xref: /illumos-gate/usr/src/uts/common/io/e1000g/e1000g_main.c (revision 67dbe2be0c0f1e2eb428b89088bb5667e8f0b9f6)
1 /*
2  * This file is provided under a CDDLv1 license.  When using or
3  * redistributing this file, you may do so under this license.
4  * In redistributing this file this license must be included
5  * and no other modification of this header file is permitted.
6  *
7  * CDDL LICENSE SUMMARY
8  *
9  * Copyright(c) 1999 - 2009 Intel Corporation. All rights reserved.
10  *
11  * The contents of this file are subject to the terms of Version
12  * 1.0 of the Common Development and Distribution License (the "License").
13  *
14  * You should have received a copy of the License with this software.
15  * You can obtain a copy of the License at
16  *	http://www.opensolaris.org/os/licensing.
17  * See the License for the specific language governing permissions
18  * and limitations under the License.
19  */
20 
21 /*
22  * Copyright 2009 Sun Microsystems, Inc.  All rights reserved.
23  * Use is subject to license terms.
24  */
25 
26 /*
27  * **********************************************************************
28  *									*
29  * Module Name:								*
30  *   e1000g_main.c							*
31  *									*
32  * Abstract:								*
33  *   This file contains the interface routines for the solaris OS.	*
34  *   It has all DDI entry point routines and GLD entry point routines.	*
35  *									*
36  *   This file also contains routines that take care of initialization	*
37  *   uninit routine and interrupt routine.				*
38  *									*
39  * **********************************************************************
40  */
41 
42 #include <sys/dlpi.h>
43 #include <sys/mac.h>
44 #include "e1000g_sw.h"
45 #include "e1000g_debug.h"
46 
47 static char ident[] = "Intel PRO/1000 Ethernet";
48 static char e1000g_string[] = "Intel(R) PRO/1000 Network Connection";
49 static char e1000g_version[] = "Driver Ver. 5.3.17";
50 
51 /*
52  * Proto types for DDI entry points
53  */
54 static int e1000g_attach(dev_info_t *, ddi_attach_cmd_t);
55 static int e1000g_detach(dev_info_t *, ddi_detach_cmd_t);
56 static int e1000g_quiesce(dev_info_t *);
57 
58 /*
59  * init and intr routines prototype
60  */
61 static int e1000g_resume(dev_info_t *);
62 static int e1000g_suspend(dev_info_t *);
63 static uint_t e1000g_intr_pciexpress(caddr_t);
64 static uint_t e1000g_intr(caddr_t);
65 static void e1000g_intr_work(struct e1000g *, uint32_t);
66 #pragma inline(e1000g_intr_work)
67 static int e1000g_init(struct e1000g *);
68 static int e1000g_start(struct e1000g *, boolean_t);
69 static void e1000g_stop(struct e1000g *, boolean_t);
70 static int e1000g_m_start(void *);
71 static void e1000g_m_stop(void *);
72 static int e1000g_m_promisc(void *, boolean_t);
73 static boolean_t e1000g_m_getcapab(void *, mac_capab_t, void *);
74 static int e1000g_m_multicst(void *, boolean_t, const uint8_t *);
75 static void e1000g_m_ioctl(void *, queue_t *, mblk_t *);
76 static int e1000g_m_setprop(void *, const char *, mac_prop_id_t,
77     uint_t, const void *);
78 static int e1000g_m_getprop(void *, const char *, mac_prop_id_t,
79     uint_t, uint_t, void *, uint_t *);
80 static int e1000g_set_priv_prop(struct e1000g *, const char *, uint_t,
81     const void *);
82 static int e1000g_get_priv_prop(struct e1000g *, const char *, uint_t,
83     uint_t, void *, uint_t *);
84 static void e1000g_init_locks(struct e1000g *);
85 static void e1000g_destroy_locks(struct e1000g *);
86 static int e1000g_identify_hardware(struct e1000g *);
87 static int e1000g_regs_map(struct e1000g *);
88 static int e1000g_set_driver_params(struct e1000g *);
89 static void e1000g_set_bufsize(struct e1000g *);
90 static int e1000g_register_mac(struct e1000g *);
91 static boolean_t e1000g_rx_drain(struct e1000g *);
92 static boolean_t e1000g_tx_drain(struct e1000g *);
93 static void e1000g_init_unicst(struct e1000g *);
94 static int e1000g_unicst_set(struct e1000g *, const uint8_t *, int);
95 static int e1000g_alloc_rx_data(struct e1000g *);
96 static void e1000g_release_multicast(struct e1000g *);
97 static void e1000g_pch_limits(struct e1000g *);
98 static uint32_t e1000g_mtu2maxframe(uint32_t);
99 
100 /*
101  * Local routines
102  */
103 static boolean_t e1000g_reset_adapter(struct e1000g *);
104 static void e1000g_tx_clean(struct e1000g *);
105 static void e1000g_rx_clean(struct e1000g *);
106 static void e1000g_link_timer(void *);
107 static void e1000g_local_timer(void *);
108 static boolean_t e1000g_link_check(struct e1000g *);
109 static boolean_t e1000g_stall_check(struct e1000g *);
110 static void e1000g_smartspeed(struct e1000g *);
111 static void e1000g_get_conf(struct e1000g *);
112 static int e1000g_get_prop(struct e1000g *, char *, int, int, int);
113 static void enable_watchdog_timer(struct e1000g *);
114 static void disable_watchdog_timer(struct e1000g *);
115 static void start_watchdog_timer(struct e1000g *);
116 static void restart_watchdog_timer(struct e1000g *);
117 static void stop_watchdog_timer(struct e1000g *);
118 static void stop_link_timer(struct e1000g *);
119 static void stop_82547_timer(e1000g_tx_ring_t *);
120 static void e1000g_force_speed_duplex(struct e1000g *);
121 static void e1000g_setup_max_mtu(struct e1000g *);
122 static void e1000g_get_max_frame_size(struct e1000g *);
123 static boolean_t is_valid_mac_addr(uint8_t *);
124 static void e1000g_unattach(dev_info_t *, struct e1000g *);
125 #ifdef E1000G_DEBUG
126 static void e1000g_ioc_peek_reg(struct e1000g *, e1000g_peekpoke_t *);
127 static void e1000g_ioc_poke_reg(struct e1000g *, e1000g_peekpoke_t *);
128 static void e1000g_ioc_peek_mem(struct e1000g *, e1000g_peekpoke_t *);
129 static void e1000g_ioc_poke_mem(struct e1000g *, e1000g_peekpoke_t *);
130 static enum ioc_reply e1000g_pp_ioctl(struct e1000g *,
131     struct iocblk *, mblk_t *);
132 #endif
133 static enum ioc_reply e1000g_loopback_ioctl(struct e1000g *,
134     struct iocblk *, mblk_t *);
135 static boolean_t e1000g_check_loopback_support(struct e1000_hw *);
136 static boolean_t e1000g_set_loopback_mode(struct e1000g *, uint32_t);
137 static void e1000g_set_internal_loopback(struct e1000g *);
138 static void e1000g_set_external_loopback_1000(struct e1000g *);
139 static void e1000g_set_external_loopback_100(struct e1000g *);
