xref: /illumos-gate/usr/src/uts/common/io/e1000g/e1000g_main.c (revision e5c541a6c70df2548bbaa19fa43a7dbebe4b637a)
1 /*
2  * This file is provided under a CDDLv1 license.  When using or
3  * redistributing this file, you may do so under this license.
4  * In redistributing this file this license must be included
5  * and no other modification of this header file is permitted.
6  *
7  * CDDL LICENSE SUMMARY
8  *
9  * Copyright(c) 1999 - 2009 Intel Corporation. All rights reserved.
10  *
11  * The contents of this file are subject to the terms of Version
12  * 1.0 of the Common Development and Distribution License (the "License").
13  *
14  * You should have received a copy of the License with this software.
15  * You can obtain a copy of the License at
16  *	http://www.opensolaris.org/os/licensing.
17  * See the License for the specific language governing permissions
18  * and limitations under the License.
19  */
20 
21 /*
22  * Copyright (c) 2010, Oracle and/or its affiliates. All rights reserved.
23  */
24 
25 /*
26  * Copyright 2012 DEY Storage Systems, Inc.  All rights reserved.
27  * Copyright 2013 Nexenta Systems, Inc.  All rights reserved.
28  * Copyright (c) 2018, Joyent, Inc.
29  */
30 
31 /*
32  * **********************************************************************
33  *									*
34  * Module Name:								*
35  *   e1000g_main.c							*
36  *									*
37  * Abstract:								*
38  *   This file contains the interface routines for the solaris OS.	*
39  *   It has all DDI entry point routines and GLD entry point routines.	*
40  *									*
41  *   This file also contains routines that take care of initialization	*
42  *   uninit routine and interrupt routine.				*
43  *									*
44  * **********************************************************************
45  */
46 
47 #include <sys/dlpi.h>
48 #include <sys/mac.h>
49 #include "e1000g_sw.h"
50 #include "e1000g_debug.h"
51 
52 static char ident[] = "Intel PRO/1000 Ethernet";
53 /* LINTED E_STATIC_UNUSED */
54 static char e1000g_version[] = "Driver Ver. 5.3.24";
55 
56 /*
57  * Proto types for DDI entry points
58  */
59 static int e1000g_attach(dev_info_t *, ddi_attach_cmd_t);
60 static int e1000g_detach(dev_info_t *, ddi_detach_cmd_t);
61 static int e1000g_quiesce(dev_info_t *);
62 
63 /*
64  * init and intr routines prototype
65  */
66 static int e1000g_resume(dev_info_t *);
67 static int e1000g_suspend(dev_info_t *);
68 static uint_t e1000g_intr_pciexpress(caddr_t, caddr_t);
69 static uint_t e1000g_intr(caddr_t, caddr_t);
70 static void e1000g_intr_work(struct e1000g *, uint32_t);
71 #pragma inline(e1000g_intr_work)
72 static int e1000g_init(struct e1000g *);
73 static int e1000g_start(struct e1000g *, boolean_t);
74 static void e1000g_stop(struct e1000g *, boolean_t);
75 static int e1000g_m_start(void *);
76 static void e1000g_m_stop(void *);
77 static int e1000g_m_promisc(void *, boolean_t);
78 static boolean_t e1000g_m_getcapab(void *, mac_capab_t, void *);
79 static int e1000g_m_multicst(void *, boolean_t, const uint8_t *);
80 static void e1000g_m_ioctl(void *, queue_t *, mblk_t *);
81 static int e1000g_m_setprop(void *, const char *, mac_prop_id_t,
82     uint_t, const void *);
83 static int e1000g_m_getprop(void *, const char *, mac_prop_id_t,
84 			    uint_t, void *);
85 static void e1000g_m_propinfo(void *, const char *, mac_prop_id_t,
86     mac_prop_info_handle_t);
87 static int e1000g_set_priv_prop(struct e1000g *, const char *, uint_t,
88     const void *);
89 static int e1000g_get_priv_prop(struct e1000g *, const char *, uint_t, void *);
90 static void e1000g_init_locks(struct e1000g *);
91 static void e1000g_destroy_locks(struct e1000g *);
92 static int e1000g_identify_hardware(struct e1000g *);
93 static int e1000g_regs_map(struct e1000g *);
94 static int e1000g_set_driver_params(struct e1000g *);
95 static void e1000g_set_bufsize(struct e1000g *);
96 static int e1000g_register_mac(struct e1000g *);
97 static boolean_t e1000g_rx_drain(struct e1000g *);
98 static boolean_t e1000g_tx_drain(struct e1000g *);
99 static void e1000g_init_unicst(struct e1000g *);
100 static int e1000g_unicst_set(struct e1000g *, const uint8_t *, int);
101 static int e1000g_alloc_rx_data(struct e1000g *);
102 static void e1000g_release_multicast(struct e1000g *);
103 static void e1000g_pch_limits(struct e1000g *);
104 static uint32_t e1000g_mtu2maxframe(uint32_t);
105 
106 /*
107  * Local routines
108  */
109 static boolean_t e1000g_reset_adapter(struct e1000g *);
110 static void e1000g_tx_clean(struct e1000g *);
111 static void e1000g_rx_clean(struct e1000g *);
112 static void e1000g_link_timer(void *);
113 static void e1000g_local_timer(void *);
114 static boolean_t e1000g_link_check(struct e1000g *);
115 static boolean_t e1000g_stall_check(struct e1000g *);
116 static void e1000g_smartspeed(struct e1000g *);
117 static void e1000g_get_conf(struct e1000g *);
118 static boolean_t e1000g_get_prop(struct e1000g *, char *, int, int, int,
119     int *);
120 static void enable_watchdog_timer(struct e1000g *);
121 static void disable_watchdog_timer(struct e1000g *);
122 static void start_watchdog_timer(struct e1000g *);
123 static void restart_watchdog_timer(struct e1000g *);
124 static void stop_watchdog_timer(struct e1000g *);
125 static void stop_link_timer(struct e1000g *);
126 static void stop_82547_timer(e1000g_tx_ring_t *);
127 static void e1000g_force_speed_duplex(struct e1000g *);
128 static void e1000g_setup_max_mtu(struct e1000g *);
129 static void e1000g_get_max_frame_size(struct e1000g *);
130 static boolean_t is_valid_mac_addr(uint8_t *);
131 static void e1000g_unattach(dev_info_t *, struct e1000g *);
132 static int e1000g_get_bar_info(dev_info_t *, int, bar_info_t *);
133 #ifdef E1000G_DEBUG
134 static void e1000g_ioc_peek_reg(struct e1000g *, e1000g_peekpoke_t *);
135 static void e1000g_ioc_poke_reg(struct e1000g *, e1000g_peekpoke_t *);
136 static void e1000g_ioc_peek_mem(struct e1000g *, e1000g_peekpoke_t *);
137 static void e1000g_ioc_poke_mem(struct e1000g *, e1000g_peekpoke_t *);
138 static enum ioc_reply e1000g_pp_ioctl(struct e1000g *,
139     struct iocblk *, mblk_t *);
140 #endif
141 static enum ioc_reply e1000g_loopback_ioctl(struct e1000g *,
142     struct iocblk *, mblk_t *);
143 static boolean_t e1000g_check_loopback_support(struct e1000_hw *);
144 static boolean_t e1000g_set_loopback_mode(struct e1000g *, uint32_t);
145 static void e1000g_set_internal_loopback(struct e1000g *);
146 static void e1000g_set_external_loopback_1000(struct e1000g *);
147 static void e1000g_set_external_loopback_100(struct e1000g *);
148 static void e1000g_set_external_loopback_10(struct e1000g *);
149 static int e1000g_add_intrs(struct e1000g *);
150 static int e1000g_intr_add(struct e1000g *, int);
151 static int e1000g_rem_intrs(struct e1000g *);
152 static int e1000g_enable_intrs(struct e1000g *);
153 static int e1000g_disable_intrs(struct e1000g *);
154 static boolean_t e1000g_link_up(struct e1000g *);
155 #ifdef __sparc
156 static boolean_t e1000g_find_mac_address(struct e1000g *);
157 #endif
158 static void e1000g_get_phy_state(struct e1000g *);
159 static int e1000g_fm_error_cb(dev_info_t *dip, ddi_fm_error_t *err,
160     const void *impl_data);
161 static void e1000g_fm_init(struct e1000g *Adapter);
162 static void e1000g_fm_fini(struct e1000g *Adapter);
163 static void e1000g_param_sync(struct e1000g *);
164 static void e1000g_get_driver_control(struct e1000_hw *);
165 static void e1000g_release_driver_control(struct e1000_hw *);
166 static void e1000g_restore_promisc(struct e1000g *Adapter);
167 
168 char *e1000g_priv_props[] = {
169 	"_tx_bcopy_threshold",
170 	"_tx_interrupt_enable",
171 	"_tx_intr_delay",
172 	"_tx_intr_abs_delay",
173 	"_rx_bcopy_threshold",
174 	"_max_num_rcv_packets",
175 	"_rx_intr_delay",
176 	"_rx_intr_abs_delay",
177 	"_intr_throttling_rate",
178 	"_intr_adaptive",
179 	"_adv_pause_cap",
180 	"_adv_asym_pause_cap",
181 	NULL
182 };
183 
184 static struct cb_ops cb_ws_ops = {
185 	nulldev,		/* cb_open */
186 	nulldev,		/* cb_close */
187 	nodev,			/* cb_strategy */
188 	nodev,			/* cb_print */
189 	nodev,			/* cb_dump */
190 	nodev,			/* cb_read */
191 	nodev,			/* cb_write */
192 	nodev,			/* cb_ioctl */
193 	nodev,			/* cb_devmap */
194 	nodev,			/* cb_mmap */
195 	nodev,			/* cb_segmap */
196 	nochpoll,		/* cb_chpoll */
197 	ddi_prop_op,		/* cb_prop_op */
198 	NULL,			/* cb_stream */
199 	D_MP | D_HOTPLUG,	/* cb_flag */
200 	CB_REV,			/* cb_rev */
201 	nodev,			/* cb_aread */
202 	nodev			/* cb_awrite */
203 };
204 
205 static struct dev_ops ws_ops = {
206 	DEVO_REV,		/* devo_rev */
207 	0,			/* devo_refcnt */
208 	NULL,			/* devo_getinfo */
209 	nulldev,		/* devo_identify */
210 	nulldev,		/* devo_probe */
211 	e1000g_attach,		/* devo_attach */
212 	e1000g_detach,		/* devo_detach */
213 	nodev,			/* devo_reset */
214 	&cb_ws_ops,		/* devo_cb_ops */
215 	NULL,			/* devo_bus_ops */
216 	ddi_power,		/* devo_power */
217 	e1000g_quiesce		/* devo_quiesce */
218 };
219 
220 static struct modldrv modldrv = {
221 	&mod_driverops,		/* Type of module.  This one is a driver */
222 	ident,			/* Discription string */
223 	&ws_ops,		/* driver ops */
224 };
225 
226 static struct modlinkage modlinkage = {
227 	MODREV_1, &modldrv, NULL
228 };
229 
230 /* Access attributes for register mapping */
231 static ddi_device_acc_attr_t e1000g_regs_acc_attr = {
232 	DDI_DEVICE_ATTR_V1,
233 	DDI_STRUCTURE_LE_ACC,
234 	DDI_STRICTORDER_ACC,
235 	DDI_FLAGERR_ACC
236 };
237 
238 #define	E1000G_M_CALLBACK_FLAGS \
239 	(MC_IOCTL | MC_GETCAPAB | MC_SETPROP | MC_GETPROP | MC_PROPINFO)
240 
241 static mac_callbacks_t e1000g_m_callbacks = {
242 	E1000G_M_CALLBACK_FLAGS,
243 	e1000g_m_stat,
244 	e1000g_m_start,
245 	e1000g_m_stop,
246 	e1000g_m_promisc,
247 	e1000g_m_multicst,
248 	NULL,
249 	e1000g_m_tx,
250 	NULL,
251 	e1000g_m_ioctl,
252 	e1000g_m_getcapab,
253 	NULL,
254 	NULL,
255 	e1000g_m_setprop,
256 	e1000g_m_getprop,
257 	e1000g_m_propinfo
258 };
259 
260 /*
261  * Global variables
262  */
263 uint32_t e1000g_jumbo_mtu = MAXIMUM_MTU_9K;
264 uint32_t e1000g_mblks_pending = 0;
265 /*
266  * Workaround for Dynamic Reconfiguration support, for x86 platform only.
267  * Here we maintain a private dev_info list if e1000g_force_detach is
268  * enabled. If we force the driver to detach while there are still some
269  * rx buffers retained in the upper layer, we have to keep a copy of the
270  * dev_info. In some cases (Dynamic Reconfiguration), the dev_info data
271  * structure will be freed after the driver is detached. However when we
272  * finally free those rx buffers released by the upper layer, we need to
273  * refer to the dev_info to free the dma buffers. So we save a copy of
274  * the dev_info for this purpose. On x86 platform, we assume this copy
275  * of dev_info is always valid, but on SPARC platform, it could be invalid
276  * after the system board level DR operation. For this reason, the global
277  * variable e1000g_force_detach must be B_FALSE on SPARC platform.
278  */
279 #ifdef __sparc
280 boolean_t e1000g_force_detach = B_FALSE;
281 #else
282 boolean_t e1000g_force_detach = B_TRUE;
283 #endif
284 private_devi_list_t *e1000g_private_devi_list = NULL;
285 
286 /*
287  * The mutex e1000g_rx_detach_lock is defined to protect the processing of
288  * the private dev_info list, and to serialize the processing of rx buffer
289  * freeing and rx buffer recycling.
290  */
291 kmutex_t e1000g_rx_detach_lock;
292 /*
293  * The rwlock e1000g_dma_type_lock is defined to protect the global flag
294  * e1000g_dma_type. For SPARC, the initial value of the flag is "USE_DVMA".
295  * If there are many e1000g instances, the system may run out of DVMA
296  * resources during the initialization of the instances, then the flag will
297  * be changed to "USE_DMA". Because different e1000g instances are initialized
298  * in parallel, we need to use this lock to protect the flag.
299  */
300 krwlock_t e1000g_dma_type_lock;
301 
302 /*
303  * The 82546 chipset is a dual-port device, both the ports share one eeprom.
304  * Based on the information from Intel, the 82546 chipset has some hardware
305  * problem. When one port is being reset and the other port is trying to
306  * access the eeprom, it could cause system hang or panic. To workaround this
307  * hardware problem, we use a global mutex to prevent such operations from
308  * happening simultaneously on different instances. This workaround is applied
309  * to all the devices supported by this driver.
310  */
311 kmutex_t e1000g_nvm_lock;
312 
313 /*
314  * Loadable module configuration entry points for the driver
315  */
316 
317 /*
318  * _init - module initialization
319  */
320 int
321 _init(void)
322 {
323 	int status;
324 
325 	mac_init_ops(&ws_ops, WSNAME);
326 	status = mod_install(&modlinkage);
327 	if (status != DDI_SUCCESS)
328 		mac_fini_ops(&ws_ops);
329 	else {
330 		mutex_init(&e1000g_rx_detach_lock, NULL, MUTEX_DRIVER, NULL);
331 		rw_init(&e1000g_dma_type_lock, NULL, RW_DRIVER, NULL);
332 		mutex_init(&e1000g_nvm_lock, NULL, MUTEX_DRIVER, NULL);
333 	}
334 
335 	return (status);
336 }
337 
338 /*
339  * _fini - module finalization
340  */
341 int
342 _fini(void)
343 {
344 	int status;
345 
346 	if (e1000g_mblks_pending != 0)
347 		return (EBUSY);
348 
349 	status = mod_remove(&modlinkage);
350 	if (status == DDI_SUCCESS) {
351 		mac_fini_ops(&ws_ops);
352 
353 		if (e1000g_force_detach) {
354 			private_devi_list_t *devi_node;
355 
356 			mutex_enter(&e1000g_rx_detach_lock);
357 			while (e1000g_private_devi_list != NULL) {
358 				devi_node = e1000g_private_devi_list;
359 				e1000g_private_devi_list =
360 				    e1000g_private_devi_list->next;
361 
362 				kmem_free(devi_node->priv_dip,
363 				    sizeof (struct dev_info));
364 				kmem_free(devi_node,
365 				    sizeof (private_devi_list_t));
366 			}
367 			mutex_exit(&e1000g_rx_detach_lock);
368 		}
369 
370 		mutex_destroy(&e1000g_rx_detach_lock);
371 		rw_destroy(&e1000g_dma_type_lock);
372 		mutex_destroy(&e1000g_nvm_lock);
373 	}
374 
375 	return (status);
376 }
377 
378 /*
379  * _info - module information
380  */
381 int
382 _info(struct modinfo *modinfop)
383 {
384 	return (mod_info(&modlinkage, modinfop));
385 }
386 
387 /*
388  * e1000g_attach - driver attach
389  *
390  * This function is the device-specific initialization entry
391  * point. This entry point is required and must be written.
392  * The DDI_ATTACH command must be provided in the attach entry
393  * point. When attach() is called with cmd set to DDI_ATTACH,
394  * all normal kernel services (such as kmem_alloc(9F)) are
395  * available for use by the driver.
396  *
397  * The attach() function will be called once for each instance
398  * of  the  device  on  the  system with cmd set to DDI_ATTACH.
399  * Until attach() succeeds, the only driver entry points which
400  * may be called are open(9E) and getinfo(9E).
401  */
402 static int
403 e1000g_attach(dev_info_t *devinfo, ddi_attach_cmd_t cmd)
404 {
405 	struct e1000g *Adapter;
406 	struct e1000_hw *hw;
407 	struct e1000g_osdep *osdep;
408 	int instance;
409 
410 	switch (cmd) {
411 	default:
412 		e1000g_log(NULL, CE_WARN,
413 		    "Unsupported command send to e1000g_attach... ");
414 		return (DDI_FAILURE);
415 
416 	case DDI_RESUME:
417 		return (e1000g_resume(devinfo));
418 
419 	case DDI_ATTACH:
420 		break;
421 	}
422 
423 	/*
424 	 * get device instance number
425 	 */
426 	instance = ddi_get_instance(devinfo);
427 
428 	/*
429 	 * Allocate soft data structure
430 	 */
431 	Adapter =
432 	    (struct e1000g *)kmem_zalloc(sizeof (*Adapter), KM_SLEEP);
433 
434 	Adapter->dip = devinfo;
435 	Adapter->instance = instance;
436 	Adapter->tx_ring->adapter = Adapter;
437 	Adapter->rx_ring->adapter = Adapter;
438 
439 	hw = &Adapter->shared;
440 	osdep = &Adapter->osdep;
441 	hw->back = osdep;
442 	osdep->adapter = Adapter;
443 
444 	ddi_set_driver_private(devinfo, (caddr_t)Adapter);
445 
446 	/*
447 	 * Initialize for fma support
448 	 */
449 	(void) e1000g_get_prop(Adapter, "fm-capable",
450 	    0, 0x0f,
451 	    DDI_FM_EREPORT_CAPABLE | DDI_FM_ACCCHK_CAPABLE |
452 	    DDI_FM_DMACHK_CAPABLE | DDI_FM_ERRCB_CAPABLE,
453 	    &Adapter->fm_capabilities);
454 	e1000g_fm_init(Adapter);
455 	Adapter->attach_progress |= ATTACH_PROGRESS_FMINIT;
456 
457 	/*
458 	 * PCI Configure
459 	 */
460 	if (pci_config_setup(devinfo, &osdep->cfg_handle) != DDI_SUCCESS) {
461 		e1000g_log(Adapter, CE_WARN, "PCI configuration failed");
462 		goto attach_fail;
463 	}
464 	Adapter->attach_progress |= ATTACH_PROGRESS_PCI_CONFIG;
465 
466 	/*
467 	 * Setup hardware
468 	 */
469 	if (e1000g_identify_hardware(Adapter) != DDI_SUCCESS) {
470 		e1000g_log(Adapter, CE_WARN, "Identify hardware failed");
471 		goto attach_fail;
472 	}
473 
474 	/*
475 	 * Map in the device registers.
476 	 */
477 	if (e1000g_regs_map(Adapter) != DDI_SUCCESS) {
478 		e1000g_log(Adapter, CE_WARN, "Mapping registers failed");
479 		goto attach_fail;
480 	}
481 	Adapter->attach_progress |= ATTACH_PROGRESS_REGS_MAP;
482 
483 	/*
484 	 * Initialize driver parameters
485 	 */
486 	if (e1000g_set_driver_params(Adapter) != DDI_SUCCESS) {
487 		goto attach_fail;
488 	}
489 	Adapter->attach_progress |= ATTACH_PROGRESS_SETUP;
490 
491 	if (e1000g_check_acc_handle(Adapter->osdep.cfg_handle) != DDI_FM_OK) {
492 		ddi_fm_service_impact(Adapter->dip, DDI_SERVICE_LOST);
493 		goto attach_fail;
494 	}
495 
496 	/*
497 	 * Disable ULP support
498 	 */
499 	(void) e1000_disable_ulp_lpt_lp(hw, TRUE);
500 
501 	/*
502 	 * Initialize interrupts
503 	 */
504 	if (e1000g_add_intrs(Adapter) != DDI_SUCCESS) {
505 		e1000g_log(Adapter, CE_WARN, "Add interrupts failed");
506 		goto attach_fail;
507 	}
508 	Adapter->attach_progress |= ATTACH_PROGRESS_ADD_INTR;
509 
510 	/*
511 	 * Initialize mutex's for this device.
512 	 * Do this before enabling the interrupt handler and
513 	 * register the softint to avoid the condition where
514 	 * interrupt handler can try using uninitialized mutex
515 	 */
516 	e1000g_init_locks(Adapter);
517 	Adapter->attach_progress |= ATTACH_PROGRESS_LOCKS;
518 
519 	/*
520 	 * Initialize Driver Counters
521 	 */
522 	if (e1000g_init_stats(Adapter) != DDI_SUCCESS) {
523 		e1000g_log(Adapter, CE_WARN, "Init stats failed");
524 		goto attach_fail;
525 	}
526 	Adapter->attach_progress |= ATTACH_PROGRESS_KSTATS;
527 
528 	/*
529 	 * Initialize chip hardware and software structures
530 	 */
531 	rw_enter(&Adapter->chip_lock, RW_WRITER);
532 	if (e1000g_init(Adapter) != DDI_SUCCESS) {
533 		rw_exit(&Adapter->chip_lock);
534 		e1000g_log(Adapter, CE_WARN, "Adapter initialization failed");
535 		goto attach_fail;
536 	}
537 	rw_exit(&Adapter->chip_lock);
538 	Adapter->attach_progress |= ATTACH_PROGRESS_INIT;
539 
540 	/*
541 	 * Register the driver to the MAC
542 	 */
543 	if (e1000g_register_mac(Adapter) != DDI_SUCCESS) {
544 		e1000g_log(Adapter, CE_WARN, "Register MAC failed");
545 		goto attach_fail;
546 	}
547 	Adapter->attach_progress |= ATTACH_PROGRESS_MAC;
548 
549 	/*
550 	 * Now that mutex locks are initialized, and the chip is also
551 	 * initialized, enable interrupts.
552 	 */
553 	if (e1000g_enable_intrs(Adapter) != DDI_SUCCESS) {
554 		e1000g_log(Adapter, CE_WARN, "Enable DDI interrupts failed");
555 		goto attach_fail;
556 	}
557 	Adapter->attach_progress |= ATTACH_PROGRESS_ENABLE_INTR;
558 
559 	/*
560 	 * If e1000g_force_detach is enabled, in global private dip list,
561 	 * we will create a new entry, which maintains the priv_dip for DR
562 	 * supports after driver detached.
563 	 */
564 	if (e1000g_force_detach) {
565 		private_devi_list_t *devi_node;
566 
567 		Adapter->priv_dip =
568 		    kmem_zalloc(sizeof (struct dev_info), KM_SLEEP);
569 		bcopy(DEVI(devinfo), DEVI(Adapter->priv_dip),
570 		    sizeof (struct dev_info));
571 
572 		devi_node =
573 		    kmem_zalloc(sizeof (private_devi_list_t), KM_SLEEP);
574 
575 		mutex_enter(&e1000g_rx_detach_lock);
576 		devi_node->priv_dip = Adapter->priv_dip;
577 		devi_node->flag = E1000G_PRIV_DEVI_ATTACH;
578 		devi_node->pending_rx_count = 0;
579 
580 		Adapter->priv_devi_node = devi_node;
581 
582 		if (e1000g_private_devi_list == NULL) {
583 			devi_node->prev = NULL;
584 			devi_node->next = NULL;
585 			e1000g_private_devi_list = devi_node;
586 		} else {
587 			devi_node->prev = NULL;
588 			devi_node->next = e1000g_private_devi_list;
589 			e1000g_private_devi_list->prev = devi_node;
590 			e1000g_private_devi_list = devi_node;
591 		}
592 		mutex_exit(&e1000g_rx_detach_lock);
593 	}
594 
595 	Adapter->e1000g_state = E1000G_INITIALIZED;
596 	return (DDI_SUCCESS);
597 
598 attach_fail:
599 	e1000g_unattach(devinfo, Adapter);
600 	return (DDI_FAILURE);
601 }
602 
603 static int
604 e1000g_register_mac(struct e1000g *Adapter)
605 {
606 	struct e1000_hw *hw = &Adapter->shared;
607 	mac_register_t *mac;
608 	int err;
609 
610 	if ((mac = mac_alloc(MAC_VERSION)) == NULL)
611 		return (DDI_FAILURE);
612 
613 	mac->m_type_ident = MAC_PLUGIN_IDENT_ETHER;
614 	mac->m_driver = Adapter;
615 	mac->m_dip = Adapter->dip;
616 	mac->m_src_addr = hw->mac.addr;
617 	mac->m_callbacks = &e1000g_m_callbacks;
618 	mac->m_min_sdu = 0;
619 	mac->m_max_sdu = Adapter->default_mtu;
620 	mac->m_margin = VLAN_TAGSZ;
621 	mac->m_priv_props = e1000g_priv_props;
622 	mac->m_v12n = MAC_VIRT_LEVEL1;
623 
624 	err = mac_register(mac, &Adapter->mh);
625 	mac_free(mac);
626 
627 	return (err == 0 ? DDI_SUCCESS : DDI_FAILURE);
628 }
629 
630 static int
631 e1000g_identify_hardware(struct e1000g *Adapter)
632 {
633 	struct e1000_hw *hw = &Adapter->shared;
634 	struct e1000g_osdep *osdep = &Adapter->osdep;
635 
636 	/* Get the device id */
637 	hw->vendor_id =
638 	    pci_config_get16(osdep->cfg_handle, PCI_CONF_VENID);
639 	hw->device_id =
640 	    pci_config_get16(osdep->cfg_handle, PCI_CONF_DEVID);
641 	hw->revision_id =
642 	    pci_config_get8(osdep->cfg_handle, PCI_CONF_REVID);
643 	hw->subsystem_device_id =
644 	    pci_config_get16(osdep->cfg_handle, PCI_CONF_SUBSYSID);
645 	hw->subsystem_vendor_id =
646 	    pci_config_get16(osdep->cfg_handle, PCI_CONF_SUBVENID);
647 
648 	if (e1000_set_mac_type(hw) != E1000_SUCCESS) {
649 		E1000G_DEBUGLOG_0(Adapter, E1000G_INFO_LEVEL,
650 		    "MAC type could not be set properly.");
651 		return (DDI_FAILURE);
652 	}
653 
654 	return (DDI_SUCCESS);
655 }
656 
657 static int
658 e1000g_regs_map(struct e1000g *Adapter)
659 {
660 	dev_info_t *devinfo = Adapter->dip;
661 	struct e1000_hw *hw = &Adapter->shared;
662 	struct e1000g_osdep *osdep = &Adapter->osdep;
663 	off_t mem_size;
664 	bar_info_t bar_info;
665 	int offset, rnumber;
666 
667 	rnumber = ADAPTER_REG_SET;
668 	/* Get size of adapter register memory */
669 	if (ddi_dev_regsize(devinfo, rnumber, &mem_size) !=
670 	    DDI_SUCCESS) {
671 		E1000G_DEBUGLOG_0(Adapter, CE_WARN,
672 		    "ddi_dev_regsize for registers failed");
673 		return (DDI_FAILURE);
674 	}
675 
676 	/* Map adapter register memory */
677 	if ((ddi_regs_map_setup(devinfo, rnumber,
678 	    (caddr_t *)&hw->hw_addr, 0, mem_size, &e1000g_regs_acc_attr,
679 	    &osdep->reg_handle)) != DDI_SUCCESS) {
680 		E1000G_DEBUGLOG_0(Adapter, CE_WARN,
681 		    "ddi_regs_map_setup for registers failed");
682 		goto regs_map_fail;
683 	}
684 
685 	/* ICH needs to map flash memory */
686 	switch (hw->mac.type) {
687 	case e1000_ich8lan:
688 	case e1000_ich9lan:
689 	case e1000_ich10lan:
690 	case e1000_pchlan:
691 	case e1000_pch2lan:
692 	case e1000_pch_lpt:
693 		rnumber = ICH_FLASH_REG_SET;
694 
695 		/* get flash size */
696 		if (ddi_dev_regsize(devinfo, rnumber,
697 		    &mem_size) != DDI_SUCCESS) {
698 			E1000G_DEBUGLOG_0(Adapter, CE_WARN,
699 			    "ddi_dev_regsize for ICH flash failed");
700 			goto regs_map_fail;
701 		}
702 
703 		/* map flash in */
704 		if (ddi_regs_map_setup(devinfo, rnumber,
705 		    (caddr_t *)&hw->flash_address, 0,
706 		    mem_size, &e1000g_regs_acc_attr,
707 		    &osdep->ich_flash_handle) != DDI_SUCCESS) {
708 			E1000G_DEBUGLOG_0(Adapter, CE_WARN,
709 			    "ddi_regs_map_setup for ICH flash failed");
710 			goto regs_map_fail;
711 		}
712 		break;
713 	case e1000_pch_spt:
714 	case e1000_pch_cnp:
715 	case e1000_pch_tgp:
716 		/*
717 		 * On the SPT, the device flash is actually in BAR0, not a
718 		 * separate BAR. Therefore we end up setting the
719 		 * ich_flash_handle to be the same as the register handle.
720 		 * We mark the same to reduce the confusion in the other
721 		 * functions and macros. Though this does make the set up and
722 		 * tear-down path slightly more complicated.
