xref: /illumos-gate/usr/src/uts/common/io/e1000g/e1000g_main.c (revision 6e6545bfaed3bab9ce836ee82d1abd8f2edba89a)
1 /*
2  * This file is provided under a CDDLv1 license.  When using or
3  * redistributing this file, you may do so under this license.
4  * In redistributing this file this license must be included
5  * and no other modification of this header file is permitted.
6  *
7  * CDDL LICENSE SUMMARY
8  *
9  * Copyright(c) 1999 - 2009 Intel Corporation. All rights reserved.
10  *
11  * The contents of this file are subject to the terms of Version
12  * 1.0 of the Common Development and Distribution License (the "License").
13  *
14  * You should have received a copy of the License with this software.
15  * You can obtain a copy of the License at
16  *	http://www.opensolaris.org/os/licensing.
17  * See the License for the specific language governing permissions
18  * and limitations under the License.
19  */
20 
21 /*
22  * Copyright (c) 2010, Oracle and/or its affiliates. All rights reserved.
23  */
24 
25 /*
26  * Copyright 2012 DEY Storage Systems, Inc.  All rights reserved.
27  * Copyright 2013 Nexenta Systems, Inc.  All rights reserved.
28  * Copyright (c) 2018, Joyent, Inc.
29  */
30 
31 /*
32  * **********************************************************************
33  *									*
34  * Module Name:								*
35  *   e1000g_main.c							*
36  *									*
37  * Abstract:								*
38  *   This file contains the interface routines for the solaris OS.	*
39  *   It has all DDI entry point routines and GLD entry point routines.	*
40  *									*
41  *   This file also contains routines that take care of initialization	*
42  *   uninit routine and interrupt routine.				*
43  *									*
44  * **********************************************************************
45  */
46 
47 #include <sys/dlpi.h>
48 #include <sys/mac.h>
49 #include "e1000g_sw.h"
50 #include "e1000g_debug.h"
51 
52 static char ident[] = "Intel PRO/1000 Ethernet";
53 /* LINTED E_STATIC_UNUSED */
54 static char e1000g_version[] = "Driver Ver. 5.3.24";
55 
56 /*
57  * Proto types for DDI entry points
58  */
59 static int e1000g_attach(dev_info_t *, ddi_attach_cmd_t);
60 static int e1000g_detach(dev_info_t *, ddi_detach_cmd_t);
61 static int e1000g_quiesce(dev_info_t *);
62 
63 /*
64  * init and intr routines prototype
65  */
66 static int e1000g_resume(dev_info_t *);
67 static int e1000g_suspend(dev_info_t *);
68 static uint_t e1000g_intr_pciexpress(caddr_t);
69 static uint_t e1000g_intr(caddr_t);
70 static void e1000g_intr_work(struct e1000g *, uint32_t);
71 #pragma inline(e1000g_intr_work)
72 static int e1000g_init(struct e1000g *);
73 static int e1000g_start(struct e1000g *, boolean_t);
74 static void e1000g_stop(struct e1000g *, boolean_t);
75 static int e1000g_m_start(void *);
76 static void e1000g_m_stop(void *);
77 static int e1000g_m_promisc(void *, boolean_t);
78 static boolean_t e1000g_m_getcapab(void *, mac_capab_t, void *);
79 static int e1000g_m_multicst(void *, boolean_t, const uint8_t *);
80 static void e1000g_m_ioctl(void *, queue_t *, mblk_t *);
81 static int e1000g_m_setprop(void *, const char *, mac_prop_id_t,
82     uint_t, const void *);
83 static int e1000g_m_getprop(void *, const char *, mac_prop_id_t,
84 			    uint_t, void *);
85 static void e1000g_m_propinfo(void *, const char *, mac_prop_id_t,
86     mac_prop_info_handle_t);
87 static int e1000g_set_priv_prop(struct e1000g *, const char *, uint_t,
88     const void *);
89 static int e1000g_get_priv_prop(struct e1000g *, const char *, uint_t, void *);
90 static void e1000g_init_locks(struct e1000g *);
91 static void e1000g_destroy_locks(struct e1000g *);
92 static int e1000g_identify_hardware(struct e1000g *);
93 static int e1000g_regs_map(struct e1000g *);
94 static int e1000g_set_driver_params(struct e1000g *);
95 static void e1000g_set_bufsize(struct e1000g *);
96 static int e1000g_register_mac(struct e1000g *);
97 static boolean_t e1000g_rx_drain(struct e1000g *);
98 static boolean_t e1000g_tx_drain(struct e1000g *);
99 static void e1000g_init_unicst(struct e1000g *);
100 static int e1000g_unicst_set(struct e1000g *, const uint8_t *, int);
101 static int e1000g_alloc_rx_data(struct e1000g *);
102 static void e1000g_release_multicast(struct e1000g *);
103 static void e1000g_pch_limits(struct e1000g *);
104 static uint32_t e1000g_mtu2maxframe(uint32_t);
105 
106 /*
107  * Local routines
108  */
109 static boolean_t e1000g_reset_adapter(struct e1000g *);
110 static void e1000g_tx_clean(struct e1000g *);
111 static void e1000g_rx_clean(struct e1000g *);
112 static void e1000g_link_timer(void *);
113 static void e1000g_local_timer(void *);
114 static boolean_t e1000g_link_check(struct e1000g *);
115 static boolean_t e1000g_stall_check(struct e1000g *);
116 static void e1000g_smartspeed(struct e1000g *);
117 static void e1000g_get_conf(struct e1000g *);
118 static boolean_t e1000g_get_prop(struct e1000g *, char *, int, int, int,
119     int *);
120 static void enable_watchdog_timer(struct e1000g *);
121 static void disable_watchdog_timer(struct e1000g *);
122 static void start_watchdog_timer(struct e1000g *);
123 static void restart_watchdog_timer(struct e1000g *);
124 static void stop_watchdog_timer(struct e1000g *);
125 static void stop_link_timer(struct e1000g *);
126 static void stop_82547_timer(e1000g_tx_ring_t *);
127 static void e1000g_force_speed_duplex(struct e1000g *);
128 static void e1000g_setup_max_mtu(struct e1000g *);
129 static void e1000g_get_max_frame_size(struct e1000g *);
130 static boolean_t is_valid_mac_addr(uint8_t *);
131 static void e1000g_unattach(dev_info_t *, struct e1000g *);
132 static int e1000g_get_bar_info(dev_info_t *, int, bar_info_t *);
133 #ifdef E1000G_DEBUG
134 static void e1000g_ioc_peek_reg(struct e1000g *, e1000g_peekpoke_t *);
135 static void e1000g_ioc_poke_reg(struct e1000g *, e1000g_peekpoke_t *);
136 static void e1000g_ioc_peek_mem(struct e1000g *, e1000g_peekpoke_t *);
137 static void e1000g_ioc_poke_mem(struct e1000g *, e1000g_peekpoke_t *);
138 static enum ioc_reply e1000g_pp_ioctl(struct e1000g *,
139     struct iocblk *, mblk_t *);
140 #endif
141 static enum ioc_reply e1000g_loopback_ioctl(struct e1000g *,
142     struct iocblk *, mblk_t *);
143 static boolean_t e1000g_check_loopback_support(struct e1000_hw *);
144 static boolean_t e1000g_set_loopback_mode(struct e1000g *, uint32_t);
145 static void e1000g_set_internal_loopback(struct e1000g *);
146 static void e1000g_set_external_loopback_1000(struct e1000g *);
147 static void e1000g_set_external_loopback_100(struct e1000g *);
148 static void e1000g_set_external_loopback_10(struct e1000g *);
149 static int e1000g_add_intrs(struct e1000g *);
150 static int e1000g_intr_add(struct e1000g *, int);
151 static int e1000g_rem_intrs(struct e1000g *);
152 static int e1000g_enable_intrs(struct e1000g *);
153 static int e1000g_disable_intrs(struct e1000g *);
154 static boolean_t e1000g_link_up(struct e1000g *);
155 #ifdef __sparc
156 static boolean_t e1000g_find_mac_address(struct e1000g *);
157 #endif
158 static void e1000g_get_phy_state(struct e1000g *);
159 static int e1000g_fm_error_cb(dev_info_t *dip, ddi_fm_error_t *err,
160     const void *impl_data);
161 static void e1000g_fm_init(struct e1000g *Adapter);
162 static void e1000g_fm_fini(struct e1000g *Adapter);
163 static void e1000g_param_sync(struct e1000g *);
164 static void e1000g_get_driver_control(struct e1000_hw *);
165 static void e1000g_release_driver_control(struct e1000_hw *);
166 static void e1000g_restore_promisc(struct e1000g *Adapter);
167 
168 char *e1000g_priv_props[] = {
169 	"_tx_bcopy_threshold",
170 	"_tx_interrupt_enable",
171 	"_tx_intr_delay",
172 	"_tx_intr_abs_delay",
173 	"_rx_bcopy_threshold",
174 	"_max_num_rcv_packets",
175 	"_rx_intr_delay",
176 	"_rx_intr_abs_delay",
177 	"_intr_throttling_rate",
178 	"_intr_adaptive",
179 	"_adv_pause_cap",
180 	"_adv_asym_pause_cap",
181 	NULL
182 };
183 
184 static struct cb_ops cb_ws_ops = {
185 	nulldev,		/* cb_open */
186 	nulldev,		/* cb_close */
187 	nodev,			/* cb_strategy */
188 	nodev,			/* cb_print */
189 	nodev,			/* cb_dump */
190 	nodev,			/* cb_read */
191 	nodev,			/* cb_write */
192 	nodev,			/* cb_ioctl */
193 	nodev,			/* cb_devmap */
194 	nodev,			/* cb_mmap */
195 	nodev,			/* cb_segmap */
196 	nochpoll,		/* cb_chpoll */
197 	ddi_prop_op,		/* cb_prop_op */
198 	NULL,			/* cb_stream */
199 	D_MP | D_HOTPLUG,	/* cb_flag */
200 	CB_REV,			/* cb_rev */
201 	nodev,			/* cb_aread */
202 	nodev			/* cb_awrite */
203 };
204 
205 static struct dev_ops ws_ops = {
206 	DEVO_REV,		/* devo_rev */
207 	0,			/* devo_refcnt */
208 	NULL,			/* devo_getinfo */
209 	nulldev,		/* devo_identify */
210 	nulldev,		/* devo_probe */
211 	e1000g_attach,		/* devo_attach */
212 	e1000g_detach,		/* devo_detach */
213 	nodev,			/* devo_reset */
214 	&cb_ws_ops,		/* devo_cb_ops */
215 	NULL,			/* devo_bus_ops */
216 	ddi_power,		/* devo_power */
217 	e1000g_quiesce		/* devo_quiesce */
218 };
219 
220 static struct modldrv modldrv = {
221 	&mod_driverops,		/* Type of module.  This one is a driver */
222 	ident,			/* Discription string */
223 	&ws_ops,		/* driver ops */
224 };
225 
226 static struct modlinkage modlinkage = {
227 	MODREV_1, &modldrv, NULL
228 };
229 
230 /* Access attributes for register mapping */
231 static ddi_device_acc_attr_t e1000g_regs_acc_attr = {
232 	DDI_DEVICE_ATTR_V1,
233 	DDI_STRUCTURE_LE_ACC,
234 	DDI_STRICTORDER_ACC,
235 	DDI_FLAGERR_ACC
236 };
237 
238 #define	E1000G_M_CALLBACK_FLAGS \
239 	(MC_IOCTL | MC_GETCAPAB | MC_SETPROP | MC_GETPROP | MC_PROPINFO)
240 
241 static mac_callbacks_t e1000g_m_callbacks = {
242 	E1000G_M_CALLBACK_FLAGS,
243 	e1000g_m_stat,
244 	e1000g_m_start,
245 	e1000g_m_stop,
246 	e1000g_m_promisc,
247 	e1000g_m_multicst,
248 	NULL,
249 	e1000g_m_tx,
250 	NULL,
251 	e1000g_m_ioctl,
252 	e1000g_m_getcapab,
253 	NULL,
254 	NULL,
255 	e1000g_m_setprop,
256 	e1000g_m_getprop,
257 	e1000g_m_propinfo
258 };
259 
260 /*
261  * Global variables
262  */
263 uint32_t e1000g_jumbo_mtu = MAXIMUM_MTU_9K;
264 uint32_t e1000g_mblks_pending = 0;
265 /*
266  * Workaround for Dynamic Reconfiguration support, for x86 platform only.
267  * Here we maintain a private dev_info list if e1000g_force_detach is
268  * enabled. If we force the driver to detach while there are still some
269  * rx buffers retained in the upper layer, we have to keep a copy of the
270  * dev_info. In some cases (Dynamic Reconfiguration), the dev_info data
271  * structure will be freed after the driver is detached. However when we
272  * finally free those rx buffers released by the upper layer, we need to
273  * refer to the dev_info to free the dma buffers. So we save a copy of
274  * the dev_info for this purpose. On x86 platform, we assume this copy
275  * of dev_info is always valid, but on SPARC platform, it could be invalid
276  * after the system board level DR operation. For this reason, the global
277  * variable e1000g_force_detach must be B_FALSE on SPARC platform.
278  */
279 #ifdef __sparc
280 boolean_t e1000g_force_detach = B_FALSE;
281 #else
282 boolean_t e1000g_force_detach = B_TRUE;
283 #endif
284 private_devi_list_t *e1000g_private_devi_list = NULL;
285 
286 /*
287  * The mutex e1000g_rx_detach_lock is defined to protect the processing of
288  * the private dev_info list, and to serialize the processing of rx buffer
289  * freeing and rx buffer recycling.
290  */
291 kmutex_t e1000g_rx_detach_lock;
292 /*
293  * The rwlock e1000g_dma_type_lock is defined to protect the global flag
294  * e1000g_dma_type. For SPARC, the initial value of the flag is "USE_DVMA".
295  * If there are many e1000g instances, the system may run out of DVMA
296  * resources during the initialization of the instances, then the flag will
297  * be changed to "USE_DMA". Because different e1000g instances are initialized
298  * in parallel, we need to use this lock to protect the flag.
299  */
300 krwlock_t e1000g_dma_type_lock;
301 
302 /*
303  * The 82546 chipset is a dual-port device, both the ports share one eeprom.
304  * Based on the information from Intel, the 82546 chipset has some hardware
305  * problem. When one port is being reset and the other port is trying to
306  * access the eeprom, it could cause system hang or panic. To workaround this
307  * hardware problem, we use a global mutex to prevent such operations from
308  * happening simultaneously on different instances. This workaround is applied
309  * to all the devices supported by this driver.
310  */
311 kmutex_t e1000g_nvm_lock;
312 
313 /*
314  * Loadable module configuration entry points for the driver
315  */
316 
317 /*
318  * _init - module initialization
319  */
320 int
321 _init(void)
322 {
323 	int status;
324 
325 	mac_init_ops(&ws_ops, WSNAME);
326 	status = mod_install(&modlinkage);
327 	if (status != DDI_SUCCESS)
328 		mac_fini_ops(&ws_ops);
329 	else {
330 		mutex_init(&e1000g_rx_detach_lock, NULL, MUTEX_DRIVER, NULL);
331 		rw_init(&e1000g_dma_type_lock, NULL, RW_DRIVER, NULL);
332 		mutex_init(&e1000g_nvm_lock, NULL, MUTEX_DRIVER, NULL);
333 	}
334 
335 	return (status);
336 }
337 
338 /*
339  * _fini - module finalization
340  */
341 int
342 _fini(void)
343 {
344 	int status;
345 
346 	if (e1000g_mblks_pending != 0)
347 		return (EBUSY);
348 
349 	status = mod_remove(&modlinkage);
350 	if (status == DDI_SUCCESS) {
351 		mac_fini_ops(&ws_ops);
352 
353 		if (e1000g_force_detach) {
354 			private_devi_list_t *devi_node;
355 
356 			mutex_enter(&e1000g_rx_detach_lock);
357 			while (e1000g_private_devi_list != NULL) {
358 				devi_node = e1000g_private_devi_list;
359 				e1000g_private_devi_list =
360 				    e1000g_private_devi_list->next;
361 
362 				kmem_free(devi_node->priv_dip,
363 				    sizeof (struct dev_info));
364 				kmem_free(devi_node,
365 				    sizeof (private_devi_list_t));
366 			}
367 			mutex_exit(&e1000g_rx_detach_lock);
368 		}
369 
370 		mutex_destroy(&e1000g_rx_detach_lock);
371 		rw_destroy(&e1000g_dma_type_lock);
372 		mutex_destroy(&e1000g_nvm_lock);
373 	}
374 
375 	return (status);
376 }
377 
378 /*
379  * _info - module information
380  */
381 int
382 _info(struct modinfo *modinfop)
383 {
384 	return (mod_info(&modlinkage, modinfop));
385 }
386 
387 /*
388  * e1000g_attach - driver attach
389  *
390  * This function is the device-specific initialization entry
391  * point. This entry point is required and must be written.
392  * The DDI_ATTACH command must be provided in the attach entry
393  * point. When attach() is called with cmd set to DDI_ATTACH,
394  * all normal kernel services (such as kmem_alloc(9F)) are
395  * available for use by the driver.
396  *
397  * The attach() function will be called once for each instance
398  * of  the  device  on  the  system with cmd set to DDI_ATTACH.
399  * Until attach() succeeds, the only driver entry points which
400  * may be called are open(9E) and getinfo(9E).
401  */
402 static int
403 e1000g_attach(dev_info_t *devinfo, ddi_attach_cmd_t cmd)
404 {
405 	struct e1000g *Adapter;
406 	struct e1000_hw *hw;
407 	struct e1000g_osdep *osdep;
408 	int instance;
409 
410 	switch (cmd) {
411 	default:
412 		e1000g_log(NULL, CE_WARN,
413 		    "Unsupported command send to e1000g_attach... ");
414 		return (DDI_FAILURE);
415 
416 	case DDI_RESUME:
417 		return (e1000g_resume(devinfo));
418 
419 	case DDI_ATTACH:
420 		break;
421 	}
422 
423 	/*
424 	 * get device instance number
425 	 */
426 	instance = ddi_get_instance(devinfo);
427 
428 	/*
429 	 * Allocate soft data structure
430 	 */
431 	Adapter =
432 	    (struct e1000g *)kmem_zalloc(sizeof (*Adapter), KM_SLEEP);
433 
434 	Adapter->dip = devinfo;
435 	Adapter->instance = instance;
436 	Adapter->tx_ring->adapter = Adapter;
437 	Adapter->rx_ring->adapter = Adapter;
438 
439 	hw = &Adapter->shared;
440 	osdep = &Adapter->osdep;
441 	hw->back = osdep;
442 	osdep->adapter = Adapter;
443 
444 	ddi_set_driver_private(devinfo, (caddr_t)Adapter);
445 
446 	/*
447 	 * Initialize for fma support
448 	 */
449 	(void) e1000g_get_prop(Adapter, "fm-capable",
450 	    0, 0x0f,
451 	    DDI_FM_EREPORT_CAPABLE | DDI_FM_ACCCHK_CAPABLE |
452 	    DDI_FM_DMACHK_CAPABLE | DDI_FM_ERRCB_CAPABLE,
453 	    &Adapter->fm_capabilities);
454 	e1000g_fm_init(Adapter);
455 	Adapter->attach_progress |= ATTACH_PROGRESS_FMINIT;
456 
457 	/*
458 	 * PCI Configure
459 	 */
460 	if (pci_config_setup(devinfo, &osdep->cfg_handle) != DDI_SUCCESS) {
461 		e1000g_log(Adapter, CE_WARN, "PCI configuration failed");
462 		goto attach_fail;
463 	}
464 	Adapter->attach_progress |= ATTACH_PROGRESS_PCI_CONFIG;
465 
466 	/*
467 	 * Setup hardware
468 	 */
469 	if (e1000g_identify_hardware(Adapter) != DDI_SUCCESS) {
470 		e1000g_log(Adapter, CE_WARN, "Identify hardware failed");
471 		goto attach_fail;
472 	}
473 
474 	/*
475 	 * Map in the device registers.
476 	 */
477 	if (e1000g_regs_map(Adapter) != DDI_SUCCESS) {
478 		e1000g_log(Adapter, CE_WARN, "Mapping registers failed");
479 		goto attach_fail;
480 	}
481 	Adapter->attach_progress |= ATTACH_PROGRESS_REGS_MAP;
482 
483 	/*
484 	 * Initialize driver parameters
485 	 */
486 	if (e1000g_set_driver_params(Adapter) != DDI_SUCCESS) {
487 		goto attach_fail;
488 	}
489 	Adapter->attach_progress |= ATTACH_PROGRESS_SETUP;
490 
491 	if (e1000g_check_acc_handle(Adapter->osdep.cfg_handle) != DDI_FM_OK) {
492 		ddi_fm_service_impact(Adapter->dip, DDI_SERVICE_LOST);
493 		goto attach_fail;
494 	}
495 
496 	/*
497 	 * Disable ULP support
498 	 */
499 	(void) e1000_disable_ulp_lpt_lp(hw, TRUE);
500 
501 	/*
502 	 * Initialize interrupts
503 	 */
504 	if (e1000g_add_intrs(Adapter) != DDI_SUCCESS) {
505 		e1000g_log(Adapter, CE_WARN, "Add interrupts failed");
506 		goto attach_fail;
507 	}
508 	Adapter->attach_progress |= ATTACH_PROGRESS_ADD_INTR;
509 
510 	/*
511 	 * Initialize mutex's for this device.
512 	 * Do this before enabling the interrupt handler and
513 	 * register the softint to avoid the condition where
514 	 * interrupt handler can try using uninitialized mutex
515 	 */
516 	e1000g_init_locks(Adapter);
517 	Adapter->attach_progress |= ATTACH_PROGRESS_LOCKS;
518 
519 	/*
520 	 * Initialize Driver Counters
521 	 */
522 	if (e1000g_init_stats(Adapter) != DDI_SUCCESS) {
523 		e1000g_log(Adapter, CE_WARN, "Init stats failed");
524 		goto attach_fail;
525 	}
526 	Adapter->attach_progress |= ATTACH_PROGRESS_KSTATS;
527 
528 	/*
529 	 * Initialize chip hardware and software structures
530 	 */
531 	rw_enter(&Adapter->chip_lock, RW_WRITER);
532 	if (e1000g_init(Adapter) != DDI_SUCCESS) {
533 		rw_exit(&Adapter->chip_lock);
534 		e1000g_log(Adapter, CE_WARN, "Adapter initialization failed");
535 		goto attach_fail;
536 	}
537 	rw_exit(&Adapter->chip_lock);
538 	Adapter->attach_progress |= ATTACH_PROGRESS_INIT;
539 
540 	/*
541 	 * Register the driver to the MAC
542 	 */
543 	if (e1000g_register_mac(Adapter) != DDI_SUCCESS) {
544 		e1000g_log(Adapter, CE_WARN, "Register MAC failed");
545 		goto attach_fail;
546 	}
547 	Adapter->attach_progress |= ATTACH_PROGRESS_MAC;
548 
549 	/*
550 	 * Now that mutex locks are initialized, and the chip is also
551 	 * initialized, enable interrupts.
552 	 */
553 	if (e1000g_enable_intrs(Adapter) != DDI_SUCCESS) {
554 		e1000g_log(Adapter, CE_WARN, "Enable DDI interrupts failed");
555 		goto attach_fail;
556 	}
557 	Adapter->attach_progress |= ATTACH_PROGRESS_ENABLE_INTR;
558 
559 	/*
560 	 * If e1000g_force_detach is enabled, in global private dip list,
561 	 * we will create a new entry, which maintains the priv_dip for DR
562 	 * supports after driver detached.
563 	 */
564 	if (e1000g_force_detach) {
565 		private_devi_list_t *devi_node;
566 
567 		Adapter->priv_dip =
568 		    kmem_zalloc(sizeof (struct dev_info), KM_SLEEP);
569 		bcopy(DEVI(devinfo), DEVI(Adapter->priv_dip),
570 		    sizeof (struct dev_info));
571 
572 		devi_node =
573 		    kmem_zalloc(sizeof (private_devi_list_t), KM_SLEEP);
574 
575 		mutex_enter(&e1000g_rx_detach_lock);
576 		devi_node->priv_dip = Adapter->priv_dip;
577 		devi_node->flag = E1000G_PRIV_DEVI_ATTACH;
578 		devi_node->pending_rx_count = 0;
579 
580 		Adapter->priv_devi_node = devi_node;
581 
582 		if (e1000g_private_devi_list == NULL) {
583 			devi_node->prev = NULL;
584 			devi_node->next = NULL;
585 			e1000g_private_devi_list = devi_node;
586 		} else {
587 			devi_node->prev = NULL;
588 			devi_node->next = e1000g_private_devi_list;
589 			e1000g_private_devi_list->prev = devi_node;
590 			e1000g_private_devi_list = devi_node;
591 		}
592 		mutex_exit(&e1000g_rx_detach_lock);
593 	}
594 
595 	Adapter->e1000g_state = E1000G_INITIALIZED;
596 	return (DDI_SUCCESS);
597 
598 attach_fail:
599 	e1000g_unattach(devinfo, Adapter);
600 	return (DDI_FAILURE);
601 }
602 
603 static int
604 e1000g_register_mac(struct e1000g *Adapter)
605 {
606 	struct e1000_hw *hw = &Adapter->shared;
607 	mac_register_t *mac;
608 	int err;
609 
610 	if ((mac = mac_alloc(MAC_VERSION)) == NULL)
611 		return (DDI_FAILURE);
612 
613 	mac->m_type_ident = MAC_PLUGIN_IDENT_ETHER;
614 	mac->m_driver = Adapter;
615 	mac->m_dip = Adapter->dip;
616 	mac->m_src_addr = hw->mac.addr;
617 	mac->m_callbacks = &e1000g_m_callbacks;
618 	mac->m_min_sdu = 0;
619 	mac->m_max_sdu = Adapter->default_mtu;
620 	mac->m_margin = VLAN_TAGSZ;
621 	mac->m_priv_props = e1000g_priv_props;
622 	mac->m_v12n = MAC_VIRT_LEVEL1;
623 
624 	err = mac_register(mac, &Adapter->mh);
625 	mac_free(mac);
626 
627 	return (err == 0 ? DDI_SUCCESS : DDI_FAILURE);
628 }
629 
630 static int
631 e1000g_identify_hardware(struct e1000g *Adapter)
632 {
633 	struct e1000_hw *hw = &Adapter->shared;
634 	struct e1000g_osdep *osdep = &Adapter->osdep;
635 
636 	/* Get the device id */
637 	hw->vendor_id =
638 	    pci_config_get16(osdep->cfg_handle, PCI_CONF_VENID);
639 	hw->device_id =
640 	    pci_config_get16(osdep->cfg_handle, PCI_CONF_DEVID);
641 	hw->revision_id =
642 	    pci_config_get8(osdep->cfg_handle, PCI_CONF_REVID);
643 	hw->subsystem_device_id =
644 	    pci_config_get16(osdep->cfg_handle, PCI_CONF_SUBSYSID);
645 	hw->subsystem_vendor_id =
646 	    pci_config_get16(osdep->cfg_handle, PCI_CONF_SUBVENID);
647 
648 	if (e1000_set_mac_type(hw) != E1000_SUCCESS) {
649 		E1000G_DEBUGLOG_0(Adapter, E1000G_INFO_LEVEL,
650 		    "MAC type could not be set properly.");
651 		return (DDI_FAILURE);
652 	}
653 
654 	return (DDI_SUCCESS);
655 }
656 
657 static int
658 e1000g_regs_map(struct e1000g *Adapter)
659 {
660 	dev_info_t *devinfo = Adapter->dip;
661 	struct e1000_hw *hw = &Adapter->shared;
662 	struct e1000g_osdep *osdep = &Adapter->osdep;
663 	off_t mem_size;
664 	bar_info_t bar_info;
665 	int offset, rnumber;
666 
667 	rnumber = ADAPTER_REG_SET;
668 	/* Get size of adapter register memory */
669 	if (ddi_dev_regsize(devinfo, rnumber, &mem_size) !=
670 	    DDI_SUCCESS) {
671 		E1000G_DEBUGLOG_0(Adapter, CE_WARN,
672 		    "ddi_dev_regsize for registers failed");
673 		return (DDI_FAILURE);
674 	}
675 
676 	/* Map adapter register memory */
677 	if ((ddi_regs_map_setup(devinfo, rnumber,
678 	    (caddr_t *)&hw->hw_addr, 0, mem_size, &e1000g_regs_acc_attr,
679 	    &osdep->reg_handle)) != DDI_SUCCESS) {
680 		E1000G_DEBUGLOG_0(Adapter, CE_WARN,
681 		    "ddi_regs_map_setup for registers failed");
682 		goto regs_map_fail;
683 	}
684 
685 	/* ICH needs to map flash memory */
686 	switch (hw->mac.type) {
687 	case e1000_ich8lan:
688 	case e1000_ich9lan:
689 	case e1000_ich10lan:
690 	case e1000_pchlan:
691 	case e1000_pch2lan:
692 	case e1000_pch_lpt:
693 		rnumber = ICH_FLASH_REG_SET;
694 
695 		/* get flash size */
696 		if (ddi_dev_regsize(devinfo, rnumber,
697 		    &mem_size) != DDI_SUCCESS) {
698 			E1000G_DEBUGLOG_0(Adapter, CE_WARN,
699 			    "ddi_dev_regsize for ICH flash failed");
700 			goto regs_map_fail;
701 		}
702 
703 		/* map flash in */
704 		if (ddi_regs_map_setup(devinfo, rnumber,
705 		    (caddr_t *)&hw->flash_address, 0,
706 		    mem_size, &e1000g_regs_acc_attr,
707 		    &osdep->ich_flash_handle) != DDI_SUCCESS) {
708 			E1000G_DEBUGLOG_0(Adapter, CE_WARN,
709 			    "ddi_regs_map_setup for ICH flash failed");
710 			goto regs_map_fail;
711 		}
712 		break;
713 	case e1000_pch_spt:
714 	case e1000_pch_cnp:
715 		/*
716 		 * On the SPT, the device flash is actually in BAR0, not a
717 		 * separate BAR. Therefore we end up setting the
718 		 * ich_flash_handle to be the same as the register handle.
719 		 * We mark the same to reduce the confusion in the other
720 		 * functions and macros. Though this does make the set up and
721 		 * tear-down path slightly more complicated.