140 static void e1000g_set_external_loopback_10(struct e1000g *);
141 static int e1000g_add_intrs(struct e1000g *);
142 static int e1000g_intr_add(struct e1000g *, int);
143 static int e1000g_rem_intrs(struct e1000g *);
144 static int e1000g_enable_intrs(struct e1000g *);
145 static int e1000g_disable_intrs(struct e1000g *);
146 static boolean_t e1000g_link_up(struct e1000g *);
147 #ifdef __sparc
148 static boolean_t e1000g_find_mac_address(struct e1000g *);
149 #endif
150 static void e1000g_get_phy_state(struct e1000g *);
151 static int e1000g_fm_error_cb(dev_info_t *dip, ddi_fm_error_t *err,
152     const void *impl_data);
153 static void e1000g_fm_init(struct e1000g *Adapter);
154 static void e1000g_fm_fini(struct e1000g *Adapter);
155 static int e1000g_get_def_val(struct e1000g *, mac_prop_id_t, uint_t, void *);
156 static void e1000g_param_sync(struct e1000g *);
157 static void e1000g_get_driver_control(struct e1000_hw *);
158 static void e1000g_release_driver_control(struct e1000_hw *);
159 static void e1000g_restore_promisc(struct e1000g *Adapter);
160 
161 mac_priv_prop_t e1000g_priv_props[] = {
162 	{"_tx_bcopy_threshold", MAC_PROP_PERM_RW},
163 	{"_tx_interrupt_enable", MAC_PROP_PERM_RW},
164 	{"_tx_intr_delay", MAC_PROP_PERM_RW},
165 	{"_tx_intr_abs_delay", MAC_PROP_PERM_RW},
166 	{"_rx_bcopy_threshold", MAC_PROP_PERM_RW},
167 	{"_max_num_rcv_packets", MAC_PROP_PERM_RW},
168 	{"_rx_intr_delay", MAC_PROP_PERM_RW},
169 	{"_rx_intr_abs_delay", MAC_PROP_PERM_RW},
170 	{"_intr_throttling_rate", MAC_PROP_PERM_RW},
171 	{"_intr_adaptive", MAC_PROP_PERM_RW},
172 	{"_adv_pause_cap", MAC_PROP_PERM_READ},
173 	{"_adv_asym_pause_cap", MAC_PROP_PERM_READ},
174 };
175 #define	E1000G_MAX_PRIV_PROPS	\
176 	(sizeof (e1000g_priv_props)/sizeof (mac_priv_prop_t))
177 
178 
179 static struct cb_ops cb_ws_ops = {
180 	nulldev,		/* cb_open */
181 	nulldev,		/* cb_close */
182 	nodev,			/* cb_strategy */
183 	nodev,			/* cb_print */
184 	nodev,			/* cb_dump */
185 	nodev,			/* cb_read */
186 	nodev,			/* cb_write */
187 	nodev,			/* cb_ioctl */
188 	nodev,			/* cb_devmap */
189 	nodev,			/* cb_mmap */
190 	nodev,			/* cb_segmap */
191 	nochpoll,		/* cb_chpoll */
192 	ddi_prop_op,		/* cb_prop_op */
193 	NULL,			/* cb_stream */
194 	D_MP | D_HOTPLUG,	/* cb_flag */
195 	CB_REV,			/* cb_rev */
196 	nodev,			/* cb_aread */
197 	nodev			/* cb_awrite */
198 };
199 
200 static struct dev_ops ws_ops = {
201 	DEVO_REV,		/* devo_rev */
202 	0,			/* devo_refcnt */
203 	NULL,			/* devo_getinfo */
204 	nulldev,		/* devo_identify */
205 	nulldev,		/* devo_probe */
206 	e1000g_attach,		/* devo_attach */
207 	e1000g_detach,		/* devo_detach */
208 	nodev,			/* devo_reset */
209 	&cb_ws_ops,		/* devo_cb_ops */
210 	NULL,			/* devo_bus_ops */
211 	ddi_power,		/* devo_power */
212 	e1000g_quiesce		/* devo_quiesce */
213 };
214 
215 static struct modldrv modldrv = {
216 	&mod_driverops,		/* Type of module.  This one is a driver */
217 	ident,			/* Discription string */
218 	&ws_ops,		/* driver ops */
219 };
220 
221 static struct modlinkage modlinkage = {
222 	MODREV_1, &modldrv, NULL
223 };
224 
225 /* Access attributes for register mapping */
226 static ddi_device_acc_attr_t e1000g_regs_acc_attr = {
227 	DDI_DEVICE_ATTR_V0,
228 	DDI_STRUCTURE_LE_ACC,
229 	DDI_STRICTORDER_ACC,
230 	DDI_FLAGERR_ACC
231 };
232 
233 #define	E1000G_M_CALLBACK_FLAGS \
234 	(MC_IOCTL | MC_GETCAPAB | MC_SETPROP | MC_GETPROP)
235 
236 static mac_callbacks_t e1000g_m_callbacks = {
237 	E1000G_M_CALLBACK_FLAGS,
238 	e1000g_m_stat,
239 	e1000g_m_start,
240 	e1000g_m_stop,
241 	e1000g_m_promisc,
242 	e1000g_m_multicst,
243 	NULL,
244 	e1000g_m_tx,
245 	e1000g_m_ioctl,
246 	e1000g_m_getcapab,
247 	NULL,
248 	NULL,
249 	e1000g_m_setprop,
250 	e1000g_m_getprop
251 };
252 
253 /*
254  * Global variables
255  */
256 uint32_t e1000g_mblks_pending = 0;
257 /*
258  * Workaround for Dynamic Reconfiguration support, for x86 platform only.
259  * Here we maintain a private dev_info list if e1000g_force_detach is
260  * enabled. If we force the driver to detach while there are still some
261  * rx buffers retained in the upper layer, we have to keep a copy of the
262  * dev_info. In some cases (Dynamic Reconfiguration), the dev_info data
263  * structure will be freed after the driver is detached. However when we
264  * finally free those rx buffers released by the upper layer, we need to
265  * refer to the dev_info to free the dma buffers. So we save a copy of
266  * the dev_info for this purpose. On x86 platform, we assume this copy
267  * of dev_info is always valid, but on SPARC platform, it could be invalid
268  * after the system board level DR operation. For this reason, the global
269  * variable e1000g_force_detach must be B_FALSE on SPARC platform.
270  */
271 #ifdef __sparc
272 boolean_t e1000g_force_detach = B_FALSE;
273 #else
274 boolean_t e1000g_force_detach = B_TRUE;
275 #endif
276 private_devi_list_t *e1000g_private_devi_list = NULL;
277 
278 /*
279  * The mutex e1000g_rx_detach_lock is defined to protect the processing of
280  * the private dev_info list, and to serialize the processing of rx buffer
281  * freeing and rx buffer recycling.
282  */
283 kmutex_t e1000g_rx_detach_lock;
284 /*
285  * The rwlock e1000g_dma_type_lock is defined to protect the global flag
286  * e1000g_dma_type. For SPARC, the initial value of the flag is "USE_DVMA".
287  * If there are many e1000g instances, the system may run out of DVMA
288  * resources during the initialization of the instances, then the flag will
289  * be changed to "USE_DMA". Because different e1000g instances are initialized
290  * in parallel, we need to use this lock to protect the flag.
291  */
292 krwlock_t e1000g_dma_type_lock;
293 
294 /*
295  * The 82546 chipset is a dual-port device, both the ports share one eeprom.
296  * Based on the information from Intel, the 82546 chipset has some hardware
297  * problem. When one port is being reset and the other port is trying to
298  * access the eeprom, it could cause system hang or panic. To workaround this
299  * hardware problem, we use a global mutex to prevent such operations from
300  * happening simultaneously on different instances. This workaround is applied
301  * to all the devices supported by this driver.
