_timer(struct e1000g *);
124 static void restart_watchdog_timer(struct e1000g *);
125 static void stop_watchdog_timer(struct e1000g *);
126 static void stop_link_timer(struct e1000g *);
127 static void stop_82547_timer(e1000g_tx_ring_t *);
128 static void e1000g_force_speed_duplex(struct e1000g *);
129 static void e1000g_setup_max_mtu(struct e1000g *);
130 static void e1000g_get_max_frame_size(struct e1000g *);
131 static boolean_t is_valid_mac_addr(uint8_t *);
132 static void e1000g_unattach(dev_info_t *, struct e1000g *);
133 static int e1000g_get_bar_info(dev_info_t *, int, bar_info_t *);
134 #ifdef E1000G_DEBUG
135 static void e1000g_ioc_peek_reg(struct e1000g *, e1000g_peekpoke_t *);
136 static void e1000g_ioc_poke_reg(struct e1000g *, e1000g_peekpoke_t *);
137 static void e1000g_ioc_peek_mem(struct e1000g *, e1000g_peekpoke_t *);
138 static void e1000g_ioc_poke_mem(struct e1000g *, e1000g_peekpoke_t *);
139 static enum ioc_reply e1000g_pp_ioctl(struct e1000g *,
140     struct iocblk *, mblk_t *);
141 #endif
142 static enum ioc_reply e1000g_loopback_ioctl(struct e1000g *,
143     struct iocblk *, mblk_t *);
144 static boolean_t e1000g_check_loopback_support(struct e1000_hw *);
145 static boolean_t e1000g_set_loopback_mode(struct e1000g *, uint32_t);
146 static void e1000g_set_internal_loopback(struct e1000g *);
147 static void e1000g_set_external_loopback_1000(struct e1000g *);
148 static void e1000g_set_external_loopback_100(struct e1000g *);
149 static void e1000g_set_external_loopback_10(struct e1000g *);
150 static int e1000g_add_intrs(struct e1000g *);
151 static int e1000g_intr_add(struct e1000g *, int);
152 static int e1000g_rem_intrs(struct e1000g *);
153 static int e1000g_enable_intrs(struct e1000g *);
154 static int e1000g_disable_intrs(struct e1000g *);
155 static boolean_t e1000g_link_up(struct e1000g *);
156 #ifdef __sparc
157 static boolean_t e1000g_find_mac_address(struct e1000g *);
158 #endif
159 static void e1000g_get_phy_state(struct e1000g *);
160 static int e1000g_fm_error_cb(dev_info_t *dip, ddi_fm_error_t *err,
161     const void *impl_data);
162 static void e1000g_fm_init(struct e1000g *Adapter);
163 static void e1000g_fm_fini(struct e1000g *Adapter);
164 static void e1000g_param_sync(struct e1000g *);
165 static void e1000g_get_driver_control(struct e1000_hw *);
166 static void e1000g_release_driver_control(struct e1000_hw *);
167 static void e1000g_restore_promisc(struct e1000g *Adapter);
168 
169 char *e1000g_priv_props[] = {
170 	"_tx_bcopy_threshold",
171 	"_tx_interrupt_enable",
172 	"_tx_intr_delay",
173 	"_tx_intr_abs_delay",
174 	"_rx_bcopy_threshold",
175 	"_max_num_rcv_packets",
176 	"_rx_intr_delay",
177 	"_rx_intr_abs_delay",
178 	"_intr_throttling_rate",
179 	"_intr_adaptive",
180 	"_adv_pause_cap",
181 	"_adv_asym_pause_cap",
182 	NULL
183 };
184 
185 static struct cb_ops cb_ws_ops = {
186 	nulldev,		/* cb_open */
187 	nulldev,		/* cb_close */
188 	nodev,			/* cb_strategy */
189 	nodev,			/* cb_print */
190 	nodev,			/* cb_dump */
191 	nodev,			/* cb_read */
192 	nodev,			/* cb_write */
193 	nodev,			/* cb_ioctl */
194 	nodev,			/* cb_devmap */
195 	nodev,			/* cb_mmap */
196 	nodev,			/* cb_segmap */
197 	nochpoll,		/* cb_chpoll */
198 	ddi_prop_op,		/* cb_prop_op */
199 	NULL,			/* cb_stream */
200 	D_MP | D_HOTPLUG,	/* cb_flag */
201 	CB_REV,			/* cb_rev */
202 	nodev,			/* cb_aread */
203 	nodev			/* cb_awrite */
204 };
205 
206 static struct dev_ops ws_ops = {
207 	DEVO_REV,		/* devo_rev */
208 	0,			/* devo_refcnt */
209 	NULL,			/* devo_getinfo */
210 	nulldev,		/* devo_identify */
211 	nulldev,		/* devo_probe */
212 	e1000g_attach,		/* devo_attach */
213 	e1000g_detach,		/* devo_detach */
214 	nodev,			/* devo_reset */
215 	&cb_ws_ops,		/* devo_cb_ops */
216 	NULL,			/* devo_bus_ops */
217 	ddi_power,		/* devo_power */
218 	e1000g_quiesce		/* devo_quiesce */
219 };
220 
221 static struct modldrv modldrv = {
222 	&mod_driverops,		/* Type of module.  This one is a driver */
223 	ident,			/* Discription string */
224 	&ws_ops,		/* driver ops */
225 };
226 
227 static struct modlinkage modlinkage = {
228 	MODREV_1, &modldrv, NULL
229 };
230 
231 /* Access attributes for register mapping */
232 static ddi_device_acc_attr_t e1000g_regs_acc_attr = {
233 	DDI_DEVICE_ATTR_V1,
234 	DDI_STRUCTURE_LE_ACC,
235 	DDI_STRICTORDER_ACC,
236 	DDI_FLAGERR_ACC
237 };
238 
239 #define	E1000G_M_CALLBACK_FLAGS \
240 	(MC_IOCTL | MC_GETCAPAB | MC_SETPROP | MC_GETPROP | MC_PROPINFO)
241 
242 static mac_callbacks_t e1000g_m_callbacks = {
243 	E1000G_M_CALLBACK_FLAGS,
244 	e1000g_m_stat,
245 	e1000g_m_start,
246 	e1000g_m_stop,
247 	e1000g_m_promisc,
248 	e1000g_m_multicst,
249 	NULL,
250 	e1000g_m_tx,
251 	NULL,
252 	e1000g_m_ioctl,
253 	e1000g_m_getcapab,
254 	NULL,
255 	NULL,
256 	e1000g_m_setprop,
257 	e1000g_m_getprop,
258 	e1000g_m_propinfo
259 };
260 
261 /*
262  * Global variables
263  */
264 uint32_t e1000g_jumbo_mtu = MAXIMUM_MTU_9K;
265 uint32_t e1000g_mblks_pending = 0;
266 /*
267  * Workaround for Dynamic Reconfiguration support, for x86 platform only.
268  * Here we maintain a private dev_info list if e1000g_force_detach is
269  * enabled. If we force the driver to detach while there are still some
270  * rx buffers retained in the upper layer, we have to keep a copy of the
271  * dev_info. In some cases (Dynamic Reconfiguration), the dev_info data
272  * structure will be freed after the driver is detached. However when we
273  * finally free those rx buffers released by the upper layer, we need to
274  * refer to the dev_info to free the dma buffers. So we save a copy of
275  * the dev_info for this purpose. On x86 platform, we assume this copy
276  * of dev_info is always valid, but on SPARC platform, it could be invalid
277  * after the system board level DR operation. For this reason, the global
278  * variable e1000g_force_detach must be B_FALSE on SPARC platform.
279  */
280 #ifdef __sparc
281 boolean_t e1000g_force_detach = B_FALSE;
282 #else
283 boolean_t e1000g_force_detach = B_TRUE;
284 #endif
285 private_devi_list_t *e1000g_private_devi_list = NULL;
286 
287 /*
288  * The mutex e1000g_rx_detach_lock is defined to protect the processing of
289  * the private dev_info list, and to serialize the processing of rx buffer
290  * freeing and rx buffer recycling.
291  */
292 kmutex_t e1000g_rx_detach_lock;
293 /*
294  * The rwlock e1000g_dma_type_lock is defined to protect the global flag
295  * e1000g_dma_type. For SPARC, the initial value of the flag is "USE_DVMA".
296  * If there are many e1000g instances, the system may run out of DVMA
297  * resources during the initialization of the instances, then the flag will
298  * be changed to "USE_DMA". Because different e1000g instances are initialized
299  * in parallel, we need to use this lock to protect the flag.
300  */
301 krwlock_t e1000g_dma_type_lock;
302 
303 /*
304  * The 82546 chipset is a dual-port device, both the ports share one eeprom.
305  * Based on the information from Intel, the 82546 chipset has some hardware
306  * problem. When one port is being reset and the other port is trying to
307  * access the eeprom, it could cause system hang or panic. To workaround this
308  * hardware problem, we use a global mutex to prevent such operations from
309  * happening simultaneously on different instances. This workaround is applied
310  * to all the devices supported by this driver.
311  */
312 kmutex_t e1000g_nvm_lock;
313 
314 /*
315  * Loadable module configuration entry points for the driver
316  */
317 
318 /*
319  * _init - module initialization
320  */
321 int
322 _init(void)
323 {
324 	int status;
325 
326 	mac_init_ops(&ws_ops, WSNAME);
327 	status = mod_install(&modlinkage);
328 	if (status != DDI_SUCCESS)
329 		mac_fini_ops(&ws_ops);
330 	else {
331 		mutex_init(&e1000g_rx_detach_lock, NULL, MUTEX_DRIVER, NULL);
332 		rw_init(&e1000g_dma_type_lock, NULL, RW_DRIVER, NULL);
333 		mutex_init(&e1000g_nvm_lock, NULL, MUTEX_DRIVER, NULL);
334 	}
335 
336 	return (status);
337 }
338 
339 /*
340  * _fini - module finalization
341  */
342 int
343 _fini(void)
344 {
345 	int status;
346 
347 	if (e1000g_mblks_pending != 0)
348 		return (EBUSY);
349 
350 	status = mod_remove(&modlinkage);
351 	if (status == DDI_SUCCESS) {
352 		mac_fini_ops(&ws_ops);
353 
354 		if (e1000g_force_detach) {
355 			private_devi_list_t *devi_node;
356 
357 			mutex_enter(&e1000g_rx_detach_lock);
358 			while (e1000g_private_devi_list != NULL) {
359 				devi_node = e1000g_private_devi_list;
360 				e1000g_private_devi_list =
361 				    e1000g_private_devi_list->next;
362 
363 				kmem_free(devi_node->priv_dip,
364 				    sizeof (struct dev_info));
365 				kmem_free(devi_node,
366 				    sizeof (private_devi_list_t));
367 			}
368 			mutex_exit(&e1000g_rx_detach_lock);
369 		}
370 
371 		mutex_destroy(&e1000g_rx_detach_lock);
372 		rw_destroy(&e1000g_dma_type_lock);
373 		mutex_destroy(&e1000g_nvm_lock);
374 	}
375 
376 	return (status);
377 }
378 
379 /*
380  * _info - module information
381  */
382 int
383 _info(struct modinfo *modinfop)
384 {
385 	return (mod_info(&modlinkage, modinfop));
386 }
387 
388 /*
389  * e1000g_attach - driver attach
390  *
391  * This function is the device-specific initialization entry
392  * point. This entry point is required and must be written.
393  * The DDI_ATTACH command must be provided in the attach entry
394  * point. When attach() is called with cmd set to DDI_ATTACH,
395  * all normal kernel services (such as kmem_alloc(9F)) are
396  * available for use by the driver.
397  *
398  * The attach() function will be called once for each instance
399  * of  the  device  on  the  system with cmd set to DDI_ATTACH.
400  * Until attach() succeeds, the only driver entry points which
401  * may be called are open(9E) and getinfo(9E).
402  */
403 static int
404 e1000g_attach(dev_info_t *devinfo, ddi_attach_cmd_t cmd)
405 {
406 	struct e1000g *Adapter;
407 	struct e1000_hw *hw;
408 	struct e1000g_osdep *osdep;
409 	int instance;
410 
411 	switch (cmd) {
412 	default:
413 		e1000g_log(NULL, CE_WARN,
414 		    "Unsupported command send to e1000g_attach... ");
415 		return (DDI_FAILURE);
416 
417 	case DDI_RESUME:
418 		return (e1000g_resume(devinfo));
419 
420 	case DDI_ATTACH:
421 		break;
422 	}
423 
424 	/*
425 	 * get device instance number
426 	 */
427 	instance = ddi_get_instance(devinfo);
428 
429 	/*
430 	 * Allocate soft data structure
431 	 */
432 	Adapter =
433 	    (struct e1000g *)kmem_zalloc(sizeof (*Adapter), KM_SLEEP);
434 
435 	Adapter->dip = devinfo;
436 	Adapter->instance = instance;
437 	Adapter->tx_ring->adapter = Adapter;
438 	Adapter->rx_ring->adapter = Adapter;
439 
440 	hw = &Adapter->shared;
441 	osdep = &Adapter->osdep;
442 	hw->back = osdep;
443 	osdep->adapter = Adapter;
444 
445 	ddi_set_driver_private(devinfo, (caddr_t)Adapter);
446 
447 	/*
448 	 * Initialize for fma support
449 	 */
450 	(void) e1000g_get_prop(Adapter, "fm-capable",
451 	    0, 0x0f,
452 	    DDI_FM_EREPORT_CAPABLE | DDI_FM_ACCCHK_CAPABLE |
453 	    DDI_FM_DMACHK_CAPABLE | DDI_FM_ERRCB_CAPABLE,
454 	    &Adapter->fm_capabilities);
455 	e1000g_fm_init(Adapter);
456 	Adapter->attach_progress |= ATTACH_PROGRESS_FMINIT;
457 
458 	/*
459 	 * PCI Configure
460 	 */
461 	if (pci_config_setup(devinfo, &osdep->cfg_handle) != DDI_SUCCESS) {
462 		e1000g_log(Adapter, CE_WARN, "PCI configuration failed");
463 		goto attach_fail;
464 	}
465 	Adapter->attach_progress |= ATTACH_PROGRESS_PCI_CONFIG;
466 
467 	/*
468 	 * Setup hardware
469 	 */
470 	if (e1000g_identify_hardware(Adapter) != DDI_SUCCESS) {
471 		e1000g_log(Adapter, CE_WARN, "Identify hardware failed");
472 		goto attach_fail;
473 	}
474 
475 	/*
476 	 * Map in the device registers.
477 	 */
478 	if (e1000g_regs_map(Adapter) != DDI_SUCCESS) {
479 		e1000g_log(Adapter, CE_WARN, "Mapping registers failed");
480 		goto attach_fail;
481 	}
482 	Adapter->attach_progress |= ATTACH_PROGRESS_REGS_MAP;
483 
484 	/*
485 	 * Initialize driver parameters
486 	 */
487 	if (e1000g_set_driver_params(Adapter) != DDI_SUCCESS) {
488 		goto attach_fail;
489 	}
490 	Adapter->attach_progress |= ATTACH_PROGRESS_SETUP;
491 
492 	if (e1000g_check_acc_handle(Adapter->osdep.cfg_handle) != DDI_FM_OK) {
493 		ddi_fm_service_impact(Adapter->dip, DDI_SERVICE_LOST);
494 		goto attach_fail;
495 	}
496 
497 	/*
498 	 * Disable ULP support
499 	 */
500 	(void) e1000_disable_ulp_lpt_lp(hw, TRUE);
501 
502 	/*
503 	 * Initialize interrupts
504 	 */
505 	if (e1000g_add_intrs(Adapter) != DDI_SUCCESS) {
506 		e1000g_log(Adapter, CE_WARN, "Add interrupts failed");
507 		goto attach_fail;
508 	}
509 	Adapter->attach_progress |= ATTACH_PROGRESS_ADD_INTR;
510 
511 	/*
512 	 * Initialize mutex's for this device.
513 	 * Do this before enabling the interrupt handler and
514 	 * register the softint to avoid the condition where
515 	 * interrupt handler can try using uninitialized mutex
516 	 */
517 	e1000g_init_locks(Adapter);
518 	Adapter->attach_progress |= ATTACH_PROGRESS_LOCKS;
519 
520 	/*
521 	 * Initialize Driver Counters
522 	 */
523 	if (e1000g_init_stats(Adapter) != DDI_SUCCESS) {
524 		e1000g_log(Adapter, CE_WARN, "Init stats failed");
525 		goto attach_fail;
526 	}
527 	Adapter->attach_progress |= ATTACH_PROGRESS_KSTATS;
528 
529 	/*
530 	 * Initialize chip hardware and software structures
531 	 */
532 	rw_enter(&Adapter->chip_lock, RW_WRITER);
533 	if (e1000g_init(Adapter) != DDI_SUCCESS) {
534 		rw_exit(&Adapter->chip_lock);
535 		e1000g_log(Adapter, CE_WARN, "Adapter initialization failed");
536 		goto attach_fail;
537 	}
538 	rw_exit(&Adapter->chip_lock);
539 	Adapter->attach_progress |= ATTACH_PROGRESS_INIT;
540 
541 	/*
542 	 * Register the driver to the MAC
543 	 */
544 	if (e1000g_register_mac(Adapter) != DDI_SUCCESS) {
545 		e1000g_log(Adapter, CE_WARN, "Register MAC failed");
546 		goto attach_fail;
547 	}
548 	Adapter->attach_progress |= ATTACH_PROGRESS_MAC;
549 
550 	/*
551 	 * Now that mutex locks are initialized, and the chip is also
552 	 * initialized, enable interrupts.
553 	 */
554 	if (e1000g_enable_intrs(Adapter) != DDI_SUCCESS) {
555 		e1000g_log(Adapter, CE_WARN, "Enable DDI interrupts failed");
556 		goto attach_fail;
557 	}
558 	Adapter->attach_progress |= ATTACH_PROGRESS_ENABLE_INTR;
559 
560 	/*
561 	 * If e1000g_force_detach is enabled, in global private dip list,
562 	 * we will create a new entry, which maintains the priv_dip for DR
563 	 * supports after driver detached.
564 	 */
565 	if (e1000g_force_detach) {
566 		private_devi_list_t *devi_node;
567 
568 		Adapter->priv_dip =
569 		    kmem_zalloc(sizeof (struct dev_info), KM_SLEEP);
570 		bcopy(DEVI(devinfo), DEVI(Adapter->priv_dip),
571 		    sizeof (struct dev_info));
572 
573 		devi_node =
574 		    kmem_zalloc(sizeof (private_devi_list_t), KM_SLEEP);
575 
576 		mutex_enter(&e1000g_rx_detach_lock);
577 		devi_node->priv_dip = Adapter->priv_dip;
578 		devi_node->flag = E1000G_PRIV_DEVI_ATTACH;
579 		devi_node->pending_rx_count = 0;
580 
581 		Adapter->priv_devi_node = devi_node;
582 
583 		if (e1000g_private_devi_list == NULL) {
584 			devi_node->prev = NULL;
585 			devi_node->next = NULL;
586 			e1000g_private_devi_list = devi_node;
587 		} else {
588 			devi_node->prev = NULL;
589 			devi_node->next = e1000g_private_devi_list;
590 			e1000g_private_devi_list->prev = devi_node;
591 			e1000g_private_devi_list = devi_node;
592 		}
593 		mutex_exit(&e1000g_rx_detach_lock);
594 	}
595 
596 	Adapter->e1000g_state = E1000G_INITIALIZED;
597 	return (DDI_SUCCESS);
598 
599 attach_fail:
600 	e1000g_unattach(devinfo, Adapter);
601 	return (DDI_FAILURE);
602 }
603 
604 static int
605 e1000g_register_mac(struct e1000g *Adapter)
606 {
607 	struct e1000_hw *hw = &Adapter->shared;
608 	mac_register_t *mac;
609 	int err;
610 
611 	if ((mac = mac_alloc(MAC_VERSION)) == NULL)
612 		return (DDI_FAILURE);
613 
614 	mac->m_type_ident = MAC_PLUGIN_IDENT_ETHER;
615 	mac->m_driver = Adapter;
616 	mac->m_dip = Adapter->dip;
617 	mac->m_src_addr = hw->mac.addr;
618 	mac->m_callbacks = &e1000g_m_callbacks;
619 	mac->m_min_sdu = 0;
620 	mac->m_max_sdu = Adapter->default_mtu;
621 	mac->m_margin = VLAN_TAGSZ;
622 	mac->m_priv_props = e1000g_priv_props;
623 	mac->m_v12n = MAC_VIRT_LEVEL1;
624 
625 	err = mac_register(mac, &Adapter->mh);
626 	mac_free(mac);
627 
628 	return (err == 0 ? DDI_SUCCESS : DDI_FAILURE);
629 }
630 
631 static int
632 e1000g_identify_hardware(struct e1000g *Adapter)
633 {
634 	struct e1000_hw *hw = &Adapter->shared;
635 	struct e1000g_osdep *osdep = &Adapter->osdep;
636 
637 	/* Get the device id */
638 	hw->vendor_id =
639 	    pci_config_get16(osdep->cfg_handle, PCI_CONF_VENID);
640 	hw->device_id =
641 	    pci_config_get16(osdep->cfg_handle, PCI_CONF_DEVID);
642 	hw->revision_id =
643 	    pci_config_get8(osdep->cfg_handle, PCI_CONF_REVID);
644 	hw->subsystem_device_id =
645 	    pci_config_get16(osdep->cfg_handle, PCI_CONF_SUBSYSID);
646 	hw->subsystem_vendor_id =
647 	    pci_config_get16(osdep->cfg_handle, PCI_CONF_SUBVENID);
648 
649 	if (e1000_set_mac_type(hw) != E1000_SUCCESS) {
650 		E1000G_DEBUGLOG_0(Adapter, E1000G_INFO_LEVEL,
651 		    "MAC type could not be set properly.");
652 		return (DDI_FAILURE);
653 	}
654 
655 	return (DDI_SUCCESS);
656 }
657 
658 static int
659 e1000g_regs_map(struct e1000g *Adapter)
660 {
661 	dev_info_t *devinfo = Adapter->dip;
662 	struct e1000_hw *hw = &Adapter->shared;
663 	struct e1000g_osdep *osdep = &Adapter->osdep;
664 	off_t mem_size;
665 	bar_info_t bar_info;
666 	int offset, rnumber;
667 
668 	rnumber = ADAPTER_REG_SET;
669 	/* Get size of adapter register memory */
670 	if (ddi_dev_regsize(devinfo, rnumber, &mem_size) !=
671 	    DDI_SUCCESS) {
672 		E1000G_DEBUGLOG_0(Adapter, CE_WARN,
673 		    "ddi_dev_regsize for registers failed");
674 		return (DDI_FAILURE);
675 	}
676 
677 	/* Map adapter register memory */
678 	if ((ddi_regs_map_setup(devinfo, rnumber,
679 	    (caddr_t *)&hw->hw_addr, 0, mem_size, &e1000g_regs_acc_attr,
680 	    &osdep->reg_handle)) != DDI_SUCCESS) {
681 		E1000G_DEBUGLOG_0(Adapter, CE_WARN,
682 		    "ddi_regs_map_setup for registers failed");
683 		goto regs_map_fail;
684 	}
685 
686 	/* ICH needs to map flash memory */
687 	switch (hw->mac.type) {
688 	case e1000_ich8lan:
689 	case e1000_ich9lan:
690 	case e1000_ich10lan:
691 	case e1000_pchlan:
692 	case e1000_pch2lan:
693 	case e1000_pch_lpt:
694 		rnumber = ICH_FLASH_REG_SET;
695 
696 		/* get flash size */
697 		if (ddi_dev_regsize(devinfo, rnumber,
698 		    &mem_size) != DDI_SUCCESS) {
699 			E1000G_DEBUGLOG_0(Adapter, CE_WARN,
700 			    "ddi_dev_regsize for ICH flash failed");
701 			goto regs_map_fail;
702 		}
703 
704 		/* map flash in */
705 		if (ddi_regs_map_setup(devinfo, rnumber,
706 		    (caddr_t *)&hw->flash_address, 0,
707 		    mem_size, &e1000g_regs_acc_attr,
708 		    &osdep->ich_flash_handle) != DDI_SUCCESS) {
709 			E1000G_DEBUGLOG_0(Adapter, CE_WARN,
710 			    "ddi_regs_map_setup for ICH flash failed");
711 			goto regs_map_fail;
712 		}
713 		break;
714 	case e1000_pch_spt:
715 	case e1000_pch_cnp:
716 	case e1000_pch_tgp:
717 	case e1000_pch_adp:
718 	case e1000_pch_mtp:
719 	case e1000_pch_lnp:
720 	case e1000_pch_rpl:
721 	case e1000_pch_arl:
722 	case e1000_pch_ptp:
723 	case e1000_pch_nvl:
724 		/*
725 		 * On the SPT, the device flash is actually in BAR0, not a
726 		 * separate BAR. Therefore we end up setting the
727 		 * ich_flash_handle to be the same as the register handle.
728 		 * We mark the same to reduce the confusion in the other
729 		 * functions and macros. Though this does make the set up and
730 		 * tear-down path slightly more complicated.
731 		 */
732 		osdep->ich_flash_handle = osdep->reg_handle;
733 		hw->flash_address = hw->hw_addr;
734 	default:
735 		break;
736 	}
737 
738 	/* map io space */
739 	switch (hw->mac.type) {
740 	case e1000_82544:
741 	case e1000_82540:
742 	case e1000_82545:
743 	case e1000_82546:
744 	case e1000_82541:
745 	case e1000_82541_rev_2:
746 		/* find the IO bar */
747 		rnumber = -1;
748 		for (offset = PCI_CONF_BASE1;
749 		    offset <= PCI_CONF_BASE5; offset += 4) {
750 			if (e1000g_get_bar_info(devinfo, offset, &bar_info)
751 			    != DDI_SUCCESS)
752 				continue;
753 			if (bar_info.type == E1000G_BAR_IO) {
754 				rnumber = bar_info.rnumber;
755 				break;
756 			}
757 		}
758 
759 		if (rnumber < 0) {
760 			E1000G_DEBUGLOG_0(Adapter, CE_WARN,
761 			    "No io space is found");
762 			goto regs_map_fail;
763 		}
764 
765 		/* get io space size */
766 		if (ddi_dev_regsize(devinfo, rnumber,
767 		    &mem_size) != DDI_SUCCESS) {
768 			E1000G_DEBUGLOG_0(Adapter, CE_WARN,
769 			    "ddi_dev_regsize for io space failed");
770 			goto regs_map_fail;
771 		}
772 
773 		/* map io space */
774 		if ((ddi_regs_map_setup(devinfo, rnumber,
775 		    (caddr_t *)&hw->io_base, 0, mem_size,
776 		    &e1000g_regs_acc_attr,
777 		    &osdep->io_reg_handle)) != DDI_SUCCESS) {
778 			E1000G_DEBUGLOG_0(Adapter, CE_WARN,
779 			    "ddi_regs_map_setup for io space failed");
780 			goto regs_map_fail;
781 		}
782 		break;
783 	default:
784 		hw->io_base = 0;
785 		break;
786 	}
787 
788 	return (DDI_SUCCESS);
789 
790 regs_map_fail:
791 	if (osdep->reg_handle != NULL)
792 		ddi_regs_map_free(&osdep->reg_handle);
793 	if (osdep->ich_flash_handle != NULL && hw->mac.type < e1000_pch_spt)
794 		ddi_regs_map_free(&osdep->ich_flash_handle);
795 	return (DDI_FAILURE);
796 }
797 
798 static int
799 e1000g_set_driver_params(struct e1000g *Adapter)
800 {
801 	struct e1000_hw *hw;
802 
803 	hw = &Adapter->shared;
804 
805 	/* Set MAC type and initialize hardware functions */
806 	if (e1000_setup_init_funcs(hw, B_TRUE) != E1000_SUCCESS) {
807 		E1000G_DEBUGLOG_0(Adapter, CE_WARN,
808 		    "Could not setup hardware functions");
809 		return (DDI_FAILURE);
810 	}
811 
812 	/* Get bus information */
813 	if (e1000_get_bus_info(hw) != E1000_SUCCESS) {
814 		E1000G_DEBUGLOG_0(Adapter, CE_WARN,
815 		    "Could not get bus information");
816 		return (DDI_FAILURE);
817 	}
818 
819 	e1000_read_pci_cfg(hw, PCI_COMMAND_REGISTER, &hw->bus.pci_cmd_word);
820 
821 	hw->mac.autoneg_failed = B_TRUE;
822 
823 	/* Set the autoneg_wait_to_complete flag to B_FALSE */
824 	hw->phy.autoneg_wait_to_complete = B_FALSE;
825 
826 	/* Adaptive IFS related changes */
827 	hw->mac.adaptive_ifs = B_TRUE;
828 
829 	/* Enable phy init script for IGP phy of 82541/82547 */
830 	if ((hw->mac.type == e1000_82547) ||
831 	    (hw->mac.type == e1000_82541) ||
832 	    (hw->mac.type == e1000_82547_rev_2) ||
833 	    (hw->mac.type == e1000_82541_rev_2))
834 		e1000_init_script_state_82541(hw, B_TRUE);
835 
836 	/* Enable the TTL workaround for 82541/82547 */
837 	e1000_set_ttl_workaround_state_82541(hw, B_TRUE);
838 
839 #ifdef __sparc
840 	Adapter->strip_crc = B_TRUE;
841 #else
842 	Adapter->strip_crc = B_FALSE;
843 #endif
844 
845 	/* setup the maximum MTU size of the chip */
846 	e1000g_setup_max_mtu(Adapter);
847 
848 	/* Get speed/duplex settings in conf file */
849 	hw->mac.forced_speed_duplex = ADVERTISE_100_FULL;
850 	hw->phy.autoneg_advertised = AUTONEG_ADVERTISE_SPEED_DEFAULT;
851 	e1000g_force_speed_duplex(Adapter);
852 
853 	/* Get Jumbo Frames settings in conf file */
854 	e1000g_get_max_frame_size(Adapter);
855 
856 	/* Get conf file properties */
857 	e1000g_get_conf(Adapter);
858 
859 	/* enforce PCH limits */
860 	e1000g_pch_limits(Adapter);
861 
862 	/* Set Rx/Tx buffer size */
863 	e1000g_set_bufsize(Adapter);
864 
865 	/* Master Latency Timer */
866 	Adapter->master_latency_timer = DEFAULT_MASTER_LATENCY_TIMER;
867 
868 	/* copper options */
869 	if (hw->phy.media_type == e1000_media_type_copper) {
870 		hw->phy.mdix = 0;	/* AUTO_ALL_MODES */
871 		hw->phy.disable_polarity_correction = B_FALSE;
872 		hw->phy.ms_type = e1000_ms_hw_default;	/* E1000_MASTER_SLAVE */
873 	}
874 
875 	/* The initial link state should be "unknown" */
876 	Adapter->link_state = LINK_STATE_UNKNOWN;
877 
878 	/* Initialize rx parameters */
879 	Adapter->rx_intr_delay = DEFAULT_RX_INTR_DELAY;
880 	Adapter->rx_intr_abs_delay = DEFAULT_RX_INTR_ABS_DELAY;
881 
882 	/* Initialize tx parameters */
883 	Adapter->tx_intr_enable = DEFAULT_TX_INTR_ENABLE;
884 	Adapter->tx_bcopy_thresh = DEFAULT_TX_BCOPY_THRESHOLD;
885 	Adapter->tx_intr_delay = DEFAULT_TX_INTR_DELAY;
886 	Adapter->tx_intr_abs_delay = DEFAULT_TX_INTR_ABS_DELAY;
887 
888 	/* Initialize rx parameters */
889 	Adapter->rx_bcopy_thresh = DEFAULT_RX_BCOPY_THRESHOLD;
890 
891 	return (DDI_SUCCESS);
892 }
893 
894 static void
895 e1000g_setup_max_mtu(struct e1000g *Adapter)
896 {
897 	struct e1000_mac_info *mac = &Adapter->shared.mac;
898 	struct e1000_phy_info *phy = &Adapter->shared.phy;
899 
900 	switch (mac->type) {
901 	/* types that do not support jumbo frames */
902 	case e1000_ich8lan:
903 	case e1000_82573:
904 	case e1000_82583:
905 		Adapter->max_mtu = ETHERMTU;
906 		break;
907 	/* ich9 supports jumbo frames except on one phy type */
908 	case e1000_ich9lan:
909 		if (phy->type == e1000_phy_ife)
910 			Adapter->max_mtu = ETHERMTU;
911 		else
912 			Adapter->max_mtu = MAXIMUM_MTU_9K;
913 		break;
914 	/* pch can do jumbo frames up to 4K */
915 	case e1000_pchlan:
916 		Adapter->max_mtu = MAXIMUM_MTU_4K;
917 		break;
918 	/* pch2 can do jumbo frames up to 9K */
919 	case e1000_pch2lan:
920 	case e1000_pch_lpt:
921 	case e1000_pch_spt:
922 	case e1000_pch_cnp:
923 	case e1000_pch_tgp:
924 	case e1000_pch_adp:
925 	case e1000_pch_mtp:
926 	case e1000_pch_lnp:
927 	case e1000_pch_rpl:
928 	case e1000_pch_arl:
929 	case e1000_pch_ptp:
930 	case e1000_pch_nvl:
931 		Adapter->max_mtu = MAXIMUM_MTU_9K;
932 		break;
933 	/* types with a special limit */
934 	case e1000_82571:
935 	case e1000_82572:
936 	case e1000_82574:
937 	case e1000_80003es2lan:
938 	case e1000_ich10lan:
939 		if (e1000g_jumbo_mtu >= ETHERMTU &&
940 		    e1000g_jumbo_mtu <= MAXIMUM_MTU_9K) {
941 			Adapter->max_mtu = e1000g_jumbo_mtu;
942 		} else {
943 			Adapter->max_mtu = MAXIMUM_MTU_9K;
944 		}
945 		break;
946 	/* default limit is 16K */
947 	default:
948 		Adapter->max_mtu = FRAME_SIZE_UPTO_16K -
949 		    sizeof (struct ether_vlan_header) - ETHERFCSL;
950 		break;
951 	}
952 }
953 
954 static void
955 e1000g_set_bufsize(struct e1000g *Adapter)
956 {
957 	struct e1000_mac_info *mac = &Adapter->shared.mac;
958 	uint64_t rx_size;
959 	uint64_t tx_size;
960 
961 	dev_info_t *devinfo = Adapter->dip;
962 #ifdef __sparc
963 	ulong_t iommu_pagesize;
964 #endif
965 	/* Get the system page size */
966 	Adapter->sys_page_sz = ddi_ptob(devinfo, (ulong_t)1);
967 
968 #ifdef __sparc
969 	iommu_pagesize = dvma_pagesize(devinfo);
970 	if (iommu_pagesize != 0) {
971 		if (Adapter->sys_page_sz == iommu_pagesize) {
972 			if (iommu_pagesize > 0x4000)
973 				Adapter->sys_page_sz = 0x4000;
974 		} else {
975 			if (Adapter->sys_page_sz > iommu_pagesize)
976 				Adapter->sys_page_sz = iommu_pagesize;
977 		}
978 	}
979 	if (Adapter->lso_enable) {
980 		Adapter->dvma_page_num = E1000_LSO_MAXLEN /
981 		    Adapter->sys_page_sz + E1000G_DEFAULT_DVMA_PAGE_NUM;
982 	} else {
983 		Adapter->dvma_page_num = Adapter->max_frame_size /
984 		    Adapter->sys_page_sz + E1000G_DEFAULT_DVMA_PAGE_NUM;
985 	}
986 	ASSERT(Adapter->dvma_page_num >= E1000G_DEFAULT_DVMA_PAGE_NUM);
987 #endif
988 
989 	Adapter->min_frame_size = ETHERMIN + ETHERFCSL;
990 
991 	if (Adapter->mem_workaround_82546 &&
992 	    ((mac->type == e1000_82545) ||
993 	    (mac->type == e1000_82546) ||
994 	    (mac->type == e1000_82546_rev_3))) {
995 		Adapter->rx_buffer_size = E1000_RX_BUFFER_SIZE_2K;
996 	} else {
997 		rx_size = Adapter->max_frame_size;
998 		if ((rx_size > FRAME_SIZE_UPTO_2K) &&
999 		    (rx_size <= FRAME_SIZE_UPTO_4K))
1000 			Adapter->rx_buffer_size = E1000_RX_BUFFER_SIZE_4K;
1001 		else if ((rx_size > FRAME_SIZE_UPTO_4K) &&
1002 		    (rx_size <= FRAME_SIZE_UPTO_8K))
1003 			Adapter->rx_buffer_size = E1000_RX_BUFFER_SIZE_8K;
1004 		else if ((rx_size > FRAME_SIZE_UPTO_8K) &&
1005 		    (rx_size <= FRAME_SIZE_UPTO_16K))
1006 			Adapter->rx_buffer_size = E1000_RX_BUFFER_SIZE_16K;
1007 		else
1008 			Adapter->rx_buffer_size = E1000_RX_BUFFER_SIZE_2K;
1009 	}
1010 	Adapter->rx_buffer_size += E1000G_IPALIGNROOM;
1011 
1012 	tx_size = Adapter->max_frame_size;
1013 	if ((tx_size > FRAME_SIZE_UPTO_2K) && (tx_size <= FRAME_SIZE_UPTO_4K))
1014 		Adapter->tx_buffer_size = E1000_TX_BUFFER_SIZE_4K;
1015 	else if ((tx_size > FRAME_SIZE_UPTO_4K) &&
1016 	    (tx_size <= FRAME_SIZE_UPTO_8K))
1017 		Adapter->tx_buffer_size = E1000_TX_BUFFER_SIZE_8K;
1018 	else if ((tx_size > FRAME_SIZE_UPTO_8K) &&
1019 	    (tx_size <= FRAME_SIZE_UPTO_16K))
1020 		Adapter->tx_buffer_size = E1000_TX_BUFFER_SIZE_16K;
1021 	else
1022 		Adapter->tx_buffer_size = E1000_TX_BUFFER_SIZE_2K;
1023 
1024 	/*
1025 	 * For Wiseman adapters we have an requirement of having receive
1026 	 * buffers aligned at 256 byte boundary. Since Livengood does not
1027 	 * require this and forcing it for all hardwares will have
1028 	 * performance implications, I am making it applicable only for
1029 	 * Wiseman and for Jumbo frames enabled mode as rest of the time,
1030 	 * it is okay to have normal frames...but it does involve a
1031 	 * potential risk where we may loose data if buffer is not
1032 	 * aligned...so all wiseman boards to have 256 byte aligned
1033 	 * buffers
1034 	 */
1035 	if (mac->type < e1000_82543)
1036 		Adapter->rx_buf_align = RECEIVE_BUFFER_ALIGN_SIZE;
1037 	else
1038 		Adapter->rx_buf_align = 1;
1039 }
1040 
1041 /*
1042  * e1000g_detach - driver detach
1043  *
1044  * The detach() function is the complement of the attach routine.