722 		 */
723 		osdep->ich_flash_handle = osdep->reg_handle;
724 		hw->flash_address = hw->hw_addr;
725 	default:
726 		break;
727 	}
728 
729 	/* map io space */
730 	switch (hw->mac.type) {
731 	case e1000_82544:
732 	case e1000_82540:
733 	case e1000_82545:
734 	case e1000_82546:
735 	case e1000_82541:
736 	case e1000_82541_rev_2:
737 		/* find the IO bar */
738 		rnumber = -1;
739 		for (offset = PCI_CONF_BASE1;
740 		    offset <= PCI_CONF_BASE5; offset += 4) {
741 			if (e1000g_get_bar_info(devinfo, offset, &bar_info)
742 			    != DDI_SUCCESS)
743 				continue;
744 			if (bar_info.type == E1000G_BAR_IO) {
745 				rnumber = bar_info.rnumber;
746 				break;
747 			}
748 		}
749 
750 		if (rnumber < 0) {
751 			E1000G_DEBUGLOG_0(Adapter, CE_WARN,
752 			    "No io space is found");
753 			goto regs_map_fail;
754 		}
755 
756 		/* get io space size */
757 		if (ddi_dev_regsize(devinfo, rnumber,
758 		    &mem_size) != DDI_SUCCESS) {
759 			E1000G_DEBUGLOG_0(Adapter, CE_WARN,
760 			    "ddi_dev_regsize for io space failed");
761 			goto regs_map_fail;
762 		}
763 
764 		/* map io space */
765 		if ((ddi_regs_map_setup(devinfo, rnumber,
766 		    (caddr_t *)&hw->io_base, 0, mem_size,
767 		    &e1000g_regs_acc_attr,
768 		    &osdep->io_reg_handle)) != DDI_SUCCESS) {
769 			E1000G_DEBUGLOG_0(Adapter, CE_WARN,
770 			    "ddi_regs_map_setup for io space failed");
771 			goto regs_map_fail;
772 		}
773 		break;
774 	default:
775 		hw->io_base = 0;
776 		break;
777 	}
778 
779 	return (DDI_SUCCESS);
780 
781 regs_map_fail:
782 	if (osdep->reg_handle != NULL)
783 		ddi_regs_map_free(&osdep->reg_handle);
784 	if (osdep->ich_flash_handle != NULL && hw->mac.type < e1000_pch_spt)
785 		ddi_regs_map_free(&osdep->ich_flash_handle);
786 	return (DDI_FAILURE);
787 }
788 
789 static int
790 e1000g_set_driver_params(struct e1000g *Adapter)
791 {
792 	struct e1000_hw *hw;
793 
794 	hw = &Adapter->shared;
795 
796 	/* Set MAC type and initialize hardware functions */
797 	if (e1000_setup_init_funcs(hw, B_TRUE) != E1000_SUCCESS) {
798 		E1000G_DEBUGLOG_0(Adapter, CE_WARN,
799 		    "Could not setup hardware functions");
800 		return (DDI_FAILURE);
801 	}
802 
803 	/* Get bus information */
804 	if (e1000_get_bus_info(hw) != E1000_SUCCESS) {
805 		E1000G_DEBUGLOG_0(Adapter, CE_WARN,
806 		    "Could not get bus information");
807 		return (DDI_FAILURE);
808 	}
809 
810 	e1000_read_pci_cfg(hw, PCI_COMMAND_REGISTER, &hw->bus.pci_cmd_word);
811 
812 	hw->mac.autoneg_failed = B_TRUE;
813 
814 	/* Set the autoneg_wait_to_complete flag to B_FALSE */
815 	hw->phy.autoneg_wait_to_complete = B_FALSE;
816 
817 	/* Adaptive IFS related changes */
818 	hw->mac.adaptive_ifs = B_TRUE;
819 
820 	/* Enable phy init script for IGP phy of 82541/82547 */
821 	if ((hw->mac.type == e1000_82547) ||
822 	    (hw->mac.type == e1000_82541) ||
823 	    (hw->mac.type == e1000_82547_rev_2) ||
824 	    (hw->mac.type == e1000_82541_rev_2))
825 		e1000_init_script_state_82541(hw, B_TRUE);
826 
827 	/* Enable the TTL workaround for 82541/82547 */
828 	e1000_set_ttl_workaround_state_82541(hw, B_TRUE);
829 
830 #ifdef __sparc
831 	Adapter->strip_crc = B_TRUE;
832 #else
833 	Adapter->strip_crc = B_FALSE;
834 #endif
835 
836 	/* setup the maximum MTU size of the chip */
837 	e1000g_setup_max_mtu(Adapter);
838 
839 	/* Get speed/duplex settings in conf file */
840 	hw->mac.forced_speed_duplex = ADVERTISE_100_FULL;
841 	hw->phy.autoneg_advertised = AUTONEG_ADVERTISE_SPEED_DEFAULT;
842 	e1000g_force_speed_duplex(Adapter);
843 
844 	/* Get Jumbo Frames settings in conf file */
845 	e1000g_get_max_frame_size(Adapter);
846 
847 	/* Get conf file properties */
848 	e1000g_get_conf(Adapter);
849 
850 	/* enforce PCH limits */
851 	e1000g_pch_limits(Adapter);
852 
853 	/* Set Rx/Tx buffer size */
854 	e1000g_set_bufsize(Adapter);
855 
856 	/* Master Latency Timer */
857 	Adapter->master_latency_timer = DEFAULT_MASTER_LATENCY_TIMER;
858 
859 	/* copper options */
860 	if (hw->phy.media_type == e1000_media_type_copper) {
861 		hw->phy.mdix = 0;	/* AUTO_ALL_MODES */
862 		hw->phy.disable_polarity_correction = B_FALSE;
863 		hw->phy.ms_type = e1000_ms_hw_default;	/* E1000_MASTER_SLAVE */
864 	}
865 
866 	/* The initial link state should be "unknown" */
867 	Adapter->link_state = LINK_STATE_UNKNOWN;
868 
869 	/* Initialize rx parameters */
870 	Adapter->rx_intr_delay = DEFAULT_RX_INTR_DELAY;
871 	Adapter->rx_intr_abs_delay = DEFAULT_RX_INTR_ABS_DELAY;
872 
873 	/* Initialize tx parameters */
874 	Adapter->tx_intr_enable = DEFAULT_TX_INTR_ENABLE;
875 	Adapter->tx_bcopy_thresh = DEFAULT_TX_BCOPY_THRESHOLD;
876 	Adapter->tx_intr_delay = DEFAULT_TX_INTR_DELAY;
877 	Adapter->tx_intr_abs_delay = DEFAULT_TX_INTR_ABS_DELAY;
878 
879 	/* Initialize rx parameters */
880 	Adapter->rx_bcopy_thresh = DEFAULT_RX_BCOPY_THRESHOLD;
881 
882 	return (DDI_SUCCESS);
883 }
884 
885 static void
886 e1000g_setup_max_mtu(struct e1000g *Adapter)
887 {
888 	struct e1000_mac_info *mac = &Adapter->shared.mac;
889 	struct e1000_phy_info *phy = &Adapter->shared.phy;
890 
891 	switch (mac->type) {
892 	/* types that do not support jumbo frames */
893 	case e1000_ich8lan:
894 	case e1000_82573:
895 	case e1000_82583:
896 		Adapter->max_mtu = ETHERMTU;
897 		break;
898 	/* ich9 supports jumbo frames except on one phy type */
899 	case e1000_ich9lan:
900 		if (phy->type == e1000_phy_ife)
901 			Adapter->max_mtu = ETHERMTU;
902 		else
903 			Adapter->max_mtu = MAXIMUM_MTU_9K;
904 		break;
905 	/* pch can do jumbo frames up to 4K */
906 	case e1000_pchlan:
907 		Adapter->max_mtu = MAXIMUM_MTU_4K;
908 		break;
909 	/* pch2 can do jumbo frames up to 9K */
910 	case e1000_pch2lan:
911 	case e1000_pch_lpt:
912 	case e1000_pch_spt:
913 	case e1000_pch_cnp:
914 		Adapter->max_mtu = MAXIMUM_MTU_9K;
915 		break;
916 	/* types with a special limit */
917 	case e1000_82571:
918 	case e1000_82572:
919 	case e1000_82574:
920 	case e1000_80003es2lan:
921 	case e1000_ich10lan:
922 		if (e1000g_jumbo_mtu >= ETHERMTU &&
923 		    e1000g_jumbo_mtu <= MAXIMUM_MTU_9K) {
924 			Adapter->max_mtu = e1000g_jumbo_mtu;
925 		} else {
926 			Adapter->max_mtu = MAXIMUM_MTU_9K;
927 		}
928 		break;
929 	/* default limit is 16K */
930 	default:
931 		Adapter->max_mtu = FRAME_SIZE_UPTO_16K -
932 		    sizeof (struct ether_vlan_header) - ETHERFCSL;
933 		break;
934 	}
935 }
936 
937 static void
938 e1000g_set_bufsize(struct e1000g *Adapter)
939 {
940 	struct e1000_mac_info *mac = &Adapter->shared.mac;
941 	uint64_t rx_size;
942 	uint64_t tx_size;
943 
944 	dev_info_t *devinfo = Adapter->dip;
945 #ifdef __sparc
946 	ulong_t iommu_pagesize;
947 #endif
948 	/* Get the system page size */
949 	Adapter->sys_page_sz = ddi_ptob(devinfo, (ulong_t)1);
950 
951 #ifdef __sparc
952 	iommu_pagesize = dvma_pagesize(devinfo);
953 	if (iommu_pagesize != 0) {
954 		if (Adapter->sys_page_sz == iommu_pagesize) {
955 			if (iommu_pagesize > 0x4000)
956 				Adapter->sys_page_sz = 0x4000;
957 		} else {
958 			if (Adapter->sys_page_sz > iommu_pagesize)
959 				Adapter->sys_page_sz = iommu_pagesize;
960 		}
961 	}
962 	if (Adapter->lso_enable) {
963 		Adapter->dvma_page_num = E1000_LSO_MAXLEN /
964 		    Adapter->sys_page_sz + E1000G_DEFAULT_DVMA_PAGE_NUM;
965 	} else {
966 		Adapter->dvma_page_num = Adapter->max_frame_size /
967 		    Adapter->sys_page_sz + E1000G_DEFAULT_DVMA_PAGE_NUM;
968 	}
969 	ASSERT(Adapter->dvma_page_num >= E1000G_DEFAULT_DVMA_PAGE_NUM);
970 #endif
971 
972 	Adapter->min_frame_size = ETHERMIN + ETHERFCSL;
973 
974 	if (Adapter->mem_workaround_82546 &&
975 	    ((mac->type == e1000_82545) ||
976 	    (mac->type == e1000_82546) ||
977 	    (mac->type == e1000_82546_rev_3))) {
978 		Adapter->rx_buffer_size = E1000_RX_BUFFER_SIZE_2K;
979 	} else {
980 		rx_size = Adapter->max_frame_size;
981 		if ((rx_size > FRAME_SIZE_UPTO_2K) &&
982 		    (rx_size <= FRAME_SIZE_UPTO_4K))
983 			Adapter->rx_buffer_size = E1000_RX_BUFFER_SIZE_4K;
984 		else if ((rx_size > FRAME_SIZE_UPTO_4K) &&
985 		    (rx_size <= FRAME_SIZE_UPTO_8K))
986 			Adapter->rx_buffer_size = E1000_RX_BUFFER_SIZE_8K;
987 		else if ((rx_size > FRAME_SIZE_UPTO_8K) &&
988 		    (rx_size <= FRAME_SIZE_UPTO_16K))
989 			Adapter->rx_buffer_size = E1000_RX_BUFFER_SIZE_16K;
990 		else
991 			Adapter->rx_buffer_size = E1000_RX_BUFFER_SIZE_2K;
992 	}
993 	Adapter->rx_buffer_size += E1000G_IPALIGNROOM;
994 
995 	tx_size = Adapter->max_frame_size;
996 	if ((tx_size > FRAME_SIZE_UPTO_2K) && (tx_size <= FRAME_SIZE_UPTO_4K))
997 		Adapter->tx_buffer_size = E1000_TX_BUFFER_SIZE_4K;
998 	else if ((tx_size > FRAME_SIZE_UPTO_4K) &&
999 	    (tx_size <= FRAME_SIZE_UPTO_8K))
1000 		Adapter->tx_buffer_size = E1000_TX_BUFFER_SIZE_8K;
1001 	else if ((tx_size > FRAME_SIZE_UPTO_8K) &&
1002 	    (tx_size <= FRAME_SIZE_UPTO_16K))
1003 		Adapter->tx_buffer_size = E1000_TX_BUFFER_SIZE_16K;
1004 	else
1005 		Adapter->tx_buffer_size = E1000_TX_BUFFER_SIZE_2K;
1006 
1007 	/*
1008 	 * For Wiseman adapters we have an requirement of having receive
1009 	 * buffers aligned at 256 byte boundary. Since Livengood does not
1010 	 * require this and forcing it for all hardwares will have
1011 	 * performance implications, I am making it applicable only for
1012 	 * Wiseman and for Jumbo frames enabled mode as rest of the time,
1013 	 * it is okay to have normal frames...but it does involve a
1014 	 * potential risk where we may loose data if buffer is not
1015 	 * aligned...so all wiseman boards to have 256 byte aligned
1016 	 * buffers
1017 	 */
1018 	if (mac->type < e1000_82543)
1019 		Adapter->rx_buf_align = RECEIVE_BUFFER_ALIGN_SIZE;
1020 	else
1021 		Adapter->rx_buf_align = 1;
1022 }
1023 
1024 /*
1025  * e1000g_detach - driver detach
1026  *
1027  * The detach() function is the complement of the attach routine.
1028  * If cmd is set to DDI_DETACH, detach() is used to remove  the
1029  * state  associated  with  a  given  instance of a device node
1030  * prior to the removal of that instance from the system.
1031  *
1032  * The detach() function will be called once for each  instance
1033  * of the device for which there has been a successful attach()
1034  * once there are no longer  any  opens  on  the  device.
1035  *
1036  * Interrupts routine are disabled, All memory allocated by this
1037  * driver are freed.
1038  */
1039 static int
1040 e1000g_detach(dev_info_t *devinfo, ddi_detach_cmd_t cmd)
1041 {
1042 	struct e1000g *Adapter;
1043 	boolean_t rx_drain;
1044 
1045 	switch (cmd) {
1046 	default:
1047 		return (DDI_FAILURE);
1048 
1049 	case DDI_SUSPEND:
1050 		return (e1000g_suspend(devinfo));
1051 
1052 	case DDI_DETACH:
1053 		break;
1054 	}
1055 
1056 	Adapter = (struct e1000g *)ddi_get_driver_private(devinfo);
1057 	if (Adapter == NULL)
1058 		return (DDI_FAILURE);
1059 
1060 	rx_drain = e1000g_rx_drain(Adapter);
1061 	if (!rx_drain && !e1000g_force_detach)
1062 		return (DDI_FAILURE);
1063 
1064 	if (mac_unregister(Adapter->mh) != 0) {
1065 		e1000g_log(Adapter, CE_WARN, "Unregister MAC failed");
1066 		return (DDI_FAILURE);
1067 	}
1068 	Adapter->attach_progress &= ~ATTACH_PROGRESS_MAC;
1069 
1070 	ASSERT(!(Adapter->e1000g_state & E1000G_STARTED));
1071 
1072 	if (!e1000g_force_detach && !rx_drain)
1073 		return (DDI_FAILURE);
1074 
1075 	e1000g_unattach(devinfo, Adapter);
1076 
1077 	return (DDI_SUCCESS);
1078 }
1079 
1080 /*
1081  * e1000g_free_priv_devi_node - free a priv_dip entry for driver instance
1082  */
1083 void
1084 e1000g_free_priv_devi_node(private_devi_list_t *devi_node)
1085 {
1086 	ASSERT(e1000g_private_devi_list != NULL);
1087 	ASSERT(devi_node != NULL);
1088 
1089 	if (devi_node->prev != NULL)
1090 		devi_node->prev->next = devi_node->next;
1091 	if (devi_node->next != NULL)
1092 		devi_node->next->prev = devi_node->prev;
1093 	if (devi_node == e1000g_private_devi_list)
1094 		e1000g_private_devi_list = devi_node->next;
1095 
1096 	kmem_free(devi_node->priv_dip,
1097 	    sizeof (struct dev_info));
1098 	kmem_free(devi_node,
1099 	    sizeof (private_devi_list_t));
1100 }
1101 
1102 static void
1103 e1000g_unattach(dev_info_t *devinfo, struct e1000g *Adapter)
1104 {
1105 	private_devi_list_t *devi_node;
1106 	int result;
1107 
1108 	if (Adapter->e1000g_blink != NULL) {
1109 		ddi_periodic_delete(Adapter->e1000g_blink);
1110 		Adapter->e1000g_blink = NULL;
1111 	}
1112 
1113 	if (Adapter->attach_progress & ATTACH_PROGRESS_ENABLE_INTR) {
1114 		(void) e1000g_disable_intrs(Adapter);
1115 	}
1116 
1117 	if (Adapter->attach_progress & ATTACH_PROGRESS_MAC) {
1118 		(void) mac_unregister(Adapter->mh);
1119 	}
1120 
1121 	if (Adapter->attach_progress & ATTACH_PROGRESS_ADD_INTR) {
1122 		(void) e1000g_rem_intrs(Adapter);
1123 	}
1124 
1125 	if (Adapter->attach_progress & ATTACH_PROGRESS_SETUP) {
1126 		(void) ddi_prop_remove_all(devinfo);
1127 	}
1128 
1129 	if (Adapter->attach_progress & ATTACH_PROGRESS_KSTATS) {
1130 		kstat_delete((kstat_t *)Adapter->e1000g_ksp);
1131 	}
1132 
1133 	if (Adapter->attach_progress & ATTACH_PROGRESS_INIT) {
1134 		stop_link_timer(Adapter);
1135 
1136 		mutex_enter(&e1000g_nvm_lock);
1137 		result = e1000_reset_hw(&Adapter->shared);
1138 		mutex_exit(&e1000g_nvm_lock);
1139 
1140 		if (result != E1000_SUCCESS) {
1141 			e1000g_fm_ereport(Adapter, DDI_FM_DEVICE_INVAL_STATE);
1142 			ddi_fm_service_impact(Adapter->dip, DDI_SERVICE_LOST);
1143 		}
1144 	}
1145 
1146 	e1000g_release_multicast(Adapter);
1147 
1148 	if (Adapter->attach_progress & ATTACH_PROGRESS_REGS_MAP) {
1149 		if (Adapter->osdep.reg_handle != NULL)
1150 			ddi_regs_map_free(&Adapter->osdep.reg_handle);
1151 		if (Adapter->osdep.ich_flash_handle != NULL &&
1152 		    Adapter->shared.mac.type < e1000_pch_spt)
1153 			ddi_regs_map_free(&Adapter->osdep.ich_flash_handle);
1154 		if (Adapter->osdep.io_reg_handle != NULL)
1155 			ddi_regs_map_free(&Adapter->osdep.io_reg_handle);
1156 	}
1157 
1158 	if (Adapter->attach_progress & ATTACH_PROGRESS_PCI_CONFIG) {
1159 		if (Adapter->osdep.cfg_handle != NULL)
1160 			pci_config_teardown(&Adapter->osdep.cfg_handle);
1161 	}
1162 
1163 	if (Adapter->attach_progress & ATTACH_PROGRESS_LOCKS) {
1164 		e1000g_destroy_locks(Adapter);
1165 	}
1166 
1167 	if (Adapter->attach_progress & ATTACH_PROGRESS_FMINIT) {
1168 		e1000g_fm_fini(Adapter);
1169 	}
1170 
1171 	mutex_enter(&e1000g_rx_detach_lock);
1172 	if (e1000g_force_detach && (Adapter->priv_devi_node != NULL)) {
1173 		devi_node = Adapter->priv_devi_node;
1174 		devi_node->flag |= E1000G_PRIV_DEVI_DETACH;
1175 
1176 		if (devi_node->pending_rx_count == 0) {
1177 			e1000g_free_priv_devi_node(devi_node);
1178 		}
1179 	}
1180 	mutex_exit(&e1000g_rx_detach_lock);
1181 
1182 	kmem_free((caddr_t)Adapter, sizeof (struct e1000g));
1183 
1184 	/*
1185 	 * Another hotplug spec requirement,
1186 	 * run ddi_set_driver_private(devinfo, null);
1187 	 */
1188 	ddi_set_driver_private(devinfo, NULL);
1189 }
1190 
1191 /*
1192  * Get the BAR type and rnumber for a given PCI BAR offset
1193  */
1194 static int
1195 e1000g_get_bar_info(dev_info_t *dip, int bar_offset, bar_info_t *bar_info)
1196 {
1197 	pci_regspec_t *regs;
1198 	uint_t regs_length;
1199 	int type, rnumber, rcount;
1200 
1201 	ASSERT((bar_offset >= PCI_CONF_BASE0) &&
1202 	    (bar_offset <= PCI_CONF_BASE5));
1203 
1204 	/*
1205 	 * Get the DDI "reg" property
1206 	 */
1207 	if (ddi_prop_lookup_int_array(DDI_DEV_T_ANY, dip,
1208 	    DDI_PROP_DONTPASS, "reg", (int **)&regs,
1209 	    &regs_length) != DDI_PROP_SUCCESS) {
1210 		return (DDI_FAILURE);
1211 	}
1212 
1213 	rcount = regs_length * sizeof (int) / sizeof (pci_regspec_t);
1214 	/*
1215 	 * Check the BAR offset
1216 	 */
1217 	for (rnumber = 0; rnumber < rcount; ++rnumber) {
1218 		if (PCI_REG_REG_G(regs[rnumber].pci_phys_hi) == bar_offset) {
1219 			type = regs[rnumber].pci_phys_hi & PCI_ADDR_MASK;
1220 			break;
1221 		}
1222 	}
1223 
1224 	ddi_prop_free(regs);
1225 
1226 	if (rnumber >= rcount)
1227 		return (DDI_FAILURE);
1228 
1229 	switch (type) {
1230 	case PCI_ADDR_CONFIG:
1231 		bar_info->type = E1000G_BAR_CONFIG;
1232 		break;
1233 	case PCI_ADDR_IO:
1234 		bar_info->type = E1000G_BAR_IO;
1235 		break;
1236 	case PCI_ADDR_MEM32:
1237 		bar_info->type = E1000G_BAR_MEM32;
1238 		break;
1239 	case PCI_ADDR_MEM64:
1240 		bar_info->type = E1000G_BAR_MEM64;
1241 		break;
1242 	default:
1243 		return (DDI_FAILURE);
1244 	}
1245 	bar_info->rnumber = rnumber;
1246 	return (DDI_SUCCESS);
1247 }
1248 
1249 static void
1250 e1000g_init_locks(struct e1000g *Adapter)
1251 {
1252 	e1000g_tx_ring_t *tx_ring;
1253 	e1000g_rx_ring_t *rx_ring;
1254 
1255 	rw_init(&Adapter->chip_lock, NULL,
1256 	    RW_DRIVER, DDI_INTR_PRI(Adapter->intr_pri));
1257 	mutex_init(&Adapter->link_lock, NULL,
1258 	    MUTEX_DRIVER, DDI_INTR_PRI(Adapter->intr_pri));
1259 	mutex_init(&Adapter->watchdog_lock, NULL,
1260 	    MUTEX_DRIVER, DDI_INTR_PRI(Adapter->intr_pri));
1261 
1262 	tx_ring = Adapter->tx_ring;
1263 
1264 	mutex_init(&tx_ring->tx_lock, NULL,
1265 	    MUTEX_DRIVER, DDI_INTR_PRI(Adapter->intr_pri));
1266 	mutex_init(&tx_ring->usedlist_lock, NULL,
1267 	    MUTEX_DRIVER, DDI_INTR_PRI(Adapter->intr_pri));
1268 	mutex_init(&tx_ring->freelist_lock, NULL,
1269 	    MUTEX_DRIVER, DDI_INTR_PRI(Adapter->intr_pri));
1270 
1271 	rx_ring = Adapter->rx_ring;
1272 
1273 	mutex_init(&rx_ring->rx_lock, NULL,
1274 	    MUTEX_DRIVER, DDI_INTR_PRI(Adapter->intr_pri));
1275 
1276 	mutex_init(&Adapter->e1000g_led_lock, NULL,
1277 	    MUTEX_DRIVER, DDI_INTR_PRI(Adapter->intr_pri));
1278 }
1279 
1280 static void
1281 e1000g_destroy_locks(struct e1000g *Adapter)
1282 {
1283 	e1000g_tx_ring_t *tx_ring;
1284 	e1000g_rx_ring_t *rx_ring;
1285 
1286 	mutex_destroy(&Adapter->e1000g_led_lock);
1287 
1288 	tx_ring = Adapter->tx_ring;
1289 	mutex_destroy(&tx_ring->tx_lock);
1290 	mutex_destroy(&tx_ring->usedlist_lock);
1291 	mutex_destroy(&tx_ring->freelist_lock);
1292 
1293 	rx_ring = Adapter->rx_ring;
1294 	mutex_destroy(&rx_ring->rx_lock);
1295 
1296 	mutex_destroy(&Adapter->link_lock);
1297 	mutex_destroy(&Adapter->watchdog_lock);
1298 	rw_destroy(&Adapter->chip_lock);
1299 
1300 	/* destory mutex initialized in shared code */
1301 	e1000_destroy_hw_mutex(&Adapter->shared);
1302 }
1303 
1304 static int
1305 e1000g_resume(dev_info_t *devinfo)
1306 {
1307 	struct e1000g *Adapter;
1308 
1309 	Adapter = (struct e1000g *)ddi_get_driver_private(devinfo);
1310 	if (Adapter == NULL)
1311 		e1000g_log(Adapter, CE_PANIC,
1312 		    "Instance pointer is null\n");
1313 
1314 	if (Adapter->dip != devinfo)
1315 		e1000g_log(Adapter, CE_PANIC,
1316 		    "Devinfo is not the same as saved devinfo\n");
1317 
1318 	rw_enter(&Adapter->chip_lock, RW_WRITER);
1319 
1320 	if (Adapter->e1000g_state & E1000G_STARTED) {
1321 		if (e1000g_start(Adapter, B_FALSE) != DDI_SUCCESS) {
1322 			rw_exit(&Adapter->chip_lock);
1323 			/*
1324 			 * We note the failure, but return success, as the
1325 			 * system is still usable without this controller.
1326 			 */
1327 			e1000g_log(Adapter, CE_WARN,
1328 			    "e1000g_resume: failed to restart controller\n");
1329 			return (DDI_SUCCESS);
1330 		}
1331 		/* Enable and start the watchdog timer */
1332 		enable_watchdog_timer(Adapter);
1333 	}
1334 
1335 	Adapter->e1000g_state &= ~E1000G_SUSPENDED;
1336 
1337 	rw_exit(&Adapter->chip_lock);
1338 
1339 	return (DDI_SUCCESS);
1340 }
1341 
1342 static int
1343 e1000g_suspend(dev_info_t *devinfo)
1344 {
1345 	struct e1000g *Adapter;
1346 
1347 	Adapter = (struct e1000g *)ddi_get_driver_private(devinfo);
1348 	if (Adapter == NULL)
1349 		return (DDI_FAILURE);
1350 
1351 	rw_enter(&Adapter->chip_lock, RW_WRITER);
1352 
1353 	Adapter->e1000g_state |= E1000G_SUSPENDED;
1354 
1355 	/* if the port isn't plumbed, we can simply return */
1356 	if (!(Adapter->e1000g_state & E1000G_STARTED)) {
1357 		rw_exit(&Adapter->chip_lock);
1358 		return (DDI_SUCCESS);
1359 	}
1360 
1361 	e1000g_stop(Adapter, B_FALSE);
1362 
1363 	rw_exit(&Adapter->chip_lock);
1364 
1365 	/* Disable and stop all the timers */
1366 	disable_watchdog_timer(Adapter);
1367 	stop_link_timer(Adapter);
1368 	stop_82547_timer(Adapter->tx_ring);
1369 
1370 	return (DDI_SUCCESS);
1371 }
1372 
1373 static int
1374 e1000g_init(struct e1000g *Adapter)
1375 {
1376 	uint32_t pba;
1377 	uint32_t high_water;
1378 	struct e1000_hw *hw;
1379 	clock_t link_timeout;
1380 	int result;
1381 
1382 	hw = &Adapter->shared;
1383 
1384 	/*
1385 	 * reset to put the hardware in a known state
1386 	 * before we try to do anything with the eeprom
1387 	 */
1388 	mutex_enter(&e1000g_nvm_lock);
1389 	result = e1000_reset_hw(hw);
1390 	mutex_exit(&e1000g_nvm_lock);
1391 
1392 	if (result != E1000_SUCCESS) {
1393 		e1000g_fm_ereport(Adapter, DDI_FM_DEVICE_INVAL_STATE);
1394 		goto init_fail;
1395 	}
1396 
1397 	mutex_enter(&e1000g_nvm_lock);
1398 	result = e1000_validate_nvm_checksum(hw);
1399 	if (result < E1000_SUCCESS) {
1400 		/*
1401 		 * Some PCI-E parts fail the first check due to
1402 		 * the link being in sleep state.  Call it again,
1403 		 * if it fails a second time its a real issue.
1404 		 */
1405 		result = e1000_validate_nvm_checksum(hw);
1406 	}
1407 	mutex_exit(&e1000g_nvm_lock);
1408 
1409 	if (result < E1000_SUCCESS) {
1410 		e1000g_log(Adapter, CE_WARN,
1411 		    "Invalid NVM checksum. Please contact "
1412 		    "the vendor to update the NVM.");
1413 		e1000g_fm_ereport(Adapter, DDI_FM_DEVICE_INVAL_STATE);
1414 		goto init_fail;
1415 	}
1416 
1417 	result = 0;
1418 #ifdef __sparc
1419 	/*
1420 	 * First, we try to get the local ethernet address from OBP. If
1421 	 * failed, then we get it from the EEPROM of NIC card.
1422 	 */
1423 	result = e1000g_find_mac_address(Adapter);
1424 #endif
1425 	/* Get the local ethernet address. */
1426 	if (!result) {
1427 		mutex_enter(&e1000g_nvm_lock);
1428 		result = e1000_read_mac_addr(hw);
1429 		mutex_exit(&e1000g_nvm_lock);
1430 	}
1431 
1432 	if (result < E1000_SUCCESS) {
1433 		e1000g_log(Adapter, CE_WARN, "Read mac addr failed");
1434 		e1000g_fm_ereport(Adapter, DDI_FM_DEVICE_INVAL_STATE);
1435 		goto init_fail;
1436 	}
1437 
1438 	/* check for valid mac address */
1439 	if (!is_valid_mac_addr(hw->mac.addr)) {
1440 		e1000g_log(Adapter, CE_WARN, "Invalid mac addr");
1441 		e1000g_fm_ereport(Adapter, DDI_FM_DEVICE_INVAL_STATE);
1442 		goto init_fail;
1443 	}
1444 
1445 	/* Set LAA state for 82571 chipset */
1446 	e1000_set_laa_state_82571(hw, B_TRUE);
1447 
1448 	/* Master Latency Timer implementation */
1449 	if (Adapter->master_latency_timer) {
1450 		pci_config_put8(Adapter->osdep.cfg_handle,
1451 		    PCI_CONF_LATENCY_TIMER, Adapter->master_latency_timer);
1452 	}
1453 
1454 	if (hw->mac.type < e1000_82547) {
1455 		/*
1456 		 * Total FIFO is 64K
1457 		 */
1458 		if (Adapter->max_frame_size > FRAME_SIZE_UPTO_8K)
1459 			pba = E1000_PBA_40K;	/* 40K for Rx, 24K for Tx */
1460 		else
1461 			pba = E1000_PBA_48K;	/* 48K for Rx, 16K for Tx */
1462 	} else if ((hw->mac.type == e1000_82571) ||
1463 	    (hw->mac.type == e1000_82572) ||
1464 	    (hw->mac.type == e1000_80003es2lan)) {
1465 		/*
1466 		 * Total FIFO is 48K
1467 		 */
1468 		if (Adapter->max_frame_size > FRAME_SIZE_UPTO_8K)
1469 			pba = E1000_PBA_30K;	/* 30K for Rx, 18K for Tx */
1470 		else
1471 			pba = E1000_PBA_38K;	/* 38K for Rx, 10K for Tx */
1472 	} else if (hw->mac.type == e1000_82573) {
1473 		pba = E1000_PBA_20K;		/* 20K for Rx, 12K for Tx */
1474 	} else if (hw->mac.type == e1000_82574) {
1475 		/* Keep adapter default: 20K for Rx, 20K for Tx */
1476 		pba = E1000_READ_REG(hw, E1000_PBA);
1477 	} else if (hw->mac.type == e1000_ich8lan) {
1478 		pba = E1000_PBA_8K;		/* 8K for Rx, 12K for Tx */
1479 	} else if (hw->mac.type == e1000_ich9lan) {
1480 		pba = E1000_PBA_10K;
1481 	} else if (hw->mac.type == e1000_ich10lan) {
1482 		pba = E1000_PBA_10K;
1483 	} else if (hw->mac.type == e1000_pchlan) {
1484 		pba = E1000_PBA_26K;
1485 	} else if (hw->mac.type == e1000_pch2lan) {
1486 		pba = E1000_PBA_26K;
1487 	} else if (hw->mac.type == e1000_pch_lpt) {
1488 		pba = E1000_PBA_26K;
1489 	} else if (hw->mac.type == e1000_pch_spt) {
1490 		pba = E1000_PBA_26K;
1491 	} else if (hw->mac.type == e1000_pch_cnp) {
1492 		pba = E1000_PBA_26K;
1493 	} else {
1494 		/*
1495 		 * Total FIFO is 40K
1496 		 */
1497 		if (Adapter->max_frame_size > FRAME_SIZE_UPTO_8K)
1498 			pba = E1000_PBA_22K;	/* 22K for Rx, 18K for Tx */
1499 		else
1500 			pba = E1000_PBA_30K;	/* 30K for Rx, 10K for Tx */
1501 	}
1502 	E1000_WRITE_REG(hw, E1000_PBA, pba);
1503 
1504 	/*
1505 	 * These parameters set thresholds for the adapter's generation(Tx)
1506 	 * and response(Rx) to Ethernet PAUSE frames.  These are just threshold
1507 	 * settings.  Flow control is enabled or disabled in the configuration
1508 	 * file.
1509 	 * High-water mark is set down from the top of the rx fifo (not
1510 	 * sensitive to max_frame_size) and low-water is set just below
1511 	 * high-water mark.
1512 	 * The high water mark must be low enough to fit one full frame above
1513 	 * it in the rx FIFO.  Should be the lower of:
1514 	 * 90% of the Rx FIFO size and the full Rx FIFO size minus the early
1515 	 * receive size (assuming ERT set to E1000_ERT_2048), or the full
1516 	 * Rx FIFO size minus one full frame.
1517 	 */
1518 	high_water = min(((pba << 10) * 9 / 10),
1519 	    ((hw->mac.type == e1000_82573 || hw->mac.type == e1000_82574 ||
1520 	    hw->mac.type == e1000_ich9lan || hw->mac.type == e1000_ich10lan) ?
1521 	    ((pba << 10) - (E1000_ERT_2048 << 3)) :
1522 	    ((pba << 10) - Adapter->max_frame_size)));
1523 
1524 	hw->fc.high_water = high_water & 0xFFF8;
1525 	hw->fc.low_water = hw->fc.high_water - 8;
1526 
1527 	if (hw->mac.type == e1000_80003es2lan)
1528 		hw->fc.pause_time = 0xFFFF;
1529 	else
1530 		hw->fc.pause_time = E1000_FC_PAUSE_TIME;
1531 	hw->fc.send_xon = B_TRUE;
1532 
1533 	/*
1534 	 * Reset the adapter hardware the second time.
1535 	 */
1536 	mutex_enter(&e1000g_nvm_lock);
1537 	result = e1000_reset_hw(hw);
1538 	mutex_exit(&e1000g_nvm_lock);
1539 
1540 	if (result != E1000_SUCCESS) {
1541 		e1000g_fm_ereport(Adapter, DDI_FM_DEVICE_INVAL_STATE);
1542 		goto init_fail;
1543 	}
1544 
1545 	/* disable wakeup control by default */
1546 	if (hw->mac.type >= e1000_82544)
1547 		E1000_WRITE_REG(hw, E1000_WUC, 0);
1548 
1549 	/*
1550 	 * MWI should be disabled on 82546.
1551 	 */
1552 	if (hw->mac.type == e1000_82546)
1553 		e1000_pci_clear_mwi(hw);
1554 	else
1555 		e1000_pci_set_mwi(hw);
1556 
1557 	/*
1558 	 * Configure/Initialize hardware
1559 	 */
1560 	mutex_enter(&e1000g_nvm_lock);
1561 	result = e1000_init_hw(hw);
1562 	mutex_exit(&e1000g_nvm_lock);
1563 
1564 	if (result < E1000_SUCCESS) {
1565 		e1000g_log(Adapter, CE_WARN, "Initialize hw failed");
1566 		e1000g_fm_ereport(Adapter, DDI_FM_DEVICE_INVAL_STATE);
1567 		goto init_fail;
1568 	}
1569 
1570 	/*
1571 	 * Restore LED settings to the default from EEPROM
1572 	 * to meet the standard for Sun platforms.
1573 	 */
1574 	(void) e1000_cleanup_led(hw);
1575 
1576 	/* Disable Smart Power Down */
1577 	phy_spd_state(hw, B_FALSE);
1578 
1579 	/* Make sure driver has control */
1580 	e1000g_get_driver_control(hw);
1581 
1582 	/*
1583 	 * Initialize unicast addresses.
1584 	 */
1585 	e1000g_init_unicst(Adapter);
1586 
1587 	/*
1588 	 * Setup and initialize the mctable structures.  After this routine
1589 	 * completes  Multicast table will be set
1590 	 */
1591 	e1000_update_mc_addr_list(hw,
1592 	    (uint8_t *)Adapter->mcast_table, Adapter->mcast_count);
1593 	msec_delay(5);
1594 
1595 	/*
1596 	 * Implement Adaptive IFS
1597 	 */
1598 	e1000_reset_adaptive(hw);
1599 
1600 	/* Setup Interrupt Throttling Register */
1601 	if (hw->mac.type >= e1000_82540) {
1602 		E1000_WRITE_REG(hw, E1000_ITR, Adapter->intr_throttling_rate);
1603 	} else
1604 		Adapter->intr_adaptive = B_FALSE;
1605 
1606 	/* Start the timer for link setup */
1607 	if (hw->mac.autoneg)
1608 		link_timeout = PHY_AUTO_NEG_LIMIT * drv_usectohz(100000);
1609 	else
1610 		link_timeout = PHY_FORCE_LIMIT * drv_usectohz(100000);
1611 
1612 	mutex_enter(&Adapter->link_lock);
1613 	if (hw->phy.autoneg_wait_to_complete) {
1614 		Adapter->link_complete = B_TRUE;
1615 	} else {
1616 		Adapter->link_complete = B_FALSE;
1617 		Adapter->link_tid = timeout(e1000g_link_timer,
1618 		    (void *)Adapter, link_timeout);
1619 	}
1620 	mutex_exit(&Adapter->link_lock);
1621 
1622 	/* Save the state of the phy */
1623 	e1000g_get_phy_state(Adapter);
1624 
1625 	e1000g_param_sync(Adapter);
1626 
1627 	Adapter->init_count++;
1628 
1629 	if (e1000g_check_acc_handle(Adapter->osdep.cfg_handle) != DDI_FM_OK) {
1630 		goto init_fail;
1631 	}
1632 	if (e1000g_check_acc_handle(Adapter->osdep.reg_handle) != DDI_FM_OK) {
1633 		goto init_fail;
1634 	}
1635 
1636 	Adapter->poll_mode = e1000g_poll_mode;
1637 
1638 	return (DDI_SUCCESS);
1639 
1640 init_fail:
1641 	ddi_fm_service_impact(Adapter->dip, DDI_SERVICE_LOST);
1642 	return (DDI_FAILURE);
1643 }
1644 
1645 static int
1646 e1000g_alloc_rx_data(struct e1000g *Adapter)
1647 {
1648 	e1000g_rx_ring_t *rx_ring;
1649 	e1000g_rx_data_t *rx_data;
1650 
1651 	rx_ring = Adapter->rx_ring;
1652 
1653 	rx_data = kmem_zalloc(sizeof (e1000g_rx_data_t), KM_NOSLEEP);
1654 
1655 	if (rx_data == NULL)
1656 		return (DDI_FAILURE);
1657 
1658 	rx_data->priv_devi_node = Adapter->priv_devi_node;
1659 	rx_data->rx_ring = rx_ring;
1660 
1661 	mutex_init(&rx_data->freelist_lock, NULL,
1662 	    MUTEX_DRIVER, DDI_INTR_PRI(Adapter->intr_pri));
1663 	mutex_init(&rx_data->recycle_lock, NULL,
1664 	    MUTEX_DRIVER, DDI_INTR_PRI(Adapter->intr_pri));
1665 
1666 	rx_ring->rx_data = rx_data;
1667 
1668 	return (DDI_SUCCESS);
1669 }
1670 
1671 void
1672 e1000g_free_rx_pending_buffers(e1000g_rx_data_t *rx_data)
1673 {
1674 	rx_sw_packet_t *packet, *next_packet;
1675 
1676 	if (rx_data == NULL)
1677 		return;
1678 
1679 	packet = rx_data->packet_area;
1680 	while (packet != NULL) {
1681 		next_packet = packet->next;
1682 		e1000g_free_rx_sw_packet(packet, B_TRUE);
1683 		packet = next_packet;
1684 	}
1685 	rx_data->packet_area = NULL;
1686 }
1687 
1688 void
1689 e1000g_free_rx_data(e1000g_rx_data_t *rx_data)
1690 {
1691 	if (rx_data == NULL)
1692 		return;
1693 
1694 	mutex_destroy(&rx_data->freelist_lock);
1695 	mutex_destroy(&rx_data->recycle_lock);
1696 
1697 	kmem_free(rx_data, sizeof (e1000g_rx_data_t));
1698 }
1699 
1700 /*
1701  * Check if the link is up
1702  */
1703 static boolean_t
1704 e1000g_link_up(struct e1000g *Adapter)
1705 {
1706 	struct e1000_hw *hw = &Adapter->shared;
1707 	boolean_t link_up = B_FALSE;
1708 
1709 	/*
1710 	 * get_link_status is set in the interrupt handler on link-status-change
1711 	 * or rx sequence error interrupt.  get_link_status will stay
1712 	 * false until the e1000_check_for_link establishes link only
1713 	 * for copper adapters.