302  */
303 kmutex_t e1000g_nvm_lock;
304 
305 /*
306  * Loadable module configuration entry points for the driver
307  */
308 
309 /*
310  * _init - module initialization
311  */
312 int
313 _init(void)
314 {
315 	int status;
316 
317 	mac_init_ops(&ws_ops, WSNAME);
318 	status = mod_install(&modlinkage);
319 	if (status != DDI_SUCCESS)
320 		mac_fini_ops(&ws_ops);
321 	else {
322 		mutex_init(&e1000g_rx_detach_lock, NULL, MUTEX_DRIVER, NULL);
323 		rw_init(&e1000g_dma_type_lock, NULL, RW_DRIVER, NULL);
324 		mutex_init(&e1000g_nvm_lock, NULL, MUTEX_DRIVER, NULL);
325 	}
326 
327 	return (status);
328 }
329 
330 /*
331  * _fini - module finalization
332  */
333 int
334 _fini(void)
335 {
336 	int status;
337 
338 	if (e1000g_mblks_pending != 0)
339 		return (EBUSY);
340 
341 	status = mod_remove(&modlinkage);
342 	if (status == DDI_SUCCESS) {
343 		mac_fini_ops(&ws_ops);
344 
345 		if (e1000g_force_detach) {
346 			private_devi_list_t *devi_node;
347 
348 			mutex_enter(&e1000g_rx_detach_lock);
349 			while (e1000g_private_devi_list != NULL) {
350 				devi_node = e1000g_private_devi_list;
351 				e1000g_private_devi_list =
352 				    e1000g_private_devi_list->next;
353 
354 				kmem_free(devi_node->priv_dip,
355 				    sizeof (struct dev_info));
356 				kmem_free(devi_node,
357 				    sizeof (private_devi_list_t));
358 			}
359 			mutex_exit(&e1000g_rx_detach_lock);
360 		}
361 
362 		mutex_destroy(&e1000g_rx_detach_lock);
363 		rw_destroy(&e1000g_dma_type_lock);
364 		mutex_destroy(&e1000g_nvm_lock);
365 	}
366 
367 	return (status);
368 }
369 
370 /*
371  * _info - module information
372  */
373 int
374 _info(struct modinfo *modinfop)
375 {
376 	return (mod_info(&modlinkage, modinfop));
377 }
378 
379 /*
380  * e1000g_attach - driver attach
381  *
382  * This function is the device-specific initialization entry
383  * point. This entry point is required and must be written.
384  * The DDI_ATTACH command must be provided in the attach entry
385  * point. When attach() is called with cmd set to DDI_ATTACH,
386  * all normal kernel services (such as kmem_alloc(9F)) are
387  * available for use by the driver.
388  *
389  * The attach() function will be called once for each instance
390  * of  the  device  on  the  system with cmd set to DDI_ATTACH.
391  * Until attach() succeeds, the only driver entry points which
392  * may be called are open(9E) and getinfo(9E).
393  */
394 static int
395 e1000g_attach(dev_info_t *devinfo, ddi_attach_cmd_t cmd)
396 {
397 	struct e1000g *Adapter;
398 	struct e1000_hw *hw;
399 	struct e1000g_osdep *osdep;
400 	int instance;
401 
402 	switch (cmd) {
403 	default:
404 		e1000g_log(NULL, CE_WARN,
405 		    "Unsupported command send to e1000g_attach... ");
406 		return (DDI_FAILURE);
407 
408 	case DDI_RESUME:
409 		return (e1000g_resume(devinfo));
410 
411 	case DDI_ATTACH:
412 		break;
413 	}
414 
415 	/*
416 	 * get device instance number
417 	 */
418 	instance = ddi_get_instance(devinfo);
419 
420 	/*
421 	 * Allocate soft data structure
422 	 */
423 	Adapter =
424 	    (struct e1000g *)kmem_zalloc(sizeof (*Adapter), KM_SLEEP);
425 
426 	Adapter->dip = devinfo;
427 	Adapter->instance = instance;
428 	Adapter->tx_ring->adapter = Adapter;
429 	Adapter->rx_ring->adapter = Adapter;
430 
431 	hw = &Adapter->shared;
432 	osdep = &Adapter->osdep;
433 	hw->back = osdep;
434 	osdep->adapter = Adapter;
435 
436 	ddi_set_driver_private(devinfo, (caddr_t)Adapter);
437 
438 	/*
439 	 * Initialize for fma support
440 	 */
441 	Adapter->fm_capabilities = e1000g_get_prop(Adapter, "fm-capable",
442 	    0, 0x0f,
443 	    DDI_FM_EREPORT_CAPABLE | DDI_FM_ACCCHK_CAPABLE |
444 	    DDI_FM_DMACHK_CAPABLE | DDI_FM_ERRCB_CAPABLE);
445 	e1000g_fm_init(Adapter);
446 	Adapter->attach_progress |= ATTACH_PROGRESS_FMINIT;
447 
448 	/*
449 	 * PCI Configure
450 	 */
451 	if (pci_config_setup(devinfo, &osdep->cfg_handle) != DDI_SUCCESS) {
452 		e1000g_log(Adapter, CE_WARN, "PCI configuration failed");
453 		goto attach_fail;
454 	}
455 	Adapter->attach_progress |= ATTACH_PROGRESS_PCI_CONFIG;
456 
457 	/*
458 	 * Setup hardware
459 	 */
460 	if (e1000g_identify_hardware(Adapter) != DDI_SUCCESS) {
461 		e1000g_log(Adapter, CE_WARN, "Identify hardware failed");
462 		goto attach_fail;
463 	}
464 
465 	/*
466 	 * Map in the device registers.
467 	 */
468 	if (e1000g_regs_map(Adapter) != DDI_SUCCESS) {
469 		e1000g_log(Adapter, CE_WARN, "Mapping registers failed");
470 		goto attach_fail;
471 	}
472 	Adapter->attach_progress |= ATTACH_PROGRESS_REGS_MAP;
473 
474 	/*
475 	 * Initialize driver parameters
476 	 */
477 	if (e1000g_set_driver_params(Adapter) != DDI_SUCCESS) {
478 		goto attach_fail;
479 	}
480 	Adapter->attach_progress |= ATTACH_PROGRESS_SETUP;
481 
482 	if (e1000g_check_acc_handle(Adapter->osdep.cfg_handle) != DDI_FM_OK) {
483 		ddi_fm_service_impact(Adapter->dip, DDI_SERVICE_LOST);
484 		goto attach_fail;
485 	}
486 
487 	/*
488 	 * Initialize interrupts
489 	 */
490 	if (e1000g_add_intrs(Adapter) != DDI_SUCCESS) {
491 		e1000g_log(Adapter, CE_WARN, "Add interrupts failed");
492 		goto attach_fail;
493 	}
494 	Adapter->attach_progress |= ATTACH_PROGRESS_ADD_INTR;
495 
496 	/*
497 	 * Initialize mutex's for this device.
498 	 * Do this before enabling the interrupt handler and
499 	 * register the softint to avoid the condition where
500 	 * interrupt handler can try using uninitialized mutex
501 	 */
502 	e1000g_init_locks(Adapter);
503 	Adapter->attach_progress |= ATTACH_PROGRESS_LOCKS;
504 
505 	/*
506 	 * Initialize Driver Counters
507 	 */
508 	if (e1000g_init_stats(Adapter) != DDI_SUCCESS) {
509 		e1000g_log(Adapter, CE_WARN, "Init stats failed");
510 		goto attach_fail;
511 	}
512 	Adapter->attach_progress |= ATTACH_PROGRESS_KSTATS;
513 
514 	/*
515 	 * Initialize chip hardware and software structures
516 	 */
517 	rw_enter(&Adapter->chip_lock, RW_WRITER);
518 	if (e1000g_init(Adapter) != DDI_SUCCESS) {
519 		rw_exit(&Adapter->chip_lock);
520 		e1000g_log(Adapter, CE_WARN, "Adapter initialization failed");
521 		goto attach_fail;
522 	}
523 	rw_exit(&Adapter->chip_lock);
524 	Adapter->attach_progress |= ATTACH_PROGRESS_INIT;
525 
526 	/*
527 	 * Register the driver to the MAC
528 	 */
529 	if (e1000g_register_mac(Adapter) != DDI_SUCCESS) {
530 		e1000g_log(Adapter, CE_WARN, "Register MAC failed");
531 		goto attach_fail;
532 	}
533 	Adapter->attach_progress |= ATTACH_PROGRESS_MAC;
534 
535 	/*
536 	 * Now that mutex locks are initialized, and the chip is also
537 	 * initialized, enable interrupts.