1045  * If cmd is set to DDI_DETACH, detach() is used to remove  the
1046  * state  associated  with  a  given  instance of a device node
1047  * prior to the removal of that instance from the system.
1048  *
1049  * The detach() function will be called once for each  instance
1050  * of the device for which there has been a successful attach()
1051  * once there are no longer  any  opens  on  the  device.
1052  *
1053  * Interrupts routine are disabled, All memory allocated by this
1054  * driver are freed.
1055  */
1056 static int
1057 e1000g_detach(dev_info_t *devinfo, ddi_detach_cmd_t cmd)
1058 {
1059 	struct e1000g *Adapter;
1060 	boolean_t rx_drain;
1061 
1062 	switch (cmd) {
1063 	default:
1064 		return (DDI_FAILURE);
1065 
1066 	case DDI_SUSPEND:
1067 		return (e1000g_suspend(devinfo));
1068 
1069 	case DDI_DETACH:
1070 		break;
1071 	}
1072 
1073 	Adapter = (struct e1000g *)ddi_get_driver_private(devinfo);
1074 	if (Adapter == NULL)
1075 		return (DDI_FAILURE);
1076 
1077 	rx_drain = e1000g_rx_drain(Adapter);
1078 	if (!rx_drain && !e1000g_force_detach)
1079 		return (DDI_FAILURE);
1080 
1081 	if (mac_unregister(Adapter->mh) != 0) {
1082 		e1000g_log(Adapter, CE_WARN, "Unregister MAC failed");
1083 		return (DDI_FAILURE);
1084 	}
1085 	Adapter->attach_progress &= ~ATTACH_PROGRESS_MAC;
1086 
1087 	ASSERT(!(Adapter->e1000g_state & E1000G_STARTED));
1088 
1089 	if (!e1000g_force_detach && !rx_drain)
1090 		return (DDI_FAILURE);
1091 
1092 	e1000g_unattach(devinfo, Adapter);
1093 
1094 	return (DDI_SUCCESS);
1095 }
1096 
1097 /*
1098  * e1000g_free_priv_devi_node - free a priv_dip entry for driver instance
1099  */
1100 void
1101 e1000g_free_priv_devi_node(private_devi_list_t *devi_node)
1102 {
1103 	ASSERT(e1000g_private_devi_list != NULL);
1104 	ASSERT(devi_node != NULL);
1105 
1106 	if (devi_node->prev != NULL)
1107 		devi_node->prev->next = devi_node->next;
1108 	if (devi_node->next != NULL)
1109 		devi_node->next->prev = devi_node->prev;
1110 	if (devi_node == e1000g_private_devi_list)
1111 		e1000g_private_devi_list = devi_node->next;
1112 
1113 	kmem_free(devi_node->priv_dip,
1114 	    sizeof (struct dev_info));
1115 	kmem_free(devi_node,
1116 	    sizeof (private_devi_list_t));
1117 }
1118 
1119 static void
1120 e1000g_unattach(dev_info_t *devinfo, struct e1000g *Adapter)
1121 {
1122 	private_devi_list_t *devi_node;
1123 	int result;
1124 
1125 	if (Adapter->e1000g_blink != NULL) {
1126 		ddi_periodic_delete(Adapter->e1000g_blink);
1127 		Adapter->e1000g_blink = NULL;
1128 	}
1129 
1130 	if (Adapter->attach_progress & ATTACH_PROGRESS_ENABLE_INTR) {
1131 		(void) e1000g_disable_intrs(Adapter);
1132 	}
1133 
1134 	if (Adapter->attach_progress & ATTACH_PROGRESS_MAC) {
1135 		(void) mac_unregister(Adapter->mh);
1136 	}
1137 
1138 	if (Adapter->attach_progress & ATTACH_PROGRESS_ADD_INTR) {
1139 		(void) e1000g_rem_intrs(Adapter);
1140 	}
1141 
1142 	if (Adapter->attach_progress & ATTACH_PROGRESS_SETUP) {
1143 		(void) ddi_prop_remove_all(devinfo);
1144 	}
1145 
1146 	if (Adapter->attach_progress & ATTACH_PROGRESS_KSTATS) {
1147 		kstat_delete((kstat_t *)Adapter->e1000g_ksp);
1148 	}
1149 
1150 	if (Adapter->attach_progress & ATTACH_PROGRESS_INIT) {
1151 		stop_link_timer(Adapter);
1152 
1153 		mutex_enter(&e1000g_nvm_lock);
1154 		result = e1000_reset_hw(&Adapter->shared);
1155 		mutex_exit(&e1000g_nvm_lock);
1156 
1157 		if (result != E1000_SUCCESS) {
1158 			e1000g_fm_ereport(Adapter, DDI_FM_DEVICE_INVAL_STATE);
1159 			ddi_fm_service_impact(Adapter->dip, DDI_SERVICE_LOST);
1160 		}
1161 	}
1162 
1163 	e1000g_release_multicast(Adapter);
1164 
1165 	if (Adapter->attach_progress & ATTACH_PROGRESS_REGS_MAP) {
1166 		if (Adapter->osdep.reg_handle != NULL)
1167 			ddi_regs_map_free(&Adapter->osdep.reg_handle);
1168 		if (Adapter->osdep.ich_flash_handle != NULL &&
1169 		    Adapter->shared.mac.type < e1000_pch_spt)
1170 			ddi_regs_map_free(&Adapter->osdep.ich_flash_handle);
1171 		if (Adapter->osdep.io_reg_handle != NULL)
1172 			ddi_regs_map_free(&Adapter->osdep.io_reg_handle);
1173 	}
1174 
1175 	if (Adapter->attach_progress & ATTACH_PROGRESS_PCI_CONFIG) {
1176 		if (Adapter->osdep.cfg_handle != NULL)
1177 			pci_config_teardown(&Adapter->osdep.cfg_handle);
1178 	}
1179 
1180 	if (Adapter->attach_progress & ATTACH_PROGRESS_LOCKS) {
1181 		e1000g_destroy_locks(Adapter);
1182 	}
1183 
1184 	if (Adapter->attach_progress & ATTACH_PROGRESS_FMINIT) {
1185 		e1000g_fm_fini(Adapter);
1186 	}
1187 
1188 	mutex_enter(&e1000g_rx_detach_lock);
1189 	if (e1000g_force_detach && (Adapter->priv_devi_node != NULL)) {
1190 		devi_node = Adapter->priv_devi_node;
1191 		devi_node->flag |= E1000G_PRIV_DEVI_DETACH;
1192 
1193 		if (devi_node->pending_rx_count == 0) {
1194 			e1000g_free_priv_devi_node(devi_node);
1195 		}
1196 	}
1197 	mutex_exit(&e1000g_rx_detach_lock);
1198 
1199 	kmem_free((caddr_t)Adapter, sizeof (struct e1000g));
1200 
1201 	/*
1202 	 * Another hotplug spec requirement,
1203 	 * run ddi_set_driver_private(devinfo, null);
1204 	 */
1205 	ddi_set_driver_private(devinfo, NULL);
1206 }
1207 
1208 /*
1209  * Get the BAR type and rnumber for a given PCI BAR offset
1210  */
1211 static int
1212 e1000g_get_bar_info(dev_info_t *dip, int bar_offset, bar_info_t *bar_info)
1213 {
1214 	pci_regspec_t *regs;
1215 	uint_t regs_length;
1216 	int type, rnumber, rcount;
1217 
1218 	ASSERT((bar_offset >= PCI_CONF_BASE0) &&
1219 	    (bar_offset <= PCI_CONF_BASE5));
1220 
1221 	/*
1222 	 * Get the DDI "reg" property
1223 	 */
1224 	if (ddi_prop_lookup_int_array(DDI_DEV_T_ANY, dip,
1225 	    DDI_PROP_DONTPASS, "reg", (int **)&regs,
1226 	    &regs_length) != DDI_PROP_SUCCESS) {
1227 		return (DDI_FAILURE);
1228 	}
1229 
1230 	rcount = regs_length * sizeof (int) / sizeof (pci_regspec_t);
1231 	/*
1232 	 * Check the BAR offset
1233 	 */
1234 	for (rnumber = 0; rnumber < rcount; ++rnumber) {
1235 		if (PCI_REG_REG_G(regs[rnumber].pci_phys_hi) == bar_offset) {
1236 			type = regs[rnumber].pci_phys_hi & PCI_ADDR_MASK;
1237 			break;
1238 		}
1239 	}
1240 
1241 	ddi_prop_free(regs);
1242 
1243 	if (rnumber >= rcount)
1244 		return (DDI_FAILURE);
1245 
1246 	switch (type) {
1247 	case PCI_ADDR_CONFIG:
1248 		bar_info->type = E1000G_BAR_CONFIG;
1249 		break;
1250 	case PCI_ADDR_IO:
1251 		bar_info->type = E1000G_BAR_IO;
1252 		break;
1253 	case PCI_ADDR_MEM32:
1254 		bar_info->type = E1000G_BAR_MEM32;
1255 		break;
1256 	case PCI_ADDR_MEM64:
1257 		bar_info->type = E1000G_BAR_MEM64;
1258 		break;
1259 	default:
1260 		return (DDI_FAILURE);
1261 	}
1262 	bar_info->rnumber = rnumber;
1263 	return (DDI_SUCCESS);
1264 }
1265 
1266 static void
1267 e1000g_init_locks(struct e1000g *Adapter)
1268 {
1269 	e1000g_tx_ring_t *tx_ring;
1270 	e1000g_rx_ring_t *rx_ring;
1271 
1272 	rw_init(&Adapter->chip_lock, NULL,
1273 	    RW_DRIVER, DDI_INTR_PRI(Adapter->intr_pri));
1274 	mutex_init(&Adapter->link_lock, NULL,
1275 	    MUTEX_DRIVER, DDI_INTR_PRI(Adapter->intr_pri));
1276 	mutex_init(&Adapter->watchdog_lock, NULL,
1277 	    MUTEX_DRIVER, DDI_INTR_PRI(Adapter->intr_pri));
1278 
1279 	tx_ring = Adapter->tx_ring;
1280 
1281 	mutex_init(&tx_ring->tx_lock, NULL,
1282 	    MUTEX_DRIVER, DDI_INTR_PRI(Adapter->intr_pri));
1283 	mutex_init(&tx_ring->usedlist_lock, NULL,
1284 	    MUTEX_DRIVER, DDI_INTR_PRI(Adapter->intr_pri));
1285 	mutex_init(&tx_ring->freelist_lock, NULL,
1286 	    MUTEX_DRIVER, DDI_INTR_PRI(Adapter->intr_pri));
1287 
1288 	rx_ring = Adapter->rx_ring;
1289 
1290 	mutex_init(&rx_ring->rx_lock, NULL,
1291 	    MUTEX_DRIVER, DDI_INTR_PRI(Adapter->intr_pri));
1292 
1293 	mutex_init(&Adapter->e1000g_led_lock, NULL,
1294 	    MUTEX_DRIVER, DDI_INTR_PRI(Adapter->intr_pri));
1295 }
1296 
1297 static void
1298 e1000g_destroy_locks(struct e1000g *Adapter)
1299 {
1300 	e1000g_tx_ring_t *tx_ring;
1301 	e1000g_rx_ring_t *rx_ring;
1302 
1303 	mutex_destroy(&Adapter->e1000g_led_lock);
1304 
1305 	tx_ring = Adapter->tx_ring;
1306 	mutex_destroy(&tx_ring->tx_lock);
1307 	mutex_destroy(&tx_ring->usedlist_lock);
1308 	mutex_destroy(&tx_ring->freelist_lock);
1309 
1310 	rx_ring = Adapter->rx_ring;
1311 	mutex_destroy(&rx_ring->rx_lock);
1312 
1313 	mutex_destroy(&Adapter->link_lock);
1314 	mutex_destroy(&Adapter->watchdog_lock);
1315 	rw_destroy(&Adapter->chip_lock);
1316 
1317 	/* destory mutex initialized in shared code */
1318 	e1000_destroy_hw_mutex(&Adapter->shared);
1319 }
1320 
1321 static int
1322 e1000g_resume(dev_info_t *devinfo)
1323 {
1324 	struct e1000g *Adapter;
1325 
1326 	Adapter = (struct e1000g *)ddi_get_driver_private(devinfo);
1327 	if (Adapter == NULL)
1328 		e1000g_log(Adapter, CE_PANIC,
1329 		    "Instance pointer is null\n");
1330 
1331 	if (Adapter->dip != devinfo)
1332 		e1000g_log(Adapter, CE_PANIC,
1333 		    "Devinfo is not the same as saved devinfo\n");
1334 
1335 	rw_enter(&Adapter->chip_lock, RW_WRITER);
1336 
1337 	if (Adapter->e1000g_state & E1000G_STARTED) {
1338 		if (e1000g_start(Adapter, B_FALSE) != DDI_SUCCESS) {
1339 			rw_exit(&Adapter->chip_lock);
1340 			/*
1341 			 * We note the failure, but return success, as the
1342 			 * system is still usable without this controller.
1343 			 */
1344 			e1000g_log(Adapter, CE_WARN,
1345 			    "e1000g_resume: failed to restart controller\n");
1346 			return (DDI_SUCCESS);
1347 		}
1348 		/* Enable and start the watchdog timer */
1349 		enable_watchdog_timer(Adapter);
1350 	}
1351 
1352 	Adapter->e1000g_state &= ~E1000G_SUSPENDED;
1353 
1354 	rw_exit(&Adapter->chip_lock);
1355 
1356 	return (DDI_SUCCESS);
1357 }
1358 
1359 static int
1360 e1000g_suspend(dev_info_t *devinfo)
1361 {
1362 	struct e1000g *Adapter;
1363 
1364 	Adapter = (struct e1000g *)ddi_get_driver_private(devinfo);
1365 	if (Adapter == NULL)
1366 		return (DDI_FAILURE);
1367 
1368 	rw_enter(&Adapter->chip_lock, RW_WRITER);
1369 
1370 	Adapter->e1000g_state |= E1000G_SUSPENDED;
1371 
1372 	/* if the port isn't plumbed, we can simply return */
1373 	if (!(Adapter->e1000g_state & E1000G_STARTED)) {
1374 		rw_exit(&Adapter->chip_lock);
1375 		return (DDI_SUCCESS);
1376 	}
1377 
1378 	e1000g_stop(Adapter, B_FALSE);
1379 
1380 	rw_exit(&Adapter->chip_lock);
1381 
1382 	/* Disable and stop all the timers */
1383 	disable_watchdog_timer(Adapter);
1384 	stop_link_timer(Adapter);
1385 	stop_82547_timer(Adapter->tx_ring);
1386 
1387 	return (DDI_SUCCESS);
1388 }
1389 
1390 static int
1391 e1000g_init(struct e1000g *Adapter)
1392 {
1393 	uint32_t pba;
1394 	uint32_t high_water;
1395 	struct e1000_hw *hw;
1396 	clock_t link_timeout;
1397 	int result;
1398 
1399 	hw = &Adapter->shared;
1400 
1401 	/*
1402 	 * reset to put the hardware in a known state
1403 	 * before we try to do anything with the eeprom
1404 	 */
1405 	mutex_enter(&e1000g_nvm_lock);
1406 	result = e1000_reset_hw(hw);
1407 	mutex_exit(&e1000g_nvm_lock);
1408 
1409 	if (result != E1000_SUCCESS) {
1410 		e1000g_fm_ereport(Adapter, DDI_FM_DEVICE_INVAL_STATE);
1411 		goto init_fail;
1412 	}
1413 
1414 	mutex_enter(&e1000g_nvm_lock);
1415 	result = e1000_validate_nvm_checksum(hw);
1416 	if (result < E1000_SUCCESS) {
1417 		/*
1418 		 * Some PCI-E parts fail the first check due to
1419 		 * the link being in sleep state.  Call it again,
1420 		 * if it fails a second time its a real issue.
1421 		 */
1422 		result = e1000_validate_nvm_checksum(hw);
1423 	}
1424 	mutex_exit(&e1000g_nvm_lock);
1425 
1426 	if (result < E1000_SUCCESS) {
1427 		e1000g_log(Adapter, CE_WARN,
1428 		    "Invalid NVM checksum. Please contact "
1429 		    "the vendor to update the NVM.");
1430 		e1000g_fm_ereport(Adapter, DDI_FM_DEVICE_INVAL_STATE);
1431 		goto init_fail;
1432 	}
1433 
1434 	result = 0;
1435 #ifdef __sparc
1436 	/*
1437 	 * First, we try to get the local ethernet address from OBP. If
1438 	 * failed, then we get it from the EEPROM of NIC card.
1439 	 */
1440 	result = e1000g_find_mac_address(Adapter);
1441 #endif
1442 	/* Get the local ethernet address. */
1443 	if (!result) {
1444 		mutex_enter(&e1000g_nvm_lock);
1445 		result = e1000_read_mac_addr(hw);
1446 		mutex_exit(&e1000g_nvm_lock);
1447 	}
1448 
1449 	if (result < E1000_SUCCESS) {
1450 		e1000g_log(Adapter, CE_WARN, "Read mac addr failed");
1451 		e1000g_fm_ereport(Adapter, DDI_FM_DEVICE_INVAL_STATE);
1452 		goto init_fail;
1453 	}
1454 
1455 	/* check for valid mac address */
1456 	if (!is_valid_mac_addr(hw->mac.addr)) {
1457 		e1000g_log(Adapter, CE_WARN, "Invalid mac addr");
1458 		e1000g_fm_ereport(Adapter, DDI_FM_DEVICE_INVAL_STATE);
1459 		goto init_fail;
1460 	}
1461 
1462 	/* Set LAA state for 82571 chipset */
1463 	e1000_set_laa_state_82571(hw, B_TRUE);
1464 
1465 	/* Master Latency Timer implementation */
1466 	if (Adapter->master_latency_timer) {
1467 		pci_config_put8(Adapter->osdep.cfg_handle,
1468 		    PCI_CONF_LATENCY_TIMER, Adapter->master_latency_timer);
1469 	}
1470 
1471 	if (hw->mac.type < e1000_82547) {
1472 		/*
1473 		 * Total FIFO is 64K
1474 		 */
1475 		if (Adapter->max_frame_size > FRAME_SIZE_UPTO_8K)
1476 			pba = E1000_PBA_40K;	/* 40K for Rx, 24K for Tx */
1477 		else
1478 			pba = E1000_PBA_48K;	/* 48K for Rx, 16K for Tx */
1479 	} else if ((hw->mac.type == e1000_82571) ||
1480 	    (hw->mac.type == e1000_82572) ||
1481 	    (hw->mac.type == e1000_80003es2lan)) {
1482 		/*
1483 		 * Total FIFO is 48K
1484 		 */
1485 		if (Adapter->max_frame_size > FRAME_SIZE_UPTO_8K)
1486 			pba = E1000_PBA_30K;	/* 30K for Rx, 18K for Tx */
1487 		else
1488 			pba = E1000_PBA_38K;	/* 38K for Rx, 10K for Tx */
1489 	} else if (hw->mac.type == e1000_82573) {
1490 		pba = E1000_PBA_20K;		/* 20K for Rx, 12K for Tx */
1491 	} else if (hw->mac.type == e1000_82574) {
1492 		/* Keep adapter default: 20K for Rx, 20K for Tx */
1493 		pba = E1000_READ_REG(hw, E1000_PBA);
1494 	} else if (hw->mac.type == e1000_ich8lan) {
1495 		pba = E1000_PBA_8K;		/* 8K for Rx, 12K for Tx */
1496 	} else if (hw->mac.type == e1000_ich9lan) {
1497 		pba = E1000_PBA_10K;
1498 	} else if (hw->mac.type == e1000_ich10lan) {
1499 		pba = E1000_PBA_10K;
1500 	} else if (hw->mac.type == e1000_pchlan) {
1501 		pba = E1000_PBA_26K;
1502 	} else if (hw->mac.type == e1000_pch2lan) {
1503 		pba = E1000_PBA_26K;
1504 	} else if (hw->mac.type == e1000_pch_lpt) {
1505 		pba = E1000_PBA_26K;
1506 	} else if (hw->mac.type == e1000_pch_spt) {
1507 		pba = E1000_PBA_26K;
1508 	} else if (hw->mac.type == e1000_pch_cnp) {
1509 		pba = E1000_PBA_26K;
1510 	} else if (hw->mac.type == e1000_pch_tgp) {
1511 		pba = E1000_PBA_26K;
1512 	} else if (hw->mac.type == e1000_pch_adp) {
1513 		pba = E1000_PBA_26K;
1514 	} else if (hw->mac.type == e1000_pch_mtp) {
1515 		pba = E1000_PBA_26K;
1516 	} else if (hw->mac.type == e1000_pch_lnp) {
1517 		pba = E1000_PBA_26K;
1518 	} else if (hw->mac.type == e1000_pch_rpl) {
1519 		pba = E1000_PBA_26K;
1520 	} else if (hw->mac.type == e1000_pch_arl) {
1521 		pba = E1000_PBA_26K;
1522 	} else if (hw->mac.type == e1000_pch_ptp) {
1523 		pba = E1000_PBA_26K;
1524 	} else if (hw->mac.type == e1000_pch_nvl) {
1525 		pba = E1000_PBA_26K;
1526 	} else {
1527 		/*
1528 		 * Total FIFO is 40K
1529 		 */
1530 		if (Adapter->max_frame_size > FRAME_SIZE_UPTO_8K)
1531 			pba = E1000_PBA_22K;	/* 22K for Rx, 18K for Tx */
1532 		else
1533 			pba = E1000_PBA_30K;	/* 30K for Rx, 10K for Tx */
1534 	}
1535 	E1000_WRITE_REG(hw, E1000_PBA, pba);
1536 
1537 	/*
1538 	 * These parameters set thresholds for the adapter's generation(Tx)
1539 	 * and response(Rx) to Ethernet PAUSE frames.  These are just threshold
1540 	 * settings.  Flow control is enabled or disabled in the configuration
1541 	 * file.
1542 	 * High-water mark is set down from the top of the rx fifo (not
1543 	 * sensitive to max_frame_size) and low-water is set just below
1544 	 * high-water mark.
1545 	 * The high water mark must be low enough to fit one full frame above
1546 	 * it in the rx FIFO.  Should be the lower of:
1547 	 * 90% of the Rx FIFO size and the full Rx FIFO size minus the early
1548 	 * receive size (assuming ERT set to E1000_ERT_2048), or the full
1549 	 * Rx FIFO size minus one full frame.
1550 	 */
1551 	high_water = min(((pba << 10) * 9 / 10),
1552 	    ((hw->mac.type == e1000_82573 || hw->mac.type == e1000_82574 ||
1553 	    hw->mac.type == e1000_ich9lan || hw->mac.type == e1000_ich10lan) ?
1554 	    ((pba << 10) - (E1000_ERT_2048 << 3)) :
1555 	    ((pba << 10) - Adapter->max_frame_size)));
1556 
1557 	hw->fc.high_water = high_water & 0xFFF8;
1558 	hw->fc.low_water = hw->fc.high_water - 8;
1559 
1560 	if (hw->mac.type == e1000_80003es2lan)
1561 		hw->fc.pause_time = 0xFFFF;
1562 	else
1563 		hw->fc.pause_time = E1000_FC_PAUSE_TIME;
1564 	hw->fc.send_xon = B_TRUE;
1565 
1566 	/*
1567 	 * Reset the adapter hardware the second time.
1568 	 */
1569 	mutex_enter(&e1000g_nvm_lock);
1570 	result = e1000_reset_hw(hw);
1571 	mutex_exit(&e1000g_nvm_lock);
1572 
1573 	if (result != E1000_SUCCESS) {
1574 		e1000g_fm_ereport(Adapter, DDI_FM_DEVICE_INVAL_STATE);
1575 		goto init_fail;
1576 	}
1577 
1578 	/* disable wakeup control by default */
1579 	if (hw->mac.type >= e1000_82544)
1580 		E1000_WRITE_REG(hw, E1000_WUC, 0);
1581 
1582 	/*
1583 	 * MWI should be disabled on 82546.
1584 	 */
1585 	if (hw->mac.type == e1000_82546)
1586 		e1000_pci_clear_mwi(hw);
1587 	else
1588 		e1000_pci_set_mwi(hw);
1589 
1590 	/*
1591 	 * Configure/Initialize hardware
1592 	 */
1593 	mutex_enter(&e1000g_nvm_lock);
1594 	result = e1000_init_hw(hw);
1595 	mutex_exit(&e1000g_nvm_lock);
1596 
1597 	if (result < E1000_SUCCESS) {
1598 		e1000g_log(Adapter, CE_WARN, "Initialize hw failed");
1599 		e1000g_fm_ereport(Adapter, DDI_FM_DEVICE_INVAL_STATE);
1600 		goto init_fail;
1601 	}
1602 
1603 	/*
1604 	 * Restore LED settings to the default from EEPROM
1605 	 * to meet the standard for Sun platforms.
1606 	 */
1607 	(void) e1000_cleanup_led(hw);
1608 
1609 	/* Disable Smart Power Down */
1610 	phy_spd_state(hw, B_FALSE);
1611 
1612 	/* Make sure driver has control */
1613 	e1000g_get_driver_control(hw);
1614 
1615 	/*
1616 	 * Initialize unicast addresses.
1617 	 */
1618 	e1000g_init_unicst(Adapter);
1619 
1620 	/*
1621 	 * Setup and initialize the mctable structures.  After this routine
1622 	 * completes  Multicast table will be set
1623 	 */
1624 	e1000_update_mc_addr_list(hw,
1625 	    (uint8_t *)Adapter->mcast_table, Adapter->mcast_count);
1626 	msec_delay(5);
1627 
1628 	/*
1629 	 * Implement Adaptive IFS
1630 	 */
1631 	e1000_reset_adaptive(hw);
1632 
1633 	/* Setup Interrupt Throttling Register */
1634 	if (hw->mac.type >= e1000_82540) {
1635 		E1000_WRITE_REG(hw, E1000_ITR, Adapter->intr_throttling_rate);
1636 	} else
1637 		Adapter->intr_adaptive = B_FALSE;
1638 
1639 	/* Start the timer for link setup */
1640 	if (hw->mac.autoneg)
1641 		link_timeout = PHY_AUTO_NEG_LIMIT * drv_usectohz(100000);
1642 	else
1643 		link_timeout = PHY_FORCE_LIMIT * drv_usectohz(100000);
1644 
1645 	mutex_enter(&Adapter->link_lock);
1646 	if (hw->phy.autoneg_wait_to_complete) {
1647 		Adapter->link_complete = B_TRUE;
1648 	} else {
1649 		Adapter->link_complete = B_FALSE;
1650 		Adapter->link_tid = timeout(e1000g_link_timer,
1651 		    (void *)Adapter, link_timeout);
1652 	}
1653 	mutex_exit(&Adapter->link_lock);
1654 
1655 	/* Save the state of the phy */
1656 	e1000g_get_phy_state(Adapter);
1657 
1658 	e1000g_param_sync(Adapter);
1659 
1660 	Adapter->init_count++;
1661 
1662 	if (e1000g_check_acc_handle(Adapter->osdep.cfg_handle) != DDI_FM_OK) {
1663 		goto init_fail;
1664 	}
1665 	if (e1000g_check_acc_handle(Adapter->osdep.reg_handle) != DDI_FM_OK) {
1666 		goto init_fail;
1667 	}
1668 
1669 	Adapter->poll_mode = e1000g_poll_mode;
1670 
1671 	return (DDI_SUCCESS);
1672 
1673 init_fail:
1674 	ddi_fm_service_impact(Adapter->dip, DDI_SERVICE_LOST);
1675 	return (DDI_FAILURE);
1676 }
1677 
1678 static int
1679 e1000g_alloc_rx_data(struct e1000g *Adapter)
1680 {
1681 	e1000g_rx_ring_t *rx_ring;
1682 	e1000g_rx_data_t *rx_data;
1683 
1684 	rx_ring = Adapter->rx_ring;
1685 
1686 	rx_data = kmem_zalloc(sizeof (e1000g_rx_data_t), KM_NOSLEEP);
1687 
1688 	if (rx_data == NULL)
1689 		return (DDI_FAILURE);
1690 
1691 	rx_data->priv_devi_node = Adapter->priv_devi_node;
1692 	rx_data->rx_ring = rx_ring;
1693 
1694 	mutex_init(&rx_data->freelist_lock, NULL,
1695 	    MUTEX_DRIVER, DDI_INTR_PRI(Adapter->intr_pri));
1696 	mutex_init(&rx_data->recycle_lock, NULL,
1697 	    MUTEX_DRIVER, DDI_INTR_PRI(Adapter->intr_pri));
1698 
1699 	rx_ring->rx_data = rx_data;
1700 
1701 	return (DDI_SUCCESS);
1702 }
1703 
1704 void
1705 e1000g_free_rx_pending_buffers(e1000g_rx_data_t *rx_data)
1706 {
1707 	rx_sw_packet_t *packet, *next_packet;
1708 
1709 	if (rx_data == NULL)
1710 		return;
1711 
1712 	packet = rx_data->packet_area;
1713 	while (packet != NULL) {
1714 		next_packet = packet->next;
1715 		e1000g_free_rx_sw_packet(packet, B_TRUE);
1716 		packet = next_packet;
1717 	}
1718 	rx_data->packet_area = NULL;
1719 }
1720 
1721 void
1722 e1000g_free_rx_data(e1000g_rx_data_t *rx_data)
1723 {
1724 	if (rx_data == NULL)
1725 		return;
1726 
1727 	mutex_destroy(&rx_data->freelist_lock);
1728 	mutex_destroy(&rx_data->recycle_lock);
1729 
1730 	kmem_free(rx_data, sizeof (e1000g_rx_data_t));
1731 }
1732 
1733 /*
1734  * Check if the link is up
1735  */
1736 static boolean_t
1737 e1000g_link_up(struct e1000g *Adapter)
1738 {
1739 	struct e1000_hw *hw = &Adapter->shared;
1740 	boolean_t link_up = B_FALSE;
1741 
1742 	/*
1743 	 * get_link_status is set in the interrupt handler on link-status-change
1744 	 * or rx sequence error interrupt.  get_link_status will stay
1745 	 * false until the e1000_check_for_link establishes link only
1746 	 * for copper adapters.
1747 	 */
1748 	switch (hw->phy.media_type) {
1749 	case e1000_media_type_copper:
1750 		if (hw->mac.get_link_status) {
1751 			/*
1752 			 * SPT and newer devices need a bit of extra time before
1753 			 * we ask them.
1754 			 */
1755 			if (hw->mac.type >= e1000_pch_spt)
1756 				msec_delay(50);
1757 			(void) e1000_check_for_link(hw);
1758 			if ((E1000_READ_REG(hw, E1000_STATUS) &
1759 			    E1000_STATUS_LU)) {
1760 				link_up = B_TRUE;
1761 			} else {
1762 				link_up = !hw->mac.get_link_status;
1763 			}
1764 		} else {
1765 			link_up = B_TRUE;
1766 		}
1767 		break;
1768 	case e1000_media_type_fiber:
1769 		(void) e1000_check_for_link(hw);
1770 		link_up = (E1000_READ_REG(hw, E1000_STATUS) &
1771 		    E1000_STATUS_LU);
1772 		break;
1773 	case e1000_media_type_internal_serdes:
1774 		(void) e1000_check_for_link(hw);
1775 		link_up = hw->mac.serdes_has_link;
1776 		break;
1777 	}
1778 
1779 	return (link_up);
1780 }
1781 
1782 static void
1783 e1000g_m_ioctl(void *arg, queue_t *q, mblk_t *mp)
1784 {
1785 	struct iocblk *iocp;
1786 	struct e1000g *e1000gp;
1787 	enum ioc_reply status;
1788 
1789 	iocp = (struct iocblk *)(uintptr_t)mp->b_rptr;
1790 	iocp->ioc_error = 0;
1791 	e1000gp = (struct e1000g *)arg;
1792 
1793 	ASSERT(e1000gp);
1794 	if (e1000gp == NULL) {
1795 		miocnak(q, mp, 0, EINVAL);
1796 		return;
1797 	}
1798 
1799 	rw_enter(&e1000gp->chip_lock, RW_READER);
1800 	if (e1000gp->e1000g_state & E1000G_SUSPENDED) {
1801 		rw_exit(&e1000gp->chip_lock);
1802 		miocnak(q, mp, 0, EINVAL);
1803 		return;
1804 	}
1805 	rw_exit(&e1000gp->chip_lock);
1806 
1807 	switch (iocp->ioc_cmd) {
1808 
1809 	case LB_GET_INFO_SIZE:
1810 	case LB_GET_INFO:
1811 	case LB_GET_MODE:
1812 	case LB_SET_MODE:
1813 		status = e1000g_loopback_ioctl(e1000gp, iocp, mp);
1814 		break;
1815 
1816 
1817 #ifdef E1000G_DEBUG
1818 	case E1000G_IOC_REG_PEEK:
1819 	case E1000G_IOC_REG_POKE:
1820 		status = e1000g_pp_ioctl(e1000gp, iocp, mp);
1821 		break;
1822 	case E1000G_IOC_CHIP_RESET:
1823 		e1000gp->reset_count++;
1824 		if (e1000g_reset_adapter(e1000gp))
1825 			status = IOC_ACK;
1826 		else
1827 			status = IOC_INVAL;
1828 		break;
1829 #endif
1830 	default:
1831 		status = IOC_INVAL;
1832 		break;
1833 	}
1834 
1835 	/*
1836 	 * Decide how to reply
1837 	 */
1838 	switch (status) {
1839 	default:
1840 	case IOC_INVAL:
1841 		/*
1842 		 * Error, reply with a NAK and EINVAL or the specified error
1843 		 */
1844 		miocnak(q, mp, 0, iocp->ioc_error == 0 ?