1714 	 */
1715 	switch (hw->phy.media_type) {
1716 	case e1000_media_type_copper:
1717 		if (hw->mac.get_link_status) {
1718 			/*
1719 			 * SPT and newer devices need a bit of extra time before
1720 			 * we ask them.
1721 			 */
1722 			if (hw->mac.type >= e1000_pch_spt)
1723 				msec_delay(50);
1724 			(void) e1000_check_for_link(hw);
1725 			if ((E1000_READ_REG(hw, E1000_STATUS) &
1726 			    E1000_STATUS_LU)) {
1727 				link_up = B_TRUE;
1728 			} else {
1729 				link_up = !hw->mac.get_link_status;
1730 			}
1731 		} else {
1732 			link_up = B_TRUE;
1733 		}
1734 		break;
1735 	case e1000_media_type_fiber:
1736 		(void) e1000_check_for_link(hw);
1737 		link_up = (E1000_READ_REG(hw, E1000_STATUS) &
1738 		    E1000_STATUS_LU);
1739 		break;
1740 	case e1000_media_type_internal_serdes:
1741 		(void) e1000_check_for_link(hw);
1742 		link_up = hw->mac.serdes_has_link;
1743 		break;
1744 	}
1745 
1746 	return (link_up);
1747 }
1748 
1749 static void
1750 e1000g_m_ioctl(void *arg, queue_t *q, mblk_t *mp)
1751 {
1752 	struct iocblk *iocp;
1753 	struct e1000g *e1000gp;
1754 	enum ioc_reply status;
1755 
1756 	iocp = (struct iocblk *)(uintptr_t)mp->b_rptr;
1757 	iocp->ioc_error = 0;
1758 	e1000gp = (struct e1000g *)arg;
1759 
1760 	ASSERT(e1000gp);
1761 	if (e1000gp == NULL) {
1762 		miocnak(q, mp, 0, EINVAL);
1763 		return;
1764 	}
1765 
1766 	rw_enter(&e1000gp->chip_lock, RW_READER);
1767 	if (e1000gp->e1000g_state & E1000G_SUSPENDED) {
1768 		rw_exit(&e1000gp->chip_lock);
1769 		miocnak(q, mp, 0, EINVAL);
1770 		return;
1771 	}
1772 	rw_exit(&e1000gp->chip_lock);
1773 
1774 	switch (iocp->ioc_cmd) {
1775 
1776 	case LB_GET_INFO_SIZE:
1777 	case LB_GET_INFO:
1778 	case LB_GET_MODE:
1779 	case LB_SET_MODE:
1780 		status = e1000g_loopback_ioctl(e1000gp, iocp, mp);
1781 		break;
1782 
1783 
1784 #ifdef E1000G_DEBUG
1785 	case E1000G_IOC_REG_PEEK:
1786 	case E1000G_IOC_REG_POKE:
1787 		status = e1000g_pp_ioctl(e1000gp, iocp, mp);
1788 		break;
1789 	case E1000G_IOC_CHIP_RESET:
1790 		e1000gp->reset_count++;
1791 		if (e1000g_reset_adapter(e1000gp))
1792 			status = IOC_ACK;
1793 		else
1794 			status = IOC_INVAL;
1795 		break;
1796 #endif
1797 	default:
1798 		status = IOC_INVAL;
1799 		break;
1800 	}
1801 
1802 	/*
1803 	 * Decide how to reply
1804 	 */
1805 	switch (status) {
1806 	default:
1807 	case IOC_INVAL:
1808 		/*
1809 		 * Error, reply with a NAK and EINVAL or the specified error
1810 		 */
1811 		miocnak(q, mp, 0, iocp->ioc_error == 0 ?
1812 		    EINVAL : iocp->ioc_error);
1813 		break;
1814 
1815 	case IOC_DONE:
1816 		/*
1817 		 * OK, reply already sent
1818 		 */
1819 		break;
1820 
1821 	case IOC_ACK:
1822 		/*
1823 		 * OK, reply with an ACK
1824 		 */
1825 		miocack(q, mp, 0, 0);
1826 		break;
1827 
1828 	case IOC_REPLY:
1829 		/*
1830 		 * OK, send prepared reply as ACK or NAK
1831 		 */
1832 		mp->b_datap->db_type = iocp->ioc_error == 0 ?
1833 		    M_IOCACK : M_IOCNAK;
1834 		qreply(q, mp);
1835 		break;
1836 	}
1837 }
1838 
1839 /*
1840  * The default value of e1000g_poll_mode == 0 assumes that the NIC is
1841  * capable of supporting only one interrupt and we shouldn't disable
1842  * the physical interrupt. In this case we let the interrupt come and
1843  * we queue the packets in the rx ring itself in case we are in polling
1844  * mode (better latency but slightly lower performance and a very
1845  * high intrrupt count in mpstat which is harmless).
1846  *
1847  * e1000g_poll_mode == 1 assumes that we have per Rx ring interrupt
1848  * which can be disabled in poll mode. This gives better overall
1849  * throughput (compared to the mode above), shows very low interrupt
1850  * count but has slightly higher latency since we pick the packets when
1851  * the poll thread does polling.
1852  *
1853  * Currently, this flag should be enabled only while doing performance
1854  * measurement or when it can be guaranteed that entire NIC going
1855  * in poll mode will not harm any traffic like cluster heartbeat etc.
1856  */
1857 int e1000g_poll_mode = 0;
1858 
1859 /*
1860  * Called from the upper layers when driver is in polling mode to
1861  * pick up any queued packets. Care should be taken to not block
1862  * this thread.
1863  */
1864 static mblk_t *e1000g_poll_ring(void *arg, int bytes_to_pickup)
1865 {
1866 	e1000g_rx_ring_t	*rx_ring = (e1000g_rx_ring_t *)arg;
1867 	mblk_t			*mp = NULL;
1868 	mblk_t			*tail;
1869 	struct e1000g 		*adapter;
1870 
1871 	adapter = rx_ring->adapter;
1872 
1873 	rw_enter(&adapter->chip_lock, RW_READER);
1874 
1875 	if (adapter->e1000g_state & E1000G_SUSPENDED) {
1876 		rw_exit(&adapter->chip_lock);
1877 		return (NULL);
1878 	}
1879 
1880 	mutex_enter(&rx_ring->rx_lock);
1881 	mp = e1000g_receive(rx_ring, &tail, bytes_to_pickup);
1882 	mutex_exit(&rx_ring->rx_lock);
1883 	rw_exit(&adapter->chip_lock);
1884 	return (mp);
1885 }
1886 
1887 static int
1888 e1000g_m_start(void *arg)
1889 {
1890 	struct e1000g *Adapter = (struct e1000g *)arg;
1891 
1892 	rw_enter(&Adapter->chip_lock, RW_WRITER);
1893 
1894 	if (Adapter->e1000g_state & E1000G_SUSPENDED) {
1895 		rw_exit(&Adapter->chip_lock);
1896 		return (ECANCELED);
1897 	}
1898 
1899 	if (e1000g_start(Adapter, B_TRUE) != DDI_SUCCESS) {
1900 		rw_exit(&Adapter->chip_lock);
1901 		return (ENOTACTIVE);
1902 	}
1903 
1904 	Adapter->e1000g_state |= E1000G_STARTED;
1905 
1906 	rw_exit(&Adapter->chip_lock);
1907 
1908 	/* Enable and start the watchdog timer */
1909 	enable_watchdog_timer(Adapter);
1910 
1911 	return (0);
1912 }
1913 
1914 static int
1915 e1000g_start(struct e1000g *Adapter, boolean_t global)
1916 {
1917 	e1000g_rx_data_t *rx_data;
1918 
1919 	if (global) {
1920 		if (e1000g_alloc_rx_data(Adapter) != DDI_SUCCESS) {
1921 			e1000g_log(Adapter, CE_WARN, "Allocate rx data failed");
1922 			goto start_fail;
1923 		}
1924 
1925 		/* Allocate dma resources for descriptors and buffers */
1926 		if (e1000g_alloc_dma_resources(Adapter) != DDI_SUCCESS) {
1927 			e1000g_log(Adapter, CE_WARN,
1928 			    "Alloc DMA resources failed");
1929 			goto start_fail;
1930 		}
1931 		Adapter->rx_buffer_setup = B_FALSE;
1932 	}
1933 
1934 	if (!(Adapter->attach_progress & ATTACH_PROGRESS_INIT)) {
1935 		if (e1000g_init(Adapter) != DDI_SUCCESS) {
1936 			e1000g_log(Adapter, CE_WARN,
1937 			    "Adapter initialization failed");
1938 			goto start_fail;
1939 		}
1940 	}
1941 
1942 	/* Setup and initialize the transmit structures */
1943 	e1000g_tx_setup(Adapter);
1944 	msec_delay(5);
1945 
1946 	/* Setup and initialize the receive structures */
1947 	e1000g_rx_setup(Adapter);
1948 	msec_delay(5);
1949 
1950 	/* Restore the e1000g promiscuous mode */
1951 	e1000g_restore_promisc(Adapter);
1952 
1953 	e1000g_mask_interrupt(Adapter);
1954 
1955 	Adapter->attach_progress |= ATTACH_PROGRESS_INIT;
1956 
1957 	if (e1000g_check_acc_handle(Adapter->osdep.reg_handle) != DDI_FM_OK) {
1958 		ddi_fm_service_impact(Adapter->dip, DDI_SERVICE_LOST);
1959 		goto start_fail;
1960 	}
1961 
1962 	return (DDI_SUCCESS);
1963 
1964 start_fail:
1965 	rx_data = Adapter->rx_ring->rx_data;
1966 
1967 	if (global) {
1968 		e1000g_release_dma_resources(Adapter);
1969 		e1000g_free_rx_pending_buffers(rx_data);
1970 		e1000g_free_rx_data(rx_data);
1971 	}
1972 
1973 	mutex_enter(&e1000g_nvm_lock);
1974 	(void) e1000_reset_hw(&Adapter->shared);
1975 	mutex_exit(&e1000g_nvm_lock);
1976 
1977 	return (DDI_FAILURE);
1978 }
1979 
1980 /*
1981  * The I219 has the curious property that if the descriptor rings are not
1982  * emptied before resetting the hardware or before changing the device state
1983  * based on runtime power management, it'll cause the card to hang. This can
1984  * then only be fixed by a PCI reset. As such, for the I219 and it alone, we
1985  * have to flush the rings if we're in this state.
1986  */
1987 static void
1988 e1000g_flush_desc_rings(struct e1000g *Adapter)
1989 {
1990 	struct e1000_hw	*hw = &Adapter->shared;
1991 	u16		hang_state;
1992 	u32		fext_nvm11, tdlen;
1993 
1994 	/* First, disable MULR fix in FEXTNVM11 */
1995 	fext_nvm11 = E1000_READ_REG(hw, E1000_FEXTNVM11);
1996 	fext_nvm11 |= E1000_FEXTNVM11_DISABLE_MULR_FIX;
1997 	E1000_WRITE_REG(hw, E1000_FEXTNVM11, fext_nvm11);
1998 
1999 	/* do nothing if we're not in faulty state, or if the queue is empty */
2000 	tdlen = E1000_READ_REG(hw, E1000_TDLEN(0));
2001 	hang_state = pci_config_get16(Adapter->osdep.cfg_handle,
2002 	    PCICFG_DESC_RING_STATUS);
2003 	if (!(hang_state & FLUSH_DESC_REQUIRED) || !tdlen)
2004 		return;
2005 	e1000g_flush_tx_ring(Adapter);
2006 
2007 	/* recheck, maybe the fault is caused by the rx ring */
2008 	hang_state = pci_config_get16(Adapter->osdep.cfg_handle,
2009 	    PCICFG_DESC_RING_STATUS);
2010 	if (hang_state & FLUSH_DESC_REQUIRED)
2011 		e1000g_flush_rx_ring(Adapter);
2012 
2013 }
2014 
2015 static void
2016 e1000g_m_stop(void *arg)
2017 {
2018 	struct e1000g *Adapter = (struct e1000g *)arg;
2019 
2020 	/* Drain tx sessions */
2021 	(void) e1000g_tx_drain(Adapter);
2022 
2023 	rw_enter(&Adapter->chip_lock, RW_WRITER);
2024 
2025 	if (Adapter->e1000g_state & E1000G_SUSPENDED) {
2026 		rw_exit(&Adapter->chip_lock);
2027 		return;
2028 	}
2029 	Adapter->e1000g_state &= ~E1000G_STARTED;
2030 	e1000g_stop(Adapter, B_TRUE);
2031 
2032 	rw_exit(&Adapter->chip_lock);
2033 
2034 	/* Disable and stop all the timers */
2035 	disable_watchdog_timer(Adapter);
2036 	stop_link_timer(Adapter);
2037 	stop_82547_timer(Adapter->tx_ring);
2038 }
2039 
2040 static void
2041 e1000g_stop(struct e1000g *Adapter, boolean_t global)
2042 {
2043 	private_devi_list_t *devi_node;
2044 	e1000g_rx_data_t *rx_data;
2045 	int result;
2046 
2047 	Adapter->attach_progress &= ~ATTACH_PROGRESS_INIT;
2048 
2049 	/* Stop the chip and release pending resources */
2050 
2051 	/* Tell firmware driver is no longer in control */
2052 	e1000g_release_driver_control(&Adapter->shared);
2053 
2054 	e1000g_clear_all_interrupts(Adapter);
2055 
2056 	mutex_enter(&e1000g_nvm_lock);
2057 	result = e1000_reset_hw(&Adapter->shared);
2058 	mutex_exit(&e1000g_nvm_lock);
2059 
2060 	if (result != E1000_SUCCESS) {
2061 		e1000g_fm_ereport(Adapter, DDI_FM_DEVICE_INVAL_STATE);
2062 		ddi_fm_service_impact(Adapter->dip, DDI_SERVICE_LOST);
2063 	}
2064 
2065 	mutex_enter(&Adapter->link_lock);
2066 	Adapter->link_complete = B_FALSE;
2067 	mutex_exit(&Adapter->link_lock);
2068 
2069 	/* Release resources still held by the TX descriptors */
2070 	e1000g_tx_clean(Adapter);
2071 
2072 	if (e1000g_check_acc_handle(Adapter->osdep.reg_handle) != DDI_FM_OK)
2073 		ddi_fm_service_impact(Adapter->dip, DDI_SERVICE_LOST);
2074 
2075 	/* Clean the pending rx jumbo packet fragment */
2076 	e1000g_rx_clean(Adapter);
2077 
2078 	/*
2079 	 * The I219, eg. the pch_spt, has bugs such that we must ensure that
2080 	 * rings are flushed before we do anything else. This must be done
2081 	 * before we release DMA resources.
2082 	 */
2083 	if (Adapter->shared.mac.type >= e1000_pch_spt)
2084 		e1000g_flush_desc_rings(Adapter);
2085 
2086 	if (global) {
2087 		e1000g_release_dma_resources(Adapter);
2088 
2089 		mutex_enter(&e1000g_rx_detach_lock);
2090 		rx_data = Adapter->rx_ring->rx_data;
2091 		rx_data->flag |= E1000G_RX_STOPPED;
2092 
2093 		if (rx_data->pending_count == 0) {
2094 			e1000g_free_rx_pending_buffers(rx_data);
2095 			e1000g_free_rx_data(rx_data);
2096 		} else {
2097 			devi_node = rx_data->priv_devi_node;
2098 			if (devi_node != NULL)
2099 				atomic_inc_32(&devi_node->pending_rx_count);
2100 			else
2101 				atomic_inc_32(&Adapter->pending_rx_count);
2102 		}
2103 		mutex_exit(&e1000g_rx_detach_lock);
2104 	}
2105 
2106 	if (Adapter->link_state != LINK_STATE_UNKNOWN) {
2107 		Adapter->link_state = LINK_STATE_UNKNOWN;
2108 		if (!Adapter->reset_flag)
2109 			mac_link_update(Adapter->mh, Adapter->link_state);
2110 	}
2111 }
2112 
2113 static void
2114 e1000g_rx_clean(struct e1000g *Adapter)
2115 {
2116 	e1000g_rx_data_t *rx_data = Adapter->rx_ring->rx_data;
2117 
2118 	if (rx_data == NULL)
2119 		return;
2120 
2121 	if (rx_data->rx_mblk != NULL) {
2122 		freemsg(rx_data->rx_mblk);
2123 		rx_data->rx_mblk = NULL;
2124 		rx_data->rx_mblk_tail = NULL;
2125 		rx_data->rx_mblk_len = 0;
2126 	}
2127 }
2128 
2129 static void
2130 e1000g_tx_clean(struct e1000g *Adapter)
2131 {
2132 	e1000g_tx_ring_t *tx_ring;
2133 	p_tx_sw_packet_t packet;
2134 	mblk_t *mp;
2135 	mblk_t *nmp;
2136 	uint32_t packet_count;
2137 
2138 	tx_ring = Adapter->tx_ring;
2139 
2140 	/*
2141 	 * Here we don't need to protect the lists using
2142 	 * the usedlist_lock and freelist_lock, for they
2143 	 * have been protected by the chip_lock.
2144 	 */
2145 	mp = NULL;
2146 	nmp = NULL;
2147 	packet_count = 0;
2148 	packet = (p_tx_sw_packet_t)QUEUE_GET_HEAD(&tx_ring->used_list);
2149 	while (packet != NULL) {
2150 		if (packet->mp != NULL) {
2151 			/* Assemble the message chain */
2152 			if (mp == NULL) {
2153 				mp = packet->mp;
2154 				nmp = packet->mp;
2155 			} else {
2156 				nmp->b_next = packet->mp;
2157 				nmp = packet->mp;
2158 			}
2159 			/* Disconnect the message from the sw packet */
2160 			packet->mp = NULL;
2161 		}
2162 
2163 		e1000g_free_tx_swpkt(packet);
2164 		packet_count++;
2165 
2166 		packet = (p_tx_sw_packet_t)
2167 		    QUEUE_GET_NEXT(&tx_ring->used_list, &packet->Link);
2168 	}
2169 
2170 	if (mp != NULL)
2171 		freemsgchain(mp);
2172 
2173 	if (packet_count > 0) {
2174 		QUEUE_APPEND(&tx_ring->free_list, &tx_ring->used_list);
2175 		QUEUE_INIT_LIST(&tx_ring->used_list);
2176 
2177 		/* Setup TX descriptor pointers */
2178 		tx_ring->tbd_next = tx_ring->tbd_first;
2179 		tx_ring->tbd_oldest = tx_ring->tbd_first;
2180 
2181 		/* Setup our HW Tx Head & Tail descriptor pointers */
2182 		E1000_WRITE_REG(&Adapter->shared, E1000_TDH(0), 0);
2183 		E1000_WRITE_REG(&Adapter->shared, E1000_TDT(0), 0);
2184 	}
2185 }
2186 
2187 static boolean_t
2188 e1000g_tx_drain(struct e1000g *Adapter)
2189 {
2190 	int i;
2191 	boolean_t done;
2192 	e1000g_tx_ring_t *tx_ring;
2193 
2194 	tx_ring = Adapter->tx_ring;
2195 
2196 	/* Allow up to 'wsdraintime' for pending xmit's to complete. */
2197 	for (i = 0; i < TX_DRAIN_TIME; i++) {
2198 		mutex_enter(&tx_ring->usedlist_lock);
2199 		done = IS_QUEUE_EMPTY(&tx_ring->used_list);
2200 		mutex_exit(&tx_ring->usedlist_lock);
2201 
2202 		if (done)
2203 			break;
2204 
2205 		msec_delay(1);
2206 	}
2207 
2208 	return (done);
2209 }
2210 
2211 static boolean_t
2212 e1000g_rx_drain(struct e1000g *Adapter)
2213 {
2214 	int i;
2215 	boolean_t done;
2216 
2217 	/*
2218 	 * Allow up to RX_DRAIN_TIME for pending received packets to complete.
2219 	 */
2220 	for (i = 0; i < RX_DRAIN_TIME; i++) {
2221 		done = (Adapter->pending_rx_count == 0);
2222 
2223 		if (done)
2224 			break;
2225 
2226 		msec_delay(1);
2227 	}
2228 
2229 	return (done);
2230 }
2231 
2232 static boolean_t
2233 e1000g_reset_adapter(struct e1000g *Adapter)
2234 {
2235 	/* Disable and stop all the timers */
2236 	disable_watchdog_timer(Adapter);
2237 	stop_link_timer(Adapter);
2238 	stop_82547_timer(Adapter->tx_ring);
2239 
2240 	rw_enter(&Adapter->chip_lock, RW_WRITER);
2241 
2242 	if (Adapter->stall_flag) {
2243 		Adapter->stall_flag = B_FALSE;
2244 		Adapter->reset_flag = B_TRUE;
2245 	}
2246 
2247 	if (!(Adapter->e1000g_state & E1000G_STARTED)) {
2248 		rw_exit(&Adapter->chip_lock);
2249 		return (B_TRUE);
2250 	}
2251 
2252 	e1000g_stop(Adapter, B_FALSE);
2253 
2254 	if (e1000g_start(Adapter, B_FALSE) != DDI_SUCCESS) {
2255 		rw_exit(&Adapter->chip_lock);
2256 		e1000g_log(Adapter, CE_WARN, "Reset failed");
2257 			return (B_FALSE);
2258 	}
2259 
2260 	rw_exit(&Adapter->chip_lock);
2261 
2262 	/* Enable and start the watchdog timer */
2263 	enable_watchdog_timer(Adapter);
2264 
2265 	return (B_TRUE);
2266 }
2267 
2268 boolean_t
2269 e1000g_global_reset(struct e1000g *Adapter)
2270 {
2271 	/* Disable and stop all the timers */
2272 	disable_watchdog_timer(Adapter);
2273 	stop_link_timer(Adapter);
2274 	stop_82547_timer(Adapter->tx_ring);
2275 
2276 	rw_enter(&Adapter->chip_lock, RW_WRITER);
2277 
2278 	e1000g_stop(Adapter, B_TRUE);
2279 
2280 	Adapter->init_count = 0;
2281 
2282 	if (e1000g_start(Adapter, B_TRUE) != DDI_SUCCESS) {
2283 		rw_exit(&Adapter->chip_lock);
2284 		e1000g_log(Adapter, CE_WARN, "Reset failed");
2285 		return (B_FALSE);
2286 	}
2287 
2288 	rw_exit(&Adapter->chip_lock);
2289 
2290 	/* Enable and start the watchdog timer */
2291 	enable_watchdog_timer(Adapter);
2292 
2293 	return (B_TRUE);
2294 }
2295 
2296 /*
2297  * e1000g_intr_pciexpress - ISR for PCI Express chipsets
2298  *
2299  * This interrupt service routine is for PCI-Express adapters.
2300  * The ICR contents is valid only when the E1000_ICR_INT_ASSERTED
2301  * bit is set.
2302  */
2303 static uint_t
2304 e1000g_intr_pciexpress(caddr_t arg)
2305 {
2306 	struct e1000g *Adapter;
2307 	uint32_t icr;
2308 
2309 	Adapter = (struct e1000g *)(uintptr_t)arg;
2310 	icr = E1000_READ_REG(&Adapter->shared, E1000_ICR);
2311 
2312 	if (e1000g_check_acc_handle(Adapter->osdep.reg_handle) != DDI_FM_OK) {
2313 		ddi_fm_service_impact(Adapter->dip, DDI_SERVICE_DEGRADED);
2314 		return (DDI_INTR_CLAIMED);
2315 	}
2316 
2317 	if (icr & E1000_ICR_INT_ASSERTED) {
2318 		/*
2319 		 * E1000_ICR_INT_ASSERTED bit was set:
2320 		 * Read(Clear) the ICR, claim this interrupt,
2321 		 * look for work to do.
2322 		 */
2323 		e1000g_intr_work(Adapter, icr);
2324 		return (DDI_INTR_CLAIMED);
2325 	} else {
2326 		/*
2327 		 * E1000_ICR_INT_ASSERTED bit was not set:
2328 		 * Don't claim this interrupt, return immediately.
2329 		 */
2330 		return (DDI_INTR_UNCLAIMED);
2331 	}
2332 }
2333 
2334 /*
2335  * e1000g_intr - ISR for PCI/PCI-X chipsets
2336  *
2337  * This interrupt service routine is for PCI/PCI-X adapters.
2338  * We check the ICR contents no matter the E1000_ICR_INT_ASSERTED
2339  * bit is set or not.
2340  */
2341 static uint_t
2342 e1000g_intr(caddr_t arg)
2343 {
2344 	struct e1000g *Adapter;
2345 	uint32_t icr;
2346 
2347 	Adapter = (struct e1000g *)(uintptr_t)arg;
2348 	icr = E1000_READ_REG(&Adapter->shared, E1000_ICR);
2349 
2350 	if (e1000g_check_acc_handle(Adapter->osdep.reg_handle) != DDI_FM_OK) {
2351 		ddi_fm_service_impact(Adapter->dip, DDI_SERVICE_DEGRADED);
2352 		return (DDI_INTR_CLAIMED);
2353 	}
2354 
2355 	if (icr) {
2356 		/*
2357 		 * Any bit was set in ICR:
2358 		 * Read(Clear) the ICR, claim this interrupt,
2359 		 * look for work to do.
2360 		 */
2361 		e1000g_intr_work(Adapter, icr);
2362 		return (DDI_INTR_CLAIMED);
2363 	} else {
2364 		/*
2365 		 * No bit was set in ICR:
2366 		 * Don't claim this interrupt, return immediately.
2367 		 */
2368 		return (DDI_INTR_UNCLAIMED);
2369 	}
2370 }
2371 
2372 /*
2373  * e1000g_intr_work - actual processing of ISR
2374  *
2375  * Read(clear) the ICR contents and call appropriate interrupt
2376  * processing routines.
2377  */
2378 static void
2379 e1000g_intr_work(struct e1000g *Adapter, uint32_t icr)
2380 {
2381 	struct e1000_hw *hw;
2382 	hw = &Adapter->shared;
2383 	e1000g_tx_ring_t *tx_ring = Adapter->tx_ring;
2384 
2385 	Adapter->rx_pkt_cnt = 0;
2386 	Adapter->tx_pkt_cnt = 0;
2387 
2388 	rw_enter(&Adapter->chip_lock, RW_READER);
2389 
2390 	if (Adapter->e1000g_state & E1000G_SUSPENDED) {
2391 		rw_exit(&Adapter->chip_lock);
2392 		return;
2393 	}
2394 	/*
2395 	 * Here we need to check the "e1000g_state" flag within the chip_lock to
2396 	 * ensure the receive routine will not execute when the adapter is
2397 	 * being reset.
2398 	 */
2399 	if (!(Adapter->e1000g_state & E1000G_STARTED)) {
2400 		rw_exit(&Adapter->chip_lock);
2401 		return;
2402 	}
2403 
2404 	if (icr & E1000_ICR_RXT0) {
2405 		mblk_t			*mp = NULL;
2406 		mblk_t			*tail = NULL;
2407 		e1000g_rx_ring_t	*rx_ring;
2408 
2409 		rx_ring = Adapter->rx_ring;
2410 		mutex_enter(&rx_ring->rx_lock);
2411 		/*
2412 		 * Sometimes with legacy interrupts, it possible that
2413 		 * there is a single interrupt for Rx/Tx. In which
2414 		 * case, if poll flag is set, we shouldn't really
2415 		 * be doing Rx processing.
2416 		 */
2417 		if (!rx_ring->poll_flag)
2418 			mp = e1000g_receive(rx_ring, &tail,
2419 			    E1000G_CHAIN_NO_LIMIT);
2420 		mutex_exit(&rx_ring->rx_lock);
2421 		rw_exit(&Adapter->chip_lock);
2422 		if (mp != NULL)
2423 			mac_rx_ring(Adapter->mh, rx_ring->mrh,
2424 			    mp, rx_ring->ring_gen_num);
2425 	} else
2426 		rw_exit(&Adapter->chip_lock);
2427 
2428 	if (icr & E1000_ICR_TXDW) {
2429 		if (!Adapter->tx_intr_enable)
2430 			e1000g_clear_tx_interrupt(Adapter);
2431 
2432 		/* Recycle the tx descriptors */
2433 		rw_enter(&Adapter->chip_lock, RW_READER);
2434 		(void) e1000g_recycle(tx_ring);
2435 		E1000G_DEBUG_STAT(tx_ring->stat_recycle_intr);
2436 		rw_exit(&Adapter->chip_lock);
2437 
2438 		if (tx_ring->resched_needed &&
2439 		    (tx_ring->tbd_avail > DEFAULT_TX_UPDATE_THRESHOLD)) {
2440 			tx_ring->resched_needed = B_FALSE;
2441 			mac_tx_update(Adapter->mh);
2442 			E1000G_STAT(tx_ring->stat_reschedule);
2443 		}
2444 	}
2445 
2446 	/*
2447 	 * The Receive Sequence errors RXSEQ and the link status change LSC
2448 	 * are checked to detect that the cable has been pulled out. For
2449 	 * the Wiseman 2.0 silicon, the receive sequence errors interrupt
2450 	 * are an indication that cable is not connected.
2451 	 */
2452 	if ((icr & E1000_ICR_RXSEQ) ||
2453 	    (icr & E1000_ICR_LSC) ||
2454 	    (icr & E1000_ICR_GPI_EN1)) {
2455 		boolean_t link_changed;
2456 		timeout_id_t tid = 0;
2457 
2458 		stop_watchdog_timer(Adapter);
2459 
2460 		rw_enter(&Adapter->chip_lock, RW_WRITER);
2461 
2462 		/*
2463 		 * Because we got a link-status-change interrupt, force
2464 		 * e1000_check_for_link() to look at phy
2465 		 */
2466 		Adapter->shared.mac.get_link_status = B_TRUE;
2467 
2468 		/* e1000g_link_check takes care of link status change */
2469 		link_changed = e1000g_link_check(Adapter);
2470 
2471 		/* Get new phy state */
2472 		e1000g_get_phy_state(Adapter);
2473 
2474 		/*
2475 		 * If the link timer has not timed out, we'll not notify
2476 		 * the upper layer with any link state until the link is up.
2477 		 */
2478 		if (link_changed && !Adapter->link_complete) {
2479 			if (Adapter->link_state == LINK_STATE_UP) {
2480 				mutex_enter(&Adapter->link_lock);
2481 				Adapter->link_complete = B_TRUE;
2482 				tid = Adapter->link_tid;
2483 				Adapter->link_tid = 0;
2484 				mutex_exit(&Adapter->link_lock);
2485 			} else {
2486 				link_changed = B_FALSE;
2487 			}
2488 		}
2489 		rw_exit(&Adapter->chip_lock);
2490 
2491 		if (link_changed) {
2492 			if (tid != 0)
2493 				(void) untimeout(tid);
2494 
2495 			/*
2496 			 * Workaround for esb2. Data stuck in fifo on a link
2497 			 * down event. Stop receiver here and reset in watchdog.
2498 			 */
2499 			if ((Adapter->link_state == LINK_STATE_DOWN) &&
2500 			    (Adapter->shared.mac.type == e1000_80003es2lan)) {
2501 				uint32_t rctl = E1000_READ_REG(hw, E1000_RCTL);
2502 				E1000_WRITE_REG(hw, E1000_RCTL,
2503 				    rctl & ~E1000_RCTL_EN);
2504 				e1000g_log(Adapter, CE_WARN,
2505 				    "ESB2 receiver disabled");
2506 				Adapter->esb2_workaround = B_TRUE;
2507 			}
2508 			if (!Adapter->reset_flag)
2509 				mac_link_update(Adapter->mh,
2510 				    Adapter->link_state);
2511 			if (Adapter->link_state == LINK_STATE_UP)
2512 				Adapter->reset_flag = B_FALSE;
2513 		}
2514 
2515 		start_watchdog_timer(Adapter);
2516 	}
2517 }
2518 
2519 static void
2520 e1000g_init_unicst(struct e1000g *Adapter)
2521 {
2522 	struct e1000_hw *hw;
2523 	int slot;
2524 
2525 	hw = &Adapter->shared;
2526 
2527 	if (Adapter->init_count == 0) {
2528 		/* Initialize the multiple unicast addresses */
2529 		Adapter->unicst_total = min(hw->mac.rar_entry_count,
2530 		    MAX_NUM_UNICAST_ADDRESSES);
2531 
2532 		/*
2533 		 * The common code does not correctly calculate the number of
2534 		 * rar's that could be reserved by firmware for the pch_lpt and
2535 		 * pch_spt macs. The interface has one primary rar, and 11
2536 		 * additional ones. Those 11 additional ones are not always
2537 		 * available.  According to the datasheet, we need to check a
2538 		 * few of the bits set in the FWSM register. If the value is
2539 		 * zero, everything is available. If the value is 1, none of the
2540 		 * additional registers are available. If the value is 2-7, only
2541 		 * that number are available.
2542 		 */
2543 		if (hw->mac.type >= e1000_pch_lpt) {
2544 			uint32_t locked, rar;
2545 
2546 			locked = E1000_READ_REG(hw, E1000_FWSM) &
2547 			    E1000_FWSM_WLOCK_MAC_MASK;
2548 			locked >>= E1000_FWSM_WLOCK_MAC_SHIFT;
2549 			rar = 1;
2550 			if (locked == 0)
2551 				rar += 11;
2552 			else if (locked == 1)
2553 				rar += 0;
2554 			else
2555 				rar += locked;
2556 			Adapter->unicst_total = min(rar,
2557 			    MAX_NUM_UNICAST_ADDRESSES);
2558 		}
2559 
2560 		/* Workaround for an erratum of 82571 chipst */
2561 		if ((hw->mac.type == e1000_82571) &&
2562 		    (e1000_get_laa_state_82571(hw) == B_TRUE))
2563 			Adapter->unicst_total--;
2564 
2565 		/* VMware doesn't support multiple mac addresses properly */
2566 		if (hw->subsystem_vendor_id == 0x15ad)
2567 			Adapter->unicst_total = 1;
2568 
2569 		Adapter->unicst_avail = Adapter->unicst_total;
2570 
2571 		for (slot = 0; slot < Adapter->unicst_total; slot++) {
2572 			/* Clear both the flag and MAC address */
2573 			Adapter->unicst_addr[slot].reg.high = 0;
2574 			Adapter->unicst_addr[slot].reg.low = 0;
2575 		}
2576 	} else {
2577 		/* Workaround for an erratum of 82571 chipst */
2578 		if ((hw->mac.type == e1000_82571) &&
2579 		    (e1000_get_laa_state_82571(hw) == B_TRUE))
2580 			(void) e1000_rar_set(hw, hw->mac.addr, LAST_RAR_ENTRY);
2581 
2582 		/* Re-configure the RAR registers */
2583 		for (slot = 0; slot < Adapter->unicst_total; slot++)
2584 			if (Adapter->unicst_addr[slot].mac.set == 1)
2585 				(void) e1000_rar_set(hw,
2586 				    Adapter->unicst_addr[slot].mac.addr, slot);
2587 	}
2588 
2589 	if (e1000g_check_acc_handle(Adapter->osdep.reg_handle) != DDI_FM_OK)
2590 		ddi_fm_service_impact(Adapter->dip, DDI_SERVICE_DEGRADED);
2591 }
2592 
2593 static int
2594 e1000g_unicst_set(struct e1000g *Adapter, const uint8_t *mac_addr,
2595     int slot)
2596 {
2597 	struct e1000_hw *hw;
2598 
2599 	hw = &Adapter->shared;
2600 
2601 	/*
2602 	 * The first revision of Wiseman silicon (rev 2.0) has an errata
2603 	 * that requires the receiver to be in reset when any of the
2604 	 * receive address registers (RAR regs) are accessed.  The first
2605 	 * rev of Wiseman silicon also requires MWI to be disabled when
2606 	 * a global reset or a receive reset is issued.  So before we
2607 	 * initialize the RARs, we check the rev of the Wiseman controller
2608 	 * and work around any necessary HW errata.