538 	 */
539 	if (e1000g_enable_intrs(Adapter) != DDI_SUCCESS) {
540 		e1000g_log(Adapter, CE_WARN, "Enable DDI interrupts failed");
541 		goto attach_fail;
542 	}
543 	Adapter->attach_progress |= ATTACH_PROGRESS_ENABLE_INTR;
544 
545 	/*
546 	 * If e1000g_force_detach is enabled, in global private dip list,
547 	 * we will create a new entry, which maintains the priv_dip for DR
548 	 * supports after driver detached.
549 	 */
550 	if (e1000g_force_detach) {
551 		private_devi_list_t *devi_node;
552 
553 		Adapter->priv_dip =
554 		    kmem_zalloc(sizeof (struct dev_info), KM_SLEEP);
555 		bcopy(DEVI(devinfo), DEVI(Adapter->priv_dip),
556 		    sizeof (struct dev_info));
557 
558 		devi_node =
559 		    kmem_zalloc(sizeof (private_devi_list_t), KM_SLEEP);
560 
561 		mutex_enter(&e1000g_rx_detach_lock);
562 		devi_node->priv_dip = Adapter->priv_dip;
563 		devi_node->flag = E1000G_PRIV_DEVI_ATTACH;
564 		devi_node->pending_rx_count = 0;
565 
566 		Adapter->priv_devi_node = devi_node;
567 
568 		if (e1000g_private_devi_list == NULL) {
569 			devi_node->prev = NULL;
570 			devi_node->next = NULL;
571 			e1000g_private_devi_list = devi_node;
572 		} else {
573 			devi_node->prev = NULL;
574 			devi_node->next = e1000g_private_devi_list;
575 			e1000g_private_devi_list->prev = devi_node;
576 			e1000g_private_devi_list = devi_node;
577 		}
578 		mutex_exit(&e1000g_rx_detach_lock);
579 	}
580 
581 	cmn_err(CE_CONT, "!%s, %s\n", e1000g_string, e1000g_version);
582 	Adapter->e1000g_state = E1000G_INITIALIZED;
583 
584 	return (DDI_SUCCESS);
585 
586 attach_fail:
587 	e1000g_unattach(devinfo, Adapter);
588 	return (DDI_FAILURE);
589 }
590 
591 static int
592 e1000g_register_mac(struct e1000g *Adapter)
593 {
594 	struct e1000_hw *hw = &Adapter->shared;
595 	mac_register_t *mac;
596 	int err;
597 
598 	if ((mac = mac_alloc(MAC_VERSION)) == NULL)
599 		return (DDI_FAILURE);
600 
601 	mac->m_type_ident = MAC_PLUGIN_IDENT_ETHER;
602 	mac->m_driver = Adapter;
603 	mac->m_dip = Adapter->dip;
604 	mac->m_src_addr = hw->mac.addr;
605 	mac->m_callbacks = &e1000g_m_callbacks;
606 	mac->m_min_sdu = 0;
607 	mac->m_max_sdu = Adapter->default_mtu;
608 	mac->m_margin = VLAN_TAGSZ;
609 	mac->m_priv_props = e1000g_priv_props;
610 	mac->m_priv_prop_count = E1000G_MAX_PRIV_PROPS;
611 	mac->m_v12n = MAC_VIRT_LEVEL1;
612 
613 	err = mac_register(mac, &Adapter->mh);
614 	mac_free(mac);
615 
616 	return (err == 0 ? DDI_SUCCESS : DDI_FAILURE);
617 }
618 
619 static int
620 e1000g_identify_hardware(struct e1000g *Adapter)
621 {
622 	struct e1000_hw *hw = &Adapter->shared;
623 	struct e1000g_osdep *osdep = &Adapter->osdep;
624 
625 	/* Get the device id */
626 	hw->vendor_id =
627 	    pci_config_get16(osdep->cfg_handle, PCI_CONF_VENID);
628 	hw->device_id =
629 	    pci_config_get16(osdep->cfg_handle, PCI_CONF_DEVID);
630 	hw->revision_id =
631 	    pci_config_get8(osdep->cfg_handle, PCI_CONF_REVID);
632 	hw->subsystem_device_id =
633 	    pci_config_get16(osdep->cfg_handle, PCI_CONF_SUBSYSID);
634 	hw->subsystem_vendor_id =
635 	    pci_config_get16(osdep->cfg_handle, PCI_CONF_SUBVENID);
636 
637 	if (e1000_set_mac_type(hw) != E1000_SUCCESS) {
638 		E1000G_DEBUGLOG_0(Adapter, E1000G_INFO_LEVEL,
639 		    "MAC type could not be set properly.");
640 		return (DDI_FAILURE);
641 	}
642 
643 	return (DDI_SUCCESS);
644 }
645 
646 static int
647 e1000g_regs_map(struct e1000g *Adapter)
648 {
649 	dev_info_t *devinfo = Adapter->dip;
650 	struct e1000_hw *hw = &Adapter->shared;
651 	struct e1000g_osdep *osdep = &Adapter->osdep;
652 	off_t mem_size;
653 
654 	/* Get size of adapter register memory */
655 	if (ddi_dev_regsize(devinfo, ADAPTER_REG_SET, &mem_size) !=
656 	    DDI_SUCCESS) {
657 		E1000G_DEBUGLOG_0(Adapter, CE_WARN,
658 		    "ddi_dev_regsize for registers failed");
659 		return (DDI_FAILURE);
660 	}
661 
662 	/* Map adapter register memory */
663 	if ((ddi_regs_map_setup(devinfo, ADAPTER_REG_SET,
664 	    (caddr_t *)&hw->hw_addr, 0, mem_size, &e1000g_regs_acc_attr,
665 	    &osdep->reg_handle)) != DDI_SUCCESS) {
666 		E1000G_DEBUGLOG_0(Adapter, CE_WARN,
667 		    "ddi_regs_map_setup for registers failed");
668 		goto regs_map_fail;
669 	}
670 
671 	/* ICH needs to map flash memory */
672 	if (hw->mac.type == e1000_ich8lan ||
673 	    hw->mac.type == e1000_ich9lan ||
674 	    hw->mac.type == e1000_ich10lan ||
675 	    hw->mac.type == e1000_pchlan) {
676 		/* get flash size */
677 		if (ddi_dev_regsize(devinfo, ICH_FLASH_REG_SET,
678 		    &mem_size) != DDI_SUCCESS) {
679 			E1000G_DEBUGLOG_0(Adapter, CE_WARN,
680 			    "ddi_dev_regsize for ICH flash failed");
681 			goto regs_map_fail;
682 		}
683 
684 		/* map flash in */
685 		if (ddi_regs_map_setup(devinfo, ICH_FLASH_REG_SET,
686 		    (caddr_t *)&hw->flash_address, 0,
687 		    mem_size, &e1000g_regs_acc_attr,
688 		    &osdep->ich_flash_handle) != DDI_SUCCESS) {
689 			E1000G_DEBUGLOG_0(Adapter, CE_WARN,
690 			    "ddi_regs_map_setup for ICH flash failed");
691 			goto regs_map_fail;
692 		}
693 	}
694 
695 	return (DDI_SUCCESS);
696 
697 regs_map_fail:
698 	if (osdep->reg_handle != NULL)
699 		ddi_regs_map_free(&osdep->reg_handle);
700 
701 	return (DDI_FAILURE);
702 }
703 
704 static int
705 e1000g_set_driver_params(struct e1000g *Adapter)
706 {
707 	struct e1000_hw *hw;
708 	uint32_t mem_bar, io_bar, bar64;
709 
710 	hw = &Adapter->shared;
711 
712 	/* Set MAC type and initialize hardware functions */
713 	if (e1000_setup_init_funcs(hw, B_TRUE) != E1000_SUCCESS) {
714 		E1000G_DEBUGLOG_0(Adapter, CE_WARN,
715 		    "Could not setup hardware functions");
716 		return (DDI_FAILURE);
717 	}
718 
719 	/* Get bus information */
720 	if (e1000_get_bus_info(hw) != E1000_SUCCESS) {