1845 		    EINVAL : iocp->ioc_error);
1846 		break;
1847 
1848 	case IOC_DONE:
1849 		/*
1850 		 * OK, reply already sent
1851 		 */
1852 		break;
1853 
1854 	case IOC_ACK:
1855 		/*
1856 		 * OK, reply with an ACK
1857 		 */
1858 		miocack(q, mp, 0, 0);
1859 		break;
1860 
1861 	case IOC_REPLY:
1862 		/*
1863 		 * OK, send prepared reply as ACK or NAK
1864 		 */
1865 		mp->b_datap->db_type = iocp->ioc_error == 0 ?
1866 		    M_IOCACK : M_IOCNAK;
1867 		qreply(q, mp);
1868 		break;
1869 	}
1870 }
1871 
1872 /*
1873  * The default value of e1000g_poll_mode == 0 assumes that the NIC is
1874  * capable of supporting only one interrupt and we shouldn't disable
1875  * the physical interrupt. In this case we let the interrupt come and
1876  * we queue the packets in the rx ring itself in case we are in polling
1877  * mode (better latency but slightly lower performance and a very
1878  * high intrrupt count in mpstat which is harmless).
1879  *
1880  * e1000g_poll_mode == 1 assumes that we have per Rx ring interrupt
1881  * which can be disabled in poll mode. This gives better overall
1882  * throughput (compared to the mode above), shows very low interrupt
1883  * count but has slightly higher latency since we pick the packets when
1884  * the poll thread does polling.
1885  *
1886  * Currently, this flag should be enabled only while doing performance
1887  * measurement or when it can be guaranteed that entire NIC going
1888  * in poll mode will not harm any traffic like cluster heartbeat etc.
1889  */
1890 int e1000g_poll_mode = 0;
1891 
1892 /*
1893  * Called from the upper layers when driver is in polling mode to
1894  * pick up any queued packets. Care should be taken to not block
1895  * this thread.
1896  */
1897 static mblk_t *e1000g_poll_ring(void *arg, int bytes_to_pickup)
1898 {
1899 	e1000g_rx_ring_t	*rx_ring = (e1000g_rx_ring_t *)arg;
1900 	mblk_t			*mp = NULL;
1901 	mblk_t			*tail;
1902 	struct e1000g		*adapter;
1903 
1904 	adapter = rx_ring->adapter;
1905 
1906 	rw_enter(&adapter->chip_lock, RW_READER);
1907 
1908 	if (adapter->e1000g_state & E1000G_SUSPENDED) {
1909 		rw_exit(&adapter->chip_lock);
1910 		return (NULL);
1911 	}
1912 
1913 	mutex_enter(&rx_ring->rx_lock);
1914 	mp = e1000g_receive(rx_ring, &tail, bytes_to_pickup);
1915 	mutex_exit(&rx_ring->rx_lock);
1916 	rw_exit(&adapter->chip_lock);
1917 	return (mp);
1918 }
1919 
1920 static int
1921 e1000g_m_start(void *arg)
1922 {
1923 	struct e1000g *Adapter = (struct e1000g *)arg;
1924 
1925 	rw_enter(&Adapter->chip_lock, RW_WRITER);
1926 
1927 	if (Adapter->e1000g_state & E1000G_SUSPENDED) {
1928 		rw_exit(&Adapter->chip_lock);
1929 		return (ECANCELED);
1930 	}
1931 
1932 	if (e1000g_start(Adapter, B_TRUE) != DDI_SUCCESS) {
1933 		rw_exit(&Adapter->chip_lock);
1934 		return (ENOTACTIVE);
1935 	}
1936 
1937 	Adapter->e1000g_state |= E1000G_STARTED;
1938 
1939 	rw_exit(&Adapter->chip_lock);
1940 
1941 	/* Enable and start the watchdog timer */
1942 	enable_watchdog_timer(Adapter);
1943 
1944 	return (0);
1945 }
1946 
1947 static int
1948 e1000g_start(struct e1000g *Adapter, boolean_t global)
1949 {
1950 	e1000g_rx_data_t *rx_data;
1951 
1952 	if (global) {
1953 		if (e1000g_alloc_rx_data(Adapter) != DDI_SUCCESS) {
1954 			e1000g_log(Adapter, CE_WARN, "Allocate rx data failed");
1955 			goto start_fail;
1956 		}
1957 
1958 		/* Allocate dma resources for descriptors and buffers */
1959 		if (e1000g_alloc_dma_resources(Adapter) != DDI_SUCCESS) {
1960 			e1000g_log(Adapter, CE_WARN,
1961 			    "Alloc DMA resources failed");
1962 			goto start_fail;
1963 		}
1964 		Adapter->rx_buffer_setup = B_FALSE;
1965 	}
1966 
1967 	if (!(Adapter->attach_progress & ATTACH_PROGRESS_INIT)) {
1968 		if (e1000g_init(Adapter) != DDI_SUCCESS) {
1969 			e1000g_log(Adapter, CE_WARN,
1970 			    "Adapter initialization failed");
1971 			goto start_fail;
1972 		}
1973 	}
1974 
1975 	/* Setup and initialize the transmit structures */
1976 	e1000g_tx_setup(Adapter);
1977 	msec_delay(5);
1978 
1979 	/* Setup and initialize the receive structures */
1980 	e1000g_rx_setup(Adapter);
1981 	msec_delay(5);
1982 
1983 	/* Restore the e1000g promiscuous mode */
1984 	e1000g_restore_promisc(Adapter);
1985 
1986 	e1000g_mask_interrupt(Adapter);
1987 
1988 	Adapter->attach_progress |= ATTACH_PROGRESS_INIT;
1989 
1990 	if (e1000g_check_acc_handle(Adapter->osdep.reg_handle) != DDI_FM_OK) {
1991 		ddi_fm_service_impact(Adapter->dip, DDI_SERVICE_LOST);
1992 		goto start_fail;
1993 	}
1994 
1995 	return (DDI_SUCCESS);
1996 
1997 start_fail:
1998 	rx_data = Adapter->rx_ring->rx_data;
1999 
2000 	if (global) {
2001 		e1000g_release_dma_resources(Adapter);
2002 		e1000g_free_rx_pending_buffers(rx_data);
2003 		e1000g_free_rx_data(rx_data);
2004 	}
2005 
2006 	mutex_enter(&e1000g_nvm_lock);
2007 	(void) e1000_reset_hw(&Adapter->shared);
2008 	mutex_exit(&e1000g_nvm_lock);
2009 
2010 	return (DDI_FAILURE);
2011 }
2012 
2013 /*
2014  * The I219 has the curious property that if the descriptor rings are not
2015  * emptied before resetting the hardware or before changing the device state
2016  * based on runtime power management, it'll cause the card to hang. This can
2017  * then only be fixed by a PCI reset. As such, for the I219 and it alone, we
2018  * have to flush the rings if we're in this state.
2019  */
2020 static void
2021 e1000g_flush_desc_rings(struct e1000g *Adapter)
2022 {
2023 	struct e1000_hw	*hw = &Adapter->shared;
2024 	u16		hang_state;
2025 	u32		fext_nvm11, tdlen;
2026 
2027 	/* First, disable MULR fix in FEXTNVM11 */
2028 	fext_nvm11 = E1000_READ_REG(hw, E1000_FEXTNVM11);
2029 	fext_nvm11 |= E1000_FEXTNVM11_DISABLE_MULR_FIX;
2030 	E1000_WRITE_REG(hw, E1000_FEXTNVM11, fext_nvm11);
2031 
2032 	/* do nothing if we're not in faulty state, or if the queue is empty */
2033 	tdlen = E1000_READ_REG(hw, E1000_TDLEN(0));
2034 	hang_state = pci_config_get16(Adapter->osdep.cfg_handle,
2035 	    PCICFG_DESC_RING_STATUS);
2036 	if (!(hang_state & FLUSH_DESC_REQUIRED) || !tdlen)
2037 		return;
2038 	e1000g_flush_tx_ring(Adapter);
2039 
2040 	/* recheck, maybe the fault is caused by the rx ring */
2041 	hang_state = pci_config_get16(Adapter->osdep.cfg_handle,
2042 	    PCICFG_DESC_RING_STATUS);
2043 	if (hang_state & FLUSH_DESC_REQUIRED)
2044 		e1000g_flush_rx_ring(Adapter);
2045 
2046 }
2047 
2048 static void
2049 e1000g_m_stop(void *arg)
2050 {
2051 	struct e1000g *Adapter = (struct e1000g *)arg;
2052 
2053 	/* Drain tx sessions */
2054 	(void) e1000g_tx_drain(Adapter);
2055 
2056 	rw_enter(&Adapter->chip_lock, RW_WRITER);
2057 
2058 	if (Adapter->e1000g_state & E1000G_SUSPENDED) {
2059 		rw_exit(&Adapter->chip_lock);
2060 		return;
2061 	}
2062 	Adapter->e1000g_state &= ~E1000G_STARTED;
2063 	e1000g_stop(Adapter, B_TRUE);
2064 
2065 	rw_exit(&Adapter->chip_lock);
2066 
2067 	/* Disable and stop all the timers */
2068 	disable_watchdog_timer(Adapter);
2069 	stop_link_timer(Adapter);
2070 	stop_82547_timer(Adapter->tx_ring);
2071 }
2072 
2073 static void
2074 e1000g_stop(struct e1000g *Adapter, boolean_t global)
2075 {
2076 	private_devi_list_t *devi_node;
2077 	e1000g_rx_data_t *rx_data;
2078 	int result;
2079 
2080 	Adapter->attach_progress &= ~ATTACH_PROGRESS_INIT;
2081 
2082 	/* Stop the chip and release pending resources */
2083 
2084 	/* Tell firmware driver is no longer in control */
2085 	e1000g_release_driver_control(&Adapter->shared);
2086 
2087 	e1000g_clear_all_interrupts(Adapter);
2088 
2089 	mutex_enter(&e1000g_nvm_lock);
2090 	result = e1000_reset_hw(&Adapter->shared);
2091 	mutex_exit(&e1000g_nvm_lock);
2092 
2093 	if (result != E1000_SUCCESS) {
2094 		e1000g_fm_ereport(Adapter, DDI_FM_DEVICE_INVAL_STATE);
2095 		ddi_fm_service_impact(Adapter->dip, DDI_SERVICE_LOST);
2096 	}
2097 
2098 	mutex_enter(&Adapter->link_lock);
2099 	Adapter->link_complete = B_FALSE;
2100 	mutex_exit(&Adapter->link_lock);
2101 
2102 	/* Release resources still held by the TX descriptors */
2103 	e1000g_tx_clean(Adapter);
2104 
2105 	if (e1000g_check_acc_handle(Adapter->osdep.reg_handle) != DDI_FM_OK)
2106 		ddi_fm_service_impact(Adapter->dip, DDI_SERVICE_LOST);
2107 
2108 	/* Clean the pending rx jumbo packet fragment */
2109 	e1000g_rx_clean(Adapter);
2110 
2111 	/*
2112 	 * The I219, eg. the pch_spt, has bugs such that we must ensure that
2113 	 * rings are flushed before we do anything else. This must be done
2114 	 * before we release DMA resources.
2115 	 */
2116 	if (Adapter->shared.mac.type >= e1000_pch_spt)
2117 		e1000g_flush_desc_rings(Adapter);
2118 
2119 	if (global) {
2120 		e1000g_release_dma_resources(Adapter);
2121 
2122 		mutex_enter(&e1000g_rx_detach_lock);
2123 		rx_data = Adapter->rx_ring->rx_data;
2124 		rx_data->flag |= E1000G_RX_STOPPED;
2125 
2126 		if (rx_data->pending_count == 0) {
2127 			e1000g_free_rx_pending_buffers(rx_data);
2128 			e1000g_free_rx_data(rx_data);
2129 		} else {
2130 			devi_node = rx_data->priv_devi_node;
2131 			if (devi_node != NULL)
2132 				atomic_inc_32(&devi_node->pending_rx_count);
2133 			else
2134 				atomic_inc_32(&Adapter->pending_rx_count);
2135 		}
2136 		mutex_exit(&e1000g_rx_detach_lock);
2137 	}
2138 
2139 	if (Adapter->link_state != LINK_STATE_UNKNOWN) {
2140 		Adapter->link_state = LINK_STATE_UNKNOWN;
2141 		if (!Adapter->reset_flag)
2142 			mac_link_update(Adapter->mh, Adapter->link_state);
2143 	}
2144 }
2145 
2146 static void
2147 e1000g_rx_clean(struct e1000g *Adapter)
2148 {
2149 	e1000g_rx_data_t *rx_data = Adapter->rx_ring->rx_data;
2150 
2151 	if (rx_data == NULL)
2152 		return;
2153 
2154 	if (rx_data->rx_mblk != NULL) {
2155 		freemsg(rx_data->rx_mblk);
2156 		rx_data->rx_mblk = NULL;
2157 		rx_data->rx_mblk_tail = NULL;
2158 		rx_data->rx_mblk_len = 0;
2159 	}
2160 }
2161 
2162 static void
2163 e1000g_tx_clean(struct e1000g *Adapter)
2164 {
2165 	e1000g_tx_ring_t *tx_ring;
2166 	p_tx_sw_packet_t packet;
2167 	mblk_t *mp;
2168 	mblk_t *nmp;
2169 	uint32_t packet_count;
2170 
2171 	tx_ring = Adapter->tx_ring;
2172 
2173 	/*
2174 	 * Here we don't need to protect the lists using
2175 	 * the usedlist_lock and freelist_lock, for they
2176 	 * have been protected by the chip_lock.
2177 	 */
2178 	mp = NULL;
2179 	nmp = NULL;
2180 	packet_count = 0;
2181 	packet = (p_tx_sw_packet_t)QUEUE_GET_HEAD(&tx_ring->used_list);
2182 	while (packet != NULL) {
2183 		if (packet->mp != NULL) {
2184 			/* Assemble the message chain */
2185 			if (mp == NULL) {
2186 				mp = packet->mp;
2187 				nmp = packet->mp;
2188 			} else {
2189 				nmp->b_next = packet->mp;
2190 				nmp = packet->mp;
2191 			}
2192 			/* Disconnect the message from the sw packet */
2193 			packet->mp = NULL;
2194 		}
2195 
2196 		e1000g_free_tx_swpkt(packet);
2197 		packet_count++;
2198 
2199 		packet = (p_tx_sw_packet_t)
2200 		    QUEUE_GET_NEXT(&tx_ring->used_list, &packet->Link);
2201 	}
2202 
2203 	if (mp != NULL)
2204 		freemsgchain(mp);
2205 
2206 	if (packet_count > 0) {
2207 		QUEUE_APPEND(&tx_ring->free_list, &tx_ring->used_list);
2208 		QUEUE_INIT_LIST(&tx_ring->used_list);
2209 
2210 		/* Setup TX descriptor pointers */
2211 		tx_ring->tbd_next = tx_ring->tbd_first;
2212 		tx_ring->tbd_oldest = tx_ring->tbd_first;
2213 
2214 		/* Setup our HW Tx Head & Tail descriptor pointers */
2215 		E1000_WRITE_REG(&Adapter->shared, E1000_TDH(0), 0);
2216 		E1000_WRITE_REG(&Adapter->shared, E1000_TDT(0), 0);
2217 	}
2218 }
2219 
2220 static boolean_t
2221 e1000g_tx_drain(struct e1000g *Adapter)
2222 {
2223 	int i;
2224 	boolean_t done;
2225 	e1000g_tx_ring_t *tx_ring;
2226 
2227 	tx_ring = Adapter->tx_ring;
2228 
2229 	/* Allow up to 'wsdraintime' for pending xmit's to complete. */
2230 	for (i = 0; i < TX_DRAIN_TIME; i++) {
2231 		mutex_enter(&tx_ring->usedlist_lock);
2232 		done = IS_QUEUE_EMPTY(&tx_ring->used_list);
2233 		mutex_exit(&tx_ring->usedlist_lock);
2234 
2235 		if (done)
2236 			break;
2237 
2238 		msec_delay(1);
2239 	}
2240 
2241 	return (done);
2242 }
2243 
2244 static boolean_t
2245 e1000g_rx_drain(struct e1000g *Adapter)
2246 {
2247 	int i;
2248 	boolean_t done;
2249 
2250 	/*
2251 	 * Allow up to RX_DRAIN_TIME for pending received packets to complete.
2252 	 */
2253 	for (i = 0; i < RX_DRAIN_TIME; i++) {
2254 		done = (Adapter->pending_rx_count == 0);
2255 
2256 		if (done)
2257 			break;
2258 
2259 		msec_delay(1);
2260 	}
2261 
2262 	return (done);
2263 }
2264 
2265 static boolean_t
2266 e1000g_reset_adapter(struct e1000g *Adapter)
2267 {
2268 	/* Disable and stop all the timers */
2269 	disable_watchdog_timer(Adapter);
2270 	stop_link_timer(Adapter);
2271 	stop_82547_timer(Adapter->tx_ring);
2272 
2273 	rw_enter(&Adapter->chip_lock, RW_WRITER);
2274 
2275 	if (Adapter->stall_flag) {
2276 		Adapter->stall_flag = B_FALSE;
2277 		Adapter->reset_flag = B_TRUE;
2278 	}
2279 
2280 	if (!(Adapter->e1000g_state & E1000G_STARTED)) {
2281 		rw_exit(&Adapter->chip_lock);
2282 		return (B_TRUE);
2283 	}
2284 
2285 	e1000g_stop(Adapter, B_FALSE);
2286 
2287 	if (e1000g_start(Adapter, B_FALSE) != DDI_SUCCESS) {
2288 		rw_exit(&Adapter->chip_lock);
2289 		e1000g_log(Adapter, CE_WARN, "Reset failed");
2290 			return (B_FALSE);
2291 	}
2292 
2293 	rw_exit(&Adapter->chip_lock);
2294 
2295 	/* Enable and start the watchdog timer */
2296 	enable_watchdog_timer(Adapter);
2297 
2298 	return (B_TRUE);
2299 }
2300 
2301 boolean_t
2302 e1000g_global_reset(struct e1000g *Adapter)
2303 {
2304 	/* Disable and stop all the timers */
2305 	disable_watchdog_timer(Adapter);
2306 	stop_link_timer(Adapter);
2307 	stop_82547_timer(Adapter->tx_ring);
2308 
2309 	rw_enter(&Adapter->chip_lock, RW_WRITER);
2310 
2311 	e1000g_stop(Adapter, B_TRUE);
2312 
2313 	Adapter->init_count = 0;
2314 
2315 	if (e1000g_start(Adapter, B_TRUE) != DDI_SUCCESS) {
2316 		rw_exit(&Adapter->chip_lock);
2317 		e1000g_log(Adapter, CE_WARN, "Reset failed");
2318 		return (B_FALSE);
2319 	}
2320 
2321 	rw_exit(&Adapter->chip_lock);
2322 
2323 	/* Enable and start the watchdog timer */
2324 	enable_watchdog_timer(Adapter);
2325 
2326 	return (B_TRUE);
2327 }
2328 
2329 /*
2330  * e1000g_intr_pciexpress - ISR for PCI Express chipsets
2331  *
2332  * This interrupt service routine is for PCI-Express adapters.
2333  * The ICR contents is valid only when the E1000_ICR_INT_ASSERTED
2334  * bit is set.
2335  */
2336 static uint_t
2337 e1000g_intr_pciexpress(caddr_t arg, caddr_t arg1 __unused)
2338 {
2339 	struct e1000g *Adapter;
2340 	uint32_t icr;
2341 
2342 	Adapter = (struct e1000g *)(uintptr_t)arg;
2343 	icr = E1000_READ_REG(&Adapter->shared, E1000_ICR);
2344 
2345 	if (e1000g_check_acc_handle(Adapter->osdep.reg_handle) != DDI_FM_OK) {
2346 		ddi_fm_service_impact(Adapter->dip, DDI_SERVICE_DEGRADED);
2347 		return (DDI_INTR_CLAIMED);
2348 	}
2349 
2350 	if (icr & E1000_ICR_INT_ASSERTED) {
2351 		/*
2352 		 * E1000_ICR_INT_ASSERTED bit was set:
2353 		 * Read(Clear) the ICR, claim this interrupt,
2354 		 * look for work to do.
2355 		 */
2356 		e1000g_intr_work(Adapter, icr);
2357 		return (DDI_INTR_CLAIMED);
2358 	} else {
2359 		/*
2360 		 * E1000_ICR_INT_ASSERTED bit was not set:
2361 		 * Don't claim this interrupt, return immediately.
2362 		 */
2363 		return (DDI_INTR_UNCLAIMED);
2364 	}
2365 }
2366 
2367 /*
2368  * e1000g_intr - ISR for PCI/PCI-X chipsets
2369  *
2370  * This interrupt service routine is for PCI/PCI-X adapters.
2371  * We check the ICR contents no matter the E1000_ICR_INT_ASSERTED
2372  * bit is set or not.
2373  */
2374 static uint_t
2375 e1000g_intr(caddr_t arg, caddr_t arg1 __unused)
2376 {
2377 	struct e1000g *Adapter;
2378 	uint32_t icr;
2379 
2380 	Adapter = (struct e1000g *)(uintptr_t)arg;
2381 	icr = E1000_READ_REG(&Adapter->shared, E1000_ICR);
2382 
2383 	if (e1000g_check_acc_handle(Adapter->osdep.reg_handle) != DDI_FM_OK) {
2384 		ddi_fm_service_impact(Adapter->dip, DDI_SERVICE_DEGRADED);
2385 		return (DDI_INTR_CLAIMED);
2386 	}
2387 
2388 	if (icr) {
2389 		/*
2390 		 * Any bit was set in ICR:
2391 		 * Read(Clear) the ICR, claim this interrupt,
2392 		 * look for work to do.
2393 		 */
2394 		e1000g_intr_work(Adapter, icr);
2395 		return (DDI_INTR_CLAIMED);
2396 	} else {
2397 		/*
2398 		 * No bit was set in ICR:
2399 		 * Don't claim this interrupt, return immediately.
2400 		 */
2401 		return (DDI_INTR_UNCLAIMED);
2402 	}
2403 }
2404 
2405 /*
2406  * e1000g_intr_work - actual processing of ISR
2407  *
2408  * Read(clear) the ICR contents and call appropriate interrupt
2409  * processing routines.
2410  */
2411 static void
2412 e1000g_intr_work(struct e1000g *Adapter, uint32_t icr)
2413 {
2414 	struct e1000_hw *hw;
2415 	hw = &Adapter->shared;
2416 	e1000g_tx_ring_t *tx_ring = Adapter->tx_ring;
2417 
2418 	Adapter->rx_pkt_cnt = 0;
2419 	Adapter->tx_pkt_cnt = 0;
2420 
2421 	rw_enter(&Adapter->chip_lock, RW_READER);
2422 
2423 	if (Adapter->e1000g_state & E1000G_SUSPENDED) {
2424 		rw_exit(&Adapter->chip_lock);
2425 		return;
2426 	}
2427 	/*
2428 	 * Here we need to check the "e1000g_state" flag within the chip_lock to
2429 	 * ensure the receive routine will not execute when the adapter is
2430 	 * being reset.
2431 	 */
2432 	if (!(Adapter->e1000g_state & E1000G_STARTED)) {
2433 		rw_exit(&Adapter->chip_lock);
2434 		return;
2435 	}
2436 
2437 	if (icr & E1000_ICR_RXT0) {
2438 		mblk_t			*mp = NULL;
2439 		mblk_t			*tail = NULL;
2440 		e1000g_rx_ring_t	*rx_ring;
2441 
2442 		rx_ring = Adapter->rx_ring;
2443 		mutex_enter(&rx_ring->rx_lock);
2444 		/*
2445 		 * Sometimes with legacy interrupts, it possible that
2446 		 * there is a single interrupt for Rx/Tx. In which
2447 		 * case, if poll flag is set, we shouldn't really
2448 		 * be doing Rx processing.
2449 		 */
2450 		if (!rx_ring->poll_flag)
2451 			mp = e1000g_receive(rx_ring, &tail,
2452 			    E1000G_CHAIN_NO_LIMIT);
2453 		mutex_exit(&rx_ring->rx_lock);
2454 		rw_exit(&Adapter->chip_lock);
2455 		if (mp != NULL)
2456 			mac_rx_ring(Adapter->mh, rx_ring->mrh,
2457 			    mp, rx_ring->ring_gen_num);
2458 	} else
2459 		rw_exit(&Adapter->chip_lock);
2460 
2461 	if (icr & E1000_ICR_TXDW) {
2462 		if (!Adapter->tx_intr_enable)
2463 			e1000g_clear_tx_interrupt(Adapter);
2464 
2465 		/* Recycle the tx descriptors */
2466 		rw_enter(&Adapter->chip_lock, RW_READER);
2467 		(void) e1000g_recycle(tx_ring);
2468 		E1000G_DEBUG_STAT(tx_ring->stat_recycle_intr);
2469 		rw_exit(&Adapter->chip_lock);
2470 
2471 		if (tx_ring->resched_needed &&
2472 		    (tx_ring->tbd_avail > DEFAULT_TX_UPDATE_THRESHOLD)) {
2473 			tx_ring->resched_needed = B_FALSE;
2474 			mac_tx_update(Adapter->mh);
2475 			E1000G_STAT(tx_ring->stat_reschedule);
2476 		}
2477 	}
2478 
2479 	/*
2480 	 * The Receive Sequence errors RXSEQ and the link status change LSC
2481 	 * are checked to detect that the cable has been pulled out. For
2482 	 * the Wiseman 2.0 silicon, the receive sequence errors interrupt
2483 	 * are an indication that cable is not connected.
2484 	 */
2485 	if ((icr & E1000_ICR_RXSEQ) ||
2486 	    (icr & E1000_ICR_LSC) ||
2487 	    (icr & E1000_ICR_GPI_EN1)) {
2488 		boolean_t link_changed;
2489 		timeout_id_t tid = 0;
2490 
2491 		stop_watchdog_timer(Adapter);
2492 
2493 		rw_enter(&Adapter->chip_lock, RW_WRITER);
2494 
2495 		/*
2496 		 * Because we got a link-status-change interrupt, force
2497 		 * e1000_check_for_link() to look at phy
2498 		 */
2499 		Adapter->shared.mac.get_link_status = B_TRUE;
2500 
2501 		/* e1000g_link_check takes care of link status change */
2502 		link_changed = e1000g_link_check(Adapter);
2503 
2504 		/* Get new phy state */
2505 		e1000g_get_phy_state(Adapter);
2506 
2507 		/*
2508 		 * If the link timer has not timed out, we'll not notify
2509 		 * the upper layer with any link state until the link is up.
2510 		 */
2511 		if (link_changed && !Adapter->link_complete) {
2512 			if (Adapter->link_state == LINK_STATE_UP) {
2513 				mutex_enter(&Adapter->link_lock);
2514 				Adapter->link_complete = B_TRUE;
2515 				tid = Adapter->link_tid;
2516 				Adapter->link_tid = 0;
2517 				mutex_exit(&Adapter->link_lock);
2518 			} else {
2519 				link_changed = B_FALSE;
2520 			}
2521 		}
2522 		rw_exit(&Adapter->chip_lock);
2523 
2524 		if (link_changed) {
2525 			if (tid != 0)
2526 				(void) untimeout(tid);
2527 
2528 			/*
2529 			 * Workaround for esb2. Data stuck in fifo on a link
2530 			 * down event. Stop receiver here and reset in watchdog.
2531 			 */
2532 			if ((Adapter->link_state == LINK_STATE_DOWN) &&
2533 			    (Adapter->shared.mac.type == e1000_80003es2lan)) {
2534 				uint32_t rctl = E1000_READ_REG(hw, E1000_RCTL);
2535 				E1000_WRITE_REG(hw, E1000_RCTL,
2536 				    rctl & ~E1000_RCTL_EN);
2537 				e1000g_log(Adapter, CE_WARN,
2538 				    "ESB2 receiver disabled");
2539 				Adapter->esb2_workaround = B_TRUE;
2540 			}
2541 			if (!Adapter->reset_flag)
2542 				mac_link_update(Adapter->mh,
2543 				    Adapter->link_state);
2544 			if (Adapter->link_state == LINK_STATE_UP)
2545 				Adapter->reset_flag = B_FALSE;
2546 		}
2547 
2548 		start_watchdog_timer(Adapter);
2549 	}
2550 }
2551 
2552 static void
2553 e1000g_init_unicst(struct e1000g *Adapter)
2554 {
2555 	struct e1000_hw *hw;
2556 	int slot;
2557 
2558 	hw = &Adapter->shared;
2559 
2560 	if (Adapter->init_count == 0) {
2561 		/* Initialize the multiple unicast addresses */
2562 		Adapter->unicst_total = min(hw->mac.rar_entry_count,
2563 		    MAX_NUM_UNICAST_ADDRESSES);
2564 
2565 		/*
2566 		 * The common code does not correctly calculate the number of
2567 		 * rar's that could be reserved by firmware for the pch_lpt and
2568 		 * pch_spt macs. The interface has one primary rar, and 11
2569 		 * additional ones. Those 11 additional ones are not always
2570 		 * available.  According to the datasheet, we need to check a
2571 		 * few of the bits set in the FWSM register. If the value is
2572 		 * zero, everything is available. If the value is 1, none of the
2573 		 * additional registers are available. If the value is 2-7, only
2574 		 * that number are available.
2575 		 */
2576 		if (hw->mac.type >= e1000_pch_lpt) {
2577 			uint32_t locked, rar;
2578 
2579 			locked = E1000_READ_REG(hw, E1000_FWSM) &
2580 			    E1000_FWSM_WLOCK_MAC_MASK;
2581 			locked >>= E1000_FWSM_WLOCK_MAC_SHIFT;
2582 			rar = 1;
2583 			if (locked == 0)
2584 				rar += 11;
2585 			else if (locked == 1)
2586 				rar += 0;
2587 			else
2588 				rar += locked;
2589 			Adapter->unicst_total = min(rar,
2590 			    MAX_NUM_UNICAST_ADDRESSES);
2591 		}
2592 
2593 		/* Workaround for an erratum of 82571 chipst */
2594 		if ((hw->mac.type == e1000_82571) &&
2595 		    (e1000_get_laa_state_82571(hw) == B_TRUE))
2596 			Adapter->unicst_total--;
2597 
2598 		/* VMware doesn't support multiple mac addresses properly */
2599 		if (hw->subsystem_vendor_id == 0x15ad)
2600 			Adapter->unicst_total = 1;
2601 
2602 		Adapter->unicst_avail = Adapter->unicst_total;
2603 
2604 		for (slot = 0; slot < Adapter->unicst_total; slot++) {
2605 			/* Clear both the flag and MAC address */
2606 			Adapter->unicst_addr[slot].reg.high = 0;
2607 			Adapter->unicst_addr[slot].reg.low = 0;
2608 		}
2609 	} else {
2610 		/* Workaround for an erratum of 82571 chipst */
2611 		if ((hw->mac.type == e1000_82571) &&
2612 		    (e1000_get_laa_state_82571(hw) == B_TRUE))
2613 			(void) e1000_rar_set(hw, hw->mac.addr, LAST_RAR_ENTRY);
2614 
2615 		/* Re-configure the RAR registers */
2616 		for (slot = 0; slot < Adapter->unicst_total; slot++)
2617 			if (Adapter->unicst_addr[slot].mac.set == 1)
2618 				(void) e1000_rar_set(hw,
2619 				    Adapter->unicst_addr[slot].mac.addr, slot);
2620 	}
2621 
2622 	if (e1000g_check_acc_handle(Adapter->osdep.reg_handle) != DDI_FM_OK)
2623 		ddi_fm_service_impact(Adapter->dip, DDI_SERVICE_DEGRADED);
2624 }
2625 
2626 static int
2627 e1000g_unicst_set(struct e1000g *Adapter, const uint8_t *mac_addr,
2628     int slot)
2629 {
2630 	struct e1000_hw *hw;
2631 
2632 	hw = &Adapter->shared;
2633 
2634 	/*
2635 	 * The first revision of Wiseman silicon (rev 2.0) has an errata
2636 	 * that requires the receiver to be in reset when any of the
2637 	 * receive address registers (RAR regs) are accessed.  The first
2638 	 * rev of Wiseman silicon also requires MWI to be disabled when
2639 	 * a global reset or a receive reset is issued.  So before we
2640 	 * initialize the RARs, we check the rev of the Wiseman controller
2641 	 * and work around any necessary HW errata.
2642 	 */
2643 	if ((hw->mac.type == e1000_82542) &&
2644 	    (hw->revision_id == E1000_REVISION_2)) {
2645 		e1000_pci_clear_mwi(hw);
2646 		E1000_WRITE_REG(hw, E1000_RCTL, E1000_RCTL_RST);
2647 		msec_delay(5);
2648 	}
2649 	if (mac_addr == NULL) {
2650 		E1000_WRITE_REG_ARRAY(hw, E1000_RA, slot << 1, 0);
2651 		E1000_WRITE_FLUSH(hw);
2652 		E1000_WRITE_REG_ARRAY(hw, E1000_RA, (slot << 1) + 1, 0);
2653 		E1000_WRITE_FLUSH(hw);
2654 		/* Clear both the flag and MAC address */
2655 		Adapter->unicst_addr[slot].reg.high = 0;
2656 		Adapter->unicst_addr[slot].reg.low = 0;
2657 	} else {
2658 		bcopy(mac_addr, Adapter->unicst_addr[slot].mac.addr,
2659 		    ETHERADDRL);
2660 		(void) e1000_rar_set(hw, (uint8_t *)mac_addr, slot);
2661 		Adapter->unicst_addr[slot].mac.set = 1;
2662 	}
2663 
2664 	/* Workaround for an erratum of 82571 chipst */
2665 	if (slot == 0) {
2666 		if ((hw->mac.type == e1000_82571) &&
2667 		    (e1000_get_laa_state_82571(hw) == B_TRUE))
2668 			if (mac_addr == NULL) {
2669 				E1000_WRITE_REG_ARRAY(hw, E1000_RA,
2670 				    slot << 1, 0);
2671 				E1000_WRITE_FLUSH(hw);
2672 				E1000_WRITE_REG_ARRAY(hw, E1000_RA,
2673 				    (slot << 1) + 1, 0);
2674 				E1000_WRITE_FLUSH(hw);
2675 			} else {
2676 				(void) e1000_rar_set(hw, (uint8_t *)mac_addr,
2677 				    LAST_RAR_ENTRY);
2678 			}
2679 	}
2680 
2681 	/*
2682 	 * If we are using Wiseman rev 2.0 silicon, we will have previously
2683 	 * put the receive in reset, and disabled MWI, to work around some
2684 	 * HW errata.  Now we should take the receiver out of reset, and
2685 	 * re-enabled if MWI if it was previously enabled by the PCI BIOS.