2609 	 */
2610 	if ((hw->mac.type == e1000_82542) &&
2611 	    (hw->revision_id == E1000_REVISION_2)) {
2612 		e1000_pci_clear_mwi(hw);
2613 		E1000_WRITE_REG(hw, E1000_RCTL, E1000_RCTL_RST);
2614 		msec_delay(5);
2615 	}
2616 	if (mac_addr == NULL) {
2617 		E1000_WRITE_REG_ARRAY(hw, E1000_RA, slot << 1, 0);
2618 		E1000_WRITE_FLUSH(hw);
2619 		E1000_WRITE_REG_ARRAY(hw, E1000_RA, (slot << 1) + 1, 0);
2620 		E1000_WRITE_FLUSH(hw);
2621 		/* Clear both the flag and MAC address */
2622 		Adapter->unicst_addr[slot].reg.high = 0;
2623 		Adapter->unicst_addr[slot].reg.low = 0;
2624 	} else {
2625 		bcopy(mac_addr, Adapter->unicst_addr[slot].mac.addr,
2626 		    ETHERADDRL);
2627 		(void) e1000_rar_set(hw, (uint8_t *)mac_addr, slot);
2628 		Adapter->unicst_addr[slot].mac.set = 1;
2629 	}
2630 
2631 	/* Workaround for an erratum of 82571 chipst */
2632 	if (slot == 0) {
2633 		if ((hw->mac.type == e1000_82571) &&
2634 		    (e1000_get_laa_state_82571(hw) == B_TRUE))
2635 			if (mac_addr == NULL) {
2636 				E1000_WRITE_REG_ARRAY(hw, E1000_RA,
2637 				    slot << 1, 0);
2638 				E1000_WRITE_FLUSH(hw);
2639 				E1000_WRITE_REG_ARRAY(hw, E1000_RA,
2640 				    (slot << 1) + 1, 0);
2641 				E1000_WRITE_FLUSH(hw);
2642 			} else {
2643 				(void) e1000_rar_set(hw, (uint8_t *)mac_addr,
2644 				    LAST_RAR_ENTRY);
2645 			}
2646 	}
2647 
2648 	/*
2649 	 * If we are using Wiseman rev 2.0 silicon, we will have previously
2650 	 * put the receive in reset, and disabled MWI, to work around some
2651 	 * HW errata.  Now we should take the receiver out of reset, and
2652 	 * re-enabled if MWI if it was previously enabled by the PCI BIOS.
2653 	 */
2654 	if ((hw->mac.type == e1000_82542) &&
2655 	    (hw->revision_id == E1000_REVISION_2)) {
2656 		E1000_WRITE_REG(hw, E1000_RCTL, 0);
2657 		msec_delay(1);
2658 		if (hw->bus.pci_cmd_word & CMD_MEM_WRT_INVALIDATE)
2659 			e1000_pci_set_mwi(hw);
2660 		e1000g_rx_setup(Adapter);
2661 	}
2662 
2663 	if (e1000g_check_acc_handle(Adapter->osdep.reg_handle) != DDI_FM_OK) {
2664 		ddi_fm_service_impact(Adapter->dip, DDI_SERVICE_DEGRADED);
2665 		return (EIO);
2666 	}
2667 
2668 	return (0);
2669 }
2670 
2671 static int
2672 multicst_add(struct e1000g *Adapter, const uint8_t *multiaddr)
2673 {
2674 	struct e1000_hw *hw = &Adapter->shared;
2675 	struct ether_addr *newtable;
2676 	size_t new_len;
2677 	size_t old_len;
2678 	int res = 0;
2679 
2680 	if ((multiaddr[0] & 01) == 0) {
2681 		res = EINVAL;
2682 		e1000g_log(Adapter, CE_WARN, "Illegal multicast address");
2683 		goto done;
2684 	}
2685 
2686 	if (Adapter->mcast_count >= Adapter->mcast_max_num) {
2687 		res = ENOENT;
2688 		e1000g_log(Adapter, CE_WARN,
2689 		    "Adapter requested more than %d mcast addresses",
2690 		    Adapter->mcast_max_num);
2691 		goto done;
2692 	}
2693 
2694 
2695 	if (Adapter->mcast_count == Adapter->mcast_alloc_count) {
2696 		old_len = Adapter->mcast_alloc_count *
2697 		    sizeof (struct ether_addr);
2698 		new_len = (Adapter->mcast_alloc_count + MCAST_ALLOC_SIZE) *
2699 		    sizeof (struct ether_addr);
2700 
2701 		newtable = kmem_alloc(new_len, KM_NOSLEEP);
2702 		if (newtable == NULL) {
2703 			res = ENOMEM;
2704 			e1000g_log(Adapter, CE_WARN,
2705 			    "Not enough memory to alloc mcast table");
2706 			goto done;
2707 		}
2708 
2709 		if (Adapter->mcast_table != NULL) {
2710 			bcopy(Adapter->mcast_table, newtable, old_len);
2711 			kmem_free(Adapter->mcast_table, old_len);
2712 		}
2713 		Adapter->mcast_alloc_count += MCAST_ALLOC_SIZE;
2714 		Adapter->mcast_table = newtable;
2715 	}
2716 
2717 	bcopy(multiaddr,
2718 	    &Adapter->mcast_table[Adapter->mcast_count], ETHERADDRL);
2719 	Adapter->mcast_count++;
2720 
2721 	/*
2722 	 * Update the MC table in the hardware
2723 	 */
2724 	e1000g_clear_interrupt(Adapter);
2725 
2726 	e1000_update_mc_addr_list(hw,
2727 	    (uint8_t *)Adapter->mcast_table, Adapter->mcast_count);
2728 
2729 	e1000g_mask_interrupt(Adapter);
2730 
2731 	if (e1000g_check_acc_handle(Adapter->osdep.reg_handle) != DDI_FM_OK) {
2732 		ddi_fm_service_impact(Adapter->dip, DDI_SERVICE_DEGRADED);
2733 		res = EIO;
2734 	}
2735 
2736 done:
2737 	return (res);
2738 }
2739 
2740 static int
2741 multicst_remove(struct e1000g *Adapter, const uint8_t *multiaddr)
2742 {
2743 	struct e1000_hw *hw = &Adapter->shared;
2744 	struct ether_addr *newtable;
2745 	size_t new_len;
2746 	size_t old_len;
2747 	unsigned i;
2748 
2749 	for (i = 0; i < Adapter->mcast_count; i++) {
2750 		if (bcmp(multiaddr, &Adapter->mcast_table[i],
2751 		    ETHERADDRL) == 0) {
2752 			for (i++; i < Adapter->mcast_count; i++) {
2753 				Adapter->mcast_table[i - 1] =
2754 				    Adapter->mcast_table[i];
2755 			}
2756 			Adapter->mcast_count--;
2757 			break;
2758 		}
2759 	}
2760 
2761 	if ((Adapter->mcast_alloc_count - Adapter->mcast_count) >
2762 	    MCAST_ALLOC_SIZE) {
2763 		old_len = Adapter->mcast_alloc_count *
2764 		    sizeof (struct ether_addr);
2765 		new_len = (Adapter->mcast_alloc_count - MCAST_ALLOC_SIZE) *
2766 		    sizeof (struct ether_addr);
2767 
2768 		newtable = kmem_alloc(new_len, KM_NOSLEEP);
2769 		if (newtable != NULL) {
2770 			bcopy(Adapter->mcast_table, newtable, new_len);
2771 			kmem_free(Adapter->mcast_table, old_len);
2772 
2773 			Adapter->mcast_alloc_count -= MCAST_ALLOC_SIZE;
2774 			Adapter->mcast_table = newtable;
2775 		}
2776 	}
2777 
2778 	/*
2779 	 * Update the MC table in the hardware
2780 	 */
2781 	e1000g_clear_interrupt(Adapter);
2782 
2783 	e1000_update_mc_addr_list(hw,
2784 	    (uint8_t *)Adapter->mcast_table, Adapter->mcast_count);
2785 
2786 	e1000g_mask_interrupt(Adapter);
2787 
2788 	if (e1000g_check_acc_handle(Adapter->osdep.reg_handle) != DDI_FM_OK) {
2789 		ddi_fm_service_impact(Adapter->dip, DDI_SERVICE_DEGRADED);
2790 		return (EIO);
2791 	}
2792 
2793 	return (0);
2794 }
2795 
2796 static void
2797 e1000g_release_multicast(struct e1000g *Adapter)
2798 {
2799 	if (Adapter->mcast_table != NULL) {
2800 		kmem_free(Adapter->mcast_table,
2801 		    Adapter->mcast_alloc_count * sizeof (struct ether_addr));
2802 		Adapter->mcast_table = NULL;
2803 	}
2804 }
2805 
2806 int
2807 e1000g_m_multicst(void *arg, boolean_t add, const uint8_t *addr)
2808 {
2809 	struct e1000g *Adapter = (struct e1000g *)arg;
2810 	int result;
2811 
2812 	rw_enter(&Adapter->chip_lock, RW_WRITER);
2813 
2814 	if (Adapter->e1000g_state & E1000G_SUSPENDED) {
2815 		result = ECANCELED;
2816 		goto done;
2817 	}
2818 
2819 	result = (add) ? multicst_add(Adapter, addr)
2820 	    : multicst_remove(Adapter, addr);
2821 
2822 done:
2823 	rw_exit(&Adapter->chip_lock);
2824 	return (result);
2825 
2826 }
2827 
2828 int
2829 e1000g_m_promisc(void *arg, boolean_t on)
2830 {
2831 	struct e1000g *Adapter = (struct e1000g *)arg;
2832 	uint32_t rctl;
2833 
2834 	rw_enter(&Adapter->chip_lock, RW_WRITER);
2835 
2836 	if (Adapter->e1000g_state & E1000G_SUSPENDED) {
2837 		rw_exit(&Adapter->chip_lock);
2838 		return (ECANCELED);
2839 	}
2840 
2841 	rctl = E1000_READ_REG(&Adapter->shared, E1000_RCTL);
2842 
2843 	if (on)
2844 		rctl |=
2845 		    (E1000_RCTL_UPE | E1000_RCTL_MPE | E1000_RCTL_BAM);
2846 	else
2847 		rctl &= (~(E1000_RCTL_UPE | E1000_RCTL_MPE));
2848 
2849 	E1000_WRITE_REG(&Adapter->shared, E1000_RCTL, rctl);
2850 
2851 	Adapter->e1000g_promisc = on;
2852 
2853 	rw_exit(&Adapter->chip_lock);
2854 
2855 	if (e1000g_check_acc_handle(Adapter->osdep.reg_handle) != DDI_FM_OK) {
2856 		ddi_fm_service_impact(Adapter->dip, DDI_SERVICE_DEGRADED);
2857 		return (EIO);
2858 	}
2859 
2860 	return (0);
2861 }
2862 
2863 /*
2864  * Entry points to enable and disable interrupts at the granularity of
2865  * a group.
2866  * Turns the poll_mode for the whole adapter on and off to enable or
2867  * override the ring level polling control over the hardware interrupts.
2868  */
2869 static int
2870 e1000g_rx_group_intr_enable(mac_intr_handle_t arg)
2871 {
2872 	struct e1000g		*adapter = (struct e1000g *)arg;
2873 	e1000g_rx_ring_t *rx_ring = adapter->rx_ring;
2874 
2875 	/*
2876 	 * Later interrupts at the granularity of the this ring will
2877 	 * invoke mac_rx() with NULL, indicating the need for another
2878 	 * software classification.
2879 	 * We have a single ring usable per adapter now, so we only need to
2880 	 * reset the rx handle for that one.
2881 	 * When more RX rings can be used, we should update each one of them.
2882 	 */
2883 	mutex_enter(&rx_ring->rx_lock);
2884 	rx_ring->mrh = NULL;
2885 	adapter->poll_mode = B_FALSE;
2886 	mutex_exit(&rx_ring->rx_lock);
2887 	return (0);
2888 }
2889 
2890 static int
2891 e1000g_rx_group_intr_disable(mac_intr_handle_t arg)
2892 {
2893 	struct e1000g *adapter = (struct e1000g *)arg;
2894 	e1000g_rx_ring_t *rx_ring = adapter->rx_ring;
2895 
2896 	mutex_enter(&rx_ring->rx_lock);
2897 
2898 	/*
2899 	 * Later interrupts at the granularity of the this ring will
2900 	 * invoke mac_rx() with the handle for this ring;
2901 	 */
2902 	adapter->poll_mode = B_TRUE;
2903 	rx_ring->mrh = rx_ring->mrh_init;
2904 	mutex_exit(&rx_ring->rx_lock);
2905 	return (0);
2906 }
2907 
2908 /*
2909  * Entry points to enable and disable interrupts at the granularity of
2910  * a ring.
2911  * adapter poll_mode controls whether we actually proceed with hardware
2912  * interrupt toggling.
2913  */
2914 static int
2915 e1000g_rx_ring_intr_enable(mac_intr_handle_t intrh)
2916 {
2917 	e1000g_rx_ring_t	*rx_ring = (e1000g_rx_ring_t *)intrh;
2918 	struct e1000g 		*adapter = rx_ring->adapter;
2919 	struct e1000_hw 	*hw = &adapter->shared;
2920 	uint32_t		intr_mask;
2921 
2922 	rw_enter(&adapter->chip_lock, RW_READER);
2923 
2924 	if (adapter->e1000g_state & E1000G_SUSPENDED) {
2925 		rw_exit(&adapter->chip_lock);
2926 		return (0);
2927 	}
2928 
2929 	mutex_enter(&rx_ring->rx_lock);
2930 	rx_ring->poll_flag = 0;
2931 	mutex_exit(&rx_ring->rx_lock);
2932 
2933 	/* Rx interrupt enabling for MSI and legacy */
2934 	intr_mask = E1000_READ_REG(hw, E1000_IMS);
2935 	intr_mask |= E1000_IMS_RXT0;
2936 	E1000_WRITE_REG(hw, E1000_IMS, intr_mask);
2937 	E1000_WRITE_FLUSH(hw);
2938 
2939 	/* Trigger a Rx interrupt to check Rx ring */
2940 	E1000_WRITE_REG(hw, E1000_ICS, E1000_IMS_RXT0);
2941 	E1000_WRITE_FLUSH(hw);
2942 
2943 	rw_exit(&adapter->chip_lock);
2944 	return (0);
2945 }
2946 
2947 static int
2948 e1000g_rx_ring_intr_disable(mac_intr_handle_t intrh)
2949 {
2950 	e1000g_rx_ring_t	*rx_ring = (e1000g_rx_ring_t *)intrh;
2951 	struct e1000g 		*adapter = rx_ring->adapter;
2952 	struct e1000_hw 	*hw = &adapter->shared;
2953 
2954 	rw_enter(&adapter->chip_lock, RW_READER);
2955 
2956 	if (adapter->e1000g_state & E1000G_SUSPENDED) {
2957 		rw_exit(&adapter->chip_lock);
2958 		return (0);
2959 	}
2960 	mutex_enter(&rx_ring->rx_lock);
2961 	rx_ring->poll_flag = 1;
2962 	mutex_exit(&rx_ring->rx_lock);
2963 
2964 	/* Rx interrupt disabling for MSI and legacy */
2965 	E1000_WRITE_REG(hw, E1000_IMC, E1000_IMS_RXT0);
2966 	E1000_WRITE_FLUSH(hw);
2967 
2968 	rw_exit(&adapter->chip_lock);
2969 	return (0);
2970 }
2971 
2972 /*
2973  * e1000g_unicst_find - Find the slot for the specified unicast address
2974  */
2975 static int
2976 e1000g_unicst_find(struct e1000g *Adapter, const uint8_t *mac_addr)
2977 {
2978 	int slot;
2979 
2980 	for (slot = 0; slot < Adapter->unicst_total; slot++) {
2981 		if ((Adapter->unicst_addr[slot].mac.set == 1) &&
2982 		    (bcmp(Adapter->unicst_addr[slot].mac.addr,
2983 		    mac_addr, ETHERADDRL) == 0))
2984 				return (slot);
2985 	}
2986 
2987 	return (-1);
2988 }
2989 
2990 /*
2991  * Entry points to add and remove a MAC address to a ring group.
2992  * The caller takes care of adding and removing the MAC addresses
2993  * to the filter via these two routines.
2994  */
2995 
2996 static int
2997 e1000g_addmac(void *arg, const uint8_t *mac_addr)
2998 {
2999 	struct e1000g *Adapter = (struct e1000g *)arg;
3000 	int slot, err;
3001 
3002 	rw_enter(&Adapter->chip_lock, RW_WRITER);
3003 
3004 	if (Adapter->e1000g_state & E1000G_SUSPENDED) {
3005 		rw_exit(&Adapter->chip_lock);
3006 		return (ECANCELED);
3007 	}
3008 
3009 	if (e1000g_unicst_find(Adapter, mac_addr) != -1) {
3010 		/* The same address is already in slot */
3011 		rw_exit(&Adapter->chip_lock);
3012 		return (0);
3013 	}
3014 
3015 	if (Adapter->unicst_avail == 0) {
3016 		/* no slots available */
3017 		rw_exit(&Adapter->chip_lock);
3018 		return (ENOSPC);
3019 	}
3020 
3021 	/* Search for a free slot */
3022 	for (slot = 0; slot < Adapter->unicst_total; slot++) {
3023 		if (Adapter->unicst_addr[slot].mac.set == 0)
3024 			break;
3025 	}
3026 	ASSERT(slot < Adapter->unicst_total);
3027 
3028 	err = e1000g_unicst_set(Adapter, mac_addr, slot);
3029 	if (err == 0)
3030 		Adapter->unicst_avail--;
3031 
3032 	rw_exit(&Adapter->chip_lock);
3033 
3034 	return (err);
3035 }
3036 
3037 static int
3038 e1000g_remmac(void *arg, const uint8_t *mac_addr)
3039 {
3040 	struct e1000g *Adapter = (struct e1000g *)arg;
3041 	int slot, err;
3042 
3043 	rw_enter(&Adapter->chip_lock, RW_WRITER);
3044 
3045 	if (Adapter->e1000g_state & E1000G_SUSPENDED) {
3046 		rw_exit(&Adapter->chip_lock);
3047 		return (ECANCELED);
3048 	}
3049 
3050 	slot = e1000g_unicst_find(Adapter, mac_addr);
3051 	if (slot == -1) {
3052 		rw_exit(&Adapter->chip_lock);
3053 		return (EINVAL);
3054 	}
3055 
3056 	ASSERT(Adapter->unicst_addr[slot].mac.set);
3057 
3058 	/* Clear this slot */
3059 	err = e1000g_unicst_set(Adapter, NULL, slot);
3060 	if (err == 0)
3061 		Adapter->unicst_avail++;
3062 
3063 	rw_exit(&Adapter->chip_lock);
3064 
3065 	return (err);
3066 }
3067 
3068 static int
3069 e1000g_ring_start(mac_ring_driver_t rh, uint64_t mr_gen_num)
3070 {
3071 	e1000g_rx_ring_t *rx_ring = (e1000g_rx_ring_t *)rh;
3072 
3073 	mutex_enter(&rx_ring->rx_lock);
3074 	rx_ring->ring_gen_num = mr_gen_num;
3075 	mutex_exit(&rx_ring->rx_lock);
3076 	return (0);
3077 }
3078 
3079 /*
3080  * Callback funtion for MAC layer to register all rings.
3081  *
3082  * The hardware supports a single group with currently only one ring
3083  * available.
3084  * Though not offering virtualization ability per se, exposing the
3085  * group/ring still enables the polling and interrupt toggling.
3086  */
3087 /* ARGSUSED */
3088 void
3089 e1000g_fill_ring(void *arg, mac_ring_type_t rtype, const int grp_index,
3090     const int ring_index, mac_ring_info_t *infop, mac_ring_handle_t rh)
3091 {
3092 	struct e1000g *Adapter = (struct e1000g *)arg;
3093 	e1000g_rx_ring_t *rx_ring = Adapter->rx_ring;
3094 	mac_intr_t *mintr;
3095 
3096 	/*
3097 	 * We advertised only RX group/rings, so the MAC framework shouldn't
3098 	 * ask for any thing else.
3099 	 */
3100 	ASSERT(rtype == MAC_RING_TYPE_RX && grp_index == 0 && ring_index == 0);
3101 
3102 	rx_ring->mrh = rx_ring->mrh_init = rh;
3103 	infop->mri_driver = (mac_ring_driver_t)rx_ring;
3104 	infop->mri_start = e1000g_ring_start;
3105 	infop->mri_stop = NULL;
3106 	infop->mri_poll = e1000g_poll_ring;
3107 	infop->mri_stat = e1000g_rx_ring_stat;
3108 
3109 	/* Ring level interrupts */
3110 	mintr = &infop->mri_intr;
3111 	mintr->mi_handle = (mac_intr_handle_t)rx_ring;
3112 	mintr->mi_enable = e1000g_rx_ring_intr_enable;
3113 	mintr->mi_disable = e1000g_rx_ring_intr_disable;
3114 	if (Adapter->msi_enable)
3115 		mintr->mi_ddi_handle = Adapter->htable[0];
3116 }
3117 
3118 /* ARGSUSED */
3119 static void
3120 e1000g_fill_group(void *arg, mac_ring_type_t rtype, const int grp_index,
3121     mac_group_info_t *infop, mac_group_handle_t gh)
3122 {
3123 	struct e1000g *Adapter = (struct e1000g *)arg;
3124 	mac_intr_t *mintr;
3125 
3126 	/*
3127 	 * We advertised a single RX ring. Getting a request for anything else
3128 	 * signifies a bug in the MAC framework.
3129 	 */
3130 	ASSERT(rtype == MAC_RING_TYPE_RX && grp_index == 0);
3131 
3132 	Adapter->rx_group = gh;
3133 
3134 	infop->mgi_driver = (mac_group_driver_t)Adapter;
3135 	infop->mgi_start = NULL;
3136 	infop->mgi_stop = NULL;
3137 	infop->mgi_addmac = e1000g_addmac;
3138 	infop->mgi_remmac = e1000g_remmac;
3139 	infop->mgi_count = 1;
3140 
3141 	/* Group level interrupts */
3142 	mintr = &infop->mgi_intr;
3143 	mintr->mi_handle = (mac_intr_handle_t)Adapter;
3144 	mintr->mi_enable = e1000g_rx_group_intr_enable;
3145 	mintr->mi_disable = e1000g_rx_group_intr_disable;
3146 }
3147 
3148 static void
3149 e1000g_led_blink(void *arg)
3150 {
3151 	e1000g_t *e1000g = arg;
3152 
3153 	mutex_enter(&e1000g->e1000g_led_lock);
3154 	VERIFY(e1000g->e1000g_emul_blink);
3155 	if (e1000g->e1000g_emul_state) {
3156 		(void) e1000_led_on(&e1000g->shared);
3157 	} else {
3158 		(void) e1000_led_off(&e1000g->shared);
3159 	}
3160 	e1000g->e1000g_emul_state = !e1000g->e1000g_emul_state;
3161 	mutex_exit(&e1000g->e1000g_led_lock);
3162 }
3163 
3164 static int
3165 e1000g_led_set(void *arg, mac_led_mode_t mode, uint_t flags)
3166 {
3167 	e1000g_t *e1000g = arg;
3168 
3169 	if (flags != 0)
3170 		return (EINVAL);
3171 
3172 	if (mode != MAC_LED_DEFAULT &&
3173 	    mode != MAC_LED_IDENT &&
3174 	    mode != MAC_LED_OFF &&
3175 	    mode != MAC_LED_ON)
3176 		return (ENOTSUP);
3177 
3178 	mutex_enter(&e1000g->e1000g_led_lock);
3179 
3180 	if ((mode == MAC_LED_IDENT || mode == MAC_LED_OFF ||
3181 	    mode == MAC_LED_ON) &&
3182 	    !e1000g->e1000g_led_setup) {
3183 		if (e1000_setup_led(&e1000g->shared) != E1000_SUCCESS) {
3184 			mutex_exit(&e1000g->e1000g_led_lock);
3185 			return (EIO);
3186 		}
3187 
3188 		e1000g->e1000g_led_setup = B_TRUE;
3189 	}
3190 
3191 	if (mode != MAC_LED_IDENT && e1000g->e1000g_blink != NULL) {
3192 		ddi_periodic_t id = e1000g->e1000g_blink;
3193 		e1000g->e1000g_blink = NULL;
3194 		mutex_exit(&e1000g->e1000g_led_lock);
3195 		ddi_periodic_delete(id);
3196 		mutex_enter(&e1000g->e1000g_led_lock);
3197 	}
3198 
3199 	switch (mode) {
3200 	case MAC_LED_DEFAULT:
3201 		if (e1000g->e1000g_led_setup) {
3202 			if (e1000_cleanup_led(&e1000g->shared) !=
3203 			    E1000_SUCCESS) {
3204 				mutex_exit(&e1000g->e1000g_led_lock);
3205 				return (EIO);
3206 			}
3207 			e1000g->e1000g_led_setup = B_FALSE;
3208 		}
3209 		break;
3210 	case MAC_LED_IDENT:
3211 		if (e1000g->e1000g_emul_blink) {
3212 			if (e1000g->e1000g_blink != NULL)
3213 				break;
3214 
3215 			/*
3216 			 * Note, we use a 200 ms period here as that's what
3217 			 * section 10.1.3 8254x Intel Manual (PCI/PCI-X Family
3218 			 * of Gigabit Ethernet Controllers Software Developer's
3219 			 * Manual) indicates that the optional blink hardware
3220 			 * operates at.
3221 			 */
3222 			e1000g->e1000g_blink =
3223 			    ddi_periodic_add(e1000g_led_blink, e1000g,
3224 			    200ULL * (NANOSEC / MILLISEC), DDI_IPL_0);
3225 		} else if (e1000_blink_led(&e1000g->shared) != E1000_SUCCESS) {
3226 			mutex_exit(&e1000g->e1000g_led_lock);
3227 			return (EIO);
3228 		}
3229 		break;
3230 	case MAC_LED_OFF:
3231 		if (e1000_led_off(&e1000g->shared) != E1000_SUCCESS) {
3232 			mutex_exit(&e1000g->e1000g_led_lock);
3233 			return (EIO);
3234 		}
3235 		break;
3236 	case MAC_LED_ON:
3237 		if (e1000_led_on(&e1000g->shared) != E1000_SUCCESS) {
3238 			mutex_exit(&e1000g->e1000g_led_lock);
3239 			return (EIO);
3240 		}
3241 		break;
3242 	default:
3243 		mutex_exit(&e1000g->e1000g_led_lock);
3244 		return (ENOTSUP);
3245 	}
3246 
3247 	mutex_exit(&e1000g->e1000g_led_lock);
3248 	return (0);
3249 
3250 }
3251 
3252 static boolean_t
3253 e1000g_m_getcapab(void *arg, mac_capab_t cap, void *cap_data)
3254 {
3255 	struct e1000g *Adapter = (struct e1000g *)arg;
3256 
3257 	switch (cap) {
3258 	case MAC_CAPAB_HCKSUM: {
3259 		uint32_t *txflags = cap_data;
3260 
3261 		if (Adapter->tx_hcksum_enable)
3262 			*txflags = HCKSUM_IPHDRCKSUM |
3263 			    HCKSUM_INET_PARTIAL;
3264 		else
3265 			return (B_FALSE);
3266 		break;
3267 	}
3268 
3269 	case MAC_CAPAB_LSO: {
3270 		mac_capab_lso_t *cap_lso = cap_data;
3271 
3272 		if (Adapter->lso_enable) {
3273 			cap_lso->lso_flags = LSO_TX_BASIC_TCP_IPV4;
3274 			cap_lso->lso_basic_tcp_ipv4.lso_max =
3275 			    E1000_LSO_MAXLEN;
3276 		} else
3277 			return (B_FALSE);
3278 		break;
3279 	}
3280 	case MAC_CAPAB_RINGS: {
3281 		mac_capab_rings_t *cap_rings = cap_data;
3282 
3283 		/* No TX rings exposed yet */
3284 		if (cap_rings->mr_type != MAC_RING_TYPE_RX)
3285 			return (B_FALSE);
3286 
3287 		cap_rings->mr_group_type = MAC_GROUP_TYPE_STATIC;
3288 		cap_rings->mr_rnum = 1;
3289 		cap_rings->mr_gnum = 1;
3290 		cap_rings->mr_rget = e1000g_fill_ring;
3291 		cap_rings->mr_gget = e1000g_fill_group;
3292 		break;
3293 	}
3294 	case MAC_CAPAB_LED: {
3295 		mac_capab_led_t *cap_led = cap_data;
3296 
3297 		cap_led->mcl_flags = 0;
3298 		cap_led->mcl_modes = MAC_LED_DEFAULT;
3299 		if (Adapter->shared.mac.ops.blink_led != NULL &&
3300 		    Adapter->shared.mac.ops.blink_led !=
3301 		    e1000_null_ops_generic) {
3302 			cap_led->mcl_modes |= MAC_LED_IDENT;
3303 		}
3304 
3305 		if (Adapter->shared.mac.ops.led_off != NULL &&
3306 		    Adapter->shared.mac.ops.led_off !=
3307 		    e1000_null_ops_generic) {
3308 			cap_led->mcl_modes |= MAC_LED_OFF;
3309 		}
3310 
3311 		if (Adapter->shared.mac.ops.led_on != NULL &&
3312 		    Adapter->shared.mac.ops.led_on !=
3313 		    e1000_null_ops_generic) {
3314 			cap_led->mcl_modes |= MAC_LED_ON;
3315 		}
3316 
3317 		/*
3318 		 * Some hardware doesn't support blinking natively as they're
3319 		 * missing the optional blink circuit. If they have both off and
3320 		 * on then we'll emulate it ourselves.
3321 		 */
3322 		if (((cap_led->mcl_modes & MAC_LED_IDENT) == 0) &&
3323 		    ((cap_led->mcl_modes & MAC_LED_OFF) != 0) &&
3324 		    ((cap_led->mcl_modes & MAC_LED_ON) != 0)) {
3325 			cap_led->mcl_modes |= MAC_LED_IDENT;
3326 			Adapter->e1000g_emul_blink = B_TRUE;
3327 		}
3328 
3329 		cap_led->mcl_set = e1000g_led_set;
3330 		break;
3331 	}
3332 	default:
3333 		return (B_FALSE);
3334 	}
3335 	return (B_TRUE);
3336 }
3337 
3338 static boolean_t
3339 e1000g_param_locked(mac_prop_id_t pr_num)
3340 {
3341 	/*
3342 	 * All en_* parameters are locked (read-only) while
3343 	 * the device is in any sort of loopback mode ...
3344 	 */
3345 	switch (pr_num) {
3346 		case MAC_PROP_EN_1000FDX_CAP:
3347 		case MAC_PROP_EN_1000HDX_CAP:
3348 		case MAC_PROP_EN_100FDX_CAP:
3349 		case MAC_PROP_EN_100HDX_CAP:
3350 		case MAC_PROP_EN_10FDX_CAP:
3351 		case MAC_PROP_EN_10HDX_CAP:
3352 		case MAC_PROP_AUTONEG:
3353 		case MAC_PROP_FLOWCTRL:
3354 			return (B_TRUE);
3355 	}
3356 	return (B_FALSE);
3357 }
3358 
3359 /*
3360  * callback function for set/get of properties
3361  */
3362 static int
3363 e1000g_m_setprop(void *arg, const char *pr_name, mac_prop_id_t pr_num,
3364     uint_t pr_valsize, const void *pr_val)
3365 {
3366 	struct e1000g *Adapter = arg;
3367 	struct e1000_hw *hw = &Adapter->shared;
3368 	struct e1000_fc_info *fc = &Adapter->shared.fc;
3369 	int err = 0;
3370 	link_flowctrl_t flowctrl;
3371 	uint32_t cur_mtu, new_mtu;
3372 
3373 	rw_enter(&Adapter->chip_lock, RW_WRITER);
3374 
3375 	if (Adapter->e1000g_state & E1000G_SUSPENDED) {
3376 		rw_exit(&Adapter->chip_lock);
3377 		return (ECANCELED);
3378 	}
3379 
3380 	if (Adapter->loopback_mode != E1000G_LB_NONE &&
3381 	    e1000g_param_locked(pr_num)) {
3382 		/*
3383 		 * All en_* parameters are locked (read-only)
3384 		 * while the device is in any sort of loopback mode.