721 		E1000G_DEBUGLOG_0(Adapter, CE_WARN,
722 		    "Could not get bus information");
723 		return (DDI_FAILURE);
724 	}
725 
726 	/* get mem_base addr */
727 	mem_bar = pci_config_get32(Adapter->osdep.cfg_handle, PCI_CONF_BASE0);
728 	bar64 = mem_bar & PCI_BASE_TYPE_ALL;
729 
730 	/* get io_base addr */
731 	if (hw->mac.type >= e1000_82544) {
732 		if (bar64) {
733 			/* IO BAR is different for 64 bit BAR mode */
734 			io_bar = pci_config_get32(Adapter->osdep.cfg_handle,
735 			    PCI_CONF_BASE4);
736 		} else {
737 			/* normal 32-bit BAR mode */
738 			io_bar = pci_config_get32(Adapter->osdep.cfg_handle,
739 			    PCI_CONF_BASE2);
740 		}
741 		hw->io_base = io_bar & PCI_BASE_IO_ADDR_M;
742 	} else {
743 		/* no I/O access for adapters prior to 82544 */
744 		hw->io_base = 0x0;
745 	}
746 
747 	e1000_read_pci_cfg(hw, PCI_COMMAND_REGISTER, &hw->bus.pci_cmd_word);
748 
749 	hw->mac.autoneg_failed = B_TRUE;
750 
751 	/* Set the autoneg_wait_to_complete flag to B_FALSE */
752 	hw->phy.autoneg_wait_to_complete = B_FALSE;
753 
754 	/* Adaptive IFS related changes */
755 	hw->mac.adaptive_ifs = B_TRUE;
756 
757 	/* Enable phy init script for IGP phy of 82541/82547 */
758 	if ((hw->mac.type == e1000_82547) ||
759 	    (hw->mac.type == e1000_82541) ||
760 	    (hw->mac.type == e1000_82547_rev_2) ||
761 	    (hw->mac.type == e1000_82541_rev_2))
762 		e1000_init_script_state_82541(hw, B_TRUE);
763 
764 	/* Enable the TTL workaround for 82541/82547 */
765 	e1000_set_ttl_workaround_state_82541(hw, B_TRUE);
766 
767 #ifdef __sparc
768 	Adapter->strip_crc = B_TRUE;
769 #else
770 	Adapter->strip_crc = B_FALSE;
771 #endif
772 
773 	/* setup the maximum MTU size of the chip */
774 	e1000g_setup_max_mtu(Adapter);
775 
776 	/* Get conf file properties */
777 	e1000g_get_conf(Adapter);
778 
779 	/* Get speed/duplex settings in conf file */
780 	hw->mac.forced_speed_duplex = ADVERTISE_100_FULL;
781 	hw->phy.autoneg_advertised = AUTONEG_ADVERTISE_SPEED_DEFAULT;
782 	e1000g_force_speed_duplex(Adapter);
783 
784 	/* Get Jumbo Frames settings in conf file */
785 	e1000g_get_max_frame_size(Adapter);
786 
787 	/* enforce PCH limits */
788 	e1000g_pch_limits(Adapter);
789 
790 	/* Set Rx/Tx buffer size */
791 	e1000g_set_bufsize(Adapter);
792 
793 	/* Master Latency Timer */
794 	Adapter->master_latency_timer = DEFAULT_MASTER_LATENCY_TIMER;
795 
796 	/* copper options */
797 	if (hw->phy.media_type == e1000_media_type_copper) {
798 		hw->phy.mdix = 0;	/* AUTO_ALL_MODES */
799 		hw->phy.disable_polarity_correction = B_FALSE;
800 		hw->phy.ms_type = e1000_ms_hw_default;	/* E1000_MASTER_SLAVE */
801 	}
802 
803 	/* The initial link state should be "unknown" */
804 	Adapter->link_state = LINK_STATE_UNKNOWN;
805 
806 	/* Initialize rx parameters */
807 	Adapter->rx_intr_delay = DEFAULT_RX_INTR_DELAY;
808 	Adapter->rx_intr_abs_delay = DEFAULT_RX_INTR_ABS_DELAY;
809 
810 	/* Initialize tx parameters */
811 	Adapter->tx_intr_enable = DEFAULT_TX_INTR_ENABLE;
812 	Adapter->tx_bcopy_thresh = DEFAULT_TX_BCOPY_THRESHOLD;
813 	Adapter->tx_intr_delay = DEFAULT_TX_INTR_DELAY;
814 	Adapter->tx_intr_abs_delay = DEFAULT_TX_INTR_ABS_DELAY;
815 
816 	/* Initialize rx parameters */
817 	Adapter->rx_bcopy_thresh = DEFAULT_RX_BCOPY_THRESHOLD;
818 
819 	return (DDI_SUCCESS);
820 }
821 
822 static void
823 e1000g_setup_max_mtu(struct e1000g *Adapter)
824 {
825 	struct e1000_mac_info *mac = &Adapter->shared.mac;
826 	struct e1000_phy_info *phy = &Adapter->shared.phy;
827 
828 	switch (mac->type) {
829 	/* types that do not support jumbo frames */
830 	case e1000_ich8lan:
831 	case e1000_82573:
832 	case e1000_82583:
833 		Adapter->max_mtu = ETHERMTU;
834 		break;
835 	/* ich9 supports jumbo frames except on one phy type */
836 	case e1000_ich9lan:
837 		if (phy->type == e1000_phy_ife)
838 			Adapter->max_mtu = ETHERMTU;
839 		else
840 			Adapter->max_mtu = MAXIMUM_MTU_9K;
841 		break;
842 	/* pch can do jumbo frames up to 4K */
843 	case e1000_pchlan:
844 		Adapter->max_mtu = MAXIMUM_MTU_4K;
845 		break;
846 	/* types with a special limit */
847 	case e1000_82571:
848 	case e1000_82572:
849 	case e1000_82574:
850 	case e1000_80003es2lan:
851 	case e1000_ich10lan:
852 		Adapter->max_mtu = MAXIMUM_MTU_9K;
853 		break;
854 	/* default limit is 16K */
855 	default:
856 		Adapter->max_mtu = FRAME_SIZE_UPTO_16K -
857 		    sizeof (struct ether_vlan_header) - ETHERFCSL -
858 		    E1000G_IPALIGNPRESERVEROOM;
859 		break;
860 	}
861 }
862 
863 static void
864 e1000g_set_bufsize(struct e1000g *Adapter)
865 {
866 	struct e1000_mac_info *mac = &Adapter->shared.mac;
867 	uint64_t rx_size;
868 	uint64_t tx_size;
869 
870 	dev_info_t *devinfo = Adapter->dip;
871 #ifdef __sparc
872 	ulong_t iommu_pagesize;
873 #endif
874 	/* Get the system page size */
875 	Adapter->sys_page_sz = ddi_ptob(devinfo, (ulong_t)1);
876 
877 #ifdef __sparc
878 	iommu_pagesize = dvma_pagesize(devinfo);
879 	if (iommu_pagesize != 0) {
880 		if (Adapter->sys_page_sz == iommu_pagesize) {
881 			if (iommu_pagesize > 0x4000)
882 				Adapter->sys_page_sz = 0x4000;
883 		} else {
884 			if (Adapter->sys_page_sz > iommu_pagesize)
885 				Adapter->sys_page_sz = iommu_pagesize;
886 		}
887 	}
888 	if (Adapter->lso_enable) {
889 		Adapter->dvma_page_num = E1000_LSO_MAXLEN /
890 		    Adapter->sys_page_sz + E1000G_DEFAULT_DVMA_PAGE_NUM;
891 	} else {
892 		Adapter->dvma_page_num = Adapter->max_frame_size /
893 		    Adapter->sys_page_sz + E1000G_DEFAULT_DVMA_PAGE_NUM;
894 	}
895 	ASSERT(Adapter->dvma_page_num >= E1000G_DEFAULT_DVMA_PAGE_NUM);
896 #endif
897 
898 	Adapter->min_frame_size = ETHERMIN + ETHERFCSL;
899 
900 	if (Adapter->mem_workaround_82546 &&