2686 	 */
2687 	if ((hw->mac.type == e1000_82542) &&
2688 	    (hw->revision_id == E1000_REVISION_2)) {
2689 		E1000_WRITE_REG(hw, E1000_RCTL, 0);
2690 		msec_delay(1);
2691 		if (hw->bus.pci_cmd_word & CMD_MEM_WRT_INVALIDATE)
2692 			e1000_pci_set_mwi(hw);
2693 		e1000g_rx_setup(Adapter);
2694 	}
2695 
2696 	if (e1000g_check_acc_handle(Adapter->osdep.reg_handle) != DDI_FM_OK) {
2697 		ddi_fm_service_impact(Adapter->dip, DDI_SERVICE_DEGRADED);
2698 		return (EIO);
2699 	}
2700 
2701 	return (0);
2702 }
2703 
2704 static int
2705 multicst_add(struct e1000g *Adapter, const uint8_t *multiaddr)
2706 {
2707 	struct e1000_hw *hw = &Adapter->shared;
2708 	struct ether_addr *newtable;
2709 	size_t new_len;
2710 	size_t old_len;
2711 	int res = 0;
2712 
2713 	if ((multiaddr[0] & 01) == 0) {
2714 		res = EINVAL;
2715 		e1000g_log(Adapter, CE_WARN, "Illegal multicast address");
2716 		goto done;
2717 	}
2718 
2719 	if (Adapter->mcast_count >= Adapter->mcast_max_num) {
2720 		res = ENOENT;
2721 		e1000g_log(Adapter, CE_WARN,
2722 		    "Adapter requested more than %d mcast addresses",
2723 		    Adapter->mcast_max_num);
2724 		goto done;
2725 	}
2726 
2727 
2728 	if (Adapter->mcast_count == Adapter->mcast_alloc_count) {
2729 		old_len = Adapter->mcast_alloc_count *
2730 		    sizeof (struct ether_addr);
2731 		new_len = (Adapter->mcast_alloc_count + MCAST_ALLOC_SIZE) *
2732 		    sizeof (struct ether_addr);
2733 
2734 		newtable = kmem_alloc(new_len, KM_NOSLEEP);
2735 		if (newtable == NULL) {
2736 			res = ENOMEM;
2737 			e1000g_log(Adapter, CE_WARN,
2738 			    "Not enough memory to alloc mcast table");
2739 			goto done;
2740 		}
2741 
2742 		if (Adapter->mcast_table != NULL) {
2743 			bcopy(Adapter->mcast_table, newtable, old_len);
2744 			kmem_free(Adapter->mcast_table, old_len);
2745 		}
2746 		Adapter->mcast_alloc_count += MCAST_ALLOC_SIZE;
2747 		Adapter->mcast_table = newtable;
2748 	}
2749 
2750 	bcopy(multiaddr,
2751 	    &Adapter->mcast_table[Adapter->mcast_count], ETHERADDRL);
2752 	Adapter->mcast_count++;
2753 
2754 	/*
2755 	 * Update the MC table in the hardware
2756 	 */
2757 	e1000g_clear_interrupt(Adapter);
2758 
2759 	e1000_update_mc_addr_list(hw,
2760 	    (uint8_t *)Adapter->mcast_table, Adapter->mcast_count);
2761 
2762 	e1000g_mask_interrupt(Adapter);
2763 
2764 	if (e1000g_check_acc_handle(Adapter->osdep.reg_handle) != DDI_FM_OK) {
2765 		ddi_fm_service_impact(Adapter->dip, DDI_SERVICE_DEGRADED);
2766 		res = EIO;
2767 	}
2768 
2769 done:
2770 	return (res);
2771 }
2772 
2773 static int
2774 multicst_remove(struct e1000g *Adapter, const uint8_t *multiaddr)
2775 {
2776 	struct e1000_hw *hw = &Adapter->shared;
2777 	struct ether_addr *newtable;
2778 	size_t new_len;
2779 	size_t old_len;
2780 	unsigned i;
2781 
2782 	for (i = 0; i < Adapter->mcast_count; i++) {
2783 		if (bcmp(multiaddr, &Adapter->mcast_table[i],
2784 		    ETHERADDRL) == 0) {
2785 			for (i++; i < Adapter->mcast_count; i++) {
2786 				Adapter->mcast_table[i - 1] =
2787 				    Adapter->mcast_table[i];
2788 			}
2789 			Adapter->mcast_count--;
2790 			break;
2791 		}
2792 	}
2793 
2794 	if ((Adapter->mcast_alloc_count - Adapter->mcast_count) >
2795 	    MCAST_ALLOC_SIZE) {
2796 		old_len = Adapter->mcast_alloc_count *
2797 		    sizeof (struct ether_addr);
2798 		new_len = (Adapter->mcast_alloc_count - MCAST_ALLOC_SIZE) *
2799 		    sizeof (struct ether_addr);
2800 
2801 		newtable = kmem_alloc(new_len, KM_NOSLEEP);
2802 		if (newtable != NULL) {
2803 			bcopy(Adapter->mcast_table, newtable, new_len);
2804 			kmem_free(Adapter->mcast_table, old_len);
2805 
2806 			Adapter->mcast_alloc_count -= MCAST_ALLOC_SIZE;
2807 			Adapter->mcast_table = newtable;
2808 		}
2809 	}
2810 
2811 	/*
2812 	 * Update the MC table in the hardware
2813 	 */
2814 	e1000g_clear_interrupt(Adapter);
2815 
2816 	e1000_update_mc_addr_list(hw,
2817 	    (uint8_t *)Adapter->mcast_table, Adapter->mcast_count);
2818 
2819 	e1000g_mask_interrupt(Adapter);
2820 
2821 	if (e1000g_check_acc_handle(Adapter->osdep.reg_handle) != DDI_FM_OK) {
2822 		ddi_fm_service_impact(Adapter->dip, DDI_SERVICE_DEGRADED);
2823 		return (EIO);
2824 	}
2825 
2826 	return (0);
2827 }
2828 
2829 static void
2830 e1000g_release_multicast(struct e1000g *Adapter)
2831 {
2832 	if (Adapter->mcast_table != NULL) {
2833 		kmem_free(Adapter->mcast_table,
2834 		    Adapter->mcast_alloc_count * sizeof (struct ether_addr));
2835 		Adapter->mcast_table = NULL;
2836 	}
2837 }
2838 
2839 int
2840 e1000g_m_multicst(void *arg, boolean_t add, const uint8_t *addr)
2841 {
2842 	struct e1000g *Adapter = (struct e1000g *)arg;
2843 	int result;
2844 
2845 	rw_enter(&Adapter->chip_lock, RW_WRITER);
2846 
2847 	if (Adapter->e1000g_state & E1000G_SUSPENDED) {
2848 		result = ECANCELED;
2849 		goto done;
2850 	}
2851 
2852 	result = (add) ? multicst_add(Adapter, addr)
2853 	    : multicst_remove(Adapter, addr);
2854 
2855 done:
2856 	rw_exit(&Adapter->chip_lock);
2857 	return (result);
2858 
2859 }
2860 
2861 int
2862 e1000g_m_promisc(void *arg, boolean_t on)
2863 {
2864 	struct e1000g *Adapter = (struct e1000g *)arg;
2865 	uint32_t rctl;
2866 
2867 	rw_enter(&Adapter->chip_lock, RW_WRITER);
2868 
2869 	if (Adapter->e1000g_state & E1000G_SUSPENDED) {
2870 		rw_exit(&Adapter->chip_lock);
2871 		return (ECANCELED);
2872 	}
2873 
2874 	rctl = E1000_READ_REG(&Adapter->shared, E1000_RCTL);
2875 
2876 	if (on)
2877 		rctl |=
2878 		    (E1000_RCTL_UPE | E1000_RCTL_MPE | E1000_RCTL_BAM);
2879 	else
2880 		rctl &= (~(E1000_RCTL_UPE | E1000_RCTL_MPE));
2881 
2882 	E1000_WRITE_REG(&Adapter->shared, E1000_RCTL, rctl);
2883 
2884 	Adapter->e1000g_promisc = on;
2885 
2886 	rw_exit(&Adapter->chip_lock);
2887 
2888 	if (e1000g_check_acc_handle(Adapter->osdep.reg_handle) != DDI_FM_OK) {
2889 		ddi_fm_service_impact(Adapter->dip, DDI_SERVICE_DEGRADED);
2890 		return (EIO);
2891 	}
2892 
2893 	return (0);
2894 }
2895 
2896 /*
2897  * Entry points to enable and disable interrupts at the granularity of
2898  * a group.
2899  * Turns the poll_mode for the whole adapter on and off to enable or
2900  * override the ring level polling control over the hardware interrupts.
2901  */
2902 static int
2903 e1000g_rx_group_intr_enable(mac_intr_handle_t arg)
2904 {
2905 	struct e1000g		*adapter = (struct e1000g *)arg;
2906 	e1000g_rx_ring_t *rx_ring = adapter->rx_ring;
2907 
2908 	/*
2909 	 * Later interrupts at the granularity of the this ring will
2910 	 * invoke mac_rx() with NULL, indicating the need for another
2911 	 * software classification.
2912 	 * We have a single ring usable per adapter now, so we only need to
2913 	 * reset the rx handle for that one.
2914 	 * When more RX rings can be used, we should update each one of them.
2915 	 */
2916 	mutex_enter(&rx_ring->rx_lock);
2917 	rx_ring->mrh = NULL;
2918 	adapter->poll_mode = B_FALSE;
2919 	mutex_exit(&rx_ring->rx_lock);
2920 	return (0);
2921 }
2922 
2923 static int
2924 e1000g_rx_group_intr_disable(mac_intr_handle_t arg)
2925 {
2926 	struct e1000g *adapter = (struct e1000g *)arg;
2927 	e1000g_rx_ring_t *rx_ring = adapter->rx_ring;
2928 
2929 	mutex_enter(&rx_ring->rx_lock);
2930 
2931 	/*
2932 	 * Later interrupts at the granularity of the this ring will
2933 	 * invoke mac_rx() with the handle for this ring;
2934 	 */
2935 	adapter->poll_mode = B_TRUE;
2936 	rx_ring->mrh = rx_ring->mrh_init;
2937 	mutex_exit(&rx_ring->rx_lock);
2938 	return (0);
2939 }
2940 
2941 /*
2942  * Entry points to enable and disable interrupts at the granularity of
2943  * a ring.
2944  * adapter poll_mode controls whether we actually proceed with hardware
2945  * interrupt toggling.
2946  */
2947 static int
2948 e1000g_rx_ring_intr_enable(mac_intr_handle_t intrh)
2949 {
2950 	e1000g_rx_ring_t	*rx_ring = (e1000g_rx_ring_t *)intrh;
2951 	struct e1000g		*adapter = rx_ring->adapter;
2952 	struct e1000_hw		*hw = &adapter->shared;
2953 	uint32_t		intr_mask;
2954 
2955 	rw_enter(&adapter->chip_lock, RW_READER);
2956 
2957 	if (adapter->e1000g_state & E1000G_SUSPENDED) {
2958 		rw_exit(&adapter->chip_lock);
2959 		return (0);
2960 	}
2961 
2962 	mutex_enter(&rx_ring->rx_lock);
2963 	rx_ring->poll_flag = 0;
2964 	mutex_exit(&rx_ring->rx_lock);
2965 
2966 	/* Rx interrupt enabling for MSI and legacy */
2967 	intr_mask = E1000_READ_REG(hw, E1000_IMS);
2968 	intr_mask |= E1000_IMS_RXT0;
2969 	E1000_WRITE_REG(hw, E1000_IMS, intr_mask);
2970 	E1000_WRITE_FLUSH(hw);
2971 
2972 	/* Trigger a Rx interrupt to check Rx ring */
2973 	E1000_WRITE_REG(hw, E1000_ICS, E1000_IMS_RXT0);
2974 	E1000_WRITE_FLUSH(hw);
2975 
2976 	rw_exit(&adapter->chip_lock);
2977 	return (0);
2978 }
2979 
2980 static int
2981 e1000g_rx_ring_intr_disable(mac_intr_handle_t intrh)
2982 {
2983 	e1000g_rx_ring_t	*rx_ring = (e1000g_rx_ring_t *)intrh;
2984 	struct e1000g		*adapter = rx_ring->adapter;
2985 	struct e1000_hw		*hw = &adapter->shared;
2986 
2987 	rw_enter(&adapter->chip_lock, RW_READER);
2988 
2989 	if (adapter->e1000g_state & E1000G_SUSPENDED) {
2990 		rw_exit(&adapter->chip_lock);
2991 		return (0);
2992 	}
2993 	mutex_enter(&rx_ring->rx_lock);
2994 	rx_ring->poll_flag = 1;
2995 	mutex_exit(&rx_ring->rx_lock);
2996 
2997 	/* Rx interrupt disabling for MSI and legacy */
2998 	E1000_WRITE_REG(hw, E1000_IMC, E1000_IMS_RXT0);
2999 	E1000_WRITE_FLUSH(hw);
3000 
3001 	rw_exit(&adapter->chip_lock);
3002 	return (0);
3003 }
3004 
3005 /*
3006  * e1000g_unicst_find - Find the slot for the specified unicast address
3007  */
3008 static int
3009 e1000g_unicst_find(struct e1000g *Adapter, const uint8_t *mac_addr)
3010 {
3011 	int slot;
3012 
3013 	for (slot = 0; slot < Adapter->unicst_total; slot++) {
3014 		if ((Adapter->unicst_addr[slot].mac.set == 1) &&
3015 		    (bcmp(Adapter->unicst_addr[slot].mac.addr,
3016 		    mac_addr, ETHERADDRL) == 0))
3017 				return (slot);
3018 	}
3019 
3020 	return (-1);
3021 }
3022 
3023 /*
3024  * Entry points to add and remove a MAC address to a ring group.
3025  * The caller takes care of adding and removing the MAC addresses
3026  * to the filter via these two routines.
3027  */
3028 
3029 static int
3030 e1000g_addmac(void *arg, const uint8_t *mac_addr)
3031 {
3032 	struct e1000g *Adapter = (struct e1000g *)arg;
3033 	int slot, err;
3034 
3035 	rw_enter(&Adapter->chip_lock, RW_WRITER);
3036 
3037 	if (Adapter->e1000g_state & E1000G_SUSPENDED) {
3038 		rw_exit(&Adapter->chip_lock);
3039 		return (ECANCELED);
3040 	}
3041 
3042 	if (e1000g_unicst_find(Adapter, mac_addr) != -1) {
3043 		/* The same address is already in slot */
3044 		rw_exit(&Adapter->chip_lock);
3045 		return (0);
3046 	}
3047 
3048 	if (Adapter->unicst_avail == 0) {
3049 		/* no slots available */
3050 		rw_exit(&Adapter->chip_lock);
3051 		return (ENOSPC);
3052 	}
3053 
3054 	/* Search for a free slot */
3055 	for (slot = 0; slot < Adapter->unicst_total; slot++) {
3056 		if (Adapter->unicst_addr[slot].mac.set == 0)
3057 			break;
3058 	}
3059 	ASSERT(slot < Adapter->unicst_total);
3060 
3061 	err = e1000g_unicst_set(Adapter, mac_addr, slot);
3062 	if (err == 0)
3063 		Adapter->unicst_avail--;
3064 
3065 	rw_exit(&Adapter->chip_lock);
3066 
3067 	return (err);
3068 }
3069 
3070 static int
3071 e1000g_remmac(void *arg, const uint8_t *mac_addr)
3072 {
3073 	struct e1000g *Adapter = (struct e1000g *)arg;
3074 	int slot, err;
3075 
3076 	rw_enter(&Adapter->chip_lock, RW_WRITER);
3077 
3078 	if (Adapter->e1000g_state & E1000G_SUSPENDED) {
3079 		rw_exit(&Adapter->chip_lock);
3080 		return (ECANCELED);
3081 	}
3082 
3083 	slot = e1000g_unicst_find(Adapter, mac_addr);
3084 	if (slot == -1) {
3085 		rw_exit(&Adapter->chip_lock);
3086 		return (EINVAL);
3087 	}
3088 
3089 	ASSERT(Adapter->unicst_addr[slot].mac.set);
3090 
3091 	/* Clear this slot */
3092 	err = e1000g_unicst_set(Adapter, NULL, slot);
3093 	if (err == 0)
3094 		Adapter->unicst_avail++;
3095 
3096 	rw_exit(&Adapter->chip_lock);
3097 
3098 	return (err);
3099 }
3100 
3101 static int
3102 e1000g_ring_start(mac_ring_driver_t rh, uint64_t mr_gen_num)
3103 {
3104 	e1000g_rx_ring_t *rx_ring = (e1000g_rx_ring_t *)rh;
3105 
3106 	mutex_enter(&rx_ring->rx_lock);
3107 	rx_ring->ring_gen_num = mr_gen_num;
3108 	mutex_exit(&rx_ring->rx_lock);
3109 	return (0);
3110 }
3111 
3112 /*
3113  * Callback funtion for MAC layer to register all rings.
3114  *
3115  * The hardware supports a single group with currently only one ring
3116  * available.
3117  * Though not offering virtualization ability per se, exposing the
3118  * group/ring still enables the polling and interrupt toggling.
3119  */
3120 /* ARGSUSED */
3121 void
3122 e1000g_fill_ring(void *arg, mac_ring_type_t rtype, const int grp_index,
3123     const int ring_index, mac_ring_info_t *infop, mac_ring_handle_t rh)
3124 {
3125 	struct e1000g *Adapter = (struct e1000g *)arg;
3126 	e1000g_rx_ring_t *rx_ring = Adapter->rx_ring;
3127 	mac_intr_t *mintr;
3128 
3129 	/*
3130 	 * We advertised only RX group/rings, so the MAC framework shouldn't
3131 	 * ask for any thing else.
3132 	 */
3133 	ASSERT(rtype == MAC_RING_TYPE_RX && grp_index == 0 && ring_index == 0);
3134 
3135 	rx_ring->mrh = rx_ring->mrh_init = rh;
3136 	infop->mri_driver = (mac_ring_driver_t)rx_ring;
3137 	infop->mri_start = e1000g_ring_start;
3138 	infop->mri_stop = NULL;
3139 	infop->mri_poll = e1000g_poll_ring;
3140 	infop->mri_stat = e1000g_rx_ring_stat;
3141 
3142 	/* Ring level interrupts */
3143 	mintr = &infop->mri_intr;
3144 	mintr->mi_handle = (mac_intr_handle_t)rx_ring;
3145 	mintr->mi_enable = e1000g_rx_ring_intr_enable;
3146 	mintr->mi_disable = e1000g_rx_ring_intr_disable;
3147 	if (Adapter->msi_enable)
3148 		mintr->mi_ddi_handle = Adapter->htable[0];
3149 }
3150 
3151 /* ARGSUSED */
3152 static void
3153 e1000g_fill_group(void *arg, mac_ring_type_t rtype, const int grp_index,
3154     mac_group_info_t *infop, mac_group_handle_t gh)
3155 {
3156 	struct e1000g *Adapter = (struct e1000g *)arg;
3157 	mac_intr_t *mintr;
3158 
3159 	/*
3160 	 * We advertised a single RX ring. Getting a request for anything else
3161 	 * signifies a bug in the MAC framework.
3162 	 */
3163 	ASSERT(rtype == MAC_RING_TYPE_RX && grp_index == 0);
3164 
3165 	Adapter->rx_group = gh;
3166 
3167 	infop->mgi_driver = (mac_group_driver_t)Adapter;
3168 	infop->mgi_start = NULL;
3169 	infop->mgi_stop = NULL;
3170 	infop->mgi_addmac = e1000g_addmac;
3171 	infop->mgi_remmac = e1000g_remmac;
3172 	infop->mgi_count = 1;
3173 
3174 	/* Group level interrupts */
3175 	mintr = &infop->mgi_intr;
3176 	mintr->mi_handle = (mac_intr_handle_t)Adapter;
3177 	mintr->mi_enable = e1000g_rx_group_intr_enable;
3178 	mintr->mi_disable = e1000g_rx_group_intr_disable;
3179 }
3180 
3181 static void
3182 e1000g_led_blink(void *arg)
3183 {
3184 	e1000g_t *e1000g = arg;
3185 
3186 	mutex_enter(&e1000g->e1000g_led_lock);
3187 	VERIFY(e1000g->e1000g_emul_blink);
3188 	if (e1000g->e1000g_emul_state) {
3189 		(void) e1000_led_on(&e1000g->shared);
3190 	} else {
3191 		(void) e1000_led_off(&e1000g->shared);
3192 	}
3193 	e1000g->e1000g_emul_state = !e1000g->e1000g_emul_state;
3194 	mutex_exit(&e1000g->e1000g_led_lock);
3195 }
3196 
3197 static int
3198 e1000g_led_set(void *arg, mac_led_mode_t mode, uint_t flags)
3199 {
3200 	e1000g_t *e1000g = arg;
3201 
3202 	if (flags != 0)
3203 		return (EINVAL);
3204 
3205 	if (mode != MAC_LED_DEFAULT &&
3206 	    mode != MAC_LED_IDENT &&
3207 	    mode != MAC_LED_OFF &&
3208 	    mode != MAC_LED_ON)
3209 		return (ENOTSUP);
3210 
3211 	mutex_enter(&e1000g->e1000g_led_lock);
3212 
3213 	if ((mode == MAC_LED_IDENT || mode == MAC_LED_OFF ||
3214 	    mode == MAC_LED_ON) &&
3215 	    !e1000g->e1000g_led_setup) {
3216 		if (e1000_setup_led(&e1000g->shared) != E1000_SUCCESS) {
3217 			mutex_exit(&e1000g->e1000g_led_lock);
3218 			return (EIO);
3219 		}
3220 
3221 		e1000g->e1000g_led_setup = B_TRUE;
3222 	}
3223 
3224 	if (mode != MAC_LED_IDENT && e1000g->e1000g_blink != NULL) {
3225 		ddi_periodic_t id = e1000g->e1000g_blink;
3226 		e1000g->e1000g_blink = NULL;
3227 		mutex_exit(&e1000g->e1000g_led_lock);
3228 		ddi_periodic_delete(id);
3229 		mutex_enter(&e1000g->e1000g_led_lock);
3230 	}
3231 
3232 	switch (mode) {
3233 	case MAC_LED_DEFAULT:
3234 		if (e1000g->e1000g_led_setup) {
3235 			if (e1000_cleanup_led(&e1000g->shared) !=
3236 			    E1000_SUCCESS) {
3237 				mutex_exit(&e1000g->e1000g_led_lock);
3238 				return (EIO);
3239 			}
3240 			e1000g->e1000g_led_setup = B_FALSE;
3241 		}
3242 		break;
3243 	case MAC_LED_IDENT:
3244 		if (e1000g->e1000g_emul_blink) {
3245 			if (e1000g->e1000g_blink != NULL)
3246 				break;
3247 
3248 			/*
3249 			 * Note, we use a 200 ms period here as that's what
3250 			 * section 10.1.3 8254x Intel Manual (PCI/PCI-X Family
3251 			 * of Gigabit Ethernet Controllers Software Developer's
3252 			 * Manual) indicates that the optional blink hardware
3253 			 * operates at.
3254 			 */
3255 			e1000g->e1000g_blink =
3256 			    ddi_periodic_add(e1000g_led_blink, e1000g,
3257 			    200ULL * (NANOSEC / MILLISEC), DDI_IPL_0);
3258 		} else if (e1000_blink_led(&e1000g->shared) != E1000_SUCCESS) {
3259 			mutex_exit(&e1000g->e1000g_led_lock);
3260 			return (EIO);
3261 		}
3262 		break;
3263 	case MAC_LED_OFF:
3264 		if (e1000_led_off(&e1000g->shared) != E1000_SUCCESS) {
3265 			mutex_exit(&e1000g->e1000g_led_lock);
3266 			return (EIO);
3267 		}
3268 		break;
3269 	case MAC_LED_ON:
3270 		if (e1000_led_on(&e1000g->shared) != E1000_SUCCESS) {
3271 			mutex_exit(&e1000g->e1000g_led_lock);
3272 			return (EIO);
3273 		}
3274 		break;
3275 	default:
3276 		mutex_exit(&e1000g->e1000g_led_lock);
3277 		return (ENOTSUP);
3278 	}
3279 
3280 	mutex_exit(&e1000g->e1000g_led_lock);
3281 	return (0);
3282 
3283 }
3284 
3285 static boolean_t
3286 e1000g_m_getcapab(void *arg, mac_capab_t cap, void *cap_data)
3287 {
3288 	struct e1000g *Adapter = (struct e1000g *)arg;
3289 
3290 	switch (cap) {
3291 	case MAC_CAPAB_HCKSUM: {
3292 		uint32_t *txflags = cap_data;
3293 
3294 		if (Adapter->tx_hcksum_enable)
3295 			*txflags = HCKSUM_IPHDRCKSUM |
3296 			    HCKSUM_INET_PARTIAL;
3297 		else
3298 			return (B_FALSE);
3299 		break;
3300 	}
3301 
3302 	case MAC_CAPAB_LSO: {
3303 		mac_capab_lso_t *cap_lso = cap_data;
3304 
3305 		if (Adapter->lso_enable) {
3306 			cap_lso->lso_flags = LSO_TX_BASIC_TCP_IPV4;
3307 			cap_lso->lso_basic_tcp_ipv4.lso_max =
3308 			    E1000_LSO_MAXLEN;
3309 		} else
3310 			return (B_FALSE);
3311 		break;
3312 	}
3313 	case MAC_CAPAB_RINGS: {
3314 		mac_capab_rings_t *cap_rings = cap_data;
3315 
3316 		/* No TX rings exposed yet */
3317 		if (cap_rings->mr_type != MAC_RING_TYPE_RX)
3318 			return (B_FALSE);
3319 
3320 		cap_rings->mr_group_type = MAC_GROUP_TYPE_STATIC;
3321 		cap_rings->mr_rnum = 1;
3322 		cap_rings->mr_gnum = 1;
3323 		cap_rings->mr_rget = e1000g_fill_ring;
3324 		cap_rings->mr_gget = e1000g_fill_group;
3325 		break;
3326 	}
3327 	case MAC_CAPAB_LED: {
3328 		mac_capab_led_t *cap_led = cap_data;
3329 
3330 		cap_led->mcl_flags = 0;
3331 		cap_led->mcl_modes = MAC_LED_DEFAULT;
3332 		if (Adapter->shared.mac.ops.blink_led != NULL &&
3333 		    Adapter->shared.mac.ops.blink_led !=
3334 		    e1000_null_ops_generic) {
3335 			cap_led->mcl_modes |= MAC_LED_IDENT;
3336 		}
3337 
3338 		if (Adapter->shared.mac.ops.led_off != NULL &&
3339 		    Adapter->shared.mac.ops.led_off !=
3340 		    e1000_null_ops_generic) {
3341 			cap_led->mcl_modes |= MAC_LED_OFF;
3342 		}
3343 
3344 		if (Adapter->shared.mac.ops.led_on != NULL &&
3345 		    Adapter->shared.mac.ops.led_on !=
3346 		    e1000_null_ops_generic) {
3347 			cap_led->mcl_modes |= MAC_LED_ON;
3348 		}
3349 
3350 		/*
3351 		 * Some hardware doesn't support blinking natively as they're
3352 		 * missing the optional blink circuit. If they have both off and
3353 		 * on then we'll emulate it ourselves.
3354 		 */
3355 		if (((cap_led->mcl_modes & MAC_LED_IDENT) == 0) &&
3356 		    ((cap_led->mcl_modes & MAC_LED_OFF) != 0) &&
3357 		    ((cap_led->mcl_modes & MAC_LED_ON) != 0)) {
3358 			cap_led->mcl_modes |= MAC_LED_IDENT;
3359 			Adapter->e1000g_emul_blink = B_TRUE;
3360 		}
3361 
3362 		cap_led->mcl_set = e1000g_led_set;
3363 		break;
3364 	}
3365 	default:
3366 		return (B_FALSE);
3367 	}
3368 	return (B_TRUE);
3369 }
3370 
3371 static boolean_t
3372 e1000g_param_locked(mac_prop_id_t pr_num)
3373 {
3374 	/*
3375 	 * All en_* parameters are locked (read-only) while
3376 	 * the device is in any sort of loopback mode ...
3377 	 */
3378 	switch (pr_num) {
3379 		case MAC_PROP_EN_1000FDX_CAP:
3380 		case MAC_PROP_EN_1000HDX_CAP:
3381 		case MAC_PROP_EN_100FDX_CAP:
3382 		case MAC_PROP_EN_100HDX_CAP:
3383 		case MAC_PROP_EN_10FDX_CAP:
3384 		case MAC_PROP_EN_10HDX_CAP:
3385 		case MAC_PROP_AUTONEG:
3386 		case MAC_PROP_FLOWCTRL:
3387 			return (B_TRUE);
3388 	}
3389 	return (B_FALSE);
3390 }
3391 
3392 /*
3393  * callback function for set/get of properties
3394  */
3395 static int
3396 e1000g_m_setprop(void *arg, const char *pr_name, mac_prop_id_t pr_num,
3397     uint_t pr_valsize, const void *pr_val)
3398 {
3399 	struct e1000g *Adapter = arg;
3400 	struct e1000_hw *hw = &Adapter->shared;
3401 	struct e1000_fc_info *fc = &Adapter->shared.fc;
3402 	int err = 0;
3403 	link_flowctrl_t flowctrl;
3404 	uint32_t cur_mtu, new_mtu;
3405 
3406 	rw_enter(&Adapter->chip_lock, RW_WRITER);
3407 
3408 	if (Adapter->e1000g_state & E1000G_SUSPENDED) {
3409 		rw_exit(&Adapter->chip_lock);
3410 		return (ECANCELED);
3411 	}
3412 
3413 	if (Adapter->loopback_mode != E1000G_LB_NONE &&
3414 	    e1000g_param_locked(pr_num)) {
3415 		/*
3416 		 * All en_* parameters are locked (read-only)
3417 		 * while the device is in any sort of loopback mode.