3385 		 */
3386 		rw_exit(&Adapter->chip_lock);
3387 		return (EBUSY);
3388 	}
3389 
3390 	switch (pr_num) {
3391 		case MAC_PROP_EN_1000FDX_CAP:
3392 			if (hw->phy.media_type != e1000_media_type_copper) {
3393 				err = ENOTSUP;
3394 				break;
3395 			}
3396 			Adapter->param_en_1000fdx = *(uint8_t *)pr_val;
3397 			Adapter->param_adv_1000fdx = *(uint8_t *)pr_val;
3398 			goto reset;
3399 		case MAC_PROP_EN_100FDX_CAP:
3400 			if (hw->phy.media_type != e1000_media_type_copper) {
3401 				err = ENOTSUP;
3402 				break;
3403 			}
3404 			Adapter->param_en_100fdx = *(uint8_t *)pr_val;
3405 			Adapter->param_adv_100fdx = *(uint8_t *)pr_val;
3406 			goto reset;
3407 		case MAC_PROP_EN_100HDX_CAP:
3408 			if (hw->phy.media_type != e1000_media_type_copper) {
3409 				err = ENOTSUP;
3410 				break;
3411 			}
3412 			Adapter->param_en_100hdx = *(uint8_t *)pr_val;
3413 			Adapter->param_adv_100hdx = *(uint8_t *)pr_val;
3414 			goto reset;
3415 		case MAC_PROP_EN_10FDX_CAP:
3416 			if (hw->phy.media_type != e1000_media_type_copper) {
3417 				err = ENOTSUP;
3418 				break;
3419 			}
3420 			Adapter->param_en_10fdx = *(uint8_t *)pr_val;
3421 			Adapter->param_adv_10fdx = *(uint8_t *)pr_val;
3422 			goto reset;
3423 		case MAC_PROP_EN_10HDX_CAP:
3424 			if (hw->phy.media_type != e1000_media_type_copper) {
3425 				err = ENOTSUP;
3426 				break;
3427 			}
3428 			Adapter->param_en_10hdx = *(uint8_t *)pr_val;
3429 			Adapter->param_adv_10hdx = *(uint8_t *)pr_val;
3430 			goto reset;
3431 		case MAC_PROP_AUTONEG:
3432 			if (hw->phy.media_type != e1000_media_type_copper) {
3433 				err = ENOTSUP;
3434 				break;
3435 			}
3436 			Adapter->param_adv_autoneg = *(uint8_t *)pr_val;
3437 			goto reset;
3438 		case MAC_PROP_FLOWCTRL:
3439 			fc->send_xon = B_TRUE;
3440 			bcopy(pr_val, &flowctrl, sizeof (flowctrl));
3441 
3442 			switch (flowctrl) {
3443 			default:
3444 				err = EINVAL;
3445 				break;
3446 			case LINK_FLOWCTRL_NONE:
3447 				fc->requested_mode = e1000_fc_none;
3448 				break;
3449 			case LINK_FLOWCTRL_RX:
3450 				fc->requested_mode = e1000_fc_rx_pause;
3451 				break;
3452 			case LINK_FLOWCTRL_TX:
3453 				fc->requested_mode = e1000_fc_tx_pause;
3454 				break;
3455 			case LINK_FLOWCTRL_BI:
3456 				fc->requested_mode = e1000_fc_full;
3457 				break;
3458 			}
3459 reset:
3460 			if (err == 0) {
3461 				/* check PCH limits & reset the link */
3462 				e1000g_pch_limits(Adapter);
3463 				if (e1000g_reset_link(Adapter) != DDI_SUCCESS)
3464 					err = EINVAL;
3465 			}
3466 			break;
3467 		case MAC_PROP_ADV_1000FDX_CAP:
3468 		case MAC_PROP_ADV_1000HDX_CAP:
3469 		case MAC_PROP_ADV_100FDX_CAP:
3470 		case MAC_PROP_ADV_100HDX_CAP:
3471 		case MAC_PROP_ADV_10FDX_CAP:
3472 		case MAC_PROP_ADV_10HDX_CAP:
3473 		case MAC_PROP_EN_1000HDX_CAP:
3474 		case MAC_PROP_STATUS:
3475 		case MAC_PROP_SPEED:
3476 		case MAC_PROP_DUPLEX:
3477 			err = ENOTSUP; /* read-only prop. Can't set this. */
3478 			break;
3479 		case MAC_PROP_MTU:
3480 			/* adapter must be stopped for an MTU change */
3481 			if (Adapter->e1000g_state & E1000G_STARTED) {
3482 				err = EBUSY;
3483 				break;
3484 			}
3485 
3486 			cur_mtu = Adapter->default_mtu;
3487 
3488 			/* get new requested MTU */
3489 			bcopy(pr_val, &new_mtu, sizeof (new_mtu));
3490 			if (new_mtu == cur_mtu) {
3491 				err = 0;
3492 				break;
3493 			}
3494 
3495 			if ((new_mtu < DEFAULT_MTU) ||
3496 			    (new_mtu > Adapter->max_mtu)) {
3497 				err = EINVAL;
3498 				break;
3499 			}
3500 
3501 			/* inform MAC framework of new MTU */
3502 			err = mac_maxsdu_update(Adapter->mh, new_mtu);
3503 
3504 			if (err == 0) {
3505 				Adapter->default_mtu = new_mtu;
3506 				Adapter->max_frame_size =
3507 				    e1000g_mtu2maxframe(new_mtu);
3508 
3509 				/*
3510 				 * check PCH limits & set buffer sizes to
3511 				 * match new MTU
3512 				 */
3513 				e1000g_pch_limits(Adapter);
3514 				e1000g_set_bufsize(Adapter);
3515 
3516 				/*
3517 				 * decrease the number of descriptors and free
3518 				 * packets for jumbo frames to reduce tx/rx
3519 				 * resource consumption
3520 				 */
3521 				if (Adapter->max_frame_size >=
3522 				    (FRAME_SIZE_UPTO_4K)) {
3523 					if (Adapter->tx_desc_num_flag == 0)
3524 						Adapter->tx_desc_num =
3525 						    DEFAULT_JUMBO_NUM_TX_DESC;
3526 
3527 					if (Adapter->rx_desc_num_flag == 0)
3528 						Adapter->rx_desc_num =
3529 						    DEFAULT_JUMBO_NUM_RX_DESC;
3530 
3531 					if (Adapter->tx_buf_num_flag == 0)
3532 						Adapter->tx_freelist_num =
3533 						    DEFAULT_JUMBO_NUM_TX_BUF;
3534 
3535 					if (Adapter->rx_buf_num_flag == 0)
3536 						Adapter->rx_freelist_limit =
3537 						    DEFAULT_JUMBO_NUM_RX_BUF;
3538 				} else {
3539 					if (Adapter->tx_desc_num_flag == 0)
3540 						Adapter->tx_desc_num =
3541 						    DEFAULT_NUM_TX_DESCRIPTOR;
3542 
3543 					if (Adapter->rx_desc_num_flag == 0)
3544 						Adapter->rx_desc_num =
3545 						    DEFAULT_NUM_RX_DESCRIPTOR;
3546 
3547 					if (Adapter->tx_buf_num_flag == 0)
3548 						Adapter->tx_freelist_num =
3549 						    DEFAULT_NUM_TX_FREELIST;
3550 
3551 					if (Adapter->rx_buf_num_flag == 0)
3552 						Adapter->rx_freelist_limit =
3553 						    DEFAULT_NUM_RX_FREELIST;
3554 				}
3555 			}
3556 			break;
3557 		case MAC_PROP_PRIVATE:
3558 			err = e1000g_set_priv_prop(Adapter, pr_name,
3559 			    pr_valsize, pr_val);
3560 			break;
3561 		default:
3562 			err = ENOTSUP;
3563 			break;
3564 	}
3565 	rw_exit(&Adapter->chip_lock);
3566 	return (err);
3567 }
3568 
3569 static int
3570 e1000g_m_getprop(void *arg, const char *pr_name, mac_prop_id_t pr_num,
3571     uint_t pr_valsize, void *pr_val)
3572 {
3573 	struct e1000g *Adapter = arg;
3574 	struct e1000_fc_info *fc = &Adapter->shared.fc;
3575 	int err = 0;
3576 	link_flowctrl_t flowctrl;
3577 	uint64_t tmp = 0;
3578 
3579 	switch (pr_num) {
3580 		case MAC_PROP_DUPLEX:
3581 			ASSERT(pr_valsize >= sizeof (link_duplex_t));
3582 			bcopy(&Adapter->link_duplex, pr_val,
3583 			    sizeof (link_duplex_t));
3584 			break;
3585 		case MAC_PROP_SPEED:
3586 			ASSERT(pr_valsize >= sizeof (uint64_t));
3587 			tmp = Adapter->link_speed * 1000000ull;
3588 			bcopy(&tmp, pr_val, sizeof (tmp));
3589 			break;
3590 		case MAC_PROP_AUTONEG:
3591 			*(uint8_t *)pr_val = Adapter->param_adv_autoneg;
3592 			break;
3593 		case MAC_PROP_FLOWCTRL:
3594 			ASSERT(pr_valsize >= sizeof (link_flowctrl_t));
3595 			switch (fc->current_mode) {
3596 				case e1000_fc_none:
3597 					flowctrl = LINK_FLOWCTRL_NONE;
3598 					break;
3599 				case e1000_fc_rx_pause:
3600 					flowctrl = LINK_FLOWCTRL_RX;
3601 					break;
3602 				case e1000_fc_tx_pause:
3603 					flowctrl = LINK_FLOWCTRL_TX;
3604 					break;
3605 				case e1000_fc_full:
3606 					flowctrl = LINK_FLOWCTRL_BI;
3607 					break;
3608 			}
3609 			bcopy(&flowctrl, pr_val, sizeof (flowctrl));
3610 			break;
3611 		case MAC_PROP_ADV_1000FDX_CAP:
3612 			*(uint8_t *)pr_val = Adapter->param_adv_1000fdx;
3613 			break;
3614 		case MAC_PROP_EN_1000FDX_CAP:
3615 			*(uint8_t *)pr_val = Adapter->param_en_1000fdx;
3616 			break;
3617 		case MAC_PROP_ADV_1000HDX_CAP:
3618 			*(uint8_t *)pr_val = Adapter->param_adv_1000hdx;
3619 			break;
3620 		case MAC_PROP_EN_1000HDX_CAP:
3621 			*(uint8_t *)pr_val = Adapter->param_en_1000hdx;
3622 			break;
3623 		case MAC_PROP_ADV_100FDX_CAP:
3624 			*(uint8_t *)pr_val = Adapter->param_adv_100fdx;
3625 			break;
3626 		case MAC_PROP_EN_100FDX_CAP:
3627 			*(uint8_t *)pr_val = Adapter->param_en_100fdx;
3628 			break;
3629 		case MAC_PROP_ADV_100HDX_CAP:
3630 			*(uint8_t *)pr_val = Adapter->param_adv_100hdx;
3631 			break;
3632 		case MAC_PROP_EN_100HDX_CAP:
3633 			*(uint8_t *)pr_val = Adapter->param_en_100hdx;
3634 			break;
3635 		case MAC_PROP_ADV_10FDX_CAP:
3636 			*(uint8_t *)pr_val = Adapter->param_adv_10fdx;
3637 			break;
3638 		case MAC_PROP_EN_10FDX_CAP:
3639 			*(uint8_t *)pr_val = Adapter->param_en_10fdx;
3640 			break;
3641 		case MAC_PROP_ADV_10HDX_CAP:
3642 			*(uint8_t *)pr_val = Adapter->param_adv_10hdx;
3643 			break;
3644 		case MAC_PROP_EN_10HDX_CAP:
3645 			*(uint8_t *)pr_val = Adapter->param_en_10hdx;
3646 			break;
3647 		case MAC_PROP_ADV_100T4_CAP:
3648 		case MAC_PROP_EN_100T4_CAP:
3649 			*(uint8_t *)pr_val = Adapter->param_adv_100t4;
3650 			break;
3651 		case MAC_PROP_PRIVATE:
3652 			err = e1000g_get_priv_prop(Adapter, pr_name,
3653 			    pr_valsize, pr_val);
3654 			break;
3655 		default:
3656 			err = ENOTSUP;
3657 			break;
3658 	}
3659 
3660 	return (err);
3661 }
3662 
3663 static void
3664 e1000g_m_propinfo(void *arg, const char *pr_name, mac_prop_id_t pr_num,
3665     mac_prop_info_handle_t prh)
3666 {
3667 	struct e1000g *Adapter = arg;
3668 	struct e1000_hw *hw = &Adapter->shared;
3669 
3670 	switch (pr_num) {
3671 	case MAC_PROP_DUPLEX:
3672 	case MAC_PROP_SPEED:
3673 	case MAC_PROP_ADV_1000FDX_CAP:
3674 	case MAC_PROP_ADV_1000HDX_CAP:
3675 	case MAC_PROP_ADV_100FDX_CAP:
3676 	case MAC_PROP_ADV_100HDX_CAP:
3677 	case MAC_PROP_ADV_10FDX_CAP:
3678 	case MAC_PROP_ADV_10HDX_CAP:
3679 	case MAC_PROP_ADV_100T4_CAP:
3680 	case MAC_PROP_EN_100T4_CAP:
3681 		mac_prop_info_set_perm(prh, MAC_PROP_PERM_READ);
3682 		break;
3683 
3684 	case MAC_PROP_EN_1000FDX_CAP:
3685 		if (hw->phy.media_type != e1000_media_type_copper) {
3686 			mac_prop_info_set_perm(prh, MAC_PROP_PERM_READ);
3687 		} else {
3688 			mac_prop_info_set_default_uint8(prh,
3689 			    ((Adapter->phy_ext_status &
3690 			    IEEE_ESR_1000T_FD_CAPS) ||
3691 			    (Adapter->phy_ext_status &
3692 			    IEEE_ESR_1000X_FD_CAPS)) ? 1 : 0);
3693 		}
3694 		break;
3695 
3696 	case MAC_PROP_EN_100FDX_CAP:
3697 		if (hw->phy.media_type != e1000_media_type_copper) {
3698 			mac_prop_info_set_perm(prh, MAC_PROP_PERM_READ);
3699 		} else {
3700 			mac_prop_info_set_default_uint8(prh,
3701 			    ((Adapter->phy_status & MII_SR_100X_FD_CAPS) ||
3702 			    (Adapter->phy_status & MII_SR_100T2_FD_CAPS))
3703 			    ? 1 : 0);
3704 		}
3705 		break;
3706 
3707 	case MAC_PROP_EN_100HDX_CAP:
3708 		if (hw->phy.media_type != e1000_media_type_copper) {
3709 			mac_prop_info_set_perm(prh, MAC_PROP_PERM_READ);
3710 		} else {
3711 			mac_prop_info_set_default_uint8(prh,
3712 			    ((Adapter->phy_status & MII_SR_100X_HD_CAPS) ||
3713 			    (Adapter->phy_status & MII_SR_100T2_HD_CAPS))
3714 			    ? 1 : 0);
3715 		}
3716 		break;
3717 
3718 	case MAC_PROP_EN_10FDX_CAP:
3719 		if (hw->phy.media_type != e1000_media_type_copper) {
3720 			mac_prop_info_set_perm(prh, MAC_PROP_PERM_READ);
3721 		} else {
3722 			mac_prop_info_set_default_uint8(prh,
3723 			    (Adapter->phy_status & MII_SR_10T_FD_CAPS) ? 1 : 0);
3724 		}
3725 		break;
3726 
3727 	case MAC_PROP_EN_10HDX_CAP:
3728 		if (hw->phy.media_type != e1000_media_type_copper) {
3729 			mac_prop_info_set_perm(prh, MAC_PROP_PERM_READ);
3730 		} else {
3731 			mac_prop_info_set_default_uint8(prh,
3732 			    (Adapter->phy_status & MII_SR_10T_HD_CAPS) ? 1 : 0);
3733 		}
3734 		break;
3735 
3736 	case MAC_PROP_EN_1000HDX_CAP:
3737 		if (hw->phy.media_type != e1000_media_type_copper)
3738 			mac_prop_info_set_perm(prh, MAC_PROP_PERM_READ);
3739 		break;
3740 
3741 	case MAC_PROP_AUTONEG:
3742 		if (hw->phy.media_type != e1000_media_type_copper) {
3743 			mac_prop_info_set_perm(prh, MAC_PROP_PERM_READ);
3744 		} else {
3745 			mac_prop_info_set_default_uint8(prh,
3746 			    (Adapter->phy_status & MII_SR_AUTONEG_CAPS)
3747 			    ? 1 : 0);
3748 		}
3749 		break;
3750 
3751 	case MAC_PROP_FLOWCTRL:
3752 		mac_prop_info_set_default_link_flowctrl(prh, LINK_FLOWCTRL_BI);
3753 		break;
3754 
3755 	case MAC_PROP_MTU: {
3756 		struct e1000_mac_info *mac = &Adapter->shared.mac;
3757 		struct e1000_phy_info *phy = &Adapter->shared.phy;
3758 		uint32_t max;
3759 
3760 		/* some MAC types do not support jumbo frames */
3761 		if ((mac->type == e1000_ich8lan) ||
3762 		    ((mac->type == e1000_ich9lan) && (phy->type ==
3763 		    e1000_phy_ife))) {
3764 			max = DEFAULT_MTU;
3765 		} else {
3766 			max = Adapter->max_mtu;
3767 		}
3768 
3769 		mac_prop_info_set_range_uint32(prh, DEFAULT_MTU, max);
3770 		break;
3771 	}
3772 	case MAC_PROP_PRIVATE: {
3773 		char valstr[64];
3774 		int value;
3775 
3776 		if (strcmp(pr_name, "_adv_pause_cap") == 0 ||
3777 		    strcmp(pr_name, "_adv_asym_pause_cap") == 0) {
3778 			mac_prop_info_set_perm(prh, MAC_PROP_PERM_READ);
3779 			return;
3780 		} else if (strcmp(pr_name, "_tx_bcopy_threshold") == 0) {
3781 			value = DEFAULT_TX_BCOPY_THRESHOLD;
3782 		} else if (strcmp(pr_name, "_tx_interrupt_enable") == 0) {
3783 			value = DEFAULT_TX_INTR_ENABLE;
3784 		} else if (strcmp(pr_name, "_tx_intr_delay") == 0) {
3785 			value = DEFAULT_TX_INTR_DELAY;
3786 		} else if (strcmp(pr_name, "_tx_intr_abs_delay") == 0) {
3787 			value = DEFAULT_TX_INTR_ABS_DELAY;
3788 		} else if (strcmp(pr_name, "_rx_bcopy_threshold") == 0) {
3789 			value = DEFAULT_RX_BCOPY_THRESHOLD;
3790 		} else if (strcmp(pr_name, "_max_num_rcv_packets") == 0) {
3791 			value = DEFAULT_RX_LIMIT_ON_INTR;
3792 		} else if (strcmp(pr_name, "_rx_intr_delay") == 0) {
3793 			value = DEFAULT_RX_INTR_DELAY;
3794 		} else if (strcmp(pr_name, "_rx_intr_abs_delay") == 0) {
3795 			value = DEFAULT_RX_INTR_ABS_DELAY;
3796 		} else if (strcmp(pr_name, "_intr_throttling_rate") == 0) {
3797 			value = DEFAULT_INTR_THROTTLING;
3798 		} else if (strcmp(pr_name, "_intr_adaptive") == 0) {
3799 			value = 1;
3800 		} else {
3801 			return;
3802 		}
3803 
3804 		(void) snprintf(valstr, sizeof (valstr), "%d", value);
3805 		mac_prop_info_set_default_str(prh, valstr);
3806 		break;
3807 	}
3808 	}
3809 }
3810 
3811 /* ARGSUSED2 */
3812 static int
3813 e1000g_set_priv_prop(struct e1000g *Adapter, const char *pr_name,
3814     uint_t pr_valsize, const void *pr_val)
3815 {
3816 	int err = 0;
3817 	long result;
3818 	struct e1000_hw *hw = &Adapter->shared;
3819 
3820 	if (strcmp(pr_name, "_tx_bcopy_threshold") == 0) {
3821 		if (pr_val == NULL) {
3822 			err = EINVAL;
3823 			return (err);
3824 		}
3825 		(void) ddi_strtol(pr_val, (char **)NULL, 0, &result);
3826 		if (result < MIN_TX_BCOPY_THRESHOLD ||
3827 		    result > MAX_TX_BCOPY_THRESHOLD)
3828 			err = EINVAL;
3829 		else {
3830 			Adapter->tx_bcopy_thresh = (uint32_t)result;
3831 		}
3832 		return (err);
3833 	}
3834 	if (strcmp(pr_name, "_tx_interrupt_enable") == 0) {
3835 		if (pr_val == NULL) {
3836 			err = EINVAL;
3837 			return (err);
3838 		}
3839 		(void) ddi_strtol(pr_val, (char **)NULL, 0, &result);
3840 		if (result < 0 || result > 1)
3841 			err = EINVAL;
3842 		else {
3843 			Adapter->tx_intr_enable = (result == 1) ?
3844 			    B_TRUE: B_FALSE;
3845 			if (Adapter->tx_intr_enable)
3846 				e1000g_mask_tx_interrupt(Adapter);
3847 			else
3848 				e1000g_clear_tx_interrupt(Adapter);
3849 			if (e1000g_check_acc_handle(
3850 			    Adapter->osdep.reg_handle) != DDI_FM_OK) {
3851 				ddi_fm_service_impact(Adapter->dip,
3852 				    DDI_SERVICE_DEGRADED);
3853 				err = EIO;
3854 			}
3855 		}
3856 		return (err);
3857 	}
3858 	if (strcmp(pr_name, "_tx_intr_delay") == 0) {
3859 		if (pr_val == NULL) {
3860 			err = EINVAL;
3861 			return (err);
3862 		}
3863 		(void) ddi_strtol(pr_val, (char **)NULL, 0, &result);
3864 		if (result < MIN_TX_INTR_DELAY ||
3865 		    result > MAX_TX_INTR_DELAY)
3866 			err = EINVAL;
3867 		else {
3868 			Adapter->tx_intr_delay = (uint32_t)result;
3869 			E1000_WRITE_REG(hw, E1000_TIDV, Adapter->tx_intr_delay);
3870 			if (e1000g_check_acc_handle(
3871 			    Adapter->osdep.reg_handle) != DDI_FM_OK) {
3872 				ddi_fm_service_impact(Adapter->dip,
3873 				    DDI_SERVICE_DEGRADED);
3874 				err = EIO;
3875 			}
3876 		}
3877 		return (err);
3878 	}
3879 	if (strcmp(pr_name, "_tx_intr_abs_delay") == 0) {
3880 		if (pr_val == NULL) {
3881 			err = EINVAL;
3882 			return (err);
3883 		}
3884 		(void) ddi_strtol(pr_val, (char **)NULL, 0, &result);
3885 		if (result < MIN_TX_INTR_ABS_DELAY ||
3886 		    result > MAX_TX_INTR_ABS_DELAY)
3887 			err = EINVAL;
3888 		else {
3889 			Adapter->tx_intr_abs_delay = (uint32_t)result;
3890 			E1000_WRITE_REG(hw, E1000_TADV,
3891 			    Adapter->tx_intr_abs_delay);
3892 			if (e1000g_check_acc_handle(
3893 			    Adapter->osdep.reg_handle) != DDI_FM_OK) {
3894 				ddi_fm_service_impact(Adapter->dip,
3895 				    DDI_SERVICE_DEGRADED);
3896 				err = EIO;
3897 			}
3898 		}
3899 		return (err);
3900 	}
3901 	if (strcmp(pr_name, "_rx_bcopy_threshold") == 0) {
3902 		if (pr_val == NULL) {
3903 			err = EINVAL;
3904 			return (err);
3905 		}
3906 		(void) ddi_strtol(pr_val, (char **)NULL, 0, &result);
3907 		if (result < MIN_RX_BCOPY_THRESHOLD ||
3908 		    result > MAX_RX_BCOPY_THRESHOLD)
3909 			err = EINVAL;
3910 		else
3911 			Adapter->rx_bcopy_thresh = (uint32_t)result;
3912 		return (err);
3913 	}
3914 	if (strcmp(pr_name, "_max_num_rcv_packets") == 0) {
3915 		if (pr_val == NULL) {
3916 			err = EINVAL;
3917 			return (err);
3918 		}
3919 		(void) ddi_strtol(pr_val, (char **)NULL, 0, &result);
3920 		if (result < MIN_RX_LIMIT_ON_INTR ||
3921 		    result > MAX_RX_LIMIT_ON_INTR)
3922 			err = EINVAL;
3923 		else
3924 			Adapter->rx_limit_onintr = (uint32_t)result;
3925 		return (err);
3926 	}
3927 	if (strcmp(pr_name, "_rx_intr_delay") == 0) {
3928 		if (pr_val == NULL) {
3929 			err = EINVAL;
3930 			return (err);
3931 		}
3932 		(void) ddi_strtol(pr_val, (char **)NULL, 0, &result);
3933 		if (result < MIN_RX_INTR_DELAY ||
3934 		    result > MAX_RX_INTR_DELAY)
3935 			err = EINVAL;
3936 		else {
3937 			Adapter->rx_intr_delay = (uint32_t)result;
3938 			E1000_WRITE_REG(hw, E1000_RDTR, Adapter->rx_intr_delay);
3939 			if (e1000g_check_acc_handle(
3940 			    Adapter->osdep.reg_handle) != DDI_FM_OK) {
3941 				ddi_fm_service_impact(Adapter->dip,
3942 				    DDI_SERVICE_DEGRADED);
3943 				err = EIO;
3944 			}
3945 		}
3946 		return (err);
3947 	}
3948 	if (strcmp(pr_name, "_rx_intr_abs_delay") == 0) {
3949 		if (pr_val == NULL) {
3950 			err = EINVAL;
3951 			return (err);
3952 		}
3953 		(void) ddi_strtol(pr_val, (char **)NULL, 0, &result);
3954 		if (result < MIN_RX_INTR_ABS_DELAY ||
3955 		    result > MAX_RX_INTR_ABS_DELAY)
3956 			err = EINVAL;
3957 		else {
3958 			Adapter->rx_intr_abs_delay = (uint32_t)result;
3959 			E1000_WRITE_REG(hw, E1000_RADV,
3960 			    Adapter->rx_intr_abs_delay);
3961 			if (e1000g_check_acc_handle(
3962 			    Adapter->osdep.reg_handle) != DDI_FM_OK) {
3963 				ddi_fm_service_impact(Adapter->dip,
3964 				    DDI_SERVICE_DEGRADED);
3965 				err = EIO;
3966 			}
3967 		}
3968 		return (err);
3969 	}
3970 	if (strcmp(pr_name, "_intr_throttling_rate") == 0) {
3971 		if (pr_val == NULL) {
3972 			err = EINVAL;
3973 			return (err);
3974 		}
3975 		(void) ddi_strtol(pr_val, (char **)NULL, 0, &result);
3976 		if (result < MIN_INTR_THROTTLING ||
3977 		    result > MAX_INTR_THROTTLING)
3978 			err = EINVAL;
3979 		else {
3980 			if (hw->mac.type >= e1000_82540) {
3981 				Adapter->intr_throttling_rate =
3982 				    (uint32_t)result;
3983 				E1000_WRITE_REG(hw, E1000_ITR,
3984 				    Adapter->intr_throttling_rate);
3985 				if (e1000g_check_acc_handle(
3986 				    Adapter->osdep.reg_handle) != DDI_FM_OK) {
3987 					ddi_fm_service_impact(Adapter->dip,
3988 					    DDI_SERVICE_DEGRADED);
3989 					err = EIO;
3990 				}
3991 			} else
3992 				err = EINVAL;
3993 		}
3994 		return (err);
3995 	}
3996 	if (strcmp(pr_name, "_intr_adaptive") == 0) {
3997 		if (pr_val == NULL) {
3998 			err = EINVAL;
3999 			return (err);
4000 		}
4001 		(void) ddi_strtol(pr_val, (char **)NULL, 0, &result);
4002 		if (result < 0 || result > 1)
4003 			err = EINVAL;
4004 		else {
4005 			if (hw->mac.type >= e1000_82540) {
4006 				Adapter->intr_adaptive = (result == 1) ?
4007 				    B_TRUE : B_FALSE;
4008 			} else {
4009 				err = EINVAL;
4010 			}
4011 		}
4012 		return (err);
4013 	}
4014 	return (ENOTSUP);
4015 }
4016 
4017 static int
4018 e1000g_get_priv_prop(struct e1000g *Adapter, const char *pr_name,
4019     uint_t pr_valsize, void *pr_val)
4020 {
4021 	int err = ENOTSUP;
4022 	int value;
4023 
4024 	if (strcmp(pr_name, "_adv_pause_cap") == 0) {
4025 		value = Adapter->param_adv_pause;
4026 		err = 0;
4027 		goto done;
4028 	}
4029 	if (strcmp(pr_name, "_adv_asym_pause_cap") == 0) {
4030 		value = Adapter->param_adv_asym_pause;
4031 		err = 0;
4032 		goto done;
4033 	}
4034 	if (strcmp(pr_name, "_tx_bcopy_threshold") == 0) {
4035 		value = Adapter->tx_bcopy_thresh;
4036 		err = 0;
4037 		goto done;
4038 	}
4039 	if (strcmp(pr_name, "_tx_interrupt_enable") == 0) {
4040 		value = Adapter->tx_intr_enable;
4041 		err = 0;
4042 		goto done;
4043 	}
4044 	if (strcmp(pr_name, "_tx_intr_delay") == 0) {
4045 		value = Adapter->tx_intr_delay;
4046 		err = 0;
4047 		goto done;
4048 	}
4049 	if (strcmp(pr_name, "_tx_intr_abs_delay") == 0) {
4050 		value = Adapter->tx_intr_abs_delay;
4051 		err = 0;
4052 		goto done;
4053 	}
4054 	if (strcmp(pr_name, "_rx_bcopy_threshold") == 0) {
4055 		value = Adapter->rx_bcopy_thresh;
4056 		err = 0;
4057 		goto done;
4058 	}
4059 	if (strcmp(pr_name, "_max_num_rcv_packets") == 0) {
4060 		value = Adapter->rx_limit_onintr;
4061 		err = 0;
4062 		goto done;
4063 	}
4064 	if (strcmp(pr_name, "_rx_intr_delay") == 0) {
4065 		value = Adapter->rx_intr_delay;
4066 		err = 0;
4067 		goto done;
4068 	}
4069 	if (strcmp(pr_name, "_rx_intr_abs_delay") == 0) {
4070 		value = Adapter->rx_intr_abs_delay;
4071 		err = 0;
4072 		goto done;
4073 	}
4074 	if (strcmp(pr_name, "_intr_throttling_rate") == 0) {
4075 		value = Adapter->intr_throttling_rate;
4076 		err = 0;
4077 		goto done;
4078 	}
4079 	if (strcmp(pr_name, "_intr_adaptive") == 0) {
4080 		value = Adapter->intr_adaptive;
4081 		err = 0;
4082 		goto done;
4083 	}
4084 done:
4085 	if (err == 0) {
4086 		(void) snprintf(pr_val, pr_valsize, "%d", value);
4087 	}
4088 	return (err);
4089 }
4090 
4091 /*
4092  * e1000g_get_conf - get configurations set in e1000g.conf
4093  * This routine gets user-configured values out of the configuration
4094  * file e1000g.conf.
4095  *
4096  * For each configurable value, there is a minimum, a maximum, and a
4097  * default.
4098  * If user does not configure a value, use the default.
4099  * If user configures below the minimum, use the minumum.
4100  * If user configures above the maximum, use the maxumum.
4101  */
4102 static void
4103 e1000g_get_conf(struct e1000g *Adapter)
4104 {
4105 	struct e1000_hw *hw = &Adapter->shared;
4106 	boolean_t tbi_compatibility = B_FALSE;
4107 	boolean_t is_jumbo = B_FALSE;
4108 	int propval;
4109 	/*
4110 	 * decrease the number of descriptors and free packets
4111 	 * for jumbo frames to reduce tx/rx resource consumption
4112 	 */
4113 	if (Adapter->max_frame_size >= FRAME_SIZE_UPTO_4K) {
4114 		is_jumbo = B_TRUE;
4115 	}
4116 
4117 	/*
4118 	 * get each configurable property from e1000g.conf
4119 	 */
4120 
4121 	/*
4122 	 * NumTxDescriptors
4123 	 */
4124 	Adapter->tx_desc_num_flag =
4125 	    e1000g_get_prop(Adapter, "NumTxDescriptors",
4126 	    MIN_NUM_TX_DESCRIPTOR, MAX_NUM_TX_DESCRIPTOR,
4127 	    is_jumbo ? DEFAULT_JUMBO_NUM_TX_DESC
4128 	    : DEFAULT_NUM_TX_DESCRIPTOR, &propval);
4129 	Adapter->tx_desc_num = propval;
4130 
4131 	/*
4132 	 * NumRxDescriptors
4133 	 */
4134 	Adapter->rx_desc_num_flag =
4135 	    e1000g_get_prop(Adapter, "NumRxDescriptors",
4136 	    MIN_NUM_RX_DESCRIPTOR, MAX_NUM_RX_DESCRIPTOR,
4137 	    is_jumbo ? DEFAULT_JUMBO_NUM_RX_DESC
4138 	    : DEFAULT_NUM_RX_DESCRIPTOR, &propval);
4139 	Adapter->rx_desc_num = propval;
4140 
4141 	/*
4142 	 * NumRxFreeList
4143 	 */
4144 	Adapter->rx_buf_num_flag =
4145 	    e1000g_get_prop(Adapter, "NumRxFreeList",
4146 	    MIN_NUM_RX_FREELIST, MAX_NUM_RX_FREELIST,
4147 	    is_jumbo ? DEFAULT_JUMBO_NUM_RX_BUF
4148 	    : DEFAULT_NUM_RX_FREELIST, &propval);
4149 	Adapter->rx_freelist_limit = propval;
4150 
4151 	/*
4152 	 * NumTxPacketList
4153 	 */
4154 	Adapter->tx_buf_num_flag =
4155 	    e1000g_get_prop(Adapter, "NumTxPacketList",
4156 	    MIN_NUM_TX_FREELIST, MAX_NUM_TX_FREELIST,
4157 	    is_jumbo ? DEFAULT_JUMBO_NUM_TX_BUF
4158 	    : DEFAULT_NUM_TX_FREELIST, &propval);
4159 	Adapter->tx_freelist_num = propval;
4160 
4161 	/*
4162 	 * FlowControl
4163 	 */
4164 	hw->fc.send_xon = B_TRUE;
4165 	(void) e1000g_get_prop(Adapter, "FlowControl",
4166 	    e1000_fc_none, 4, DEFAULT_FLOW_CONTROL, &propval);
4167 	hw->fc.requested_mode = propval;
4168 	/* 4 is the setting that says "let the eeprom decide" */
4169 	if (hw->fc.requested_mode == 4)
4170 		hw->fc.requested_mode = e1000_fc_default;
4171 
4172 	/*
4173 	 * Max Num Receive Packets on Interrupt
4174 	 */
4175 	(void) e1000g_get_prop(Adapter, "MaxNumReceivePackets",
4176 	    MIN_RX_LIMIT_ON_INTR, MAX_RX_LIMIT_ON_INTR,
4177 	    DEFAULT_RX_LIMIT_ON_INTR, &propval);
4178 	Adapter->rx_limit_onintr = propval;
4179 
4180 	/*
4181 	 * PHY master slave setting
4182 	 */
4183 	(void) e1000g_get_prop(Adapter, "SetMasterSlave",
4184 	    e1000_ms_hw_default, e1000_ms_auto,
4185 	    e1000_ms_hw_default, &propval);
4186 	hw->phy.ms_type = propval;
4187 
4188 	/*
4189 	 * Parameter which controls TBI mode workaround, which is only
4190 	 * needed on certain switches such as Cisco 6500/Foundry
4191 	 */
4192 	(void) e1000g_get_prop(Adapter, "TbiCompatibilityEnable",
4193 	    0, 1, DEFAULT_TBI_COMPAT_ENABLE, &propval);
4194 	tbi_compatibility = (propval == 1);
4195 	e1000_set_tbi_compatibility_82543(hw, tbi_compatibility);
4196 
4197 	/*
4198 	 * MSI Enable
4199 	 */
4200 	(void) e1000g_get_prop(Adapter, "MSIEnable",
4201 	    0, 1, DEFAULT_MSI_ENABLE, &propval);
4202 	Adapter->msi_enable = (propval == 1);
4203 
4204 	/*
4205 	 * Interrupt Throttling Rate
4206 	 */
4207 	(void) e1000g_get_prop(Adapter, "intr_throttling_rate",
4208 	    MIN_INTR_THROTTLING, MAX_INTR_THROTTLING,
4209 	    DEFAULT_INTR_THROTTLING, &propval);
4210 	Adapter->intr_throttling_rate = propval;
4211 
4212 	/*
4213 	 * Adaptive Interrupt Blanking Enable/Disable
4214 	 * It is enabled by default
4215 	 */
4216 	(void) e1000g_get_prop(Adapter, "intr_adaptive", 0, 1, 1,
4217 	    &propval);
4218 	Adapter->intr_adaptive = (propval == 1);
4219 
4220 	/*
4221 	 * Hardware checksum enable/disable parameter
4222 	 */
4223 	(void) e1000g_get_prop(Adapter, "tx_hcksum_enable",
4224 	    0, 1, DEFAULT_TX_HCKSUM_ENABLE, &propval);
4225 	Adapter->tx_hcksum_enable = (propval == 1);
4226 	/*
4227 	 * Checksum on/off selection via global parameters.
4228 	 *
4229 	 * If the chip is flagged as not capable of (correctly)
4230 	 * handling checksumming, we don't enable it on either
4231 	 * Rx or Tx side.  Otherwise, we take this chip's settings
4232 	 * from the patchable global defaults.
4233 	 *
4234 	 * We advertise our capabilities only if TX offload is
4235 	 * enabled.  On receive, the stack will accept checksummed
4236 	 * packets anyway, even if we haven't said we can deliver
4237 	 * them.
4238 	 */
4239 	switch (hw->mac.type) {
4240 		case e1000_82540:
4241 		case e1000_82544:
4242 		case e1000_82545:
4243 		case e1000_82545_rev_3:
4244 		case e1000_82546:
4245 		case e1000_82546_rev_3:
4246 		case e1000_82571:
4247 		case e1000_82572:
4248 		case e1000_82573:
4249 		case e1000_80003es2lan:
4250 			break;
4251 		/*
4252 		 * For the following Intel PRO/1000 chipsets, we have not
4253 		 * tested the hardware checksum offload capability, so we
4254 		 * disable the capability for them.