901 	    ((mac->type == e1000_82545) ||
902 	    (mac->type == e1000_82546) ||
903 	    (mac->type == e1000_82546_rev_3))) {
904 		Adapter->rx_buffer_size = E1000_RX_BUFFER_SIZE_2K;
905 	} else {
906 		rx_size = Adapter->max_frame_size + E1000G_IPALIGNPRESERVEROOM;
907 		if ((rx_size > FRAME_SIZE_UPTO_2K) &&
908 		    (rx_size <= FRAME_SIZE_UPTO_4K))
909 			Adapter->rx_buffer_size = E1000_RX_BUFFER_SIZE_4K;
910 		else if ((rx_size > FRAME_SIZE_UPTO_4K) &&
911 		    (rx_size <= FRAME_SIZE_UPTO_8K))
912 			Adapter->rx_buffer_size = E1000_RX_BUFFER_SIZE_8K;
913 		else if ((rx_size > FRAME_SIZE_UPTO_8K) &&
914 		    (rx_size <= FRAME_SIZE_UPTO_16K))
915 			Adapter->rx_buffer_size = E1000_RX_BUFFER_SIZE_16K;
916 		else
917 			Adapter->rx_buffer_size = E1000_RX_BUFFER_SIZE_2K;
918 	}
919 
920 	tx_size = Adapter->max_frame_size;
921 	if ((tx_size > FRAME_SIZE_UPTO_2K) && (tx_size <= FRAME_SIZE_UPTO_4K))
922 		Adapter->tx_buffer_size = E1000_TX_BUFFER_SIZE_4K;
923 	else if ((tx_size > FRAME_SIZE_UPTO_4K) &&
924 	    (tx_size <= FRAME_SIZE_UPTO_8K))
925 		Adapter->tx_buffer_size = E1000_TX_BUFFER_SIZE_8K;
926 	else if ((tx_size > FRAME_SIZE_UPTO_8K) &&
927 	    (tx_size <= FRAME_SIZE_UPTO_16K))
928 		Adapter->tx_buffer_size = E1000_TX_BUFFER_SIZE_16K;
929 	else
930 		Adapter->tx_buffer_size = E1000_TX_BUFFER_SIZE_2K;
931 
932 	/*
933 	 * For Wiseman adapters we have an requirement of having receive
934 	 * buffers aligned at 256 byte boundary. Since Livengood does not
935 	 * require this and forcing it for all hardwares will have
936 	 * performance implications, I am making it applicable only for
937 	 * Wiseman and for Jumbo frames enabled mode as rest of the time,
938 	 * it is okay to have normal frames...but it does involve a
939 	 * potential risk where we may loose data if buffer is not
940 	 * aligned...so all wiseman boards to have 256 byte aligned
941 	 * buffers
942 	 */
943 	if (mac->type < e1000_82543)
944 		Adapter->rx_buf_align = RECEIVE_BUFFER_ALIGN_SIZE;
945 	else
946 		Adapter->rx_buf_align = 1;
947 }
948 
949 /*
950  * e1000g_detach - driver detach
951  *
952  * The detach() function is the complement of the attach routine.
953  * If cmd is set to DDI_DETACH, detach() is used to remove  the
954  * state  associated  with  a  given  instance of a device node
955  * prior to the removal of that instance from the system.
956  *
957  * The detach() function will be called once for each  instance
958  * of the device for which there has been a successful attach()
959  * once there are no longer  any  opens  on  the  device.
960  *
961  * Interrupts routine are disabled, All memory allocated by this
962  * driver are freed.
963  */
964 static int
965 e1000g_detach(dev_info_t *devinfo, ddi_detach_cmd_t cmd)
966 {
967 	struct e1000g *Adapter;
968 	boolean_t rx_drain;
969 
970 	switch (cmd) {
971 	default:
972 		return (DDI_FAILURE);
973 
974 	case DDI_SUSPEND:
975 		return (e1000g_suspend(devinfo));
976 
977 	case DDI_DETACH:
978 		break;
979 	}
980 
981 	Adapter = (struct e1000g *)ddi_get_driver_private(devinfo);
982 	if (Adapter == NULL)
983 		return (DDI_FAILURE);
984 
985 	rx_drain = e1000g_rx_drain(Adapter);
986 	if (!rx_drain && !e1000g_force_detach)
987 		return (DDI_FAILURE);
988 
989 	if (mac_unregister(Adapter->mh) != 0) {
990 		e1000g_log(Adapter, CE_WARN, "Unregister MAC failed");
991 		return (DDI_FAILURE);
992 	}
993 	Adapter->attach_progress &= ~ATTACH_PROGRESS_MAC;
994 
995 	ASSERT(!(Adapter->e1000g_state & E1000G_STARTED));
996 
997 	if (!e1000g_force_detach && !rx_drain)
998 		return (DDI_FAILURE);
999 
1000 	e1000g_unattach(devinfo, Adapter);
1001 
1002 	return (DDI_SUCCESS);
1003 }
1004 
1005 /*
1006  * e1000g_free_priv_devi_node - free a priv_dip entry for driver instance
1007  */
1008 void
1009 e1000g_free_priv_devi_node(private_devi_list_t *devi_node)
1010 {
1011 	ASSERT(e1000g_private_devi_list != NULL);
1012 	ASSERT(devi_node != NULL);
1013 
1014 	if (devi_node->prev != NULL)
1015 		devi_node->prev->next = devi_node->next;
1016 	if (devi_node->next != NULL)
1017 		devi_node->next->prev = devi_node->prev;
1018 	if (devi_node == e1000g_private_devi_list)
1019 		e1000g_private_devi_list = devi_node->next;
1020 
1021 	kmem_free(devi_node->priv_dip,
1022 	    sizeof (struct dev_info));
1023 	kmem_free(devi_node,
1024 	    sizeof (private_devi_list_t));
1025 }
1026 
1027 static void
1028 e1000g_unattach(dev_info_t *devinfo, struct e1000g *Adapter)
1029 {
1030 	private_devi_list_t *devi_node;
1031 	int result;
1032 
1033 	if (Adapter->attach_progress & ATTACH_PROGRESS_ENABLE_INTR) {
1034 		(void) e1000g_disable_intrs(Adapter);
1035 	}
1036 
1037 	if (Adapter->attach_progress & ATTACH_PROGRESS_MAC) {
1038 		(void) mac_unregister(Adapter->mh);
1039 	}
1040 
1041 	if (Adapter->attach_progress & ATTACH_PROGRESS_ADD_INTR) {
1042 		(void) e1000g_rem_intrs(Adapter);
1043 	}
1044 
1045 	if (Adapter->attach_progress & ATTACH_PROGRESS_SETUP) {
1046 		(void) ddi_prop_remove_all(devinfo);
1047 	}
1048 
1049 	if (Adapter->attach_progress & ATTACH_PROGRESS_KSTATS) {
1050 		kstat_delete((kstat_t *)Adapter->e1000g_ksp);
1051 	}
1052 
1053 	if (Adapter->attach_progress & ATTACH_PROGRESS_INIT) {
1054 		stop_link_timer(Adapter);
1055 
1056 		mutex_enter(&e1000g_nvm_lock);
1057 		result = e1000_reset_hw(&Adapter->shared);
1058 		mutex_exit(&e1000g_nvm_lock);
1059 
1060 		if (result != E1000_SUCCESS) {
1061 			e1000g_fm_ereport(Adapter, DDI_FM_DEVICE_INVAL_STATE);
1062 			ddi_fm_service_impact(Adapter->dip, DDI_SERVICE_LOST);
1063 		}
1064 	}
1065 
1066 	e1000g_release_multicast(Adapter);
1067 
1068 	if (Adapter->attach_progress & ATTACH_PROGRESS_REGS_MAP) {