723 		 */
724 		osdep->ich_flash_handle = osdep->reg_handle;
725 		hw->flash_address = hw->hw_addr;
726 	default:
727 		break;
728 	}
729 
730 	/* map io space */
731 	switch (hw->mac.type) {
732 	case e1000_82544:
733 	case e1000_82540:
734 	case e1000_82545:
735 	case e1000_82546:
736 	case e1000_82541:
737 	case e1000_82541_rev_2:
738 		/* find the IO bar */
739 		rnumber = -1;
740 		for (offset = PCI_CONF_BASE1;
741 		    offset <= PCI_CONF_BASE5; offset += 4) {
742 			if (e1000g_get_bar_info(devinfo, offset, &bar_info)
743 			    != DDI_SUCCESS)
744 				continue;
745 			if (bar_info.type == E1000G_BAR_IO) {
746 				rnumber = bar_info.rnumber;
747 				break;
748 			}
749 		}
750 
751 		if (rnumber < 0) {
752 			E1000G_DEBUGLOG_0(Adapter, CE_WARN,
753 			    "No io space is found");
754 			goto regs_map_fail;
755 		}
756 
757 		/* get io space size */
758 		if (ddi_dev_regsize(devinfo, rnumber,
759 		    &mem_size) != DDI_SUCCESS) {
760 			E1000G_DEBUGLOG_0(Adapter, CE_WARN,
761 			    "ddi_dev_regsize for io space failed");
762 			goto regs_map_fail;
763 		}
764 
765 		/* map io space */
766 		if ((ddi_regs_map_setup(devinfo, rnumber,
767 		    (caddr_t *)&hw->io_base, 0, mem_size,
768 		    &e1000g_regs_acc_attr,
769 		    &osdep->io_reg_handle)) != DDI_SUCCESS) {
770 			E1000G_DEBUGLOG_0(Adapter, CE_WARN,
771 			    "ddi_regs_map_setup for io space failed");
772 			goto regs_map_fail;
773 		}
774 		break;
775 	default:
776 		hw->io_base = 0;
777 		break;
778 	}
779 
780 	return (DDI_SUCCESS);
781 
782 regs_map_fail:
783 	if (osdep->reg_handle != NULL)
784 		ddi_regs_map_free(&osdep->reg_handle);
785 	if (osdep->ich_flash_handle != NULL && hw->mac.type < e1000_pch_spt)
786 		ddi_regs_map_free(&osdep->ich_flash_handle);
787 	return (DDI_FAILURE);
788 }
789 
790 static int
791 e1000g_set_driver_params(struct e1000g *Adapter)
792 {
793 	struct e1000_hw *hw;
794 
795 	hw = &Adapter->shared;
796 
797 	/* Set MAC type and initialize hardware functions */
798 	if (e1000_setup_init_funcs(hw, B_TRUE) != E1000_SUCCESS) {
799 		E1000G_DEBUGLOG_0(Adapter, CE_WARN,
800 		    "Could not setup hardware functions");
801 		return (DDI_FAILURE);
802 	}
803 
804 	/* Get bus information */
805 	if (e1000_get_bus_info(hw) != E1000_SUCCESS) {
806 		E1000G_DEBUGLOG_0(Adapter, CE_WARN,
807 		    "Could not get bus information");
808 		return (DDI_FAILURE);
809 	}
810 
811 	e1000_read_pci_cfg(hw, PCI_COMMAND_REGISTER, &hw->bus.pci_cmd_word);
812 
813 	hw->mac.autoneg_failed = B_TRUE;
814 
815 	/* Set the autoneg_wait_to_complete flag to B_FALSE */
816 	hw->phy.autoneg_wait_to_complete = B_FALSE;
817 
818 	/* Adaptive IFS related changes */
819 	hw->mac.adaptive_ifs = B_TRUE;
820 
821 	/* Enable phy init script for IGP phy of 82541/82547 */
822 	if ((hw->mac.type == e1000_82547) ||
823 	    (hw->mac.type == e1000_82541) ||
824 	    (hw->mac.type == e1000_82547_rev_2) ||
825 	    (hw->mac.type == e1000_82541_rev_2))
826 		e1000_init_script_state_82541(hw, B_TRUE);
827 
828 	/* Enable the TTL workaround for 82541/82547 */
829 	e1000_set_ttl_workaround_state_82541(hw, B_TRUE);
830 
831 #ifdef __sparc
832 	Adapter->strip_crc = B_TRUE;
833 #else
834 	Adapter->strip_crc = B_FALSE;
835 #endif
836 
837 	/* setup the maximum MTU size of the chip */
838 	e1000g_setup_max_mtu(Adapter);
839 
840 	/* Get speed/duplex settings in conf file */
841 	hw->mac.forced_speed_duplex = ADVERTISE_100_FULL;
842 	hw->phy.autoneg_advertised = AUTONEG_ADVERTISE_SPEED_DEFAULT;
843 	e1000g_force_speed_duplex(Adapter);
844 
845 	/* Get Jumbo Frames settings in conf file */
846 	e1000g_get_max_frame_size(Adapter);
847 
848 	/* Get conf file properties */
849 	e1000g_get_conf(Adapter);
850 
851 	/* enforce PCH limits */
852 	e1000g_pch_limits(Adapter);
853 
854 	/* Set Rx/Tx buffer size */
855 	e1000g_set_bufsize(Adapter);
856 
857 	/* Master Latency Timer */
858 	Adapter->master_latency_timer = DEFAULT_MASTER_LATENCY_TIMER;
859 
860 	/* copper options */
861 	if (hw->phy.media_type == e1000_media_type_copper) {
862 		hw->phy.mdix = 0;	/* AUTO_ALL_MODES */
863 		hw->phy.disable_polarity_correction = B_FALSE;
864 		hw->phy.ms_type = e1000_ms_hw_default;	/* E1000_MASTER_SLAVE */
865 	}
866 
867 	/* The initial link state should be "unknown" */
868 	Adapter->link_state = LINK_STATE_UNKNOWN;
869 
870 	/* Initialize rx parameters */
871 	Adapter->rx_intr_delay = DEFAULT_RX_INTR_DELAY;
872 	Adapter->rx_intr_abs_delay = DEFAULT_RX_INTR_ABS_DELAY;
873 
874 	/* Initialize tx parameters */
875 	Adapter->tx_intr_enable = DEFAULT_TX_INTR_ENABLE;
876 	Adapter->tx_bcopy_thresh = DEFAULT_TX_BCOPY_THRESHOLD;
877 	Adapter->tx_intr_delay = DEFAULT_TX_INTR_DELAY;
878 	Adapter->tx_intr_abs_delay = DEFAULT_TX_INTR_ABS_DELAY;
879 
880 	/* Initialize rx parameters */
881 	Adapter->rx_bcopy_thresh = DEFAULT_RX_BCOPY_THRESHOLD;
882 
883 	return (DDI_SUCCESS);
884 }
885 
886 static void
887 e1000g_setup_max_mtu(struct e1000g *Adapter)
888 {
889 	struct e1000_mac_info *mac = &Adapter->shared.mac;
890 	struct e1000_phy_info *phy = &Adapter->shared.phy;
891 
892 	switch (mac->type) {
893 	/* types that do not support jumbo frames */
894 	case e1000_ich8lan:
895 	case e1000_82573:
896 	case e1000_82583:
897 		Adapter->max_mtu = ETHERMTU;
898 		break;
899 	/* ich9 supports jumbo frames except on one phy type */
900 	case e1000_ich9lan:
901 		if (phy->type == e1000_phy_ife)
902 			Adapter->max_mtu = ETHERMTU;
903 		else
904 			Adapter->max_mtu = MAXIMUM_MTU_9K;
905 		break;
906 	/* pch can do jumbo frames up to 4K */
907 	case e1000_pchlan:
908 		Adapter->max_mtu = MAXIMUM_MTU_4K;
909 		break;
910 	/* pch2 can do jumbo frames up to 9K */
911 	case e1000_pch2lan:
912 	case e1000_pch_lpt:
913 	case e1000_pch_spt:
914 	case e1000_pch_cnp:
915 	case e1000_pch_tgp:
916 		Adapter->max_mtu = MAXIMUM_MTU_9K;
917 		break;
918 	/* types with a special limit */
919 	case e1000_82571:
920 	case e1000_82572:
921 	case e1000_82574:
922 	case e1000_80003es2lan:
923 	case e1000_ich10lan:
924 		if (e1000g_jumbo_mtu >= ETHERMTU &&
925 		    e1000g_jumbo_mtu <= MAXIMUM_MTU_9K) {
926 			Adapter->max_mtu = e1000g_jumbo_mtu;
927 		} else {
928 			Adapter->max_mtu = MAXIMUM_MTU_9K;
929 		}
930 		break;
931 	/* default limit is 16K */
932 	default:
933 		Adapter->max_mtu = FRAME_SIZE_UPTO_16K -
934 		    sizeof (struct ether_vlan_header) - ETHERFCSL;
935 		break;
936 	}
937 }
938 
939 static void
940 e1000g_set_bufsize(struct e1000g *Adapter)
941 {
942 	struct e1000_mac_info *mac = &Adapter->shared.mac;
943 	uint64_t rx_size;
944 	uint64_t tx_size;
945 
946 	dev_info_t *devinfo = Adapter->dip;
947 #ifdef __sparc
948 	ulong_t iommu_pagesize;
949 #endif
950 	/* Get the system page size */
951 	Adapter->sys_page_sz = ddi_ptob(devinfo, (ulong_t)1);
952 
953 #ifdef __sparc
954 	iommu_pagesize = dvma_pagesize(devinfo);
955 	if (iommu_pagesize != 0) {
956 		if (Adapter->sys_page_sz == iommu_pagesize) {
957 			if (iommu_pagesize > 0x4000)
958 				Adapter->sys_page_sz = 0x4000;
959 		} else {
960 			if (Adapter->sys_page_sz > iommu_pagesize)
961 				Adapter->sys_page_sz = iommu_pagesize;
962 		}
963 	}
964 	if (Adapter->lso_enable) {
965 		Adapter->dvma_page_num = E1000_LSO_MAXLEN /
966 		    Adapter->sys_page_sz + E1000G_DEFAULT_DVMA_PAGE_NUM;
967 	} else {
968 		Adapter->dvma_page_num = Adapter->max_frame_size /
969 		    Adapter->sys_page_sz + E1000G_DEFAULT_DVMA_PAGE_NUM;
970 	}
971 	ASSERT(Adapter->dvma_page_num >= E1000G_DEFAULT_DVMA_PAGE_NUM);
972 #endif
973 
974 	Adapter->min_frame_size = ETHERMIN + ETHERFCSL;
975 
976 	if (Adapter->mem_workaround_82546 &&
977 	    ((mac->type == e1000_82545) ||
978 	    (mac->type == e1000_82546) ||
979 	    (mac->type == e1000_82546_rev_3))) {
980 		Adapter->rx_buffer_size = E1000_RX_BUFFER_SIZE_2K;
981 	} else {
982 		rx_size = Adapter->max_frame_size;
983 		if ((rx_size > FRAME_SIZE_UPTO_2K) &&
984 		    (rx_size <= FRAME_SIZE_UPTO_4K))
985 			Adapter->rx_buffer_size = E1000_RX_BUFFER_SIZE_4K;
986 		else if ((rx_size > FRAME_SIZE_UPTO_4K) &&
987 		    (rx_size <= FRAME_SIZE_UPTO_8K))
988 			Adapter->rx_buffer_size = E1000_RX_BUFFER_SIZE_8K;
989 		else if ((rx_size > FRAME_SIZE_UPTO_8K) &&
990 		    (rx_size <= FRAME_SIZE_UPTO_16K))
991 			Adapter->rx_buffer_size = E1000_RX_BUFFER_SIZE_16K;
992 		else
993 			Adapter->rx_buffer_size = E1000_RX_BUFFER_SIZE_2K;
994 	}
995 	Adapter->rx_buffer_size += E1000G_IPALIGNROOM;
996 
997 	tx_size = Adapter->max_frame_size;
998 	if ((tx_size > FRAME_SIZE_UPTO_2K) && (tx_size <= FRAME_SIZE_UPTO_4K))
999 		Adapter->tx_buffer_size = E1000_TX_BUFFER_SIZE_4K;
1000 	else if ((tx_size > FRAME_SIZE_UPTO_4K) &&
1001 	    (tx_size <= FRAME_SIZE_UPTO_8K))
1002 		Adapter->tx_buffer_size = E1000_TX_BUFFER_SIZE_8K;
1003 	else if ((tx_size > FRAME_SIZE_UPTO_8K) &&
1004 	    (tx_size <= FRAME_SIZE_UPTO_16K))
1005 		Adapter->tx_buffer_size = E1000_TX_BUFFER_SIZE_16K;
1006 	else
1007 		Adapter->tx_buffer_size = E1000_TX_BUFFER_SIZE_2K;
1008 
1009 	/*
1010 	 * For Wiseman adapters we have an requirement of having receive
1011 	 * buffers aligned at 256 byte boundary. Since Livengood does not
1012 	 * require this and forcing it for all hardwares will have
1013 	 * performance implications, I am making it applicable only for
1014 	 * Wiseman and for Jumbo frames enabled mode as rest of the time,
1015 	 * it is okay to have normal frames...but it does involve a
1016 	 * potential risk where we may loose data if buffer is not
1017 	 * aligned...so all wiseman boards to have 256 byte aligned
1018 	 * buffers
1019 	 */
1020 	if (mac->type < e1000_82543)
1021 		Adapter->rx_buf_align = RECEIVE_BUFFER_ALIGN_SIZE;
1022 	else
1023 		Adapter->rx_buf_align = 1;
1024 }
1025 
1026 /*
1027  * e1000g_detach - driver detach
1028  *
1029  * The detach() function is the complement of the attach routine.
1030  * If cmd is set to DDI_DETACH, detach() is used to remove  the
1031  * state  associated  with  a  given  instance of a device node
1032  * prior to the removal of that instance from the system.
1033  *
1034  * The detach() function will be called once for each  instance
1035  * of the device for which there has been a successful attach()
1036  * once there are no longer  any  opens  on  the  device.
1037  *
1038  * Interrupts routine are disabled, All memory allocated by this
1039  * driver are freed.
1040  */
1041 static int
1042 e1000g_detach(dev_info_t *devinfo, ddi_detach_cmd_t cmd)
1043 {
1044 	struct e1000g *Adapter;
1045 	boolean_t rx_drain;
1046 
1047 	switch (cmd) {
1048 	default:
1049 		return (DDI_FAILURE);
1050 
1051 	case DDI_SUSPEND:
1052 		return (e1000g_suspend(devinfo));
1053 
1054 	case DDI_DETACH:
1055 		break;
1056 	}
1057 
1058 	Adapter = (struct e1000g *)ddi_get_driver_private(devinfo);
1059 	if (Adapter == NULL)
1060 		return (DDI_FAILURE);
1061 
1062 	rx_drain = e1000g_rx_drain(Adapter);
1063 	if (!rx_drain && !e1000g_force_detach)
1064 		return (DDI_FAILURE);
1065 
1066 	if (mac_unregister(Adapter->mh) != 0) {
1067 		e1000g_log(Adapter, CE_WARN, "Unregister MAC failed");
1068 		return (DDI_FAILURE);
1069 	}
1070 	Adapter->attach_progress &= ~ATTACH_PROGRESS_MAC;
1071 
1072 	ASSERT(!(Adapter->e1000g_state & E1000G_STARTED));
1073 
1074 	if (!e1000g_force_detach && !rx_drain)
1075 		return (DDI_FAILURE);
1076 
1077 	e1000g_unattach(devinfo, Adapter);
1078 
1079 	return (DDI_SUCCESS);
1080 }
1081 
1082 /*
1083  * e1000g_free_priv_devi_node - free a priv_dip entry for driver instance
1084  */
1085 void
1086 e1000g_free_priv_devi_node(private_devi_list_t *devi_node)
1087 {
1088 	ASSERT(e1000g_private_devi_list != NULL);
1089 	ASSERT(devi_node != NULL);
1090 
1091 	if (devi_node->prev != NULL)
1092 		devi_node->prev->next = devi_node->next;
1093 	if (devi_node->next != NULL)
1094 		devi_node->next->prev = devi_node->prev;
1095 	if (devi_node == e1000g_private_devi_list)
1096 		e1000g_private_devi_list = devi_node->next;
1097 
1098 	kmem_free(devi_node->priv_dip,
1099 	    sizeof (struct dev_info));
1100 	kmem_free(devi_node,
1101 	    sizeof (private_devi_list_t));
1102 }
1103 
1104 static void
1105 e1000g_unattach(dev_info_t *devinfo, struct e1000g *Adapter)
1106 {
1107 	private_devi_list_t *devi_node;
1108 	int result;
1109 
1110 	if (Adapter->e1000g_blink != NULL) {
1111 		ddi_periodic_delete(Adapter->e1000g_blink);
1112 		Adapter->e1000g_blink = NULL;
1113 	}
1114 
1115 	if (Adapter->attach_progress & ATTACH_PROGRESS_ENABLE_INTR) {
1116 		(void) e1000g_disable_intrs(Adapter);
1117 	}
1118 
1119 	if (Adapter->attach_progress & ATTACH_PROGRESS_MAC) {
1120 		(void) mac_unregister(Adapter->mh);
1121 	}
1122 
1123 	if (Adapter->attach_progress & ATTACH_PROGRESS_ADD_INTR) {
1124 		(void) e1000g_rem_intrs(Adapter);
1125 	}
1126 
1127 	if (Adapter->attach_progress & ATTACH_PROGRESS_SETUP) {
1128 		(void) ddi_prop_remove_all(devinfo);
1129 	}
1130 
1131 	if (Adapter->attach_progress & ATTACH_PROGRESS_KSTATS) {
1132 		kstat_delete((kstat_t *)Adapter->e1000g_ksp);
1133 	}
1134 
1135 	if (Adapter->attach_progress & ATTACH_PROGRESS_INIT) {
1136 		stop_link_timer(Adapter);
1137 
1138 		mutex_enter(&e1000g_nvm_lock);
1139 		result = e1000_reset_hw(&Adapter->shared);
1140 		mutex_exit(&e1000g_nvm_lock);
1141 
1142 		if (result != E1000_SUCCESS) {
1143 			e1000g_fm_ereport(Adapter, DDI_FM_DEVICE_INVAL_STATE);
1144 			ddi_fm_service_impact(Adapter->dip, DDI_SERVICE_LOST);
1145 		}
1146 	}
1147 
1148 	e1000g_release_multicast(Adapter);
1149 
1150 	if (Adapter->attach_progress & ATTACH_PROGRESS_REGS_MAP) {
1151 		if (Adapter->osdep.reg_handle != NULL)
1152 			ddi_regs_map_free(&Adapter->osdep.reg_handle);
1153 		if (Adapter->osdep.ich_flash_handle != NULL &&
1154 		    Adapter->shared.mac.type < e1000_pch_spt)
1155 			ddi_regs_map_free(&Adapter->osdep.ich_flash_handle);
1156 		if (Adapter->osdep.io_reg_handle != NULL)
1157 			ddi_regs_map_free(&Adapter->osdep.io_reg_handle);
1158 	}
1159 
1160 	if (Adapter->attach_progress & ATTACH_PROGRESS_PCI_CONFIG) {
1161 		if (Adapter->osdep.cfg_handle != NULL)
1162 			pci_config_teardown(&Adapter->osdep.cfg_handle);
1163 	}
1164 
1165 	if (Adapter->attach_progress & ATTACH_PROGRESS_LOCKS) {
1166 		e1000g_destroy_locks(Adapter);
1167 	}
1168 
1169 	if (Adapter->attach_progress & ATTACH_PROGRESS_FMINIT) {
1170 		e1000g_fm_fini(Adapter);
1171 	}
1172 
1173 	mutex_enter(&e1000g_rx_detach_lock);
1174 	if (e1000g_force_detach && (Adapter->priv_devi_node != NULL)) {
1175 		devi_node = Adapter->priv_devi_node;
1176 		devi_node->flag |= E1000G_PRIV_DEVI_DETACH;
1177 
1178 		if (devi_node->pending_rx_count == 0) {
1179 			e1000g_free_priv_devi_node(devi_node);
1180 		}
1181 	}
1182 	mutex_exit(&e1000g_rx_detach_lock);
1183 
1184 	kmem_free((caddr_t)Adapter, sizeof (struct e1000g));
1185 
1186 	/*
1187 	 * Another hotplug spec requirement,
1188 	 * run ddi_set_driver_private(devinfo, null);
1189 	 */
1190 	ddi_set_driver_private(devinfo, NULL);
1191 }
1192 
1193 /*
1194  * Get the BAR type and rnumber for a given PCI BAR offset
1195  */
1196 static int
1197 e1000g_get_bar_info(dev_info_t *dip, int bar_offset, bar_info_t *bar_info)
1198 {
1199 	pci_regspec_t *regs;
1200 	uint_t regs_length;
1201 	int type, rnumber, rcount;
1202 
1203 	ASSERT((bar_offset >= PCI_CONF_BASE0) &&
1204 	    (bar_offset <= PCI_CONF_BASE5));
1205 
1206 	/*
1207 	 * Get the DDI "reg" property
1208 	 */
1209 	if (ddi_prop_lookup_int_array(DDI_DEV_T_ANY, dip,
1210 	    DDI_PROP_DONTPASS, "reg", (int **)&regs,
1211 	    &regs_length) != DDI_PROP_SUCCESS) {
1212 		return (DDI_FAILURE);
1213 	}
1214 
1215 	rcount = regs_length * sizeof (int) / sizeof (pci_regspec_t);
1216 	/*
1217 	 * Check the BAR offset
1218 	 */
1219 	for (rnumber = 0; rnumber < rcount; ++rnumber) {
1220 		if (PCI_REG_REG_G(regs[rnumber].pci_phys_hi) == bar_offset) {
1221 			type = regs[rnumber].pci_phys_hi & PCI_ADDR_MASK;
1222 			break;
1223 		}
1224 	}
1225 
1226 	ddi_prop_free(regs);
1227 
1228 	if (rnumber >= rcount)
1229 		return (DDI_FAILURE);
1230 
1231 	switch (type) {
1232 	case PCI_ADDR_CONFIG:
1233 		bar_info->type = E1000G_BAR_CONFIG;
1234 		break;
1235 	case PCI_ADDR_IO:
1236 		bar_info->type = E1000G_BAR_IO;
1237 		break;
1238 	case PCI_ADDR_MEM32:
1239 		bar_info->type = E1000G_BAR_MEM32;
1240 		break;
1241 	case PCI_ADDR_MEM64:
1242 		bar_info->type = E1000G_BAR_MEM64;
1243 		break;
1244 	default:
1245 		return (DDI_FAILURE);
1246 	}
1247 	bar_info->rnumber = rnumber;
1248 	return (DDI_SUCCESS);
1249 }
1250 
1251 static void
1252 e1000g_init_locks(struct e1000g *Adapter)
1253 {
1254 	e1000g_tx_ring_t *tx_ring;
1255 	e1000g_rx_ring_t *rx_ring;
1256 
1257 	rw_init(&Adapter->chip_lock, NULL,
1258 	    RW_DRIVER, DDI_INTR_PRI(Adapter->intr_pri));
1259 	mutex_init(&Adapter->link_lock, NULL,
1260 	    MUTEX_DRIVER, DDI_INTR_PRI(Adapter->intr_pri));
1261 	mutex_init(&Adapter->watchdog_lock, NULL,
1262 	    MUTEX_DRIVER, DDI_INTR_PRI(Adapter->intr_pri));
1263 
1264 	tx_ring = Adapter->tx_ring;
1265 
1266 	mutex_init(&tx_ring->tx_lock, NULL,
1267 	    MUTEX_DRIVER, DDI_INTR_PRI(Adapter->intr_pri));
1268 	mutex_init(&tx_ring->usedlist_lock, NULL,
1269 	    MUTEX_DRIVER, DDI_INTR_PRI(Adapter->intr_pri));
1270 	mutex_init(&tx_ring->freelist_lock, NULL,
1271 	    MUTEX_DRIVER, DDI_INTR_PRI(Adapter->intr_pri));
1272 
1273 	rx_ring = Adapter->rx_ring;
1274 
1275 	mutex_init(&rx_ring->rx_lock, NULL,
1276 	    MUTEX_DRIVER, DDI_INTR_PRI(Adapter->intr_pri));
1277 
1278 	mutex_init(&Adapter->e1000g_led_lock, NULL,
1279 	    MUTEX_DRIVER, DDI_INTR_PRI(Adapter->intr_pri));
1280 }
1281 
1282 static void
1283 e1000g_destroy_locks(struct e1000g *Adapter)
1284 {
1285 	e1000g_tx_ring_t *tx_ring;
1286 	e1000g_rx_ring_t *rx_ring;
1287 
1288 	mutex_destroy(&Adapter->e1000g_led_lock);
1289 
1290 	tx_ring = Adapter->tx_ring;
1291 	mutex_destroy(&tx_ring->tx_lock);
1292 	mutex_destroy(&tx_ring->usedlist_lock);
1293 	mutex_destroy(&tx_ring->freelist_lock);
1294 
1295 	rx_ring = Adapter->rx_ring;
1296 	mutex_destroy(&rx_ring->rx_lock);
1297 
1298 	mutex_destroy(&Adapter->link_lock);
1299 	mutex_destroy(&Adapter->watchdog_lock);
1300 	rw_destroy(&Adapter->chip_lock);
1301 
1302 	/* destory mutex initialized in shared code */
1303 	e1000_destroy_hw_mutex(&Adapter->shared);
1304 }
1305 
1306 static int
1307 e1000g_resume(dev_info_t *devinfo)
1308 {
1309 	struct e1000g *Adapter;
1310 
1311 	Adapter = (struct e1000g *)ddi_get_driver_private(devinfo);
1312 	if (Adapter == NULL)
1313 		e1000g_log(Adapter, CE_PANIC,
1314 		    "Instance pointer is null\n");
1315 
1316 	if (Adapter->dip != devinfo)
1317 		e1000g_log(Adapter, CE_PANIC,
1318 		    "Devinfo is not the same as saved devinfo\n");
1319 
1320 	rw_enter(&Adapter->chip_lock, RW_WRITER);
1321 
1322 	if (Adapter->e1000g_state & E1000G_STARTED) {
1323 		if (e1000g_start(Adapter, B_FALSE) != DDI_SUCCESS) {
1324 			rw_exit(&Adapter->chip_lock);
1325 			/*
1326 			 * We note the failure, but return success, as the
1327 			 * system is still usable without this controller.
1328 			 */
1329 			e1000g_log(Adapter, CE_WARN,
1330 			    "e1000g_resume: failed to restart controller\n");
1331 			return (DDI_SUCCESS);
1332 		}
1333 		/* Enable and start the watchdog timer */
1334 		enable_watchdog_timer(Adapter);
1335 	}
1336 
1337 	Adapter->e1000g_state &= ~E1000G_SUSPENDED;
1338 
1339 	rw_exit(&Adapter->chip_lock);
1340 
1341 	return (DDI_SUCCESS);
1342 }
1343 
1344 static int
1345 e1000g_suspend(dev_info_t *devinfo)
1346 {
1347 	struct e1000g *Adapter;
1348 
1349 	Adapter = (struct e1000g *)ddi_get_driver_private(devinfo);
1350 	if (Adapter == NULL)
1351 		return (DDI_FAILURE);
1352 
1353 	rw_enter(&Adapter->chip_lock, RW_WRITER);
1354 
1355 	Adapter->e1000g_state |= E1000G_SUSPENDED;
1356 
1357 	/* if the port isn't plumbed, we can simply return */
1358 	if (!(Adapter->e1000g_state & E1000G_STARTED)) {
1359 		rw_exit(&Adapter->chip_lock);
1360 		return (DDI_SUCCESS);
1361 	}
1362 
1363 	e1000g_stop(Adapter, B_FALSE);
1364 
1365 	rw_exit(&Adapter->chip_lock);
1366 
1367 	/* Disable and stop all the timers */
1368 	disable_watchdog_timer(Adapter);
1369 	stop_link_timer(Adapter);
1370 	stop_82547_timer(Adapter->tx_ring);
1371 
1372 	return (DDI_SUCCESS);
1373 }
1374 
1375 static int
1376 e1000g_init(struct e1000g *Adapter)
1377 {
1378 	uint32_t pba;
1379 	uint32_t high_water;
1380 	struct e1000_hw *hw;
1381 	clock_t link_timeout;
1382 	int result;
1383 
1384 	hw = &Adapter->shared;
1385 
1386 	/*
1387 	 * reset to put the hardware in a known state
1388 	 * before we try to do anything with the eeprom
1389 	 */
1390 	mutex_enter(&e1000g_nvm_lock);
1391 	result = e1000_reset_hw(hw);
1392 	mutex_exit(&e1000g_nvm_lock);
1393 
1394 	if (result != E1000_SUCCESS) {
1395 		e1000g_fm_ereport(Adapter, DDI_FM_DEVICE_INVAL_STATE);
1396 		goto init_fail;
1397 	}
1398 
1399 	mutex_enter(&e1000g_nvm_lock);
1400 	result = e1000_validate_nvm_checksum(hw);
1401 	if (result < E1000_SUCCESS) {
1402 		/*
1403 		 * Some PCI-E parts fail the first check due to
1404 		 * the link being in sleep state.  Call it again,
1405 		 * if it fails a second time its a real issue.
1406 		 */
1407 		result = e1000_validate_nvm_checksum(hw);
1408 	}
1409 	mutex_exit(&e1000g_nvm_lock);
1410 
1411 	if (result < E1000_SUCCESS) {
1412 		e1000g_log(Adapter, CE_WARN,
1413 		    "Invalid NVM checksum. Please contact "
1414 		    "the vendor to update the NVM.");
1415 		e1000g_fm_ereport(Adapter, DDI_FM_DEVICE_INVAL_STATE);
1416 		goto init_fail;
1417 	}
1418 
1419 	result = 0;
1420 #ifdef __sparc
1421 	/*
1422 	 * First, we try to get the local ethernet address from OBP. If
1423 	 * failed, then we get it from the EEPROM of NIC card.
1424 	 */
1425 	result = e1000g_find_mac_address(Adapter);
1426 #endif
1427 	/* Get the local ethernet address. */
1428 	if (!result) {
1429 		mutex_enter(&e1000g_nvm_lock);
1430 		result = e1000_read_mac_addr(hw);
1431 		mutex_exit(&e1000g_nvm_lock);
1432 	}
1433 
1434 	if (result < E1000_SUCCESS) {
1435 		e1000g_log(Adapter, CE_WARN, "Read mac addr failed");
1436 		e1000g_fm_ereport(Adapter, DDI_FM_DEVICE_INVAL_STATE);
1437 		goto init_fail;
1438 	}
1439 
1440 	/* check for valid mac address */
1441 	if (!is_valid_mac_addr(hw->mac.addr)) {
1442 		e1000g_log(Adapter, CE_WARN, "Invalid mac addr");
1443 		e1000g_fm_ereport(Adapter, DDI_FM_DEVICE_INVAL_STATE);
1444 		goto init_fail;
1445 	}
1446 
1447 	/* Set LAA state for 82571 chipset */
1448 	e1000_set_laa_state_82571(hw, B_TRUE);
1449 
1450 	/* Master Latency Timer implementation */
1451 	if (Adapter->master_latency_timer) {
1452 		pci_config_put8(Adapter->osdep.cfg_handle,
1453 		    PCI_CONF_LATENCY_TIMER, Adapter->master_latency_timer);
1454 	}
1455 
1456 	if (hw->mac.type < e1000_82547) {
1457 		/*
1458 		 * Total FIFO is 64K
1459 		 */
1460 		if (Adapter->max_frame_size > FRAME_SIZE_UPTO_8K)
1461 			pba = E1000_PBA_40K;	/* 40K for Rx, 24K for Tx */
1462 		else
1463 			pba = E1000_PBA_48K;	/* 48K for Rx, 16K for Tx */
1464 	} else if ((hw->mac.type == e1000_82571) ||
1465 	    (hw->mac.type == e1000_82572) ||
1466 	    (hw->mac.type == e1000_80003es2lan)) {
1467 		/*
1468 		 * Total FIFO is 48K
1469 		 */
1470 		if (Adapter->max_frame_size > FRAME_SIZE_UPTO_8K)
1471 			pba = E1000_PBA_30K;	/* 30K for Rx, 18K for Tx */
1472 		else
1473 			pba = E1000_PBA_38K;	/* 38K for Rx, 10K for Tx */
1474 	} else if (hw->mac.type == e1000_82573) {
1475 		pba = E1000_PBA_20K;		/* 20K for Rx, 12K for Tx */
1476 	} else if (hw->mac.type == e1000_82574) {
1477 		/* Keep adapter default: 20K for Rx, 20K for Tx */
1478 		pba = E1000_READ_REG(hw, E1000_PBA);
1479 	} else if (hw->mac.type == e1000_ich8lan) {
1480 		pba = E1000_PBA_8K;		/* 8K for Rx, 12K for Tx */
1481 	} else if (hw->mac.type == e1000_ich9lan) {
1482 		pba = E1000_PBA_10K;
1483 	} else if (hw->mac.type == e1000_ich10lan) {
1484 		pba = E1000_PBA_10K;
1485 	} else if (hw->mac.type == e1000_pchlan) {
1486 		pba = E1000_PBA_26K;
1487 	} else if (hw->mac.type == e1000_pch2lan) {
1488 		pba = E1000_PBA_26K;
1489 	} else if (hw->mac.type == e1000_pch_lpt) {
1490 		pba = E1000_PBA_26K;
1491 	} else if (hw->mac.type == e1000_pch_spt) {
1492 		pba = E1000_PBA_26K;
1493 	} else if (hw->mac.type == e1000_pch_cnp) {
1494 		pba = E1000_PBA_26K;
1495 	} else if (hw->mac.type == e1000_pch_tgp) {
1496 		pba = E1000_PBA_26K;
1497 	} else {
1498 		/*
1499 		 * Total FIFO is 40K
1500 		 */
1501 		if (Adapter->max_frame_size > FRAME_SIZE_UPTO_8K)
1502 			pba = E1000_PBA_22K;	/* 22K for Rx, 18K for Tx */
1503 		else
1504 			pba = E1000_PBA_30K;	/* 30K for Rx, 10K for Tx */
1505 	}
1506 	E1000_WRITE_REG(hw, E1000_PBA, pba);
1507 
1508 	/*
1509 	 * These parameters set thresholds for the adapter's generation(Tx)
1510 	 * and response(Rx) to Ethernet PAUSE frames.  These are just threshold
1511 	 * settings.  Flow control is enabled or disabled in the configuration
1512 	 * file.
1513 	 * High-water mark is set down from the top of the rx fifo (not
1514 	 * sensitive to max_frame_size) and low-water is set just below
1515 	 * high-water mark.
1516 	 * The high water mark must be low enough to fit one full frame above
1517 	 * it in the rx FIFO.  Should be the lower of:
1518 	 * 90% of the Rx FIFO size and the full Rx FIFO size minus the early
1519 	 * receive size (assuming ERT set to E1000_ERT_2048), or the full
1520 	 * Rx FIFO size minus one full frame.
1521 	 */
1522 	high_water = min(((pba << 10) * 9 / 10),
1523 	    ((hw->mac.type == e1000_82573 || hw->mac.type == e1000_82574 ||
1524 	    hw->mac.type == e1000_ich9lan || hw->mac.type == e1000_ich10lan) ?
1525 	    ((pba << 10) - (E1000_ERT_2048 << 3)) :
1526 	    ((pba << 10) - Adapter->max_frame_size)));
1527 
1528 	hw->fc.high_water = high_water & 0xFFF8;
1529 	hw->fc.low_water = hw->fc.high_water - 8;
1530 
1531 	if (hw->mac.type == e1000_80003es2lan)
1532 		hw->fc.pause_time = 0xFFFF;
1533 	else
1534 		hw->fc.pause_time = E1000_FC_PAUSE_TIME;
1535 	hw->fc.send_xon = B_TRUE;
1536 
1537 	/*
1538 	 * Reset the adapter hardware the second time.
1539 	 */
1540 	mutex_enter(&e1000g_nvm_lock);
1541 	result = e1000_reset_hw(hw);
1542 	mutex_exit(&e1000g_nvm_lock);
1543 
1544 	if (result != E1000_SUCCESS) {
1545 		e1000g_fm_ereport(Adapter, DDI_FM_DEVICE_INVAL_STATE);
1546 		goto init_fail;
1547 	}
1548 
1549 	/* disable wakeup control by default */
1550 	if (hw->mac.type >= e1000_82544)
1551 		E1000_WRITE_REG(hw, E1000_WUC, 0);
1552 
1553 	/*
1554 	 * MWI should be disabled on 82546.
1555 	 */
1556 	if (hw->mac.type == e1000_82546)
1557 		e1000_pci_clear_mwi(hw);
1558 	else
1559 		e1000_pci_set_mwi(hw);
1560 
1561 	/*
1562 	 * Configure/Initialize hardware
1563 	 */
1564 	mutex_enter(&e1000g_nvm_lock);
1565 	result = e1000_init_hw(hw);
1566 	mutex_exit(&e1000g_nvm_lock);
1567 
1568 	if (result < E1000_SUCCESS) {
1569 		e1000g_log(Adapter, CE_WARN, "Initialize hw failed");
1570 		e1000g_fm_ereport(Adapter, DDI_FM_DEVICE_INVAL_STATE);
1571 		goto init_fail;
1572 	}
1573 
1574 	/*
1575 	 * Restore LED settings to the default from EEPROM
1576 	 * to meet the standard for Sun platforms.
1577 	 */
1578 	(void) e1000_cleanup_led(hw);
1579 
1580 	/* Disable Smart Power Down */
1581 	phy_spd_state(hw, B_FALSE);
1582 
1583 	/* Make sure driver has control */
1584 	e1000g_get_driver_control(hw);
1585 
1586 	/*
1587 	 * Initialize unicast addresses.
1588 	 */
1589 	e1000g_init_unicst(Adapter);
1590 
1591 	/*
1592 	 * Setup and initialize the mctable structures.  After this routine
1593 	 * completes  Multicast table will be set
1594 	 */
1595 	e1000_update_mc_addr_list(hw,
1596 	    (uint8_t *)Adapter->mcast_table, Adapter->mcast_count);
1597 	msec_delay(5);
1598 
1599 	/*
1600 	 * Implement Adaptive IFS
1601 	 */
1602 	e1000_reset_adaptive(hw);
1603 
1604 	/* Setup Interrupt Throttling Register */
1605 	if (hw->mac.type >= e1000_82540) {
1606 		E1000_WRITE_REG(hw, E1000_ITR, Adapter->intr_throttling_rate);
1607 	} else
1608 		Adapter->intr_adaptive = B_FALSE;
1609 
1610 	/* Start the timer for link setup */
1611 	if (hw->mac.autoneg)
1612 		link_timeout = PHY_AUTO_NEG_LIMIT * drv_usectohz(100000);
1613 	else
1614 		link_timeout = PHY_FORCE_LIMIT * drv_usectohz(100000);
1615 
1616 	mutex_enter(&Adapter->link_lock);
1617 	if (hw->phy.autoneg_wait_to_complete) {
1618 		Adapter->link_complete = B_TRUE;
1619 	} else {
1620 		Adapter->link_complete = B_FALSE;
1621 		Adapter->link_tid = timeout(e1000g_link_timer,
1622 		    (void *)Adapter, link_timeout);
1623 	}
1624 	mutex_exit(&Adapter->link_lock);
1625 
1626 	/* Save the state of the phy */
1627 	e1000g_get_phy_state(Adapter);
1628 
1629 	e1000g_param_sync(Adapter);
1630 
1631 	Adapter->init_count++;
1632 
1633 	if (e1000g_check_acc_handle(Adapter->osdep.cfg_handle) != DDI_FM_OK) {
1634 		goto init_fail;
1635 	}
1636 	if (e1000g_check_acc_handle(Adapter->osdep.reg_handle) != DDI_FM_OK) {
1637 		goto init_fail;
1638 	}
1639 
1640 	Adapter->poll_mode = e1000g_poll_mode;
1641 
1642 	return (DDI_SUCCESS);
1643 
1644 init_fail:
1645 	ddi_fm_service_impact(Adapter->dip, DDI_SERVICE_LOST);
1646 	return (DDI_FAILURE);
1647 }
1648 
1649 static int
1650 e1000g_alloc_rx_data(struct e1000g *Adapter)
1651 {
1652 	e1000g_rx_ring_t *rx_ring;
1653 	e1000g_rx_data_t *rx_data;
1654 
1655 	rx_ring = Adapter->rx_ring;
1656 
1657 	rx_data = kmem_zalloc(sizeof (e1000g_rx_data_t), KM_NOSLEEP);
1658 
1659 	if (rx_data == NULL)
1660 		return (DDI_FAILURE);
1661 
1662 	rx_data->priv_devi_node = Adapter->priv_devi_node;
1663 	rx_data->rx_ring = rx_ring;
1664 
1665 	mutex_init(&rx_data->freelist_lock, NULL,
1666 	    MUTEX_DRIVER, DDI_INTR_PRI(Adapter->intr_pri));
1667 	mutex_init(&rx_data->recycle_lock, NULL,
1668 	    MUTEX_DRIVER, DDI_INTR_PRI(Adapter->intr_pri));
1669 
1670 	rx_ring->rx_data = rx_data;
1671 
1672 	return (DDI_SUCCESS);
1673 }
1674 
1675 void
1676 e1000g_free_rx_pending_buffers(e1000g_rx_data_t *rx_data)
1677 {
1678 	rx_sw_packet_t *packet, *next_packet;
1679 
1680 	if (rx_data == NULL)
1681 		return;
1682 
1683 	packet = rx_data->packet_area;
1684 	while (packet != NULL) {
1685 		next_packet = packet->next;
1686 		e1000g_free_rx_sw_packet(packet, B_TRUE);
1687 		packet = next_packet;
1688 	}
1689 	rx_data->packet_area = NULL;
1690 }
1691 
1692 void
1693 e1000g_free_rx_data(e1000g_rx_data_t *rx_data)
1694 {
1695 	if (rx_data == NULL)
1696 		return;
1697 
1698 	mutex_destroy(&rx_data->freelist_lock);
1699 	mutex_destroy(&rx_data->recycle_lock);
1700 
1701 	kmem_free(rx_data, sizeof (e1000g_rx_data_t));
1702 }
1703 
1704 /*
1705  * Check if the link is up
1706  */
1707 static boolean_t
1708 e1000g_link_up(struct e1000g *Adapter)
1709 {
1710 	struct e1000_hw *hw = &Adapter->shared;
1711 	boolean_t link_up = B_FALSE;
1712 
1713 	/*
1714 	 * get_link_status is set in the interrupt handler on link-status-change
1715 	 * or rx sequence error interrupt.  get_link_status will stay
1716 	 * false until the e1000_check_for_link establishes link only
1717 	 * for copper adapters.