3418 		 */
3419 		rw_exit(&Adapter->chip_lock);
3420 		return (EBUSY);
3421 	}
3422 
3423 	switch (pr_num) {
3424 		case MAC_PROP_EN_1000FDX_CAP:
3425 			if (hw->phy.media_type != e1000_media_type_copper) {
3426 				err = ENOTSUP;
3427 				break;
3428 			}
3429 			Adapter->param_en_1000fdx = *(uint8_t *)pr_val;
3430 			Adapter->param_adv_1000fdx = *(uint8_t *)pr_val;
3431 			goto reset;
3432 		case MAC_PROP_EN_100FDX_CAP:
3433 			if (hw->phy.media_type != e1000_media_type_copper) {
3434 				err = ENOTSUP;
3435 				break;
3436 			}
3437 			Adapter->param_en_100fdx = *(uint8_t *)pr_val;
3438 			Adapter->param_adv_100fdx = *(uint8_t *)pr_val;
3439 			goto reset;
3440 		case MAC_PROP_EN_100HDX_CAP:
3441 			if (hw->phy.media_type != e1000_media_type_copper) {
3442 				err = ENOTSUP;
3443 				break;
3444 			}
3445 			Adapter->param_en_100hdx = *(uint8_t *)pr_val;
3446 			Adapter->param_adv_100hdx = *(uint8_t *)pr_val;
3447 			goto reset;
3448 		case MAC_PROP_EN_10FDX_CAP:
3449 			if (hw->phy.media_type != e1000_media_type_copper) {
3450 				err = ENOTSUP;
3451 				break;
3452 			}
3453 			Adapter->param_en_10fdx = *(uint8_t *)pr_val;
3454 			Adapter->param_adv_10fdx = *(uint8_t *)pr_val;
3455 			goto reset;
3456 		case MAC_PROP_EN_10HDX_CAP:
3457 			if (hw->phy.media_type != e1000_media_type_copper) {
3458 				err = ENOTSUP;
3459 				break;
3460 			}
3461 			Adapter->param_en_10hdx = *(uint8_t *)pr_val;
3462 			Adapter->param_adv_10hdx = *(uint8_t *)pr_val;
3463 			goto reset;
3464 		case MAC_PROP_AUTONEG:
3465 			if (hw->phy.media_type != e1000_media_type_copper) {
3466 				err = ENOTSUP;
3467 				break;
3468 			}
3469 			Adapter->param_adv_autoneg = *(uint8_t *)pr_val;
3470 			goto reset;
3471 		case MAC_PROP_FLOWCTRL:
3472 			fc->send_xon = B_TRUE;
3473 			bcopy(pr_val, &flowctrl, sizeof (flowctrl));
3474 
3475 			switch (flowctrl) {
3476 			default:
3477 				err = EINVAL;
3478 				break;
3479 			case LINK_FLOWCTRL_NONE:
3480 				fc->requested_mode = e1000_fc_none;
3481 				break;
3482 			case LINK_FLOWCTRL_RX:
3483 				fc->requested_mode = e1000_fc_rx_pause;
3484 				break;
3485 			case LINK_FLOWCTRL_TX:
3486 				fc->requested_mode = e1000_fc_tx_pause;
3487 				break;
3488 			case LINK_FLOWCTRL_BI:
3489 				fc->requested_mode = e1000_fc_full;
3490 				break;
3491 			}
3492 reset:
3493 			if (err == 0) {
3494 				/* check PCH limits & reset the link */
3495 				e1000g_pch_limits(Adapter);
3496 				if (e1000g_reset_link(Adapter) != DDI_SUCCESS)
3497 					err = EINVAL;
3498 			}
3499 			break;
3500 		case MAC_PROP_ADV_1000FDX_CAP:
3501 		case MAC_PROP_ADV_1000HDX_CAP:
3502 		case MAC_PROP_ADV_100FDX_CAP:
3503 		case MAC_PROP_ADV_100HDX_CAP:
3504 		case MAC_PROP_ADV_10FDX_CAP:
3505 		case MAC_PROP_ADV_10HDX_CAP:
3506 		case MAC_PROP_EN_1000HDX_CAP:
3507 		case MAC_PROP_STATUS:
3508 		case MAC_PROP_SPEED:
3509 		case MAC_PROP_DUPLEX:
3510 		case MAC_PROP_MEDIA:
3511 			err = ENOTSUP; /* read-only prop. Can't set this. */
3512 			break;
3513 		case MAC_PROP_MTU:
3514 			/* adapter must be stopped for an MTU change */
3515 			if (Adapter->e1000g_state & E1000G_STARTED) {
3516 				err = EBUSY;
3517 				break;
3518 			}
3519 
3520 			cur_mtu = Adapter->default_mtu;
3521 
3522 			/* get new requested MTU */
3523 			bcopy(pr_val, &new_mtu, sizeof (new_mtu));
3524 			if (new_mtu == cur_mtu) {
3525 				err = 0;
3526 				break;
3527 			}
3528 
3529 			if ((new_mtu < DEFAULT_MTU) ||
3530 			    (new_mtu > Adapter->max_mtu)) {
3531 				err = EINVAL;
3532 				break;
3533 			}
3534 
3535 			/* inform MAC framework of new MTU */
3536 			err = mac_maxsdu_update(Adapter->mh, new_mtu);
3537 
3538 			if (err == 0) {
3539 				Adapter->default_mtu = new_mtu;
3540 				Adapter->max_frame_size =
3541 				    e1000g_mtu2maxframe(new_mtu);
3542 
3543 				/*
3544 				 * check PCH limits & set buffer sizes to
3545 				 * match new MTU
3546 				 */
3547 				e1000g_pch_limits(Adapter);
3548 				e1000g_set_bufsize(Adapter);
3549 
3550 				/*
3551 				 * decrease the number of descriptors and free
3552 				 * packets for jumbo frames to reduce tx/rx
3553 				 * resource consumption
3554 				 */
3555 				if (Adapter->max_frame_size >=
3556 				    (FRAME_SIZE_UPTO_4K)) {
3557 					if (Adapter->tx_desc_num_flag == 0)
3558 						Adapter->tx_desc_num =
3559 						    DEFAULT_JUMBO_NUM_TX_DESC;
3560 
3561 					if (Adapter->rx_desc_num_flag == 0)
3562 						Adapter->rx_desc_num =
3563 						    DEFAULT_JUMBO_NUM_RX_DESC;
3564 
3565 					if (Adapter->tx_buf_num_flag == 0)
3566 						Adapter->tx_freelist_num =
3567 						    DEFAULT_JUMBO_NUM_TX_BUF;
3568 
3569 					if (Adapter->rx_buf_num_flag == 0)
3570 						Adapter->rx_freelist_limit =
3571 						    DEFAULT_JUMBO_NUM_RX_BUF;
3572 				} else {
3573 					if (Adapter->tx_desc_num_flag == 0)
3574 						Adapter->tx_desc_num =
3575 						    DEFAULT_NUM_TX_DESCRIPTOR;
3576 
3577 					if (Adapter->rx_desc_num_flag == 0)
3578 						Adapter->rx_desc_num =
3579 						    DEFAULT_NUM_RX_DESCRIPTOR;
3580 
3581 					if (Adapter->tx_buf_num_flag == 0)
3582 						Adapter->tx_freelist_num =
3583 						    DEFAULT_NUM_TX_FREELIST;
3584 
3585 					if (Adapter->rx_buf_num_flag == 0)
3586 						Adapter->rx_freelist_limit =
3587 						    DEFAULT_NUM_RX_FREELIST;
3588 				}
3589 			}
3590 			break;
3591 		case MAC_PROP_PRIVATE:
3592 			err = e1000g_set_priv_prop(Adapter, pr_name,
3593 			    pr_valsize, pr_val);
3594 			break;
3595 		default:
3596 			err = ENOTSUP;
3597 			break;
3598 	}
3599 	rw_exit(&Adapter->chip_lock);
3600 	return (err);
3601 }
3602 
3603 static int
3604 e1000g_m_getprop(void *arg, const char *pr_name, mac_prop_id_t pr_num,
3605     uint_t pr_valsize, void *pr_val)
3606 {
3607 	struct e1000g *Adapter = arg;
3608 	struct e1000_hw *hw = &Adapter->shared;
3609 	struct e1000_fc_info *fc = &Adapter->shared.fc;
3610 	int err = 0;
3611 	link_flowctrl_t flowctrl;
3612 	uint64_t tmp = 0;
3613 
3614 	switch (pr_num) {
3615 		case MAC_PROP_DUPLEX:
3616 			ASSERT(pr_valsize >= sizeof (link_duplex_t));
3617 			bcopy(&Adapter->link_duplex, pr_val,
3618 			    sizeof (link_duplex_t));
3619 			break;
3620 		case MAC_PROP_SPEED:
3621 			ASSERT(pr_valsize >= sizeof (uint64_t));
3622 			tmp = Adapter->link_speed * 1000000ull;
3623 			bcopy(&tmp, pr_val, sizeof (tmp));
3624 			break;
3625 		case MAC_PROP_AUTONEG:
3626 			*(uint8_t *)pr_val = Adapter->param_adv_autoneg;
3627 			break;
3628 		case MAC_PROP_FLOWCTRL:
3629 			ASSERT(pr_valsize >= sizeof (link_flowctrl_t));
3630 			switch (fc->current_mode) {
3631 				case e1000_fc_none:
3632 					flowctrl = LINK_FLOWCTRL_NONE;
3633 					break;
3634 				case e1000_fc_rx_pause:
3635 					flowctrl = LINK_FLOWCTRL_RX;
3636 					break;
3637 				case e1000_fc_tx_pause:
3638 					flowctrl = LINK_FLOWCTRL_TX;
3639 					break;
3640 				case e1000_fc_full:
3641 					flowctrl = LINK_FLOWCTRL_BI;
3642 					break;
3643 			}
3644 			bcopy(&flowctrl, pr_val, sizeof (flowctrl));
3645 			break;
3646 		case MAC_PROP_ADV_1000FDX_CAP:
3647 			*(uint8_t *)pr_val = Adapter->param_adv_1000fdx;
3648 			break;
3649 		case MAC_PROP_EN_1000FDX_CAP:
3650 			*(uint8_t *)pr_val = Adapter->param_en_1000fdx;
3651 			break;
3652 		case MAC_PROP_ADV_1000HDX_CAP:
3653 			*(uint8_t *)pr_val = Adapter->param_adv_1000hdx;
3654 			break;
3655 		case MAC_PROP_EN_1000HDX_CAP:
3656 			*(uint8_t *)pr_val = Adapter->param_en_1000hdx;
3657 			break;
3658 		case MAC_PROP_ADV_100FDX_CAP:
3659 			*(uint8_t *)pr_val = Adapter->param_adv_100fdx;
3660 			break;
3661 		case MAC_PROP_EN_100FDX_CAP:
3662 			*(uint8_t *)pr_val = Adapter->param_en_100fdx;
3663 			break;
3664 		case MAC_PROP_ADV_100HDX_CAP:
3665 			*(uint8_t *)pr_val = Adapter->param_adv_100hdx;
3666 			break;
3667 		case MAC_PROP_EN_100HDX_CAP:
3668 			*(uint8_t *)pr_val = Adapter->param_en_100hdx;
3669 			break;
3670 		case MAC_PROP_ADV_10FDX_CAP:
3671 			*(uint8_t *)pr_val = Adapter->param_adv_10fdx;
3672 			break;
3673 		case MAC_PROP_EN_10FDX_CAP:
3674 			*(uint8_t *)pr_val = Adapter->param_en_10fdx;
3675 			break;
3676 		case MAC_PROP_ADV_10HDX_CAP:
3677 			*(uint8_t *)pr_val = Adapter->param_adv_10hdx;
3678 			break;
3679 		case MAC_PROP_EN_10HDX_CAP:
3680 			*(uint8_t *)pr_val = Adapter->param_en_10hdx;
3681 			break;
3682 		case MAC_PROP_ADV_100T4_CAP:
3683 		case MAC_PROP_EN_100T4_CAP:
3684 			*(uint8_t *)pr_val = Adapter->param_adv_100t4;
3685 			break;
3686 		case MAC_PROP_MEDIA:
3687 			*(mac_ether_media_t *)pr_val = e1000_link_to_media(hw,
3688 			    Adapter->link_speed);
3689 			break;
3690 		case MAC_PROP_PRIVATE:
3691 			err = e1000g_get_priv_prop(Adapter, pr_name,
3692 			    pr_valsize, pr_val);
3693 			break;
3694 		default:
3695 			err = ENOTSUP;
3696 			break;
3697 	}
3698 
3699 	return (err);
3700 }
3701 
3702 static void
3703 e1000g_m_propinfo(void *arg, const char *pr_name, mac_prop_id_t pr_num,
3704     mac_prop_info_handle_t prh)
3705 {
3706 	struct e1000g *Adapter = arg;
3707 	struct e1000_hw *hw = &Adapter->shared;
3708 
3709 	switch (pr_num) {
3710 	case MAC_PROP_DUPLEX:
3711 	case MAC_PROP_SPEED:
3712 	case MAC_PROP_ADV_1000FDX_CAP:
3713 	case MAC_PROP_ADV_1000HDX_CAP:
3714 	case MAC_PROP_ADV_100FDX_CAP:
3715 	case MAC_PROP_ADV_100HDX_CAP:
3716 	case MAC_PROP_ADV_10FDX_CAP:
3717 	case MAC_PROP_ADV_10HDX_CAP:
3718 	case MAC_PROP_ADV_100T4_CAP:
3719 	case MAC_PROP_EN_100T4_CAP:
3720 		mac_prop_info_set_perm(prh, MAC_PROP_PERM_READ);
3721 		break;
3722 
3723 	case MAC_PROP_EN_1000FDX_CAP:
3724 		if (hw->phy.media_type != e1000_media_type_copper) {
3725 			mac_prop_info_set_perm(prh, MAC_PROP_PERM_READ);
3726 		} else {
3727 			mac_prop_info_set_default_uint8(prh,
3728 			    ((Adapter->phy_ext_status &
3729 			    IEEE_ESR_1000T_FD_CAPS) ||
3730 			    (Adapter->phy_ext_status &
3731 			    IEEE_ESR_1000X_FD_CAPS)) ? 1 : 0);
3732 		}
3733 		break;
3734 
3735 	case MAC_PROP_EN_100FDX_CAP:
3736 		if (hw->phy.media_type != e1000_media_type_copper) {
3737 			mac_prop_info_set_perm(prh, MAC_PROP_PERM_READ);
3738 		} else {
3739 			mac_prop_info_set_default_uint8(prh,
3740 			    ((Adapter->phy_status & MII_SR_100X_FD_CAPS) ||
3741 			    (Adapter->phy_status & MII_SR_100T2_FD_CAPS))
3742 			    ? 1 : 0);
3743 		}
3744 		break;
3745 
3746 	case MAC_PROP_EN_100HDX_CAP:
3747 		if (hw->phy.media_type != e1000_media_type_copper) {
3748 			mac_prop_info_set_perm(prh, MAC_PROP_PERM_READ);
3749 		} else {
3750 			mac_prop_info_set_default_uint8(prh,
3751 			    ((Adapter->phy_status & MII_SR_100X_HD_CAPS) ||
3752 			    (Adapter->phy_status & MII_SR_100T2_HD_CAPS))
3753 			    ? 1 : 0);
3754 		}
3755 		break;
3756 
3757 	case MAC_PROP_EN_10FDX_CAP:
3758 		if (hw->phy.media_type != e1000_media_type_copper) {
3759 			mac_prop_info_set_perm(prh, MAC_PROP_PERM_READ);
3760 		} else {
3761 			mac_prop_info_set_default_uint8(prh,
3762 			    (Adapter->phy_status & MII_SR_10T_FD_CAPS) ? 1 : 0);
3763 		}
3764 		break;
3765 
3766 	case MAC_PROP_EN_10HDX_CAP:
3767 		if (hw->phy.media_type != e1000_media_type_copper) {
3768 			mac_prop_info_set_perm(prh, MAC_PROP_PERM_READ);
3769 		} else {
3770 			mac_prop_info_set_default_uint8(prh,
3771 			    (Adapter->phy_status & MII_SR_10T_HD_CAPS) ? 1 : 0);
3772 		}
3773 		break;
3774 
3775 	case MAC_PROP_EN_1000HDX_CAP:
3776 		if (hw->phy.media_type != e1000_media_type_copper)
3777 			mac_prop_info_set_perm(prh, MAC_PROP_PERM_READ);
3778 		break;
3779 
3780 	case MAC_PROP_AUTONEG:
3781 		if (hw->phy.media_type != e1000_media_type_copper) {
3782 			mac_prop_info_set_perm(prh, MAC_PROP_PERM_READ);
3783 		} else {
3784 			mac_prop_info_set_default_uint8(prh,
3785 			    (Adapter->phy_status & MII_SR_AUTONEG_CAPS)
3786 			    ? 1 : 0);
3787 		}
3788 		break;
3789 
3790 	case MAC_PROP_FLOWCTRL:
3791 		mac_prop_info_set_default_link_flowctrl(prh, LINK_FLOWCTRL_BI);
3792 		break;
3793 
3794 	case MAC_PROP_MTU: {
3795 		struct e1000_mac_info *mac = &Adapter->shared.mac;
3796 		struct e1000_phy_info *phy = &Adapter->shared.phy;
3797 		uint32_t max;
3798 
3799 		/* some MAC types do not support jumbo frames */
3800 		if ((mac->type == e1000_ich8lan) ||
3801 		    ((mac->type == e1000_ich9lan) && (phy->type ==
3802 		    e1000_phy_ife))) {
3803 			max = DEFAULT_MTU;
3804 		} else {
3805 			max = Adapter->max_mtu;
3806 		}
3807 
3808 		mac_prop_info_set_range_uint32(prh, DEFAULT_MTU, max);
3809 		break;
3810 	}
3811 	case MAC_PROP_PRIVATE: {
3812 		char valstr[64];
3813 		int value;
3814 
3815 		if (strcmp(pr_name, "_adv_pause_cap") == 0 ||
3816 		    strcmp(pr_name, "_adv_asym_pause_cap") == 0) {
3817 			mac_prop_info_set_perm(prh, MAC_PROP_PERM_READ);
3818 			return;
3819 		} else if (strcmp(pr_name, "_tx_bcopy_threshold") == 0) {
3820 			value = DEFAULT_TX_BCOPY_THRESHOLD;
3821 		} else if (strcmp(pr_name, "_tx_interrupt_enable") == 0) {
3822 			value = DEFAULT_TX_INTR_ENABLE;
3823 		} else if (strcmp(pr_name, "_tx_intr_delay") == 0) {
3824 			value = DEFAULT_TX_INTR_DELAY;
3825 		} else if (strcmp(pr_name, "_tx_intr_abs_delay") == 0) {
3826 			value = DEFAULT_TX_INTR_ABS_DELAY;
3827 		} else if (strcmp(pr_name, "_rx_bcopy_threshold") == 0) {
3828 			value = DEFAULT_RX_BCOPY_THRESHOLD;
3829 		} else if (strcmp(pr_name, "_max_num_rcv_packets") == 0) {
3830 			value = DEFAULT_RX_LIMIT_ON_INTR;
3831 		} else if (strcmp(pr_name, "_rx_intr_delay") == 0) {
3832 			value = DEFAULT_RX_INTR_DELAY;
3833 		} else if (strcmp(pr_name, "_rx_intr_abs_delay") == 0) {
3834 			value = DEFAULT_RX_INTR_ABS_DELAY;
3835 		} else if (strcmp(pr_name, "_intr_throttling_rate") == 0) {
3836 			value = DEFAULT_INTR_THROTTLING;
3837 		} else if (strcmp(pr_name, "_intr_adaptive") == 0) {
3838 			value = 1;
3839 		} else {
3840 			return;
3841 		}
3842 
3843 		(void) snprintf(valstr, sizeof (valstr), "%d", value);
3844 		mac_prop_info_set_default_str(prh, valstr);
3845 		break;
3846 	}
3847 	}
3848 }
3849 
3850 /* ARGSUSED2 */
3851 static int
3852 e1000g_set_priv_prop(struct e1000g *Adapter, const char *pr_name,
3853     uint_t pr_valsize, const void *pr_val)
3854 {
3855 	int err = 0;
3856 	long result;
3857 	struct e1000_hw *hw = &Adapter->shared;
3858 
3859 	if (strcmp(pr_name, "_tx_bcopy_threshold") == 0) {
3860 		if (pr_val == NULL) {
3861 			err = EINVAL;
3862 			return (err);
3863 		}
3864 		(void) ddi_strtol(pr_val, (char **)NULL, 0, &result);
3865 		if (result < MIN_TX_BCOPY_THRESHOLD ||
3866 		    result > MAX_TX_BCOPY_THRESHOLD)
3867 			err = EINVAL;
3868 		else {
3869 			Adapter->tx_bcopy_thresh = (uint32_t)result;
3870 		}
3871 		return (err);
3872 	}
3873 	if (strcmp(pr_name, "_tx_interrupt_enable") == 0) {
3874 		if (pr_val == NULL) {
3875 			err = EINVAL;
3876 			return (err);
3877 		}
3878 		(void) ddi_strtol(pr_val, (char **)NULL, 0, &result);
3879 		if (result < 0 || result > 1)
3880 			err = EINVAL;
3881 		else {
3882 			Adapter->tx_intr_enable = (result == 1) ?
3883 			    B_TRUE: B_FALSE;
3884 			if (Adapter->tx_intr_enable)
3885 				e1000g_mask_tx_interrupt(Adapter);
3886 			else
3887 				e1000g_clear_tx_interrupt(Adapter);
3888 			if (e1000g_check_acc_handle(
3889 			    Adapter->osdep.reg_handle) != DDI_FM_OK) {
3890 				ddi_fm_service_impact(Adapter->dip,
3891 				    DDI_SERVICE_DEGRADED);
3892 				err = EIO;
3893 			}
3894 		}
3895 		return (err);
3896 	}
3897 	if (strcmp(pr_name, "_tx_intr_delay") == 0) {
3898 		if (pr_val == NULL) {
3899 			err = EINVAL;
3900 			return (err);
3901 		}
3902 		(void) ddi_strtol(pr_val, (char **)NULL, 0, &result);
3903 		if (result < MIN_TX_INTR_DELAY ||
3904 		    result > MAX_TX_INTR_DELAY)
3905 			err = EINVAL;
3906 		else {
3907 			Adapter->tx_intr_delay = (uint32_t)result;
3908 			E1000_WRITE_REG(hw, E1000_TIDV, Adapter->tx_intr_delay);
3909 			if (e1000g_check_acc_handle(
3910 			    Adapter->osdep.reg_handle) != DDI_FM_OK) {
3911 				ddi_fm_service_impact(Adapter->dip,
3912 				    DDI_SERVICE_DEGRADED);
3913 				err = EIO;
3914 			}
3915 		}
3916 		return (err);
3917 	}
3918 	if (strcmp(pr_name, "_tx_intr_abs_delay") == 0) {
3919 		if (pr_val == NULL) {
3920 			err = EINVAL;
3921 			return (err);
3922 		}
3923 		(void) ddi_strtol(pr_val, (char **)NULL, 0, &result);
3924 		if (result < MIN_TX_INTR_ABS_DELAY ||
3925 		    result > MAX_TX_INTR_ABS_DELAY)
3926 			err = EINVAL;
3927 		else {
3928 			Adapter->tx_intr_abs_delay = (uint32_t)result;
3929 			E1000_WRITE_REG(hw, E1000_TADV,
3930 			    Adapter->tx_intr_abs_delay);
3931 			if (e1000g_check_acc_handle(
3932 			    Adapter->osdep.reg_handle) != DDI_FM_OK) {
3933 				ddi_fm_service_impact(Adapter->dip,
3934 				    DDI_SERVICE_DEGRADED);
3935 				err = EIO;
3936 			}
3937 		}
3938 		return (err);
3939 	}
3940 	if (strcmp(pr_name, "_rx_bcopy_threshold") == 0) {
3941 		if (pr_val == NULL) {
3942 			err = EINVAL;
3943 			return (err);
3944 		}
3945 		(void) ddi_strtol(pr_val, (char **)NULL, 0, &result);
3946 		if (result < MIN_RX_BCOPY_THRESHOLD ||
3947 		    result > MAX_RX_BCOPY_THRESHOLD)
3948 			err = EINVAL;
3949 		else
3950 			Adapter->rx_bcopy_thresh = (uint32_t)result;
3951 		return (err);
3952 	}
3953 	if (strcmp(pr_name, "_max_num_rcv_packets") == 0) {
3954 		if (pr_val == NULL) {
3955 			err = EINVAL;
3956 			return (err);
3957 		}
3958 		(void) ddi_strtol(pr_val, (char **)NULL, 0, &result);
3959 		if (result < MIN_RX_LIMIT_ON_INTR ||
3960 		    result > MAX_RX_LIMIT_ON_INTR)
3961 			err = EINVAL;
3962 		else
3963 			Adapter->rx_limit_onintr = (uint32_t)result;
3964 		return (err);
3965 	}
3966 	if (strcmp(pr_name, "_rx_intr_delay") == 0) {
3967 		if (pr_val == NULL) {
3968 			err = EINVAL;
3969 			return (err);
3970 		}
3971 		(void) ddi_strtol(pr_val, (char **)NULL, 0, &result);
3972 		if (result < MIN_RX_INTR_DELAY ||
3973 		    result > MAX_RX_INTR_DELAY)
3974 			err = EINVAL;
3975 		else {
3976 			Adapter->rx_intr_delay = (uint32_t)result;
3977 			E1000_WRITE_REG(hw, E1000_RDTR, Adapter->rx_intr_delay);
3978 			if (e1000g_check_acc_handle(
3979 			    Adapter->osdep.reg_handle) != DDI_FM_OK) {
3980 				ddi_fm_service_impact(Adapter->dip,
3981 				    DDI_SERVICE_DEGRADED);
3982 				err = EIO;
3983 			}
3984 		}
3985 		return (err);
3986 	}
3987 	if (strcmp(pr_name, "_rx_intr_abs_delay") == 0) {
3988 		if (pr_val == NULL) {
3989 			err = EINVAL;
3990 			return (err);
3991 		}
3992 		(void) ddi_strtol(pr_val, (char **)NULL, 0, &result);
3993 		if (result < MIN_RX_INTR_ABS_DELAY ||
3994 		    result > MAX_RX_INTR_ABS_DELAY)
3995 			err = EINVAL;
3996 		else {
3997 			Adapter->rx_intr_abs_delay = (uint32_t)result;
3998 			E1000_WRITE_REG(hw, E1000_RADV,
3999 			    Adapter->rx_intr_abs_delay);
4000 			if (e1000g_check_acc_handle(
4001 			    Adapter->osdep.reg_handle) != DDI_FM_OK) {
4002 				ddi_fm_service_impact(Adapter->dip,
4003 				    DDI_SERVICE_DEGRADED);
4004 				err = EIO;
4005 			}
4006 		}
4007 		return (err);
4008 	}
4009 	if (strcmp(pr_name, "_intr_throttling_rate") == 0) {
4010 		if (pr_val == NULL) {
4011 			err = EINVAL;
4012 			return (err);
4013 		}
4014 		(void) ddi_strtol(pr_val, (char **)NULL, 0, &result);
4015 		if (result < MIN_INTR_THROTTLING ||
4016 		    result > MAX_INTR_THROTTLING)
4017 			err = EINVAL;
4018 		else {
4019 			if (hw->mac.type >= e1000_82540) {
4020 				Adapter->intr_throttling_rate =
4021 				    (uint32_t)result;
4022 				E1000_WRITE_REG(hw, E1000_ITR,
4023 				    Adapter->intr_throttling_rate);
4024 				if (e1000g_check_acc_handle(
4025 				    Adapter->osdep.reg_handle) != DDI_FM_OK) {
4026 					ddi_fm_service_impact(Adapter->dip,
4027 					    DDI_SERVICE_DEGRADED);
4028 					err = EIO;
4029 				}
4030 			} else
4031 				err = EINVAL;
4032 		}
4033 		return (err);
4034 	}
4035 	if (strcmp(pr_name, "_intr_adaptive") == 0) {
4036 		if (pr_val == NULL) {
4037 			err = EINVAL;
4038 			return (err);
4039 		}
4040 		(void) ddi_strtol(pr_val, (char **)NULL, 0, &result);
4041 		if (result < 0 || result > 1)
4042 			err = EINVAL;
4043 		else {
4044 			if (hw->mac.type >= e1000_82540) {
4045 				Adapter->intr_adaptive = (result == 1) ?
4046 				    B_TRUE : B_FALSE;
4047 			} else {
4048 				err = EINVAL;
4049 			}
4050 		}
4051 		return (err);
4052 	}
4053 	return (ENOTSUP);
4054 }
4055 
4056 static int
4057 e1000g_get_priv_prop(struct e1000g *Adapter, const char *pr_name,
4058     uint_t pr_valsize, void *pr_val)
4059 {
4060 	int err = ENOTSUP;
4061 	int value;
4062 
4063 	if (strcmp(pr_name, "_adv_pause_cap") == 0) {
4064 		value = Adapter->param_adv_pause;
4065 		err = 0;
4066 		goto done;
4067 	}
4068 	if (strcmp(pr_name, "_adv_asym_pause_cap") == 0) {
4069 		value = Adapter->param_adv_asym_pause;
4070 		err = 0;
4071 		goto done;
4072 	}
4073 	if (strcmp(pr_name, "_tx_bcopy_threshold") == 0) {
4074 		value = Adapter->tx_bcopy_thresh;
4075 		err = 0;
4076 		goto done;
4077 	}
4078 	if (strcmp(pr_name, "_tx_interrupt_enable") == 0) {
4079 		value = Adapter->tx_intr_enable;
4080 		err = 0;
4081 		goto done;
4082 	}
4083 	if (strcmp(pr_name, "_tx_intr_delay") == 0) {
4084 		value = Adapter->tx_intr_delay;
4085 		err = 0;
4086 		goto done;
4087 	}
4088 	if (strcmp(pr_name, "_tx_intr_abs_delay") == 0) {
4089 		value = Adapter->tx_intr_abs_delay;
4090 		err = 0;
4091 		goto done;
4092 	}
4093 	if (strcmp(pr_name, "_rx_bcopy_threshold") == 0) {
4094 		value = Adapter->rx_bcopy_thresh;
4095 		err = 0;
4096 		goto done;
4097 	}
4098 	if (strcmp(pr_name, "_max_num_rcv_packets") == 0) {
4099 		value = Adapter->rx_limit_onintr;
4100 		err = 0;
4101 		goto done;
4102 	}
4103 	if (strcmp(pr_name, "_rx_intr_delay") == 0) {
4104 		value = Adapter->rx_intr_delay;
4105 		err = 0;
4106 		goto done;
4107 	}
4108 	if (strcmp(pr_name, "_rx_intr_abs_delay") == 0) {
4109 		value = Adapter->rx_intr_abs_delay;
4110 		err = 0;
4111 		goto done;
4112 	}
4113 	if (strcmp(pr_name, "_intr_throttling_rate") == 0) {
4114 		value = Adapter->intr_throttling_rate;
4115 		err = 0;
4116 		goto done;
4117 	}
4118 	if (strcmp(pr_name, "_intr_adaptive") == 0) {
4119 		value = Adapter->intr_adaptive;
4120 		err = 0;
4121 		goto done;
4122 	}
4123 done:
4124 	if (err == 0) {
4125 		(void) snprintf(pr_val, pr_valsize, "%d", value);
4126 	}
4127 	return (err);
4128 }
4129 
4130 /*
4131  * e1000g_get_conf - get configurations set in e1000g.conf
4132  * This routine gets user-configured values out of the configuration
4133  * file e1000g.conf.
4134  *
4135  * For each configurable value, there is a minimum, a maximum, and a
4136  * default.
4137  * If user does not configure a value, use the default.
4138  * If user configures below the minimum, use the minumum.
4139  * If user configures above the maximum, use the maxumum.
4140  */
4141 static void
4142 e1000g_get_conf(struct e1000g *Adapter)
4143 {
4144 	struct e1000_hw *hw = &Adapter->shared;
4145 	boolean_t tbi_compatibility = B_FALSE;
4146 	boolean_t is_jumbo = B_FALSE;
4147 	int propval;
4148 	/*
4149 	 * decrease the number of descriptors and free packets
4150 	 * for jumbo frames to reduce tx/rx resource consumption
4151 	 */
4152 	if (Adapter->max_frame_size >= FRAME_SIZE_UPTO_4K) {
4153 		is_jumbo = B_TRUE;
4154 	}
4155 
4156 	/*
4157 	 * get each configurable property from e1000g.conf
4158 	 */
4159 
4160 	/*
4161 	 * NumTxDescriptors
4162 	 */
4163 	Adapter->tx_desc_num_flag =
4164 	    e1000g_get_prop(Adapter, "NumTxDescriptors",
4165 	    MIN_NUM_TX_DESCRIPTOR, MAX_NUM_TX_DESCRIPTOR,
4166 	    is_jumbo ? DEFAULT_JUMBO_NUM_TX_DESC
4167 	    : DEFAULT_NUM_TX_DESCRIPTOR, &propval);
4168 	Adapter->tx_desc_num = propval;
4169 
4170 	/*
4171 	 * NumRxDescriptors
4172 	 */
4173 	Adapter->rx_desc_num_flag =
4174 	    e1000g_get_prop(Adapter, "NumRxDescriptors",
4175 	    MIN_NUM_RX_DESCRIPTOR, MAX_NUM_RX_DESCRIPTOR,
4176 	    is_jumbo ? DEFAULT_JUMBO_NUM_RX_DESC
4177 	    : DEFAULT_NUM_RX_DESCRIPTOR, &propval);
4178 	Adapter->rx_desc_num = propval;
4179 
4180 	/*
4181 	 * NumRxFreeList
4182 	 */
4183 	Adapter->rx_buf_num_flag =
4184 	    e1000g_get_prop(Adapter, "NumRxFreeList",
4185 	    MIN_NUM_RX_FREELIST, MAX_NUM_RX_FREELIST,
4186 	    is_jumbo ? DEFAULT_JUMBO_NUM_RX_BUF
4187 	    : DEFAULT_NUM_RX_FREELIST, &propval);
4188 	Adapter->rx_freelist_limit = propval;
4189 
4190 	/*
4191 	 * NumTxPacketList
4192 	 */
4193 	Adapter->tx_buf_num_flag =
4194 	    e1000g_get_prop(Adapter, "NumTxPacketList",
4195 	    MIN_NUM_TX_FREELIST, MAX_NUM_TX_FREELIST,
4196 	    is_jumbo ? DEFAULT_JUMBO_NUM_TX_BUF
4197 	    : DEFAULT_NUM_TX_FREELIST, &propval);
4198 	Adapter->tx_freelist_num = propval;
4199 
4200 	/*
4201 	 * FlowControl
4202 	 */
4203 	hw->fc.send_xon = B_TRUE;
4204 	(void) e1000g_get_prop(Adapter, "FlowControl",
4205 	    e1000_fc_none, 4, DEFAULT_FLOW_CONTROL, &propval);
4206 	hw->fc.requested_mode = propval;
4207 	/* 4 is the setting that says "let the eeprom decide" */
4208 	if (hw->fc.requested_mode == 4)
4209 		hw->fc.requested_mode = e1000_fc_default;
4210 
4211 	/*
4212 	 * Max Num Receive Packets on Interrupt
4213 	 */
4214 	(void) e1000g_get_prop(Adapter, "MaxNumReceivePackets",
4215 	    MIN_RX_LIMIT_ON_INTR, MAX_RX_LIMIT_ON_INTR,
4216 	    DEFAULT_RX_LIMIT_ON_INTR, &propval);
4217 	Adapter->rx_limit_onintr = propval;
4218 
4219 	/*
4220 	 * PHY master slave setting
4221 	 */
4222 	(void) e1000g_get_prop(Adapter, "SetMasterSlave",
4223 	    e1000_ms_hw_default, e1000_ms_auto,
4224 	    e1000_ms_hw_default, &propval);
4225 	hw->phy.ms_type = propval;
4226 
4227 	/*
4228 	 * Parameter which controls TBI mode workaround, which is only
4229 	 * needed on certain switches such as Cisco 6500/Foundry
4230 	 */
4231 	(void) e1000g_get_prop(Adapter, "TbiCompatibilityEnable",
4232 	    0, 1, DEFAULT_TBI_COMPAT_ENABLE, &propval);
4233 	tbi_compatibility = (propval == 1);
4234 	e1000_set_tbi_compatibility_82543(hw, tbi_compatibility);
4235 
4236 	/*
4237 	 * MSI Enable
4238 	 */
4239 	(void) e1000g_get_prop(Adapter, "MSIEnable",
4240 	    0, 1, DEFAULT_MSI_ENABLE, &propval);
4241 	Adapter->msi_enable = (propval == 1);
4242 
4243 	/*
4244 	 * Interrupt Throttling Rate
4245 	 */
4246 	(void) e1000g_get_prop(Adapter, "intr_throttling_rate",
4247 	    MIN_INTR_THROTTLING, MAX_INTR_THROTTLING,
4248 	    DEFAULT_INTR_THROTTLING, &propval);
4249 	Adapter->intr_throttling_rate = propval;
4250 
4251 	/*
4252 	 * Adaptive Interrupt Blanking Enable/Disable
4253 	 * It is enabled by default
4254 	 */
4255 	(void) e1000g_get_prop(Adapter, "intr_adaptive", 0, 1, 1,
4256 	    &propval);
4257 	Adapter->intr_adaptive = (propval == 1);
4258 
4259 	/*
4260 	 * Hardware checksum enable/disable parameter
4261 	 */
4262 	(void) e1000g_get_prop(Adapter, "tx_hcksum_enable",
4263 	    0, 1, DEFAULT_TX_HCKSUM_ENABLE, &propval);
4264 	Adapter->tx_hcksum_enable = (propval == 1);
4265 	/*
4266 	 * Checksum on/off selection via global parameters.
4267 	 *
4268 	 * If the chip is flagged as not capable of (correctly)
4269 	 * handling checksumming, we don't enable it on either
4270 	 * Rx or Tx side.  Otherwise, we take this chip's settings
4271 	 * from the patchable global defaults.
4272 	 *
4273 	 * We advertise our capabilities only if TX offload is
4274 	 * enabled.  On receive, the stack will accept checksummed
4275 	 * packets anyway, even if we haven't said we can deliver
4276 	 * them.
4277 	 */
4278 	switch (hw->mac.type) {
4279 		case e1000_82540:
4280 		case e1000_82544:
4281 		case e1000_82545:
4282 		case e1000_82545_rev_3:
4283 		case e1000_82546:
4284 		case e1000_82546_rev_3:
4285 		case e1000_82571:
4286 		case e1000_82572:
4287 		case e1000_82573:
4288 		case e1000_80003es2lan:
4289 			break;
4290 		/*
4291 		 * For the following Intel PRO/1000 chipsets, we have not
4292 		 * tested the hardware checksum offload capability, so we
4293 		 * disable the capability for them.
4294 		 *	e1000_82542,
4295 		 *	e1000_82543,
4296 		 *	e1000_82541,
4297 		 *	e1000_82541_rev_2,
4298 		 *	e1000_82547,
4299 		 *	e1000_82547_rev_2,
4300 		 */
4301 		default:
4302 			Adapter->tx_hcksum_enable = B_FALSE;
4303 	}
4304 
4305 	/*
4306 	 * Large Send Offloading(LSO) Enable/Disable
4307 	 * If the tx hardware checksum is not enabled, LSO should be
4308 	 * disabled.
4309 	 */
4310 	(void) e1000g_get_prop(Adapter, "lso_enable",
4311 	    0, 1, DEFAULT_LSO_ENABLE, &propval);
4312 	Adapter->lso_enable = (propval == 1);
4313 
4314 	switch (hw->mac.type) {
4315 		case e1000_82546:
4316 		case e1000_82546_rev_3:
4317 			if (Adapter->lso_enable)
4318 				Adapter->lso_premature_issue = B_TRUE;
4319 			/* FALLTHRU */
4320 		case e1000_82571:
4321 		case e1000_82572:
4322 		case e1000_82573:
4323 		case e1000_80003es2lan:
4324 			break;
4325 		default:
4326 			Adapter->lso_enable = B_FALSE;
4327 	}
4328 
4329 	if (!Adapter->tx_hcksum_enable) {
4330 		Adapter->lso_premature_issue = B_FALSE;
4331 		Adapter->lso_enable = B_FALSE;
4332 	}
4333 
4334 	/*
4335 	 * If mem_workaround_82546 is enabled, the rx buffer allocated by
4336 	 * e1000_82545, e1000_82546 and e1000_82546_rev_3
4337 	 * will not cross 64k boundary.