4255 		 *	e1000_82542,
4256 		 *	e1000_82543,
4257 		 *	e1000_82541,
4258 		 *	e1000_82541_rev_2,
4259 		 *	e1000_82547,
4260 		 *	e1000_82547_rev_2,
4261 		 */
4262 		default:
4263 			Adapter->tx_hcksum_enable = B_FALSE;
4264 	}
4265 
4266 	/*
4267 	 * Large Send Offloading(LSO) Enable/Disable
4268 	 * If the tx hardware checksum is not enabled, LSO should be
4269 	 * disabled.
4270 	 */
4271 	(void) e1000g_get_prop(Adapter, "lso_enable",
4272 	    0, 1, DEFAULT_LSO_ENABLE, &propval);
4273 	Adapter->lso_enable = (propval == 1);
4274 
4275 	switch (hw->mac.type) {
4276 		case e1000_82546:
4277 		case e1000_82546_rev_3:
4278 			if (Adapter->lso_enable)
4279 				Adapter->lso_premature_issue = B_TRUE;
4280 			/* FALLTHRU */
4281 		case e1000_82571:
4282 		case e1000_82572:
4283 		case e1000_82573:
4284 		case e1000_80003es2lan:
4285 			break;
4286 		default:
4287 			Adapter->lso_enable = B_FALSE;
4288 	}
4289 
4290 	if (!Adapter->tx_hcksum_enable) {
4291 		Adapter->lso_premature_issue = B_FALSE;
4292 		Adapter->lso_enable = B_FALSE;
4293 	}
4294 
4295 	/*
4296 	 * If mem_workaround_82546 is enabled, the rx buffer allocated by
4297 	 * e1000_82545, e1000_82546 and e1000_82546_rev_3
4298 	 * will not cross 64k boundary.
4299 	 */
4300 	(void) e1000g_get_prop(Adapter, "mem_workaround_82546",
4301 	    0, 1, DEFAULT_MEM_WORKAROUND_82546, &propval);
4302 	Adapter->mem_workaround_82546 = (propval == 1);
4303 
4304 	/*
4305 	 * Max number of multicast addresses
4306 	 */
4307 	(void) e1000g_get_prop(Adapter, "mcast_max_num",
4308 	    MIN_MCAST_NUM, MAX_MCAST_NUM, hw->mac.mta_reg_count * 32,
4309 	    &propval);
4310 	Adapter->mcast_max_num = propval;
4311 }
4312 
4313 /*
4314  * e1000g_get_prop - routine to read properties
4315  *
4316  * Get a user-configure property value out of the configuration
4317  * file e1000g.conf.
4318  *
4319  * Caller provides name of the property, a default value, a minimum
4320  * value, a maximum value and a pointer to the returned property
4321  * value.
4322  *
4323  * Return B_TRUE if the configured value of the property is not a default
4324  * value, otherwise return B_FALSE.
4325  */
4326 static boolean_t
4327 e1000g_get_prop(struct e1000g *Adapter,	/* point to per-adapter structure */
4328     char *propname,		/* name of the property */
4329     int minval,			/* minimum acceptable value */
4330     int maxval,			/* maximim acceptable value */
4331     int defval,			/* default value */
4332     int *propvalue)		/* property value return to caller */
4333 {
4334 	int propval;		/* value returned for requested property */
4335 	int *props;		/* point to array of properties returned */
4336 	uint_t nprops;		/* number of property value returned */
4337 	boolean_t ret = B_TRUE;
4338 
4339 	/*
4340 	 * get the array of properties from the config file
4341 	 */
4342 	if (ddi_prop_lookup_int_array(DDI_DEV_T_ANY, Adapter->dip,
4343 	    DDI_PROP_DONTPASS, propname, &props, &nprops) == DDI_PROP_SUCCESS) {
4344 		/* got some properties, test if we got enough */
4345 		if (Adapter->instance < nprops) {
4346 			propval = props[Adapter->instance];
4347 		} else {
4348 			/* not enough properties configured */
4349 			propval = defval;
4350 			E1000G_DEBUGLOG_2(Adapter, E1000G_INFO_LEVEL,
4351 			    "Not Enough %s values found in e1000g.conf"
4352 			    " - set to %d\n",
4353 			    propname, propval);
4354 			ret = B_FALSE;
4355 		}
4356 
4357 		/* free memory allocated for properties */
4358 		ddi_prop_free(props);
4359 
4360 	} else {
4361 		propval = defval;
4362 		ret = B_FALSE;
4363 	}
4364 
4365 	/*
4366 	 * enforce limits
4367 	 */
4368 	if (propval > maxval) {
4369 		propval = maxval;
4370 		E1000G_DEBUGLOG_2(Adapter, E1000G_INFO_LEVEL,
4371 		    "Too High %s value in e1000g.conf - set to %d\n",
4372 		    propname, propval);
4373 	}
4374 
4375 	if (propval < minval) {
4376 		propval = minval;
4377 		E1000G_DEBUGLOG_2(Adapter, E1000G_INFO_LEVEL,
4378 		    "Too Low %s value in e1000g.conf - set to %d\n",
4379 		    propname, propval);
4380 	}
4381 
4382 	*propvalue = propval;
4383 	return (ret);
4384 }
4385 
4386 static boolean_t
4387 e1000g_link_check(struct e1000g *Adapter)
4388 {
4389 	uint16_t speed, duplex, phydata;
4390 	boolean_t link_changed = B_FALSE;
4391 	struct e1000_hw *hw;
4392 	uint32_t reg_tarc;
4393 
4394 	hw = &Adapter->shared;
4395 
4396 	if (e1000g_link_up(Adapter)) {
4397 		/*
4398 		 * The Link is up, check whether it was marked as down earlier
4399 		 */
4400 		if (Adapter->link_state != LINK_STATE_UP) {
4401 			(void) e1000_get_speed_and_duplex(hw, &speed, &duplex);
4402 			Adapter->link_speed = speed;
4403 			Adapter->link_duplex = duplex;
4404 			Adapter->link_state = LINK_STATE_UP;
4405 			link_changed = B_TRUE;
4406 
4407 			if (Adapter->link_speed == SPEED_1000)
4408 				Adapter->stall_threshold = TX_STALL_TIME_2S;
4409 			else
4410 				Adapter->stall_threshold = TX_STALL_TIME_8S;
4411 
4412 			Adapter->tx_link_down_timeout = 0;
4413 
4414 			if ((hw->mac.type == e1000_82571) ||
4415 			    (hw->mac.type == e1000_82572)) {
4416 				reg_tarc = E1000_READ_REG(hw, E1000_TARC(0));
4417 				if (speed == SPEED_1000)
4418 					reg_tarc |= (1 << 21);
4419 				else
4420 					reg_tarc &= ~(1 << 21);
4421 				E1000_WRITE_REG(hw, E1000_TARC(0), reg_tarc);
4422 			}
4423 		}
4424 		Adapter->smartspeed = 0;
4425 	} else {
4426 		if (Adapter->link_state != LINK_STATE_DOWN) {
4427 			Adapter->link_speed = 0;
4428 			Adapter->link_duplex = 0;
4429 			Adapter->link_state = LINK_STATE_DOWN;
4430 			link_changed = B_TRUE;
4431 
4432 			/*
4433 			 * SmartSpeed workaround for Tabor/TanaX, When the
4434 			 * driver loses link disable auto master/slave
4435 			 * resolution.
4436 			 */
4437 			if (hw->phy.type == e1000_phy_igp) {
4438 				(void) e1000_read_phy_reg(hw,
4439 				    PHY_1000T_CTRL, &phydata);
4440 				phydata |= CR_1000T_MS_ENABLE;
4441 				(void) e1000_write_phy_reg(hw,
4442 				    PHY_1000T_CTRL, phydata);
4443 			}
4444 		} else {
4445 			e1000g_smartspeed(Adapter);
4446 		}
4447 
4448 		if (Adapter->e1000g_state & E1000G_STARTED) {
4449 			if (Adapter->tx_link_down_timeout <
4450 			    MAX_TX_LINK_DOWN_TIMEOUT) {
4451 				Adapter->tx_link_down_timeout++;
4452 			} else if (Adapter->tx_link_down_timeout ==
4453 			    MAX_TX_LINK_DOWN_TIMEOUT) {
4454 				e1000g_tx_clean(Adapter);
4455 				Adapter->tx_link_down_timeout++;
4456 			}
4457 		}
4458 	}
4459 
4460 	if (e1000g_check_acc_handle(Adapter->osdep.reg_handle) != DDI_FM_OK)
4461 		ddi_fm_service_impact(Adapter->dip, DDI_SERVICE_DEGRADED);
4462 
4463 	return (link_changed);
4464 }
4465 
4466 /*
4467  * e1000g_reset_link - Using the link properties to setup the link
4468  */
4469 int
4470 e1000g_reset_link(struct e1000g *Adapter)
4471 {
4472 	struct e1000_mac_info *mac;
4473 	struct e1000_phy_info *phy;
4474 	struct e1000_hw *hw;
4475 	boolean_t invalid;
4476 
4477 	mac = &Adapter->shared.mac;
4478 	phy = &Adapter->shared.phy;
4479 	hw = &Adapter->shared;
4480 	invalid = B_FALSE;
4481 
4482 	if (hw->phy.media_type != e1000_media_type_copper)
4483 		goto out;
4484 
4485 	if (Adapter->param_adv_autoneg == 1) {
4486 		mac->autoneg = B_TRUE;
4487 		phy->autoneg_advertised = 0;
4488 
4489 		/*
4490 		 * 1000hdx is not supported for autonegotiation
4491 		 */
4492 		if (Adapter->param_adv_1000fdx == 1)
4493 			phy->autoneg_advertised |= ADVERTISE_1000_FULL;
4494 
4495 		if (Adapter->param_adv_100fdx == 1)
4496 			phy->autoneg_advertised |= ADVERTISE_100_FULL;
4497 
4498 		if (Adapter->param_adv_100hdx == 1)
4499 			phy->autoneg_advertised |= ADVERTISE_100_HALF;
4500 
4501 		if (Adapter->param_adv_10fdx == 1)
4502 			phy->autoneg_advertised |= ADVERTISE_10_FULL;
4503 
4504 		if (Adapter->param_adv_10hdx == 1)
4505 			phy->autoneg_advertised |= ADVERTISE_10_HALF;
4506 
4507 		if (phy->autoneg_advertised == 0)
4508 			invalid = B_TRUE;
4509 	} else {
4510 		mac->autoneg = B_FALSE;
4511 
4512 		/*
4513 		 * For Intel copper cards, 1000fdx and 1000hdx are not
4514 		 * supported for forced link
4515 		 */
4516 		if (Adapter->param_adv_100fdx == 1)
4517 			mac->forced_speed_duplex = ADVERTISE_100_FULL;
4518 		else if (Adapter->param_adv_100hdx == 1)
4519 			mac->forced_speed_duplex = ADVERTISE_100_HALF;
4520 		else if (Adapter->param_adv_10fdx == 1)
4521 			mac->forced_speed_duplex = ADVERTISE_10_FULL;
4522 		else if (Adapter->param_adv_10hdx == 1)
4523 			mac->forced_speed_duplex = ADVERTISE_10_HALF;
4524 		else
4525 			invalid = B_TRUE;
4526 
4527 	}
4528 
4529 	if (invalid) {
4530 		e1000g_log(Adapter, CE_WARN,
4531 		    "Invalid link settings. Setup link to "
4532 		    "support autonegotiation with all link capabilities.");
4533 		mac->autoneg = B_TRUE;
4534 		phy->autoneg_advertised = AUTONEG_ADVERTISE_SPEED_DEFAULT;
4535 	}
4536 
4537 out:
4538 	return (e1000_setup_link(&Adapter->shared));
4539 }
4540 
4541 static void
4542 e1000g_timer_tx_resched(struct e1000g *Adapter)
4543 {
4544 	e1000g_tx_ring_t *tx_ring = Adapter->tx_ring;
4545 
4546 	rw_enter(&Adapter->chip_lock, RW_READER);
4547 
4548 	if (tx_ring->resched_needed &&
4549 	    ((ddi_get_lbolt() - tx_ring->resched_timestamp) >
4550 	    drv_usectohz(1000000)) &&
4551 	    (Adapter->e1000g_state & E1000G_STARTED) &&
4552 	    (tx_ring->tbd_avail >= DEFAULT_TX_NO_RESOURCE)) {
4553 		tx_ring->resched_needed = B_FALSE;
4554 		mac_tx_update(Adapter->mh);
4555 		E1000G_STAT(tx_ring->stat_reschedule);
4556 		E1000G_STAT(tx_ring->stat_timer_reschedule);
4557 	}
4558 
4559 	rw_exit(&Adapter->chip_lock);
4560 }
4561 
4562 static void
4563 e1000g_local_timer(void *ws)
4564 {
4565 	struct e1000g *Adapter = (struct e1000g *)ws;
4566 	struct e1000_hw *hw;
4567 	e1000g_ether_addr_t ether_addr;
4568 	boolean_t link_changed;
4569 
4570 	hw = &Adapter->shared;
4571 
4572 	if (Adapter->e1000g_state & E1000G_ERROR) {
4573 		rw_enter(&Adapter->chip_lock, RW_WRITER);
4574 		Adapter->e1000g_state &= ~E1000G_ERROR;
4575 		rw_exit(&Adapter->chip_lock);
4576 
4577 		Adapter->reset_count++;
4578 		if (e1000g_global_reset(Adapter)) {
4579 			ddi_fm_service_impact(Adapter->dip,
4580 			    DDI_SERVICE_RESTORED);
4581 			e1000g_timer_tx_resched(Adapter);
4582 		} else
4583 			ddi_fm_service_impact(Adapter->dip,
4584 			    DDI_SERVICE_LOST);
4585 		return;
4586 	}
4587 
4588 	if (e1000g_stall_check(Adapter)) {
4589 		E1000G_DEBUGLOG_0(Adapter, E1000G_INFO_LEVEL,
4590 		    "Tx stall detected. Activate automatic recovery.\n");
4591 		e1000g_fm_ereport(Adapter, DDI_FM_DEVICE_STALL);
4592 		ddi_fm_service_impact(Adapter->dip, DDI_SERVICE_LOST);
4593 		Adapter->reset_count++;
4594 		if (e1000g_reset_adapter(Adapter)) {
4595 			ddi_fm_service_impact(Adapter->dip,
4596 			    DDI_SERVICE_RESTORED);
4597 			e1000g_timer_tx_resched(Adapter);
4598 		}
4599 		return;
4600 	}
4601 
4602 	link_changed = B_FALSE;
4603 	rw_enter(&Adapter->chip_lock, RW_READER);
4604 	if (Adapter->link_complete)
4605 		link_changed = e1000g_link_check(Adapter);
4606 	rw_exit(&Adapter->chip_lock);
4607 
4608 	if (link_changed) {
4609 		if (!Adapter->reset_flag &&
4610 		    (Adapter->e1000g_state & E1000G_STARTED) &&
4611 		    !(Adapter->e1000g_state & E1000G_SUSPENDED))
4612 			mac_link_update(Adapter->mh, Adapter->link_state);
4613 		if (Adapter->link_state == LINK_STATE_UP)
4614 			Adapter->reset_flag = B_FALSE;
4615 	}
4616 	/*
4617 	 * Workaround for esb2. Data stuck in fifo on a link
4618 	 * down event. Reset the adapter to recover it.
4619 	 */
4620 	if (Adapter->esb2_workaround) {
4621 		Adapter->esb2_workaround = B_FALSE;
4622 		(void) e1000g_reset_adapter(Adapter);
4623 		return;
4624 	}
4625 
4626 	/*
4627 	 * With 82571 controllers, any locally administered address will
4628 	 * be overwritten when there is a reset on the other port.
4629 	 * Detect this circumstance and correct it.
4630 	 */
4631 	if ((hw->mac.type == e1000_82571) &&
4632 	    (e1000_get_laa_state_82571(hw) == B_TRUE)) {
4633 		ether_addr.reg.low = E1000_READ_REG_ARRAY(hw, E1000_RA, 0);
4634 		ether_addr.reg.high = E1000_READ_REG_ARRAY(hw, E1000_RA, 1);
4635 
4636 		ether_addr.reg.low = ntohl(ether_addr.reg.low);
4637 		ether_addr.reg.high = ntohl(ether_addr.reg.high);
4638 
4639 		if ((ether_addr.mac.addr[5] != hw->mac.addr[0]) ||
4640 		    (ether_addr.mac.addr[4] != hw->mac.addr[1]) ||
4641 		    (ether_addr.mac.addr[3] != hw->mac.addr[2]) ||
4642 		    (ether_addr.mac.addr[2] != hw->mac.addr[3]) ||
4643 		    (ether_addr.mac.addr[1] != hw->mac.addr[4]) ||
4644 		    (ether_addr.mac.addr[0] != hw->mac.addr[5])) {
4645 			(void) e1000_rar_set(hw, hw->mac.addr, 0);
4646 		}
4647 	}
4648 
4649 	/*
4650 	 * Long TTL workaround for 82541/82547
4651 	 */
4652 	(void) e1000_igp_ttl_workaround_82547(hw);
4653 
4654 	/*
4655 	 * Check for Adaptive IFS settings If there are lots of collisions
4656 	 * change the value in steps...
4657 	 * These properties should only be set for 10/100
4658 	 */
4659 	if ((hw->phy.media_type == e1000_media_type_copper) &&
4660 	    ((Adapter->link_speed == SPEED_100) ||
4661 	    (Adapter->link_speed == SPEED_10))) {
4662 		e1000_update_adaptive(hw);
4663 	}
4664 	/*
4665 	 * Set Timer Interrupts
4666 	 */
4667 	E1000_WRITE_REG(hw, E1000_ICS, E1000_IMS_RXT0);
4668 
4669 	if (e1000g_check_acc_handle(Adapter->osdep.reg_handle) != DDI_FM_OK)
4670 		ddi_fm_service_impact(Adapter->dip, DDI_SERVICE_DEGRADED);
4671 	else
4672 		e1000g_timer_tx_resched(Adapter);
4673 
4674 	restart_watchdog_timer(Adapter);
4675 }
4676 
4677 /*
4678  * The function e1000g_link_timer() is called when the timer for link setup
4679  * is expired, which indicates the completion of the link setup. The link
4680  * state will not be updated until the link setup is completed. And the
4681  * link state will not be sent to the upper layer through mac_link_update()
4682  * in this function. It will be updated in the local timer routine or the
4683  * interrupt service routine after the interface is started (plumbed).
4684  */
4685 static void
4686 e1000g_link_timer(void *arg)
4687 {
4688 	struct e1000g *Adapter = (struct e1000g *)arg;
4689 
4690 	mutex_enter(&Adapter->link_lock);
4691 	Adapter->link_complete = B_TRUE;
4692 	Adapter->link_tid = 0;
4693 	mutex_exit(&Adapter->link_lock);
4694 }
4695 
4696 /*
4697  * e1000g_force_speed_duplex - read forced speed/duplex out of e1000g.conf
4698  *
4699  * This function read the forced speed and duplex for 10/100 Mbps speeds
4700  * and also for 1000 Mbps speeds from the e1000g.conf file
4701  */
4702 static void
4703 e1000g_force_speed_duplex(struct e1000g *Adapter)
4704 {
4705 	int forced;
4706 	int propval;
4707 	struct e1000_mac_info *mac = &Adapter->shared.mac;
4708 	struct e1000_phy_info *phy = &Adapter->shared.phy;
4709 
4710 	/*
4711 	 * get value out of config file
4712 	 */
4713 	(void) e1000g_get_prop(Adapter, "ForceSpeedDuplex",
4714 	    GDIAG_10_HALF, GDIAG_ANY, GDIAG_ANY, &forced);
4715 
4716 	switch (forced) {
4717 	case GDIAG_10_HALF:
4718 		/*
4719 		 * Disable Auto Negotiation
4720 		 */
4721 		mac->autoneg = B_FALSE;
4722 		mac->forced_speed_duplex = ADVERTISE_10_HALF;
4723 		break;
4724 	case GDIAG_10_FULL:
4725 		/*
4726 		 * Disable Auto Negotiation
4727 		 */
4728 		mac->autoneg = B_FALSE;
4729 		mac->forced_speed_duplex = ADVERTISE_10_FULL;
4730 		break;
4731 	case GDIAG_100_HALF:
4732 		/*
4733 		 * Disable Auto Negotiation
4734 		 */
4735 		mac->autoneg = B_FALSE;
4736 		mac->forced_speed_duplex = ADVERTISE_100_HALF;
4737 		break;
4738 	case GDIAG_100_FULL:
4739 		/*
4740 		 * Disable Auto Negotiation
4741 		 */
4742 		mac->autoneg = B_FALSE;
4743 		mac->forced_speed_duplex = ADVERTISE_100_FULL;
4744 		break;
4745 	case GDIAG_1000_FULL:
4746 		/*
4747 		 * The gigabit spec requires autonegotiation.  Therefore,
4748 		 * when the user wants to force the speed to 1000Mbps, we
4749 		 * enable AutoNeg, but only allow the harware to advertise
4750 		 * 1000Mbps.  This is different from 10/100 operation, where
4751 		 * we are allowed to link without any negotiation.
4752 		 */
4753 		mac->autoneg = B_TRUE;
4754 		phy->autoneg_advertised = ADVERTISE_1000_FULL;
4755 		break;
4756 	default:	/* obey the setting of AutoNegAdvertised */
4757 		mac->autoneg = B_TRUE;
4758 		(void) e1000g_get_prop(Adapter, "AutoNegAdvertised",
4759 		    0, AUTONEG_ADVERTISE_SPEED_DEFAULT,
4760 		    AUTONEG_ADVERTISE_SPEED_DEFAULT, &propval);
4761 		phy->autoneg_advertised = (uint16_t)propval;
4762 		break;
4763 	}	/* switch */
4764 }
4765 
4766 /*
4767  * e1000g_get_max_frame_size - get jumbo frame setting from e1000g.conf
4768  *
4769  * This function reads MaxFrameSize from e1000g.conf
4770  */
4771 static void
4772 e1000g_get_max_frame_size(struct e1000g *Adapter)
4773 {
4774 	int max_frame;
4775 
4776 	/*
4777 	 * get value out of config file
4778 	 */
4779 	(void) e1000g_get_prop(Adapter, "MaxFrameSize", 0, 3, 0,
4780 	    &max_frame);
4781 
4782 	switch (max_frame) {
4783 	case 0:
4784 		Adapter->default_mtu = ETHERMTU;
4785 		break;
4786 	case 1:
4787 		Adapter->default_mtu = FRAME_SIZE_UPTO_4K -
4788 		    sizeof (struct ether_vlan_header) - ETHERFCSL;
4789 		break;
4790 	case 2:
4791 		Adapter->default_mtu = FRAME_SIZE_UPTO_8K -
4792 		    sizeof (struct ether_vlan_header) - ETHERFCSL;
4793 		break;
4794 	case 3:
4795 		Adapter->default_mtu = FRAME_SIZE_UPTO_16K -
4796 		    sizeof (struct ether_vlan_header) - ETHERFCSL;
4797 		break;
4798 	default:
4799 		Adapter->default_mtu = ETHERMTU;
4800 		break;
4801 	}	/* switch */
4802 
4803 	/*
4804 	 * If the user configed MTU is larger than the deivce's maximum MTU,
4805 	 * the MTU is set to the deivce's maximum value.
4806 	 */
4807 	if (Adapter->default_mtu > Adapter->max_mtu)
4808 		Adapter->default_mtu = Adapter->max_mtu;
4809 
4810 	Adapter->max_frame_size = e1000g_mtu2maxframe(Adapter->default_mtu);
4811 }
4812 
4813 /*
4814  * e1000g_pch_limits - Apply limits of the PCH silicon type
4815  *
4816  * At any frame size larger than the ethernet default,
4817  * prevent linking at 10/100 speeds.
4818  */
4819 static void
4820 e1000g_pch_limits(struct e1000g *Adapter)
4821 {
4822 	struct e1000_hw *hw = &Adapter->shared;
4823 
4824 	/* only applies to PCH silicon type */
4825 	if (hw->mac.type != e1000_pchlan && hw->mac.type != e1000_pch2lan)
4826 		return;
4827 
4828 	/* only applies to frames larger than ethernet default */
4829 	if (Adapter->max_frame_size > DEFAULT_FRAME_SIZE) {
4830 		hw->mac.autoneg = B_TRUE;
4831 		hw->phy.autoneg_advertised = ADVERTISE_1000_FULL;
4832 
4833 		Adapter->param_adv_autoneg = 1;
4834 		Adapter->param_adv_1000fdx = 1;
4835 
4836 		Adapter->param_adv_100fdx = 0;
4837 		Adapter->param_adv_100hdx = 0;
4838 		Adapter->param_adv_10fdx = 0;
4839 		Adapter->param_adv_10hdx = 0;
4840 
4841 		e1000g_param_sync(Adapter);
4842 	}
4843 }
4844 
4845 /*
4846  * e1000g_mtu2maxframe - convert given MTU to maximum frame size
4847  */
4848 static uint32_t
4849 e1000g_mtu2maxframe(uint32_t mtu)
4850 {
4851 	uint32_t maxframe;
4852 
4853 	maxframe = mtu + sizeof (struct ether_vlan_header) + ETHERFCSL;
4854 
4855 	return (maxframe);
4856 }
4857 
4858 static void
4859 arm_watchdog_timer(struct e1000g *Adapter)
4860 {
4861 	Adapter->watchdog_tid =
4862 	    timeout(e1000g_local_timer,
4863 	    (void *)Adapter, 1 * drv_usectohz(1000000));
4864 }
4865 #pragma inline(arm_watchdog_timer)
4866 
4867 static void
4868 enable_watchdog_timer(struct e1000g *Adapter)
4869 {
4870 	mutex_enter(&Adapter->watchdog_lock);
4871 
4872 	if (!Adapter->watchdog_timer_enabled) {
4873 		Adapter->watchdog_timer_enabled = B_TRUE;
4874 		Adapter->watchdog_timer_started = B_TRUE;
4875 		arm_watchdog_timer(Adapter);
4876 	}
4877 
4878 	mutex_exit(&Adapter->watchdog_lock);
4879 }
4880 
4881 static void
4882 disable_watchdog_timer(struct e1000g *Adapter)
4883 {
4884 	timeout_id_t tid;
4885 
4886 	mutex_enter(&Adapter->watchdog_lock);
4887 
4888 	Adapter->watchdog_timer_enabled = B_FALSE;
4889 	Adapter->watchdog_timer_started = B_FALSE;
4890 	tid = Adapter->watchdog_tid;
4891 	Adapter->watchdog_tid = 0;
4892 
4893 	mutex_exit(&Adapter->watchdog_lock);
4894 
4895 	if (tid != 0)
4896 		(void) untimeout(tid);
4897 }
4898 
4899 static void
4900 start_watchdog_timer(struct e1000g *Adapter)
4901 {
4902 	mutex_enter(&Adapter->watchdog_lock);
4903 
4904 	if (Adapter->watchdog_timer_enabled) {
4905 		if (!Adapter->watchdog_timer_started) {
4906 			Adapter->watchdog_timer_started = B_TRUE;
4907 			arm_watchdog_timer(Adapter);
4908 		}
4909 	}
4910 
4911 	mutex_exit(&Adapter->watchdog_lock);
4912 }
4913 
4914 static void
4915 restart_watchdog_timer(struct e1000g *Adapter)
4916 {
4917 	mutex_enter(&Adapter->watchdog_lock);
4918 
4919 	if (Adapter->watchdog_timer_started)
4920 		arm_watchdog_timer(Adapter);
4921 
4922 	mutex_exit(&Adapter->watchdog_lock);
4923 }
4924 
4925 static void
4926 stop_watchdog_timer(struct e1000g *Adapter)
4927 {
4928 	timeout_id_t tid;
4929 
4930 	mutex_enter(&Adapter->watchdog_lock);
4931 
4932 	Adapter->watchdog_timer_started = B_FALSE;
4933 	tid = Adapter->watchdog_tid;
4934 	Adapter->watchdog_tid = 0;
4935 
4936 	mutex_exit(&Adapter->watchdog_lock);
4937 
4938 	if (tid != 0)
4939 		(void) untimeout(tid);
4940 }
4941 
4942 static void
4943 stop_link_timer(struct e1000g *Adapter)
4944 {
4945 	timeout_id_t tid;
4946 
4947 	/* Disable the link timer */
4948 	mutex_enter(&Adapter->link_lock);
4949 
4950 	tid = Adapter->link_tid;
4951 	Adapter->link_tid = 0;
4952 
4953 	mutex_exit(&Adapter->link_lock);
4954 
4955 	if (tid != 0)
4956 		(void) untimeout(tid);
4957 }
4958 
4959 static void
4960 stop_82547_timer(e1000g_tx_ring_t *tx_ring)
4961 {
4962 	timeout_id_t tid;
4963 
4964 	/* Disable the tx timer for 82547 chipset */
4965 	mutex_enter(&tx_ring->tx_lock);
4966 
4967 	tx_ring->timer_enable_82547 = B_FALSE;
4968 	tid = tx_ring->timer_id_82547;
4969 	tx_ring->timer_id_82547 = 0;
4970 
4971 	mutex_exit(&tx_ring->tx_lock);
4972 
4973 	if (tid != 0)
4974 		(void) untimeout(tid);
4975 }
4976 
4977 void
4978 e1000g_clear_interrupt(struct e1000g *Adapter)
4979 {
4980 	E1000_WRITE_REG(&Adapter->shared, E1000_IMC,
4981 	    0xffffffff & ~E1000_IMS_RXSEQ);
4982 }
4983 
4984 void
4985 e1000g_mask_interrupt(struct e1000g *Adapter)
4986 {
4987 	E1000_WRITE_REG(&Adapter->shared, E1000_IMS,
4988 	    IMS_ENABLE_MASK & ~E1000_IMS_TXDW);
4989 
4990 	if (Adapter->tx_intr_enable)
4991 		e1000g_mask_tx_interrupt(Adapter);
4992 }
4993 
4994 /*
4995  * This routine is called by e1000g_quiesce(), therefore must not block.
4996  */
4997 void
4998 e1000g_clear_all_interrupts(struct e1000g *Adapter)
4999 {
5000 	E1000_WRITE_REG(&Adapter->shared, E1000_IMC, 0xffffffff);
5001 }
5002 
5003 void
5004 e1000g_mask_tx_interrupt(struct e1000g *Adapter)
5005 {
5006 	E1000_WRITE_REG(&Adapter->shared, E1000_IMS, E1000_IMS_TXDW);
5007 }
5008 
5009 void
5010 e1000g_clear_tx_interrupt(struct e1000g *Adapter)
5011 {
5012 	E1000_WRITE_REG(&Adapter->shared, E1000_IMC, E1000_IMS_TXDW);
5013 }
5014 
5015 static void
5016 e1000g_smartspeed(struct e1000g *Adapter)
5017 {
5018 	struct e1000_hw *hw = &Adapter->shared;
5019 	uint16_t phy_status;
5020 	uint16_t phy_ctrl;
5021 
5022 	/*
5023 	 * If we're not T-or-T, or we're not autoneg'ing, or we're not
5024 	 * advertising 1000Full, we don't even use the workaround
5025 	 */
5026 	if ((hw->phy.type != e1000_phy_igp) ||
5027 	    !hw->mac.autoneg ||
5028 	    !(hw->phy.autoneg_advertised & ADVERTISE_1000_FULL))
5029 		return;
5030 
5031 	/*
5032 	 * True if this is the first call of this function or after every
5033 	 * 30 seconds of not having link
5034 	 */
5035 	if (Adapter->smartspeed == 0) {
5036 		/*
5037 		 * If Master/Slave config fault is asserted twice, we
5038 		 * assume back-to-back
5039 		 */
5040 		(void) e1000_read_phy_reg(hw, PHY_1000T_STATUS, &phy_status);
5041 		if (!(phy_status & SR_1000T_MS_CONFIG_FAULT))
5042 			return;
5043 
5044 		(void) e1000_read_phy_reg(hw, PHY_1000T_STATUS, &phy_status);
5045 		if (!(phy_status & SR_1000T_MS_CONFIG_FAULT))
5046 			return;
5047 		/*
5048 		 * We're assuming back-2-back because our status register
5049 		 * insists! there's a fault in the master/slave
5050 		 * relationship that was "negotiated"
5051 		 */
5052 		(void) e1000_read_phy_reg(hw, PHY_1000T_CTRL, &phy_ctrl);
5053 		/*
5054 		 * Is the phy configured for manual configuration of
5055 		 * master/slave?
5056 		 */
5057 		if (phy_ctrl & CR_1000T_MS_ENABLE) {
5058 			/*
5059 			 * Yes.  Then disable manual configuration (enable
5060 			 * auto configuration) of master/slave
5061 			 */
5062 			phy_ctrl &= ~CR_1000T_MS_ENABLE;
5063 			(void) e1000_write_phy_reg(hw,
5064 			    PHY_1000T_CTRL, phy_ctrl);
5065 			/*
5066 			 * Effectively starting the clock
5067 			 */
5068 			Adapter->smartspeed++;
5069 			/*
5070 			 * Restart autonegotiation
5071 			 */
5072 			if (!e1000_phy_setup_autoneg(hw) &&
5073 			    !e1000_read_phy_reg(hw, PHY_CONTROL, &phy_ctrl)) {
5074 				phy_ctrl |= (MII_CR_AUTO_NEG_EN |
5075 				    MII_CR_RESTART_AUTO_NEG);
5076 				(void) e1000_write_phy_reg(hw,
5077 				    PHY_CONTROL, phy_ctrl);
5078 			}
5079 		}
5080 		return;
5081 		/*
5082 		 * Has 6 seconds transpired still without link? Remember,
5083 		 * you should reset the smartspeed counter once you obtain
5084 		 * link
5085 		 */
5086 	} else if (Adapter->smartspeed == E1000_SMARTSPEED_DOWNSHIFT) {
5087 		/*
5088 		 * Yes.  Remember, we did at the start determine that
5089 		 * there's a master/slave configuration fault, so we're
5090 		 * still assuming there's someone on the other end, but we
5091 		 * just haven't yet been able to talk to it. We then
5092 		 * re-enable auto configuration of master/slave to see if
5093 		 * we're running 2/3 pair cables.
5094 		 */
5095 		/*
5096 		 * If still no link, perhaps using 2/3 pair cable
5097 		 */
5098 		(void) e1000_read_phy_reg(hw, PHY_1000T_CTRL, &phy_ctrl);
5099 		phy_ctrl |= CR_1000T_MS_ENABLE;
5100 		(void) e1000_write_phy_reg(hw, PHY_1000T_CTRL, phy_ctrl);
5101 		/*
5102 		 * Restart autoneg with phy enabled for manual
5103 		 * configuration of master/slave
5104 		 */
5105 		if (!e1000_phy_setup_autoneg(hw) &&
5106 		    !e1000_read_phy_reg(hw, PHY_CONTROL, &phy_ctrl)) {
5107 			phy_ctrl |=
5108 			    (MII_CR_AUTO_NEG_EN | MII_CR_RESTART_AUTO_NEG);
5109 			(void) e1000_write_phy_reg(hw, PHY_CONTROL, phy_ctrl);
5110 		}
5111 		/*
5112 		 * Hopefully, there are no more faults and we've obtained
5113 		 * link as a result.
5114 		 */
5115 	}
5116 	/*
5117 	 * Restart process after E1000_SMARTSPEED_MAX iterations (30
5118 	 * seconds)
5119 	 */
5120 	if (Adapter->smartspeed++ == E1000_SMARTSPEED_MAX)
5121 		Adapter->smartspeed = 0;
5122 }
5123 
5124 static boolean_t
5125 is_valid_mac_addr(uint8_t *mac_addr)
5126 {
5127 	const uint8_t addr_test1[6] = { 0, 0, 0, 0, 0, 0 };
5128 	const uint8_t addr_test2[6] =
5129 	    { 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF };
5130 
5131 	if (!(bcmp(addr_test1, mac_addr, ETHERADDRL)) ||
5132 	    !(bcmp(addr_test2, mac_addr, ETHERADDRL)))
5133 		return (B_FALSE);
5134 
5135 	return (B_TRUE);
5136 }
5137 
5138 /*
5139  * e1000g_stall_check - check for tx stall
5140  *
5141  * This function checks if the adapter is stalled (in transmit).