1718 	 */
1719 	switch (hw->phy.media_type) {
1720 	case e1000_media_type_copper:
1721 		if (hw->mac.get_link_status) {
1722 			/*
1723 			 * SPT and newer devices need a bit of extra time before
1724 			 * we ask them.
1725 			 */
1726 			if (hw->mac.type >= e1000_pch_spt)
1727 				msec_delay(50);
1728 			(void) e1000_check_for_link(hw);
1729 			if ((E1000_READ_REG(hw, E1000_STATUS) &
1730 			    E1000_STATUS_LU)) {
1731 				link_up = B_TRUE;
1732 			} else {
1733 				link_up = !hw->mac.get_link_status;
1734 			}
1735 		} else {
1736 			link_up = B_TRUE;
1737 		}
1738 		break;
1739 	case e1000_media_type_fiber:
1740 		(void) e1000_check_for_link(hw);
1741 		link_up = (E1000_READ_REG(hw, E1000_STATUS) &
1742 		    E1000_STATUS_LU);
1743 		break;
1744 	case e1000_media_type_internal_serdes:
1745 		(void) e1000_check_for_link(hw);
1746 		link_up = hw->mac.serdes_has_link;
1747 		break;
1748 	}
1749 
1750 	return (link_up);
1751 }
1752 
1753 static void
1754 e1000g_m_ioctl(void *arg, queue_t *q, mblk_t *mp)
1755 {
1756 	struct iocblk *iocp;
1757 	struct e1000g *e1000gp;
1758 	enum ioc_reply status;
1759 
1760 	iocp = (struct iocblk *)(uintptr_t)mp->b_rptr;
1761 	iocp->ioc_error = 0;
1762 	e1000gp = (struct e1000g *)arg;
1763 
1764 	ASSERT(e1000gp);
1765 	if (e1000gp == NULL) {
1766 		miocnak(q, mp, 0, EINVAL);
1767 		return;
1768 	}
1769 
1770 	rw_enter(&e1000gp->chip_lock, RW_READER);
1771 	if (e1000gp->e1000g_state & E1000G_SUSPENDED) {
1772 		rw_exit(&e1000gp->chip_lock);
1773 		miocnak(q, mp, 0, EINVAL);
1774 		return;
1775 	}
1776 	rw_exit(&e1000gp->chip_lock);
1777 
1778 	switch (iocp->ioc_cmd) {
1779 
1780 	case LB_GET_INFO_SIZE:
1781 	case LB_GET_INFO:
1782 	case LB_GET_MODE:
1783 	case LB_SET_MODE:
1784 		status = e1000g_loopback_ioctl(e1000gp, iocp, mp);
1785 		break;
1786 
1787 
1788 #ifdef E1000G_DEBUG
1789 	case E1000G_IOC_REG_PEEK:
1790 	case E1000G_IOC_REG_POKE:
1791 		status = e1000g_pp_ioctl(e1000gp, iocp, mp);
1792 		break;
1793 	case E1000G_IOC_CHIP_RESET:
1794 		e1000gp->reset_count++;
1795 		if (e1000g_reset_adapter(e1000gp))
1796 			status = IOC_ACK;
1797 		else
1798 			status = IOC_INVAL;
1799 		break;
1800 #endif
1801 	default:
1802 		status = IOC_INVAL;
1803 		break;
1804 	}
1805 
1806 	/*
1807 	 * Decide how to reply
1808 	 */
1809 	switch (status) {
1810 	default:
1811 	case IOC_INVAL:
1812 		/*
1813 		 * Error, reply with a NAK and EINVAL or the specified error
1814 		 */
1815 		miocnak(q, mp, 0, iocp->ioc_error == 0 ?
1816 		    EINVAL : iocp->ioc_error);
1817 		break;
1818 
1819 	case IOC_DONE:
1820 		/*
1821 		 * OK, reply already sent
1822 		 */
1823 		break;
1824 
1825 	case IOC_ACK:
1826 		/*
1827 		 * OK, reply with an ACK
1828 		 */
1829 		miocack(q, mp, 0, 0);
1830 		break;
1831 
1832 	case IOC_REPLY:
1833 		/*
1834 		 * OK, send prepared reply as ACK or NAK
1835 		 */
1836 		mp->b_datap->db_type = iocp->ioc_error == 0 ?
1837 		    M_IOCACK : M_IOCNAK;
1838 		qreply(q, mp);
1839 		break;
1840 	}
1841 }
1842 
1843 /*
1844  * The default value of e1000g_poll_mode == 0 assumes that the NIC is
1845  * capable of supporting only one interrupt and we shouldn't disable
1846  * the physical interrupt. In this case we let the interrupt come and
1847  * we queue the packets in the rx ring itself in case we are in polling
1848  * mode (better latency but slightly lower performance and a very
1849  * high intrrupt count in mpstat which is harmless).
1850  *
1851  * e1000g_poll_mode == 1 assumes that we have per Rx ring interrupt
1852  * which can be disabled in poll mode. This gives better overall
1853  * throughput (compared to the mode above), shows very low interrupt
1854  * count but has slightly higher latency since we pick the packets when
1855  * the poll thread does polling.
1856  *
1857  * Currently, this flag should be enabled only while doing performance
1858  * measurement or when it can be guaranteed that entire NIC going
1859  * in poll mode will not harm any traffic like cluster heartbeat etc.
1860  */
1861 int e1000g_poll_mode = 0;
1862 
1863 /*
1864  * Called from the upper layers when driver is in polling mode to
1865  * pick up any queued packets. Care should be taken to not block
1866  * this thread.
1867  */
1868 static mblk_t *e1000g_poll_ring(void *arg, int bytes_to_pickup)
1869 {
1870 	e1000g_rx_ring_t	*rx_ring = (e1000g_rx_ring_t *)arg;
1871 	mblk_t			*mp = NULL;
1872 	mblk_t			*tail;
1873 	struct e1000g		*adapter;
1874 
1875 	adapter = rx_ring->adapter;
1876 
1877 	rw_enter(&adapter->chip_lock, RW_READER);
1878 
1879 	if (adapter->e1000g_state & E1000G_SUSPENDED) {
1880 		rw_exit(&adapter->chip_lock);
1881 		return (NULL);
1882 	}
1883 
1884 	mutex_enter(&rx_ring->rx_lock);
1885 	mp = e1000g_receive(rx_ring, &tail, bytes_to_pickup);
1886 	mutex_exit(&rx_ring->rx_lock);
1887 	rw_exit(&adapter->chip_lock);
1888 	return (mp);
1889 }
1890 
1891 static int
1892 e1000g_m_start(void *arg)
1893 {
1894 	struct e1000g *Adapter = (struct e1000g *)arg;
1895 
1896 	rw_enter(&Adapter->chip_lock, RW_WRITER);
1897 
1898 	if (Adapter->e1000g_state & E1000G_SUSPENDED) {
1899 		rw_exit(&Adapter->chip_lock);
1900 		return (ECANCELED);
1901 	}
1902 
1903 	if (e1000g_start(Adapter, B_TRUE) != DDI_SUCCESS) {
1904 		rw_exit(&Adapter->chip_lock);
1905 		return (ENOTACTIVE);
1906 	}
1907 
1908 	Adapter->e1000g_state |= E1000G_STARTED;
1909 
1910 	rw_exit(&Adapter->chip_lock);
1911 
1912 	/* Enable and start the watchdog timer */
1913 	enable_watchdog_timer(Adapter);
1914 
1915 	return (0);
1916 }
1917 
1918 static int
1919 e1000g_start(struct e1000g *Adapter, boolean_t global)
1920 {
1921 	e1000g_rx_data_t *rx_data;
1922 
1923 	if (global) {
1924 		if (e1000g_alloc_rx_data(Adapter) != DDI_SUCCESS) {
1925 			e1000g_log(Adapter, CE_WARN, "Allocate rx data failed");
1926 			goto start_fail;
1927 		}
1928 
1929 		/* Allocate dma resources for descriptors and buffers */
1930 		if (e1000g_alloc_dma_resources(Adapter) != DDI_SUCCESS) {
1931 			e1000g_log(Adapter, CE_WARN,
1932 			    "Alloc DMA resources failed");
1933 			goto start_fail;
1934 		}
1935 		Adapter->rx_buffer_setup = B_FALSE;
1936 	}
1937 
1938 	if (!(Adapter->attach_progress & ATTACH_PROGRESS_INIT)) {
1939 		if (e1000g_init(Adapter) != DDI_SUCCESS) {
1940 			e1000g_log(Adapter, CE_WARN,
1941 			    "Adapter initialization failed");
1942 			goto start_fail;
1943 		}
1944 	}
1945 
1946 	/* Setup and initialize the transmit structures */
1947 	e1000g_tx_setup(Adapter);
1948 	msec_delay(5);
1949 
1950 	/* Setup and initialize the receive structures */
1951 	e1000g_rx_setup(Adapter);
1952 	msec_delay(5);
1953 
1954 	/* Restore the e1000g promiscuous mode */
1955 	e1000g_restore_promisc(Adapter);
1956 
1957 	e1000g_mask_interrupt(Adapter);
1958 
1959 	Adapter->attach_progress |= ATTACH_PROGRESS_INIT;
1960 
1961 	if (e1000g_check_acc_handle(Adapter->osdep.reg_handle) != DDI_FM_OK) {
1962 		ddi_fm_service_impact(Adapter->dip, DDI_SERVICE_LOST);
1963 		goto start_fail;
1964 	}
1965 
1966 	return (DDI_SUCCESS);
1967 
1968 start_fail:
1969 	rx_data = Adapter->rx_ring->rx_data;
1970 
1971 	if (global) {
1972 		e1000g_release_dma_resources(Adapter);
1973 		e1000g_free_rx_pending_buffers(rx_data);
1974 		e1000g_free_rx_data(rx_data);
1975 	}
1976 
1977 	mutex_enter(&e1000g_nvm_lock);
1978 	(void) e1000_reset_hw(&Adapter->shared);
1979 	mutex_exit(&e1000g_nvm_lock);
1980 
1981 	return (DDI_FAILURE);
1982 }
1983 
1984 /*
1985  * The I219 has the curious property that if the descriptor rings are not
1986  * emptied before resetting the hardware or before changing the device state
1987  * based on runtime power management, it'll cause the card to hang. This can
1988  * then only be fixed by a PCI reset. As such, for the I219 and it alone, we
1989  * have to flush the rings if we're in this state.
1990  */
1991 static void
1992 e1000g_flush_desc_rings(struct e1000g *Adapter)
1993 {
1994 	struct e1000_hw	*hw = &Adapter->shared;
1995 	u16		hang_state;
1996 	u32		fext_nvm11, tdlen;
1997 
1998 	/* First, disable MULR fix in FEXTNVM11 */
1999 	fext_nvm11 = E1000_READ_REG(hw, E1000_FEXTNVM11);
2000 	fext_nvm11 |= E1000_FEXTNVM11_DISABLE_MULR_FIX;
2001 	E1000_WRITE_REG(hw, E1000_FEXTNVM11, fext_nvm11);
2002 
2003 	/* do nothing if we're not in faulty state, or if the queue is empty */
2004 	tdlen = E1000_READ_REG(hw, E1000_TDLEN(0));
2005 	hang_state = pci_config_get16(Adapter->osdep.cfg_handle,
2006 	    PCICFG_DESC_RING_STATUS);
2007 	if (!(hang_state & FLUSH_DESC_REQUIRED) || !tdlen)
2008 		return;
2009 	e1000g_flush_tx_ring(Adapter);
2010 
2011 	/* recheck, maybe the fault is caused by the rx ring */
2012 	hang_state = pci_config_get16(Adapter->osdep.cfg_handle,
2013 	    PCICFG_DESC_RING_STATUS);
2014 	if (hang_state & FLUSH_DESC_REQUIRED)
2015 		e1000g_flush_rx_ring(Adapter);
2016 
2017 }
2018 
2019 static void
2020 e1000g_m_stop(void *arg)
2021 {
2022 	struct e1000g *Adapter = (struct e1000g *)arg;
2023 
2024 	/* Drain tx sessions */
2025 	(void) e1000g_tx_drain(Adapter);
2026 
2027 	rw_enter(&Adapter->chip_lock, RW_WRITER);
2028 
2029 	if (Adapter->e1000g_state & E1000G_SUSPENDED) {
2030 		rw_exit(&Adapter->chip_lock);
2031 		return;
2032 	}
2033 	Adapter->e1000g_state &= ~E1000G_STARTED;
2034 	e1000g_stop(Adapter, B_TRUE);
2035 
2036 	rw_exit(&Adapter->chip_lock);
2037 
2038 	/* Disable and stop all the timers */
2039 	disable_watchdog_timer(Adapter);
2040 	stop_link_timer(Adapter);
2041 	stop_82547_timer(Adapter->tx_ring);
2042 }
2043 
2044 static void
2045 e1000g_stop(struct e1000g *Adapter, boolean_t global)
2046 {
2047 	private_devi_list_t *devi_node;
2048 	e1000g_rx_data_t *rx_data;
2049 	int result;
2050 
2051 	Adapter->attach_progress &= ~ATTACH_PROGRESS_INIT;
2052 
2053 	/* Stop the chip and release pending resources */
2054 
2055 	/* Tell firmware driver is no longer in control */
2056 	e1000g_release_driver_control(&Adapter->shared);
2057 
2058 	e1000g_clear_all_interrupts(Adapter);
2059 
2060 	mutex_enter(&e1000g_nvm_lock);
2061 	result = e1000_reset_hw(&Adapter->shared);
2062 	mutex_exit(&e1000g_nvm_lock);
2063 
2064 	if (result != E1000_SUCCESS) {
2065 		e1000g_fm_ereport(Adapter, DDI_FM_DEVICE_INVAL_STATE);
2066 		ddi_fm_service_impact(Adapter->dip, DDI_SERVICE_LOST);
2067 	}
2068 
2069 	mutex_enter(&Adapter->link_lock);
2070 	Adapter->link_complete = B_FALSE;
2071 	mutex_exit(&Adapter->link_lock);
2072 
2073 	/* Release resources still held by the TX descriptors */
2074 	e1000g_tx_clean(Adapter);
2075 
2076 	if (e1000g_check_acc_handle(Adapter->osdep.reg_handle) != DDI_FM_OK)
2077 		ddi_fm_service_impact(Adapter->dip, DDI_SERVICE_LOST);
2078 
2079 	/* Clean the pending rx jumbo packet fragment */
2080 	e1000g_rx_clean(Adapter);
2081 
2082 	/*
2083 	 * The I219, eg. the pch_spt, has bugs such that we must ensure that
2084 	 * rings are flushed before we do anything else. This must be done
2085 	 * before we release DMA resources.
2086 	 */
2087 	if (Adapter->shared.mac.type >= e1000_pch_spt)
2088 		e1000g_flush_desc_rings(Adapter);
2089 
2090 	if (global) {
2091 		e1000g_release_dma_resources(Adapter);
2092 
2093 		mutex_enter(&e1000g_rx_detach_lock);
2094 		rx_data = Adapter->rx_ring->rx_data;
2095 		rx_data->flag |= E1000G_RX_STOPPED;
2096 
2097 		if (rx_data->pending_count == 0) {
2098 			e1000g_free_rx_pending_buffers(rx_data);
2099 			e1000g_free_rx_data(rx_data);
2100 		} else {
2101 			devi_node = rx_data->priv_devi_node;
2102 			if (devi_node != NULL)
2103 				atomic_inc_32(&devi_node->pending_rx_count);
2104 			else
2105 				atomic_inc_32(&Adapter->pending_rx_count);
2106 		}
2107 		mutex_exit(&e1000g_rx_detach_lock);
2108 	}
2109 
2110 	if (Adapter->link_state != LINK_STATE_UNKNOWN) {
2111 		Adapter->link_state = LINK_STATE_UNKNOWN;
2112 		if (!Adapter->reset_flag)
2113 			mac_link_update(Adapter->mh, Adapter->link_state);
2114 	}
2115 }
2116 
2117 static void
2118 e1000g_rx_clean(struct e1000g *Adapter)
2119 {
2120 	e1000g_rx_data_t *rx_data = Adapter->rx_ring->rx_data;
2121 
2122 	if (rx_data == NULL)
2123 		return;
2124 
2125 	if (rx_data->rx_mblk != NULL) {
2126 		freemsg(rx_data->rx_mblk);
2127 		rx_data->rx_mblk = NULL;
2128 		rx_data->rx_mblk_tail = NULL;
2129 		rx_data->rx_mblk_len = 0;
2130 	}
2131 }
2132 
2133 static void
2134 e1000g_tx_clean(struct e1000g *Adapter)
2135 {
2136 	e1000g_tx_ring_t *tx_ring;
2137 	p_tx_sw_packet_t packet;
2138 	mblk_t *mp;
2139 	mblk_t *nmp;
2140 	uint32_t packet_count;
2141 
2142 	tx_ring = Adapter->tx_ring;
2143 
2144 	/*
2145 	 * Here we don't need to protect the lists using
2146 	 * the usedlist_lock and freelist_lock, for they
2147 	 * have been protected by the chip_lock.
2148 	 */
2149 	mp = NULL;
2150 	nmp = NULL;
2151 	packet_count = 0;
2152 	packet = (p_tx_sw_packet_t)QUEUE_GET_HEAD(&tx_ring->used_list);
2153 	while (packet != NULL) {
2154 		if (packet->mp != NULL) {
2155 			/* Assemble the message chain */
2156 			if (mp == NULL) {
2157 				mp = packet->mp;
2158 				nmp = packet->mp;
2159 			} else {
2160 				nmp->b_next = packet->mp;
2161 				nmp = packet->mp;
2162 			}
2163 			/* Disconnect the message from the sw packet */
2164 			packet->mp = NULL;
2165 		}
2166 
2167 		e1000g_free_tx_swpkt(packet);
2168 		packet_count++;
2169 
2170 		packet = (p_tx_sw_packet_t)
2171 		    QUEUE_GET_NEXT(&tx_ring->used_list, &packet->Link);
2172 	}
2173 
2174 	if (mp != NULL)
2175 		freemsgchain(mp);
2176 
2177 	if (packet_count > 0) {
2178 		QUEUE_APPEND(&tx_ring->free_list, &tx_ring->used_list);
2179 		QUEUE_INIT_LIST(&tx_ring->used_list);
2180 
2181 		/* Setup TX descriptor pointers */
2182 		tx_ring->tbd_next = tx_ring->tbd_first;
2183 		tx_ring->tbd_oldest = tx_ring->tbd_first;
2184 
2185 		/* Setup our HW Tx Head & Tail descriptor pointers */
2186 		E1000_WRITE_REG(&Adapter->shared, E1000_TDH(0), 0);
2187 		E1000_WRITE_REG(&Adapter->shared, E1000_TDT(0), 0);
2188 	}
2189 }
2190 
2191 static boolean_t
2192 e1000g_tx_drain(struct e1000g *Adapter)
2193 {
2194 	int i;
2195 	boolean_t done;
2196 	e1000g_tx_ring_t *tx_ring;
2197 
2198 	tx_ring = Adapter->tx_ring;
2199 
2200 	/* Allow up to 'wsdraintime' for pending xmit's to complete. */
2201 	for (i = 0; i < TX_DRAIN_TIME; i++) {
2202 		mutex_enter(&tx_ring->usedlist_lock);
2203 		done = IS_QUEUE_EMPTY(&tx_ring->used_list);
2204 		mutex_exit(&tx_ring->usedlist_lock);
2205 
2206 		if (done)
2207 			break;
2208 
2209 		msec_delay(1);
2210 	}
2211 
2212 	return (done);
2213 }
2214 
2215 static boolean_t
2216 e1000g_rx_drain(struct e1000g *Adapter)
2217 {
2218 	int i;
2219 	boolean_t done;
2220 
2221 	/*
2222 	 * Allow up to RX_DRAIN_TIME for pending received packets to complete.
2223 	 */
2224 	for (i = 0; i < RX_DRAIN_TIME; i++) {
2225 		done = (Adapter->pending_rx_count == 0);
2226 
2227 		if (done)
2228 			break;
2229 
2230 		msec_delay(1);
2231 	}
2232 
2233 	return (done);
2234 }
2235 
2236 static boolean_t
2237 e1000g_reset_adapter(struct e1000g *Adapter)
2238 {
2239 	/* Disable and stop all the timers */
2240 	disable_watchdog_timer(Adapter);
2241 	stop_link_timer(Adapter);
2242 	stop_82547_timer(Adapter->tx_ring);
2243 
2244 	rw_enter(&Adapter->chip_lock, RW_WRITER);
2245 
2246 	if (Adapter->stall_flag) {
2247 		Adapter->stall_flag = B_FALSE;
2248 		Adapter->reset_flag = B_TRUE;
2249 	}
2250 
2251 	if (!(Adapter->e1000g_state & E1000G_STARTED)) {
2252 		rw_exit(&Adapter->chip_lock);
2253 		return (B_TRUE);
2254 	}
2255 
2256 	e1000g_stop(Adapter, B_FALSE);
2257 
2258 	if (e1000g_start(Adapter, B_FALSE) != DDI_SUCCESS) {
2259 		rw_exit(&Adapter->chip_lock);
2260 		e1000g_log(Adapter, CE_WARN, "Reset failed");
2261 			return (B_FALSE);
2262 	}
2263 
2264 	rw_exit(&Adapter->chip_lock);
2265 
2266 	/* Enable and start the watchdog timer */
2267 	enable_watchdog_timer(Adapter);
2268 
2269 	return (B_TRUE);
2270 }
2271 
2272 boolean_t
2273 e1000g_global_reset(struct e1000g *Adapter)
2274 {
2275 	/* Disable and stop all the timers */
2276 	disable_watchdog_timer(Adapter);
2277 	stop_link_timer(Adapter);
2278 	stop_82547_timer(Adapter->tx_ring);
2279 
2280 	rw_enter(&Adapter->chip_lock, RW_WRITER);
2281 
2282 	e1000g_stop(Adapter, B_TRUE);
2283 
2284 	Adapter->init_count = 0;
2285 
2286 	if (e1000g_start(Adapter, B_TRUE) != DDI_SUCCESS) {
2287 		rw_exit(&Adapter->chip_lock);
2288 		e1000g_log(Adapter, CE_WARN, "Reset failed");
2289 		return (B_FALSE);
2290 	}
2291 
2292 	rw_exit(&Adapter->chip_lock);
2293 
2294 	/* Enable and start the watchdog timer */
2295 	enable_watchdog_timer(Adapter);
2296 
2297 	return (B_TRUE);
2298 }
2299 
2300 /*
2301  * e1000g_intr_pciexpress - ISR for PCI Express chipsets
2302  *
2303  * This interrupt service routine is for PCI-Express adapters.
2304  * The ICR contents is valid only when the E1000_ICR_INT_ASSERTED
2305  * bit is set.
2306  */
2307 static uint_t
2308 e1000g_intr_pciexpress(caddr_t arg, caddr_t arg1 __unused)
2309 {
2310 	struct e1000g *Adapter;
2311 	uint32_t icr;
2312 
2313 	Adapter = (struct e1000g *)(uintptr_t)arg;
2314 	icr = E1000_READ_REG(&Adapter->shared, E1000_ICR);
2315 
2316 	if (e1000g_check_acc_handle(Adapter->osdep.reg_handle) != DDI_FM_OK) {
2317 		ddi_fm_service_impact(Adapter->dip, DDI_SERVICE_DEGRADED);
2318 		return (DDI_INTR_CLAIMED);
2319 	}
2320 
2321 	if (icr & E1000_ICR_INT_ASSERTED) {
2322 		/*
2323 		 * E1000_ICR_INT_ASSERTED bit was set:
2324 		 * Read(Clear) the ICR, claim this interrupt,
2325 		 * look for work to do.
2326 		 */
2327 		e1000g_intr_work(Adapter, icr);
2328 		return (DDI_INTR_CLAIMED);
2329 	} else {
2330 		/*
2331 		 * E1000_ICR_INT_ASSERTED bit was not set:
2332 		 * Don't claim this interrupt, return immediately.
2333 		 */
2334 		return (DDI_INTR_UNCLAIMED);
2335 	}
2336 }
2337 
2338 /*
2339  * e1000g_intr - ISR for PCI/PCI-X chipsets
2340  *
2341  * This interrupt service routine is for PCI/PCI-X adapters.
2342  * We check the ICR contents no matter the E1000_ICR_INT_ASSERTED
2343  * bit is set or not.
2344  */
2345 static uint_t
2346 e1000g_intr(caddr_t arg, caddr_t arg1 __unused)
2347 {
2348 	struct e1000g *Adapter;
2349 	uint32_t icr;
2350 
2351 	Adapter = (struct e1000g *)(uintptr_t)arg;
2352 	icr = E1000_READ_REG(&Adapter->shared, E1000_ICR);
2353 
2354 	if (e1000g_check_acc_handle(Adapter->osdep.reg_handle) != DDI_FM_OK) {
2355 		ddi_fm_service_impact(Adapter->dip, DDI_SERVICE_DEGRADED);
2356 		return (DDI_INTR_CLAIMED);
2357 	}
2358 
2359 	if (icr) {
2360 		/*
2361 		 * Any bit was set in ICR:
2362 		 * Read(Clear) the ICR, claim this interrupt,
2363 		 * look for work to do.
2364 		 */
2365 		e1000g_intr_work(Adapter, icr);
2366 		return (DDI_INTR_CLAIMED);
2367 	} else {
2368 		/*
2369 		 * No bit was set in ICR:
2370 		 * Don't claim this interrupt, return immediately.
2371 		 */
2372 		return (DDI_INTR_UNCLAIMED);
2373 	}
2374 }
2375 
2376 /*
2377  * e1000g_intr_work - actual processing of ISR
2378  *
2379  * Read(clear) the ICR contents and call appropriate interrupt
2380  * processing routines.
2381  */
2382 static void
2383 e1000g_intr_work(struct e1000g *Adapter, uint32_t icr)
2384 {
2385 	struct e1000_hw *hw;
2386 	hw = &Adapter->shared;
2387 	e1000g_tx_ring_t *tx_ring = Adapter->tx_ring;
2388 
2389 	Adapter->rx_pkt_cnt = 0;
2390 	Adapter->tx_pkt_cnt = 0;
2391 
2392 	rw_enter(&Adapter->chip_lock, RW_READER);
2393 
2394 	if (Adapter->e1000g_state & E1000G_SUSPENDED) {
2395 		rw_exit(&Adapter->chip_lock);
2396 		return;
2397 	}
2398 	/*
2399 	 * Here we need to check the "e1000g_state" flag within the chip_lock to
2400 	 * ensure the receive routine will not execute when the adapter is
2401 	 * being reset.
2402 	 */
2403 	if (!(Adapter->e1000g_state & E1000G_STARTED)) {
2404 		rw_exit(&Adapter->chip_lock);
2405 		return;
2406 	}
2407 
2408 	if (icr & E1000_ICR_RXT0) {
2409 		mblk_t			*mp = NULL;
2410 		mblk_t			*tail = NULL;
2411 		e1000g_rx_ring_t	*rx_ring;
2412 
2413 		rx_ring = Adapter->rx_ring;
2414 		mutex_enter(&rx_ring->rx_lock);
2415 		/*
2416 		 * Sometimes with legacy interrupts, it possible that
2417 		 * there is a single interrupt for Rx/Tx. In which
2418 		 * case, if poll flag is set, we shouldn't really
2419 		 * be doing Rx processing.
2420 		 */
2421 		if (!rx_ring->poll_flag)
2422 			mp = e1000g_receive(rx_ring, &tail,
2423 			    E1000G_CHAIN_NO_LIMIT);
2424 		mutex_exit(&rx_ring->rx_lock);
2425 		rw_exit(&Adapter->chip_lock);
2426 		if (mp != NULL)
2427 			mac_rx_ring(Adapter->mh, rx_ring->mrh,
2428 			    mp, rx_ring->ring_gen_num);
2429 	} else
2430 		rw_exit(&Adapter->chip_lock);
2431 
2432 	if (icr & E1000_ICR_TXDW) {
2433 		if (!Adapter->tx_intr_enable)
2434 			e1000g_clear_tx_interrupt(Adapter);
2435 
2436 		/* Recycle the tx descriptors */
2437 		rw_enter(&Adapter->chip_lock, RW_READER);
2438 		(void) e1000g_recycle(tx_ring);
2439 		E1000G_DEBUG_STAT(tx_ring->stat_recycle_intr);
2440 		rw_exit(&Adapter->chip_lock);
2441 
2442 		if (tx_ring->resched_needed &&
2443 		    (tx_ring->tbd_avail > DEFAULT_TX_UPDATE_THRESHOLD)) {
2444 			tx_ring->resched_needed = B_FALSE;
2445 			mac_tx_update(Adapter->mh);
2446 			E1000G_STAT(tx_ring->stat_reschedule);
2447 		}
2448 	}
2449 
2450 	/*
2451 	 * The Receive Sequence errors RXSEQ and the link status change LSC
2452 	 * are checked to detect that the cable has been pulled out. For
2453 	 * the Wiseman 2.0 silicon, the receive sequence errors interrupt
2454 	 * are an indication that cable is not connected.
2455 	 */
2456 	if ((icr & E1000_ICR_RXSEQ) ||
2457 	    (icr & E1000_ICR_LSC) ||
2458 	    (icr & E1000_ICR_GPI_EN1)) {
2459 		boolean_t link_changed;
2460 		timeout_id_t tid = 0;
2461 
2462 		stop_watchdog_timer(Adapter);
2463 
2464 		rw_enter(&Adapter->chip_lock, RW_WRITER);
2465 
2466 		/*
2467 		 * Because we got a link-status-change interrupt, force
2468 		 * e1000_check_for_link() to look at phy
2469 		 */
2470 		Adapter->shared.mac.get_link_status = B_TRUE;
2471 
2472 		/* e1000g_link_check takes care of link status change */
2473 		link_changed = e1000g_link_check(Adapter);
2474 
2475 		/* Get new phy state */
2476 		e1000g_get_phy_state(Adapter);
2477 
2478 		/*
2479 		 * If the link timer has not timed out, we'll not notify
2480 		 * the upper layer with any link state until the link is up.
2481 		 */
2482 		if (link_changed && !Adapter->link_complete) {
2483 			if (Adapter->link_state == LINK_STATE_UP) {
2484 				mutex_enter(&Adapter->link_lock);
2485 				Adapter->link_complete = B_TRUE;
2486 				tid = Adapter->link_tid;
2487 				Adapter->link_tid = 0;
2488 				mutex_exit(&Adapter->link_lock);
2489 			} else {
2490 				link_changed = B_FALSE;
2491 			}
2492 		}
2493 		rw_exit(&Adapter->chip_lock);
2494 
2495 		if (link_changed) {
2496 			if (tid != 0)
2497 				(void) untimeout(tid);
2498 
2499 			/*
2500 			 * Workaround for esb2. Data stuck in fifo on a link
2501 			 * down event. Stop receiver here and reset in watchdog.
2502 			 */
2503 			if ((Adapter->link_state == LINK_STATE_DOWN) &&
2504 			    (Adapter->shared.mac.type == e1000_80003es2lan)) {
2505 				uint32_t rctl = E1000_READ_REG(hw, E1000_RCTL);
2506 				E1000_WRITE_REG(hw, E1000_RCTL,
2507 				    rctl & ~E1000_RCTL_EN);
2508 				e1000g_log(Adapter, CE_WARN,
2509 				    "ESB2 receiver disabled");
2510 				Adapter->esb2_workaround = B_TRUE;
2511 			}
2512 			if (!Adapter->reset_flag)
2513 				mac_link_update(Adapter->mh,
2514 				    Adapter->link_state);
2515 			if (Adapter->link_state == LINK_STATE_UP)
2516 				Adapter->reset_flag = B_FALSE;
2517 		}
2518 
2519 		start_watchdog_timer(Adapter);
2520 	}
2521 }
2522 
2523 static void
2524 e1000g_init_unicst(struct e1000g *Adapter)
2525 {
2526 	struct e1000_hw *hw;
2527 	int slot;
2528 
2529 	hw = &Adapter->shared;
2530 
2531 	if (Adapter->init_count == 0) {
2532 		/* Initialize the multiple unicast addresses */
2533 		Adapter->unicst_total = min(hw->mac.rar_entry_count,
2534 		    MAX_NUM_UNICAST_ADDRESSES);
2535 
2536 		/*
2537 		 * The common code does not correctly calculate the number of
2538 		 * rar's that could be reserved by firmware for the pch_lpt and
2539 		 * pch_spt macs. The interface has one primary rar, and 11
2540 		 * additional ones. Those 11 additional ones are not always
2541 		 * available.  According to the datasheet, we need to check a
2542 		 * few of the bits set in the FWSM register. If the value is
2543 		 * zero, everything is available. If the value is 1, none of the
2544 		 * additional registers are available. If the value is 2-7, only
2545 		 * that number are available.
2546 		 */
2547 		if (hw->mac.type >= e1000_pch_lpt) {
2548 			uint32_t locked, rar;
2549 
2550 			locked = E1000_READ_REG(hw, E1000_FWSM) &
2551 			    E1000_FWSM_WLOCK_MAC_MASK;
2552 			locked >>= E1000_FWSM_WLOCK_MAC_SHIFT;
2553 			rar = 1;
2554 			if (locked == 0)
2555 				rar += 11;
2556 			else if (locked == 1)
2557 				rar += 0;
2558 			else
2559 				rar += locked;
2560 			Adapter->unicst_total = min(rar,
2561 			    MAX_NUM_UNICAST_ADDRESSES);
2562 		}
2563 
2564 		/* Workaround for an erratum of 82571 chipst */
2565 		if ((hw->mac.type == e1000_82571) &&
2566 		    (e1000_get_laa_state_82571(hw) == B_TRUE))
2567 			Adapter->unicst_total--;
2568 
2569 		/* VMware doesn't support multiple mac addresses properly */
2570 		if (hw->subsystem_vendor_id == 0x15ad)
2571 			Adapter->unicst_total = 1;
2572 
2573 		Adapter->unicst_avail = Adapter->unicst_total;
2574 
2575 		for (slot = 0; slot < Adapter->unicst_total; slot++) {
2576 			/* Clear both the flag and MAC address */
2577 			Adapter->unicst_addr[slot].reg.high = 0;
2578 			Adapter->unicst_addr[slot].reg.low = 0;
2579 		}
2580 	} else {
2581 		/* Workaround for an erratum of 82571 chipst */
2582 		if ((hw->mac.type == e1000_82571) &&
2583 		    (e1000_get_laa_state_82571(hw) == B_TRUE))
2584 			(void) e1000_rar_set(hw, hw->mac.addr, LAST_RAR_ENTRY);
2585 
2586 		/* Re-configure the RAR registers */
2587 		for (slot = 0; slot < Adapter->unicst_total; slot++)
2588 			if (Adapter->unicst_addr[slot].mac.set == 1)
2589 				(void) e1000_rar_set(hw,
2590 				    Adapter->unicst_addr[slot].mac.addr, slot);
2591 	}
2592 
2593 	if (e1000g_check_acc_handle(Adapter->osdep.reg_handle) != DDI_FM_OK)
2594 		ddi_fm_service_impact(Adapter->dip, DDI_SERVICE_DEGRADED);
2595 }
2596 
2597 static int
2598 e1000g_unicst_set(struct e1000g *Adapter, const uint8_t *mac_addr,
2599     int slot)
2600 {
2601 	struct e1000_hw *hw;
2602 
2603 	hw = &Adapter->shared;
2604 
2605 	/*
2606 	 * The first revision of Wiseman silicon (rev 2.0) has an errata
2607 	 * that requires the receiver to be in reset when any of the
2608 	 * receive address registers (RAR regs) are accessed.  The first
2609 	 * rev of Wiseman silicon also requires MWI to be disabled when
2610 	 * a global reset or a receive reset is issued.  So before we
2611 	 * initialize the RARs, we check the rev of the Wiseman controller
2612 	 * and work around any necessary HW errata.