4338 	 */
4339 	(void) e1000g_get_prop(Adapter, "mem_workaround_82546",
4340 	    0, 1, DEFAULT_MEM_WORKAROUND_82546, &propval);
4341 	Adapter->mem_workaround_82546 = (propval == 1);
4342 
4343 	/*
4344 	 * Max number of multicast addresses
4345 	 */
4346 	(void) e1000g_get_prop(Adapter, "mcast_max_num",
4347 	    MIN_MCAST_NUM, MAX_MCAST_NUM, hw->mac.mta_reg_count * 32,
4348 	    &propval);
4349 	Adapter->mcast_max_num = propval;
4350 }
4351 
4352 /*
4353  * e1000g_get_prop - routine to read properties
4354  *
4355  * Get a user-configure property value out of the configuration
4356  * file e1000g.conf.
4357  *
4358  * Caller provides name of the property, a default value, a minimum
4359  * value, a maximum value and a pointer to the returned property
4360  * value.
4361  *
4362  * Return B_TRUE if the configured value of the property is not a default
4363  * value, otherwise return B_FALSE.
4364  */
4365 static boolean_t
4366 e1000g_get_prop(struct e1000g *Adapter,	/* point to per-adapter structure */
4367     char *propname,		/* name of the property */
4368     int minval,			/* minimum acceptable value */
4369     int maxval,			/* maximim acceptable value */
4370     int defval,			/* default value */
4371     int *propvalue)		/* property value return to caller */
4372 {
4373 	int propval;		/* value returned for requested property */
4374 	int *props;		/* point to array of properties returned */
4375 	uint_t nprops;		/* number of property value returned */
4376 	boolean_t ret = B_TRUE;
4377 
4378 	/*
4379 	 * get the array of properties from the config file
4380 	 */
4381 	if (ddi_prop_lookup_int_array(DDI_DEV_T_ANY, Adapter->dip,
4382 	    DDI_PROP_DONTPASS, propname, &props, &nprops) == DDI_PROP_SUCCESS) {
4383 		/* got some properties, test if we got enough */
4384 		if (Adapter->instance < nprops) {
4385 			propval = props[Adapter->instance];
4386 		} else {
4387 			/* not enough properties configured */
4388 			propval = defval;
4389 			E1000G_DEBUGLOG_2(Adapter, E1000G_INFO_LEVEL,
4390 			    "Not Enough %s values found in e1000g.conf"
4391 			    " - set to %d\n",
4392 			    propname, propval);
4393 			ret = B_FALSE;
4394 		}
4395 
4396 		/* free memory allocated for properties */
4397 		ddi_prop_free(props);
4398 
4399 	} else {
4400 		propval = defval;
4401 		ret = B_FALSE;
4402 	}
4403 
4404 	/*
4405 	 * enforce limits
4406 	 */
4407 	if (propval > maxval) {
4408 		propval = maxval;
4409 		E1000G_DEBUGLOG_2(Adapter, E1000G_INFO_LEVEL,
4410 		    "Too High %s value in e1000g.conf - set to %d\n",
4411 		    propname, propval);
4412 	}
4413 
4414 	if (propval < minval) {
4415 		propval = minval;
4416 		E1000G_DEBUGLOG_2(Adapter, E1000G_INFO_LEVEL,
4417 		    "Too Low %s value in e1000g.conf - set to %d\n",
4418 		    propname, propval);
4419 	}
4420 
4421 	*propvalue = propval;
4422 	return (ret);
4423 }
4424 
4425 static boolean_t
4426 e1000g_link_check(struct e1000g *Adapter)
4427 {
4428 	uint16_t speed, duplex, phydata;
4429 	boolean_t link_changed = B_FALSE;
4430 	struct e1000_hw *hw;
4431 	uint32_t reg_tarc;
4432 
4433 	hw = &Adapter->shared;
4434 
4435 	if (e1000g_link_up(Adapter)) {
4436 		/*
4437 		 * The Link is up, check whether it was marked as down earlier
4438 		 */
4439 		if (Adapter->link_state != LINK_STATE_UP) {
4440 			(void) e1000_get_speed_and_duplex(hw, &speed, &duplex);
4441 			Adapter->link_speed = speed;
4442 			Adapter->link_duplex = duplex;
4443 			Adapter->link_state = LINK_STATE_UP;
4444 			link_changed = B_TRUE;
4445 
4446 			if (Adapter->link_speed == SPEED_1000)
4447 				Adapter->stall_threshold = TX_STALL_TIME_2S;
4448 			else
4449 				Adapter->stall_threshold = TX_STALL_TIME_8S;
4450 
4451 			Adapter->tx_link_down_timeout = 0;
4452 
4453 			if ((hw->mac.type == e1000_82571) ||
4454 			    (hw->mac.type == e1000_82572)) {
4455 				reg_tarc = E1000_READ_REG(hw, E1000_TARC(0));
4456 				if (speed == SPEED_1000)
4457 					reg_tarc |= (1 << 21);
4458 				else
4459 					reg_tarc &= ~(1 << 21);
4460 				E1000_WRITE_REG(hw, E1000_TARC(0), reg_tarc);
4461 			}
4462 		}
4463 		Adapter->smartspeed = 0;
4464 	} else {
4465 		if (Adapter->link_state != LINK_STATE_DOWN) {
4466 			Adapter->link_speed = 0;
4467 			Adapter->link_duplex = 0;
4468 			Adapter->link_state = LINK_STATE_DOWN;
4469 			link_changed = B_TRUE;
4470 
4471 			/*
4472 			 * SmartSpeed workaround for Tabor/TanaX, When the
4473 			 * driver loses link disable auto master/slave
4474 			 * resolution.
4475 			 */
4476 			if (hw->phy.type == e1000_phy_igp) {
4477 				(void) e1000_read_phy_reg(hw,
4478 				    PHY_1000T_CTRL, &phydata);
4479 				phydata |= CR_1000T_MS_ENABLE;
4480 				(void) e1000_write_phy_reg(hw,
4481 				    PHY_1000T_CTRL, phydata);
4482 			}
4483 		} else {
4484 			e1000g_smartspeed(Adapter);
4485 		}
4486 
4487 		if (Adapter->e1000g_state & E1000G_STARTED) {
4488 			if (Adapter->tx_link_down_timeout <
4489 			    MAX_TX_LINK_DOWN_TIMEOUT) {
4490 				Adapter->tx_link_down_timeout++;
4491 			} else if (Adapter->tx_link_down_timeout ==
4492 			    MAX_TX_LINK_DOWN_TIMEOUT) {
4493 				e1000g_tx_clean(Adapter);
4494 				Adapter->tx_link_down_timeout++;
4495 			}
4496 		}
4497 	}
4498 
4499 	if (e1000g_check_acc_handle(Adapter->osdep.reg_handle) != DDI_FM_OK)
4500 		ddi_fm_service_impact(Adapter->dip, DDI_SERVICE_DEGRADED);
4501 
4502 	return (link_changed);
4503 }
4504 
4505 /*
4506  * e1000g_reset_link - Using the link properties to setup the link
4507  */
4508 int
4509 e1000g_reset_link(struct e1000g *Adapter)
4510 {
4511 	struct e1000_mac_info *mac;
4512 	struct e1000_phy_info *phy;
4513 	struct e1000_hw *hw;
4514 	boolean_t invalid;
4515 
4516 	mac = &Adapter->shared.mac;
4517 	phy = &Adapter->shared.phy;
4518 	hw = &Adapter->shared;
4519 	invalid = B_FALSE;
4520 
4521 	if (hw->phy.media_type != e1000_media_type_copper)
4522 		goto out;
4523 
4524 	if (Adapter->param_adv_autoneg == 1) {
4525 		mac->autoneg = B_TRUE;
4526 		phy->autoneg_advertised = 0;
4527 
4528 		/*
4529 		 * 1000hdx is not supported for autonegotiation
4530 		 */
4531 		if (Adapter->param_adv_1000fdx == 1)
4532 			phy->autoneg_advertised |= ADVERTISE_1000_FULL;
4533 
4534 		if (Adapter->param_adv_100fdx == 1)
4535 			phy->autoneg_advertised |= ADVERTISE_100_FULL;
4536 
4537 		if (Adapter->param_adv_100hdx == 1)
4538 			phy->autoneg_advertised |= ADVERTISE_100_HALF;
4539 
4540 		if (Adapter->param_adv_10fdx == 1)
4541 			phy->autoneg_advertised |= ADVERTISE_10_FULL;
4542 
4543 		if (Adapter->param_adv_10hdx == 1)
4544 			phy->autoneg_advertised |= ADVERTISE_10_HALF;
4545 
4546 		if (phy->autoneg_advertised == 0)
4547 			invalid = B_TRUE;
4548 	} else {
4549 		mac->autoneg = B_FALSE;
4550 
4551 		/*
4552 		 * For Intel copper cards, 1000fdx and 1000hdx are not
4553 		 * supported for forced link
4554 		 */
4555 		if (Adapter->param_adv_100fdx == 1)
4556 			mac->forced_speed_duplex = ADVERTISE_100_FULL;
4557 		else if (Adapter->param_adv_100hdx == 1)
4558 			mac->forced_speed_duplex = ADVERTISE_100_HALF;
4559 		else if (Adapter->param_adv_10fdx == 1)
4560 			mac->forced_speed_duplex = ADVERTISE_10_FULL;
4561 		else if (Adapter->param_adv_10hdx == 1)
4562 			mac->forced_speed_duplex = ADVERTISE_10_HALF;
4563 		else
4564 			invalid = B_TRUE;
4565 
4566 	}
4567 
4568 	if (invalid) {
4569 		e1000g_log(Adapter, CE_WARN,
4570 		    "Invalid link settings. Setup link to "
4571 		    "support autonegotiation with all link capabilities.");
4572 		mac->autoneg = B_TRUE;
4573 		phy->autoneg_advertised = AUTONEG_ADVERTISE_SPEED_DEFAULT;
4574 	}
4575 
4576 out:
4577 	return (e1000_setup_link(&Adapter->shared));
4578 }
4579 
4580 static void
4581 e1000g_timer_tx_resched(struct e1000g *Adapter)
4582 {
4583 	e1000g_tx_ring_t *tx_ring = Adapter->tx_ring;
4584 
4585 	rw_enter(&Adapter->chip_lock, RW_READER);
4586 
4587 	if (tx_ring->resched_needed &&
4588 	    ((ddi_get_lbolt() - tx_ring->resched_timestamp) >
4589 	    drv_usectohz(1000000)) &&
4590 	    (Adapter->e1000g_state & E1000G_STARTED) &&
4591 	    (tx_ring->tbd_avail >= DEFAULT_TX_NO_RESOURCE)) {
4592 		tx_ring->resched_needed = B_FALSE;
4593 		mac_tx_update(Adapter->mh);
4594 		E1000G_STAT(tx_ring->stat_reschedule);
4595 		E1000G_STAT(tx_ring->stat_timer_reschedule);
4596 	}
4597 
4598 	rw_exit(&Adapter->chip_lock);
4599 }
4600 
4601 static void
4602 e1000g_local_timer(void *ws)
4603 {
4604 	struct e1000g *Adapter = (struct e1000g *)ws;
4605 	struct e1000_hw *hw;
4606 	e1000g_ether_addr_t ether_addr;
4607 	boolean_t link_changed;
4608 
4609 	hw = &Adapter->shared;
4610 
4611 	if (Adapter->e1000g_state & E1000G_ERROR) {
4612 		rw_enter(&Adapter->chip_lock, RW_WRITER);
4613 		Adapter->e1000g_state &= ~E1000G_ERROR;
4614 		rw_exit(&Adapter->chip_lock);
4615 
4616 		Adapter->reset_count++;
4617 		if (e1000g_global_reset(Adapter)) {
4618 			ddi_fm_service_impact(Adapter->dip,
4619 			    DDI_SERVICE_RESTORED);
4620 			e1000g_timer_tx_resched(Adapter);
4621 		} else
4622 			ddi_fm_service_impact(Adapter->dip,
4623 			    DDI_SERVICE_LOST);
4624 		return;
4625 	}
4626 
4627 	if (e1000g_stall_check(Adapter)) {
4628 		E1000G_DEBUGLOG_0(Adapter, E1000G_INFO_LEVEL,
4629 		    "Tx stall detected. Activate automatic recovery.\n");
4630 		e1000g_fm_ereport(Adapter, DDI_FM_DEVICE_STALL);
4631 		ddi_fm_service_impact(Adapter->dip, DDI_SERVICE_LOST);
4632 		Adapter->reset_count++;
4633 		if (e1000g_reset_adapter(Adapter)) {
4634 			ddi_fm_service_impact(Adapter->dip,
4635 			    DDI_SERVICE_RESTORED);
4636 			e1000g_timer_tx_resched(Adapter);
4637 		}
4638 		return;
4639 	}
4640 
4641 	link_changed = B_FALSE;
4642 	rw_enter(&Adapter->chip_lock, RW_READER);
4643 	if (Adapter->link_complete)
4644 		link_changed = e1000g_link_check(Adapter);
4645 	rw_exit(&Adapter->chip_lock);
4646 
4647 	if (link_changed) {
4648 		if (!Adapter->reset_flag &&
4649 		    (Adapter->e1000g_state & E1000G_STARTED) &&
4650 		    !(Adapter->e1000g_state & E1000G_SUSPENDED))
4651 			mac_link_update(Adapter->mh, Adapter->link_state);
4652 		if (Adapter->link_state == LINK_STATE_UP)
4653 			Adapter->reset_flag = B_FALSE;
4654 	}
4655 	/*
4656 	 * Workaround for esb2. Data stuck in fifo on a link
4657 	 * down event. Reset the adapter to recover it.
4658 	 */
4659 	if (Adapter->esb2_workaround) {
4660 		Adapter->esb2_workaround = B_FALSE;
4661 		(void) e1000g_reset_adapter(Adapter);
4662 		return;
4663 	}
4664 
4665 	/*
4666 	 * With 82571 controllers, any locally administered address will
4667 	 * be overwritten when there is a reset on the other port.
4668 	 * Detect this circumstance and correct it.
4669 	 */
4670 	if ((hw->mac.type == e1000_82571) &&
4671 	    (e1000_get_laa_state_82571(hw) == B_TRUE)) {
4672 		ether_addr.reg.low = E1000_READ_REG_ARRAY(hw, E1000_RA, 0);
4673 		ether_addr.reg.high = E1000_READ_REG_ARRAY(hw, E1000_RA, 1);
4674 
4675 		ether_addr.reg.low = ntohl(ether_addr.reg.low);
4676 		ether_addr.reg.high = ntohl(ether_addr.reg.high);
4677 
4678 		if ((ether_addr.mac.addr[5] != hw->mac.addr[0]) ||
4679 		    (ether_addr.mac.addr[4] != hw->mac.addr[1]) ||
4680 		    (ether_addr.mac.addr[3] != hw->mac.addr[2]) ||
4681 		    (ether_addr.mac.addr[2] != hw->mac.addr[3]) ||
4682 		    (ether_addr.mac.addr[1] != hw->mac.addr[4]) ||
4683 		    (ether_addr.mac.addr[0] != hw->mac.addr[5])) {
4684 			(void) e1000_rar_set(hw, hw->mac.addr, 0);
4685 		}
4686 	}
4687 
4688 	/*
4689 	 * Long TTL workaround for 82541/82547
4690 	 */
4691 	(void) e1000_igp_ttl_workaround_82547(hw);
4692 
4693 	/*
4694 	 * Check for Adaptive IFS settings If there are lots of collisions
4695 	 * change the value in steps...
4696 	 * These properties should only be set for 10/100
4697 	 */
4698 	if ((hw->phy.media_type == e1000_media_type_copper) &&
4699 	    ((Adapter->link_speed == SPEED_100) ||
4700 	    (Adapter->link_speed == SPEED_10))) {
4701 		e1000_update_adaptive(hw);
4702 	}
4703 	/*
4704 	 * Set Timer Interrupts
4705 	 */
4706 	E1000_WRITE_REG(hw, E1000_ICS, E1000_IMS_RXT0);
4707 
4708 	if (e1000g_check_acc_handle(Adapter->osdep.reg_handle) != DDI_FM_OK)
4709 		ddi_fm_service_impact(Adapter->dip, DDI_SERVICE_DEGRADED);
4710 	else
4711 		e1000g_timer_tx_resched(Adapter);
4712 
4713 	restart_watchdog_timer(Adapter);
4714 }
4715 
4716 /*
4717  * The function e1000g_link_timer() is called when the timer for link setup
4718  * is expired, which indicates the completion of the link setup. The link
4719  * state will not be updated until the link setup is completed. And the
4720  * link state will not be sent to the upper layer through mac_link_update()
4721  * in this function. It will be updated in the local timer routine or the
4722  * interrupt service routine after the interface is started (plumbed).
4723  */
4724 static void
4725 e1000g_link_timer(void *arg)
4726 {
4727 	struct e1000g *Adapter = (struct e1000g *)arg;
4728 
4729 	mutex_enter(&Adapter->link_lock);
4730 	Adapter->link_complete = B_TRUE;
4731 	Adapter->link_tid = 0;
4732 	mutex_exit(&Adapter->link_lock);
4733 }
4734 
4735 /*
4736  * e1000g_force_speed_duplex - read forced speed/duplex out of e1000g.conf
4737  *
4738  * This function read the forced speed and duplex for 10/100 Mbps speeds
4739  * and also for 1000 Mbps speeds from the e1000g.conf file
4740  */
4741 static void
4742 e1000g_force_speed_duplex(struct e1000g *Adapter)
4743 {
4744 	int forced;
4745 	int propval;
4746 	struct e1000_mac_info *mac = &Adapter->shared.mac;
4747 	struct e1000_phy_info *phy = &Adapter->shared.phy;
4748 
4749 	/*
4750 	 * get value out of config file
4751 	 */
4752 	(void) e1000g_get_prop(Adapter, "ForceSpeedDuplex",
4753 	    GDIAG_10_HALF, GDIAG_ANY, GDIAG_ANY, &forced);
4754 
4755 	switch (forced) {
4756 	case GDIAG_10_HALF:
4757 		/*
4758 		 * Disable Auto Negotiation
4759 		 */
4760 		mac->autoneg = B_FALSE;
4761 		mac->forced_speed_duplex = ADVERTISE_10_HALF;
4762 		break;
4763 	case GDIAG_10_FULL:
4764 		/*
4765 		 * Disable Auto Negotiation
4766 		 */
4767 		mac->autoneg = B_FALSE;
4768 		mac->forced_speed_duplex = ADVERTISE_10_FULL;
4769 		break;
4770 	case GDIAG_100_HALF:
4771 		/*
4772 		 * Disable Auto Negotiation
4773 		 */
4774 		mac->autoneg = B_FALSE;
4775 		mac->forced_speed_duplex = ADVERTISE_100_HALF;
4776 		break;
4777 	case GDIAG_100_FULL:
4778 		/*
4779 		 * Disable Auto Negotiation
4780 		 */
4781 		mac->autoneg = B_FALSE;
4782 		mac->forced_speed_duplex = ADVERTISE_100_FULL;
4783 		break;
4784 	case GDIAG_1000_FULL:
4785 		/*
4786 		 * The gigabit spec requires autonegotiation.  Therefore,
4787 		 * when the user wants to force the speed to 1000Mbps, we
4788 		 * enable AutoNeg, but only allow the harware to advertise
4789 		 * 1000Mbps.  This is different from 10/100 operation, where
4790 		 * we are allowed to link without any negotiation.
4791 		 */
4792 		mac->autoneg = B_TRUE;
4793 		phy->autoneg_advertised = ADVERTISE_1000_FULL;
4794 		break;
4795 	default:	/* obey the setting of AutoNegAdvertised */
4796 		mac->autoneg = B_TRUE;
4797 		(void) e1000g_get_prop(Adapter, "AutoNegAdvertised",
4798 		    0, AUTONEG_ADVERTISE_SPEED_DEFAULT,
4799 		    AUTONEG_ADVERTISE_SPEED_DEFAULT, &propval);
4800 		phy->autoneg_advertised = (uint16_t)propval;
4801 		break;
4802 	}	/* switch */
4803 }
4804 
4805 /*
4806  * e1000g_get_max_frame_size - get jumbo frame setting from e1000g.conf
4807  *
4808  * This function reads MaxFrameSize from e1000g.conf
4809  */
4810 static void
4811 e1000g_get_max_frame_size(struct e1000g *Adapter)
4812 {
4813 	int max_frame;
4814 
4815 	/*
4816 	 * get value out of config file
4817 	 */
4818 	(void) e1000g_get_prop(Adapter, "MaxFrameSize", 0, 3, 0,
4819 	    &max_frame);
4820 
4821 	switch (max_frame) {
4822 	case 0:
4823 		Adapter->default_mtu = ETHERMTU;
4824 		break;
4825 	case 1:
4826 		Adapter->default_mtu = FRAME_SIZE_UPTO_4K -
4827 		    sizeof (struct ether_vlan_header) - ETHERFCSL;
4828 		break;
4829 	case 2:
4830 		Adapter->default_mtu = FRAME_SIZE_UPTO_8K -
4831 		    sizeof (struct ether_vlan_header) - ETHERFCSL;
4832 		break;
4833 	case 3:
4834 		Adapter->default_mtu = FRAME_SIZE_UPTO_16K -
4835 		    sizeof (struct ether_vlan_header) - ETHERFCSL;
4836 		break;
4837 	default:
4838 		Adapter->default_mtu = ETHERMTU;
4839 		break;
4840 	}	/* switch */
4841 
4842 	/*
4843 	 * If the user configed MTU is larger than the deivce's maximum MTU,
4844 	 * the MTU is set to the deivce's maximum value.
4845 	 */
4846 	if (Adapter->default_mtu > Adapter->max_mtu)
4847 		Adapter->default_mtu = Adapter->max_mtu;
4848 
4849 	Adapter->max_frame_size = e1000g_mtu2maxframe(Adapter->default_mtu);
4850 }
4851 
4852 /*
4853  * e1000g_pch_limits - Apply limits of the PCH silicon type
4854  *
4855  * At any frame size larger than the ethernet default,
4856  * prevent linking at 10/100 speeds.
4857  */
4858 static void
4859 e1000g_pch_limits(struct e1000g *Adapter)
4860 {
4861 	struct e1000_hw *hw = &Adapter->shared;
4862 
4863 	/* only applies to PCH silicon type */
4864 	if (hw->mac.type != e1000_pchlan && hw->mac.type != e1000_pch2lan)
4865 		return;
4866 
4867 	/* only applies to frames larger than ethernet default */
4868 	if (Adapter->max_frame_size > DEFAULT_FRAME_SIZE) {
4869 		hw->mac.autoneg = B_TRUE;
4870 		hw->phy.autoneg_advertised = ADVERTISE_1000_FULL;
4871 
4872 		Adapter->param_adv_autoneg = 1;
4873 		Adapter->param_adv_1000fdx = 1;
4874 
4875 		Adapter->param_adv_100fdx = 0;
4876 		Adapter->param_adv_100hdx = 0;
4877 		Adapter->param_adv_10fdx = 0;
4878 		Adapter->param_adv_10hdx = 0;
4879 
4880 		e1000g_param_sync(Adapter);
4881 	}
4882 }
4883 
4884 /*
4885  * e1000g_mtu2maxframe - convert given MTU to maximum frame size
4886  */
4887 static uint32_t
4888 e1000g_mtu2maxframe(uint32_t mtu)
4889 {
4890 	uint32_t maxframe;
4891 
4892 	maxframe = mtu + sizeof (struct ether_vlan_header) + ETHERFCSL;
4893 
4894 	return (maxframe);
4895 }
4896 
4897 static void
4898 arm_watchdog_timer(struct e1000g *Adapter)
4899 {
4900 	Adapter->watchdog_tid =
4901 	    timeout(e1000g_local_timer,
4902 	    (void *)Adapter, 1 * drv_usectohz(1000000));
4903 }
4904 #pragma inline(arm_watchdog_timer)
4905 
4906 static void
4907 enable_watchdog_timer(struct e1000g *Adapter)
4908 {
4909 	mutex_enter(&Adapter->watchdog_lock);
4910 
4911 	if (!Adapter->watchdog_timer_enabled) {
4912 		Adapter->watchdog_timer_enabled = B_TRUE;
4913 		Adapter->watchdog_timer_started = B_TRUE;
4914 		arm_watchdog_timer(Adapter);
4915 	}
4916 
4917 	mutex_exit(&Adapter->watchdog_lock);
4918 }
4919 
4920 static void
4921 disable_watchdog_timer(struct e1000g *Adapter)
4922 {
4923 	timeout_id_t tid;
4924 
4925 	mutex_enter(&Adapter->watchdog_lock);
4926 
4927 	Adapter->watchdog_timer_enabled = B_FALSE;
4928 	Adapter->watchdog_timer_started = B_FALSE;
4929 	tid = Adapter->watchdog_tid;
4930 	Adapter->watchdog_tid = 0;
4931 
4932 	mutex_exit(&Adapter->watchdog_lock);
4933 
4934 	if (tid != 0)
4935 		(void) untimeout(tid);
4936 }
4937 
4938 static void
4939 start_watchdog_timer(struct e1000g *Adapter)
4940 {
4941 	mutex_enter(&Adapter->watchdog_lock);
4942 
4943 	if (Adapter->watchdog_timer_enabled) {
4944 		if (!Adapter->watchdog_timer_started) {
4945 			Adapter->watchdog_timer_started = B_TRUE;
4946 			arm_watchdog_timer(Adapter);
4947 		}
4948 	}
4949 
4950 	mutex_exit(&Adapter->watchdog_lock);
4951 }
4952 
4953 static void
4954 restart_watchdog_timer(struct e1000g *Adapter)
4955 {
4956 	mutex_enter(&Adapter->watchdog_lock);
4957 
4958 	if (Adapter->watchdog_timer_started)
4959 		arm_watchdog_timer(Adapter);
4960 
4961 	mutex_exit(&Adapter->watchdog_lock);
4962 }
4963 
4964 static void
4965 stop_watchdog_timer(struct e1000g *Adapter)
4966 {
4967 	timeout_id_t tid;
4968 
4969 	mutex_enter(&Adapter->watchdog_lock);
4970 
4971 	Adapter->watchdog_timer_started = B_FALSE;
4972 	tid = Adapter->watchdog_tid;
4973 	Adapter->watchdog_tid = 0;
4974 
4975 	mutex_exit(&Adapter->watchdog_lock);
4976 
4977 	if (tid != 0)
4978 		(void) untimeout(tid);
4979 }
4980 
4981 static void
4982 stop_link_timer(struct e1000g *Adapter)
4983 {
4984 	timeout_id_t tid;
4985 
4986 	/* Disable the link timer */
4987 	mutex_enter(&Adapter->link_lock);
4988 
4989 	tid = Adapter->link_tid;
4990 	Adapter->link_tid = 0;
4991 
4992 	mutex_exit(&Adapter->link_lock);
4993 
4994 	if (tid != 0)
4995 		(void) untimeout(tid);
4996 }
4997 
4998 static void
4999 stop_82547_timer(e1000g_tx_ring_t *tx_ring)
5000 {
5001 	timeout_id_t tid;
5002 
5003 	/* Disable the tx timer for 82547 chipset */
5004 	mutex_enter(&tx_ring->tx_lock);
5005 
5006 	tx_ring->timer_enable_82547 = B_FALSE;
5007 	tid = tx_ring->timer_id_82547;
5008 	tx_ring->timer_id_82547 = 0;
5009 
5010 	mutex_exit(&tx_ring->tx_lock);
5011 
5012 	if (tid != 0)
5013 		(void) untimeout(tid);
5014 }
5015 
5016 void
5017 e1000g_clear_interrupt(struct e1000g *Adapter)
5018 {
5019 	E1000_WRITE_REG(&Adapter->shared, E1000_IMC,
5020 	    0xffffffff & ~E1000_IMS_RXSEQ);
5021 }
5022 
5023 void
5024 e1000g_mask_interrupt(struct e1000g *Adapter)
5025 {
5026 	E1000_WRITE_REG(&Adapter->shared, E1000_IMS,
5027 	    IMS_ENABLE_MASK & ~E1000_IMS_TXDW);
5028 
5029 	if (Adapter->tx_intr_enable)
5030 		e1000g_mask_tx_interrupt(Adapter);
5031 }
5032 
5033 /*
5034  * This routine is called by e1000g_quiesce(), therefore must not block.
5035  */
5036 void
5037 e1000g_clear_all_interrupts(struct e1000g *Adapter)
5038 {
5039 	E1000_WRITE_REG(&Adapter->shared, E1000_IMC, 0xffffffff);
5040 }
5041 
5042 void
5043 e1000g_mask_tx_interrupt(struct e1000g *Adapter)
5044 {
5045 	E1000_WRITE_REG(&Adapter->shared, E1000_IMS, E1000_IMS_TXDW);
5046 }
5047 
5048 void
5049 e1000g_clear_tx_interrupt(struct e1000g *Adapter)
5050 {
5051 	E1000_WRITE_REG(&Adapter->shared, E1000_IMC, E1000_IMS_TXDW);
5052 }
5053 
5054 static void
5055 e1000g_smartspeed(struct e1000g *Adapter)
5056 {
5057 	struct e1000_hw *hw = &Adapter->shared;
5058 	uint16_t phy_status;
5059 	uint16_t phy_ctrl;
5060 
5061 	/*
5062 	 * If we're not T-or-T, or we're not autoneg'ing, or we're not
5063 	 * advertising 1000Full, we don't even use the workaround
5064 	 */
5065 	if ((hw->phy.type != e1000_phy_igp) ||
5066 	    !hw->mac.autoneg ||
5067 	    !(hw->phy.autoneg_advertised & ADVERTISE_1000_FULL))
5068 		return;
5069 
5070 	/*
5071 	 * True if this is the first call of this function or after every
5072 	 * 30 seconds of not having link
5073 	 */
5074 	if (Adapter->smartspeed == 0) {
5075 		/*
5076 		 * If Master/Slave config fault is asserted twice, we
5077 		 * assume back-to-back
5078 		 */
5079 		(void) e1000_read_phy_reg(hw, PHY_1000T_STATUS, &phy_status);
5080 		if (!(phy_status & SR_1000T_MS_CONFIG_FAULT))
5081 			return;
5082 
5083 		(void) e1000_read_phy_reg(hw, PHY_1000T_STATUS, &phy_status);
5084 		if (!(phy_status & SR_1000T_MS_CONFIG_FAULT))
5085 			return;
5086 		/*
5087 		 * We're assuming back-2-back because our status register
5088 		 * insists! there's a fault in the master/slave
5089 		 * relationship that was "negotiated"
5090 		 */
5091 		(void) e1000_read_phy_reg(hw, PHY_1000T_CTRL, &phy_ctrl);
5092 		/*
5093 		 * Is the phy configured for manual configuration of
5094 		 * master/slave?
5095 		 */
5096 		if (phy_ctrl & CR_1000T_MS_ENABLE) {
5097 			/*
5098 			 * Yes.  Then disable manual configuration (enable
5099 			 * auto configuration) of master/slave
5100 			 */
5101 			phy_ctrl &= ~CR_1000T_MS_ENABLE;
5102 			(void) e1000_write_phy_reg(hw,
5103 			    PHY_1000T_CTRL, phy_ctrl);
5104 			/*
5105 			 * Effectively starting the clock
5106 			 */
5107 			Adapter->smartspeed++;
5108 			/*
5109 			 * Restart autonegotiation
5110 			 */
5111 			if (!e1000_phy_setup_autoneg(hw) &&
5112 			    !e1000_read_phy_reg(hw, PHY_CONTROL, &phy_ctrl)) {
5113 				phy_ctrl |= (MII_CR_AUTO_NEG_EN |
5114 				    MII_CR_RESTART_AUTO_NEG);
5115 				(void) e1000_write_phy_reg(hw,
5116 				    PHY_CONTROL, phy_ctrl);
5117 			}
5118 		}
5119 		return;
5120 		/*
5121 		 * Has 6 seconds transpired still without link? Remember,
5122 		 * you should reset the smartspeed counter once you obtain
5123 		 * link
5124 		 */
5125 	} else if (Adapter->smartspeed == E1000_SMARTSPEED_DOWNSHIFT) {
5126 		/*
5127 		 * Yes.  Remember, we did at the start determine that
5128 		 * there's a master/slave configuration fault, so we're
5129 		 * still assuming there's someone on the other end, but we
5130 		 * just haven't yet been able to talk to it. We then
5131 		 * re-enable auto configuration of master/slave to see if
5132 		 * we're running 2/3 pair cables.
5133 		 */
5134 		/*
5135 		 * If still no link, perhaps using 2/3 pair cable
5136 		 */
5137 		(void) e1000_read_phy_reg(hw, PHY_1000T_CTRL, &phy_ctrl);
5138 		phy_ctrl |= CR_1000T_MS_ENABLE;
5139 		(void) e1000_write_phy_reg(hw, PHY_1000T_CTRL, phy_ctrl);
5140 		/*
5141 		 * Restart autoneg with phy enabled for manual
5142 		 * configuration of master/slave
5143 		 */
5144 		if (!e1000_phy_setup_autoneg(hw) &&
5145 		    !e1000_read_phy_reg(hw, PHY_CONTROL, &phy_ctrl)) {
5146 			phy_ctrl |=
5147 			    (MII_CR_AUTO_NEG_EN | MII_CR_RESTART_AUTO_NEG);
5148 			(void) e1000_write_phy_reg(hw, PHY_CONTROL, phy_ctrl);
5149 		}
5150 		/*
5151 		 * Hopefully, there are no more faults and we've obtained
5152 		 * link as a result.
5153 		 */
5154 	}
5155 	/*
5156 	 * Restart process after E1000_SMARTSPEED_MAX iterations (30
5157 	 * seconds)
5158 	 */
5159 	if (Adapter->smartspeed++ == E1000_SMARTSPEED_MAX)
5160 		Adapter->smartspeed = 0;
5161 }
5162 
5163 static boolean_t
5164 is_valid_mac_addr(uint8_t *mac_addr)
5165 {
5166 	const uint8_t addr_test1[6] = { 0, 0, 0, 0, 0, 0 };
5167 	const uint8_t addr_test2[6] =
5168 	    { 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF };
5169 
5170 	if (!(bcmp(addr_test1, mac_addr, ETHERADDRL)) ||
5171 	    !(bcmp(addr_test2, mac_addr, ETHERADDRL)))
5172 		return (B_FALSE);
5173 
5174 	return (B_TRUE);
5175 }
5176 
5177 /*
5178  * e1000g_stall_check - check for tx stall
5179  *
5180  * This function checks if the adapter is stalled (in transmit).
5181  *
5182  * It is called each time the watchdog timeout is invoked.
5183  * If the transmit descriptor reclaim continuously fails,
5184  * the watchdog value will increment by 1. If the watchdog
5185  * value exceeds the threshold, the adapter is assumed to
5186  * have stalled and need to be reset.