5142  *
5143  * It is called each time the watchdog timeout is invoked.
5144  * If the transmit descriptor reclaim continuously fails,
5145  * the watchdog value will increment by 1. If the watchdog
5146  * value exceeds the threshold, the adapter is assumed to
5147  * have stalled and need to be reset.
5148  */
5149 static boolean_t
5150 e1000g_stall_check(struct e1000g *Adapter)
5151 {
5152 	e1000g_tx_ring_t *tx_ring;
5153 
5154 	tx_ring = Adapter->tx_ring;
5155 
5156 	if (Adapter->link_state != LINK_STATE_UP)
5157 		return (B_FALSE);
5158 
5159 	(void) e1000g_recycle(tx_ring);
5160 
5161 	if (Adapter->stall_flag)
5162 		return (B_TRUE);
5163 
5164 	return (B_FALSE);
5165 }
5166 
5167 #ifdef E1000G_DEBUG
5168 static enum ioc_reply
5169 e1000g_pp_ioctl(struct e1000g *e1000gp, struct iocblk *iocp, mblk_t *mp)
5170 {
5171 	void (*ppfn)(struct e1000g *e1000gp, e1000g_peekpoke_t *ppd);
5172 	e1000g_peekpoke_t *ppd;
5173 	uint64_t mem_va;
5174 	uint64_t maxoff;
5175 	boolean_t peek;
5176 
5177 	switch (iocp->ioc_cmd) {
5178 
5179 	case E1000G_IOC_REG_PEEK:
5180 		peek = B_TRUE;
5181 		break;
5182 
5183 	case E1000G_IOC_REG_POKE:
5184 		peek = B_FALSE;
5185 		break;
5186 
5187 	deault:
5188 		E1000G_DEBUGLOG_1(e1000gp, E1000G_INFO_LEVEL,
5189 		    "e1000g_diag_ioctl: invalid ioctl command 0x%X\n",
5190 		    iocp->ioc_cmd);
5191 		return (IOC_INVAL);
5192 	}
5193 
5194 	/*
5195 	 * Validate format of ioctl
5196 	 */
5197 	if (iocp->ioc_count != sizeof (e1000g_peekpoke_t))
5198 		return (IOC_INVAL);
5199 	if (mp->b_cont == NULL)
5200 		return (IOC_INVAL);
5201 
5202 	ppd = (e1000g_peekpoke_t *)(uintptr_t)mp->b_cont->b_rptr;
5203 
5204 	/*
5205 	 * Validate request parameters
5206 	 */
5207 	switch (ppd->pp_acc_space) {
5208 
5209 	default:
5210 		E1000G_DEBUGLOG_1(e1000gp, E1000G_INFO_LEVEL,
5211 		    "e1000g_diag_ioctl: invalid access space 0x%X\n",
5212 		    ppd->pp_acc_space);
5213 		return (IOC_INVAL);
5214 
5215 	case E1000G_PP_SPACE_REG:
5216 		/*
5217 		 * Memory-mapped I/O space
5218 		 */
5219 		ASSERT(ppd->pp_acc_size == 4);
5220 		if (ppd->pp_acc_size != 4)
5221 			return (IOC_INVAL);
5222 
5223 		if ((ppd->pp_acc_offset % ppd->pp_acc_size) != 0)
5224 			return (IOC_INVAL);
5225 
5226 		mem_va = 0;
5227 		maxoff = 0x10000;
5228 		ppfn = peek ? e1000g_ioc_peek_reg : e1000g_ioc_poke_reg;
5229 		break;
5230 
5231 	case E1000G_PP_SPACE_E1000G:
5232 		/*
5233 		 * E1000g data structure!
5234 		 */
5235 		mem_va = (uintptr_t)e1000gp;
5236 		maxoff = sizeof (struct e1000g);
5237 		ppfn = peek ? e1000g_ioc_peek_mem : e1000g_ioc_poke_mem;
5238 		break;
5239 
5240 	}
5241 
5242 	if (ppd->pp_acc_offset >= maxoff)
5243 		return (IOC_INVAL);
5244 
5245 	if (ppd->pp_acc_offset + ppd->pp_acc_size > maxoff)
5246 		return (IOC_INVAL);
5247 
5248 	/*
5249 	 * All OK - go!
5250 	 */
5251 	ppd->pp_acc_offset += mem_va;
5252 	(*ppfn)(e1000gp, ppd);
5253 	return (peek ? IOC_REPLY : IOC_ACK);
5254 }
5255 
5256 static void
5257 e1000g_ioc_peek_reg(struct e1000g *e1000gp, e1000g_peekpoke_t *ppd)
5258 {
5259 	ddi_acc_handle_t handle;
5260 	uint32_t *regaddr;
5261 
5262 	handle = e1000gp->osdep.reg_handle;
5263 	regaddr = (uint32_t *)((uintptr_t)e1000gp->shared.hw_addr +
5264 	    (uintptr_t)ppd->pp_acc_offset);
5265 
5266 	ppd->pp_acc_data = ddi_get32(handle, regaddr);
5267 }
5268 
5269 static void
5270 e1000g_ioc_poke_reg(struct e1000g *e1000gp, e1000g_peekpoke_t *ppd)
5271 {
5272 	ddi_acc_handle_t handle;
5273 	uint32_t *regaddr;
5274 	uint32_t value;
5275 
5276 	handle = e1000gp->osdep.reg_handle;
5277 	regaddr = (uint32_t *)((uintptr_t)e1000gp->shared.hw_addr +
5278 	    (uintptr_t)ppd->pp_acc_offset);
5279 	value = (uint32_t)ppd->pp_acc_data;
5280 
5281 	ddi_put32(handle, regaddr, value);
5282 }
5283 
5284 static void
5285 e1000g_ioc_peek_mem(struct e1000g *e1000gp, e1000g_peekpoke_t *ppd)
5286 {
5287 	uint64_t value;
5288 	void *vaddr;
5289 
5290 	vaddr = (void *)(uintptr_t)ppd->pp_acc_offset;
5291 
5292 	switch (ppd->pp_acc_size) {
5293 	case 1:
5294 		value = *(uint8_t *)vaddr;
5295 		break;
5296 
5297 	case 2:
5298 		value = *(uint16_t *)vaddr;
5299 		break;
5300 
5301 	case 4:
5302 		value = *(uint32_t *)vaddr;
5303 		break;
5304 
5305 	case 8:
5306 		value = *(uint64_t *)vaddr;
5307 		break;
5308 	}
5309 
5310 	E1000G_DEBUGLOG_4(e1000gp, E1000G_INFO_LEVEL,
5311 	    "e1000g_ioc_peek_mem($%p, $%p) peeked 0x%llx from $%p\n",
5312 	    (void *)e1000gp, (void *)ppd, value, vaddr);
5313 
5314 	ppd->pp_acc_data = value;
5315 }
5316 
5317 static void
5318 e1000g_ioc_poke_mem(struct e1000g *e1000gp, e1000g_peekpoke_t *ppd)
5319 {
5320 	uint64_t value;
5321 	void *vaddr;
5322 
5323 	vaddr = (void *)(uintptr_t)ppd->pp_acc_offset;
5324 	value = ppd->pp_acc_data;
5325 
5326 	E1000G_DEBUGLOG_4(e1000gp, E1000G_INFO_LEVEL,
5327 	    "e1000g_ioc_poke_mem($%p, $%p) poking 0x%llx at $%p\n",
5328 	    (void *)e1000gp, (void *)ppd, value, vaddr);
5329 
5330 	switch (ppd->pp_acc_size) {
5331 	case 1:
5332 		*(uint8_t *)vaddr = (uint8_t)value;
5333 		break;
5334 
5335 	case 2:
5336 		*(uint16_t *)vaddr = (uint16_t)value;
5337 		break;
5338 
5339 	case 4:
5340 		*(uint32_t *)vaddr = (uint32_t)value;
5341 		break;
5342 
5343 	case 8:
5344 		*(uint64_t *)vaddr = (uint64_t)value;
5345 		break;
5346 	}
5347 }
5348 #endif
5349 
5350 /*
5351  * Loopback Support
5352  */
5353 static lb_property_t lb_normal =
5354 	{ normal,	"normal",	E1000G_LB_NONE		};
5355 static lb_property_t lb_external1000 =
5356 	{ external,	"1000Mbps",	E1000G_LB_EXTERNAL_1000	};
5357 static lb_property_t lb_external100 =
5358 	{ external,	"100Mbps",	E1000G_LB_EXTERNAL_100	};
5359 static lb_property_t lb_external10 =
5360 	{ external,	"10Mbps",	E1000G_LB_EXTERNAL_10	};
5361 static lb_property_t lb_phy =
5362 	{ internal,	"PHY",		E1000G_LB_INTERNAL_PHY	};
5363 
5364 static enum ioc_reply
5365 e1000g_loopback_ioctl(struct e1000g *Adapter, struct iocblk *iocp, mblk_t *mp)
5366 {
5367 	lb_info_sz_t *lbsp;
5368 	lb_property_t *lbpp;
5369 	struct e1000_hw *hw;
5370 	uint32_t *lbmp;
5371 	uint32_t size;
5372 	uint32_t value;
5373 
5374 	hw = &Adapter->shared;
5375 
5376 	if (mp->b_cont == NULL)
5377 		return (IOC_INVAL);
5378 
5379 	if (!e1000g_check_loopback_support(hw)) {
5380 		e1000g_log(NULL, CE_WARN,
5381 		    "Loopback is not supported on e1000g%d", Adapter->instance);
5382 		return (IOC_INVAL);
5383 	}
5384 
5385 	switch (iocp->ioc_cmd) {
5386 	default:
5387 		return (IOC_INVAL);
5388 
5389 	case LB_GET_INFO_SIZE:
5390 		size = sizeof (lb_info_sz_t);
5391 		if (iocp->ioc_count != size)
5392 			return (IOC_INVAL);
5393 
5394 		rw_enter(&Adapter->chip_lock, RW_WRITER);
5395 		e1000g_get_phy_state(Adapter);
5396 
5397 		/*
5398 		 * Workaround for hardware faults. In order to get a stable
5399 		 * state of phy, we will wait for a specific interval and
5400 		 * try again. The time delay is an experiential value based
5401 		 * on our testing.
5402 		 */
5403 		msec_delay(100);
5404 		e1000g_get_phy_state(Adapter);
5405 		rw_exit(&Adapter->chip_lock);
5406 
5407 		value = sizeof (lb_normal);
5408 		if ((Adapter->phy_ext_status & IEEE_ESR_1000T_FD_CAPS) ||
5409 		    (Adapter->phy_ext_status & IEEE_ESR_1000X_FD_CAPS) ||
5410 		    (hw->phy.media_type == e1000_media_type_fiber) ||
5411 		    (hw->phy.media_type == e1000_media_type_internal_serdes)) {
5412 			value += sizeof (lb_phy);
5413 			switch (hw->mac.type) {
5414 			case e1000_82571:
5415 			case e1000_82572:
5416 			case e1000_80003es2lan:
5417 				value += sizeof (lb_external1000);
5418 				break;
5419 			}
5420 		}
5421 		if ((Adapter->phy_status & MII_SR_100X_FD_CAPS) ||
5422 		    (Adapter->phy_status & MII_SR_100T2_FD_CAPS))
5423 			value += sizeof (lb_external100);
5424 		if (Adapter->phy_status & MII_SR_10T_FD_CAPS)
5425 			value += sizeof (lb_external10);
5426 
5427 		lbsp = (lb_info_sz_t *)(uintptr_t)mp->b_cont->b_rptr;
5428 		*lbsp = value;
5429 		break;
5430 
5431 	case LB_GET_INFO:
5432 		value = sizeof (lb_normal);
5433 		if ((Adapter->phy_ext_status & IEEE_ESR_1000T_FD_CAPS) ||
5434 		    (Adapter->phy_ext_status & IEEE_ESR_1000X_FD_CAPS) ||
5435 		    (hw->phy.media_type == e1000_media_type_fiber) ||
5436 		    (hw->phy.media_type == e1000_media_type_internal_serdes)) {
5437 			value += sizeof (lb_phy);
5438 			switch (hw->mac.type) {
5439 			case e1000_82571:
5440 			case e1000_82572:
5441 			case e1000_80003es2lan:
5442 				value += sizeof (lb_external1000);
5443 				break;
5444 			}
5445 		}
5446 		if ((Adapter->phy_status & MII_SR_100X_FD_CAPS) ||
5447 		    (Adapter->phy_status & MII_SR_100T2_FD_CAPS))
5448 			value += sizeof (lb_external100);
5449 		if (Adapter->phy_status & MII_SR_10T_FD_CAPS)
5450 			value += sizeof (lb_external10);
5451 
5452 		size = value;
5453 		if (iocp->ioc_count != size)
5454 			return (IOC_INVAL);
5455 
5456 		value = 0;
5457 		lbpp = (lb_property_t *)(uintptr_t)mp->b_cont->b_rptr;
5458 		lbpp[value++] = lb_normal;
5459 		if ((Adapter->phy_ext_status & IEEE_ESR_1000T_FD_CAPS) ||
5460 		    (Adapter->phy_ext_status & IEEE_ESR_1000X_FD_CAPS) ||
5461 		    (hw->phy.media_type == e1000_media_type_fiber) ||
5462 		    (hw->phy.media_type == e1000_media_type_internal_serdes)) {
5463 			lbpp[value++] = lb_phy;
5464 			switch (hw->mac.type) {
5465 			case e1000_82571:
5466 			case e1000_82572:
5467 			case e1000_80003es2lan:
5468 				lbpp[value++] = lb_external1000;
5469 				break;
5470 			}
5471 		}
5472 		if ((Adapter->phy_status & MII_SR_100X_FD_CAPS) ||
5473 		    (Adapter->phy_status & MII_SR_100T2_FD_CAPS))
5474 			lbpp[value++] = lb_external100;
5475 		if (Adapter->phy_status & MII_SR_10T_FD_CAPS)
5476 			lbpp[value++] = lb_external10;
5477 		break;
5478 
5479 	case LB_GET_MODE:
5480 		size = sizeof (uint32_t);
5481 		if (iocp->ioc_count != size)
5482 			return (IOC_INVAL);
5483 
5484 		lbmp = (uint32_t *)(uintptr_t)mp->b_cont->b_rptr;
5485 		*lbmp = Adapter->loopback_mode;
5486 		break;
5487 
5488 	case LB_SET_MODE:
5489 		size = 0;
5490 		if (iocp->ioc_count != sizeof (uint32_t))
5491 			return (IOC_INVAL);
5492 
5493 		lbmp = (uint32_t *)(uintptr_t)mp->b_cont->b_rptr;
5494 		if (!e1000g_set_loopback_mode(Adapter, *lbmp))
5495 			return (IOC_INVAL);
5496 		break;
5497 	}
5498 
5499 	iocp->ioc_count = size;
5500 	iocp->ioc_error = 0;
5501 
5502 	if (e1000g_check_acc_handle(Adapter->osdep.reg_handle) != DDI_FM_OK) {
5503 		ddi_fm_service_impact(Adapter->dip, DDI_SERVICE_DEGRADED);
5504 		return (IOC_INVAL);
5505 	}
5506 
5507 	return (IOC_REPLY);
5508 }
5509 
5510 static boolean_t
5511 e1000g_check_loopback_support(struct e1000_hw *hw)
5512 {
5513 	switch (hw->mac.type) {
5514 	case e1000_82540:
5515 	case e1000_82545:
5516 	case e1000_82545_rev_3:
5517 	case e1000_82546:
5518 	case e1000_82546_rev_3:
5519 	case e1000_82541:
5520 	case e1000_82541_rev_2:
5521 	case e1000_82547:
5522 	case e1000_82547_rev_2:
5523 	case e1000_82571:
5524 	case e1000_82572:
5525 	case e1000_82573:
5526 	case e1000_82574:
5527 	case e1000_80003es2lan:
5528 	case e1000_ich9lan:
5529 	case e1000_ich10lan:
5530 		return (B_TRUE);
5531 	}
5532 	return (B_FALSE);
5533 }
5534 
5535 static boolean_t
5536 e1000g_set_loopback_mode(struct e1000g *Adapter, uint32_t mode)
5537 {
5538 	struct e1000_hw *hw;
5539 	int i, times;
5540 	boolean_t link_up;
5541 
5542 	if (mode == Adapter->loopback_mode)
5543 		return (B_TRUE);
5544 
5545 	hw = &Adapter->shared;
5546 	times = 0;
5547 
5548 	Adapter->loopback_mode = mode;
5549 
5550 	if (mode == E1000G_LB_NONE) {
5551 		/* Reset the chip */
5552 		hw->phy.autoneg_wait_to_complete = B_TRUE;
5553 		(void) e1000g_reset_adapter(Adapter);
5554 		hw->phy.autoneg_wait_to_complete = B_FALSE;
5555 		return (B_TRUE);
5556 	}
5557 
5558 again:
5559 
5560 	rw_enter(&Adapter->chip_lock, RW_WRITER);
5561 
5562 	switch (mode) {
5563 	default:
5564 		rw_exit(&Adapter->chip_lock);
5565 		return (B_FALSE);
5566 
5567 	case E1000G_LB_EXTERNAL_1000:
5568 		e1000g_set_external_loopback_1000(Adapter);
5569 		break;
5570 
5571 	case E1000G_LB_EXTERNAL_100:
5572 		e1000g_set_external_loopback_100(Adapter);
5573 		break;
5574 
5575 	case E1000G_LB_EXTERNAL_10:
5576 		e1000g_set_external_loopback_10(Adapter);
5577 		break;
5578 
5579 	case E1000G_LB_INTERNAL_PHY:
5580 		e1000g_set_internal_loopback(Adapter);
5581 		break;
5582 	}
5583 
5584 	times++;
5585 
5586 	rw_exit(&Adapter->chip_lock);
5587 
5588 	/* Wait for link up */
5589 	for (i = (PHY_FORCE_LIMIT * 2); i > 0; i--)
5590 		msec_delay(100);
5591 
5592 	rw_enter(&Adapter->chip_lock, RW_WRITER);
5593 
5594 	link_up = e1000g_link_up(Adapter);
5595 
5596 	rw_exit(&Adapter->chip_lock);
5597 
5598 	if (!link_up) {
5599 		E1000G_DEBUGLOG_0(Adapter, E1000G_INFO_LEVEL,
5600 		    "Failed to get the link up");
5601 		if (times < 2) {
5602 			/* Reset the link */
5603 			E1000G_DEBUGLOG_0(Adapter, E1000G_INFO_LEVEL,
5604 			    "Reset the link ...");
5605 			(void) e1000g_reset_adapter(Adapter);
5606 			goto again;
5607 		}
5608 
5609 		/*
5610 		 * Reset driver to loopback none when set loopback failed
5611 		 * for the second time.
5612 		 */
5613 		Adapter->loopback_mode = E1000G_LB_NONE;
5614 
5615 		/* Reset the chip */
5616 		hw->phy.autoneg_wait_to_complete = B_TRUE;
5617 		(void) e1000g_reset_adapter(Adapter);
5618 		hw->phy.autoneg_wait_to_complete = B_FALSE;
5619 
5620 		E1000G_DEBUGLOG_0(Adapter, E1000G_INFO_LEVEL,
5621 		    "Set loopback mode failed, reset to loopback none");
5622 
5623 		return (B_FALSE);
5624 	}
5625 
5626 	return (B_TRUE);
5627 }
5628 
5629 /*
5630  * The following loopback settings are from Intel's technical
5631  * document - "How To Loopback". All the register settings and
5632  * time delay values are directly inherited from the document
5633  * without more explanations available.
5634  */
5635 static void
5636 e1000g_set_internal_loopback(struct e1000g *Adapter)
5637 {
5638 	struct e1000_hw *hw;
5639 	uint32_t ctrl;
5640 	uint32_t status;
5641 	uint16_t phy_ctrl;
5642 	uint16_t phy_reg;
5643 	uint32_t txcw;
5644 
5645 	hw = &Adapter->shared;
5646 
5647 	/* Disable Smart Power Down */
5648 	phy_spd_state(hw, B_FALSE);
5649 
5650 	(void) e1000_read_phy_reg(hw, PHY_CONTROL, &phy_ctrl);
5651 	phy_ctrl &= ~(MII_CR_AUTO_NEG_EN | MII_CR_SPEED_100 | MII_CR_SPEED_10);
5652 	phy_ctrl |= MII_CR_FULL_DUPLEX | MII_CR_SPEED_1000;
5653 
5654 	switch (hw->mac.type) {
5655 	case e1000_82540:
5656 	case e1000_82545:
5657 	case e1000_82545_rev_3:
5658 	case e1000_82546:
5659 	case e1000_82546_rev_3:
5660 	case e1000_82573:
5661 		/* Auto-MDI/MDIX off */
5662 		(void) e1000_write_phy_reg(hw, M88E1000_PHY_SPEC_CTRL, 0x0808);
5663 		/* Reset PHY to update Auto-MDI/MDIX */
5664 		(void) e1000_write_phy_reg(hw, PHY_CONTROL,
5665 		    phy_ctrl | MII_CR_RESET | MII_CR_AUTO_NEG_EN);
5666 		/* Reset PHY to auto-neg off and force 1000 */
5667 		(void) e1000_write_phy_reg(hw, PHY_CONTROL,
5668 		    phy_ctrl | MII_CR_RESET);
5669 		/*
5670 		 * Disable PHY receiver for 82540/545/546 and 82573 Family.
5671 		 * See comments above e1000g_set_internal_loopback() for the
5672 		 * background.
5673 		 */
5674 		(void) e1000_write_phy_reg(hw, 29, 0x001F);
5675 		(void) e1000_write_phy_reg(hw, 30, 0x8FFC);
5676 		(void) e1000_write_phy_reg(hw, 29, 0x001A);
5677 		(void) e1000_write_phy_reg(hw, 30, 0x8FF0);
5678 		break;
5679 	case e1000_80003es2lan:
5680 		/* Force Link Up */
5681 		(void) e1000_write_phy_reg(hw, GG82563_PHY_KMRN_MODE_CTRL,
5682 		    0x1CC);
5683 		/* Sets PCS loopback at 1Gbs */
5684 		(void) e1000_write_phy_reg(hw, GG82563_PHY_MAC_SPEC_CTRL,
5685 		    0x1046);
5686 		break;
5687 	}
5688 
5689 	/*
5690 	 * The following registers should be set for e1000_phy_bm phy type.
5691 	 * e1000_82574, e1000_ich10lan and some e1000_ich9lan use this phy.
5692 	 * For others, we do not need to set these registers.
5693 	 */
5694 	if (hw->phy.type == e1000_phy_bm) {
5695 		/* Set Default MAC Interface speed to 1GB */
5696 		(void) e1000_read_phy_reg(hw, PHY_REG(2, 21), &phy_reg);
5697 		phy_reg &= ~0x0007;
5698 		phy_reg |= 0x006;
5699 		(void) e1000_write_phy_reg(hw, PHY_REG(2, 21), phy_reg);
5700 		/* Assert SW reset for above settings to take effect */
5701 		(void) e1000_phy_commit(hw);
5702 		msec_delay(1);
5703 		/* Force Full Duplex */
5704 		(void) e1000_read_phy_reg(hw, PHY_REG(769, 16), &phy_reg);
5705 		(void) e1000_write_phy_reg(hw, PHY_REG(769, 16),
5706 		    phy_reg | 0x000C);
5707 		/* Set Link Up (in force link) */
5708 		(void) e1000_read_phy_reg(hw, PHY_REG(776, 16), &phy_reg);
5709 		(void) e1000_write_phy_reg(hw, PHY_REG(776, 16),
5710 		    phy_reg | 0x0040);
5711 		/* Force Link */
5712 		(void) e1000_read_phy_reg(hw, PHY_REG(769, 16), &phy_reg);
5713 		(void) e1000_write_phy_reg(hw, PHY_REG(769, 16),
5714 		    phy_reg | 0x0040);
5715 		/* Set Early Link Enable */
5716 		(void) e1000_read_phy_reg(hw, PHY_REG(769, 20), &phy_reg);
5717 		(void) e1000_write_phy_reg(hw, PHY_REG(769, 20),
5718 		    phy_reg | 0x0400);
5719 	}
5720 
5721 	/* Set loopback */
5722 	(void) e1000_write_phy_reg(hw, PHY_CONTROL, phy_ctrl | MII_CR_LOOPBACK);
5723 
5724 	msec_delay(250);
5725 
5726 	/* Now set up the MAC to the same speed/duplex as the PHY. */
5727 	ctrl = E1000_READ_REG(hw, E1000_CTRL);
5728 	ctrl &= ~E1000_CTRL_SPD_SEL;	/* Clear the speed sel bits */
5729 	ctrl |= (E1000_CTRL_FRCSPD |	/* Set the Force Speed Bit */
5730 	    E1000_CTRL_FRCDPX |		/* Set the Force Duplex Bit */
5731 	    E1000_CTRL_SPD_1000 |	/* Force Speed to 1000 */
5732 	    E1000_CTRL_FD);		/* Force Duplex to FULL */
5733 
5734 	switch (hw->mac.type) {
5735 	case e1000_82540:
5736 	case e1000_82545:
5737 	case e1000_82545_rev_3:
5738 	case e1000_82546:
5739 	case e1000_82546_rev_3:
5740 		/*
5741 		 * For some serdes we'll need to commit the writes now
5742 		 * so that the status is updated on link
5743 		 */
5744 		if (hw->phy.media_type == e1000_media_type_internal_serdes) {
5745 			E1000_WRITE_REG(hw, E1000_CTRL, ctrl);
5746 			msec_delay(100);
5747 			ctrl = E1000_READ_REG(hw, E1000_CTRL);
5748 		}
5749 
5750 		if (hw->phy.media_type == e1000_media_type_copper) {
5751 			/* Invert Loss of Signal */
5752 			ctrl |= E1000_CTRL_ILOS;
5753 		} else {
5754 			/* Set ILOS on fiber nic if half duplex is detected */
5755 			status = E1000_READ_REG(hw, E1000_STATUS);
5756 			if ((status & E1000_STATUS_FD) == 0)
5757 				ctrl |= E1000_CTRL_ILOS | E1000_CTRL_SLU;
5758 		}
5759 		break;
5760 
5761 	case e1000_82571:
5762 	case e1000_82572:
5763 		/*
5764 		 * The fiber/SerDes versions of this adapter do not contain an
5765 		 * accessible PHY. Therefore, loopback beyond MAC must be done
5766 		 * using SerDes analog loopback.
5767 		 */
5768 		if (hw->phy.media_type != e1000_media_type_copper) {
5769 			/* Disable autoneg by setting bit 31 of TXCW to zero */
5770 			txcw = E1000_READ_REG(hw, E1000_TXCW);
5771 			txcw &= ~((uint32_t)1 << 31);
5772 			E1000_WRITE_REG(hw, E1000_TXCW, txcw);
5773 
5774 			/*
5775 			 * Write 0x410 to Serdes Control register
5776 			 * to enable Serdes analog loopback
5777 			 */
5778 			E1000_WRITE_REG(hw, E1000_SCTL, 0x0410);
5779 			msec_delay(10);
5780 		}
5781 
5782 		status = E1000_READ_REG(hw, E1000_STATUS);
5783 		/* Set ILOS on fiber nic if half duplex is detected */
5784 		if ((hw->phy.media_type == e1000_media_type_fiber) &&
5785 		    ((status & E1000_STATUS_FD) == 0 ||
5786 		    (status & E1000_STATUS_LU) == 0))
5787 			ctrl |= E1000_CTRL_ILOS | E1000_CTRL_SLU;
5788 		else if (hw->phy.media_type == e1000_media_type_internal_serdes)
5789 			ctrl |= E1000_CTRL_SLU;
5790 		break;
5791 
5792 	case e1000_82573:
5793 		ctrl |= E1000_CTRL_ILOS;
5794 		break;
5795 	case e1000_ich9lan:
5796 	case e1000_ich10lan:
5797 		ctrl |= E1000_CTRL_SLU;
5798 		break;
5799 	}
5800 	if (hw->phy.type == e1000_phy_bm)
5801 		ctrl |= E1000_CTRL_SLU | E1000_CTRL_ILOS;
5802 
5803 	E1000_WRITE_REG(hw, E1000_CTRL, ctrl);
5804 }
5805 
5806 static void
5807 e1000g_set_external_loopback_1000(struct e1000g *Adapter)
5808 {
5809 	struct e1000_hw *hw;
5810 	uint32_t rctl;
5811 	uint32_t ctrl_ext;
5812 	uint32_t ctrl;
5813 	uint32_t status;
5814 	uint32_t txcw;
5815 	uint16_t phydata;
5816 
5817 	hw = &Adapter->shared;
5818 
5819 	/* Disable Smart Power Down */
5820 	phy_spd_state(hw, B_FALSE);
5821 
5822 	switch (hw->mac.type) {
5823 	case e1000_82571:
5824 	case e1000_82572:
5825 		switch (hw->phy.media_type) {
5826 		case e1000_media_type_copper:
5827 			/* Force link up (Must be done before the PHY writes) */
5828 			ctrl = E1000_READ_REG(hw, E1000_CTRL);
5829 			ctrl |= E1000_CTRL_SLU;	/* Force Link Up */
5830 			E1000_WRITE_REG(hw, E1000_CTRL, ctrl);
5831 
5832 			rctl = E1000_READ_REG(hw, E1000_RCTL);
5833 			rctl |= (E1000_RCTL_EN |
5834 			    E1000_RCTL_SBP |
5835 			    E1000_RCTL_UPE |
5836 			    E1000_RCTL_MPE |
5837 			    E1000_RCTL_LPE |
5838 			    E1000_RCTL_BAM);		/* 0x803E */
5839 			E1000_WRITE_REG(hw, E1000_RCTL, rctl);
5840 
5841 			ctrl_ext = E1000_READ_REG(hw, E1000_CTRL_EXT);
5842 			ctrl_ext |= (E1000_CTRL_EXT_SDP4_DATA |
5843 			    E1000_CTRL_EXT_SDP6_DATA |
5844 			    E1000_CTRL_EXT_SDP3_DATA |
5845 			    E1000_CTRL_EXT_SDP4_DIR |
5846 			    E1000_CTRL_EXT_SDP6_DIR |
5847 			    E1000_CTRL_EXT_SDP3_DIR);	/* 0x0DD0 */
5848 			E1000_WRITE_REG(hw, E1000_CTRL_EXT, ctrl_ext);
5849 
5850 			/*
5851 			 * This sequence tunes the PHY's SDP and no customer
5852 			 * settable values. For background, see comments above
5853 			 * e1000g_set_internal_loopback().
5854 			 */
5855 			(void) e1000_write_phy_reg(hw, 0x0, 0x140);
5856 			msec_delay(10);
5857 			(void) e1000_write_phy_reg(hw, 0x9, 0x1A00);
5858 			(void) e1000_write_phy_reg(hw, 0x12, 0xC10);
5859 			(void) e1000_write_phy_reg(hw, 0x12, 0x1C10);
5860 			(void) e1000_write_phy_reg(hw, 0x1F37, 0x76);
5861 			(void) e1000_write_phy_reg(hw, 0x1F33, 0x1);
5862 			(void) e1000_write_phy_reg(hw, 0x1F33, 0x0);
5863 
5864 			(void) e1000_write_phy_reg(hw, 0x1F35, 0x65);
5865 			(void) e1000_write_phy_reg(hw, 0x1837, 0x3F7C);
5866 			(void) e1000_write_phy_reg(hw, 0x1437, 0x3FDC);
5867 			(void) e1000_write_phy_reg(hw, 0x1237, 0x3F7C);
5868 			(void) e1000_write_phy_reg(hw, 0x1137, 0x3FDC);
5869 
5870 			msec_delay(50);
5871 			break;
5872 		case e1000_media_type_fiber:
5873 		case e1000_media_type_internal_serdes:
5874 			status = E1000_READ_REG(hw, E1000_STATUS);
5875 			if (((status & E1000_STATUS_LU) == 0) ||
5876 			    (hw->phy.media_type ==
5877 			    e1000_media_type_internal_serdes)) {
5878 				ctrl = E1000_READ_REG(hw, E1000_CTRL);
5879 				ctrl |= E1000_CTRL_ILOS | E1000_CTRL_SLU;
5880 				E1000_WRITE_REG(hw, E1000_CTRL, ctrl);
5881 			}
5882 
5883 			/* Disable autoneg by setting bit 31 of TXCW to zero */
5884 			txcw = E1000_READ_REG(hw, E1000_TXCW);
5885 			txcw &= ~((uint32_t)1 << 31);
5886 			E1000_WRITE_REG(hw, E1000_TXCW, txcw);
5887 
5888 			/*
5889 			 * Write 0x410 to Serdes Control register
5890 			 * to enable Serdes analog loopback
5891 			 */
5892 			E1000_WRITE_REG(hw, E1000_SCTL, 0x0410);
5893 			msec_delay(10);
5894 			break;
5895 		default:
5896 			break;
5897 		}
5898 		break;
5899 	case e1000_82574:
5900 	case e1000_80003es2lan:
5901 	case e1000_ich9lan:
5902 	case e1000_ich10lan:
5903 		(void) e1000_read_phy_reg(hw, GG82563_REG(6, 16), &phydata);
5904 		(void) e1000_write_phy_reg(hw, GG82563_REG(6, 16),
5905 		    phydata | (1 << 5));
5906 		Adapter->param_adv_autoneg = 1;
5907 		Adapter->param_adv_1000fdx = 1;
5908 		(void) e1000g_reset_link(Adapter);
5909 		break;
5910 	}
5911 }
5912 
5913 static void
5914 e1000g_set_external_loopback_100(struct e1000g *Adapter)
5915 {
5916 	struct e1000_hw *hw;
5917 	uint32_t ctrl;
5918 	uint16_t phy_ctrl;
5919 
5920 	hw = &Adapter->shared;
5921 
5922 	/* Disable Smart Power Down */
5923 	phy_spd_state(hw, B_FALSE);
5924 
5925 	phy_ctrl = (MII_CR_FULL_DUPLEX |
5926 	    MII_CR_SPEED_100);
5927 
5928 	/* Force 100/FD, reset PHY */
5929 	(void) e1000_write_phy_reg(hw, PHY_CONTROL,
5930 	    phy_ctrl | MII_CR_RESET);	/* 0xA100 */
5931 	msec_delay(10);
5932 
5933 	/* Force 100/FD */
5934 	(void) e1000_write_phy_reg(hw, PHY_CONTROL,
5935 	    phy_ctrl);			/* 0x2100 */
5936 	msec_delay(10);
5937 
5938 	/* Now setup the MAC to the same speed/duplex as the PHY. */
5939 	ctrl = E1000_READ_REG(hw, E1000_CTRL);
5940 	ctrl &= ~E1000_CTRL_SPD_SEL;	/* Clear the speed sel bits */
5941 	ctrl |= (E1000_CTRL_SLU |	/* Force Link Up */
5942 	    E1000_CTRL_FRCSPD |		/* Set the Force Speed Bit */
5943 	    E1000_CTRL_FRCDPX |		/* Set the Force Duplex Bit */
5944 	    E1000_CTRL_SPD_100 |	/* Force Speed to 100 */
5945 	    E1000_CTRL_FD);		/* Force Duplex to FULL */
5946 
5947 	E1000_WRITE_REG(hw, E1000_CTRL, ctrl);
5948 }
5949 
5950 static void
5951 e1000g_set_external_loopback_10(struct e1000g *Adapter)
5952 {
5953 	struct e1000_hw *hw;
5954 	uint32_t ctrl;
5955 	uint16_t phy_ctrl;
5956 
5957 	hw = &Adapter->shared;
5958 
5959 	/* Disable Smart Power Down */
5960 	phy_spd_state(hw, B_FALSE);
5961 
5962 	phy_ctrl = (MII_CR_FULL_DUPLEX |
5963 	    MII_CR_SPEED_10);
5964 
5965 	/* Force 10/FD, reset PHY */
5966 	(void) e1000_write_phy_reg(hw, PHY_CONTROL,
5967 	    phy_ctrl | MII_CR_RESET);	/* 0x8100 */
5968 	msec_delay(10);
5969 
5970 	/* Force 10/FD */
5971 	(void) e1000_write_phy_reg(hw, PHY_CONTROL,
5972 	    phy_ctrl);			/* 0x0100 */
5973 	msec_delay(10);
5974 
5975 	/* Now setup the MAC to the same speed/duplex as the PHY. */
5976 	ctrl = E1000_READ_REG(hw, E1000_CTRL);
5977 	ctrl &= ~E1000_CTRL_SPD_SEL;	/* Clear the speed sel bits */
5978 	ctrl |= (E1000_CTRL_SLU |	/* Force Link Up */
5979 	    E1000_CTRL_FRCSPD |		/* Set the Force Speed Bit */
5980 	    E1000_CTRL_FRCDPX |		/* Set the Force Duplex Bit */
5981 	    E1000_CTRL_SPD_10 |		/* Force Speed to 10 */
5982 	    E1000_CTRL_FD);		/* Force Duplex to FULL */
5983 
5984 	E1000_WRITE_REG(hw, E1000_CTRL, ctrl);
5985 }
5986 
5987 #ifdef __sparc
5988 static boolean_t
5989 e1000g_find_mac_address(struct e1000g *Adapter)
5990 {
5991 	struct e1000_hw *hw = &Adapter->shared;
5992 	uchar_t *bytes;
5993 	struct ether_addr sysaddr;
5994 	uint_t nelts;
5995 	int err;
5996 	boolean_t found = B_FALSE;
5997 
5998 	/*
5999 	 * The "vendor's factory-set address" may already have
6000 	 * been extracted from the chip, but if the property
6001 	 * "local-mac-address" is set we use that instead.