2613 	 */
2614 	if ((hw->mac.type == e1000_82542) &&
2615 	    (hw->revision_id == E1000_REVISION_2)) {
2616 		e1000_pci_clear_mwi(hw);
2617 		E1000_WRITE_REG(hw, E1000_RCTL, E1000_RCTL_RST);
2618 		msec_delay(5);
2619 	}
2620 	if (mac_addr == NULL) {
2621 		E1000_WRITE_REG_ARRAY(hw, E1000_RA, slot << 1, 0);
2622 		E1000_WRITE_FLUSH(hw);
2623 		E1000_WRITE_REG_ARRAY(hw, E1000_RA, (slot << 1) + 1, 0);
2624 		E1000_WRITE_FLUSH(hw);
2625 		/* Clear both the flag and MAC address */
2626 		Adapter->unicst_addr[slot].reg.high = 0;
2627 		Adapter->unicst_addr[slot].reg.low = 0;
2628 	} else {
2629 		bcopy(mac_addr, Adapter->unicst_addr[slot].mac.addr,
2630 		    ETHERADDRL);
2631 		(void) e1000_rar_set(hw, (uint8_t *)mac_addr, slot);
2632 		Adapter->unicst_addr[slot].mac.set = 1;
2633 	}
2634 
2635 	/* Workaround for an erratum of 82571 chipst */
2636 	if (slot == 0) {
2637 		if ((hw->mac.type == e1000_82571) &&
2638 		    (e1000_get_laa_state_82571(hw) == B_TRUE))
2639 			if (mac_addr == NULL) {
2640 				E1000_WRITE_REG_ARRAY(hw, E1000_RA,
2641 				    slot << 1, 0);
2642 				E1000_WRITE_FLUSH(hw);
2643 				E1000_WRITE_REG_ARRAY(hw, E1000_RA,
2644 				    (slot << 1) + 1, 0);
2645 				E1000_WRITE_FLUSH(hw);
2646 			} else {
2647 				(void) e1000_rar_set(hw, (uint8_t *)mac_addr,
2648 				    LAST_RAR_ENTRY);
2649 			}
2650 	}
2651 
2652 	/*
2653 	 * If we are using Wiseman rev 2.0 silicon, we will have previously
2654 	 * put the receive in reset, and disabled MWI, to work around some
2655 	 * HW errata.  Now we should take the receiver out of reset, and
2656 	 * re-enabled if MWI if it was previously enabled by the PCI BIOS.
2657 	 */
2658 	if ((hw->mac.type == e1000_82542) &&
2659 	    (hw->revision_id == E1000_REVISION_2)) {
2660 		E1000_WRITE_REG(hw, E1000_RCTL, 0);
2661 		msec_delay(1);
2662 		if (hw->bus.pci_cmd_word & CMD_MEM_WRT_INVALIDATE)
2663 			e1000_pci_set_mwi(hw);
2664 		e1000g_rx_setup(Adapter);
2665 	}
2666 
2667 	if (e1000g_check_acc_handle(Adapter->osdep.reg_handle) != DDI_FM_OK) {
2668 		ddi_fm_service_impact(Adapter->dip, DDI_SERVICE_DEGRADED);
2669 		return (EIO);
2670 	}
2671 
2672 	return (0);
2673 }
2674 
2675 static int
2676 multicst_add(struct e1000g *Adapter, const uint8_t *multiaddr)
2677 {
2678 	struct e1000_hw *hw = &Adapter->shared;
2679 	struct ether_addr *newtable;
2680 	size_t new_len;
2681 	size_t old_len;
2682 	int res = 0;
2683 
2684 	if ((multiaddr[0] & 01) == 0) {
2685 		res = EINVAL;
2686 		e1000g_log(Adapter, CE_WARN, "Illegal multicast address");
2687 		goto done;
2688 	}
2689 
2690 	if (Adapter->mcast_count >= Adapter->mcast_max_num) {
2691 		res = ENOENT;
2692 		e1000g_log(Adapter, CE_WARN,
2693 		    "Adapter requested more than %d mcast addresses",
2694 		    Adapter->mcast_max_num);
2695 		goto done;
2696 	}
2697 
2698 
2699 	if (Adapter->mcast_count == Adapter->mcast_alloc_count) {
2700 		old_len = Adapter->mcast_alloc_count *
2701 		    sizeof (struct ether_addr);
2702 		new_len = (Adapter->mcast_alloc_count + MCAST_ALLOC_SIZE) *
2703 		    sizeof (struct ether_addr);
2704 
2705 		newtable = kmem_alloc(new_len, KM_NOSLEEP);
2706 		if (newtable == NULL) {
2707 			res = ENOMEM;
2708 			e1000g_log(Adapter, CE_WARN,
2709 			    "Not enough memory to alloc mcast table");
2710 			goto done;
2711 		}
2712 
2713 		if (Adapter->mcast_table != NULL) {
2714 			bcopy(Adapter->mcast_table, newtable, old_len);
2715 			kmem_free(Adapter->mcast_table, old_len);
2716 		}
2717 		Adapter->mcast_alloc_count += MCAST_ALLOC_SIZE;
2718 		Adapter->mcast_table = newtable;
2719 	}
2720 
2721 	bcopy(multiaddr,
2722 	    &Adapter->mcast_table[Adapter->mcast_count], ETHERADDRL);
2723 	Adapter->mcast_count++;
2724 
2725 	/*
2726 	 * Update the MC table in the hardware
2727 	 */
2728 	e1000g_clear_interrupt(Adapter);
2729 
2730 	e1000_update_mc_addr_list(hw,
2731 	    (uint8_t *)Adapter->mcast_table, Adapter->mcast_count);
2732 
2733 	e1000g_mask_interrupt(Adapter);
2734 
2735 	if (e1000g_check_acc_handle(Adapter->osdep.reg_handle) != DDI_FM_OK) {
2736 		ddi_fm_service_impact(Adapter->dip, DDI_SERVICE_DEGRADED);
2737 		res = EIO;
2738 	}
2739 
2740 done:
2741 	return (res);
2742 }
2743 
2744 static int
2745 multicst_remove(struct e1000g *Adapter, const uint8_t *multiaddr)
2746 {
2747 	struct e1000_hw *hw = &Adapter->shared;
2748 	struct ether_addr *newtable;
2749 	size_t new_len;
2750 	size_t old_len;
2751 	unsigned i;
2752 
2753 	for (i = 0; i < Adapter->mcast_count; i++) {
2754 		if (bcmp(multiaddr, &Adapter->mcast_table[i],
2755 		    ETHERADDRL) == 0) {
2756 			for (i++; i < Adapter->mcast_count; i++) {
2757 				Adapter->mcast_table[i - 1] =
2758 				    Adapter->mcast_table[i];
2759 			}
2760 			Adapter->mcast_count--;
2761 			break;
2762 		}
2763 	}
2764 
2765 	if ((Adapter->mcast_alloc_count - Adapter->mcast_count) >
2766 	    MCAST_ALLOC_SIZE) {
2767 		old_len = Adapter->mcast_alloc_count *
2768 		    sizeof (struct ether_addr);
2769 		new_len = (Adapter->mcast_alloc_count - MCAST_ALLOC_SIZE) *
2770 		    sizeof (struct ether_addr);
2771 
2772 		newtable = kmem_alloc(new_len, KM_NOSLEEP);
2773 		if (newtable != NULL) {
2774 			bcopy(Adapter->mcast_table, newtable, new_len);
2775 			kmem_free(Adapter->mcast_table, old_len);
2776 
2777 			Adapter->mcast_alloc_count -= MCAST_ALLOC_SIZE;
2778 			Adapter->mcast_table = newtable;
2779 		}
2780 	}
2781 
2782 	/*
2783 	 * Update the MC table in the hardware
2784 	 */
2785 	e1000g_clear_interrupt(Adapter);
2786 
2787 	e1000_update_mc_addr_list(hw,
2788 	    (uint8_t *)Adapter->mcast_table, Adapter->mcast_count);
2789 
2790 	e1000g_mask_interrupt(Adapter);
2791 
2792 	if (e1000g_check_acc_handle(Adapter->osdep.reg_handle) != DDI_FM_OK) {
2793 		ddi_fm_service_impact(Adapter->dip, DDI_SERVICE_DEGRADED);
2794 		return (EIO);
2795 	}
2796 
2797 	return (0);
2798 }
2799 
2800 static void
2801 e1000g_release_multicast(struct e1000g *Adapter)
2802 {
2803 	if (Adapter->mcast_table != NULL) {
2804 		kmem_free(Adapter->mcast_table,
2805 		    Adapter->mcast_alloc_count * sizeof (struct ether_addr));
2806 		Adapter->mcast_table = NULL;
2807 	}
2808 }
2809 
2810 int
2811 e1000g_m_multicst(void *arg, boolean_t add, const uint8_t *addr)
2812 {
2813 	struct e1000g *Adapter = (struct e1000g *)arg;
2814 	int result;
2815 
2816 	rw_enter(&Adapter->chip_lock, RW_WRITER);
2817 
2818 	if (Adapter->e1000g_state & E1000G_SUSPENDED) {
2819 		result = ECANCELED;
2820 		goto done;
2821 	}
2822 
2823 	result = (add) ? multicst_add(Adapter, addr)
2824 	    : multicst_remove(Adapter, addr);
2825 
2826 done:
2827 	rw_exit(&Adapter->chip_lock);
2828 	return (result);
2829 
2830 }
2831 
2832 int
2833 e1000g_m_promisc(void *arg, boolean_t on)
2834 {
2835 	struct e1000g *Adapter = (struct e1000g *)arg;
2836 	uint32_t rctl;
2837 
2838 	rw_enter(&Adapter->chip_lock, RW_WRITER);
2839 
2840 	if (Adapter->e1000g_state & E1000G_SUSPENDED) {
2841 		rw_exit(&Adapter->chip_lock);
2842 		return (ECANCELED);
2843 	}
2844 
2845 	rctl = E1000_READ_REG(&Adapter->shared, E1000_RCTL);
2846 
2847 	if (on)
2848 		rctl |=
2849 		    (E1000_RCTL_UPE | E1000_RCTL_MPE | E1000_RCTL_BAM);
2850 	else
2851 		rctl &= (~(E1000_RCTL_UPE | E1000_RCTL_MPE));
2852 
2853 	E1000_WRITE_REG(&Adapter->shared, E1000_RCTL, rctl);
2854 
2855 	Adapter->e1000g_promisc = on;
2856 
2857 	rw_exit(&Adapter->chip_lock);
2858 
2859 	if (e1000g_check_acc_handle(Adapter->osdep.reg_handle) != DDI_FM_OK) {
2860 		ddi_fm_service_impact(Adapter->dip, DDI_SERVICE_DEGRADED);
2861 		return (EIO);
2862 	}
2863 
2864 	return (0);
2865 }
2866 
2867 /*
2868  * Entry points to enable and disable interrupts at the granularity of
2869  * a group.
2870  * Turns the poll_mode for the whole adapter on and off to enable or
2871  * override the ring level polling control over the hardware interrupts.
2872  */
2873 static int
2874 e1000g_rx_group_intr_enable(mac_intr_handle_t arg)
2875 {
2876 	struct e1000g		*adapter = (struct e1000g *)arg;
2877 	e1000g_rx_ring_t *rx_ring = adapter->rx_ring;
2878 
2879 	/*
2880 	 * Later interrupts at the granularity of the this ring will
2881 	 * invoke mac_rx() with NULL, indicating the need for another
2882 	 * software classification.
2883 	 * We have a single ring usable per adapter now, so we only need to
2884 	 * reset the rx handle for that one.
2885 	 * When more RX rings can be used, we should update each one of them.
2886 	 */
2887 	mutex_enter(&rx_ring->rx_lock);
2888 	rx_ring->mrh = NULL;
2889 	adapter->poll_mode = B_FALSE;
2890 	mutex_exit(&rx_ring->rx_lock);
2891 	return (0);
2892 }
2893 
2894 static int
2895 e1000g_rx_group_intr_disable(mac_intr_handle_t arg)
2896 {
2897 	struct e1000g *adapter = (struct e1000g *)arg;
2898 	e1000g_rx_ring_t *rx_ring = adapter->rx_ring;
2899 
2900 	mutex_enter(&rx_ring->rx_lock);
2901 
2902 	/*
2903 	 * Later interrupts at the granularity of the this ring will
2904 	 * invoke mac_rx() with the handle for this ring;
2905 	 */
2906 	adapter->poll_mode = B_TRUE;
2907 	rx_ring->mrh = rx_ring->mrh_init;
2908 	mutex_exit(&rx_ring->rx_lock);
2909 	return (0);
2910 }
2911 
2912 /*
2913  * Entry points to enable and disable interrupts at the granularity of
2914  * a ring.
2915  * adapter poll_mode controls whether we actually proceed with hardware
2916  * interrupt toggling.
2917  */
2918 static int
2919 e1000g_rx_ring_intr_enable(mac_intr_handle_t intrh)
2920 {
2921 	e1000g_rx_ring_t	*rx_ring = (e1000g_rx_ring_t *)intrh;
2922 	struct e1000g		*adapter = rx_ring->adapter;
2923 	struct e1000_hw		*hw = &adapter->shared;
2924 	uint32_t		intr_mask;
2925 
2926 	rw_enter(&adapter->chip_lock, RW_READER);
2927 
2928 	if (adapter->e1000g_state & E1000G_SUSPENDED) {
2929 		rw_exit(&adapter->chip_lock);
2930 		return (0);
2931 	}
2932 
2933 	mutex_enter(&rx_ring->rx_lock);
2934 	rx_ring->poll_flag = 0;
2935 	mutex_exit(&rx_ring->rx_lock);
2936 
2937 	/* Rx interrupt enabling for MSI and legacy */
2938 	intr_mask = E1000_READ_REG(hw, E1000_IMS);
2939 	intr_mask |= E1000_IMS_RXT0;
2940 	E1000_WRITE_REG(hw, E1000_IMS, intr_mask);
2941 	E1000_WRITE_FLUSH(hw);
2942 
2943 	/* Trigger a Rx interrupt to check Rx ring */
2944 	E1000_WRITE_REG(hw, E1000_ICS, E1000_IMS_RXT0);
2945 	E1000_WRITE_FLUSH(hw);
2946 
2947 	rw_exit(&adapter->chip_lock);
2948 	return (0);
2949 }
2950 
2951 static int
2952 e1000g_rx_ring_intr_disable(mac_intr_handle_t intrh)
2953 {
2954 	e1000g_rx_ring_t	*rx_ring = (e1000g_rx_ring_t *)intrh;
2955 	struct e1000g		*adapter = rx_ring->adapter;
2956 	struct e1000_hw		*hw = &adapter->shared;
2957 
2958 	rw_enter(&adapter->chip_lock, RW_READER);
2959 
2960 	if (adapter->e1000g_state & E1000G_SUSPENDED) {
2961 		rw_exit(&adapter->chip_lock);
2962 		return (0);
2963 	}
2964 	mutex_enter(&rx_ring->rx_lock);
2965 	rx_ring->poll_flag = 1;
2966 	mutex_exit(&rx_ring->rx_lock);
2967 
2968 	/* Rx interrupt disabling for MSI and legacy */
2969 	E1000_WRITE_REG(hw, E1000_IMC, E1000_IMS_RXT0);
2970 	E1000_WRITE_FLUSH(hw);
2971 
2972 	rw_exit(&adapter->chip_lock);
2973 	return (0);
2974 }
2975 
2976 /*
2977  * e1000g_unicst_find - Find the slot for the specified unicast address
2978  */
2979 static int
2980 e1000g_unicst_find(struct e1000g *Adapter, const uint8_t *mac_addr)
2981 {
2982 	int slot;
2983 
2984 	for (slot = 0; slot < Adapter->unicst_total; slot++) {
2985 		if ((Adapter->unicst_addr[slot].mac.set == 1) &&
2986 		    (bcmp(Adapter->unicst_addr[slot].mac.addr,
2987 		    mac_addr, ETHERADDRL) == 0))
2988 				return (slot);
2989 	}
2990 
2991 	return (-1);
2992 }
2993 
2994 /*
2995  * Entry points to add and remove a MAC address to a ring group.
2996  * The caller takes care of adding and removing the MAC addresses
2997  * to the filter via these two routines.
2998  */
2999 
3000 static int
3001 e1000g_addmac(void *arg, const uint8_t *mac_addr)
3002 {
3003 	struct e1000g *Adapter = (struct e1000g *)arg;
3004 	int slot, err;
3005 
3006 	rw_enter(&Adapter->chip_lock, RW_WRITER);
3007 
3008 	if (Adapter->e1000g_state & E1000G_SUSPENDED) {
3009 		rw_exit(&Adapter->chip_lock);
3010 		return (ECANCELED);
3011 	}
3012 
3013 	if (e1000g_unicst_find(Adapter, mac_addr) != -1) {
3014 		/* The same address is already in slot */
3015 		rw_exit(&Adapter->chip_lock);
3016 		return (0);
3017 	}
3018 
3019 	if (Adapter->unicst_avail == 0) {
3020 		/* no slots available */
3021 		rw_exit(&Adapter->chip_lock);
3022 		return (ENOSPC);
3023 	}
3024 
3025 	/* Search for a free slot */
3026 	for (slot = 0; slot < Adapter->unicst_total; slot++) {
3027 		if (Adapter->unicst_addr[slot].mac.set == 0)
3028 			break;
3029 	}
3030 	ASSERT(slot < Adapter->unicst_total);
3031 
3032 	err = e1000g_unicst_set(Adapter, mac_addr, slot);
3033 	if (err == 0)
3034 		Adapter->unicst_avail--;
3035 
3036 	rw_exit(&Adapter->chip_lock);
3037 
3038 	return (err);
3039 }
3040 
3041 static int
3042 e1000g_remmac(void *arg, const uint8_t *mac_addr)
3043 {
3044 	struct e1000g *Adapter = (struct e1000g *)arg;
3045 	int slot, err;
3046 
3047 	rw_enter(&Adapter->chip_lock, RW_WRITER);
3048 
3049 	if (Adapter->e1000g_state & E1000G_SUSPENDED) {
3050 		rw_exit(&Adapter->chip_lock);
3051 		return (ECANCELED);
3052 	}
3053 
3054 	slot = e1000g_unicst_find(Adapter, mac_addr);
3055 	if (slot == -1) {
3056 		rw_exit(&Adapter->chip_lock);
3057 		return (EINVAL);
3058 	}
3059 
3060 	ASSERT(Adapter->unicst_addr[slot].mac.set);
3061 
3062 	/* Clear this slot */
3063 	err = e1000g_unicst_set(Adapter, NULL, slot);
3064 	if (err == 0)
3065 		Adapter->unicst_avail++;
3066 
3067 	rw_exit(&Adapter->chip_lock);
3068 
3069 	return (err);
3070 }
3071 
3072 static int
3073 e1000g_ring_start(mac_ring_driver_t rh, uint64_t mr_gen_num)
3074 {
3075 	e1000g_rx_ring_t *rx_ring = (e1000g_rx_ring_t *)rh;
3076 
3077 	mutex_enter(&rx_ring->rx_lock);
3078 	rx_ring->ring_gen_num = mr_gen_num;
3079 	mutex_exit(&rx_ring->rx_lock);
3080 	return (0);
3081 }
3082 
3083 /*
3084  * Callback funtion for MAC layer to register all rings.
3085  *
3086  * The hardware supports a single group with currently only one ring
3087  * available.
3088  * Though not offering virtualization ability per se, exposing the
3089  * group/ring still enables the polling and interrupt toggling.
3090  */
3091 /* ARGSUSED */
3092 void
3093 e1000g_fill_ring(void *arg, mac_ring_type_t rtype, const int grp_index,
3094     const int ring_index, mac_ring_info_t *infop, mac_ring_handle_t rh)
3095 {
3096 	struct e1000g *Adapter = (struct e1000g *)arg;
3097 	e1000g_rx_ring_t *rx_ring = Adapter->rx_ring;
3098 	mac_intr_t *mintr;
3099 
3100 	/*
3101 	 * We advertised only RX group/rings, so the MAC framework shouldn't
3102 	 * ask for any thing else.
3103 	 */
3104 	ASSERT(rtype == MAC_RING_TYPE_RX && grp_index == 0 && ring_index == 0);
3105 
3106 	rx_ring->mrh = rx_ring->mrh_init = rh;
3107 	infop->mri_driver = (mac_ring_driver_t)rx_ring;
3108 	infop->mri_start = e1000g_ring_start;
3109 	infop->mri_stop = NULL;
3110 	infop->mri_poll = e1000g_poll_ring;
3111 	infop->mri_stat = e1000g_rx_ring_stat;
3112 
3113 	/* Ring level interrupts */
3114 	mintr = &infop->mri_intr;
3115 	mintr->mi_handle = (mac_intr_handle_t)rx_ring;
3116 	mintr->mi_enable = e1000g_rx_ring_intr_enable;
3117 	mintr->mi_disable = e1000g_rx_ring_intr_disable;
3118 	if (Adapter->msi_enable)
3119 		mintr->mi_ddi_handle = Adapter->htable[0];
3120 }
3121 
3122 /* ARGSUSED */
3123 static void
3124 e1000g_fill_group(void *arg, mac_ring_type_t rtype, const int grp_index,
3125     mac_group_info_t *infop, mac_group_handle_t gh)
3126 {
3127 	struct e1000g *Adapter = (struct e1000g *)arg;
3128 	mac_intr_t *mintr;
3129 
3130 	/*
3131 	 * We advertised a single RX ring. Getting a request for anything else
3132 	 * signifies a bug in the MAC framework.
3133 	 */
3134 	ASSERT(rtype == MAC_RING_TYPE_RX && grp_index == 0);
3135 
3136 	Adapter->rx_group = gh;
3137 
3138 	infop->mgi_driver = (mac_group_driver_t)Adapter;
3139 	infop->mgi_start = NULL;
3140 	infop->mgi_stop = NULL;
3141 	infop->mgi_addmac = e1000g_addmac;
3142 	infop->mgi_remmac = e1000g_remmac;
3143 	infop->mgi_count = 1;
3144 
3145 	/* Group level interrupts */
3146 	mintr = &infop->mgi_intr;
3147 	mintr->mi_handle = (mac_intr_handle_t)Adapter;
3148 	mintr->mi_enable = e1000g_rx_group_intr_enable;
3149 	mintr->mi_disable = e1000g_rx_group_intr_disable;
3150 }
3151 
3152 static void
3153 e1000g_led_blink(void *arg)
3154 {
3155 	e1000g_t *e1000g = arg;
3156 
3157 	mutex_enter(&e1000g->e1000g_led_lock);
3158 	VERIFY(e1000g->e1000g_emul_blink);
3159 	if (e1000g->e1000g_emul_state) {
3160 		(void) e1000_led_on(&e1000g->shared);
3161 	} else {
3162 		(void) e1000_led_off(&e1000g->shared);
3163 	}
3164 	e1000g->e1000g_emul_state = !e1000g->e1000g_emul_state;
3165 	mutex_exit(&e1000g->e1000g_led_lock);
3166 }
3167 
3168 static int
3169 e1000g_led_set(void *arg, mac_led_mode_t mode, uint_t flags)
3170 {
3171 	e1000g_t *e1000g = arg;
3172 
3173 	if (flags != 0)
3174 		return (EINVAL);
3175 
3176 	if (mode != MAC_LED_DEFAULT &&
3177 	    mode != MAC_LED_IDENT &&
3178 	    mode != MAC_LED_OFF &&
3179 	    mode != MAC_LED_ON)
3180 		return (ENOTSUP);
3181 
3182 	mutex_enter(&e1000g->e1000g_led_lock);
3183 
3184 	if ((mode == MAC_LED_IDENT || mode == MAC_LED_OFF ||
3185 	    mode == MAC_LED_ON) &&
3186 	    !e1000g->e1000g_led_setup) {
3187 		if (e1000_setup_led(&e1000g->shared) != E1000_SUCCESS) {
3188 			mutex_exit(&e1000g->e1000g_led_lock);
3189 			return (EIO);
3190 		}
3191 
3192 		e1000g->e1000g_led_setup = B_TRUE;
3193 	}
3194 
3195 	if (mode != MAC_LED_IDENT && e1000g->e1000g_blink != NULL) {
3196 		ddi_periodic_t id = e1000g->e1000g_blink;
3197 		e1000g->e1000g_blink = NULL;
3198 		mutex_exit(&e1000g->e1000g_led_lock);
3199 		ddi_periodic_delete(id);
3200 		mutex_enter(&e1000g->e1000g_led_lock);
3201 	}
3202 
3203 	switch (mode) {
3204 	case MAC_LED_DEFAULT:
3205 		if (e1000g->e1000g_led_setup) {
3206 			if (e1000_cleanup_led(&e1000g->shared) !=
3207 			    E1000_SUCCESS) {
3208 				mutex_exit(&e1000g->e1000g_led_lock);
3209 				return (EIO);
3210 			}
3211 			e1000g->e1000g_led_setup = B_FALSE;
3212 		}
3213 		break;
3214 	case MAC_LED_IDENT:
3215 		if (e1000g->e1000g_emul_blink) {
3216 			if (e1000g->e1000g_blink != NULL)
3217 				break;
3218 
3219 			/*
3220 			 * Note, we use a 200 ms period here as that's what
3221 			 * section 10.1.3 8254x Intel Manual (PCI/PCI-X Family
3222 			 * of Gigabit Ethernet Controllers Software Developer's
3223 			 * Manual) indicates that the optional blink hardware
3224 			 * operates at.
3225 			 */
3226 			e1000g->e1000g_blink =
3227 			    ddi_periodic_add(e1000g_led_blink, e1000g,
3228 			    200ULL * (NANOSEC / MILLISEC), DDI_IPL_0);
3229 		} else if (e1000_blink_led(&e1000g->shared) != E1000_SUCCESS) {
3230 			mutex_exit(&e1000g->e1000g_led_lock);
3231 			return (EIO);
3232 		}
3233 		break;
3234 	case MAC_LED_OFF:
3235 		if (e1000_led_off(&e1000g->shared) != E1000_SUCCESS) {
3236 			mutex_exit(&e1000g->e1000g_led_lock);
3237 			return (EIO);
3238 		}
3239 		break;
3240 	case MAC_LED_ON:
3241 		if (e1000_led_on(&e1000g->shared) != E1000_SUCCESS) {
3242 			mutex_exit(&e1000g->e1000g_led_lock);
3243 			return (EIO);
3244 		}
3245 		break;
3246 	default:
3247 		mutex_exit(&e1000g->e1000g_led_lock);
3248 		return (ENOTSUP);
3249 	}
3250 
3251 	mutex_exit(&e1000g->e1000g_led_lock);
3252 	return (0);
3253 
3254 }
3255 
3256 static boolean_t
3257 e1000g_m_getcapab(void *arg, mac_capab_t cap, void *cap_data)
3258 {
3259 	struct e1000g *Adapter = (struct e1000g *)arg;
3260 
3261 	switch (cap) {
3262 	case MAC_CAPAB_HCKSUM: {
3263 		uint32_t *txflags = cap_data;
3264 
3265 		if (Adapter->tx_hcksum_enable)
3266 			*txflags = HCKSUM_IPHDRCKSUM |
3267 			    HCKSUM_INET_PARTIAL;
3268 		else
3269 			return (B_FALSE);
3270 		break;
3271 	}
3272 
3273 	case MAC_CAPAB_LSO: {
3274 		mac_capab_lso_t *cap_lso = cap_data;
3275 
3276 		if (Adapter->lso_enable) {
3277 			cap_lso->lso_flags = LSO_TX_BASIC_TCP_IPV4;
3278 			cap_lso->lso_basic_tcp_ipv4.lso_max =
3279 			    E1000_LSO_MAXLEN;
3280 		} else
3281 			return (B_FALSE);
3282 		break;
3283 	}
3284 	case MAC_CAPAB_RINGS: {
3285 		mac_capab_rings_t *cap_rings = cap_data;
3286 
3287 		/* No TX rings exposed yet */
3288 		if (cap_rings->mr_type != MAC_RING_TYPE_RX)
3289 			return (B_FALSE);
3290 
3291 		cap_rings->mr_group_type = MAC_GROUP_TYPE_STATIC;
3292 		cap_rings->mr_rnum = 1;
3293 		cap_rings->mr_gnum = 1;
3294 		cap_rings->mr_rget = e1000g_fill_ring;
3295 		cap_rings->mr_gget = e1000g_fill_group;
3296 		break;
3297 	}
3298 	case MAC_CAPAB_LED: {
3299 		mac_capab_led_t *cap_led = cap_data;
3300 
3301 		cap_led->mcl_flags = 0;
3302 		cap_led->mcl_modes = MAC_LED_DEFAULT;
3303 		if (Adapter->shared.mac.ops.blink_led != NULL &&
3304 		    Adapter->shared.mac.ops.blink_led !=
3305 		    e1000_null_ops_generic) {
3306 			cap_led->mcl_modes |= MAC_LED_IDENT;
3307 		}
3308 
3309 		if (Adapter->shared.mac.ops.led_off != NULL &&
3310 		    Adapter->shared.mac.ops.led_off !=
3311 		    e1000_null_ops_generic) {
3312 			cap_led->mcl_modes |= MAC_LED_OFF;
3313 		}
3314 
3315 		if (Adapter->shared.mac.ops.led_on != NULL &&
3316 		    Adapter->shared.mac.ops.led_on !=
3317 		    e1000_null_ops_generic) {
3318 			cap_led->mcl_modes |= MAC_LED_ON;
3319 		}
3320 
3321 		/*
3322 		 * Some hardware doesn't support blinking natively as they're
3323 		 * missing the optional blink circuit. If they have both off and
3324 		 * on then we'll emulate it ourselves.
3325 		 */
3326 		if (((cap_led->mcl_modes & MAC_LED_IDENT) == 0) &&
3327 		    ((cap_led->mcl_modes & MAC_LED_OFF) != 0) &&
3328 		    ((cap_led->mcl_modes & MAC_LED_ON) != 0)) {
3329 			cap_led->mcl_modes |= MAC_LED_IDENT;
3330 			Adapter->e1000g_emul_blink = B_TRUE;
3331 		}
3332 
3333 		cap_led->mcl_set = e1000g_led_set;
3334 		break;
3335 	}
3336 	default:
3337 		return (B_FALSE);
3338 	}
3339 	return (B_TRUE);
3340 }
3341 
3342 static boolean_t
3343 e1000g_param_locked(mac_prop_id_t pr_num)
3344 {
3345 	/*
3346 	 * All en_* parameters are locked (read-only) while
3347 	 * the device is in any sort of loopback mode ...
3348 	 */
3349 	switch (pr_num) {
3350 		case MAC_PROP_EN_1000FDX_CAP:
3351 		case MAC_PROP_EN_1000HDX_CAP:
3352 		case MAC_PROP_EN_100FDX_CAP:
3353 		case MAC_PROP_EN_100HDX_CAP:
3354 		case MAC_PROP_EN_10FDX_CAP:
3355 		case MAC_PROP_EN_10HDX_CAP:
3356 		case MAC_PROP_AUTONEG:
3357 		case MAC_PROP_FLOWCTRL:
3358 			return (B_TRUE);
3359 	}
3360 	return (B_FALSE);
3361 }
3362 
3363 /*
3364  * callback function for set/get of properties
3365  */
3366 static int
3367 e1000g_m_setprop(void *arg, const char *pr_name, mac_prop_id_t pr_num,
3368     uint_t pr_valsize, const void *pr_val)
3369 {
3370 	struct e1000g *Adapter = arg;
3371 	struct e1000_hw *hw = &Adapter->shared;
3372 	struct e1000_fc_info *fc = &Adapter->shared.fc;
3373 	int err = 0;
3374 	link_flowctrl_t flowctrl;
3375 	uint32_t cur_mtu, new_mtu;
3376 
3377 	rw_enter(&Adapter->chip_lock, RW_WRITER);
3378 
3379 	if (Adapter->e1000g_state & E1000G_SUSPENDED) {
3380 		rw_exit(&Adapter->chip_lock);
3381 		return (ECANCELED);
3382 	}
3383 
3384 	if (Adapter->loopback_mode != E1000G_LB_NONE &&
3385 	    e1000g_param_locked(pr_num)) {
3386 		/*
3387 		 * All en_* parameters are locked (read-only)
3388 		 * while the device is in any sort of loopback mode.