5187  */
5188 static boolean_t
5189 e1000g_stall_check(struct e1000g *Adapter)
5190 {
5191 	e1000g_tx_ring_t *tx_ring;
5192 
5193 	tx_ring = Adapter->tx_ring;
5194 
5195 	if (Adapter->link_state != LINK_STATE_UP)
5196 		return (B_FALSE);
5197 
5198 	(void) e1000g_recycle(tx_ring);
5199 
5200 	if (Adapter->stall_flag)
5201 		return (B_TRUE);
5202 
5203 	return (B_FALSE);
5204 }
5205 
5206 #ifdef E1000G_DEBUG
5207 static enum ioc_reply
5208 e1000g_pp_ioctl(struct e1000g *e1000gp, struct iocblk *iocp, mblk_t *mp)
5209 {
5210 	void (*ppfn)(struct e1000g *e1000gp, e1000g_peekpoke_t *ppd);
5211 	e1000g_peekpoke_t *ppd;
5212 	uint64_t mem_va;
5213 	uint64_t maxoff;
5214 	boolean_t peek;
5215 
5216 	switch (iocp->ioc_cmd) {
5217 
5218 	case E1000G_IOC_REG_PEEK:
5219 		peek = B_TRUE;
5220 		break;
5221 
5222 	case E1000G_IOC_REG_POKE:
5223 		peek = B_FALSE;
5224 		break;
5225 
5226 	deault:
5227 		E1000G_DEBUGLOG_1(e1000gp, E1000G_INFO_LEVEL,
5228 		    "e1000g_diag_ioctl: invalid ioctl command 0x%X\n",
5229 		    iocp->ioc_cmd);
5230 		return (IOC_INVAL);
5231 	}
5232 
5233 	/*
5234 	 * Validate format of ioctl
5235 	 */
5236 	if (iocp->ioc_count != sizeof (e1000g_peekpoke_t))
5237 		return (IOC_INVAL);
5238 	if (mp->b_cont == NULL)
5239 		return (IOC_INVAL);
5240 
5241 	ppd = (e1000g_peekpoke_t *)(uintptr_t)mp->b_cont->b_rptr;
5242 
5243 	/*
5244 	 * Validate request parameters
5245 	 */
5246 	switch (ppd->pp_acc_space) {
5247 
5248 	default:
5249 		E1000G_DEBUGLOG_1(e1000gp, E1000G_INFO_LEVEL,
5250 		    "e1000g_diag_ioctl: invalid access space 0x%X\n",
5251 		    ppd->pp_acc_space);
5252 		return (IOC_INVAL);
5253 
5254 	case E1000G_PP_SPACE_REG:
5255 		/*
5256 		 * Memory-mapped I/O space
5257 		 */
5258 		ASSERT(ppd->pp_acc_size == 4);
5259 		if (ppd->pp_acc_size != 4)
5260 			return (IOC_INVAL);
5261 
5262 		if ((ppd->pp_acc_offset % ppd->pp_acc_size) != 0)
5263 			return (IOC_INVAL);
5264 
5265 		mem_va = 0;
5266 		maxoff = 0x10000;
5267 		ppfn = peek ? e1000g_ioc_peek_reg : e1000g_ioc_poke_reg;
5268 		break;
5269 
5270 	case E1000G_PP_SPACE_E1000G:
5271 		/*
5272 		 * E1000g data structure!
5273 		 */
5274 		mem_va = (uintptr_t)e1000gp;
5275 		maxoff = sizeof (struct e1000g);
5276 		ppfn = peek ? e1000g_ioc_peek_mem : e1000g_ioc_poke_mem;
5277 		break;
5278 
5279 	}
5280 
5281 	if (ppd->pp_acc_offset >= maxoff)
5282 		return (IOC_INVAL);
5283 
5284 	if (ppd->pp_acc_offset + ppd->pp_acc_size > maxoff)
5285 		return (IOC_INVAL);
5286 
5287 	/*
5288 	 * All OK - go!
5289 	 */
5290 	ppd->pp_acc_offset += mem_va;
5291 	(*ppfn)(e1000gp, ppd);
5292 	return (peek ? IOC_REPLY : IOC_ACK);
5293 }
5294 
5295 static void
5296 e1000g_ioc_peek_reg(struct e1000g *e1000gp, e1000g_peekpoke_t *ppd)
5297 {
5298 	ddi_acc_handle_t handle;
5299 	uint32_t *regaddr;
5300 
5301 	handle = e1000gp->osdep.reg_handle;
5302 	regaddr = (uint32_t *)((uintptr_t)e1000gp->shared.hw_addr +
5303 	    (uintptr_t)ppd->pp_acc_offset);
5304 
5305 	ppd->pp_acc_data = ddi_get32(handle, regaddr);
5306 }
5307 
5308 static void
5309 e1000g_ioc_poke_reg(struct e1000g *e1000gp, e1000g_peekpoke_t *ppd)
5310 {
5311 	ddi_acc_handle_t handle;
5312 	uint32_t *regaddr;
5313 	uint32_t value;
5314 
5315 	handle = e1000gp->osdep.reg_handle;
5316 	regaddr = (uint32_t *)((uintptr_t)e1000gp->shared.hw_addr +
5317 	    (uintptr_t)ppd->pp_acc_offset);
5318 	value = (uint32_t)ppd->pp_acc_data;
5319 
5320 	ddi_put32(handle, regaddr, value);
5321 }
5322 
5323 static void
5324 e1000g_ioc_peek_mem(struct e1000g *e1000gp, e1000g_peekpoke_t *ppd)
5325 {
5326 	uint64_t value;
5327 	void *vaddr;
5328 
5329 	vaddr = (void *)(uintptr_t)ppd->pp_acc_offset;
5330 
5331 	switch (ppd->pp_acc_size) {
5332 	case 1:
5333 		value = *(uint8_t *)vaddr;
5334 		break;
5335 
5336 	case 2:
5337 		value = *(uint16_t *)vaddr;
5338 		break;
5339 
5340 	case 4:
5341 		value = *(uint32_t *)vaddr;
5342 		break;
5343 
5344 	case 8:
5345 		value = *(uint64_t *)vaddr;
5346 		break;
5347 	}
5348 
5349 	E1000G_DEBUGLOG_4(e1000gp, E1000G_INFO_LEVEL,
5350 	    "e1000g_ioc_peek_mem($%p, $%p) peeked 0x%llx from $%p\n",
5351 	    (void *)e1000gp, (void *)ppd, value, vaddr);
5352 
5353 	ppd->pp_acc_data = value;
5354 }
5355 
5356 static void
5357 e1000g_ioc_poke_mem(struct e1000g *e1000gp, e1000g_peekpoke_t *ppd)
5358 {
5359 	uint64_t value;
5360 	void *vaddr;
5361 
5362 	vaddr = (void *)(uintptr_t)ppd->pp_acc_offset;
5363 	value = ppd->pp_acc_data;
5364 
5365 	E1000G_DEBUGLOG_4(e1000gp, E1000G_INFO_LEVEL,
5366 	    "e1000g_ioc_poke_mem($%p, $%p) poking 0x%llx at $%p\n",
5367 	    (void *)e1000gp, (void *)ppd, value, vaddr);
5368 
5369 	switch (ppd->pp_acc_size) {
5370 	case 1:
5371 		*(uint8_t *)vaddr = (uint8_t)value;
5372 		break;
5373 
5374 	case 2:
5375 		*(uint16_t *)vaddr = (uint16_t)value;
5376 		break;
5377 
5378 	case 4:
5379 		*(uint32_t *)vaddr = (uint32_t)value;
5380 		break;
5381 
5382 	case 8:
5383 		*(uint64_t *)vaddr = (uint64_t)value;
5384 		break;
5385 	}
5386 }
5387 #endif
5388 
5389 /*
5390  * Loopback Support
5391  */
5392 static lb_property_t lb_normal =
5393 	{ normal,	"normal",	E1000G_LB_NONE		};
5394 static lb_property_t lb_external1000 =
5395 	{ external,	"1000Mbps",	E1000G_LB_EXTERNAL_1000	};
5396 static lb_property_t lb_external100 =
5397 	{ external,	"100Mbps",	E1000G_LB_EXTERNAL_100	};
5398 static lb_property_t lb_external10 =
5399 	{ external,	"10Mbps",	E1000G_LB_EXTERNAL_10	};
5400 static lb_property_t lb_phy =
5401 	{ internal,	"PHY",		E1000G_LB_INTERNAL_PHY	};
5402 
5403 static enum ioc_reply
5404 e1000g_loopback_ioctl(struct e1000g *Adapter, struct iocblk *iocp, mblk_t *mp)
5405 {
5406 	lb_info_sz_t *lbsp;
5407 	lb_property_t *lbpp;
5408 	struct e1000_hw *hw;
5409 	uint32_t *lbmp;
5410 	uint32_t size;
5411 	uint32_t value;
5412 
5413 	hw = &Adapter->shared;
5414 
5415 	if (mp->b_cont == NULL)
5416 		return (IOC_INVAL);
5417 
5418 	if (!e1000g_check_loopback_support(hw)) {
5419 		e1000g_log(NULL, CE_WARN,
5420 		    "Loopback is not supported on e1000g%d", Adapter->instance);
5421 		return (IOC_INVAL);
5422 	}
5423 
5424 	switch (iocp->ioc_cmd) {
5425 	default:
5426 		return (IOC_INVAL);
5427 
5428 	case LB_GET_INFO_SIZE:
5429 		size = sizeof (lb_info_sz_t);
5430 		if (iocp->ioc_count != size)
5431 			return (IOC_INVAL);
5432 
5433 		rw_enter(&Adapter->chip_lock, RW_WRITER);
5434 		e1000g_get_phy_state(Adapter);
5435 
5436 		/*
5437 		 * Workaround for hardware faults. In order to get a stable
5438 		 * state of phy, we will wait for a specific interval and
5439 		 * try again. The time delay is an experiential value based
5440 		 * on our testing.
5441 		 */
5442 		msec_delay(100);
5443 		e1000g_get_phy_state(Adapter);
5444 		rw_exit(&Adapter->chip_lock);
5445 
5446 		value = sizeof (lb_normal);
5447 		if ((Adapter->phy_ext_status & IEEE_ESR_1000T_FD_CAPS) ||
5448 		    (Adapter->phy_ext_status & IEEE_ESR_1000X_FD_CAPS) ||
5449 		    (hw->phy.media_type == e1000_media_type_fiber) ||
5450 		    (hw->phy.media_type == e1000_media_type_internal_serdes)) {
5451 			value += sizeof (lb_phy);
5452 			switch (hw->mac.type) {
5453 			case e1000_82571:
5454 			case e1000_82572:
5455 			case e1000_80003es2lan:
5456 				value += sizeof (lb_external1000);
5457 				break;
5458 			}
5459 		}
5460 		if ((Adapter->phy_status & MII_SR_100X_FD_CAPS) ||
5461 		    (Adapter->phy_status & MII_SR_100T2_FD_CAPS))
5462 			value += sizeof (lb_external100);
5463 		if (Adapter->phy_status & MII_SR_10T_FD_CAPS)
5464 			value += sizeof (lb_external10);
5465 
5466 		lbsp = (lb_info_sz_t *)(uintptr_t)mp->b_cont->b_rptr;
5467 		*lbsp = value;
5468 		break;
5469 
5470 	case LB_GET_INFO:
5471 		value = sizeof (lb_normal);
5472 		if ((Adapter->phy_ext_status & IEEE_ESR_1000T_FD_CAPS) ||
5473 		    (Adapter->phy_ext_status & IEEE_ESR_1000X_FD_CAPS) ||
5474 		    (hw->phy.media_type == e1000_media_type_fiber) ||
5475 		    (hw->phy.media_type == e1000_media_type_internal_serdes)) {
5476 			value += sizeof (lb_phy);
5477 			switch (hw->mac.type) {
5478 			case e1000_82571:
5479 			case e1000_82572:
5480 			case e1000_80003es2lan:
5481 				value += sizeof (lb_external1000);
5482 				break;
5483 			}
5484 		}
5485 		if ((Adapter->phy_status & MII_SR_100X_FD_CAPS) ||
5486 		    (Adapter->phy_status & MII_SR_100T2_FD_CAPS))
5487 			value += sizeof (lb_external100);
5488 		if (Adapter->phy_status & MII_SR_10T_FD_CAPS)
5489 			value += sizeof (lb_external10);
5490 
5491 		size = value;
5492 		if (iocp->ioc_count != size)
5493 			return (IOC_INVAL);
5494 
5495 		value = 0;
5496 		lbpp = (lb_property_t *)(uintptr_t)mp->b_cont->b_rptr;
5497 		lbpp[value++] = lb_normal;
5498 		if ((Adapter->phy_ext_status & IEEE_ESR_1000T_FD_CAPS) ||
5499 		    (Adapter->phy_ext_status & IEEE_ESR_1000X_FD_CAPS) ||
5500 		    (hw->phy.media_type == e1000_media_type_fiber) ||
5501 		    (hw->phy.media_type == e1000_media_type_internal_serdes)) {
5502 			lbpp[value++] = lb_phy;
5503 			switch (hw->mac.type) {
5504 			case e1000_82571:
5505 			case e1000_82572:
5506 			case e1000_80003es2lan:
5507 				lbpp[value++] = lb_external1000;
5508 				break;
5509 			}
5510 		}
5511 		if ((Adapter->phy_status & MII_SR_100X_FD_CAPS) ||
5512 		    (Adapter->phy_status & MII_SR_100T2_FD_CAPS))
5513 			lbpp[value++] = lb_external100;
5514 		if (Adapter->phy_status & MII_SR_10T_FD_CAPS)
5515 			lbpp[value++] = lb_external10;
5516 		break;
5517 
5518 	case LB_GET_MODE:
5519 		size = sizeof (uint32_t);
5520 		if (iocp->ioc_count != size)
5521 			return (IOC_INVAL);
5522 
5523 		lbmp = (uint32_t *)(uintptr_t)mp->b_cont->b_rptr;
5524 		*lbmp = Adapter->loopback_mode;
5525 		break;
5526 
5527 	case LB_SET_MODE:
5528 		size = 0;
5529 		if (iocp->ioc_count != sizeof (uint32_t))
5530 			return (IOC_INVAL);
5531 
5532 		lbmp = (uint32_t *)(uintptr_t)mp->b_cont->b_rptr;
5533 		if (!e1000g_set_loopback_mode(Adapter, *lbmp))
5534 			return (IOC_INVAL);
5535 		break;
5536 	}
5537 
5538 	iocp->ioc_count = size;
5539 	iocp->ioc_error = 0;
5540 
5541 	if (e1000g_check_acc_handle(Adapter->osdep.reg_handle) != DDI_FM_OK) {
5542 		ddi_fm_service_impact(Adapter->dip, DDI_SERVICE_DEGRADED);
5543 		return (IOC_INVAL);
5544 	}
5545 
5546 	return (IOC_REPLY);
5547 }
5548 
5549 static boolean_t
5550 e1000g_check_loopback_support(struct e1000_hw *hw)
5551 {
5552 	switch (hw->mac.type) {
5553 	case e1000_82540:
5554 	case e1000_82545:
5555 	case e1000_82545_rev_3:
5556 	case e1000_82546:
5557 	case e1000_82546_rev_3:
5558 	case e1000_82541:
5559 	case e1000_82541_rev_2:
5560 	case e1000_82547:
5561 	case e1000_82547_rev_2:
5562 	case e1000_82571:
5563 	case e1000_82572:
5564 	case e1000_82573:
5565 	case e1000_82574:
5566 	case e1000_80003es2lan:
5567 	case e1000_ich9lan:
5568 	case e1000_ich10lan:
5569 		return (B_TRUE);
5570 	}
5571 	return (B_FALSE);
5572 }
5573 
5574 static boolean_t
5575 e1000g_set_loopback_mode(struct e1000g *Adapter, uint32_t mode)
5576 {
5577 	struct e1000_hw *hw;
5578 	int i, times;
5579 	boolean_t link_up;
5580 
5581 	if (mode == Adapter->loopback_mode)
5582 		return (B_TRUE);
5583 
5584 	hw = &Adapter->shared;
5585 	times = 0;
5586 
5587 	Adapter->loopback_mode = mode;
5588 
5589 	if (mode == E1000G_LB_NONE) {
5590 		/* Reset the chip */
5591 		hw->phy.autoneg_wait_to_complete = B_TRUE;
5592 		(void) e1000g_reset_adapter(Adapter);
5593 		hw->phy.autoneg_wait_to_complete = B_FALSE;
5594 		return (B_TRUE);
5595 	}
5596 
5597 again:
5598 
5599 	rw_enter(&Adapter->chip_lock, RW_WRITER);
5600 
5601 	switch (mode) {
5602 	default:
5603 		rw_exit(&Adapter->chip_lock);
5604 		return (B_FALSE);
5605 
5606 	case E1000G_LB_EXTERNAL_1000:
5607 		e1000g_set_external_loopback_1000(Adapter);
5608 		break;
5609 
5610 	case E1000G_LB_EXTERNAL_100:
5611 		e1000g_set_external_loopback_100(Adapter);
5612 		break;
5613 
5614 	case E1000G_LB_EXTERNAL_10:
5615 		e1000g_set_external_loopback_10(Adapter);
5616 		break;
5617 
5618 	case E1000G_LB_INTERNAL_PHY:
5619 		e1000g_set_internal_loopback(Adapter);
5620 		break;
5621 	}
5622 
5623 	times++;
5624 
5625 	rw_exit(&Adapter->chip_lock);
5626 
5627 	/* Wait for link up */
5628 	for (i = (PHY_FORCE_LIMIT * 2); i > 0; i--)
5629 		msec_delay(100);
5630 
5631 	rw_enter(&Adapter->chip_lock, RW_WRITER);
5632 
5633 	link_up = e1000g_link_up(Adapter);
5634 
5635 	rw_exit(&Adapter->chip_lock);
5636 
5637 	if (!link_up) {
5638 		E1000G_DEBUGLOG_0(Adapter, E1000G_INFO_LEVEL,
5639 		    "Failed to get the link up");
5640 		if (times < 2) {
5641 			/* Reset the link */
5642 			E1000G_DEBUGLOG_0(Adapter, E1000G_INFO_LEVEL,
5643 			    "Reset the link ...");
5644 			(void) e1000g_reset_adapter(Adapter);
5645 			goto again;
5646 		}
5647 
5648 		/*
5649 		 * Reset driver to loopback none when set loopback failed
5650 		 * for the second time.
5651 		 */
5652 		Adapter->loopback_mode = E1000G_LB_NONE;
5653 
5654 		/* Reset the chip */
5655 		hw->phy.autoneg_wait_to_complete = B_TRUE;
5656 		(void) e1000g_reset_adapter(Adapter);
5657 		hw->phy.autoneg_wait_to_complete = B_FALSE;
5658 
5659 		E1000G_DEBUGLOG_0(Adapter, E1000G_INFO_LEVEL,
5660 		    "Set loopback mode failed, reset to loopback none");
5661 
5662 		return (B_FALSE);
5663 	}
5664 
5665 	return (B_TRUE);
5666 }
5667 
5668 /*
5669  * The following loopback settings are from Intel's technical
5670  * document - "How To Loopback". All the register settings and
5671  * time delay values are directly inherited from the document
5672  * without more explanations available.
5673  */
5674 static void
5675 e1000g_set_internal_loopback(struct e1000g *Adapter)
5676 {
5677 	struct e1000_hw *hw;
5678 	uint32_t ctrl;
5679 	uint32_t status;
5680 	uint16_t phy_ctrl;
5681 	uint16_t phy_reg;
5682 	uint32_t txcw;
5683 
5684 	hw = &Adapter->shared;
5685 
5686 	/* Disable Smart Power Down */
5687 	phy_spd_state(hw, B_FALSE);
5688 
5689 	(void) e1000_read_phy_reg(hw, PHY_CONTROL, &phy_ctrl);
5690 	phy_ctrl &= ~(MII_CR_AUTO_NEG_EN | MII_CR_SPEED_100 | MII_CR_SPEED_10);
5691 	phy_ctrl |= MII_CR_FULL_DUPLEX | MII_CR_SPEED_1000;
5692 
5693 	switch (hw->mac.type) {
5694 	case e1000_82540:
5695 	case e1000_82545:
5696 	case e1000_82545_rev_3:
5697 	case e1000_82546:
5698 	case e1000_82546_rev_3:
5699 	case e1000_82573:
5700 		/* Auto-MDI/MDIX off */
5701 		(void) e1000_write_phy_reg(hw, M88E1000_PHY_SPEC_CTRL, 0x0808);
5702 		/* Reset PHY to update Auto-MDI/MDIX */
5703 		(void) e1000_write_phy_reg(hw, PHY_CONTROL,
5704 		    phy_ctrl | MII_CR_RESET | MII_CR_AUTO_NEG_EN);
5705 		/* Reset PHY to auto-neg off and force 1000 */
5706 		(void) e1000_write_phy_reg(hw, PHY_CONTROL,
5707 		    phy_ctrl | MII_CR_RESET);
5708 		/*
5709 		 * Disable PHY receiver for 82540/545/546 and 82573 Family.
5710 		 * See comments above e1000g_set_internal_loopback() for the
5711 		 * background.
5712 		 */
5713 		(void) e1000_write_phy_reg(hw, 29, 0x001F);
5714 		(void) e1000_write_phy_reg(hw, 30, 0x8FFC);
5715 		(void) e1000_write_phy_reg(hw, 29, 0x001A);
5716 		(void) e1000_write_phy_reg(hw, 30, 0x8FF0);
5717 		break;
5718 	case e1000_80003es2lan:
5719 		/* Force Link Up */
5720 		(void) e1000_write_phy_reg(hw, GG82563_PHY_KMRN_MODE_CTRL,
5721 		    0x1CC);
5722 		/* Sets PCS loopback at 1Gbs */
5723 		(void) e1000_write_phy_reg(hw, GG82563_PHY_MAC_SPEC_CTRL,
5724 		    0x1046);
5725 		break;
5726 	}
5727 
5728 	/*
5729 	 * The following registers should be set for e1000_phy_bm phy type.
5730 	 * e1000_82574, e1000_ich10lan and some e1000_ich9lan use this phy.
5731 	 * For others, we do not need to set these registers.
5732 	 */
5733 	if (hw->phy.type == e1000_phy_bm) {
5734 		/* Set Default MAC Interface speed to 1GB */
5735 		(void) e1000_read_phy_reg(hw, PHY_REG(2, 21), &phy_reg);
5736 		phy_reg &= ~0x0007;
5737 		phy_reg |= 0x006;
5738 		(void) e1000_write_phy_reg(hw, PHY_REG(2, 21), phy_reg);
5739 		/* Assert SW reset for above settings to take effect */
5740 		(void) e1000_phy_commit(hw);
5741 		msec_delay(1);
5742 		/* Force Full Duplex */
5743 		(void) e1000_read_phy_reg(hw, PHY_REG(769, 16), &phy_reg);
5744 		(void) e1000_write_phy_reg(hw, PHY_REG(769, 16),
5745 		    phy_reg | 0x000C);
5746 		/* Set Link Up (in force link) */
5747 		(void) e1000_read_phy_reg(hw, PHY_REG(776, 16), &phy_reg);
5748 		(void) e1000_write_phy_reg(hw, PHY_REG(776, 16),
5749 		    phy_reg | 0x0040);
5750 		/* Force Link */
5751 		(void) e1000_read_phy_reg(hw, PHY_REG(769, 16), &phy_reg);
5752 		(void) e1000_write_phy_reg(hw, PHY_REG(769, 16),
5753 		    phy_reg | 0x0040);
5754 		/* Set Early Link Enable */
5755 		(void) e1000_read_phy_reg(hw, PHY_REG(769, 20), &phy_reg);
5756 		(void) e1000_write_phy_reg(hw, PHY_REG(769, 20),
5757 		    phy_reg | 0x0400);
5758 	}
5759 
5760 	/* Set loopback */
5761 	(void) e1000_write_phy_reg(hw, PHY_CONTROL, phy_ctrl | MII_CR_LOOPBACK);
5762 
5763 	msec_delay(250);
5764 
5765 	/* Now set up the MAC to the same speed/duplex as the PHY. */
5766 	ctrl = E1000_READ_REG(hw, E1000_CTRL);
5767 	ctrl &= ~E1000_CTRL_SPD_SEL;	/* Clear the speed sel bits */
5768 	ctrl |= (E1000_CTRL_FRCSPD |	/* Set the Force Speed Bit */
5769 	    E1000_CTRL_FRCDPX |		/* Set the Force Duplex Bit */
5770 	    E1000_CTRL_SPD_1000 |	/* Force Speed to 1000 */
5771 	    E1000_CTRL_FD);		/* Force Duplex to FULL */
5772 
5773 	switch (hw->mac.type) {
5774 	case e1000_82540:
5775 	case e1000_82545:
5776 	case e1000_82545_rev_3:
5777 	case e1000_82546:
5778 	case e1000_82546_rev_3:
5779 		/*
5780 		 * For some serdes we'll need to commit the writes now
5781 		 * so that the status is updated on link
5782 		 */
5783 		if (hw->phy.media_type == e1000_media_type_internal_serdes) {
5784 			E1000_WRITE_REG(hw, E1000_CTRL, ctrl);
5785 			msec_delay(100);
5786 			ctrl = E1000_READ_REG(hw, E1000_CTRL);
5787 		}
5788 
5789 		if (hw->phy.media_type == e1000_media_type_copper) {
5790 			/* Invert Loss of Signal */
5791 			ctrl |= E1000_CTRL_ILOS;
5792 		} else {
5793 			/* Set ILOS on fiber nic if half duplex is detected */
5794 			status = E1000_READ_REG(hw, E1000_STATUS);
5795 			if ((status & E1000_STATUS_FD) == 0)
5796 				ctrl |= E1000_CTRL_ILOS | E1000_CTRL_SLU;
5797 		}
5798 		break;
5799 
5800 	case e1000_82571:
5801 	case e1000_82572:
5802 		/*
5803 		 * The fiber/SerDes versions of this adapter do not contain an
5804 		 * accessible PHY. Therefore, loopback beyond MAC must be done
5805 		 * using SerDes analog loopback.
5806 		 */
5807 		if (hw->phy.media_type != e1000_media_type_copper) {
5808 			/* Disable autoneg by setting bit 31 of TXCW to zero */
5809 			txcw = E1000_READ_REG(hw, E1000_TXCW);
5810 			txcw &= ~((uint32_t)1 << 31);
5811 			E1000_WRITE_REG(hw, E1000_TXCW, txcw);
5812 
5813 			/*
5814 			 * Write 0x410 to Serdes Control register
5815 			 * to enable Serdes analog loopback
5816 			 */
5817 			E1000_WRITE_REG(hw, E1000_SCTL, 0x0410);
5818 			msec_delay(10);
5819 		}
5820 
5821 		status = E1000_READ_REG(hw, E1000_STATUS);
5822 		/* Set ILOS on fiber nic if half duplex is detected */
5823 		if ((hw->phy.media_type == e1000_media_type_fiber) &&
5824 		    ((status & E1000_STATUS_FD) == 0 ||
5825 		    (status & E1000_STATUS_LU) == 0))
5826 			ctrl |= E1000_CTRL_ILOS | E1000_CTRL_SLU;
5827 		else if (hw->phy.media_type == e1000_media_type_internal_serdes)
5828 			ctrl |= E1000_CTRL_SLU;
5829 		break;
5830 
5831 	case e1000_82573:
5832 		ctrl |= E1000_CTRL_ILOS;
5833 		break;
5834 	case e1000_ich9lan:
5835 	case e1000_ich10lan:
5836 		ctrl |= E1000_CTRL_SLU;
5837 		break;
5838 	}
5839 	if (hw->phy.type == e1000_phy_bm)
5840 		ctrl |= E1000_CTRL_SLU | E1000_CTRL_ILOS;
5841 
5842 	E1000_WRITE_REG(hw, E1000_CTRL, ctrl);
5843 }
5844 
5845 static void
5846 e1000g_set_external_loopback_1000(struct e1000g *Adapter)
5847 {
5848 	struct e1000_hw *hw;
5849 	uint32_t rctl;
5850 	uint32_t ctrl_ext;
5851 	uint32_t ctrl;
5852 	uint32_t status;
5853 	uint32_t txcw;
5854 	uint16_t phydata;
5855 
5856 	hw = &Adapter->shared;
5857 
5858 	/* Disable Smart Power Down */
5859 	phy_spd_state(hw, B_FALSE);
5860 
5861 	switch (hw->mac.type) {
5862 	case e1000_82571:
5863 	case e1000_82572:
5864 		switch (hw->phy.media_type) {
5865 		case e1000_media_type_copper:
5866 			/* Force link up (Must be done before the PHY writes) */
5867 			ctrl = E1000_READ_REG(hw, E1000_CTRL);
5868 			ctrl |= E1000_CTRL_SLU;	/* Force Link Up */
5869 			E1000_WRITE_REG(hw, E1000_CTRL, ctrl);
5870 
5871 			rctl = E1000_READ_REG(hw, E1000_RCTL);
5872 			rctl |= (E1000_RCTL_EN |
5873 			    E1000_RCTL_SBP |
5874 			    E1000_RCTL_UPE |
5875 			    E1000_RCTL_MPE |
5876 			    E1000_RCTL_LPE |
5877 			    E1000_RCTL_BAM);		/* 0x803E */
5878 			E1000_WRITE_REG(hw, E1000_RCTL, rctl);
5879 
5880 			ctrl_ext = E1000_READ_REG(hw, E1000_CTRL_EXT);
5881 			ctrl_ext |= (E1000_CTRL_EXT_SDP4_DATA |
5882 			    E1000_CTRL_EXT_SDP6_DATA |
5883 			    E1000_CTRL_EXT_SDP3_DATA |
5884 			    E1000_CTRL_EXT_SDP4_DIR |
5885 			    E1000_CTRL_EXT_SDP6_DIR |
5886 			    E1000_CTRL_EXT_SDP3_DIR);	/* 0x0DD0 */
5887 			E1000_WRITE_REG(hw, E1000_CTRL_EXT, ctrl_ext);
5888 
5889 			/*
5890 			 * This sequence tunes the PHY's SDP and no customer
5891 			 * settable values. For background, see comments above
5892 			 * e1000g_set_internal_loopback().
5893 			 */
5894 			(void) e1000_write_phy_reg(hw, 0x0, 0x140);
5895 			msec_delay(10);
5896 			(void) e1000_write_phy_reg(hw, 0x9, 0x1A00);
5897 			(void) e1000_write_phy_reg(hw, 0x12, 0xC10);
5898 			(void) e1000_write_phy_reg(hw, 0x12, 0x1C10);
5899 			(void) e1000_write_phy_reg(hw, 0x1F37, 0x76);
5900 			(void) e1000_write_phy_reg(hw, 0x1F33, 0x1);
5901 			(void) e1000_write_phy_reg(hw, 0x1F33, 0x0);
5902 
5903 			(void) e1000_write_phy_reg(hw, 0x1F35, 0x65);
5904 			(void) e1000_write_phy_reg(hw, 0x1837, 0x3F7C);
5905 			(void) e1000_write_phy_reg(hw, 0x1437, 0x3FDC);
5906 			(void) e1000_write_phy_reg(hw, 0x1237, 0x3F7C);
5907 			(void) e1000_write_phy_reg(hw, 0x1137, 0x3FDC);
5908 
5909 			msec_delay(50);
5910 			break;
5911 		case e1000_media_type_fiber:
5912 		case e1000_media_type_internal_serdes:
5913 			status = E1000_READ_REG(hw, E1000_STATUS);
5914 			if (((status & E1000_STATUS_LU) == 0) ||
5915 			    (hw->phy.media_type ==
5916 			    e1000_media_type_internal_serdes)) {
5917 				ctrl = E1000_READ_REG(hw, E1000_CTRL);
5918 				ctrl |= E1000_CTRL_ILOS | E1000_CTRL_SLU;
5919 				E1000_WRITE_REG(hw, E1000_CTRL, ctrl);
5920 			}
5921 
5922 			/* Disable autoneg by setting bit 31 of TXCW to zero */
5923 			txcw = E1000_READ_REG(hw, E1000_TXCW);
5924 			txcw &= ~((uint32_t)1 << 31);
5925 			E1000_WRITE_REG(hw, E1000_TXCW, txcw);
5926 
5927 			/*
5928 			 * Write 0x410 to Serdes Control register
5929 			 * to enable Serdes analog loopback
5930 			 */
5931 			E1000_WRITE_REG(hw, E1000_SCTL, 0x0410);
5932 			msec_delay(10);
5933 			break;
5934 		default:
5935 			break;
5936 		}
5937 		break;
5938 	case e1000_82574:
5939 	case e1000_80003es2lan:
5940 	case e1000_ich9lan:
5941 	case e1000_ich10lan:
5942 		(void) e1000_read_phy_reg(hw, GG82563_REG(6, 16), &phydata);
5943 		(void) e1000_write_phy_reg(hw, GG82563_REG(6, 16),
5944 		    phydata | (1 << 5));
5945 		Adapter->param_adv_autoneg = 1;
5946 		Adapter->param_adv_1000fdx = 1;
5947 		(void) e1000g_reset_link(Adapter);
5948 		break;
5949 	}
5950 }
5951 
5952 static void
5953 e1000g_set_external_loopback_100(struct e1000g *Adapter)
5954 {
5955 	struct e1000_hw *hw;
5956 	uint32_t ctrl;
5957 	uint16_t phy_ctrl;
5958 
5959 	hw = &Adapter->shared;
5960 
5961 	/* Disable Smart Power Down */
5962 	phy_spd_state(hw, B_FALSE);
5963 
5964 	phy_ctrl = (MII_CR_FULL_DUPLEX |
5965 	    MII_CR_SPEED_100);
5966 
5967 	/* Force 100/FD, reset PHY */
5968 	(void) e1000_write_phy_reg(hw, PHY_CONTROL,
5969 	    phy_ctrl | MII_CR_RESET);	/* 0xA100 */
5970 	msec_delay(10);
5971 
5972 	/* Force 100/FD */
5973 	(void) e1000_write_phy_reg(hw, PHY_CONTROL,
5974 	    phy_ctrl);			/* 0x2100 */
5975 	msec_delay(10);
5976 
5977 	/* Now setup the MAC to the same speed/duplex as the PHY. */
5978 	ctrl = E1000_READ_REG(hw, E1000_CTRL);
5979 	ctrl &= ~E1000_CTRL_SPD_SEL;	/* Clear the speed sel bits */
5980 	ctrl |= (E1000_CTRL_SLU |	/* Force Link Up */
5981 	    E1000_CTRL_FRCSPD |		/* Set the Force Speed Bit */
5982 	    E1000_CTRL_FRCDPX |		/* Set the Force Duplex Bit */
5983 	    E1000_CTRL_SPD_100 |	/* Force Speed to 100 */
5984 	    E1000_CTRL_FD);		/* Force Duplex to FULL */
5985 
5986 	E1000_WRITE_REG(hw, E1000_CTRL, ctrl);
5987 }
5988 
5989 static void
5990 e1000g_set_external_loopback_10(struct e1000g *Adapter)
5991 {
5992 	struct e1000_hw *hw;
5993 	uint32_t ctrl;
5994 	uint16_t phy_ctrl;
5995 
5996 	hw = &Adapter->shared;
5997 
5998 	/* Disable Smart Power Down */
5999 	phy_spd_state(hw, B_FALSE);
6000 
6001 	phy_ctrl = (MII_CR_FULL_DUPLEX |
6002 	    MII_CR_SPEED_10);
6003 
6004 	/* Force 10/FD, reset PHY */
6005 	(void) e1000_write_phy_reg(hw, PHY_CONTROL,
6006 	    phy_ctrl | MII_CR_RESET);	/* 0x8100 */
6007 	msec_delay(10);
6008 
6009 	/* Force 10/FD */
6010 	(void) e1000_write_phy_reg(hw, PHY_CONTROL,
6011 	    phy_ctrl);			/* 0x0100 */
6012 	msec_delay(10);
6013 
6014 	/* Now setup the MAC to the same speed/duplex as the PHY. */
6015 	ctrl = E1000_READ_REG(hw, E1000_CTRL);
6016 	ctrl &= ~E1000_CTRL_SPD_SEL;	/* Clear the speed sel bits */
6017 	ctrl |= (E1000_CTRL_SLU |	/* Force Link Up */
6018 	    E1000_CTRL_FRCSPD |		/* Set the Force Speed Bit */
6019 	    E1000_CTRL_FRCDPX |		/* Set the Force Duplex Bit */
6020 	    E1000_CTRL_SPD_10 |		/* Force Speed to 10 */
6021 	    E1000_CTRL_FD);		/* Force Duplex to FULL */
6022 
6023 	E1000_WRITE_REG(hw, E1000_CTRL, ctrl);
6024 }
6025 
6026 #ifdef __sparc
6027 static boolean_t
6028 e1000g_find_mac_address(struct e1000g *Adapter)
6029 {
6030 	struct e1000_hw *hw = &Adapter->shared;
6031 	uchar_t *bytes;
6032 	struct ether_addr sysaddr;
6033 	uint_t nelts;
6034 	int err;
6035 	boolean_t found = B_FALSE;
6036 
6037 	/*
6038 	 * The "vendor's factory-set address" may already have
6039 	 * been extracted from the chip, but if the property
6040 	 * "local-mac-address" is set we use that instead.