6002 	 *
6003 	 * We check whether it looks like an array of 6
6004 	 * bytes (which it should, if OBP set it).  If we can't
6005 	 * make sense of it this way, we'll ignore it.
6006 	 */
6007 	err = ddi_prop_lookup_byte_array(DDI_DEV_T_ANY, Adapter->dip,
6008 	    DDI_PROP_DONTPASS, "local-mac-address", &bytes, &nelts);
6009 	if (err == DDI_PROP_SUCCESS) {
6010 		if (nelts == ETHERADDRL) {
6011 			while (nelts--)
6012 				hw->mac.addr[nelts] = bytes[nelts];
6013 			found = B_TRUE;
6014 		}
6015 		ddi_prop_free(bytes);
6016 	}
6017 
6018 	/*
6019 	 * Look up the OBP property "local-mac-address?". If the user has set
6020 	 * 'local-mac-address? = false', use "the system address" instead.
6021 	 */
6022 	if (ddi_prop_lookup_byte_array(DDI_DEV_T_ANY, Adapter->dip, 0,
6023 	    "local-mac-address?", &bytes, &nelts) == DDI_PROP_SUCCESS) {
6024 		if (strncmp("false", (caddr_t)bytes, (size_t)nelts) == 0) {
6025 			if (localetheraddr(NULL, &sysaddr) != 0) {
6026 				bcopy(&sysaddr, hw->mac.addr, ETHERADDRL);
6027 				found = B_TRUE;
6028 			}
6029 		}
6030 		ddi_prop_free(bytes);
6031 	}
6032 
6033 	/*
6034 	 * Finally(!), if there's a valid "mac-address" property (created
6035 	 * if we netbooted from this interface), we must use this instead
6036 	 * of any of the above to ensure that the NFS/install server doesn't
6037 	 * get confused by the address changing as Solaris takes over!
6038 	 */
6039 	err = ddi_prop_lookup_byte_array(DDI_DEV_T_ANY, Adapter->dip,
6040 	    DDI_PROP_DONTPASS, "mac-address", &bytes, &nelts);
6041 	if (err == DDI_PROP_SUCCESS) {
6042 		if (nelts == ETHERADDRL) {
6043 			while (nelts--)
6044 				hw->mac.addr[nelts] = bytes[nelts];
6045 			found = B_TRUE;
6046 		}
6047 		ddi_prop_free(bytes);
6048 	}
6049 
6050 	if (found) {
6051 		bcopy(hw->mac.addr, hw->mac.perm_addr,
6052 		    ETHERADDRL);
6053 	}
6054 
6055 	return (found);
6056 }
6057 #endif
6058 
6059 static int
6060 e1000g_add_intrs(struct e1000g *Adapter)
6061 {
6062 	dev_info_t *devinfo;
6063 	int intr_types;
6064 	int rc;
6065 
6066 	devinfo = Adapter->dip;
6067 
6068 	/* Get supported interrupt types */
6069 	rc = ddi_intr_get_supported_types(devinfo, &intr_types);
6070 
6071 	if (rc != DDI_SUCCESS) {
6072 		E1000G_DEBUGLOG_1(Adapter, E1000G_WARN_LEVEL,
6073 		    "Get supported interrupt types failed: %d\n", rc);
6074 		return (DDI_FAILURE);
6075 	}
6076 
6077 	/*
6078 	 * Based on Intel Technical Advisory document (TA-160), there are some
6079 	 * cases where some older Intel PCI-X NICs may "advertise" to the OS
6080 	 * that it supports MSI, but in fact has problems.
6081 	 * So we should only enable MSI for PCI-E NICs and disable MSI for old
6082 	 * PCI/PCI-X NICs.
6083 	 */
6084 	if (Adapter->shared.mac.type < e1000_82571)
6085 		Adapter->msi_enable = B_FALSE;
6086 
6087 	if ((intr_types & DDI_INTR_TYPE_MSI) && Adapter->msi_enable) {
6088 		rc = e1000g_intr_add(Adapter, DDI_INTR_TYPE_MSI);
6089 
6090 		if (rc != DDI_SUCCESS) {
6091 			/* EMPTY */
6092 			E1000G_DEBUGLOG_0(Adapter, E1000G_WARN_LEVEL,
6093 			    "Add MSI failed, trying Legacy interrupts\n");
6094 		} else {
6095 			Adapter->intr_type = DDI_INTR_TYPE_MSI;
6096 		}
6097 	}
6098 
6099 	if ((Adapter->intr_type == 0) &&
6100 	    (intr_types & DDI_INTR_TYPE_FIXED)) {
6101 		rc = e1000g_intr_add(Adapter, DDI_INTR_TYPE_FIXED);
6102 
6103 		if (rc != DDI_SUCCESS) {
6104 			E1000G_DEBUGLOG_0(Adapter, E1000G_WARN_LEVEL,
6105 			    "Add Legacy interrupts failed\n");
6106 			return (DDI_FAILURE);
6107 		}
6108 
6109 		Adapter->intr_type = DDI_INTR_TYPE_FIXED;
6110 	}
6111 
6112 	if (Adapter->intr_type == 0) {
6113 		E1000G_DEBUGLOG_0(Adapter, E1000G_WARN_LEVEL,
6114 		    "No interrupts registered\n");
6115 		return (DDI_FAILURE);
6116 	}
6117 
6118 	return (DDI_SUCCESS);
6119 }
6120 
6121 /*
6122  * e1000g_intr_add() handles MSI/Legacy interrupts
6123  */
6124 static int
6125 e1000g_intr_add(struct e1000g *Adapter, int intr_type)
6126 {
6127 	dev_info_t *devinfo;
6128 	int count, avail, actual;
6129 	int x, y, rc, inum = 0;
6130 	int flag;
6131 	ddi_intr_handler_t *intr_handler;
6132 
6133 	devinfo = Adapter->dip;
6134 
6135 	/* get number of interrupts */
6136 	rc = ddi_intr_get_nintrs(devinfo, intr_type, &count);
6137 	if ((rc != DDI_SUCCESS) || (count == 0)) {
6138 		E1000G_DEBUGLOG_2(Adapter, E1000G_WARN_LEVEL,
6139 		    "Get interrupt number failed. Return: %d, count: %d\n",
6140 		    rc, count);
6141 		return (DDI_FAILURE);
6142 	}
6143 
6144 	/* get number of available interrupts */
6145 	rc = ddi_intr_get_navail(devinfo, intr_type, &avail);
6146 	if ((rc != DDI_SUCCESS) || (avail == 0)) {
6147 		E1000G_DEBUGLOG_2(Adapter, E1000G_WARN_LEVEL,
6148 		    "Get interrupt available number failed. "
6149 		    "Return: %d, available: %d\n", rc, avail);
6150 		return (DDI_FAILURE);
6151 	}
6152 
6153 	if (avail < count) {
6154 		/* EMPTY */
6155 		E1000G_DEBUGLOG_2(Adapter, E1000G_WARN_LEVEL,
6156 		    "Interrupts count: %d, available: %d\n",
6157 		    count, avail);
6158 	}
6159 
6160 	/* Allocate an array of interrupt handles */
6161 	Adapter->intr_size = count * sizeof (ddi_intr_handle_t);
6162 	Adapter->htable = kmem_alloc(Adapter->intr_size, KM_SLEEP);
6163 
6164 	/* Set NORMAL behavior for both MSI and FIXED interrupt */
6165 	flag = DDI_INTR_ALLOC_NORMAL;
6166 
6167 	/* call ddi_intr_alloc() */
6168 	rc = ddi_intr_alloc(devinfo, Adapter->htable, intr_type, inum,
6169 	    count, &actual, flag);
6170 
6171 	if ((rc != DDI_SUCCESS) || (actual == 0)) {
6172 		E1000G_DEBUGLOG_1(Adapter, E1000G_WARN_LEVEL,
6173 		    "Allocate interrupts failed: %d\n", rc);
6174 
6175 		kmem_free(Adapter->htable, Adapter->intr_size);
6176 		return (DDI_FAILURE);
6177 	}
6178 
6179 	if (actual < count) {
6180 		/* EMPTY */
6181 		E1000G_DEBUGLOG_2(Adapter, E1000G_WARN_LEVEL,
6182 		    "Interrupts requested: %d, received: %d\n",
6183 		    count, actual);
6184 	}
6185 
6186 	Adapter->intr_cnt = actual;
6187 
6188 	/* Get priority for first msi, assume remaining are all the same */
6189 	rc = ddi_intr_get_pri(Adapter->htable[0], &Adapter->intr_pri);
6190 
6191 	if (rc != DDI_SUCCESS) {
6192 		E1000G_DEBUGLOG_1(Adapter, E1000G_WARN_LEVEL,
6193 		    "Get interrupt priority failed: %d\n", rc);
6194 
6195 		/* Free already allocated intr */
6196 		for (y = 0; y < actual; y++)
6197 			(void) ddi_intr_free(Adapter->htable[y]);
6198 
6199 		kmem_free(Adapter->htable, Adapter->intr_size);
6200 		return (DDI_FAILURE);
6201 	}
6202 
6203 	/*
6204 	 * In Legacy Interrupt mode, for PCI-Express adapters, we should
6205 	 * use the interrupt service routine e1000g_intr_pciexpress()
6206 	 * to avoid interrupt stealing when sharing interrupt with other
6207 	 * devices.
6208 	 */
6209 	if (Adapter->shared.mac.type < e1000_82571)
6210 		intr_handler = (ddi_intr_handler_t *)e1000g_intr;
6211 	else
6212 		intr_handler = (ddi_intr_handler_t *)e1000g_intr_pciexpress;
6213 
6214 	/* Call ddi_intr_add_handler() */
6215 	for (x = 0; x < actual; x++) {
6216 		rc = ddi_intr_add_handler(Adapter->htable[x],
6217 		    intr_handler, (caddr_t)Adapter, NULL);
6218 
6219 		if (rc != DDI_SUCCESS) {
6220 			E1000G_DEBUGLOG_1(Adapter, E1000G_WARN_LEVEL,
6221 			    "Add interrupt handler failed: %d\n", rc);
6222 
6223 			/* Remove already added handler */
6224 			for (y = 0; y < x; y++)
6225 				(void) ddi_intr_remove_handler(
6226 				    Adapter->htable[y]);
6227 
6228 			/* Free already allocated intr */
6229 			for (y = 0; y < actual; y++)
6230 				(void) ddi_intr_free(Adapter->htable[y]);
6231 
6232 			kmem_free(Adapter->htable, Adapter->intr_size);
6233 			return (DDI_FAILURE);
6234 		}
6235 	}
6236 
6237 	rc = ddi_intr_get_cap(Adapter->htable[0], &Adapter->intr_cap);
6238 
6239 	if (rc != DDI_SUCCESS) {
6240 		E1000G_DEBUGLOG_1(Adapter, E1000G_WARN_LEVEL,
6241 		    "Get interrupt cap failed: %d\n", rc);
6242 
6243 		/* Free already allocated intr */
6244 		for (y = 0; y < actual; y++) {
6245 			(void) ddi_intr_remove_handler(Adapter->htable[y]);
6246 			(void) ddi_intr_free(Adapter->htable[y]);
6247 		}
6248 
6249 		kmem_free(Adapter->htable, Adapter->intr_size);
6250 		return (DDI_FAILURE);
6251 	}
6252 
6253 	return (DDI_SUCCESS);
6254 }
6255 
6256 static int
6257 e1000g_rem_intrs(struct e1000g *Adapter)
6258 {
6259 	int x;
6260 	int rc;
6261 
6262 	for (x = 0; x < Adapter->intr_cnt; x++) {
6263 		rc = ddi_intr_remove_handler(Adapter->htable[x]);
6264 		if (rc != DDI_SUCCESS) {
6265 			E1000G_DEBUGLOG_1(Adapter, E1000G_WARN_LEVEL,
6266 			    "Remove intr handler failed: %d\n", rc);
6267 			return (DDI_FAILURE);
6268 		}
6269 
6270 		rc = ddi_intr_free(Adapter->htable[x]);
6271 		if (rc != DDI_SUCCESS) {
6272 			E1000G_DEBUGLOG_1(Adapter, E1000G_WARN_LEVEL,
6273 			    "Free intr failed: %d\n", rc);
6274 			return (DDI_FAILURE);
6275 		}
6276 	}
6277 
6278 	kmem_free(Adapter->htable, Adapter->intr_size);
6279 
6280 	return (DDI_SUCCESS);
6281 }
6282 
6283 static int
6284 e1000g_enable_intrs(struct e1000g *Adapter)
6285 {
6286 	int x;
6287 	int rc;
6288 
6289 	/* Enable interrupts */
6290 	if (Adapter->intr_cap & DDI_INTR_FLAG_BLOCK) {
6291 		/* Call ddi_intr_block_enable() for MSI */
6292 		rc = ddi_intr_block_enable(Adapter->htable,
6293 		    Adapter->intr_cnt);
6294 		if (rc != DDI_SUCCESS) {
6295 			E1000G_DEBUGLOG_1(Adapter, E1000G_WARN_LEVEL,
6296 			    "Enable block intr failed: %d\n", rc);
6297 			return (DDI_FAILURE);
6298 		}
6299 	} else {
6300 		/* Call ddi_intr_enable() for Legacy/MSI non block enable */
6301 		for (x = 0; x < Adapter->intr_cnt; x++) {
6302 			rc = ddi_intr_enable(Adapter->htable[x]);
6303 			if (rc != DDI_SUCCESS) {
6304 				E1000G_DEBUGLOG_1(Adapter, E1000G_WARN_LEVEL,
6305 				    "Enable intr failed: %d\n", rc);
6306 				return (DDI_FAILURE);
6307 			}
6308 		}
6309 	}
6310 
6311 	return (DDI_SUCCESS);
6312 }
6313 
6314 static int
6315 e1000g_disable_intrs(struct e1000g *Adapter)
6316 {
6317 	int x;
6318 	int rc;
6319 
6320 	/* Disable all interrupts */
6321 	if (Adapter->intr_cap & DDI_INTR_FLAG_BLOCK) {
6322 		rc = ddi_intr_block_disable(Adapter->htable,
6323 		    Adapter->intr_cnt);
6324 		if (rc != DDI_SUCCESS) {
6325 			E1000G_DEBUGLOG_1(Adapter, E1000G_WARN_LEVEL,
6326 			    "Disable block intr failed: %d\n", rc);
6327 			return (DDI_FAILURE);
6328 		}
6329 	} else {
6330 		for (x = 0; x < Adapter->intr_cnt; x++) {
6331 			rc = ddi_intr_disable(Adapter->htable[x]);
6332 			if (rc != DDI_SUCCESS) {
6333 				E1000G_DEBUGLOG_1(Adapter, E1000G_WARN_LEVEL,
6334 				    "Disable intr failed: %d\n", rc);
6335 				return (DDI_FAILURE);
6336 			}
6337 		}
6338 	}
6339 
6340 	return (DDI_SUCCESS);
6341 }
6342 
6343 /*
6344  * e1000g_get_phy_state - get the state of PHY registers, save in the adapter
6345  */
6346 static void
6347 e1000g_get_phy_state(struct e1000g *Adapter)
6348 {
6349 	struct e1000_hw *hw = &Adapter->shared;
6350 
6351 	if (hw->phy.media_type == e1000_media_type_copper) {
6352 		(void) e1000_read_phy_reg(hw, PHY_CONTROL, &Adapter->phy_ctrl);
6353 		(void) e1000_read_phy_reg(hw, PHY_STATUS, &Adapter->phy_status);
6354 		(void) e1000_read_phy_reg(hw, PHY_AUTONEG_ADV,
6355 		    &Adapter->phy_an_adv);
6356 		(void) e1000_read_phy_reg(hw, PHY_AUTONEG_EXP,
6357 		    &Adapter->phy_an_exp);
6358 		(void) e1000_read_phy_reg(hw, PHY_EXT_STATUS,
6359 		    &Adapter->phy_ext_status);
6360 		(void) e1000_read_phy_reg(hw, PHY_1000T_CTRL,
6361 		    &Adapter->phy_1000t_ctrl);
6362 		(void) e1000_read_phy_reg(hw, PHY_1000T_STATUS,
6363 		    &Adapter->phy_1000t_status);
6364 		(void) e1000_read_phy_reg(hw, PHY_LP_ABILITY,
6365 		    &Adapter->phy_lp_able);
6366 
6367 		Adapter->param_autoneg_cap =
6368 		    (Adapter->phy_status & MII_SR_AUTONEG_CAPS) ? 1 : 0;
6369 		Adapter->param_pause_cap =
6370 		    (Adapter->phy_an_adv & NWAY_AR_PAUSE) ? 1 : 0;
6371 		Adapter->param_asym_pause_cap =
6372 		    (Adapter->phy_an_adv & NWAY_AR_ASM_DIR) ? 1 : 0;
6373 		Adapter->param_1000fdx_cap =
6374 		    ((Adapter->phy_ext_status & IEEE_ESR_1000T_FD_CAPS) ||
6375 		    (Adapter->phy_ext_status & IEEE_ESR_1000X_FD_CAPS)) ? 1 : 0;
6376 		Adapter->param_1000hdx_cap =
6377 		    ((Adapter->phy_ext_status & IEEE_ESR_1000T_HD_CAPS) ||
6378 		    (Adapter->phy_ext_status & IEEE_ESR_1000X_HD_CAPS)) ? 1 : 0;
6379 		Adapter->param_100t4_cap =
6380 		    (Adapter->phy_status & MII_SR_100T4_CAPS) ? 1 : 0;
6381 		Adapter->param_100fdx_cap =
6382 		    ((Adapter->phy_status & MII_SR_100X_FD_CAPS) ||
6383 		    (Adapter->phy_status & MII_SR_100T2_FD_CAPS)) ? 1 : 0;
6384 		Adapter->param_100hdx_cap =
6385 		    ((Adapter->phy_status & MII_SR_100X_HD_CAPS) ||
6386 		    (Adapter->phy_status & MII_SR_100T2_HD_CAPS)) ? 1 : 0;
6387 		Adapter->param_10fdx_cap =
6388 		    (Adapter->phy_status & MII_SR_10T_FD_CAPS) ? 1 : 0;
6389 		Adapter->param_10hdx_cap =
6390 		    (Adapter->phy_status & MII_SR_10T_HD_CAPS) ? 1 : 0;
6391 
6392 		Adapter->param_adv_autoneg = hw->mac.autoneg;
6393 		Adapter->param_adv_pause =
6394 		    (Adapter->phy_an_adv & NWAY_AR_PAUSE) ? 1 : 0;
6395 		Adapter->param_adv_asym_pause =
6396 		    (Adapter->phy_an_adv & NWAY_AR_ASM_DIR) ? 1 : 0;
6397 		Adapter->param_adv_1000hdx =
6398 		    (Adapter->phy_1000t_ctrl & CR_1000T_HD_CAPS) ? 1 : 0;
6399 		Adapter->param_adv_100t4 =
6400 		    (Adapter->phy_an_adv & NWAY_AR_100T4_CAPS) ? 1 : 0;
6401 		if (Adapter->param_adv_autoneg == 1) {
6402 			Adapter->param_adv_1000fdx =
6403 			    (Adapter->phy_1000t_ctrl & CR_1000T_FD_CAPS)
6404 			    ? 1 : 0;
6405 			Adapter->param_adv_100fdx =
6406 			    (Adapter->phy_an_adv & NWAY_AR_100TX_FD_CAPS)
6407 			    ? 1 : 0;
6408 			Adapter->param_adv_100hdx =
6409 			    (Adapter->phy_an_adv & NWAY_AR_100TX_HD_CAPS)
6410 			    ? 1 : 0;
6411 			Adapter->param_adv_10fdx =
6412 			    (Adapter->phy_an_adv & NWAY_AR_10T_FD_CAPS) ? 1 : 0;
6413 			Adapter->param_adv_10hdx =
6414 			    (Adapter->phy_an_adv & NWAY_AR_10T_HD_CAPS) ? 1 : 0;
6415 		}
6416 
6417 		Adapter->param_lp_autoneg =
6418 		    (Adapter->phy_an_exp & NWAY_ER_LP_NWAY_CAPS) ? 1 : 0;
6419 		Adapter->param_lp_pause =
6420 		    (Adapter->phy_lp_able & NWAY_LPAR_PAUSE) ? 1 : 0;
6421 		Adapter->param_lp_asym_pause =
6422 		    (Adapter->phy_lp_able & NWAY_LPAR_ASM_DIR) ? 1 : 0;
6423 		Adapter->param_lp_1000fdx =
6424 		    (Adapter->phy_1000t_status & SR_1000T_LP_FD_CAPS) ? 1 : 0;
6425 		Adapter->param_lp_1000hdx =
6426 		    (Adapter->phy_1000t_status & SR_1000T_LP_HD_CAPS) ? 1 : 0;
6427 		Adapter->param_lp_100t4 =
6428 		    (Adapter->phy_lp_able & NWAY_LPAR_100T4_CAPS) ? 1 : 0;
6429 		Adapter->param_lp_100fdx =
6430 		    (Adapter->phy_lp_able & NWAY_LPAR_100TX_FD_CAPS) ? 1 : 0;
6431 		Adapter->param_lp_100hdx =
6432 		    (Adapter->phy_lp_able & NWAY_LPAR_100TX_HD_CAPS) ? 1 : 0;
6433 		Adapter->param_lp_10fdx =
6434 		    (Adapter->phy_lp_able & NWAY_LPAR_10T_FD_CAPS) ? 1 : 0;
6435 		Adapter->param_lp_10hdx =
6436 		    (Adapter->phy_lp_able & NWAY_LPAR_10T_HD_CAPS) ? 1 : 0;
6437 	} else {
6438 		/*
6439 		 * 1Gig Fiber adapter only offers 1Gig Full Duplex. Meaning,
6440 		 * it can only work with 1Gig Full Duplex Link Partner.
6441 		 */
6442 		Adapter->param_autoneg_cap = 0;
6443 		Adapter->param_pause_cap = 1;
6444 		Adapter->param_asym_pause_cap = 1;
6445 		Adapter->param_1000fdx_cap = 1;
6446 		Adapter->param_1000hdx_cap = 0;
6447 		Adapter->param_100t4_cap = 0;
6448 		Adapter->param_100fdx_cap = 0;
6449 		Adapter->param_100hdx_cap = 0;
6450 		Adapter->param_10fdx_cap = 0;
6451 		Adapter->param_10hdx_cap = 0;
6452 
6453 		Adapter->param_adv_autoneg = 0;
6454 		Adapter->param_adv_pause = 1;
6455 		Adapter->param_adv_asym_pause = 1;
6456 		Adapter->param_adv_1000fdx = 1;
6457 		Adapter->param_adv_1000hdx = 0;
6458 		Adapter->param_adv_100t4 = 0;
6459 		Adapter->param_adv_100fdx = 0;
6460 		Adapter->param_adv_100hdx = 0;
6461 		Adapter->param_adv_10fdx = 0;
6462 		Adapter->param_adv_10hdx = 0;
6463 
6464 		Adapter->param_lp_autoneg = 0;
6465 		Adapter->param_lp_pause = 0;
6466 		Adapter->param_lp_asym_pause = 0;
6467 		Adapter->param_lp_1000fdx = 0;
6468 		Adapter->param_lp_1000hdx = 0;
6469 		Adapter->param_lp_100t4 = 0;
6470 		Adapter->param_lp_100fdx = 0;
6471 		Adapter->param_lp_100hdx = 0;
6472 		Adapter->param_lp_10fdx = 0;
6473 		Adapter->param_lp_10hdx = 0;
6474 	}
6475 }
6476 
6477 /*
6478  * FMA support
6479  */
6480 
6481 int
6482 e1000g_check_acc_handle(ddi_acc_handle_t handle)
6483 {
6484 	ddi_fm_error_t de;
6485 
6486 	ddi_fm_acc_err_get(handle, &de, DDI_FME_VERSION);
6487 	ddi_fm_acc_err_clear(handle, DDI_FME_VERSION);
6488 	return (de.fme_status);
6489 }
6490 
6491 int
6492 e1000g_check_dma_handle(ddi_dma_handle_t handle)
6493 {
6494 	ddi_fm_error_t de;
6495 
6496 	ddi_fm_dma_err_get(handle, &de, DDI_FME_VERSION);
6497 	return (de.fme_status);
6498 }
6499 
6500 /*
6501  * The IO fault service error handling callback function
6502  */
6503 /* ARGSUSED2 */
6504 static int
6505 e1000g_fm_error_cb(dev_info_t *dip, ddi_fm_error_t *err, const void *impl_data)
6506 {
6507 	/*
6508 	 * as the driver can always deal with an error in any dma or
6509 	 * access handle, we can just return the fme_status value.
6510 	 */
6511 	pci_ereport_post(dip, err, NULL);
6512 	return (err->fme_status);
6513 }
6514 
6515 static void
6516 e1000g_fm_init(struct e1000g *Adapter)
6517 {
6518 	ddi_iblock_cookie_t iblk;
6519 	int fma_dma_flag;
6520 
6521 	/* Only register with IO Fault Services if we have some capability */
6522 	if (Adapter->fm_capabilities & DDI_FM_ACCCHK_CAPABLE) {
6523 		e1000g_regs_acc_attr.devacc_attr_access = DDI_FLAGERR_ACC;
6524 	} else {
6525 		e1000g_regs_acc_attr.devacc_attr_access = DDI_DEFAULT_ACC;
6526 	}
6527 
6528 	if (Adapter->fm_capabilities & DDI_FM_DMACHK_CAPABLE) {
6529 		fma_dma_flag = 1;
6530 	} else {
6531 		fma_dma_flag = 0;
6532 	}
6533 
6534 	(void) e1000g_set_fma_flags(fma_dma_flag);
6535 
6536 	if (Adapter->fm_capabilities) {
6537 
6538 		/* Register capabilities with IO Fault Services */
6539 		ddi_fm_init(Adapter->dip, &Adapter->fm_capabilities, &iblk);
6540 
6541 		/*
6542 		 * Initialize pci ereport capabilities if ereport capable
6543 		 */
6544 		if (DDI_FM_EREPORT_CAP(Adapter->fm_capabilities) ||
6545 		    DDI_FM_ERRCB_CAP(Adapter->fm_capabilities))
6546 			pci_ereport_setup(Adapter->dip);
6547 
6548 		/*
6549 		 * Register error callback if error callback capable
6550 		 */
6551 		if (DDI_FM_ERRCB_CAP(Adapter->fm_capabilities))
6552 			ddi_fm_handler_register(Adapter->dip,
6553 			    e1000g_fm_error_cb, (void*) Adapter);
6554 	}
6555 }
6556 
6557 static void
6558 e1000g_fm_fini(struct e1000g *Adapter)
6559 {
6560 	/* Only unregister FMA capabilities if we registered some */
6561 	if (Adapter->fm_capabilities) {
6562 
6563 		/*
6564 		 * Release any resources allocated by pci_ereport_setup()
6565 		 */
6566 		if (DDI_FM_EREPORT_CAP(Adapter->fm_capabilities) ||
6567 		    DDI_FM_ERRCB_CAP(Adapter->fm_capabilities))
6568 			pci_ereport_teardown(Adapter->dip);
6569 
6570 		/*
6571 		 * Un-register error callback if error callback capable
6572 		 */
6573 		if (DDI_FM_ERRCB_CAP(Adapter->fm_capabilities))
6574 			ddi_fm_handler_unregister(Adapter->dip);
6575 
6576 		/* Unregister from IO Fault Services */
6577 		mutex_enter(&e1000g_rx_detach_lock);
6578 		ddi_fm_fini(Adapter->dip);
6579 		if (Adapter->priv_dip != NULL) {
6580 			DEVI(Adapter->priv_dip)->devi_fmhdl = NULL;
6581 		}
6582 		mutex_exit(&e1000g_rx_detach_lock);
6583 	}
6584 }
6585 
6586 void
6587 e1000g_fm_ereport(struct e1000g *Adapter, char *detail)
6588 {
6589 	uint64_t ena;
6590 	char buf[FM_MAX_CLASS];
6591 
6592 	(void) snprintf(buf, FM_MAX_CLASS, "%s.%s", DDI_FM_DEVICE, detail);
6593 	ena = fm_ena_generate(0, FM_ENA_FMT1);
6594 	if (DDI_FM_EREPORT_CAP(Adapter->fm_capabilities)) {
6595 		ddi_fm_ereport_post(Adapter->dip, buf, ena, DDI_NOSLEEP,
6596 		    FM_VERSION, DATA_TYPE_UINT8, FM_EREPORT_VERS0, NULL);
6597 	}
6598 }
6599 
6600 /*
6601  * quiesce(9E) entry point.
6602  *
6603  * This function is called when the system is single-threaded at high
6604  * PIL with preemption disabled. Therefore, this function must not be
6605  * blocked.
6606  *
6607  * This function returns DDI_SUCCESS on success, or DDI_FAILURE on failure.
6608  * DDI_FAILURE indicates an error condition and should almost never happen.
6609  */
6610 static int
6611 e1000g_quiesce(dev_info_t *devinfo)
6612 {
6613 	struct e1000g *Adapter;
6614 
6615 	Adapter = (struct e1000g *)ddi_get_driver_private(devinfo);
6616 
6617 	if (Adapter == NULL)
6618 		return (DDI_FAILURE);
6619 
6620 	e1000g_clear_all_interrupts(Adapter);
6621 
6622 	(void) e1000_reset_hw(&Adapter->shared);
6623 
6624 	/* Setup our HW Tx Head & Tail descriptor pointers */
6625 	E1000_WRITE_REG(&Adapter->shared, E1000_TDH(0), 0);
6626 	E1000_WRITE_REG(&Adapter->shared, E1000_TDT(0), 0);
6627 
6628 	/* Setup our HW Rx Head & Tail descriptor pointers */
6629 	E1000_WRITE_REG(&Adapter->shared, E1000_RDH(0), 0);
6630 	E1000_WRITE_REG(&Adapter->shared, E1000_RDT(0), 0);
6631 
6632 	return (DDI_SUCCESS);
6633 }
6634 
6635 /*
6636  * synchronize the adv* and en* parameters.
6637  *
6638  * See comments in <sys/dld.h> for details of the *_en_*
6639  * parameters. The usage of ndd for setting adv parameters will
6640  * synchronize all the en parameters with the e1000g parameters,
6641  * implicitly disabling any settings made via dladm.
6642  */
6643 static void
6644 e1000g_param_sync(struct e1000g *Adapter)
6645 {
6646 	Adapter->param_en_1000fdx = Adapter->param_adv_1000fdx;
6647 	Adapter->param_en_1000hdx = Adapter->param_adv_1000hdx;
6648 	Adapter->param_en_100fdx = Adapter->param_adv_100fdx;
6649 	Adapter->param_en_100hdx = Adapter->param_adv_100hdx;
6650 	Adapter->param_en_10fdx = Adapter->param_adv_10fdx;
6651 	Adapter->param_en_10hdx = Adapter->param_adv_10hdx;
6652 }
6653 
6654 /*
6655  * e1000g_get_driver_control - tell manageability firmware that the driver
6656  * has control.
6657  */
6658 static void
6659 e1000g_get_driver_control(struct e1000_hw *hw)
6660 {
6661 	uint32_t ctrl_ext;
6662 	uint32_t swsm;
6663 
6664 	/* tell manageability firmware the driver has taken over */
6665 	switch (hw->mac.type) {
6666 	case e1000_82573:
6667 		swsm = E1000_READ_REG(hw, E1000_SWSM);
6668 		E1000_WRITE_REG(hw, E1000_SWSM, swsm | E1000_SWSM_DRV_LOAD);
6669 		break;
6670 	case e1000_82571:
6671 	case e1000_82572:
6672 	case e1000_82574:
6673 	case e1000_80003es2lan:
6674 	case e1000_ich8lan:
6675 	case e1000_ich9lan:
6676 	case e1000_ich10lan:
6677 	case e1000_pchlan:
6678 	case e1000_pch2lan:
6679 		ctrl_ext = E1000_READ_REG(hw, E1000_CTRL_EXT);
6680 		E1000_WRITE_REG(hw, E1000_CTRL_EXT,
6681 		    ctrl_ext | E1000_CTRL_EXT_DRV_LOAD);
6682 		break;
6683 	default:
6684 		/* no manageability firmware: do nothing */
6685 		break;
6686 	}
6687 }
6688 
6689 /*
6690  * e1000g_release_driver_control - tell manageability firmware that the driver
6691  * has released control.
6692  */
6693 static void
6694 e1000g_release_driver_control(struct e1000_hw *hw)
6695 {
6696 	uint32_t ctrl_ext;
6697 	uint32_t swsm;
6698 
6699 	/* tell manageability firmware the driver has released control */
6700 	switch (hw->mac.type) {
6701 	case e1000_82573:
6702 		swsm = E1000_READ_REG(hw, E1000_SWSM);
6703 		E1000_WRITE_REG(hw, E1000_SWSM, swsm & ~E1000_SWSM_DRV_LOAD);
6704 		break;
6705 	case e1000_82571:
6706 	case e1000_82572:
6707 	case e1000_82574:
6708 	case e1000_80003es2lan:
6709 	case e1000_ich8lan:
6710 	case e1000_ich9lan:
6711 	case e1000_ich10lan:
6712 	case e1000_pchlan:
6713 	case e1000_pch2lan:
6714 		ctrl_ext = E1000_READ_REG(hw, E1000_CTRL_EXT);
6715 		E1000_WRITE_REG(hw, E1000_CTRL_EXT,
6716 		    ctrl_ext & ~E1000_CTRL_EXT_DRV_LOAD);
6717 		break;
6718 	default:
6719 		/* no manageability firmware: do nothing */
6720 		break;
6721 	}
6722 }
6723 
6724 /*
6725  * Restore e1000g promiscuous mode.
6726  */
6727 static void
6728 e1000g_restore_promisc(struct e1000g *Adapter)
6729 {
6730 	if (Adapter->e1000g_promisc) {
6731 		uint32_t rctl;
6732 
6733 		rctl = E1000_READ_REG(&Adapter->shared, E1000_RCTL);
6734 		rctl |= (E1000_RCTL_UPE | E1000_RCTL_MPE | E1000_RCTL_BAM);
6735 		E1000_WRITE_REG(&Adapter->shared, E1000_RCTL, rctl);
6736 	}
6737 }
6738