3389 		 */
3390 		rw_exit(&Adapter->chip_lock);
3391 		return (EBUSY);
3392 	}
3393 
3394 	switch (pr_num) {
3395 		case MAC_PROP_EN_1000FDX_CAP:
3396 			if (hw->phy.media_type != e1000_media_type_copper) {
3397 				err = ENOTSUP;
3398 				break;
3399 			}
3400 			Adapter->param_en_1000fdx = *(uint8_t *)pr_val;
3401 			Adapter->param_adv_1000fdx = *(uint8_t *)pr_val;
3402 			goto reset;
3403 		case MAC_PROP_EN_100FDX_CAP:
3404 			if (hw->phy.media_type != e1000_media_type_copper) {
3405 				err = ENOTSUP;
3406 				break;
3407 			}
3408 			Adapter->param_en_100fdx = *(uint8_t *)pr_val;
3409 			Adapter->param_adv_100fdx = *(uint8_t *)pr_val;
3410 			goto reset;
3411 		case MAC_PROP_EN_100HDX_CAP:
3412 			if (hw->phy.media_type != e1000_media_type_copper) {
3413 				err = ENOTSUP;
3414 				break;
3415 			}
3416 			Adapter->param_en_100hdx = *(uint8_t *)pr_val;
3417 			Adapter->param_adv_100hdx = *(uint8_t *)pr_val;
3418 			goto reset;
3419 		case MAC_PROP_EN_10FDX_CAP:
3420 			if (hw->phy.media_type != e1000_media_type_copper) {
3421 				err = ENOTSUP;
3422 				break;
3423 			}
3424 			Adapter->param_en_10fdx = *(uint8_t *)pr_val;
3425 			Adapter->param_adv_10fdx = *(uint8_t *)pr_val;
3426 			goto reset;
3427 		case MAC_PROP_EN_10HDX_CAP:
3428 			if (hw->phy.media_type != e1000_media_type_copper) {
3429 				err = ENOTSUP;
3430 				break;
3431 			}
3432 			Adapter->param_en_10hdx = *(uint8_t *)pr_val;
3433 			Adapter->param_adv_10hdx = *(uint8_t *)pr_val;
3434 			goto reset;
3435 		case MAC_PROP_AUTONEG:
3436 			if (hw->phy.media_type != e1000_media_type_copper) {
3437 				err = ENOTSUP;
3438 				break;
3439 			}
3440 			Adapter->param_adv_autoneg = *(uint8_t *)pr_val;
3441 			goto reset;
3442 		case MAC_PROP_FLOWCTRL:
3443 			fc->send_xon = B_TRUE;
3444 			bcopy(pr_val, &flowctrl, sizeof (flowctrl));
3445 
3446 			switch (flowctrl) {
3447 			default:
3448 				err = EINVAL;
3449 				break;
3450 			case LINK_FLOWCTRL_NONE:
3451 				fc->requested_mode = e1000_fc_none;
3452 				break;
3453 			case LINK_FLOWCTRL_RX:
3454 				fc->requested_mode = e1000_fc_rx_pause;
3455 				break;
3456 			case LINK_FLOWCTRL_TX:
3457 				fc->requested_mode = e1000_fc_tx_pause;
3458 				break;
3459 			case LINK_FLOWCTRL_BI:
3460 				fc->requested_mode = e1000_fc_full;
3461 				break;
3462 			}
3463 reset:
3464 			if (err == 0) {
3465 				/* check PCH limits & reset the link */
3466 				e1000g_pch_limits(Adapter);
3467 				if (e1000g_reset_link(Adapter) != DDI_SUCCESS)
3468 					err = EINVAL;
3469 			}
3470 			break;
3471 		case MAC_PROP_ADV_1000FDX_CAP:
3472 		case MAC_PROP_ADV_1000HDX_CAP:
3473 		case MAC_PROP_ADV_100FDX_CAP:
3474 		case MAC_PROP_ADV_100HDX_CAP:
3475 		case MAC_PROP_ADV_10FDX_CAP:
3476 		case MAC_PROP_ADV_10HDX_CAP:
3477 		case MAC_PROP_EN_1000HDX_CAP:
3478 		case MAC_PROP_STATUS:
3479 		case MAC_PROP_SPEED:
3480 		case MAC_PROP_DUPLEX:
3481 			err = ENOTSUP; /* read-only prop. Can't set this. */
3482 			break;
3483 		case MAC_PROP_MTU:
3484 			/* adapter must be stopped for an MTU change */
3485 			if (Adapter->e1000g_state & E1000G_STARTED) {
3486 				err = EBUSY;
3487 				break;
3488 			}
3489 
3490 			cur_mtu = Adapter->default_mtu;
3491 
3492 			/* get new requested MTU */
3493 			bcopy(pr_val, &new_mtu, sizeof (new_mtu));
3494 			if (new_mtu == cur_mtu) {
3495 				err = 0;
3496 				break;
3497 			}
3498 
3499 			if ((new_mtu < DEFAULT_MTU) ||
3500 			    (new_mtu > Adapter->max_mtu)) {
3501 				err = EINVAL;
3502 				break;
3503 			}
3504 
3505 			/* inform MAC framework of new MTU */
3506 			err = mac_maxsdu_update(Adapter->mh, new_mtu);
3507 
3508 			if (err == 0) {
3509 				Adapter->default_mtu = new_mtu;
3510 				Adapter->max_frame_size =
3511 				    e1000g_mtu2maxframe(new_mtu);
3512 
3513 				/*
3514 				 * check PCH limits & set buffer sizes to
3515 				 * match new MTU
3516 				 */
3517 				e1000g_pch_limits(Adapter);
3518 				e1000g_set_bufsize(Adapter);
3519 
3520 				/*
3521 				 * decrease the number of descriptors and free
3522 				 * packets for jumbo frames to reduce tx/rx
3523 				 * resource consumption
3524 				 */
3525 				if (Adapter->max_frame_size >=
3526 				    (FRAME_SIZE_UPTO_4K)) {
3527 					if (Adapter->tx_desc_num_flag == 0)
3528 						Adapter->tx_desc_num =
3529 						    DEFAULT_JUMBO_NUM_TX_DESC;
3530 
3531 					if (Adapter->rx_desc_num_flag == 0)
3532 						Adapter->rx_desc_num =
3533 						    DEFAULT_JUMBO_NUM_RX_DESC;
3534 
3535 					if (Adapter->tx_buf_num_flag == 0)
3536 						Adapter->tx_freelist_num =
3537 						    DEFAULT_JUMBO_NUM_TX_BUF;
3538 
3539 					if (Adapter->rx_buf_num_flag == 0)
3540 						Adapter->rx_freelist_limit =
3541 						    DEFAULT_JUMBO_NUM_RX_BUF;
3542 				} else {
3543 					if (Adapter->tx_desc_num_flag == 0)
3544 						Adapter->tx_desc_num =
3545 						    DEFAULT_NUM_TX_DESCRIPTOR;
3546 
3547 					if (Adapter->rx_desc_num_flag == 0)
3548 						Adapter->rx_desc_num =
3549 						    DEFAULT_NUM_RX_DESCRIPTOR;
3550 
3551 					if (Adapter->tx_buf_num_flag == 0)
3552 						Adapter->tx_freelist_num =
3553 						    DEFAULT_NUM_TX_FREELIST;
3554 
3555 					if (Adapter->rx_buf_num_flag == 0)
3556 						Adapter->rx_freelist_limit =
3557 						    DEFAULT_NUM_RX_FREELIST;
3558 				}
3559 			}
3560 			break;
3561 		case MAC_PROP_PRIVATE:
3562 			err = e1000g_set_priv_prop(Adapter, pr_name,
3563 			    pr_valsize, pr_val);
3564 			break;
3565 		default:
3566 			err = ENOTSUP;
3567 			break;
3568 	}
3569 	rw_exit(&Adapter->chip_lock);
3570 	return (err);
3571 }
3572 
3573 static int
3574 e1000g_m_getprop(void *arg, const char *pr_name, mac_prop_id_t pr_num,
3575     uint_t pr_valsize, void *pr_val)
3576 {
3577 	struct e1000g *Adapter = arg;
3578 	struct e1000_fc_info *fc = &Adapter->shared.fc;
3579 	int err = 0;
3580 	link_flowctrl_t flowctrl;
3581 	uint64_t tmp = 0;
3582 
3583 	switch (pr_num) {
3584 		case MAC_PROP_DUPLEX:
3585 			ASSERT(pr_valsize >= sizeof (link_duplex_t));
3586 			bcopy(&Adapter->link_duplex, pr_val,
3587 			    sizeof (link_duplex_t));
3588 			break;
3589 		case MAC_PROP_SPEED:
3590 			ASSERT(pr_valsize >= sizeof (uint64_t));
3591 			tmp = Adapter->link_speed * 1000000ull;
3592 			bcopy(&tmp, pr_val, sizeof (tmp));
3593 			break;
3594 		case MAC_PROP_AUTONEG:
3595 			*(uint8_t *)pr_val = Adapter->param_adv_autoneg;
3596 			break;
3597 		case MAC_PROP_FLOWCTRL:
3598 			ASSERT(pr_valsize >= sizeof (link_flowctrl_t));
3599 			switch (fc->current_mode) {
3600 				case e1000_fc_none:
3601 					flowctrl = LINK_FLOWCTRL_NONE;
3602 					break;
3603 				case e1000_fc_rx_pause:
3604 					flowctrl = LINK_FLOWCTRL_RX;
3605 					break;
3606 				case e1000_fc_tx_pause:
3607 					flowctrl = LINK_FLOWCTRL_TX;
3608 					break;
3609 				case e1000_fc_full:
3610 					flowctrl = LINK_FLOWCTRL_BI;
3611 					break;
3612 			}
3613 			bcopy(&flowctrl, pr_val, sizeof (flowctrl));
3614 			break;
3615 		case MAC_PROP_ADV_1000FDX_CAP:
3616 			*(uint8_t *)pr_val = Adapter->param_adv_1000fdx;
3617 			break;
3618 		case MAC_PROP_EN_1000FDX_CAP:
3619 			*(uint8_t *)pr_val = Adapter->param_en_1000fdx;
3620 			break;
3621 		case MAC_PROP_ADV_1000HDX_CAP:
3622 			*(uint8_t *)pr_val = Adapter->param_adv_1000hdx;
3623 			break;
3624 		case MAC_PROP_EN_1000HDX_CAP:
3625 			*(uint8_t *)pr_val = Adapter->param_en_1000hdx;
3626 			break;
3627 		case MAC_PROP_ADV_100FDX_CAP:
3628 			*(uint8_t *)pr_val = Adapter->param_adv_100fdx;
3629 			break;
3630 		case MAC_PROP_EN_100FDX_CAP:
3631 			*(uint8_t *)pr_val = Adapter->param_en_100fdx;
3632 			break;
3633 		case MAC_PROP_ADV_100HDX_CAP:
3634 			*(uint8_t *)pr_val = Adapter->param_adv_100hdx;
3635 			break;
3636 		case MAC_PROP_EN_100HDX_CAP:
3637 			*(uint8_t *)pr_val = Adapter->param_en_100hdx;
3638 			break;
3639 		case MAC_PROP_ADV_10FDX_CAP:
3640 			*(uint8_t *)pr_val = Adapter->param_adv_10fdx;
3641 			break;
3642 		case MAC_PROP_EN_10FDX_CAP:
3643 			*(uint8_t *)pr_val = Adapter->param_en_10fdx;
3644 			break;
3645 		case MAC_PROP_ADV_10HDX_CAP:
3646 			*(uint8_t *)pr_val = Adapter->param_adv_10hdx;
3647 			break;
3648 		case MAC_PROP_EN_10HDX_CAP:
3649 			*(uint8_t *)pr_val = Adapter->param_en_10hdx;
3650 			break;
3651 		case MAC_PROP_ADV_100T4_CAP:
3652 		case MAC_PROP_EN_100T4_CAP:
3653 			*(uint8_t *)pr_val = Adapter->param_adv_100t4;
3654 			break;
3655 		case MAC_PROP_PRIVATE:
3656 			err = e1000g_get_priv_prop(Adapter, pr_name,
3657 			    pr_valsize, pr_val);
3658 			break;
3659 		default:
3660 			err = ENOTSUP;
3661 			break;
3662 	}
3663 
3664 	return (err);
3665 }
3666 
3667 static void
3668 e1000g_m_propinfo(void *arg, const char *pr_name, mac_prop_id_t pr_num,
3669     mac_prop_info_handle_t prh)
3670 {
3671 	struct e1000g *Adapter = arg;
3672 	struct e1000_hw *hw = &Adapter->shared;
3673 
3674 	switch (pr_num) {
3675 	case MAC_PROP_DUPLEX:
3676 	case MAC_PROP_SPEED:
3677 	case MAC_PROP_ADV_1000FDX_CAP:
3678 	case MAC_PROP_ADV_1000HDX_CAP:
3679 	case MAC_PROP_ADV_100FDX_CAP:
3680 	case MAC_PROP_ADV_100HDX_CAP:
3681 	case MAC_PROP_ADV_10FDX_CAP:
3682 	case MAC_PROP_ADV_10HDX_CAP:
3683 	case MAC_PROP_ADV_100T4_CAP:
3684 	case MAC_PROP_EN_100T4_CAP:
3685 		mac_prop_info_set_perm(prh, MAC_PROP_PERM_READ);
3686 		break;
3687 
3688 	case MAC_PROP_EN_1000FDX_CAP:
3689 		if (hw->phy.media_type != e1000_media_type_copper) {
3690 			mac_prop_info_set_perm(prh, MAC_PROP_PERM_READ);
3691 		} else {
3692 			mac_prop_info_set_default_uint8(prh,
3693 			    ((Adapter->phy_ext_status &
3694 			    IEEE_ESR_1000T_FD_CAPS) ||
3695 			    (Adapter->phy_ext_status &
3696 			    IEEE_ESR_1000X_FD_CAPS)) ? 1 : 0);
3697 		}
3698 		break;
3699 
3700 	case MAC_PROP_EN_100FDX_CAP:
3701 		if (hw->phy.media_type != e1000_media_type_copper) {
3702 			mac_prop_info_set_perm(prh, MAC_PROP_PERM_READ);
3703 		} else {
3704 			mac_prop_info_set_default_uint8(prh,
3705 			    ((Adapter->phy_status & MII_SR_100X_FD_CAPS) ||
3706 			    (Adapter->phy_status & MII_SR_100T2_FD_CAPS))
3707 			    ? 1 : 0);
3708 		}
3709 		break;
3710 
3711 	case MAC_PROP_EN_100HDX_CAP:
3712 		if (hw->phy.media_type != e1000_media_type_copper) {
3713 			mac_prop_info_set_perm(prh, MAC_PROP_PERM_READ);
3714 		} else {
3715 			mac_prop_info_set_default_uint8(prh,
3716 			    ((Adapter->phy_status & MII_SR_100X_HD_CAPS) ||
3717 			    (Adapter->phy_status & MII_SR_100T2_HD_CAPS))
3718 			    ? 1 : 0);
3719 		}
3720 		break;
3721 
3722 	case MAC_PROP_EN_10FDX_CAP:
3723 		if (hw->phy.media_type != e1000_media_type_copper) {
3724 			mac_prop_info_set_perm(prh, MAC_PROP_PERM_READ);
3725 		} else {
3726 			mac_prop_info_set_default_uint8(prh,
3727 			    (Adapter->phy_status & MII_SR_10T_FD_CAPS) ? 1 : 0);
3728 		}
3729 		break;
3730 
3731 	case MAC_PROP_EN_10HDX_CAP:
3732 		if (hw->phy.media_type != e1000_media_type_copper) {
3733 			mac_prop_info_set_perm(prh, MAC_PROP_PERM_READ);
3734 		} else {
3735 			mac_prop_info_set_default_uint8(prh,
3736 			    (Adapter->phy_status & MII_SR_10T_HD_CAPS) ? 1 : 0);
3737 		}
3738 		break;
3739 
3740 	case MAC_PROP_EN_1000HDX_CAP:
3741 		if (hw->phy.media_type != e1000_media_type_copper)
3742 			mac_prop_info_set_perm(prh, MAC_PROP_PERM_READ);
3743 		break;
3744 
3745 	case MAC_PROP_AUTONEG:
3746 		if (hw->phy.media_type != e1000_media_type_copper) {
3747 			mac_prop_info_set_perm(prh, MAC_PROP_PERM_READ);
3748 		} else {
3749 			mac_prop_info_set_default_uint8(prh,
3750 			    (Adapter->phy_status & MII_SR_AUTONEG_CAPS)
3751 			    ? 1 : 0);
3752 		}
3753 		break;
3754 
3755 	case MAC_PROP_FLOWCTRL:
3756 		mac_prop_info_set_default_link_flowctrl(prh, LINK_FLOWCTRL_BI);
3757 		break;
3758 
3759 	case MAC_PROP_MTU: {
3760 		struct e1000_mac_info *mac = &Adapter->shared.mac;
3761 		struct e1000_phy_info *phy = &Adapter->shared.phy;
3762 		uint32_t max;
3763 
3764 		/* some MAC types do not support jumbo frames */
3765 		if ((mac->type == e1000_ich8lan) ||
3766 		    ((mac->type == e1000_ich9lan) && (phy->type ==
3767 		    e1000_phy_ife))) {
3768 			max = DEFAULT_MTU;
3769 		} else {
3770 			max = Adapter->max_mtu;
3771 		}
3772 
3773 		mac_prop_info_set_range_uint32(prh, DEFAULT_MTU, max);
3774 		break;
3775 	}
3776 	case MAC_PROP_PRIVATE: {
3777 		char valstr[64];
3778 		int value;
3779 
3780 		if (strcmp(pr_name, "_adv_pause_cap") == 0 ||
3781 		    strcmp(pr_name, "_adv_asym_pause_cap") == 0) {
3782 			mac_prop_info_set_perm(prh, MAC_PROP_PERM_READ);
3783 			return;
3784 		} else if (strcmp(pr_name, "_tx_bcopy_threshold") == 0) {
3785 			value = DEFAULT_TX_BCOPY_THRESHOLD;
3786 		} else if (strcmp(pr_name, "_tx_interrupt_enable") == 0) {
3787 			value = DEFAULT_TX_INTR_ENABLE;
3788 		} else if (strcmp(pr_name, "_tx_intr_delay") == 0) {
3789 			value = DEFAULT_TX_INTR_DELAY;
3790 		} else if (strcmp(pr_name, "_tx_intr_abs_delay") == 0) {
3791 			value = DEFAULT_TX_INTR_ABS_DELAY;
3792 		} else if (strcmp(pr_name, "_rx_bcopy_threshold") == 0) {
3793 			value = DEFAULT_RX_BCOPY_THRESHOLD;
3794 		} else if (strcmp(pr_name, "_max_num_rcv_packets") == 0) {
3795 			value = DEFAULT_RX_LIMIT_ON_INTR;
3796 		} else if (strcmp(pr_name, "_rx_intr_delay") == 0) {
3797 			value = DEFAULT_RX_INTR_DELAY;
3798 		} else if (strcmp(pr_name, "_rx_intr_abs_delay") == 0) {
3799 			value = DEFAULT_RX_INTR_ABS_DELAY;
3800 		} else if (strcmp(pr_name, "_intr_throttling_rate") == 0) {
3801 			value = DEFAULT_INTR_THROTTLING;
3802 		} else if (strcmp(pr_name, "_intr_adaptive") == 0) {
3803 			value = 1;
3804 		} else {
3805 			return;
3806 		}
3807 
3808 		(void) snprintf(valstr, sizeof (valstr), "%d", value);
3809 		mac_prop_info_set_default_str(prh, valstr);
3810 		break;
3811 	}
3812 	}
3813 }
3814 
3815 /* ARGSUSED2 */
3816 static int
3817 e1000g_set_priv_prop(struct e1000g *Adapter, const char *pr_name,
3818     uint_t pr_valsize, const void *pr_val)
3819 {
3820 	int err = 0;
3821 	long result;
3822 	struct e1000_hw *hw = &Adapter->shared;
3823 
3824 	if (strcmp(pr_name, "_tx_bcopy_threshold") == 0) {
3825 		if (pr_val == NULL) {
3826 			err = EINVAL;
3827 			return (err);
3828 		}
3829 		(void) ddi_strtol(pr_val, (char **)NULL, 0, &result);
3830 		if (result < MIN_TX_BCOPY_THRESHOLD ||
3831 		    result > MAX_TX_BCOPY_THRESHOLD)
3832 			err = EINVAL;
3833 		else {
3834 			Adapter->tx_bcopy_thresh = (uint32_t)result;
3835 		}
3836 		return (err);
3837 	}
3838 	if (strcmp(pr_name, "_tx_interrupt_enable") == 0) {
3839 		if (pr_val == NULL) {
3840 			err = EINVAL;
3841 			return (err);
3842 		}
3843 		(void) ddi_strtol(pr_val, (char **)NULL, 0, &result);
3844 		if (result < 0 || result > 1)
3845 			err = EINVAL;
3846 		else {
3847 			Adapter->tx_intr_enable = (result == 1) ?
3848 			    B_TRUE: B_FALSE;
3849 			if (Adapter->tx_intr_enable)
3850 				e1000g_mask_tx_interrupt(Adapter);
3851 			else
3852 				e1000g_clear_tx_interrupt(Adapter);
3853 			if (e1000g_check_acc_handle(
3854 			    Adapter->osdep.reg_handle) != DDI_FM_OK) {
3855 				ddi_fm_service_impact(Adapter->dip,
3856 				    DDI_SERVICE_DEGRADED);
3857 				err = EIO;
3858 			}
3859 		}
3860 		return (err);
3861 	}
3862 	if (strcmp(pr_name, "_tx_intr_delay") == 0) {
3863 		if (pr_val == NULL) {
3864 			err = EINVAL;
3865 			return (err);
3866 		}
3867 		(void) ddi_strtol(pr_val, (char **)NULL, 0, &result);
3868 		if (result < MIN_TX_INTR_DELAY ||
3869 		    result > MAX_TX_INTR_DELAY)
3870 			err = EINVAL;
3871 		else {
3872 			Adapter->tx_intr_delay = (uint32_t)result;
3873 			E1000_WRITE_REG(hw, E1000_TIDV, Adapter->tx_intr_delay);
3874 			if (e1000g_check_acc_handle(
3875 			    Adapter->osdep.reg_handle) != DDI_FM_OK) {
3876 				ddi_fm_service_impact(Adapter->dip,
3877 				    DDI_SERVICE_DEGRADED);
3878 				err = EIO;
3879 			}
3880 		}
3881 		return (err);
3882 	}
3883 	if (strcmp(pr_name, "_tx_intr_abs_delay") == 0) {
3884 		if (pr_val == NULL) {
3885 			err = EINVAL;
3886 			return (err);
3887 		}
3888 		(void) ddi_strtol(pr_val, (char **)NULL, 0, &result);
3889 		if (result < MIN_TX_INTR_ABS_DELAY ||
3890 		    result > MAX_TX_INTR_ABS_DELAY)
3891 			err = EINVAL;
3892 		else {
3893 			Adapter->tx_intr_abs_delay = (uint32_t)result;
3894 			E1000_WRITE_REG(hw, E1000_TADV,
3895 			    Adapter->tx_intr_abs_delay);
3896 			if (e1000g_check_acc_handle(
3897 			    Adapter->osdep.reg_handle) != DDI_FM_OK) {
3898 				ddi_fm_service_impact(Adapter->dip,
3899 				    DDI_SERVICE_DEGRADED);
3900 				err = EIO;
3901 			}
3902 		}
3903 		return (err);
3904 	}
3905 	if (strcmp(pr_name, "_rx_bcopy_threshold") == 0) {
3906 		if (pr_val == NULL) {
3907 			err = EINVAL;
3908 			return (err);
3909 		}
3910 		(void) ddi_strtol(pr_val, (char **)NULL, 0, &result);
3911 		if (result < MIN_RX_BCOPY_THRESHOLD ||
3912 		    result > MAX_RX_BCOPY_THRESHOLD)
3913 			err = EINVAL;
3914 		else
3915 			Adapter->rx_bcopy_thresh = (uint32_t)result;
3916 		return (err);
3917 	}
3918 	if (strcmp(pr_name, "_max_num_rcv_packets") == 0) {
3919 		if (pr_val == NULL) {
3920 			err = EINVAL;
3921 			return (err);
3922 		}
3923 		(void) ddi_strtol(pr_val, (char **)NULL, 0, &result);
3924 		if (result < MIN_RX_LIMIT_ON_INTR ||
3925 		    result > MAX_RX_LIMIT_ON_INTR)
3926 			err = EINVAL;
3927 		else
3928 			Adapter->rx_limit_onintr = (uint32_t)result;
3929 		return (err);
3930 	}
3931 	if (strcmp(pr_name, "_rx_intr_delay") == 0) {
3932 		if (pr_val == NULL) {
3933 			err = EINVAL;
3934 			return (err);
3935 		}
3936 		(void) ddi_strtol(pr_val, (char **)NULL, 0, &result);
3937 		if (result < MIN_RX_INTR_DELAY ||
3938 		    result > MAX_RX_INTR_DELAY)
3939 			err = EINVAL;
3940 		else {
3941 			Adapter->rx_intr_delay = (uint32_t)result;
3942 			E1000_WRITE_REG(hw, E1000_RDTR, Adapter->rx_intr_delay);
3943 			if (e1000g_check_acc_handle(
3944 			    Adapter->osdep.reg_handle) != DDI_FM_OK) {
3945 				ddi_fm_service_impact(Adapter->dip,
3946 				    DDI_SERVICE_DEGRADED);
3947 				err = EIO;
3948 			}
3949 		}
3950 		return (err);
3951 	}
3952 	if (strcmp(pr_name, "_rx_intr_abs_delay") == 0) {
3953 		if (pr_val == NULL) {
3954 			err = EINVAL;
3955 			return (err);
3956 		}
3957 		(void) ddi_strtol(pr_val, (char **)NULL, 0, &result);
3958 		if (result < MIN_RX_INTR_ABS_DELAY ||
3959 		    result > MAX_RX_INTR_ABS_DELAY)
3960 			err = EINVAL;
3961 		else {
3962 			Adapter->rx_intr_abs_delay = (uint32_t)result;
3963 			E1000_WRITE_REG(hw, E1000_RADV,
3964 			    Adapter->rx_intr_abs_delay);
3965 			if (e1000g_check_acc_handle(
3966 			    Adapter->osdep.reg_handle) != DDI_FM_OK) {
3967 				ddi_fm_service_impact(Adapter->dip,
3968 				    DDI_SERVICE_DEGRADED);
3969 				err = EIO;
3970 			}
3971 		}
3972 		return (err);
3973 	}
3974 	if (strcmp(pr_name, "_intr_throttling_rate") == 0) {
3975 		if (pr_val == NULL) {
3976 			err = EINVAL;
3977 			return (err);
3978 		}
3979 		(void) ddi_strtol(pr_val, (char **)NULL, 0, &result);
3980 		if (result < MIN_INTR_THROTTLING ||
3981 		    result > MAX_INTR_THROTTLING)
3982 			err = EINVAL;
3983 		else {
3984 			if (hw->mac.type >= e1000_82540) {
3985 				Adapter->intr_throttling_rate =
3986 				    (uint32_t)result;
3987 				E1000_WRITE_REG(hw, E1000_ITR,
3988 				    Adapter->intr_throttling_rate);
3989 				if (e1000g_check_acc_handle(
3990 				    Adapter->osdep.reg_handle) != DDI_FM_OK) {
3991 					ddi_fm_service_impact(Adapter->dip,
3992 					    DDI_SERVICE_DEGRADED);
3993 					err = EIO;
3994 				}
3995 			} else
3996 				err = EINVAL;
3997 		}
3998 		return (err);
3999 	}
4000 	if (strcmp(pr_name, "_intr_adaptive") == 0) {
4001 		if (pr_val == NULL) {
4002 			err = EINVAL;
4003 			return (err);
4004 		}
4005 		(void) ddi_strtol(pr_val, (char **)NULL, 0, &result);
4006 		if (result < 0 || result > 1)
4007 			err = EINVAL;
4008 		else {
4009 			if (hw->mac.type >= e1000_82540) {
4010 				Adapter->intr_adaptive = (result == 1) ?
4011 				    B_TRUE : B_FALSE;
4012 			} else {
4013 				err = EINVAL;
4014 			}
4015 		}
4016 		return (err);
4017 	}
4018 	return (ENOTSUP);
4019 }
4020 
4021 static int
4022 e1000g_get_priv_prop(struct e1000g *Adapter, const char *pr_name,
4023     uint_t pr_valsize, void *pr_val)
4024 {
4025 	int err = ENOTSUP;
4026 	int value;
4027 
4028 	if (strcmp(pr_name, "_adv_pause_cap") == 0) {
4029 		value = Adapter->param_adv_pause;
4030 		err = 0;
4031 		goto done;
4032 	}
4033 	if (strcmp(pr_name, "_adv_asym_pause_cap") == 0) {
4034 		value = Adapter->param_adv_asym_pause;
4035 		err = 0;
4036 		goto done;
4037 	}
4038 	if (strcmp(pr_name, "_tx_bcopy_threshold") == 0) {
4039 		value = Adapter->tx_bcopy_thresh;
4040 		err = 0;
4041 		goto done;
4042 	}
4043 	if (strcmp(pr_name, "_tx_interrupt_enable") == 0) {
4044 		value = Adapter->tx_intr_enable;
4045 		err = 0;
4046 		goto done;
4047 	}
4048 	if (strcmp(pr_name, "_tx_intr_delay") == 0) {
4049 		value = Adapter->tx_intr_delay;
4050 		err = 0;
4051 		goto done;
4052 	}
4053 	if (strcmp(pr_name, "_tx_intr_abs_delay") == 0) {
4054 		value = Adapter->tx_intr_abs_delay;
4055 		err = 0;
4056 		goto done;
4057 	}
4058 	if (strcmp(pr_name, "_rx_bcopy_threshold") == 0) {
4059 		value = Adapter->rx_bcopy_thresh;
4060 		err = 0;
4061 		goto done;
4062 	}
4063 	if (strcmp(pr_name, "_max_num_rcv_packets") == 0) {
4064 		value = Adapter->rx_limit_onintr;
4065 		err = 0;
4066 		goto done;
4067 	}
4068 	if (strcmp(pr_name, "_rx_intr_delay") == 0) {
4069 		value = Adapter->rx_intr_delay;
4070 		err = 0;
4071 		goto done;
4072 	}
4073 	if (strcmp(pr_name, "_rx_intr_abs_delay") == 0) {
4074 		value = Adapter->rx_intr_abs_delay;
4075 		err = 0;
4076 		goto done;
4077 	}
4078 	if (strcmp(pr_name, "_intr_throttling_rate") == 0) {
4079 		value = Adapter->intr_throttling_rate;
4080 		err = 0;
4081 		goto done;
4082 	}
4083 	if (strcmp(pr_name, "_intr_adaptive") == 0) {
4084 		value = Adapter->intr_adaptive;
4085 		err = 0;
4086 		goto done;
4087 	}
4088 done:
4089 	if (err == 0) {
4090 		(void) snprintf(pr_val, pr_valsize, "%d", value);
4091 	}
4092 	return (err);
4093 }
4094 
4095 /*
4096  * e1000g_get_conf - get configurations set in e1000g.conf
4097  * This routine gets user-configured values out of the configuration
4098  * file e1000g.conf.
4099  *
4100  * For each configurable value, there is a minimum, a maximum, and a
4101  * default.
4102  * If user does not configure a value, use the default.
4103  * If user configures below the minimum, use the minumum.
4104  * If user configures above the maximum, use the maxumum.
4105  */
4106 static void
4107 e1000g_get_conf(struct e1000g *Adapter)
4108 {
4109 	struct e1000_hw *hw = &Adapter->shared;
4110 	boolean_t tbi_compatibility = B_FALSE;
4111 	boolean_t is_jumbo = B_FALSE;
4112 	int propval;
4113 	/*
4114 	 * decrease the number of descriptors and free packets
4115 	 * for jumbo frames to reduce tx/rx resource consumption
4116 	 */
4117 	if (Adapter->max_frame_size >= FRAME_SIZE_UPTO_4K) {
4118 		is_jumbo = B_TRUE;
4119 	}
4120 
4121 	/*
4122 	 * get each configurable property from e1000g.conf
4123 	 */
4124 
4125 	/*
4126 	 * NumTxDescriptors
4127 	 */
4128 	Adapter->tx_desc_num_flag =
4129 	    e1000g_get_prop(Adapter, "NumTxDescriptors",
4130 	    MIN_NUM_TX_DESCRIPTOR, MAX_NUM_TX_DESCRIPTOR,
4131 	    is_jumbo ? DEFAULT_JUMBO_NUM_TX_DESC
4132 	    : DEFAULT_NUM_TX_DESCRIPTOR, &propval);
4133 	Adapter->tx_desc_num = propval;
4134 
4135 	/*
4136 	 * NumRxDescriptors
4137 	 */
4138 	Adapter->rx_desc_num_flag =
4139 	    e1000g_get_prop(Adapter, "NumRxDescriptors",
4140 	    MIN_NUM_RX_DESCRIPTOR, MAX_NUM_RX_DESCRIPTOR,
4141 	    is_jumbo ? DEFAULT_JUMBO_NUM_RX_DESC
4142 	    : DEFAULT_NUM_RX_DESCRIPTOR, &propval);
4143 	Adapter->rx_desc_num = propval;
4144 
4145 	/*
4146 	 * NumRxFreeList
4147 	 */
4148 	Adapter->rx_buf_num_flag =
4149 	    e1000g_get_prop(Adapter, "NumRxFreeList",
4150 	    MIN_NUM_RX_FREELIST, MAX_NUM_RX_FREELIST,
4151 	    is_jumbo ? DEFAULT_JUMBO_NUM_RX_BUF
4152 	    : DEFAULT_NUM_RX_FREELIST, &propval);
4153 	Adapter->rx_freelist_limit = propval;
4154 
4155 	/*
4156 	 * NumTxPacketList
4157 	 */
4158 	Adapter->tx_buf_num_flag =
4159 	    e1000g_get_prop(Adapter, "NumTxPacketList",
4160 	    MIN_NUM_TX_FREELIST, MAX_NUM_TX_FREELIST,
4161 	    is_jumbo ? DEFAULT_JUMBO_NUM_TX_BUF
4162 	    : DEFAULT_NUM_TX_FREELIST, &propval);
4163 	Adapter->tx_freelist_num = propval;
4164 
4165 	/*
4166 	 * FlowControl
4167 	 */
4168 	hw->fc.send_xon = B_TRUE;
4169 	(void) e1000g_get_prop(Adapter, "FlowControl",
4170 	    e1000_fc_none, 4, DEFAULT_FLOW_CONTROL, &propval);
4171 	hw->fc.requested_mode = propval;
4172 	/* 4 is the setting that says "let the eeprom decide" */
4173 	if (hw->fc.requested_mode == 4)
4174 		hw->fc.requested_mode = e1000_fc_default;
4175 
4176 	/*
4177 	 * Max Num Receive Packets on Interrupt
4178 	 */
4179 	(void) e1000g_get_prop(Adapter, "MaxNumReceivePackets",
4180 	    MIN_RX_LIMIT_ON_INTR, MAX_RX_LIMIT_ON_INTR,
4181 	    DEFAULT_RX_LIMIT_ON_INTR, &propval);
4182 	Adapter->rx_limit_onintr = propval;
4183 
4184 	/*
4185 	 * PHY master slave setting
4186 	 */
4187 	(void) e1000g_get_prop(Adapter, "SetMasterSlave",
4188 	    e1000_ms_hw_default, e1000_ms_auto,
4189 	    e1000_ms_hw_default, &propval);
4190 	hw->phy.ms_type = propval;
4191 
4192 	/*
4193 	 * Parameter which controls TBI mode workaround, which is only
4194 	 * needed on certain switches such as Cisco 6500/Foundry
4195 	 */
4196 	(void) e1000g_get_prop(Adapter, "TbiCompatibilityEnable",
4197 	    0, 1, DEFAULT_TBI_COMPAT_ENABLE, &propval);
4198 	tbi_compatibility = (propval == 1);
4199 	e1000_set_tbi_compatibility_82543(hw, tbi_compatibility);
4200 
4201 	/*
4202 	 * MSI Enable
4203 	 */
4204 	(void) e1000g_get_prop(Adapter, "MSIEnable",
4205 	    0, 1, DEFAULT_MSI_ENABLE, &propval);
4206 	Adapter->msi_enable = (propval == 1);
4207 
4208 	/*
4209 	 * Interrupt Throttling Rate
4210 	 */
4211 	(void) e1000g_get_prop(Adapter, "intr_throttling_rate",
4212 	    MIN_INTR_THROTTLING, MAX_INTR_THROTTLING,
4213 	    DEFAULT_INTR_THROTTLING, &propval);
4214 	Adapter->intr_throttling_rate = propval;
4215 
4216 	/*
4217 	 * Adaptive Interrupt Blanking Enable/Disable
4218 	 * It is enabled by default
4219 	 */
4220 	(void) e1000g_get_prop(Adapter, "intr_adaptive", 0, 1, 1,
4221 	    &propval);
4222 	Adapter->intr_adaptive = (propval == 1);
4223 
4224 	/*
4225 	 * Hardware checksum enable/disable parameter
4226 	 */
4227 	(void) e1000g_get_prop(Adapter, "tx_hcksum_enable",
4228 	    0, 1, DEFAULT_TX_HCKSUM_ENABLE, &propval);
4229 	Adapter->tx_hcksum_enable = (propval == 1);
4230 	/*
4231 	 * Checksum on/off selection via global parameters.
4232 	 *
4233 	 * If the chip is flagged as not capable of (correctly)
4234 	 * handling checksumming, we don't enable it on either
4235 	 * Rx or Tx side.  Otherwise, we take this chip's settings
4236 	 * from the patchable global defaults.
4237 	 *
4238 	 * We advertise our capabilities only if TX offload is
4239 	 * enabled.  On receive, the stack will accept checksummed
4240 	 * packets anyway, even if we haven't said we can deliver
4241 	 * them.
4242 	 */
4243 	switch (hw->mac.type) {
4244 		case e1000_82540:
4245 		case e1000_82544:
4246 		case e1000_82545:
4247 		case e1000_82545_rev_3:
4248 		case e1000_82546:
4249 		case e1000_82546_rev_3:
4250 		case e1000_82571:
4251 		case e1000_82572:
4252 		case e1000_82573:
4253 		case e1000_80003es2lan:
4254 			break;
4255 		/*
4256 		 * For the following Intel PRO/1000 chipsets, we have not
4257 		 * tested the hardware checksum offload capability, so we
4258 		 * disable the capability for them.