1069 		if (Adapter->osdep.reg_handle != NULL)
1070 			ddi_regs_map_free(&Adapter->osdep.reg_handle);
1071 		if (Adapter->osdep.ich_flash_handle != NULL)
1072 			ddi_regs_map_free(&Adapter->osdep.ich_flash_handle);
1073 	}
1074 
1075 	if (Adapter->attach_progress & ATTACH_PROGRESS_PCI_CONFIG) {
1076 		if (Adapter->osdep.cfg_handle != NULL)
1077 			pci_config_teardown(&Adapter->osdep.cfg_handle);
1078 	}
1079 
1080 	if (Adapter->attach_progress & ATTACH_PROGRESS_LOCKS) {
1081 		e1000g_destroy_locks(Adapter);
1082 	}
1083 
1084 	if (Adapter->attach_progress & ATTACH_PROGRESS_FMINIT) {
1085 		e1000g_fm_fini(Adapter);
1086 	}
1087 
1088 	mutex_enter(&e1000g_rx_detach_lock);
1089 	if (e1000g_force_detach && (Adapter->priv_devi_node != NULL)) {
1090 		devi_node = Adapter->priv_devi_node;
1091 		devi_node->flag |= E1000G_PRIV_DEVI_DETACH;
1092 
1093 		if (devi_node->pending_rx_count == 0) {
1094 			e1000g_free_priv_devi_node(devi_node);
1095 		}
1096 	}
1097 	mutex_exit(&e1000g_rx_detach_lock);
1098 
1099 	kmem_free((caddr_t)Adapter, sizeof (struct e1000g));
1100 
1101 	/*
1102 	 * Another hotplug spec requirement,
1103 	 * run ddi_set_driver_private(devinfo, null);
1104 	 */
1105 	ddi_set_driver_private(devinfo, NULL);
1106 }
1107 
1108 static void
1109 e1000g_init_locks(struct e1000g *Adapter)
1110 {
1111 	e1000g_tx_ring_t *tx_ring;
1112 	e1000g_rx_ring_t *rx_ring;
1113 
1114 	rw_init(&Adapter->chip_lock, NULL,
1115 	    RW_DRIVER, DDI_INTR_PRI(Adapter->intr_pri));
1116 	mutex_init(&Adapter->link_lock, NULL,
1117 	    MUTEX_DRIVER, DDI_INTR_PRI(Adapter->intr_pri));
1118 	mutex_init(&Adapter->watchdog_lock, NULL,
1119 	    MUTEX_DRIVER, DDI_INTR_PRI(Adapter->intr_pri));
1120 
1121 	tx_ring = Adapter->tx_ring;
1122 
1123 	mutex_init(&tx_ring->tx_lock, NULL,
1124 	    MUTEX_DRIVER, DDI_INTR_PRI(Adapter->intr_pri));
1125 	mutex_init(&tx_ring->usedlist_lock, NULL,
1126 	    MUTEX_DRIVER, DDI_INTR_PRI(Adapter->intr_pri));
1127 	mutex_init(&tx_ring->freelist_lock, NULL,
1128 	    MUTEX_DRIVER, DDI_INTR_PRI(Adapter->intr_pri));
1129 
1130 	rx_ring = Adapter->rx_ring;
1131 
1132 	mutex_init(&rx_ring->rx_lock, NULL,
1133 	    MUTEX_DRIVER, DDI_INTR_PRI(Adapter->intr_pri));
1134 }
1135 
1136 static void
1137 e1000g_destroy_locks(struct e1000g *Adapter)
1138 {
1139 	e1000g_tx_ring_t *tx_ring;
1140 	e1000g_rx_ring_t *rx_ring;
1141 
1142 	tx_ring = Adapter->tx_ring;
1143 	mutex_destroy(&tx_ring->tx_lock);
1144 	mutex_destroy(&tx_ring->usedlist_lock);
1145 	mutex_destroy(&tx_ring->freelist_lock);
1146 
1147 	rx_ring = Adapter->rx_ring;
1148 	mutex_destroy(&rx_ring->rx_lock);
1149 
1150 	mutex_destroy(&Adapter->link_lock);
1151 	mutex_destroy(&Adapter->watchdog_lock);
1152 	rw_destroy(&Adapter->chip_lock);
1153 
1154 	/* destory mutex initialized in shared code */
1155 	e1000_destroy_hw_mutex(&Adapter->shared);
1156 }
1157 
1158 static int
1159 e1000g_resume(dev_info_t *devinfo)
1160 {
1161 	struct e1000g *Adapter;
1162 
1163 	Adapter = (struct e1000g *)ddi_get_driver_private(devinfo);
1164 	if (Adapter == NULL)
1165 		e1000g_log(Adapter, CE_PANIC,
1166 		    "Instance pointer is null\n");
1167 
1168 	if (Adapter->dip != devinfo)
1169 		e1000g_log(Adapter, CE_PANIC,
1170 		    "Devinfo is not the same as saved devinfo\n");
1171 
1172 	rw_enter(&Adapter->chip_lock, RW_WRITER);
1173 
1174 	if (Adapter->e1000g_state & E1000G_STARTED) {
1175 		if (e1000g_start(Adapter, B_FALSE) != DDI_SUCCESS) {
1176 			rw_exit(&Adapter->chip_lock);
1177 			/*
1178 			 * We note the failure, but return success, as the
1179 			 * system is still usable without this controller.
1180 			 */
1181 			e1000g_log(Adapter, CE_WARN,
1182 			    "e1000g_resume: failed to restart controller\n");
1183 			return (DDI_SUCCESS);
1184 		}
1185 		/* Enable and start the watchdog timer */
1186 		enable_watchdog_timer(Adapter);
1187 	}
1188 
1189 	Adapter->e1000g_state &= ~E1000G_SUSPENDED;
1190 
1191 	rw_exit(&Adapter->chip_lock);
1192 
1193 	return (DDI_SUCCESS);
1194 }
1195 
1196 static int
1197 e1000g_suspend(dev_info_t *devinfo)
1198 {
1199 	struct e1000g *Adapter;
1200 
1201 	Adapter = (struct e1000g *)ddi_get_driver_private(devinfo);
1202 	if (Adapter == NULL)
1203 		return (DDI_FAILURE);
1204 
1205 	rw_enter(&Adapter->chip_lock, RW_WRITER);
1206 
1207 	Adapter->e1000g_state |= E1000G_SUSPENDED;
1208 
1209 	/* if the port isn't plumbed, we can simply return */
1210 	if (!(Adapter->e1000g_state & E1000G_STARTED)) {
1211 		rw_exit(&Adapter->chip_lock);
1212 		return (DDI_SUCCESS);
1213 	}
1214 
1215 	e1000g_stop(Adapter, B_FALSE);
1216 
1217 	rw_exit(&Adapter->chip_lock);
1218 
1219 	/* Disable and stop all the timers */
1220 	disable_watchdog_timer(Adapter);
1221 	stop_link_timer(Adapter);
1222 	stop_82547_timer(Adapter->tx_ring);
1223 
1224 	return (DDI_SUCCESS);
1225 }
1226 
1227 static int
1228 e1000g_init(struct e1000g *Adapter)
1229 {
1230 	uint32_t pba;
1231 	uint32_t high_water;
1232 	struct e1000_hw *hw;
1233 	clock_t link_timeout;
1234 	int result;
1235 
1236 	hw = &Adapter->shared;
1237 
1238 	/*
1239 	 * reset to put the hardware in a known state
1240 	 * before we try to do anything with the eeprom
1241 	 */
1242 	mutex_enter(&e1000g_nvm_lock);
1243 	result = e1000_reset_hw(hw);
1244 	mutex_exit(&e1000g_nvm_lock);
1245 
1246 	if (result != E1000_SUCCESS) {
1247 		e1000g_fm_ereport(Adapter, DDI_FM_DEVICE_INVAL_STATE);
1248 		goto init_fail;
1249 	}
1250 
1251 	mutex_enter(&e1000g_nvm_lock);
1252 	result = e1000_validate_nvm_checksum(hw);
1253 	if (result < E1000_SUCCESS) {
1254 		/*
1255 		 * Some PCI-E parts fail the first check due to
1256 		 * the link being in sleep state.  Call it again,
1257 		 * if it fails a second time its a real issue.