6041 	 *
6042 	 * We check whether it looks like an array of 6
6043 	 * bytes (which it should, if OBP set it).  If we can't
6044 	 * make sense of it this way, we'll ignore it.
6045 	 */
6046 	err = ddi_prop_lookup_byte_array(DDI_DEV_T_ANY, Adapter->dip,
6047 	    DDI_PROP_DONTPASS, "local-mac-address", &bytes, &nelts);
6048 	if (err == DDI_PROP_SUCCESS) {
6049 		if (nelts == ETHERADDRL) {
6050 			while (nelts--)
6051 				hw->mac.addr[nelts] = bytes[nelts];
6052 			found = B_TRUE;
6053 		}
6054 		ddi_prop_free(bytes);
6055 	}
6056 
6057 	/*
6058 	 * Look up the OBP property "local-mac-address?". If the user has set
6059 	 * 'local-mac-address? = false', use "the system address" instead.
6060 	 */
6061 	if (ddi_prop_lookup_byte_array(DDI_DEV_T_ANY, Adapter->dip, 0,
6062 	    "local-mac-address?", &bytes, &nelts) == DDI_PROP_SUCCESS) {
6063 		if (strncmp("false", (caddr_t)bytes, (size_t)nelts) == 0) {
6064 			if (localetheraddr(NULL, &sysaddr) != 0) {
6065 				bcopy(&sysaddr, hw->mac.addr, ETHERADDRL);
6066 				found = B_TRUE;
6067 			}
6068 		}
6069 		ddi_prop_free(bytes);
6070 	}
6071 
6072 	/*
6073 	 * Finally(!), if there's a valid "mac-address" property (created
6074 	 * if we netbooted from this interface), we must use this instead
6075 	 * of any of the above to ensure that the NFS/install server doesn't
6076 	 * get confused by the address changing as Solaris takes over!
6077 	 */
6078 	err = ddi_prop_lookup_byte_array(DDI_DEV_T_ANY, Adapter->dip,
6079 	    DDI_PROP_DONTPASS, "mac-address", &bytes, &nelts);
6080 	if (err == DDI_PROP_SUCCESS) {
6081 		if (nelts == ETHERADDRL) {
6082 			while (nelts--)
6083 				hw->mac.addr[nelts] = bytes[nelts];
6084 			found = B_TRUE;
6085 		}
6086 		ddi_prop_free(bytes);
6087 	}
6088 
6089 	if (found) {
6090 		bcopy(hw->mac.addr, hw->mac.perm_addr,
6091 		    ETHERADDRL);
6092 	}
6093 
6094 	return (found);
6095 }
6096 #endif
6097 
6098 static int
6099 e1000g_add_intrs(struct e1000g *Adapter)
6100 {
6101 	dev_info_t *devinfo;
6102 	int intr_types;
6103 	int rc;
6104 
6105 	devinfo = Adapter->dip;
6106 
6107 	/* Get supported interrupt types */
6108 	rc = ddi_intr_get_supported_types(devinfo, &intr_types);
6109 
6110 	if (rc != DDI_SUCCESS) {
6111 		E1000G_DEBUGLOG_1(Adapter, E1000G_WARN_LEVEL,
6112 		    "Get supported interrupt types failed: %d\n", rc);
6113 		return (DDI_FAILURE);
6114 	}
6115 
6116 	/*
6117 	 * Based on Intel Technical Advisory document (TA-160), there are some
6118 	 * cases where some older Intel PCI-X NICs may "advertise" to the OS
6119 	 * that it supports MSI, but in fact has problems.
6120 	 * So we should only enable MSI for PCI-E NICs and disable MSI for old
6121 	 * PCI/PCI-X NICs.
6122 	 */
6123 	if (Adapter->shared.mac.type < e1000_82571)
6124 		Adapter->msi_enable = B_FALSE;
6125 
6126 	if ((intr_types & DDI_INTR_TYPE_MSI) && Adapter->msi_enable) {
6127 		rc = e1000g_intr_add(Adapter, DDI_INTR_TYPE_MSI);
6128 
6129 		if (rc != DDI_SUCCESS) {
6130 			/* EMPTY */
6131 			E1000G_DEBUGLOG_0(Adapter, E1000G_WARN_LEVEL,
6132 			    "Add MSI failed, trying Legacy interrupts\n");
6133 		} else {
6134 			Adapter->intr_type = DDI_INTR_TYPE_MSI;
6135 		}
6136 	}
6137 
6138 	if ((Adapter->intr_type == 0) &&
6139 	    (intr_types & DDI_INTR_TYPE_FIXED)) {
6140 		rc = e1000g_intr_add(Adapter, DDI_INTR_TYPE_FIXED);
6141 
6142 		if (rc != DDI_SUCCESS) {
6143 			E1000G_DEBUGLOG_0(Adapter, E1000G_WARN_LEVEL,
6144 			    "Add Legacy interrupts failed\n");
6145 			return (DDI_FAILURE);
6146 		}
6147 
6148 		Adapter->intr_type = DDI_INTR_TYPE_FIXED;
6149 	}
6150 
6151 	if (Adapter->intr_type == 0) {
6152 		E1000G_DEBUGLOG_0(Adapter, E1000G_WARN_LEVEL,
6153 		    "No interrupts registered\n");
6154 		return (DDI_FAILURE);
6155 	}
6156 
6157 	return (DDI_SUCCESS);
6158 }
6159 
6160 /*
6161  * e1000g_intr_add() handles MSI/Legacy interrupts
6162  */
6163 static int
6164 e1000g_intr_add(struct e1000g *Adapter, int intr_type)
6165 {
6166 	dev_info_t *devinfo;
6167 	int count, avail, actual;
6168 	int x, y, rc, inum = 0;
6169 	int flag;
6170 	ddi_intr_handler_t *intr_handler;
6171 
6172 	devinfo = Adapter->dip;
6173 
6174 	/* get number of interrupts */
6175 	rc = ddi_intr_get_nintrs(devinfo, intr_type, &count);
6176 	if ((rc != DDI_SUCCESS) || (count == 0)) {
6177 		E1000G_DEBUGLOG_2(Adapter, E1000G_WARN_LEVEL,
6178 		    "Get interrupt number failed. Return: %d, count: %d\n",
6179 		    rc, count);
6180 		return (DDI_FAILURE);
6181 	}
6182 
6183 	/* get number of available interrupts */
6184 	rc = ddi_intr_get_navail(devinfo, intr_type, &avail);
6185 	if ((rc != DDI_SUCCESS) || (avail == 0)) {
6186 		E1000G_DEBUGLOG_2(Adapter, E1000G_WARN_LEVEL,
6187 		    "Get interrupt available number failed. "
6188 		    "Return: %d, available: %d\n", rc, avail);
6189 		return (DDI_FAILURE);
6190 	}
6191 
6192 	if (avail < count) {
6193 		/* EMPTY */
6194 		E1000G_DEBUGLOG_2(Adapter, E1000G_WARN_LEVEL,
6195 		    "Interrupts count: %d, available: %d\n",
6196 		    count, avail);
6197 	}
6198 
6199 	/* Allocate an array of interrupt handles */
6200 	Adapter->intr_size = count * sizeof (ddi_intr_handle_t);
6201 	Adapter->htable = kmem_alloc(Adapter->intr_size, KM_SLEEP);
6202 
6203 	/* Set NORMAL behavior for both MSI and FIXED interrupt */
6204 	flag = DDI_INTR_ALLOC_NORMAL;
6205 
6206 	/* call ddi_intr_alloc() */
6207 	rc = ddi_intr_alloc(devinfo, Adapter->htable, intr_type, inum,
6208 	    count, &actual, flag);
6209 
6210 	if ((rc != DDI_SUCCESS) || (actual == 0)) {
6211 		E1000G_DEBUGLOG_1(Adapter, E1000G_WARN_LEVEL,
6212 		    "Allocate interrupts failed: %d\n", rc);
6213 
6214 		kmem_free(Adapter->htable, Adapter->intr_size);
6215 		return (DDI_FAILURE);
6216 	}
6217 
6218 	if (actual < count) {
6219 		/* EMPTY */
6220 		E1000G_DEBUGLOG_2(Adapter, E1000G_WARN_LEVEL,
6221 		    "Interrupts requested: %d, received: %d\n",
6222 		    count, actual);
6223 	}
6224 
6225 	Adapter->intr_cnt = actual;
6226 
6227 	/* Get priority for first msi, assume remaining are all the same */
6228 	rc = ddi_intr_get_pri(Adapter->htable[0], &Adapter->intr_pri);
6229 
6230 	if (rc != DDI_SUCCESS) {
6231 		E1000G_DEBUGLOG_1(Adapter, E1000G_WARN_LEVEL,
6232 		    "Get interrupt priority failed: %d\n", rc);
6233 
6234 		/* Free already allocated intr */
6235 		for (y = 0; y < actual; y++)
6236 			(void) ddi_intr_free(Adapter->htable[y]);
6237 
6238 		kmem_free(Adapter->htable, Adapter->intr_size);
6239 		return (DDI_FAILURE);
6240 	}
6241 
6242 	/*
6243 	 * In Legacy Interrupt mode, for PCI-Express adapters, we should
6244 	 * use the interrupt service routine e1000g_intr_pciexpress()
6245 	 * to avoid interrupt stealing when sharing interrupt with other
6246 	 * devices.
6247 	 */
6248 	if (Adapter->shared.mac.type < e1000_82571)
6249 		intr_handler = e1000g_intr;
6250 	else
6251 		intr_handler = e1000g_intr_pciexpress;
6252 
6253 	/* Call ddi_intr_add_handler() */
6254 	for (x = 0; x < actual; x++) {
6255 		rc = ddi_intr_add_handler(Adapter->htable[x],
6256 		    intr_handler, (caddr_t)Adapter, NULL);
6257 
6258 		if (rc != DDI_SUCCESS) {
6259 			E1000G_DEBUGLOG_1(Adapter, E1000G_WARN_LEVEL,
6260 			    "Add interrupt handler failed: %d\n", rc);
6261 
6262 			/* Remove already added handler */
6263 			for (y = 0; y < x; y++)
6264 				(void) ddi_intr_remove_handler(
6265 				    Adapter->htable[y]);
6266 
6267 			/* Free already allocated intr */
6268 			for (y = 0; y < actual; y++)
6269 				(void) ddi_intr_free(Adapter->htable[y]);
6270 
6271 			kmem_free(Adapter->htable, Adapter->intr_size);
6272 			return (DDI_FAILURE);
6273 		}
6274 	}
6275 
6276 	rc = ddi_intr_get_cap(Adapter->htable[0], &Adapter->intr_cap);
6277 
6278 	if (rc != DDI_SUCCESS) {
6279 		E1000G_DEBUGLOG_1(Adapter, E1000G_WARN_LEVEL,
6280 		    "Get interrupt cap failed: %d\n", rc);
6281 
6282 		/* Free already allocated intr */
6283 		for (y = 0; y < actual; y++) {
6284 			(void) ddi_intr_remove_handler(Adapter->htable[y]);
6285 			(void) ddi_intr_free(Adapter->htable[y]);
6286 		}
6287 
6288 		kmem_free(Adapter->htable, Adapter->intr_size);
6289 		return (DDI_FAILURE);
6290 	}
6291 
6292 	return (DDI_SUCCESS);
6293 }
6294 
6295 static int
6296 e1000g_rem_intrs(struct e1000g *Adapter)
6297 {
6298 	int x;
6299 	int rc;
6300 
6301 	for (x = 0; x < Adapter->intr_cnt; x++) {
6302 		rc = ddi_intr_remove_handler(Adapter->htable[x]);
6303 		if (rc != DDI_SUCCESS) {
6304 			E1000G_DEBUGLOG_1(Adapter, E1000G_WARN_LEVEL,
6305 			    "Remove intr handler failed: %d\n", rc);
6306 			return (DDI_FAILURE);
6307 		}
6308 
6309 		rc = ddi_intr_free(Adapter->htable[x]);
6310 		if (rc != DDI_SUCCESS) {
6311 			E1000G_DEBUGLOG_1(Adapter, E1000G_WARN_LEVEL,
6312 			    "Free intr failed: %d\n", rc);
6313 			return (DDI_FAILURE);
6314 		}
6315 	}
6316 
6317 	kmem_free(Adapter->htable, Adapter->intr_size);
6318 
6319 	return (DDI_SUCCESS);
6320 }
6321 
6322 static int
6323 e1000g_enable_intrs(struct e1000g *Adapter)
6324 {
6325 	int x;
6326 	int rc;
6327 
6328 	/* Enable interrupts */
6329 	if (Adapter->intr_cap & DDI_INTR_FLAG_BLOCK) {
6330 		/* Call ddi_intr_block_enable() for MSI */
6331 		rc = ddi_intr_block_enable(Adapter->htable,
6332 		    Adapter->intr_cnt);
6333 		if (rc != DDI_SUCCESS) {
6334 			E1000G_DEBUGLOG_1(Adapter, E1000G_WARN_LEVEL,
6335 			    "Enable block intr failed: %d\n", rc);
6336 			return (DDI_FAILURE);
6337 		}
6338 	} else {
6339 		/* Call ddi_intr_enable() for Legacy/MSI non block enable */
6340 		for (x = 0; x < Adapter->intr_cnt; x++) {
6341 			rc = ddi_intr_enable(Adapter->htable[x]);
6342 			if (rc != DDI_SUCCESS) {
6343 				E1000G_DEBUGLOG_1(Adapter, E1000G_WARN_LEVEL,
6344 				    "Enable intr failed: %d\n", rc);
6345 				return (DDI_FAILURE);
6346 			}
6347 		}
6348 	}
6349 
6350 	return (DDI_SUCCESS);
6351 }
6352 
6353 static int
6354 e1000g_disable_intrs(struct e1000g *Adapter)
6355 {
6356 	int x;
6357 	int rc;
6358 
6359 	/* Disable all interrupts */
6360 	if (Adapter->intr_cap & DDI_INTR_FLAG_BLOCK) {
6361 		rc = ddi_intr_block_disable(Adapter->htable,
6362 		    Adapter->intr_cnt);
6363 		if (rc != DDI_SUCCESS) {
6364 			E1000G_DEBUGLOG_1(Adapter, E1000G_WARN_LEVEL,
6365 			    "Disable block intr failed: %d\n", rc);
6366 			return (DDI_FAILURE);
6367 		}
6368 	} else {
6369 		for (x = 0; x < Adapter->intr_cnt; x++) {
6370 			rc = ddi_intr_disable(Adapter->htable[x]);
6371 			if (rc != DDI_SUCCESS) {
6372 				E1000G_DEBUGLOG_1(Adapter, E1000G_WARN_LEVEL,
6373 				    "Disable intr failed: %d\n", rc);
6374 				return (DDI_FAILURE);
6375 			}
6376 		}
6377 	}
6378 
6379 	return (DDI_SUCCESS);
6380 }
6381 
6382 /*
6383  * e1000g_get_phy_state - get the state of PHY registers, save in the adapter
6384  */
6385 static void
6386 e1000g_get_phy_state(struct e1000g *Adapter)
6387 {
6388 	struct e1000_hw *hw = &Adapter->shared;
6389 
6390 	if (hw->phy.media_type == e1000_media_type_copper) {
6391 		(void) e1000_read_phy_reg(hw, PHY_CONTROL, &Adapter->phy_ctrl);
6392 		(void) e1000_read_phy_reg(hw, PHY_STATUS, &Adapter->phy_status);
6393 		(void) e1000_read_phy_reg(hw, PHY_AUTONEG_ADV,
6394 		    &Adapter->phy_an_adv);
6395 		(void) e1000_read_phy_reg(hw, PHY_AUTONEG_EXP,
6396 		    &Adapter->phy_an_exp);
6397 		(void) e1000_read_phy_reg(hw, PHY_EXT_STATUS,
6398 		    &Adapter->phy_ext_status);
6399 		(void) e1000_read_phy_reg(hw, PHY_1000T_CTRL,
6400 		    &Adapter->phy_1000t_ctrl);
6401 		(void) e1000_read_phy_reg(hw, PHY_1000T_STATUS,
6402 		    &Adapter->phy_1000t_status);
6403 		(void) e1000_read_phy_reg(hw, PHY_LP_ABILITY,
6404 		    &Adapter->phy_lp_able);
6405 
6406 		Adapter->param_autoneg_cap =
6407 		    (Adapter->phy_status & MII_SR_AUTONEG_CAPS) ? 1 : 0;
6408 		Adapter->param_pause_cap =
6409 		    (Adapter->phy_an_adv & NWAY_AR_PAUSE) ? 1 : 0;
6410 		Adapter->param_asym_pause_cap =
6411 		    (Adapter->phy_an_adv & NWAY_AR_ASM_DIR) ? 1 : 0;
6412 		Adapter->param_1000fdx_cap =
6413 		    ((Adapter->phy_ext_status & IEEE_ESR_1000T_FD_CAPS) ||
6414 		    (Adapter->phy_ext_status & IEEE_ESR_1000X_FD_CAPS)) ? 1 : 0;
6415 		Adapter->param_1000hdx_cap =
6416 		    ((Adapter->phy_ext_status & IEEE_ESR_1000T_HD_CAPS) ||
6417 		    (Adapter->phy_ext_status & IEEE_ESR_1000X_HD_CAPS)) ? 1 : 0;
6418 		Adapter->param_100t4_cap =
6419 		    (Adapter->phy_status & MII_SR_100T4_CAPS) ? 1 : 0;
6420 		Adapter->param_100fdx_cap =
6421 		    ((Adapter->phy_status & MII_SR_100X_FD_CAPS) ||
6422 		    (Adapter->phy_status & MII_SR_100T2_FD_CAPS)) ? 1 : 0;
6423 		Adapter->param_100hdx_cap =
6424 		    ((Adapter->phy_status & MII_SR_100X_HD_CAPS) ||
6425 		    (Adapter->phy_status & MII_SR_100T2_HD_CAPS)) ? 1 : 0;
6426 		Adapter->param_10fdx_cap =
6427 		    (Adapter->phy_status & MII_SR_10T_FD_CAPS) ? 1 : 0;
6428 		Adapter->param_10hdx_cap =
6429 		    (Adapter->phy_status & MII_SR_10T_HD_CAPS) ? 1 : 0;
6430 
6431 		Adapter->param_adv_autoneg = hw->mac.autoneg;
6432 		Adapter->param_adv_pause =
6433 		    (Adapter->phy_an_adv & NWAY_AR_PAUSE) ? 1 : 0;
6434 		Adapter->param_adv_asym_pause =
6435 		    (Adapter->phy_an_adv & NWAY_AR_ASM_DIR) ? 1 : 0;
6436 		Adapter->param_adv_1000hdx =
6437 		    (Adapter->phy_1000t_ctrl & CR_1000T_HD_CAPS) ? 1 : 0;
6438 		Adapter->param_adv_100t4 =
6439 		    (Adapter->phy_an_adv & NWAY_AR_100T4_CAPS) ? 1 : 0;
6440 		if (Adapter->param_adv_autoneg == 1) {
6441 			Adapter->param_adv_1000fdx =
6442 			    (Adapter->phy_1000t_ctrl & CR_1000T_FD_CAPS)
6443 			    ? 1 : 0;
6444 			Adapter->param_adv_100fdx =
6445 			    (Adapter->phy_an_adv & NWAY_AR_100TX_FD_CAPS)
6446 			    ? 1 : 0;
6447 			Adapter->param_adv_100hdx =
6448 			    (Adapter->phy_an_adv & NWAY_AR_100TX_HD_CAPS)
6449 			    ? 1 : 0;
6450 			Adapter->param_adv_10fdx =
6451 			    (Adapter->phy_an_adv & NWAY_AR_10T_FD_CAPS) ? 1 : 0;
6452 			Adapter->param_adv_10hdx =
6453 			    (Adapter->phy_an_adv & NWAY_AR_10T_HD_CAPS) ? 1 : 0;
6454 		}
6455 
6456 		Adapter->param_lp_autoneg =
6457 		    (Adapter->phy_an_exp & NWAY_ER_LP_NWAY_CAPS) ? 1 : 0;
6458 		Adapter->param_lp_pause =
6459 		    (Adapter->phy_lp_able & NWAY_LPAR_PAUSE) ? 1 : 0;
6460 		Adapter->param_lp_asym_pause =
6461 		    (Adapter->phy_lp_able & NWAY_LPAR_ASM_DIR) ? 1 : 0;
6462 		Adapter->param_lp_1000fdx =
6463 		    (Adapter->phy_1000t_status & SR_1000T_LP_FD_CAPS) ? 1 : 0;
6464 		Adapter->param_lp_1000hdx =
6465 		    (Adapter->phy_1000t_status & SR_1000T_LP_HD_CAPS) ? 1 : 0;
6466 		Adapter->param_lp_100t4 =
6467 		    (Adapter->phy_lp_able & NWAY_LPAR_100T4_CAPS) ? 1 : 0;
6468 		Adapter->param_lp_100fdx =
6469 		    (Adapter->phy_lp_able & NWAY_LPAR_100TX_FD_CAPS) ? 1 : 0;
6470 		Adapter->param_lp_100hdx =
6471 		    (Adapter->phy_lp_able & NWAY_LPAR_100TX_HD_CAPS) ? 1 : 0;
6472 		Adapter->param_lp_10fdx =
6473 		    (Adapter->phy_lp_able & NWAY_LPAR_10T_FD_CAPS) ? 1 : 0;
6474 		Adapter->param_lp_10hdx =
6475 		    (Adapter->phy_lp_able & NWAY_LPAR_10T_HD_CAPS) ? 1 : 0;
6476 	} else {
6477 		/*
6478 		 * 1Gig Fiber adapter only offers 1Gig Full Duplex. Meaning,
6479 		 * it can only work with 1Gig Full Duplex Link Partner.
6480 		 */
6481 		Adapter->param_autoneg_cap = 0;
6482 		Adapter->param_pause_cap = 1;
6483 		Adapter->param_asym_pause_cap = 1;
6484 		Adapter->param_1000fdx_cap = 1;
6485 		Adapter->param_1000hdx_cap = 0;
6486 		Adapter->param_100t4_cap = 0;
6487 		Adapter->param_100fdx_cap = 0;
6488 		Adapter->param_100hdx_cap = 0;
6489 		Adapter->param_10fdx_cap = 0;
6490 		Adapter->param_10hdx_cap = 0;
6491 
6492 		Adapter->param_adv_autoneg = 0;
6493 		Adapter->param_adv_pause = 1;
6494 		Adapter->param_adv_asym_pause = 1;
6495 		Adapter->param_adv_1000fdx = 1;
6496 		Adapter->param_adv_1000hdx = 0;
6497 		Adapter->param_adv_100t4 = 0;
6498 		Adapter->param_adv_100fdx = 0;
6499 		Adapter->param_adv_100hdx = 0;
6500 		Adapter->param_adv_10fdx = 0;
6501 		Adapter->param_adv_10hdx = 0;
6502 
6503 		Adapter->param_lp_autoneg = 0;
6504 		Adapter->param_lp_pause = 0;
6505 		Adapter->param_lp_asym_pause = 0;
6506 		Adapter->param_lp_1000fdx = 0;
6507 		Adapter->param_lp_1000hdx = 0;
6508 		Adapter->param_lp_100t4 = 0;
6509 		Adapter->param_lp_100fdx = 0;
6510 		Adapter->param_lp_100hdx = 0;
6511 		Adapter->param_lp_10fdx = 0;
6512 		Adapter->param_lp_10hdx = 0;
6513 	}
6514 }
6515 
6516 /*
6517  * FMA support
6518  */
6519 
6520 int
6521 e1000g_check_acc_handle(ddi_acc_handle_t handle)
6522 {
6523 	ddi_fm_error_t de;
6524 
6525 	ddi_fm_acc_err_get(handle, &de, DDI_FME_VERSION);
6526 	ddi_fm_acc_err_clear(handle, DDI_FME_VERSION);
6527 	return (de.fme_status);
6528 }
6529 
6530 int
6531 e1000g_check_dma_handle(ddi_dma_handle_t handle)
6532 {
6533 	ddi_fm_error_t de;
6534 
6535 	ddi_fm_dma_err_get(handle, &de, DDI_FME_VERSION);
6536 	return (de.fme_status);
6537 }
6538 
6539 /*
6540  * The IO fault service error handling callback function
6541  */
6542 /* ARGSUSED2 */
6543 static int
6544 e1000g_fm_error_cb(dev_info_t *dip, ddi_fm_error_t *err, const void *impl_data)
6545 {
6546 	/*
6547 	 * as the driver can always deal with an error in any dma or
6548 	 * access handle, we can just return the fme_status value.
6549 	 */
6550 	pci_ereport_post(dip, err, NULL);
6551 	return (err->fme_status);
6552 }
6553 
6554 static void
6555 e1000g_fm_init(struct e1000g *Adapter)
6556 {
6557 	ddi_iblock_cookie_t iblk;
6558 	int fma_dma_flag;
6559 
6560 	/* Only register with IO Fault Services if we have some capability */
6561 	if (Adapter->fm_capabilities & DDI_FM_ACCCHK_CAPABLE) {
6562 		e1000g_regs_acc_attr.devacc_attr_access = DDI_FLAGERR_ACC;
6563 	} else {
6564 		e1000g_regs_acc_attr.devacc_attr_access = DDI_DEFAULT_ACC;
6565 	}
6566 
6567 	if (Adapter->fm_capabilities & DDI_FM_DMACHK_CAPABLE) {
6568 		fma_dma_flag = 1;
6569 	} else {
6570 		fma_dma_flag = 0;
6571 	}
6572 
6573 	(void) e1000g_set_fma_flags(fma_dma_flag);
6574 
6575 	if (Adapter->fm_capabilities) {
6576 
6577 		/* Register capabilities with IO Fault Services */
6578 		ddi_fm_init(Adapter->dip, &Adapter->fm_capabilities, &iblk);
6579 
6580 		/*
6581 		 * Initialize pci ereport capabilities if ereport capable
6582 		 */
6583 		if (DDI_FM_EREPORT_CAP(Adapter->fm_capabilities) ||
6584 		    DDI_FM_ERRCB_CAP(Adapter->fm_capabilities))
6585 			pci_ereport_setup(Adapter->dip);
6586 
6587 		/*
6588 		 * Register error callback if error callback capable
6589 		 */
6590 		if (DDI_FM_ERRCB_CAP(Adapter->fm_capabilities))
6591 			ddi_fm_handler_register(Adapter->dip,
6592 			    e1000g_fm_error_cb, (void*) Adapter);
6593 	}
6594 }
6595 
6596 static void
6597 e1000g_fm_fini(struct e1000g *Adapter)
6598 {
6599 	/* Only unregister FMA capabilities if we registered some */
6600 	if (Adapter->fm_capabilities) {
6601 
6602 		/*
6603 		 * Release any resources allocated by pci_ereport_setup()
6604 		 */
6605 		if (DDI_FM_EREPORT_CAP(Adapter->fm_capabilities) ||
6606 		    DDI_FM_ERRCB_CAP(Adapter->fm_capabilities))
6607 			pci_ereport_teardown(Adapter->dip);
6608 
6609 		/*
6610 		 * Un-register error callback if error callback capable
6611 		 */
6612 		if (DDI_FM_ERRCB_CAP(Adapter->fm_capabilities))
6613 			ddi_fm_handler_unregister(Adapter->dip);
6614 
6615 		/* Unregister from IO Fault Services */
6616 		mutex_enter(&e1000g_rx_detach_lock);
6617 		ddi_fm_fini(Adapter->dip);
6618 		if (Adapter->priv_dip != NULL) {
6619 			DEVI(Adapter->priv_dip)->devi_fmhdl = NULL;
6620 		}
6621 		mutex_exit(&e1000g_rx_detach_lock);
6622 	}
6623 }
6624 
6625 void
6626 e1000g_fm_ereport(struct e1000g *Adapter, char *detail)
6627 {
6628 	uint64_t ena;
6629 	char buf[FM_MAX_CLASS];
6630 
6631 	(void) snprintf(buf, FM_MAX_CLASS, "%s.%s", DDI_FM_DEVICE, detail);
6632 	ena = fm_ena_generate(0, FM_ENA_FMT1);
6633 	if (DDI_FM_EREPORT_CAP(Adapter->fm_capabilities)) {
6634 		ddi_fm_ereport_post(Adapter->dip, buf, ena, DDI_NOSLEEP,
6635 		    FM_VERSION, DATA_TYPE_UINT8, FM_EREPORT_VERS0, NULL);
6636 	}
6637 }
6638 
6639 /*
6640  * quiesce(9E) entry point.
6641  *
6642  * This function is called when the system is single-threaded at high
6643  * PIL with preemption disabled. Therefore, this function must not be
6644  * blocked.
6645  *
6646  * This function returns DDI_SUCCESS on success, or DDI_FAILURE on failure.
6647  * DDI_FAILURE indicates an error condition and should almost never happen.
6648  */
6649 static int
6650 e1000g_quiesce(dev_info_t *devinfo)
6651 {
6652 	struct e1000g *Adapter;
6653 
6654 	Adapter = (struct e1000g *)ddi_get_driver_private(devinfo);
6655 
6656 	if (Adapter == NULL)
6657 		return (DDI_FAILURE);
6658 
6659 	e1000g_clear_all_interrupts(Adapter);
6660 
6661 	(void) e1000_reset_hw(&Adapter->shared);
6662 
6663 	/* Setup our HW Tx Head & Tail descriptor pointers */
6664 	E1000_WRITE_REG(&Adapter->shared, E1000_TDH(0), 0);
6665 	E1000_WRITE_REG(&Adapter->shared, E1000_TDT(0), 0);
6666 
6667 	/* Setup our HW Rx Head & Tail descriptor pointers */
6668 	E1000_WRITE_REG(&Adapter->shared, E1000_RDH(0), 0);
6669 	E1000_WRITE_REG(&Adapter->shared, E1000_RDT(0), 0);
6670 
6671 	return (DDI_SUCCESS);
6672 }
6673 
6674 /*
6675  * synchronize the adv* and en* parameters.
6676  *
6677  * See comments in <sys/dld.h> for details of the *_en_*
6678  * parameters. The usage of ndd for setting adv parameters will
6679  * synchronize all the en parameters with the e1000g parameters,
6680  * implicitly disabling any settings made via dladm.
6681  */
6682 static void
6683 e1000g_param_sync(struct e1000g *Adapter)
6684 {
6685 	Adapter->param_en_1000fdx = Adapter->param_adv_1000fdx;
6686 	Adapter->param_en_1000hdx = Adapter->param_adv_1000hdx;
6687 	Adapter->param_en_100fdx = Adapter->param_adv_100fdx;
6688 	Adapter->param_en_100hdx = Adapter->param_adv_100hdx;
6689 	Adapter->param_en_10fdx = Adapter->param_adv_10fdx;
6690 	Adapter->param_en_10hdx = Adapter->param_adv_10hdx;
6691 }
6692 
6693 /*
6694  * e1000g_get_driver_control - tell manageability firmware that the driver
6695  * has control.
6696  */
6697 static void
6698 e1000g_get_driver_control(struct e1000_hw *hw)
6699 {
6700 	uint32_t ctrl_ext;
6701 	uint32_t swsm;
6702 
6703 	/* tell manageability firmware the driver has taken over */
6704 	switch (hw->mac.type) {
6705 	case e1000_82573:
6706 		swsm = E1000_READ_REG(hw, E1000_SWSM);
6707 		E1000_WRITE_REG(hw, E1000_SWSM, swsm | E1000_SWSM_DRV_LOAD);
6708 		break;
6709 	case e1000_82571:
6710 	case e1000_82572:
6711 	case e1000_82574:
6712 	case e1000_80003es2lan:
6713 	case e1000_ich8lan:
6714 	case e1000_ich9lan:
6715 	case e1000_ich10lan:
6716 	case e1000_pchlan:
6717 	case e1000_pch2lan:
6718 		ctrl_ext = E1000_READ_REG(hw, E1000_CTRL_EXT);
6719 		E1000_WRITE_REG(hw, E1000_CTRL_EXT,
6720 		    ctrl_ext | E1000_CTRL_EXT_DRV_LOAD);
6721 		break;
6722 	default:
6723 		/* no manageability firmware: do nothing */
6724 		break;
6725 	}
6726 }
6727 
6728 /*
6729  * e1000g_release_driver_control - tell manageability firmware that the driver
6730  * has released control.
6731  */
6732 static void
6733 e1000g_release_driver_control(struct e1000_hw *hw)
6734 {
6735 	uint32_t ctrl_ext;
6736 	uint32_t swsm;
6737 
6738 	/* tell manageability firmware the driver has released control */
6739 	switch (hw->mac.type) {
6740 	case e1000_82573:
6741 		swsm = E1000_READ_REG(hw, E1000_SWSM);
6742 		E1000_WRITE_REG(hw, E1000_SWSM, swsm & ~E1000_SWSM_DRV_LOAD);
6743 		break;
6744 	case e1000_82571:
6745 	case e1000_82572:
6746 	case e1000_82574:
6747 	case e1000_80003es2lan:
6748 	case e1000_ich8lan:
6749 	case e1000_ich9lan:
6750 	case e1000_ich10lan:
6751 	case e1000_pchlan:
6752 	case e1000_pch2lan:
6753 		ctrl_ext = E1000_READ_REG(hw, E1000_CTRL_EXT);
6754 		E1000_WRITE_REG(hw, E1000_CTRL_EXT,
6755 		    ctrl_ext & ~E1000_CTRL_EXT_DRV_LOAD);
6756 		break;
6757 	default:
6758 		/* no manageability firmware: do nothing */
6759 		break;
6760 	}
6761 }
6762 
6763 /*
6764  * Restore e1000g promiscuous mode.
6765  */
6766 static void
6767 e1000g_restore_promisc(struct e1000g *Adapter)
6768 {
6769 	if (Adapter->e1000g_promisc) {
6770 		uint32_t rctl;
6771 
6772 		rctl = E1000_READ_REG(&Adapter->shared, E1000_RCTL);
6773 		rctl |= (E1000_RCTL_UPE | E1000_RCTL_MPE | E1000_RCTL_BAM);
6774 		E1000_WRITE_REG(&Adapter->shared, E1000_RCTL, rctl);
6775 	}
6776 }
6777