4259 		 *	e1000_82542,
4260 		 *	e1000_82543,
4261 		 *	e1000_82541,
4262 		 *	e1000_82541_rev_2,
4263 		 *	e1000_82547,
4264 		 *	e1000_82547_rev_2,
4265 		 */
4266 		default:
4267 			Adapter->tx_hcksum_enable = B_FALSE;
4268 	}
4269 
4270 	/*
4271 	 * Large Send Offloading(LSO) Enable/Disable
4272 	 * If the tx hardware checksum is not enabled, LSO should be
4273 	 * disabled.
4274 	 */
4275 	(void) e1000g_get_prop(Adapter, "lso_enable",
4276 	    0, 1, DEFAULT_LSO_ENABLE, &propval);
4277 	Adapter->lso_enable = (propval == 1);
4278 
4279 	switch (hw->mac.type) {
4280 		case e1000_82546:
4281 		case e1000_82546_rev_3:
4282 			if (Adapter->lso_enable)
4283 				Adapter->lso_premature_issue = B_TRUE;
4284 			/* FALLTHRU */
4285 		case e1000_82571:
4286 		case e1000_82572:
4287 		case e1000_82573:
4288 		case e1000_80003es2lan:
4289 			break;
4290 		default:
4291 			Adapter->lso_enable = B_FALSE;
4292 	}
4293 
4294 	if (!Adapter->tx_hcksum_enable) {
4295 		Adapter->lso_premature_issue = B_FALSE;
4296 		Adapter->lso_enable = B_FALSE;
4297 	}
4298 
4299 	/*
4300 	 * If mem_workaround_82546 is enabled, the rx buffer allocated by
4301 	 * e1000_82545, e1000_82546 and e1000_82546_rev_3
4302 	 * will not cross 64k boundary.
4303 	 */
4304 	(void) e1000g_get_prop(Adapter, "mem_workaround_82546",
4305 	    0, 1, DEFAULT_MEM_WORKAROUND_82546, &propval);
4306 	Adapter->mem_workaround_82546 = (propval == 1);
4307 
4308 	/*
4309 	 * Max number of multicast addresses
4310 	 */
4311 	(void) e1000g_get_prop(Adapter, "mcast_max_num",
4312 	    MIN_MCAST_NUM, MAX_MCAST_NUM, hw->mac.mta_reg_count * 32,
4313 	    &propval);
4314 	Adapter->mcast_max_num = propval;
4315 }
4316 
4317 /*
4318  * e1000g_get_prop - routine to read properties
4319  *
4320  * Get a user-configure property value out of the configuration
4321  * file e1000g.conf.
4322  *
4323  * Caller provides name of the property, a default value, a minimum
4324  * value, a maximum value and a pointer to the returned property
4325  * value.
4326  *
4327  * Return B_TRUE if the configured value of the property is not a default
4328  * value, otherwise return B_FALSE.
4329  */
4330 static boolean_t
4331 e1000g_get_prop(struct e1000g *Adapter,	/* point to per-adapter structure */
4332     char *propname,		/* name of the property */
4333     int minval,			/* minimum acceptable value */
4334     int maxval,			/* maximim acceptable value */
4335     int defval,			/* default value */
4336     int *propvalue)		/* property value return to caller */
4337 {
4338 	int propval;		/* value returned for requested property */
4339 	int *props;		/* point to array of properties returned */
4340 	uint_t nprops;		/* number of property value returned */
4341 	boolean_t ret = B_TRUE;
4342 
4343 	/*
4344 	 * get the array of properties from the config file
4345 	 */
4346 	if (ddi_prop_lookup_int_array(DDI_DEV_T_ANY, Adapter->dip,
4347 	    DDI_PROP_DONTPASS, propname, &props, &nprops) == DDI_PROP_SUCCESS) {
4348 		/* got some properties, test if we got enough */
4349 		if (Adapter->instance < nprops) {
4350 			propval = props[Adapter->instance];
4351 		} else {
4352 			/* not enough properties configured */
4353 			propval = defval;
4354 			E1000G_DEBUGLOG_2(Adapter, E1000G_INFO_LEVEL,
4355 			    "Not Enough %s values found in e1000g.conf"
4356 			    " - set to %d\n",
4357 			    propname, propval);
4358 			ret = B_FALSE;
4359 		}
4360 
4361 		/* free memory allocated for properties */
4362 		ddi_prop_free(props);
4363 
4364 	} else {
4365 		propval = defval;
4366 		ret = B_FALSE;
4367 	}
4368 
4369 	/*
4370 	 * enforce limits
4371 	 */
4372 	if (propval > maxval) {
4373 		propval = maxval;
4374 		E1000G_DEBUGLOG_2(Adapter, E1000G_INFO_LEVEL,
4375 		    "Too High %s value in e1000g.conf - set to %d\n",
4376 		    propname, propval);
4377 	}
4378 
4379 	if (propval < minval) {
4380 		propval = minval;
4381 		E1000G_DEBUGLOG_2(Adapter, E1000G_INFO_LEVEL,
4382 		    "Too Low %s value in e1000g.conf - set to %d\n",
4383 		    propname, propval);
4384 	}
4385 
4386 	*propvalue = propval;
4387 	return (ret);
4388 }
4389 
4390 static boolean_t
4391 e1000g_link_check(struct e1000g *Adapter)
4392 {
4393 	uint16_t speed, duplex, phydata;
4394 	boolean_t link_changed = B_FALSE;
4395 	struct e1000_hw *hw;
4396 	uint32_t reg_tarc;
4397 
4398 	hw = &Adapter->shared;
4399 
4400 	if (e1000g_link_up(Adapter)) {
4401 		/*
4402 		 * The Link is up, check whether it was marked as down earlier
4403 		 */
4404 		if (Adapter->link_state != LINK_STATE_UP) {
4405 			(void) e1000_get_speed_and_duplex(hw, &speed, &duplex);
4406 			Adapter->link_speed = speed;
4407 			Adapter->link_duplex = duplex;
4408 			Adapter->link_state = LINK_STATE_UP;
4409 			link_changed = B_TRUE;
4410 
4411 			if (Adapter->link_speed == SPEED_1000)
4412 				Adapter->stall_threshold = TX_STALL_TIME_2S;
4413 			else
4414 				Adapter->stall_threshold = TX_STALL_TIME_8S;
4415 
4416 			Adapter->tx_link_down_timeout = 0;
4417 
4418 			if ((hw->mac.type == e1000_82571) ||
4419 			    (hw->mac.type == e1000_82572)) {
4420 				reg_tarc = E1000_READ_REG(hw, E1000_TARC(0));
4421 				if (speed == SPEED_1000)
4422 					reg_tarc |= (1 << 21);
4423 				else
4424 					reg_tarc &= ~(1 << 21);
4425 				E1000_WRITE_REG(hw, E1000_TARC(0), reg_tarc);
4426 			}
4427 		}
4428 		Adapter->smartspeed = 0;
4429 	} else {
4430 		if (Adapter->link_state != LINK_STATE_DOWN) {
4431 			Adapter->link_speed = 0;
4432 			Adapter->link_duplex = 0;
4433 			Adapter->link_state = LINK_STATE_DOWN;
4434 			link_changed = B_TRUE;
4435 
4436 			/*
4437 			 * SmartSpeed workaround for Tabor/TanaX, When the
4438 			 * driver loses link disable auto master/slave
4439 			 * resolution.
4440 			 */
4441 			if (hw->phy.type == e1000_phy_igp) {
4442 				(void) e1000_read_phy_reg(hw,
4443 				    PHY_1000T_CTRL, &phydata);
4444 				phydata |= CR_1000T_MS_ENABLE;
4445 				(void) e1000_write_phy_reg(hw,
4446 				    PHY_1000T_CTRL, phydata);
4447 			}
4448 		} else {
4449 			e1000g_smartspeed(Adapter);
4450 		}
4451 
4452 		if (Adapter->e1000g_state & E1000G_STARTED) {
4453 			if (Adapter->tx_link_down_timeout <
4454 			    MAX_TX_LINK_DOWN_TIMEOUT) {
4455 				Adapter->tx_link_down_timeout++;
4456 			} else if (Adapter->tx_link_down_timeout ==
4457 			    MAX_TX_LINK_DOWN_TIMEOUT) {
4458 				e1000g_tx_clean(Adapter);
4459 				Adapter->tx_link_down_timeout++;
4460 			}
4461 		}
4462 	}
4463 
4464 	if (e1000g_check_acc_handle(Adapter->osdep.reg_handle) != DDI_FM_OK)
4465 		ddi_fm_service_impact(Adapter->dip, DDI_SERVICE_DEGRADED);
4466 
4467 	return (link_changed);
4468 }
4469 
4470 /*
4471  * e1000g_reset_link - Using the link properties to setup the link
4472  */
4473 int
4474 e1000g_reset_link(struct e1000g *Adapter)
4475 {
4476 	struct e1000_mac_info *mac;
4477 	struct e1000_phy_info *phy;
4478 	struct e1000_hw *hw;
4479 	boolean_t invalid;
4480 
4481 	mac = &Adapter->shared.mac;
4482 	phy = &Adapter->shared.phy;
4483 	hw = &Adapter->shared;
4484 	invalid = B_FALSE;
4485 
4486 	if (hw->phy.media_type != e1000_media_type_copper)
4487 		goto out;
4488 
4489 	if (Adapter->param_adv_autoneg == 1) {
4490 		mac->autoneg = B_TRUE;
4491 		phy->autoneg_advertised = 0;
4492 
4493 		/*
4494 		 * 1000hdx is not supported for autonegotiation
4495 		 */
4496 		if (Adapter->param_adv_1000fdx == 1)
4497 			phy->autoneg_advertised |= ADVERTISE_1000_FULL;
4498 
4499 		if (Adapter->param_adv_100fdx == 1)
4500 			phy->autoneg_advertised |= ADVERTISE_100_FULL;
4501 
4502 		if (Adapter->param_adv_100hdx == 1)
4503 			phy->autoneg_advertised |= ADVERTISE_100_HALF;
4504 
4505 		if (Adapter->param_adv_10fdx == 1)
4506 			phy->autoneg_advertised |= ADVERTISE_10_FULL;
4507 
4508 		if (Adapter->param_adv_10hdx == 1)
4509 			phy->autoneg_advertised |= ADVERTISE_10_HALF;
4510 
4511 		if (phy->autoneg_advertised == 0)
4512 			invalid = B_TRUE;
4513 	} else {
4514 		mac->autoneg = B_FALSE;
4515 
4516 		/*
4517 		 * For Intel copper cards, 1000fdx and 1000hdx are not
4518 		 * supported for forced link
4519 		 */
4520 		if (Adapter->param_adv_100fdx == 1)
4521 			mac->forced_speed_duplex = ADVERTISE_100_FULL;
4522 		else if (Adapter->param_adv_100hdx == 1)
4523 			mac->forced_speed_duplex = ADVERTISE_100_HALF;
4524 		else if (Adapter->param_adv_10fdx == 1)
4525 			mac->forced_speed_duplex = ADVERTISE_10_FULL;
4526 		else if (Adapter->param_adv_10hdx == 1)
4527 			mac->forced_speed_duplex = ADVERTISE_10_HALF;
4528 		else
4529 			invalid = B_TRUE;
4530 
4531 	}
4532 
4533 	if (invalid) {
4534 		e1000g_log(Adapter, CE_WARN,
4535 		    "Invalid link settings. Setup link to "
4536 		    "support autonegotiation with all link capabilities.");
4537 		mac->autoneg = B_TRUE;
4538 		phy->autoneg_advertised = AUTONEG_ADVERTISE_SPEED_DEFAULT;
4539 	}
4540 
4541 out:
4542 	return (e1000_setup_link(&Adapter->shared));
4543 }
4544 
4545 static void
4546 e1000g_timer_tx_resched(struct e1000g *Adapter)
4547 {
4548 	e1000g_tx_ring_t *tx_ring = Adapter->tx_ring;
4549 
4550 	rw_enter(&Adapter->chip_lock, RW_READER);
4551 
4552 	if (tx_ring->resched_needed &&
4553 	    ((ddi_get_lbolt() - tx_ring->resched_timestamp) >
4554 	    drv_usectohz(1000000)) &&
4555 	    (Adapter->e1000g_state & E1000G_STARTED) &&
4556 	    (tx_ring->tbd_avail >= DEFAULT_TX_NO_RESOURCE)) {
4557 		tx_ring->resched_needed = B_FALSE;
4558 		mac_tx_update(Adapter->mh);
4559 		E1000G_STAT(tx_ring->stat_reschedule);
4560 		E1000G_STAT(tx_ring->stat_timer_reschedule);
4561 	}
4562 
4563 	rw_exit(&Adapter->chip_lock);
4564 }
4565 
4566 static void
4567 e1000g_local_timer(void *ws)
4568 {
4569 	struct e1000g *Adapter = (struct e1000g *)ws;
4570 	struct e1000_hw *hw;
4571 	e1000g_ether_addr_t ether_addr;
4572 	boolean_t link_changed;
4573 
4574 	hw = &Adapter->shared;
4575 
4576 	if (Adapter->e1000g_state & E1000G_ERROR) {
4577 		rw_enter(&Adapter->chip_lock, RW_WRITER);
4578 		Adapter->e1000g_state &= ~E1000G_ERROR;
4579 		rw_exit(&Adapter->chip_lock);
4580 
4581 		Adapter->reset_count++;
4582 		if (e1000g_global_reset(Adapter)) {
4583 			ddi_fm_service_impact(Adapter->dip,
4584 			    DDI_SERVICE_RESTORED);
4585 			e1000g_timer_tx_resched(Adapter);
4586 		} else
4587 			ddi_fm_service_impact(Adapter->dip,
4588 			    DDI_SERVICE_LOST);
4589 		return;
4590 	}
4591 
4592 	if (e1000g_stall_check(Adapter)) {
4593 		E1000G_DEBUGLOG_0(Adapter, E1000G_INFO_LEVEL,
4594 		    "Tx stall detected. Activate automatic recovery.\n");
4595 		e1000g_fm_ereport(Adapter, DDI_FM_DEVICE_STALL);
4596 		ddi_fm_service_impact(Adapter->dip, DDI_SERVICE_LOST);
4597 		Adapter->reset_count++;
4598 		if (e1000g_reset_adapter(Adapter)) {
4599 			ddi_fm_service_impact(Adapter->dip,
4600 			    DDI_SERVICE_RESTORED);
4601 			e1000g_timer_tx_resched(Adapter);
4602 		}
4603 		return;
4604 	}
4605 
4606 	link_changed = B_FALSE;
4607 	rw_enter(&Adapter->chip_lock, RW_READER);
4608 	if (Adapter->link_complete)
4609 		link_changed = e1000g_link_check(Adapter);
4610 	rw_exit(&Adapter->chip_lock);
4611 
4612 	if (link_changed) {
4613 		if (!Adapter->reset_flag &&
4614 		    (Adapter->e1000g_state & E1000G_STARTED) &&
4615 		    !(Adapter->e1000g_state & E1000G_SUSPENDED))
4616 			mac_link_update(Adapter->mh, Adapter->link_state);
4617 		if (Adapter->link_state == LINK_STATE_UP)
4618 			Adapter->reset_flag = B_FALSE;
4619 	}
4620 	/*
4621 	 * Workaround for esb2. Data stuck in fifo on a link
4622 	 * down event. Reset the adapter to recover it.
4623 	 */
4624 	if (Adapter->esb2_workaround) {
4625 		Adapter->esb2_workaround = B_FALSE;
4626 		(void) e1000g_reset_adapter(Adapter);
4627 		return;
4628 	}
4629 
4630 	/*
4631 	 * With 82571 controllers, any locally administered address will
4632 	 * be overwritten when there is a reset on the other port.
4633 	 * Detect this circumstance and correct it.
4634 	 */
4635 	if ((hw->mac.type == e1000_82571) &&
4636 	    (e1000_get_laa_state_82571(hw) == B_TRUE)) {
4637 		ether_addr.reg.low = E1000_READ_REG_ARRAY(hw, E1000_RA, 0);
4638 		ether_addr.reg.high = E1000_READ_REG_ARRAY(hw, E1000_RA, 1);
4639 
4640 		ether_addr.reg.low = ntohl(ether_addr.reg.low);
4641 		ether_addr.reg.high = ntohl(ether_addr.reg.high);
4642 
4643 		if ((ether_addr.mac.addr[5] != hw->mac.addr[0]) ||
4644 		    (ether_addr.mac.addr[4] != hw->mac.addr[1]) ||
4645 		    (ether_addr.mac.addr[3] != hw->mac.addr[2]) ||
4646 		    (ether_addr.mac.addr[2] != hw->mac.addr[3]) ||
4647 		    (ether_addr.mac.addr[1] != hw->mac.addr[4]) ||
4648 		    (ether_addr.mac.addr[0] != hw->mac.addr[5])) {
4649 			(void) e1000_rar_set(hw, hw->mac.addr, 0);
4650 		}
4651 	}
4652 
4653 	/*
4654 	 * Long TTL workaround for 82541/82547
4655 	 */
4656 	(void) e1000_igp_ttl_workaround_82547(hw);
4657 
4658 	/*
4659 	 * Check for Adaptive IFS settings If there are lots of collisions
4660 	 * change the value in steps...
4661 	 * These properties should only be set for 10/100
4662 	 */
4663 	if ((hw->phy.media_type == e1000_media_type_copper) &&
4664 	    ((Adapter->link_speed == SPEED_100) ||
4665 	    (Adapter->link_speed == SPEED_10))) {
4666 		e1000_update_adaptive(hw);
4667 	}
4668 	/*
4669 	 * Set Timer Interrupts
4670 	 */
4671 	E1000_WRITE_REG(hw, E1000_ICS, E1000_IMS_RXT0);
4672 
4673 	if (e1000g_check_acc_handle(Adapter->osdep.reg_handle) != DDI_FM_OK)
4674 		ddi_fm_service_impact(Adapter->dip, DDI_SERVICE_DEGRADED);
4675 	else
4676 		e1000g_timer_tx_resched(Adapter);
4677 
4678 	restart_watchdog_timer(Adapter);
4679 }
4680 
4681 /*
4682  * The function e1000g_link_timer() is called when the timer for link setup
4683  * is expired, which indicates the completion of the link setup. The link
4684  * state will not be updated until the link setup is completed. And the
4685  * link state will not be sent to the upper layer through mac_link_update()
4686  * in this function. It will be updated in the local timer routine or the
4687  * interrupt service routine after the interface is started (plumbed).
4688  */
4689 static void
4690 e1000g_link_timer(void *arg)
4691 {
4692 	struct e1000g *Adapter = (struct e1000g *)arg;
4693 
4694 	mutex_enter(&Adapter->link_lock);
4695 	Adapter->link_complete = B_TRUE;
4696 	Adapter->link_tid = 0;
4697 	mutex_exit(&Adapter->link_lock);
4698 }
4699 
4700 /*
4701  * e1000g_force_speed_duplex - read forced speed/duplex out of e1000g.conf
4702  *
4703  * This function read the forced speed and duplex for 10/100 Mbps speeds
4704  * and also for 1000 Mbps speeds from the e1000g.conf file
4705  */
4706 static void
4707 e1000g_force_speed_duplex(struct e1000g *Adapter)
4708 {
4709 	int forced;
4710 	int propval;
4711 	struct e1000_mac_info *mac = &Adapter->shared.mac;
4712 	struct e1000_phy_info *phy = &Adapter->shared.phy;
4713 
4714 	/*
4715 	 * get value out of config file
4716 	 */
4717 	(void) e1000g_get_prop(Adapter, "ForceSpeedDuplex",
4718 	    GDIAG_10_HALF, GDIAG_ANY, GDIAG_ANY, &forced);
4719 
4720 	switch (forced) {
4721 	case GDIAG_10_HALF:
4722 		/*
4723 		 * Disable Auto Negotiation
4724 		 */
4725 		mac->autoneg = B_FALSE;
4726 		mac->forced_speed_duplex = ADVERTISE_10_HALF;
4727 		break;
4728 	case GDIAG_10_FULL:
4729 		/*
4730 		 * Disable Auto Negotiation
4731 		 */
4732 		mac->autoneg = B_FALSE;
4733 		mac->forced_speed_duplex = ADVERTISE_10_FULL;
4734 		break;
4735 	case GDIAG_100_HALF:
4736 		/*
4737 		 * Disable Auto Negotiation
4738 		 */
4739 		mac->autoneg = B_FALSE;
4740 		mac->forced_speed_duplex = ADVERTISE_100_HALF;
4741 		break;
4742 	case GDIAG_100_FULL:
4743 		/*
4744 		 * Disable Auto Negotiation
4745 		 */
4746 		mac->autoneg = B_FALSE;
4747 		mac->forced_speed_duplex = ADVERTISE_100_FULL;
4748 		break;
4749 	case GDIAG_1000_FULL:
4750 		/*
4751 		 * The gigabit spec requires autonegotiation.  Therefore,
4752 		 * when the user wants to force the speed to 1000Mbps, we
4753 		 * enable AutoNeg, but only allow the harware to advertise
4754 		 * 1000Mbps.  This is different from 10/100 operation, where
4755 		 * we are allowed to link without any negotiation.
4756 		 */
4757 		mac->autoneg = B_TRUE;
4758 		phy->autoneg_advertised = ADVERTISE_1000_FULL;
4759 		break;
4760 	default:	/* obey the setting of AutoNegAdvertised */
4761 		mac->autoneg = B_TRUE;
4762 		(void) e1000g_get_prop(Adapter, "AutoNegAdvertised",
4763 		    0, AUTONEG_ADVERTISE_SPEED_DEFAULT,
4764 		    AUTONEG_ADVERTISE_SPEED_DEFAULT, &propval);
4765 		phy->autoneg_advertised = (uint16_t)propval;
4766 		break;
4767 	}	/* switch */
4768 }
4769 
4770 /*
4771  * e1000g_get_max_frame_size - get jumbo frame setting from e1000g.conf
4772  *
4773  * This function reads MaxFrameSize from e1000g.conf
4774  */
4775 static void
4776 e1000g_get_max_frame_size(struct e1000g *Adapter)
4777 {
4778 	int max_frame;
4779 
4780 	/*
4781 	 * get value out of config file
4782 	 */
4783 	(void) e1000g_get_prop(Adapter, "MaxFrameSize", 0, 3, 0,
4784 	    &max_frame);
4785 
4786 	switch (max_frame) {
4787 	case 0:
4788 		Adapter->default_mtu = ETHERMTU;
4789 		break;
4790 	case 1:
4791 		Adapter->default_mtu = FRAME_SIZE_UPTO_4K -
4792 		    sizeof (struct ether_vlan_header) - ETHERFCSL;
4793 		break;
4794 	case 2:
4795 		Adapter->default_mtu = FRAME_SIZE_UPTO_8K -
4796 		    sizeof (struct ether_vlan_header) - ETHERFCSL;
4797 		break;
4798 	case 3:
4799 		Adapter->default_mtu = FRAME_SIZE_UPTO_16K -
4800 		    sizeof (struct ether_vlan_header) - ETHERFCSL;
4801 		break;
4802 	default:
4803 		Adapter->default_mtu = ETHERMTU;
4804 		break;
4805 	}	/* switch */
4806 
4807 	/*
4808 	 * If the user configed MTU is larger than the deivce's maximum MTU,
4809 	 * the MTU is set to the deivce's maximum value.
4810 	 */
4811 	if (Adapter->default_mtu > Adapter->max_mtu)
4812 		Adapter->default_mtu = Adapter->max_mtu;
4813 
4814 	Adapter->max_frame_size = e1000g_mtu2maxframe(Adapter->default_mtu);
4815 }
4816 
4817 /*
4818  * e1000g_pch_limits - Apply limits of the PCH silicon type
4819  *
4820  * At any frame size larger than the ethernet default,
4821  * prevent linking at 10/100 speeds.
4822  */
4823 static void
4824 e1000g_pch_limits(struct e1000g *Adapter)
4825 {
4826 	struct e1000_hw *hw = &Adapter->shared;
4827 
4828 	/* only applies to PCH silicon type */
4829 	if (hw->mac.type != e1000_pchlan && hw->mac.type != e1000_pch2lan)
4830 		return;
4831 
4832 	/* only applies to frames larger than ethernet default */
4833 	if (Adapter->max_frame_size > DEFAULT_FRAME_SIZE) {
4834 		hw->mac.autoneg = B_TRUE;
4835 		hw->phy.autoneg_advertised = ADVERTISE_1000_FULL;
4836 
4837 		Adapter->param_adv_autoneg = 1;
4838 		Adapter->param_adv_1000fdx = 1;
4839 
4840 		Adapter->param_adv_100fdx = 0;
4841 		Adapter->param_adv_100hdx = 0;
4842 		Adapter->param_adv_10fdx = 0;
4843 		Adapter->param_adv_10hdx = 0;
4844 
4845 		e1000g_param_sync(Adapter);
4846 	}
4847 }
4848 
4849 /*
4850  * e1000g_mtu2maxframe - convert given MTU to maximum frame size
4851  */
4852 static uint32_t
4853 e1000g_mtu2maxframe(uint32_t mtu)
4854 {
4855 	uint32_t maxframe;
4856 
4857 	maxframe = mtu + sizeof (struct ether_vlan_header) + ETHERFCSL;
4858 
4859 	return (maxframe);
4860 }
4861 
4862 static void
4863 arm_watchdog_timer(struct e1000g *Adapter)
4864 {
4865 	Adapter->watchdog_tid =
4866 	    timeout(e1000g_local_timer,
4867 	    (void *)Adapter, 1 * drv_usectohz(1000000));
4868 }
4869 #pragma inline(arm_watchdog_timer)
4870 
4871 static void
4872 enable_watchdog_timer(struct e1000g *Adapter)
4873 {
4874 	mutex_enter(&Adapter->watchdog_lock);
4875 
4876 	if (!Adapter->watchdog_timer_enabled) {
4877 		Adapter->watchdog_timer_enabled = B_TRUE;
4878 		Adapter->watchdog_timer_started = B_TRUE;
4879 		arm_watchdog_timer(Adapter);
4880 	}
4881 
4882 	mutex_exit(&Adapter->watchdog_lock);
4883 }
4884 
4885 static void
4886 disable_watchdog_timer(struct e1000g *Adapter)
4887 {
4888 	timeout_id_t tid;
4889 
4890 	mutex_enter(&Adapter->watchdog_lock);
4891 
4892 	Adapter->watchdog_timer_enabled = B_FALSE;
4893 	Adapter->watchdog_timer_started = B_FALSE;
4894 	tid = Adapter->watchdog_tid;
4895 	Adapter->watchdog_tid = 0;
4896 
4897 	mutex_exit(&Adapter->watchdog_lock);
4898 
4899 	if (tid != 0)
4900 		(void) untimeout(tid);
4901 }
4902 
4903 static void
4904 start_watchdog_timer(struct e1000g *Adapter)
4905 {
4906 	mutex_enter(&Adapter->watchdog_lock);
4907 
4908 	if (Adapter->watchdog_timer_enabled) {
4909 		if (!Adapter->watchdog_timer_started) {
4910 			Adapter->watchdog_timer_started = B_TRUE;
4911 			arm_watchdog_timer(Adapter);
4912 		}
4913 	}
4914 
4915 	mutex_exit(&Adapter->watchdog_lock);
4916 }
4917 
4918 static void
4919 restart_watchdog_timer(struct e1000g *Adapter)
4920 {
4921 	mutex_enter(&Adapter->watchdog_lock);
4922 
4923 	if (Adapter->watchdog_timer_started)
4924 		arm_watchdog_timer(Adapter);
4925 
4926 	mutex_exit(&Adapter->watchdog_lock);
4927 }
4928 
4929 static void
4930 stop_watchdog_timer(struct e1000g *Adapter)
4931 {
4932 	timeout_id_t tid;
4933 
4934 	mutex_enter(&Adapter->watchdog_lock);
4935 
4936 	Adapter->watchdog_timer_started = B_FALSE;
4937 	tid = Adapter->watchdog_tid;
4938 	Adapter->watchdog_tid = 0;
4939 
4940 	mutex_exit(&Adapter->watchdog_lock);
4941 
4942 	if (tid != 0)
4943 		(void) untimeout(tid);
4944 }
4945 
4946 static void
4947 stop_link_timer(struct e1000g *Adapter)
4948 {
4949 	timeout_id_t tid;
4950 
4951 	/* Disable the link timer */
4952 	mutex_enter(&Adapter->link_lock);
4953 
4954 	tid = Adapter->link_tid;
4955 	Adapter->link_tid = 0;
4956 
4957 	mutex_exit(&Adapter->link_lock);
4958 
4959 	if (tid != 0)
4960 		(void) untimeout(tid);
4961 }
4962 
4963 static void
4964 stop_82547_timer(e1000g_tx_ring_t *tx_ring)
4965 {
4966 	timeout_id_t tid;
4967 
4968 	/* Disable the tx timer for 82547 chipset */
4969 	mutex_enter(&tx_ring->tx_lock);
4970 
4971 	tx_ring->timer_enable_82547 = B_FALSE;
4972 	tid = tx_ring->timer_id_82547;
4973 	tx_ring->timer_id_82547 = 0;
4974 
4975 	mutex_exit(&tx_ring->tx_lock);
4976 
4977 	if (tid != 0)
4978 		(void) untimeout(tid);
4979 }
4980 
4981 void
4982 e1000g_clear_interrupt(struct e1000g *Adapter)
4983 {
4984 	E1000_WRITE_REG(&Adapter->shared, E1000_IMC,
4985 	    0xffffffff & ~E1000_IMS_RXSEQ);
4986 }
4987 
4988 void
4989 e1000g_mask_interrupt(struct e1000g *Adapter)
4990 {
4991 	E1000_WRITE_REG(&Adapter->shared, E1000_IMS,
4992 	    IMS_ENABLE_MASK & ~E1000_IMS_TXDW);
4993 
4994 	if (Adapter->tx_intr_enable)
4995 		e1000g_mask_tx_interrupt(Adapter);
4996 }
4997 
4998 /*
4999  * This routine is called by e1000g_quiesce(), therefore must not block.
5000  */
5001 void
5002 e1000g_clear_all_interrupts(struct e1000g *Adapter)
5003 {
5004 	E1000_WRITE_REG(&Adapter->shared, E1000_IMC, 0xffffffff);
5005 }
5006 
5007 void
5008 e1000g_mask_tx_interrupt(struct e1000g *Adapter)
5009 {
5010 	E1000_WRITE_REG(&Adapter->shared, E1000_IMS, E1000_IMS_TXDW);
5011 }
5012 
5013 void
5014 e1000g_clear_tx_interrupt(struct e1000g *Adapter)
5015 {
5016 	E1000_WRITE_REG(&Adapter->shared, E1000_IMC, E1000_IMS_TXDW);
5017 }
5018 
5019 static void
5020 e1000g_smartspeed(struct e1000g *Adapter)
5021 {
5022 	struct e1000_hw *hw = &Adapter->shared;
5023 	uint16_t phy_status;
5024 	uint16_t phy_ctrl;
5025 
5026 	/*
5027 	 * If we're not T-or-T, or we're not autoneg'ing, or we're not
5028 	 * advertising 1000Full, we don't even use the workaround
5029 	 */
5030 	if ((hw->phy.type != e1000_phy_igp) ||
5031 	    !hw->mac.autoneg ||
5032 	    !(hw->phy.autoneg_advertised & ADVERTISE_1000_FULL))
5033 		return;
5034 
5035 	/*
5036 	 * True if this is the first call of this function or after every
5037 	 * 30 seconds of not having link
5038 	 */
5039 	if (Adapter->smartspeed == 0) {
5040 		/*
5041 		 * If Master/Slave config fault is asserted twice, we
5042 		 * assume back-to-back
5043 		 */
5044 		(void) e1000_read_phy_reg(hw, PHY_1000T_STATUS, &phy_status);
5045 		if (!(phy_status & SR_1000T_MS_CONFIG_FAULT))
5046 			return;
5047 
5048 		(void) e1000_read_phy_reg(hw, PHY_1000T_STATUS, &phy_status);
5049 		if (!(phy_status & SR_1000T_MS_CONFIG_FAULT))
5050 			return;
5051 		/*
5052 		 * We're assuming back-2-back because our status register
5053 		 * insists! there's a fault in the master/slave
5054 		 * relationship that was "negotiated"
5055 		 */
5056 		(void) e1000_read_phy_reg(hw, PHY_1000T_CTRL, &phy_ctrl);
5057 		/*
5058 		 * Is the phy configured for manual configuration of
5059 		 * master/slave?
5060 		 */
5061 		if (phy_ctrl & CR_1000T_MS_ENABLE) {
5062 			/*
5063 			 * Yes.  Then disable manual configuration (enable
5064 			 * auto configuration) of master/slave
5065 			 */
5066 			phy_ctrl &= ~CR_1000T_MS_ENABLE;
5067 			(void) e1000_write_phy_reg(hw,
5068 			    PHY_1000T_CTRL, phy_ctrl);
5069 			/*
5070 			 * Effectively starting the clock
5071 			 */
5072 			Adapter->smartspeed++;
5073 			/*
5074 			 * Restart autonegotiation
5075 			 */
5076 			if (!e1000_phy_setup_autoneg(hw) &&
5077 			    !e1000_read_phy_reg(hw, PHY_CONTROL, &phy_ctrl)) {
5078 				phy_ctrl |= (MII_CR_AUTO_NEG_EN |
5079 				    MII_CR_RESTART_AUTO_NEG);
5080 				(void) e1000_write_phy_reg(hw,
5081 				    PHY_CONTROL, phy_ctrl);
5082 			}
5083 		}
5084 		return;
5085 		/*
5086 		 * Has 6 seconds transpired still without link? Remember,
5087 		 * you should reset the smartspeed counter once you obtain
5088 		 * link
5089 		 */
5090 	} else if (Adapter->smartspeed == E1000_SMARTSPEED_DOWNSHIFT) {
5091 		/*
5092 		 * Yes.  Remember, we did at the start determine that
5093 		 * there's a master/slave configuration fault, so we're
5094 		 * still assuming there's someone on the other end, but we
5095 		 * just haven't yet been able to talk to it. We then
5096 		 * re-enable auto configuration of master/slave to see if
5097 		 * we're running 2/3 pair cables.
5098 		 */
5099 		/*
5100 		 * If still no link, perhaps using 2/3 pair cable
5101 		 */
5102 		(void) e1000_read_phy_reg(hw, PHY_1000T_CTRL, &phy_ctrl);
5103 		phy_ctrl |= CR_1000T_MS_ENABLE;
5104 		(void) e1000_write_phy_reg(hw, PHY_1000T_CTRL, phy_ctrl);
5105 		/*
5106 		 * Restart autoneg with phy enabled for manual
5107 		 * configuration of master/slave
5108 		 */
5109 		if (!e1000_phy_setup_autoneg(hw) &&
5110 		    !e1000_read_phy_reg(hw, PHY_CONTROL, &phy_ctrl)) {
5111 			phy_ctrl |=
5112 			    (MII_CR_AUTO_NEG_EN | MII_CR_RESTART_AUTO_NEG);
5113 			(void) e1000_write_phy_reg(hw, PHY_CONTROL, phy_ctrl);
5114 		}
5115 		/*
5116 		 * Hopefully, there are no more faults and we've obtained
5117 		 * link as a result.
5118 		 */
5119 	}
5120 	/*
5121 	 * Restart process after E1000_SMARTSPEED_MAX iterations (30
5122 	 * seconds)
5123 	 */
5124 	if (Adapter->smartspeed++ == E1000_SMARTSPEED_MAX)
5125 		Adapter->smartspeed = 0;
5126 }
5127 
5128 static boolean_t
5129 is_valid_mac_addr(uint8_t *mac_addr)
5130 {
5131 	const uint8_t addr_test1[6] = { 0, 0, 0, 0, 0, 0 };
5132 	const uint8_t addr_test2[6] =
5133 	    { 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF };
5134 
5135 	if (!(bcmp(addr_test1, mac_addr, ETHERADDRL)) ||
5136 	    !(bcmp(addr_test2, mac_addr, ETHERADDRL)))
5137 		return (B_FALSE);
5138 
5139 	return (B_TRUE);
5140 }
5141 
5142 /*
5143  * e1000g_stall_check - check for tx stall
5144  *
5145  * This function checks if the adapter is stalled (in transmit).
5146  *
5147  * It is called each time the watchdog timeout is invoked.
5148  * If the transmit descriptor reclaim continuously fails,
5149  * the watchdog value will increment by 1. If the watchdog
5150  * value exceeds the threshold, the adapter is assumed to
5151  * have stalled and need to be reset.
5152  */
5153 static boolean_t
5154 e1000g_stall_check(struct e1000g *Adapter)
5155 {
5156 	e1000g_tx_ring_t *tx_ring;
5157 
5158 	tx_ring = Adapter->tx_ring;
5159 
5160 	if (Adapter->link_state != LINK_STATE_UP)
5161 		return (B_FALSE);
5162 
5163 	(void) e1000g_recycle(tx_ring);
5164 
5165 	if (Adapter->stall_flag)
5166 		return (B_TRUE);
5167 
5168 	return (B_FALSE);
5169 }
5170 
5171 #ifdef E1000G_DEBUG
5172 static enum ioc_reply
5173 e1000g_pp_ioctl(struct e1000g *e1000gp, struct iocblk *iocp, mblk_t *mp)
5174 {
5175 	void (*ppfn)(struct e1000g *e1000gp, e1000g_peekpoke_t *ppd);
5176 	e1000g_peekpoke_t *ppd;
5177 	uint64_t mem_va;
5178 	uint64_t maxoff;
5179 	boolean_t peek;
5180 
5181 	switch (iocp->ioc_cmd) {
5182 
5183 	case E1000G_IOC_REG_PEEK:
5184 		peek = B_TRUE;
5185 		break;
5186 
5187 	case E1000G_IOC_REG_POKE:
5188 		peek = B_FALSE;
5189 		break;
5190 
5191 	deault:
5192 		E1000G_DEBUGLOG_1(e1000gp, E1000G_INFO_LEVEL,
5193 		    "e1000g_diag_ioctl: invalid ioctl command 0x%X\n",
5194 		    iocp->ioc_cmd);
5195 		return (IOC_INVAL);
5196 	}
5197 
5198 	/*
5199 	 * Validate format of ioctl
5200 	 */
5201 	if (iocp->ioc_count != sizeof (e1000g_peekpoke_t))
5202 		return (IOC_INVAL);
5203 	if (mp->b_cont == NULL)
5204 		return (IOC_INVAL);
5205 
5206 	ppd = (e1000g_peekpoke_t *)(uintptr_t)mp->b_cont->b_rptr;
5207 
5208 	/*
5209 	 * Validate request parameters
5210 	 */
5211 	switch (ppd->pp_acc_space) {
5212 
5213 	default:
5214 		E1000G_DEBUGLOG_1(e1000gp, E1000G_INFO_LEVEL,
5215 		    "e1000g_diag_ioctl: invalid access space 0x%X\n",
5216 		    ppd->pp_acc_space);
5217 		return (IOC_INVAL);
5218 
5219 	case E1000G_PP_SPACE_REG:
5220 		/*
5221 		 * Memory-mapped I/O space
5222 		 */
5223 		ASSERT(ppd->pp_acc_size == 4);
5224 		if (ppd->pp_acc_size != 4)
5225 			return (IOC_INVAL);
5226 
5227 		if ((ppd->pp_acc_offset % ppd->pp_acc_size) != 0)
5228 			return (IOC_INVAL);
5229 
5230 		mem_va = 0;
5231 		maxoff = 0x10000;
5232 		ppfn = peek ? e1000g_ioc_peek_reg : e1000g_ioc_poke_reg;
5233 		break;
5234 
5235 	case E1000G_PP_SPACE_E1000G:
5236 		/*
5237 		 * E1000g data structure!
5238 		 */
5239 		mem_va = (uintptr_t)e1000gp;
5240 		maxoff = sizeof (struct e1000g);
5241 		ppfn = peek ? e1000g_ioc_peek_mem : e1000g_ioc_poke_mem;
5242 		break;
5243 
5244 	}
5245 
5246 	if (ppd->pp_acc_offset >= maxoff)
5247 		return (IOC_INVAL);
5248 
5249 	if (ppd->pp_acc_offset + ppd->pp_acc_size > maxoff)
5250 		return (IOC_INVAL);
5251 
5252 	/*
5253 	 * All OK - go!
5254 	 */
5255 	ppd->pp_acc_offset += mem_va;
5256 	(*ppfn)(e1000gp, ppd);
5257 	return (peek ? IOC_REPLY : IOC_ACK);
5258 }
5259 
5260 static void
5261 e1000g_ioc_peek_reg(struct e1000g *e1000gp, e1000g_peekpoke_t *ppd)
5262 {
5263 	ddi_acc_handle_t handle;
5264 	uint32_t *regaddr;
5265 
5266 	handle = e1000gp->osdep.reg_handle;
5267 	regaddr = (uint32_t *)((uintptr_t)e1000gp->shared.hw_addr +
5268 	    (uintptr_t)ppd->pp_acc_offset);
5269 
5270 	ppd->pp_acc_data = ddi_get32(handle, regaddr);
5271 }
5272 
5273 static void
5274 e1000g_ioc_poke_reg(struct e1000g *e1000gp, e1000g_peekpoke_t *ppd)
5275 {
5276 	ddi_acc_handle_t handle;
5277 	uint32_t *regaddr;
5278 	uint32_t value;
5279 
5280 	handle = e1000gp->osdep.reg_handle;
5281 	regaddr = (uint32_t *)((uintptr_t)e1000gp->shared.hw_addr +
5282 	    (uintptr_t)ppd->pp_acc_offset);
5283 	value = (uint32_t)ppd->pp_acc_data;
5284 
5285 	ddi_put32(handle, regaddr, value);
5286 }
5287 
5288 static void
5289 e1000g_ioc_peek_mem(struct e1000g *e1000gp, e1000g_peekpoke_t *ppd)
5290 {
5291 	uint64_t value;
5292 	void *vaddr;
5293 
5294 	vaddr = (void *)(uintptr_t)ppd->pp_acc_offset;
5295 
5296 	switch (ppd->pp_acc_size) {
5297 	case 1:
5298 		value = *(uint8_t *)vaddr;
5299 		break;
5300 
5301 	case 2:
5302 		value = *(uint16_t *)vaddr;
5303 		break;
5304 
5305 	case 4:
5306 		value = *(uint32_t *)vaddr;
5307 		break;
5308 
5309 	case 8:
5310 		value = *(uint64_t *)vaddr;
5311 		break;
5312 	}
5313 
5314 	E1000G_DEBUGLOG_4(e1000gp, E1000G_INFO_LEVEL,
5315 	    "e1000g_ioc_peek_mem($%p, $%p) peeked 0x%llx from $%p\n",
5316 	    (void *)e1000gp, (void *)ppd, value, vaddr);
5317 
5318 	ppd->pp_acc_data = value;
5319 }
5320 
5321 static void
5322 e1000g_ioc_poke_mem(struct e1000g *e1000gp, e1000g_peekpoke_t *ppd)
5323 {
5324 	uint64_t value;
5325 	void *vaddr;
5326 
5327 	vaddr = (void *)(uintptr_t)ppd->pp_acc_offset;
5328 	value = ppd->pp_acc_data;
5329 
5330 	E1000G_DEBUGLOG_4(e1000gp, E1000G_INFO_LEVEL,
5331 	    "e1000g_ioc_poke_mem($%p, $%p) poking 0x%llx at $%p\n",
5332 	    (void *)e1000gp, (void *)ppd, value, vaddr);
5333 
5334 	switch (ppd->pp_acc_size) {
5335 	case 1:
5336 		*(uint8_t *)vaddr = (uint8_t)value;
5337 		break;
5338 
5339 	case 2:
5340 		*(uint16_t *)vaddr = (uint16_t)value;
5341 		break;
5342 
5343 	case 4:
5344 		*(uint32_t *)vaddr = (uint32_t)value;
5345 		break;
5346 
5347 	case 8:
5348 		*(uint64_t *)vaddr = (uint64_t)value;
5349 		break;
5350 	}
5351 }
5352 #endif
5353 
5354 /*
5355  * Loopback Support
5356  */
5357 static lb_property_t lb_normal =
5358 	{ normal,	"normal",	E1000G_LB_NONE		};
5359 static lb_property_t lb_external1000 =
5360 	{ external,	"1000Mbps",	E1000G_LB_EXTERNAL_1000	};
5361 static lb_property_t lb_external100 =
5362 	{ external,	"100Mbps",	E1000G_LB_EXTERNAL_100	};
5363 static lb_property_t lb_external10 =
5364 	{ external,	"10Mbps",	E1000G_LB_EXTERNAL_10	};
5365 static lb_property_t lb_phy =
5366 	{ internal,	"PHY",		E1000G_LB_INTERNAL_PHY	};
5367 
5368 static enum ioc_reply
5369 e1000g_loopback_ioctl(struct e1000g *Adapter, struct iocblk *iocp, mblk_t *mp)
5370 {
5371 	lb_info_sz_t *lbsp;
5372 	lb_property_t *lbpp;
5373 	struct e1000_hw *hw;
5374 	uint32_t *lbmp;
5375 	uint32_t size;
5376 	uint32_t value;
5377 
5378 	hw = &Adapter->shared;
5379 
5380 	if (mp->b_cont == NULL)
5381 		return (IOC_INVAL);
5382 
5383 	if (!e1000g_check_loopback_support(hw)) {
5384 		e1000g_log(NULL, CE_WARN,
5385 		    "Loopback is not supported on e1000g%d", Adapter->instance);
5386 		return (IOC_INVAL);
5387 	}
5388 
5389 	switch (iocp->ioc_cmd) {
5390 	default:
5391 		return (IOC_INVAL);
5392 
5393 	case LB_GET_INFO_SIZE:
5394 		size = sizeof (lb_info_sz_t);
5395 		if (iocp->ioc_count != size)
5396 			return (IOC_INVAL);
5397 
5398 		rw_enter(&Adapter->chip_lock, RW_WRITER);
5399 		e1000g_get_phy_state(Adapter);
5400 
5401 		/*
5402 		 * Workaround for hardware faults. In order to get a stable
5403 		 * state of phy, we will wait for a specific interval and
5404 		 * try again. The time delay is an experiential value based
5405 		 * on our testing.
5406 		 */
5407 		msec_delay(100);
5408 		e1000g_get_phy_state(Adapter);
5409 		rw_exit(&Adapter->chip_lock);
5410 
5411 		value = sizeof (lb_normal);
5412 		if ((Adapter->phy_ext_status & IEEE_ESR_1000T_FD_CAPS) ||
5413 		    (Adapter->phy_ext_status & IEEE_ESR_1000X_FD_CAPS) ||
5414 		    (hw->phy.media_type == e1000_media_type_fiber) ||
5415 		    (hw->phy.media_type == e1000_media_type_internal_serdes)) {
5416 			value += sizeof (lb_phy);
5417 			switch (hw->mac.type) {
5418 			case e1000_82571:
5419 			case e1000_82572:
5420 			case e1000_80003es2lan:
5421 				value += sizeof (lb_external1000);
5422 				break;
5423 			}
5424 		}
5425 		if ((Adapter->phy_status & MII_SR_100X_FD_CAPS) ||
5426 		    (Adapter->phy_status & MII_SR_100T2_FD_CAPS))
5427 			value += sizeof (lb_external100);
5428 		if (Adapter->phy_status & MII_SR_10T_FD_CAPS)
5429 			value += sizeof (lb_external10);
5430 
5431 		lbsp = (lb_info_sz_t *)(uintptr_t)mp->b_cont->b_rptr;
5432 		*lbsp = value;
5433 		break;
5434 
5435 	case LB_GET_INFO:
5436 		value = sizeof (lb_normal);
5437 		if ((Adapter->phy_ext_status & IEEE_ESR_1000T_FD_CAPS) ||
5438 		    (Adapter->phy_ext_status & IEEE_ESR_1000X_FD_CAPS) ||
5439 		    (hw->phy.media_type == e1000_media_type_fiber) ||
5440 		    (hw->phy.media_type == e1000_media_type_internal_serdes)) {
5441 			value += sizeof (lb_phy);
5442 			switch (hw->mac.type) {
5443 			case e1000_82571:
5444 			case e1000_82572:
5445 			case e1000_80003es2lan:
5446 				value += sizeof (lb_external1000);
5447 				break;
5448 			}
5449 		}
5450 		if ((Adapter->phy_status & MII_SR_100X_FD_CAPS) ||
5451 		    (Adapter->phy_status & MII_SR_100T2_FD_CAPS))
5452 			value += sizeof (lb_external100);
5453 		if (Adapter->phy_status & MII_SR_10T_FD_CAPS)
5454 			value += sizeof (lb_external10);
5455 
5456 		size = value;
5457 		if (iocp->ioc_count != size)
5458 			return (IOC_INVAL);
5459 
5460 		value = 0;
5461 		lbpp = (lb_property_t *)(uintptr_t)mp->b_cont->b_rptr;
5462 		lbpp[value++] = lb_normal;
5463 		if ((Adapter->phy_ext_status & IEEE_ESR_1000T_FD_CAPS) ||
5464 		    (Adapter->phy_ext_status & IEEE_ESR_1000X_FD_CAPS) ||
5465 		    (hw->phy.media_type == e1000_media_type_fiber) ||
5466 		    (hw->phy.media_type == e1000_media_type_internal_serdes)) {
5467 			lbpp[value++] = lb_phy;
5468 			switch (hw->mac.type) {
5469 			case e1000_82571:
5470 			case e1000_82572:
5471 			case e1000_80003es2lan:
5472 				lbpp[value++] = lb_external1000;
5473 				break;
5474 			}
5475 		}
5476 		if ((Adapter->phy_status & MII_SR_100X_FD_CAPS) ||
5477 		    (Adapter->phy_status & MII_SR_100T2_FD_CAPS))
5478 			lbpp[value++] = lb_external100;
5479 		if (Adapter->phy_status & MII_SR_10T_FD_CAPS)
5480 			lbpp[value++] = lb_external10;
5481 		break;
5482 
5483 	case LB_GET_MODE:
5484 		size = sizeof (uint32_t);
5485 		if (iocp->ioc_count != size)
5486 			return (IOC_INVAL);
5487 
5488 		lbmp = (uint32_t *)(uintptr_t)mp->b_cont->b_rptr;
5489 		*lbmp = Adapter->loopback_mode;
5490 		break;
5491 
5492 	case LB_SET_MODE:
5493 		size = 0;
5494 		if (iocp->ioc_count != sizeof (uint32_t))
5495 			return (IOC_INVAL);
5496 
5497 		lbmp = (uint32_t *)(uintptr_t)mp->b_cont->b_rptr;
5498 		if (!e1000g_set_loopback_mode(Adapter, *lbmp))
5499 			return (IOC_INVAL);
5500 		break;
5501 	}
5502 
5503 	iocp->ioc_count = size;
5504 	iocp->ioc_error = 0;
5505 
5506 	if (e1000g_check_acc_handle(Adapter->osdep.reg_handle) != DDI_FM_OK) {
5507 		ddi_fm_service_impact(Adapter->dip, DDI_SERVICE_DEGRADED);
5508 		return (IOC_INVAL);
5509 	}
5510 
5511 	return (IOC_REPLY);
5512 }
5513 
5514 static boolean_t
5515 e1000g_check_loopback_support(struct e1000_hw *hw)
5516 {
5517 	switch (hw->mac.type) {
5518 	case e1000_82540:
5519 	case e1000_82545:
5520 	case e1000_82545_rev_3:
5521 	case e1000_82546:
5522 	case e1000_82546_rev_3:
5523 	case e1000_82541:
5524 	case e1000_82541_rev_2:
5525 	case e1000_82547:
5526 	case e1000_82547_rev_2:
5527 	case e1000_82571:
5528 	case e1000_82572:
5529 	case e1000_82573:
5530 	case e1000_82574:
5531 	case e1000_80003es2lan:
5532 	case e1000_ich9lan:
5533 	case e1000_ich10lan:
5534 		return (B_TRUE);
5535 	}
5536 	return (B_FALSE);
5537 }
5538 
5539 static boolean_t
5540 e1000g_set_loopback_mode(struct e1000g *Adapter, uint32_t mode)
5541 {
5542 	struct e1000_hw *hw;
5543 	int i, times;
5544 	boolean_t link_up;
5545 
5546 	if (mode == Adapter->loopback_mode)
5547 		return (B_TRUE);
5548 
5549 	hw = &Adapter->shared;
5550 	times = 0;
5551 
5552 	Adapter->loopback_mode = mode;
5553 
5554 	if (mode == E1000G_LB_NONE) {
5555 		/* Reset the chip */
5556 		hw->phy.autoneg_wait_to_complete = B_TRUE;
5557 		(void) e1000g_reset_adapter(Adapter);
5558 		hw->phy.autoneg_wait_to_complete = B_FALSE;
5559 		return (B_TRUE);
5560 	}
5561 
5562 again:
5563 
5564 	rw_enter(&Adapter->chip_lock, RW_WRITER);
5565 
5566 	switch (mode) {
5567 	default:
5568 		rw_exit(&Adapter->chip_lock);
5569 		return (B_FALSE);
5570 
5571 	case E1000G_LB_EXTERNAL_1000:
5572 		e1000g_set_external_loopback_1000(Adapter);
5573 		break;
5574 
5575 	case E1000G_LB_EXTERNAL_100:
5576 		e1000g_set_external_loopback_100(Adapter);
5577 		break;
5578 
5579 	case E1000G_LB_EXTERNAL_10:
5580 		e1000g_set_external_loopback_10(Adapter);
5581 		break;
5582 
5583 	case E1000G_LB_INTERNAL_PHY:
5584 		e1000g_set_internal_loopback(Adapter);
5585 		break;
5586 	}
5587 
5588 	times++;
5589 
5590 	rw_exit(&Adapter->chip_lock);
5591 
5592 	/* Wait for link up */
5593 	for (i = (PHY_FORCE_LIMIT * 2); i > 0; i--)
5594 		msec_delay(100);
5595 
5596 	rw_enter(&Adapter->chip_lock, RW_WRITER);
5597 
5598 	link_up = e1000g_link_up(Adapter);
5599 
5600 	rw_exit(&Adapter->chip_lock);
5601 
5602 	if (!link_up) {
5603 		E1000G_DEBUGLOG_0(Adapter, E1000G_INFO_LEVEL,
5604 		    "Failed to get the link up");
5605 		if (times < 2) {
5606 			/* Reset the link */
5607 			E1000G_DEBUGLOG_0(Adapter, E1000G_INFO_LEVEL,
5608 			    "Reset the link ...");
5609 			(void) e1000g_reset_adapter(Adapter);
5610 			goto again;
5611 		}
5612 
5613 		/*
5614 		 * Reset driver to loopback none when set loopback failed
5615 		 * for the second time.
5616 		 */
5617 		Adapter->loopback_mode = E1000G_LB_NONE;
5618 
5619 		/* Reset the chip */
5620 		hw->phy.autoneg_wait_to_complete = B_TRUE;
5621 		(void) e1000g_reset_adapter(Adapter);
5622 		hw->phy.autoneg_wait_to_complete = B_FALSE;
5623 
5624 		E1000G_DEBUGLOG_0(Adapter, E1000G_INFO_LEVEL,
5625 		    "Set loopback mode failed, reset to loopback none");
5626 
5627 		return (B_FALSE);
5628 	}
5629 
5630 	return (B_TRUE);
5631 }
5632 
5633 /*
5634  * The following loopback settings are from Intel's technical
5635  * document - "How To Loopback". All the register settings and
5636  * time delay values are directly inherited from the document
5637  * without more explanations available.
5638  */
5639 static void
5640 e1000g_set_internal_loopback(struct e1000g *Adapter)
5641 {
5642 	struct e1000_hw *hw;
5643 	uint32_t ctrl;
5644 	uint32_t status;
5645 	uint16_t phy_ctrl;
5646 	uint16_t phy_reg;
5647 	uint32_t txcw;
5648 
5649 	hw = &Adapter->shared;
5650 
5651 	/* Disable Smart Power Down */
5652 	phy_spd_state(hw, B_FALSE);
5653 
5654 	(void) e1000_read_phy_reg(hw, PHY_CONTROL, &phy_ctrl);
5655 	phy_ctrl &= ~(MII_CR_AUTO_NEG_EN | MII_CR_SPEED_100 | MII_CR_SPEED_10);
5656 	phy_ctrl |= MII_CR_FULL_DUPLEX | MII_CR_SPEED_1000;
5657 
5658 	switch (hw->mac.type) {
5659 	case e1000_82540:
5660 	case e1000_82545:
5661 	case e1000_82545_rev_3:
5662 	case e1000_82546:
5663 	case e1000_82546_rev_3:
5664 	case e1000_82573:
5665 		/* Auto-MDI/MDIX off */
5666 		(void) e1000_write_phy_reg(hw, M88E1000_PHY_SPEC_CTRL, 0x0808);
5667 		/* Reset PHY to update Auto-MDI/MDIX */
5668 		(void) e1000_write_phy_reg(hw, PHY_CONTROL,
5669 		    phy_ctrl | MII_CR_RESET | MII_CR_AUTO_NEG_EN);
5670 		/* Reset PHY to auto-neg off and force 1000 */
5671 		(void) e1000_write_phy_reg(hw, PHY_CONTROL,
5672 		    phy_ctrl | MII_CR_RESET);
5673 		/*
5674 		 * Disable PHY receiver for 82540/545/546 and 82573 Family.
5675 		 * See comments above e1000g_set_internal_loopback() for the
5676 		 * background.
5677 		 */
5678 		(void) e1000_write_phy_reg(hw, 29, 0x001F);
5679 		(void) e1000_write_phy_reg(hw, 30, 0x8FFC);
5680 		(void) e1000_write_phy_reg(hw, 29, 0x001A);
5681 		(void) e1000_write_phy_reg(hw, 30, 0x8FF0);
5682 		break;
5683 	case e1000_80003es2lan:
5684 		/* Force Link Up */
5685 		(void) e1000_write_phy_reg(hw, GG82563_PHY_KMRN_MODE_CTRL,
5686 		    0x1CC);
5687 		/* Sets PCS loopback at 1Gbs */
5688 		(void) e1000_write_phy_reg(hw, GG82563_PHY_MAC_SPEC_CTRL,
5689 		    0x1046);
5690 		break;
5691 	}
5692 
5693 	/*
5694 	 * The following registers should be set for e1000_phy_bm phy type.
5695 	 * e1000_82574, e1000_ich10lan and some e1000_ich9lan use this phy.
5696 	 * For others, we do not need to set these registers.
5697 	 */
5698 	if (hw->phy.type == e1000_phy_bm) {
5699 		/* Set Default MAC Interface speed to 1GB */
5700 		(void) e1000_read_phy_reg(hw, PHY_REG(2, 21), &phy_reg);
5701 		phy_reg &= ~0x0007;
5702 		phy_reg |= 0x006;
5703 		(void) e1000_write_phy_reg(hw, PHY_REG(2, 21), phy_reg);
5704 		/* Assert SW reset for above settings to take effect */
5705 		(void) e1000_phy_commit(hw);
5706 		msec_delay(1);
5707 		/* Force Full Duplex */
5708 		(void) e1000_read_phy_reg(hw, PHY_REG(769, 16), &phy_reg);
5709 		(void) e1000_write_phy_reg(hw, PHY_REG(769, 16),
5710 		    phy_reg | 0x000C);
5711 		/* Set Link Up (in force link) */
5712 		(void) e1000_read_phy_reg(hw, PHY_REG(776, 16), &phy_reg);
5713 		(void) e1000_write_phy_reg(hw, PHY_REG(776, 16),
5714 		    phy_reg | 0x0040);
5715 		/* Force Link */
5716 		(void) e1000_read_phy_reg(hw, PHY_REG(769, 16), &phy_reg);
5717 		(void) e1000_write_phy_reg(hw, PHY_REG(769, 16),
5718 		    phy_reg | 0x0040);
5719 		/* Set Early Link Enable */
5720 		(void) e1000_read_phy_reg(hw, PHY_REG(769, 20), &phy_reg);
5721 		(void) e1000_write_phy_reg(hw, PHY_REG(769, 20),
5722 		    phy_reg | 0x0400);
5723 	}
5724 
5725 	/* Set loopback */
5726 	(void) e1000_write_phy_reg(hw, PHY_CONTROL, phy_ctrl | MII_CR_LOOPBACK);
5727 
5728 	msec_delay(250);
5729 
5730 	/* Now set up the MAC to the same speed/duplex as the PHY. */
5731 	ctrl = E1000_READ_REG(hw, E1000_CTRL);
5732 	ctrl &= ~E1000_CTRL_SPD_SEL;	/* Clear the speed sel bits */
5733 	ctrl |= (E1000_CTRL_FRCSPD |	/* Set the Force Speed Bit */
5734 	    E1000_CTRL_FRCDPX |		/* Set the Force Duplex Bit */
5735 	    E1000_CTRL_SPD_1000 |	/* Force Speed to 1000 */
5736 	    E1000_CTRL_FD);		/* Force Duplex to FULL */
5737 
5738 	switch (hw->mac.type) {
5739 	case e1000_82540:
5740 	case e1000_82545:
5741 	case e1000_82545_rev_3:
5742 	case e1000_82546:
5743 	case e1000_82546_rev_3:
5744 		/*
5745 		 * For some serdes we'll need to commit the writes now
5746 		 * so that the status is updated on link
5747 		 */
5748 		if (hw->phy.media_type == e1000_media_type_internal_serdes) {
5749 			E1000_WRITE_REG(hw, E1000_CTRL, ctrl);
5750 			msec_delay(100);
5751 			ctrl = E1000_READ_REG(hw, E1000_CTRL);
5752 		}
5753 
5754 		if (hw->phy.media_type == e1000_media_type_copper) {
5755 			/* Invert Loss of Signal */
5756 			ctrl |= E1000_CTRL_ILOS;
5757 		} else {
5758 			/* Set ILOS on fiber nic if half duplex is detected */
5759 			status = E1000_READ_REG(hw, E1000_STATUS);
5760 			if ((status & E1000_STATUS_FD) == 0)
5761 				ctrl |= E1000_CTRL_ILOS | E1000_CTRL_SLU;
5762 		}
5763 		break;
5764 
5765 	case e1000_82571:
5766 	case e1000_82572:
5767 		/*
5768 		 * The fiber/SerDes versions of this adapter do not contain an
5769 		 * accessible PHY. Therefore, loopback beyond MAC must be done
5770 		 * using SerDes analog loopback.
5771 		 */
5772 		if (hw->phy.media_type != e1000_media_type_copper) {
5773 			/* Disable autoneg by setting bit 31 of TXCW to zero */
5774 			txcw = E1000_READ_REG(hw, E1000_TXCW);
5775 			txcw &= ~((uint32_t)1 << 31);
5776 			E1000_WRITE_REG(hw, E1000_TXCW, txcw);
5777 
5778 			/*
5779 			 * Write 0x410 to Serdes Control register
5780 			 * to enable Serdes analog loopback
5781 			 */
5782 			E1000_WRITE_REG(hw, E1000_SCTL, 0x0410);
5783 			msec_delay(10);
5784 		}
5785 
5786 		status = E1000_READ_REG(hw, E1000_STATUS);
5787 		/* Set ILOS on fiber nic if half duplex is detected */
5788 		if ((hw->phy.media_type == e1000_media_type_fiber) &&
5789 		    ((status & E1000_STATUS_FD) == 0 ||
5790 		    (status & E1000_STATUS_LU) == 0))
5791 			ctrl |= E1000_CTRL_ILOS | E1000_CTRL_SLU;
5792 		else if (hw->phy.media_type == e1000_media_type_internal_serdes)
5793 			ctrl |= E1000_CTRL_SLU;
5794 		break;
5795 
5796 	case e1000_82573:
5797 		ctrl |= E1000_CTRL_ILOS;
5798 		break;
5799 	case e1000_ich9lan:
5800 	case e1000_ich10lan:
5801 		ctrl |= E1000_CTRL_SLU;
5802 		break;
5803 	}
5804 	if (hw->phy.type == e1000_phy_bm)
5805 		ctrl |= E1000_CTRL_SLU | E1000_CTRL_ILOS;
5806 
5807 	E1000_WRITE_REG(hw, E1000_CTRL, ctrl);
5808 }
5809 
5810 static void
5811 e1000g_set_external_loopback_1000(struct e1000g *Adapter)
5812 {
5813 	struct e1000_hw *hw;
5814 	uint32_t rctl;
5815 	uint32_t ctrl_ext;
5816 	uint32_t ctrl;
5817 	uint32_t status;
5818 	uint32_t txcw;
5819 	uint16_t phydata;
5820 
5821 	hw = &Adapter->shared;
5822 
5823 	/* Disable Smart Power Down */
5824 	phy_spd_state(hw, B_FALSE);
5825 
5826 	switch (hw->mac.type) {
5827 	case e1000_82571:
5828 	case e1000_82572:
5829 		switch (hw->phy.media_type) {
5830 		case e1000_media_type_copper:
5831 			/* Force link up (Must be done before the PHY writes) */
5832 			ctrl = E1000_READ_REG(hw, E1000_CTRL);
5833 			ctrl |= E1000_CTRL_SLU;	/* Force Link Up */
5834 			E1000_WRITE_REG(hw, E1000_CTRL, ctrl);
5835 
5836 			rctl = E1000_READ_REG(hw, E1000_RCTL);
5837 			rctl |= (E1000_RCTL_EN |
5838 			    E1000_RCTL_SBP |
5839 			    E1000_RCTL_UPE |
5840 			    E1000_RCTL_MPE |
5841 			    E1000_RCTL_LPE |
5842 			    E1000_RCTL_BAM);		/* 0x803E */
5843 			E1000_WRITE_REG(hw, E1000_RCTL, rctl);
5844 
5845 			ctrl_ext = E1000_READ_REG(hw, E1000_CTRL_EXT);
5846 			ctrl_ext |= (E1000_CTRL_EXT_SDP4_DATA |
5847 			    E1000_CTRL_EXT_SDP6_DATA |
5848 			    E1000_CTRL_EXT_SDP3_DATA |
5849 			    E1000_CTRL_EXT_SDP4_DIR |
5850 			    E1000_CTRL_EXT_SDP6_DIR |
5851 			    E1000_CTRL_EXT_SDP3_DIR);	/* 0x0DD0 */
5852 			E1000_WRITE_REG(hw, E1000_CTRL_EXT, ctrl_ext);
5853 
5854 			/*
5855 			 * This sequence tunes the PHY's SDP and no customer
5856 			 * settable values. For background, see comments above
5857 			 * e1000g_set_internal_loopback().
5858 			 */
5859 			(void) e1000_write_phy_reg(hw, 0x0, 0x140);
5860 			msec_delay(10);
5861 			(void) e1000_write_phy_reg(hw, 0x9, 0x1A00);
5862 			(void) e1000_write_phy_reg(hw, 0x12, 0xC10);
5863 			(void) e1000_write_phy_reg(hw, 0x12, 0x1C10);
5864 			(void) e1000_write_phy_reg(hw, 0x1F37, 0x76);
5865 			(void) e1000_write_phy_reg(hw, 0x1F33, 0x1);
5866 			(void) e1000_write_phy_reg(hw, 0x1F33, 0x0);
5867 
5868 			(void) e1000_write_phy_reg(hw, 0x1F35, 0x65);
5869 			(void) e1000_write_phy_reg(hw, 0x1837, 0x3F7C);
5870 			(void) e1000_write_phy_reg(hw, 0x1437, 0x3FDC);
5871 			(void) e1000_write_phy_reg(hw, 0x1237, 0x3F7C);
5872 			(void) e1000_write_phy_reg(hw, 0x1137, 0x3FDC);
5873 
5874 			msec_delay(50);
5875 			break;
5876 		case e1000_media_type_fiber:
5877 		case e1000_media_type_internal_serdes:
5878 			status = E1000_READ_REG(hw, E1000_STATUS);
5879 			if (((status & E1000_STATUS_LU) == 0) ||
5880 			    (hw->phy.media_type ==
5881 			    e1000_media_type_internal_serdes)) {
5882 				ctrl = E1000_READ_REG(hw, E1000_CTRL);
5883 				ctrl |= E1000_CTRL_ILOS | E1000_CTRL_SLU;
5884 				E1000_WRITE_REG(hw, E1000_CTRL, ctrl);
5885 			}
5886 
5887 			/* Disable autoneg by setting bit 31 of TXCW to zero */
5888 			txcw = E1000_READ_REG(hw, E1000_TXCW);
5889 			txcw &= ~((uint32_t)1 << 31);
5890 			E1000_WRITE_REG(hw, E1000_TXCW, txcw);
5891 
5892 			/*
5893 			 * Write 0x410 to Serdes Control register
5894 			 * to enable Serdes analog loopback
5895 			 */
5896 			E1000_WRITE_REG(hw, E1000_SCTL, 0x0410);
5897 			msec_delay(10);
5898 			break;
5899 		default:
5900 			break;
5901 		}
5902 		break;
5903 	case e1000_82574:
5904 	case e1000_80003es2lan:
5905 	case e1000_ich9lan:
5906 	case e1000_ich10lan:
5907 		(void) e1000_read_phy_reg(hw, GG82563_REG(6, 16), &phydata);
5908 		(void) e1000_write_phy_reg(hw, GG82563_REG(6, 16),
5909 		    phydata | (1 << 5));
5910 		Adapter->param_adv_autoneg = 1;
5911 		Adapter->param_adv_1000fdx = 1;
5912 		(void) e1000g_reset_link(Adapter);
5913 		break;
5914 	}
5915 }
5916 
5917 static void
5918 e1000g_set_external_loopback_100(struct e1000g *Adapter)
5919 {
5920 	struct e1000_hw *hw;
5921 	uint32_t ctrl;
5922 	uint16_t phy_ctrl;
5923 
5924 	hw = &Adapter->shared;
5925 
5926 	/* Disable Smart Power Down */
5927 	phy_spd_state(hw, B_FALSE);
5928 
5929 	phy_ctrl = (MII_CR_FULL_DUPLEX |
5930 	    MII_CR_SPEED_100);
5931 
5932 	/* Force 100/FD, reset PHY */
5933 	(void) e1000_write_phy_reg(hw, PHY_CONTROL,
5934 	    phy_ctrl | MII_CR_RESET);	/* 0xA100 */
5935 	msec_delay(10);
5936 
5937 	/* Force 100/FD */
5938 	(void) e1000_write_phy_reg(hw, PHY_CONTROL,
5939 	    phy_ctrl);			/* 0x2100 */
5940 	msec_delay(10);
5941 
5942 	/* Now setup the MAC to the same speed/duplex as the PHY. */
5943 	ctrl = E1000_READ_REG(hw, E1000_CTRL);
5944 	ctrl &= ~E1000_CTRL_SPD_SEL;	/* Clear the speed sel bits */
5945 	ctrl |= (E1000_CTRL_SLU |	/* Force Link Up */
5946 	    E1000_CTRL_FRCSPD |		/* Set the Force Speed Bit */
5947 	    E1000_CTRL_FRCDPX |		/* Set the Force Duplex Bit */
5948 	    E1000_CTRL_SPD_100 |	/* Force Speed to 100 */
5949 	    E1000_CTRL_FD);		/* Force Duplex to FULL */
5950 
5951 	E1000_WRITE_REG(hw, E1000_CTRL, ctrl);
5952 }
5953 
5954 static void
5955 e1000g_set_external_loopback_10(struct e1000g *Adapter)
5956 {
5957 	struct e1000_hw *hw;
5958 	uint32_t ctrl;
5959 	uint16_t phy_ctrl;
5960 
5961 	hw = &Adapter->shared;
5962 
5963 	/* Disable Smart Power Down */
5964 	phy_spd_state(hw, B_FALSE);
5965 
5966 	phy_ctrl = (MII_CR_FULL_DUPLEX |
5967 	    MII_CR_SPEED_10);
5968 
5969 	/* Force 10/FD, reset PHY */
5970 	(void) e1000_write_phy_reg(hw, PHY_CONTROL,
5971 	    phy_ctrl | MII_CR_RESET);	/* 0x8100 */
5972 	msec_delay(10);
5973 
5974 	/* Force 10/FD */
5975 	(void) e1000_write_phy_reg(hw, PHY_CONTROL,
5976 	    phy_ctrl);			/* 0x0100 */
5977 	msec_delay(10);
5978 
5979 	/* Now setup the MAC to the same speed/duplex as the PHY. */
5980 	ctrl = E1000_READ_REG(hw, E1000_CTRL);
5981 	ctrl &= ~E1000_CTRL_SPD_SEL;	/* Clear the speed sel bits */
5982 	ctrl |= (E1000_CTRL_SLU |	/* Force Link Up */
5983 	    E1000_CTRL_FRCSPD |		/* Set the Force Speed Bit */
5984 	    E1000_CTRL_FRCDPX |		/* Set the Force Duplex Bit */
5985 	    E1000_CTRL_SPD_10 |		/* Force Speed to 10 */
5986 	    E1000_CTRL_FD);		/* Force Duplex to FULL */
5987 
5988 	E1000_WRITE_REG(hw, E1000_CTRL, ctrl);
5989 }
5990 
5991 #ifdef __sparc
5992 static boolean_t
5993 e1000g_find_mac_address(struct e1000g *Adapter)
5994 {
5995 	struct e1000_hw *hw = &Adapter->shared;
5996 	uchar_t *bytes;
5997 	struct ether_addr sysaddr;
5998 	uint_t nelts;
5999 	int err;
6000 	boolean_t found = B_FALSE;
6001 
6002 	/*
6003 	 * The "vendor's factory-set address" may already have
6004 	 * been extracted from the chip, but if the property
6005 	 * "local-mac-address" is set we use that instead.
6006 	 *
6007 	 * We check whether it looks like an array of 6
6008 	 * bytes (which it should, if OBP set it).  If we can't
6009 	 * make sense of it this way, we'll ignore it.
6010 	 */
6011 	err = ddi_prop_lookup_byte_array(DDI_DEV_T_ANY, Adapter->dip,
6012 	    DDI_PROP_DONTPASS, "local-mac-address", &bytes, &nelts);
6013 	if (err == DDI_PROP_SUCCESS) {
6014 		if (nelts == ETHERADDRL) {
6015 			while (nelts--)
6016 				hw->mac.addr[nelts] = bytes[nelts];
6017 			found = B_TRUE;
6018 		}
6019 		ddi_prop_free(bytes);
6020 	}
6021 
6022 	/*
6023 	 * Look up the OBP property "local-mac-address?". If the user has set
6024 	 * 'local-mac-address? = false', use "the system address" instead.
6025 	 */
6026 	if (ddi_prop_lookup_byte_array(DDI_DEV_T_ANY, Adapter->dip, 0,
6027 	    "local-mac-address?", &bytes, &nelts) == DDI_PROP_SUCCESS) {
6028 		if (strncmp("false", (caddr_t)bytes, (size_t)nelts) == 0) {
6029 			if (localetheraddr(NULL, &sysaddr) != 0) {
6030 				bcopy(&sysaddr, hw->mac.addr, ETHERADDRL);
6031 				found = B_TRUE;
6032 			}
6033 		}
6034 		ddi_prop_free(bytes);
6035 	}
6036 
6037 	/*
6038 	 * Finally(!), if there's a valid "mac-address" property (created
6039 	 * if we netbooted from this interface), we must use this instead
6040 	 * of any of the above to ensure that the NFS/install server doesn't
6041 	 * get confused by the address changing as Solaris takes over!
6042 	 */
6043 	err = ddi_prop_lookup_byte_array(DDI_DEV_T_ANY, Adapter->dip,
6044 	    DDI_PROP_DONTPASS, "mac-address", &bytes, &nelts);
6045 	if (err == DDI_PROP_SUCCESS) {
6046 		if (nelts == ETHERADDRL) {
6047 			while (nelts--)
6048 				hw->mac.addr[nelts] = bytes[nelts];
6049 			found = B_TRUE;
6050 		}
6051 		ddi_prop_free(bytes);
6052 	}
6053 
6054 	if (found) {
6055 		bcopy(hw->mac.addr, hw->mac.perm_addr,
6056 		    ETHERADDRL);
6057 	}
6058 
6059 	return (found);
6060 }
6061 #endif
6062 
6063 static int
6064 e1000g_add_intrs(struct e1000g *Adapter)
6065 {
6066 	dev_info_t *devinfo;
6067 	int intr_types;
6068 	int rc;
6069 
6070 	devinfo = Adapter->dip;
6071 
6072 	/* Get supported interrupt types */
6073 	rc = ddi_intr_get_supported_types(devinfo, &intr_types);
6074 
6075 	if (rc != DDI_SUCCESS) {
6076 		E1000G_DEBUGLOG_1(Adapter, E1000G_WARN_LEVEL,
6077 		    "Get supported interrupt types failed: %d\n", rc);
6078 		return (DDI_FAILURE);
6079 	}
6080 
6081 	/*
6082 	 * Based on Intel Technical Advisory document (TA-160), there are some
6083 	 * cases where some older Intel PCI-X NICs may "advertise" to the OS
6084 	 * that it supports MSI, but in fact has problems.
6085 	 * So we should only enable MSI for PCI-E NICs and disable MSI for old
6086 	 * PCI/PCI-X NICs.
6087 	 */
6088 	if (Adapter->shared.mac.type < e1000_82571)
6089 		Adapter->msi_enable = B_FALSE;
6090 
6091 	if ((intr_types & DDI_INTR_TYPE_MSI) && Adapter->msi_enable) {
6092 		rc = e1000g_intr_add(Adapter, DDI_INTR_TYPE_MSI);
6093 
6094 		if (rc != DDI_SUCCESS) {
6095 			/* EMPTY */
6096 			E1000G_DEBUGLOG_0(Adapter, E1000G_WARN_LEVEL,
6097 			    "Add MSI failed, trying Legacy interrupts\n");
6098 		} else {
6099 			Adapter->intr_type = DDI_INTR_TYPE_MSI;
6100 		}
6101 	}
6102 
6103 	if ((Adapter->intr_type == 0) &&
6104 	    (intr_types & DDI_INTR_TYPE_FIXED)) {
6105 		rc = e1000g_intr_add(Adapter, DDI_INTR_TYPE_FIXED);
6106 
6107 		if (rc != DDI_SUCCESS) {
6108 			E1000G_DEBUGLOG_0(Adapter, E1000G_WARN_LEVEL,
6109 			    "Add Legacy interrupts failed\n");
6110 			return (DDI_FAILURE);
6111 		}
6112 
6113 		Adapter->intr_type = DDI_INTR_TYPE_FIXED;
6114 	}
6115 
6116 	if (Adapter->intr_type == 0) {
6117 		E1000G_DEBUGLOG_0(Adapter, E1000G_WARN_LEVEL,
6118 		    "No interrupts registered\n");
6119 		return (DDI_FAILURE);
6120 	}
6121 
6122 	return (DDI_SUCCESS);
6123 }
6124 
6125 /*
6126  * e1000g_intr_add() handles MSI/Legacy interrupts
6127  */
6128 static int
6129 e1000g_intr_add(struct e1000g *Adapter, int intr_type)
6130 {
6131 	dev_info_t *devinfo;
6132 	int count, avail, actual;
6133 	int x, y, rc, inum = 0;
6134 	int flag;
6135 	ddi_intr_handler_t *intr_handler;
6136 
6137 	devinfo = Adapter->dip;
6138 
6139 	/* get number of interrupts */
6140 	rc = ddi_intr_get_nintrs(devinfo, intr_type, &count);
6141 	if ((rc != DDI_SUCCESS) || (count == 0)) {
6142 		E1000G_DEBUGLOG_2(Adapter, E1000G_WARN_LEVEL,
6143 		    "Get interrupt number failed. Return: %d, count: %d\n",
6144 		    rc, count);
6145 		return (DDI_FAILURE);
6146 	}
6147 
6148 	/* get number of available interrupts */
6149 	rc = ddi_intr_get_navail(devinfo, intr_type, &avail);
6150 	if ((rc != DDI_SUCCESS) || (avail == 0)) {
6151 		E1000G_DEBUGLOG_2(Adapter, E1000G_WARN_LEVEL,
6152 		    "Get interrupt available number failed. "
6153 		    "Return: %d, available: %d\n", rc, avail);
6154 		return (DDI_FAILURE);
6155 	}
6156 
6157 	if (avail < count) {
6158 		/* EMPTY */
6159 		E1000G_DEBUGLOG_2(Adapter, E1000G_WARN_LEVEL,
6160 		    "Interrupts count: %d, available: %d\n",
6161 		    count, avail);
6162 	}
6163 
6164 	/* Allocate an array of interrupt handles */
6165 	Adapter->intr_size = count * sizeof (ddi_intr_handle_t);
6166 	Adapter->htable = kmem_alloc(Adapter->intr_size, KM_SLEEP);
6167 
6168 	/* Set NORMAL behavior for both MSI and FIXED interrupt */
6169 	flag = DDI_INTR_ALLOC_NORMAL;
6170 
6171 	/* call ddi_intr_alloc() */
6172 	rc = ddi_intr_alloc(devinfo, Adapter->htable, intr_type, inum,
6173 	    count, &actual, flag);
6174 
6175 	if ((rc != DDI_SUCCESS) || (actual == 0)) {
6176 		E1000G_DEBUGLOG_1(Adapter, E1000G_WARN_LEVEL,
6177 		    "Allocate interrupts failed: %d\n", rc);
6178 
6179 		kmem_free(Adapter->htable, Adapter->intr_size);
6180 		return (DDI_FAILURE);
6181 	}
6182 
6183 	if (actual < count) {
6184 		/* EMPTY */
6185 		E1000G_DEBUGLOG_2(Adapter, E1000G_WARN_LEVEL,
6186 		    "Interrupts requested: %d, received: %d\n",
6187 		    count, actual);
6188 	}
6189 
6190 	Adapter->intr_cnt = actual;
6191 
6192 	/* Get priority for first msi, assume remaining are all the same */
6193 	rc = ddi_intr_get_pri(Adapter->htable[0], &Adapter->intr_pri);
6194 
6195 	if (rc != DDI_SUCCESS) {
6196 		E1000G_DEBUGLOG_1(Adapter, E1000G_WARN_LEVEL,
6197 		    "Get interrupt priority failed: %d\n", rc);
6198 
6199 		/* Free already allocated intr */
6200 		for (y = 0; y < actual; y++)
6201 			(void) ddi_intr_free(Adapter->htable[y]);
6202 
6203 		kmem_free(Adapter->htable, Adapter->intr_size);
6204 		return (DDI_FAILURE);
6205 	}
6206 
6207 	/*
6208 	 * In Legacy Interrupt mode, for PCI-Express adapters, we should
6209 	 * use the interrupt service routine e1000g_intr_pciexpress()
6210 	 * to avoid interrupt stealing when sharing interrupt with other
6211 	 * devices.
6212 	 */
6213 	if (Adapter->shared.mac.type < e1000_82571)
6214 		intr_handler = e1000g_intr;
6215 	else
6216 		intr_handler = e1000g_intr_pciexpress;
6217 
6218 	/* Call ddi_intr_add_handler() */
6219 	for (x = 0; x < actual; x++) {
6220 		rc = ddi_intr_add_handler(Adapter->htable[x],
6221 		    intr_handler, (caddr_t)Adapter, NULL);
6222 
6223 		if (rc != DDI_SUCCESS) {
6224 			E1000G_DEBUGLOG_1(Adapter, E1000G_WARN_LEVEL,
6225 			    "Add interrupt handler failed: %d\n", rc);
6226 
6227 			/* Remove already added handler */
6228 			for (y = 0; y < x; y++)
6229 				(void) ddi_intr_remove_handler(
6230 				    Adapter->htable[y]);
6231 
6232 			/* Free already allocated intr */
6233 			for (y = 0; y < actual; y++)
6234 				(void) ddi_intr_free(Adapter->htable[y]);
6235 
6236 			kmem_free(Adapter->htable, Adapter->intr_size);
6237 			return (DDI_FAILURE);
6238 		}
6239 	}
6240 
6241 	rc = ddi_intr_get_cap(Adapter->htable[0], &Adapter->intr_cap);
6242 
6243 	if (rc != DDI_SUCCESS) {
6244 		E1000G_DEBUGLOG_1(Adapter, E1000G_WARN_LEVEL,
6245 		    "Get interrupt cap failed: %d\n", rc);
6246 
6247 		/* Free already allocated intr */
6248 		for (y = 0; y < actual; y++) {
6249 			(void) ddi_intr_remove_handler(Adapter->htable[y]);
6250 			(void) ddi_intr_free(Adapter->htable[y]);
6251 		}
6252 
6253 		kmem_free(Adapter->htable, Adapter->intr_size);
6254 		return (DDI_FAILURE);
6255 	}
6256 
6257 	return (DDI_SUCCESS);
6258 }
6259 
6260 static int
6261 e1000g_rem_intrs(struct e1000g *Adapter)
6262 {
6263 	int x;
6264 	int rc;
6265 
6266 	for (x = 0; x < Adapter->intr_cnt; x++) {
6267 		rc = ddi_intr_remove_handler(Adapter->htable[x]);
6268 		if (rc != DDI_SUCCESS) {
6269 			E1000G_DEBUGLOG_1(Adapter, E1000G_WARN_LEVEL,
6270 			    "Remove intr handler failed: %d\n", rc);
6271 			return (DDI_FAILURE);
6272 		}
6273 
6274 		rc = ddi_intr_free(Adapter->htable[x]);
6275 		if (rc != DDI_SUCCESS) {
6276 			E1000G_DEBUGLOG_1(Adapter, E1000G_WARN_LEVEL,
6277 			    "Free intr failed: %d\n", rc);
6278 			return (DDI_FAILURE);
6279 		}
6280 	}
6281 
6282 	kmem_free(Adapter->htable, Adapter->intr_size);
6283 
6284 	return (DDI_SUCCESS);
6285 }
6286 
6287 static int
6288 e1000g_enable_intrs(struct e1000g *Adapter)
6289 {
6290 	int x;
6291 	int rc;
6292 
6293 	/* Enable interrupts */
6294 	if (Adapter->intr_cap & DDI_INTR_FLAG_BLOCK) {
6295 		/* Call ddi_intr_block_enable() for MSI */
6296 		rc = ddi_intr_block_enable(Adapter->htable,
6297 		    Adapter->intr_cnt);
6298 		if (rc != DDI_SUCCESS) {
6299 			E1000G_DEBUGLOG_1(Adapter, E1000G_WARN_LEVEL,
6300 			    "Enable block intr failed: %d\n", rc);
6301 			return (DDI_FAILURE);
6302 		}
6303 	} else {
6304 		/* Call ddi_intr_enable() for Legacy/MSI non block enable */
6305 		for (x = 0; x < Adapter->intr_cnt; x++) {
6306 			rc = ddi_intr_enable(Adapter->htable[x]);
6307 			if (rc != DDI_SUCCESS) {
6308 				E1000G_DEBUGLOG_1(Adapter, E1000G_WARN_LEVEL,
6309 				    "Enable intr failed: %d\n", rc);
6310 				return (DDI_FAILURE);
6311 			}
6312 		}
6313 	}
6314 
6315 	return (DDI_SUCCESS);
6316 }
6317 
6318 static int
6319 e1000g_disable_intrs(struct e1000g *Adapter)
6320 {
6321 	int x;
6322 	int rc;
6323 
6324 	/* Disable all interrupts */
6325 	if (Adapter->intr_cap & DDI_INTR_FLAG_BLOCK) {
6326 		rc = ddi_intr_block_disable(Adapter->htable,
6327 		    Adapter->intr_cnt);
6328 		if (rc != DDI_SUCCESS) {
6329 			E1000G_DEBUGLOG_1(Adapter, E1000G_WARN_LEVEL,
6330 			    "Disable block intr failed: %d\n", rc);
6331 			return (DDI_FAILURE);
6332 		}
6333 	} else {
6334 		for (x = 0; x < Adapter->intr_cnt; x++) {
6335 			rc = ddi_intr_disable(Adapter->htable[x]);
6336 			if (rc != DDI_SUCCESS) {
6337 				E1000G_DEBUGLOG_1(Adapter, E1000G_WARN_LEVEL,
6338 				    "Disable intr failed: %d\n", rc);
6339 				return (DDI_FAILURE);
6340 			}
6341 		}
6342 	}
6343 
6344 	return (DDI_SUCCESS);
6345 }
6346 
6347 /*
6348  * e1000g_get_phy_state - get the state of PHY registers, save in the adapter
6349  */
6350 static void
6351 e1000g_get_phy_state(struct e1000g *Adapter)
6352 {
6353 	struct e1000_hw *hw = &Adapter->shared;
6354 
6355 	if (hw->phy.media_type == e1000_media_type_copper) {
6356 		(void) e1000_read_phy_reg(hw, PHY_CONTROL, &Adapter->phy_ctrl);
6357 		(void) e1000_read_phy_reg(hw, PHY_STATUS, &Adapter->phy_status);
6358 		(void) e1000_read_phy_reg(hw, PHY_AUTONEG_ADV,
6359 		    &Adapter->phy_an_adv);
6360 		(void) e1000_read_phy_reg(hw, PHY_AUTONEG_EXP,
6361 		    &Adapter->phy_an_exp);
6362 		(void) e1000_read_phy_reg(hw, PHY_EXT_STATUS,
6363 		    &Adapter->phy_ext_status);
6364 		(void) e1000_read_phy_reg(hw, PHY_1000T_CTRL,
6365 		    &Adapter->phy_1000t_ctrl);
6366 		(void) e1000_read_phy_reg(hw, PHY_1000T_STATUS,
6367 		    &Adapter->phy_1000t_status);
6368 		(void) e1000_read_phy_reg(hw, PHY_LP_ABILITY,
6369 		    &Adapter->phy_lp_able);
6370 
6371 		Adapter->param_autoneg_cap =
6372 		    (Adapter->phy_status & MII_SR_AUTONEG_CAPS) ? 1 : 0;
6373 		Adapter->param_pause_cap =
6374 		    (Adapter->phy_an_adv & NWAY_AR_PAUSE) ? 1 : 0;
6375 		Adapter->param_asym_pause_cap =
6376 		    (Adapter->phy_an_adv & NWAY_AR_ASM_DIR) ? 1 : 0;
6377 		Adapter->param_1000fdx_cap =
6378 		    ((Adapter->phy_ext_status & IEEE_ESR_1000T_FD_CAPS) ||
6379 		    (Adapter->phy_ext_status & IEEE_ESR_1000X_FD_CAPS)) ? 1 : 0;
6380 		Adapter->param_1000hdx_cap =
6381 		    ((Adapter->phy_ext_status & IEEE_ESR_1000T_HD_CAPS) ||
6382 		    (Adapter->phy_ext_status & IEEE_ESR_1000X_HD_CAPS)) ? 1 : 0;
6383 		Adapter->param_100t4_cap =
6384 		    (Adapter->phy_status & MII_SR_100T4_CAPS) ? 1 : 0;
6385 		Adapter->param_100fdx_cap =
6386 		    ((Adapter->phy_status & MII_SR_100X_FD_CAPS) ||
6387 		    (Adapter->phy_status & MII_SR_100T2_FD_CAPS)) ? 1 : 0;
6388 		Adapter->param_100hdx_cap =
6389 		    ((Adapter->phy_status & MII_SR_100X_HD_CAPS) ||
6390 		    (Adapter->phy_status & MII_SR_100T2_HD_CAPS)) ? 1 : 0;
6391 		Adapter->param_10fdx_cap =
6392 		    (Adapter->phy_status & MII_SR_10T_FD_CAPS) ? 1 : 0;
6393 		Adapter->param_10hdx_cap =
6394 		    (Adapter->phy_status & MII_SR_10T_HD_CAPS) ? 1 : 0;
6395 
6396 		Adapter->param_adv_autoneg = hw->mac.autoneg;
6397 		Adapter->param_adv_pause =
6398 		    (Adapter->phy_an_adv & NWAY_AR_PAUSE) ? 1 : 0;
6399 		Adapter->param_adv_asym_pause =
6400 		    (Adapter->phy_an_adv & NWAY_AR_ASM_DIR) ? 1 : 0;
6401 		Adapter->param_adv_1000hdx =
6402 		    (Adapter->phy_1000t_ctrl & CR_1000T_HD_CAPS) ? 1 : 0;
6403 		Adapter->param_adv_100t4 =
6404 		    (Adapter->phy_an_adv & NWAY_AR_100T4_CAPS) ? 1 : 0;
6405 		if (Adapter->param_adv_autoneg == 1) {
6406 			Adapter->param_adv_1000fdx =
6407 			    (Adapter->phy_1000t_ctrl & CR_1000T_FD_CAPS)
6408 			    ? 1 : 0;
6409 			Adapter->param_adv_100fdx =
6410 			    (Adapter->phy_an_adv & NWAY_AR_100TX_FD_CAPS)
6411 			    ? 1 : 0;
6412 			Adapter->param_adv_100hdx =
6413 			    (Adapter->phy_an_adv & NWAY_AR_100TX_HD_CAPS)
6414 			    ? 1 : 0;
6415 			Adapter->param_adv_10fdx =
6416 			    (Adapter->phy_an_adv & NWAY_AR_10T_FD_CAPS) ? 1 : 0;
6417 			Adapter->param_adv_10hdx =
6418 			    (Adapter->phy_an_adv & NWAY_AR_10T_HD_CAPS) ? 1 : 0;
6419 		}
6420 
6421 		Adapter->param_lp_autoneg =
6422 		    (Adapter->phy_an_exp & NWAY_ER_LP_NWAY_CAPS) ? 1 : 0;
6423 		Adapter->param_lp_pause =
6424 		    (Adapter->phy_lp_able & NWAY_LPAR_PAUSE) ? 1 : 0;
6425 		Adapter->param_lp_asym_pause =
6426 		    (Adapter->phy_lp_able & NWAY_LPAR_ASM_DIR) ? 1 : 0;
6427 		Adapter->param_lp_1000fdx =
6428 		    (Adapter->phy_1000t_status & SR_1000T_LP_FD_CAPS) ? 1 : 0;
6429 		Adapter->param_lp_1000hdx =
6430 		    (Adapter->phy_1000t_status & SR_1000T_LP_HD_CAPS) ? 1 : 0;
6431 		Adapter->param_lp_100t4 =
6432 		    (Adapter->phy_lp_able & NWAY_LPAR_100T4_CAPS) ? 1 : 0;
6433 		Adapter->param_lp_100fdx =
6434 		    (Adapter->phy_lp_able & NWAY_LPAR_100TX_FD_CAPS) ? 1 : 0;
6435 		Adapter->param_lp_100hdx =
6436 		    (Adapter->phy_lp_able & NWAY_LPAR_100TX_HD_CAPS) ? 1 : 0;
6437 		Adapter->param_lp_10fdx =
6438 		    (Adapter->phy_lp_able & NWAY_LPAR_10T_FD_CAPS) ? 1 : 0;
6439 		Adapter->param_lp_10hdx =
6440 		    (Adapter->phy_lp_able & NWAY_LPAR_10T_HD_CAPS) ? 1 : 0;
6441 	} else {
6442 		/*
6443 		 * 1Gig Fiber adapter only offers 1Gig Full Duplex. Meaning,
6444 		 * it can only work with 1Gig Full Duplex Link Partner.
6445 		 */
6446 		Adapter->param_autoneg_cap = 0;
6447 		Adapter->param_pause_cap = 1;
6448 		Adapter->param_asym_pause_cap = 1;
6449 		Adapter->param_1000fdx_cap = 1;
6450 		Adapter->param_1000hdx_cap = 0;
6451 		Adapter->param_100t4_cap = 0;
6452 		Adapter->param_100fdx_cap = 0;
6453 		Adapter->param_100hdx_cap = 0;
6454 		Adapter->param_10fdx_cap = 0;
6455 		Adapter->param_10hdx_cap = 0;
6456 
6457 		Adapter->param_adv_autoneg = 0;
6458 		Adapter->param_adv_pause = 1;
6459 		Adapter->param_adv_asym_pause = 1;
6460 		Adapter->param_adv_1000fdx = 1;
6461 		Adapter->param_adv_1000hdx = 0;
6462 		Adapter->param_adv_100t4 = 0;
6463 		Adapter->param_adv_100fdx = 0;
6464 		Adapter->param_adv_100hdx = 0;
6465 		Adapter->param_adv_10fdx = 0;
6466 		Adapter->param_adv_10hdx = 0;
6467 
6468 		Adapter->param_lp_autoneg = 0;
6469 		Adapter->param_lp_pause = 0;
6470 		Adapter->param_lp_asym_pause = 0;
6471 		Adapter->param_lp_1000fdx = 0;
6472 		Adapter->param_lp_1000hdx = 0;
6473 		Adapter->param_lp_100t4 = 0;
6474 		Adapter->param_lp_100fdx = 0;
6475 		Adapter->param_lp_100hdx = 0;
6476 		Adapter->param_lp_10fdx = 0;
6477 		Adapter->param_lp_10hdx = 0;
6478 	}
6479 }
6480 
6481 /*
6482  * FMA support
6483  */
6484 
6485 int
6486 e1000g_check_acc_handle(ddi_acc_handle_t handle)
6487 {
6488 	ddi_fm_error_t de;
6489 
6490 	ddi_fm_acc_err_get(handle, &de, DDI_FME_VERSION);
6491 	ddi_fm_acc_err_clear(handle, DDI_FME_VERSION);
6492 	return (de.fme_status);
6493 }
6494 
6495 int
6496 e1000g_check_dma_handle(ddi_dma_handle_t handle)
6497 {
6498 	ddi_fm_error_t de;
6499 
6500 	ddi_fm_dma_err_get(handle, &de, DDI_FME_VERSION);
6501 	return (de.fme_status);
6502 }
6503 
6504 /*
6505  * The IO fault service error handling callback function
6506  */
6507 /* ARGSUSED2 */
6508 static int
6509 e1000g_fm_error_cb(dev_info_t *dip, ddi_fm_error_t *err, const void *impl_data)
6510 {
6511 	/*
6512 	 * as the driver can always deal with an error in any dma or
6513 	 * access handle, we can just return the fme_status value.
6514 	 */
6515 	pci_ereport_post(dip, err, NULL);
6516 	return (err->fme_status);
6517 }
6518 
6519 static void
6520 e1000g_fm_init(struct e1000g *Adapter)
6521 {
6522 	ddi_iblock_cookie_t iblk;
6523 	int fma_dma_flag;
6524 
6525 	/* Only register with IO Fault Services if we have some capability */
6526 	if (Adapter->fm_capabilities & DDI_FM_ACCCHK_CAPABLE) {
6527 		e1000g_regs_acc_attr.devacc_attr_access = DDI_FLAGERR_ACC;
6528 	} else {
6529 		e1000g_regs_acc_attr.devacc_attr_access = DDI_DEFAULT_ACC;
6530 	}
6531 
6532 	if (Adapter->fm_capabilities & DDI_FM_DMACHK_CAPABLE) {
6533 		fma_dma_flag = 1;
6534 	} else {
6535 		fma_dma_flag = 0;
6536 	}
6537 
6538 	(void) e1000g_set_fma_flags(fma_dma_flag);
6539 
6540 	if (Adapter->fm_capabilities) {
6541 
6542 		/* Register capabilities with IO Fault Services */
6543 		ddi_fm_init(Adapter->dip, &Adapter->fm_capabilities, &iblk);
6544 
6545 		/*
6546 		 * Initialize pci ereport capabilities if ereport capable
6547 		 */
6548 		if (DDI_FM_EREPORT_CAP(Adapter->fm_capabilities) ||
6549 		    DDI_FM_ERRCB_CAP(Adapter->fm_capabilities))
6550 			pci_ereport_setup(Adapter->dip);
6551 
6552 		/*
6553 		 * Register error callback if error callback capable
6554 		 */
6555 		if (DDI_FM_ERRCB_CAP(Adapter->fm_capabilities))
6556 			ddi_fm_handler_register(Adapter->dip,
6557 			    e1000g_fm_error_cb, (void*) Adapter);
6558 	}
6559 }
6560 
6561 static void
6562 e1000g_fm_fini(struct e1000g *Adapter)
6563 {
6564 	/* Only unregister FMA capabilities if we registered some */
6565 	if (Adapter->fm_capabilities) {
6566 
6567 		/*
6568 		 * Release any resources allocated by pci_ereport_setup()
6569 		 */
6570 		if (DDI_FM_EREPORT_CAP(Adapter->fm_capabilities) ||
6571 		    DDI_FM_ERRCB_CAP(Adapter->fm_capabilities))
6572 			pci_ereport_teardown(Adapter->dip);
6573 
6574 		/*
6575 		 * Un-register error callback if error callback capable
6576 		 */
6577 		if (DDI_FM_ERRCB_CAP(Adapter->fm_capabilities))
6578 			ddi_fm_handler_unregister(Adapter->dip);
6579 
6580 		/* Unregister from IO Fault Services */
6581 		mutex_enter(&e1000g_rx_detach_lock);
6582 		ddi_fm_fini(Adapter->dip);
6583 		if (Adapter->priv_dip != NULL) {
6584 			DEVI(Adapter->priv_dip)->devi_fmhdl = NULL;
6585 		}
6586 		mutex_exit(&e1000g_rx_detach_lock);
6587 	}
6588 }
6589 
6590 void
6591 e1000g_fm_ereport(struct e1000g *Adapter, char *detail)
6592 {
6593 	uint64_t ena;
6594 	char buf[FM_MAX_CLASS];
6595 
6596 	(void) snprintf(buf, FM_MAX_CLASS, "%s.%s", DDI_FM_DEVICE, detail);
6597 	ena = fm_ena_generate(0, FM_ENA_FMT1);
6598 	if (DDI_FM_EREPORT_CAP(Adapter->fm_capabilities)) {
6599 		ddi_fm_ereport_post(Adapter->dip, buf, ena, DDI_NOSLEEP,
6600 		    FM_VERSION, DATA_TYPE_UINT8, FM_EREPORT_VERS0, NULL);
6601 	}
6602 }
6603 
6604 /*
6605  * quiesce(9E) entry point.
6606  *
6607  * This function is called when the system is single-threaded at high
6608  * PIL with preemption disabled. Therefore, this function must not be
6609  * blocked.
6610  *
6611  * This function returns DDI_SUCCESS on success, or DDI_FAILURE on failure.
6612  * DDI_FAILURE indicates an error condition and should almost never happen.
6613  */
6614 static int
6615 e1000g_quiesce(dev_info_t *devinfo)
6616 {
6617 	struct e1000g *Adapter;
6618 
6619 	Adapter = (struct e1000g *)ddi_get_driver_private(devinfo);
6620 
6621 	if (Adapter == NULL)
6622 		return (DDI_FAILURE);
6623 
6624 	e1000g_clear_all_interrupts(Adapter);
6625 
6626 	(void) e1000_reset_hw(&Adapter->shared);
6627 
6628 	/* Setup our HW Tx Head & Tail descriptor pointers */
6629 	E1000_WRITE_REG(&Adapter->shared, E1000_TDH(0), 0);
6630 	E1000_WRITE_REG(&Adapter->shared, E1000_TDT(0), 0);
6631 
6632 	/* Setup our HW Rx Head & Tail descriptor pointers */
6633 	E1000_WRITE_REG(&Adapter->shared, E1000_RDH(0), 0);
6634 	E1000_WRITE_REG(&Adapter->shared, E1000_RDT(0), 0);
6635 
6636 	return (DDI_SUCCESS);
6637 }
6638 
6639 /*
6640  * synchronize the adv* and en* parameters.
6641  *
6642  * See comments in <sys/dld.h> for details of the *_en_*
6643  * parameters. The usage of ndd for setting adv parameters will
6644  * synchronize all the en parameters with the e1000g parameters,
6645  * implicitly disabling any settings made via dladm.
6646  */
6647 static void
6648 e1000g_param_sync(struct e1000g *Adapter)
6649 {
6650 	Adapter->param_en_1000fdx = Adapter->param_adv_1000fdx;
6651 	Adapter->param_en_1000hdx = Adapter->param_adv_1000hdx;
6652 	Adapter->param_en_100fdx = Adapter->param_adv_100fdx;
6653 	Adapter->param_en_100hdx = Adapter->param_adv_100hdx;
6654 	Adapter->param_en_10fdx = Adapter->param_adv_10fdx;
6655 	Adapter->param_en_10hdx = Adapter->param_adv_10hdx;
6656 }
6657 
6658 /*
6659  * e1000g_get_driver_control - tell manageability firmware that the driver
6660  * has control.
6661  */
6662 static void
6663 e1000g_get_driver_control(struct e1000_hw *hw)
6664 {
6665 	uint32_t ctrl_ext;
6666 	uint32_t swsm;
6667 
6668 	/* tell manageability firmware the driver has taken over */
6669 	switch (hw->mac.type) {
6670 	case e1000_82573:
6671 		swsm = E1000_READ_REG(hw, E1000_SWSM);
6672 		E1000_WRITE_REG(hw, E1000_SWSM, swsm | E1000_SWSM_DRV_LOAD);
6673 		break;
6674 	case e1000_82571:
6675 	case e1000_82572:
6676 	case e1000_82574:
6677 	case e1000_80003es2lan:
6678 	case e1000_ich8lan:
6679 	case e1000_ich9lan:
6680 	case e1000_ich10lan:
6681 	case e1000_pchlan:
6682 	case e1000_pch2lan:
6683 		ctrl_ext = E1000_READ_REG(hw, E1000_CTRL_EXT);
6684 		E1000_WRITE_REG(hw, E1000_CTRL_EXT,
6685 		    ctrl_ext | E1000_CTRL_EXT_DRV_LOAD);
6686 		break;
6687 	default:
6688 		/* no manageability firmware: do nothing */
6689 		break;
6690 	}
6691 }
6692 
6693 /*
6694  * e1000g_release_driver_control - tell manageability firmware that the driver
6695  * has released control.
6696  */
6697 static void
6698 e1000g_release_driver_control(struct e1000_hw *hw)
6699 {
6700 	uint32_t ctrl_ext;
6701 	uint32_t swsm;
6702 
6703 	/* tell manageability firmware the driver has released control */
6704 	switch (hw->mac.type) {
6705 	case e1000_82573:
6706 		swsm = E1000_READ_REG(hw, E1000_SWSM);
6707 		E1000_WRITE_REG(hw, E1000_SWSM, swsm & ~E1000_SWSM_DRV_LOAD);
6708 		break;
6709 	case e1000_82571:
6710 	case e1000_82572:
6711 	case e1000_82574:
6712 	case e1000_80003es2lan:
6713 	case e1000_ich8lan:
6714 	case e1000_ich9lan:
6715 	case e1000_ich10lan:
6716 	case e1000_pchlan:
6717 	case e1000_pch2lan:
6718 		ctrl_ext = E1000_READ_REG(hw, E1000_CTRL_EXT);
6719 		E1000_WRITE_REG(hw, E1000_CTRL_EXT,
6720 		    ctrl_ext & ~E1000_CTRL_EXT_DRV_LOAD);
6721 		break;
6722 	default:
6723 		/* no manageability firmware: do nothing */
6724 		break;
6725 	}
6726 }
6727 
6728 /*
6729  * Restore e1000g promiscuous mode.
6730  */
6731 static void
6732 e1000g_restore_promisc(struct e1000g *Adapter)
6733 {
6734 	if (Adapter->e1000g_promisc) {
6735 		uint32_t rctl;
6736 
6737 		rctl = E1000_READ_REG(&Adapter->shared, E1000_RCTL);
6738 		rctl |= (E1000_RCTL_UPE | E1000_RCTL_MPE | E1000_RCTL_BAM);
6739 		E1000_WRITE_REG(&Adapter->shared, E1000_RCTL, rctl);
6740 	}
6741 }
6742