1258 		 */
1259 		result = e1000_validate_nvm_checksum(hw);
1260 	}
1261 	mutex_exit(&e1000g_nvm_lock);
1262 
1263 	if (result < E1000_SUCCESS) {
1264 		e1000g_log(Adapter, CE_WARN,
1265 		    "Invalid NVM checksum. Please contact "
1266 		    "the vendor to update the NVM.");
1267 		e1000g_fm_ereport(Adapter, DDI_FM_DEVICE_INVAL_STATE);
1268 		goto init_fail;
1269 	}
1270 
1271 	result = 0;
1272 #ifdef __sparc
1273 	/*
1274 	 * First, we try to get the local ethernet address from OBP. If
1275 	 * failed, then we get it from the EEPROM of NIC card.
1276 	 */
1277 	result = e1000g_find_mac_address(Adapter);
1278 #endif
1279 	/* Get the local ethernet address. */
1280 	if (!result) {
1281 		mutex_enter(&e1000g_nvm_lock);
1282 		result = e1000_read_mac_addr(hw);
1283 		mutex_exit(&e1000g_nvm_lock);
1284 	}
1285 
1286 	if (result < E1000_SUCCESS) {
1287 		e1000g_log(Adapter, CE_WARN, "Read mac addr failed");
1288 		e1000g_fm_ereport(Adapter, DDI_FM_DEVICE_INVAL_STATE);
1289 		goto init_fail;
1290 	}
1291 
1292 	/* check for valid mac address */
1293 	if (!is_valid_mac_addr(hw->mac.addr)) {
1294 		e1000g_log(Adapter, CE_WARN, "Invalid mac addr");
1295 		e1000g_fm_ereport(Adapter, DDI_FM_DEVICE_INVAL_STATE);
1296 		goto init_fail;
1297 	}
1298 
1299 	/* Set LAA state for 82571 chipset */
1300 	e1000_set_laa_state_82571(hw, B_TRUE);
1301 
1302 	/* Master Latency Timer implementation */
1303 	if (Adapter->master_latency_timer) {
1304 		pci_config_put8(Adapter->osdep.cfg_handle,
1305 		    PCI_CONF_LATENCY_TIMER, Adapter->master_latency_timer);
1306 	}
1307 
1308 	if (hw->mac.type < e1000_82547) {
1309 		/*
1310 		 * Total FIFO is 64K
1311 		 */
1312 		if (Adapter->max_frame_size > FRAME_SIZE_UPTO_8K)
1313 			pba = E1000_PBA_40K;	/* 40K for Rx, 24K for Tx */
1314 		else
1315 			pba = E1000_PBA_48K;	/* 48K for Rx, 16K for Tx */
1316 	} else if ((hw->mac.type == e1000_82571) ||
1317 	    (hw->mac.type == e1000_82572) ||
1318 	    (hw->mac.type == e1000_80003es2lan)) {
1319 		/*
1320 		 * Total FIFO is 48K
1321 		 */
1322 		if (Adapter->max_frame_size > FRAME_SIZE_UPTO_8K)
1323 			pba = E1000_PBA_30K;	/* 30K for Rx, 18K for Tx */
1324 		else
1325 			pba = E1000_PBA_38K;	/* 38K for Rx, 10K for Tx */
1326 	} else if (hw->mac.type == e1000_82573) {
1327 		pba = E1000_PBA_20K;		/* 20K for Rx, 12K for Tx */
1328 	} else if (hw->mac.type == e1000_82574) {
1329 		/* Keep adapter default: 20K for Rx, 20K for Tx */
1330 		pba = E1000_READ_REG(hw, E1000_PBA);
1331 	} else if (hw->mac.type == e1000_ich8lan) {
1332 		pba = E1000_PBA_8K;		/* 8K for Rx, 12K for Tx */
1333 	} else if (hw->mac.type == e1000_ich9lan) {
1334 		pba = E1000_PBA_10K;
1335 	} else if (hw->mac.type == e1000_ich10lan) {
1336 		pba = E1000_PBA_10K;
1337 	} else if (hw->mac.type == e1000_pchlan) {
1338 		pba = E1000_PBA_26K;
1339 	} else {
1340 		/*
1341 		 * Total FIFO is 40K
1342 		 */
1343 		if (Adapter->max_frame_size > FRAME_SIZE_UPTO_8K)
1344 			pba = E1000_PBA_22K;	/* 22K for Rx, 18K for Tx */
1345 		else
1346 			pba = E1000_PBA_30K;	/* 30K for Rx, 10K for Tx */
1347 	}
1348 	E1000_WRITE_REG(hw, E1000_PBA, pba);
1349 
1350 	/*
1351 	 * These parameters set thresholds for the adapter's generation(Tx)
1352 	 * and response(Rx) to Ethernet PAUSE frames.  These are just threshold
1353 	 * settings.  Flow control is enabled or disabled in the configuration
1354 	 * file.
1355 	 * High-water mark is set down from the top of the rx fifo (not
1356 	 * sensitive to max_frame_size) and low-water is set just below
1357 	 * high-water mark.
1358 	 * The high water mark must be low enough to fit one full frame above
1359 	 * it in the rx FIFO.  Should be the lower of:
1360 	 * 90% of the Rx FIFO size and the full Rx FIFO size minus the early
1361 	 * receive size (assuming ERT set to E1000_ERT_2048), or the full
1362 	 * Rx FIFO size minus one full frame.
1363 	 */
1364 	high_water = min(((pba << 10) * 9 / 10),
1365 	    ((hw->mac.type == e1000_82573 || hw->mac.type == e1000_82574 ||
1366 	    hw->mac.type == e1000_ich9lan || hw->mac.type == e1000_ich10lan) ?
1367 	    ((pba << 10) - (E1000_ERT_2048 << 3)) :
1368 	    ((pba << 10) - Adapter->max_frame_size)));
1369 
1370 	hw->fc.high_water = high_water & 0xFFF8;
1371 	hw->fc.low_water = hw->fc.high_water - 8;
1372 
1373 	if (hw->mac.type == e1000_80003es2lan)
1374 		hw->fc.pause_time = 0xFFFF;
1375 	else
1376 		hw->fc.pause_time = E1000_FC_PAUSE_TIME;
1377 	hw->fc.send_xon = B_TRUE;
1378 
1379 	/*
1380 	 * Reset the adapter hardware the second time.
1381 	 */
1382 	mutex_enter(&e1000g_nvm_lock);
1383 	result = e1000_reset_hw(hw);
1384 	mutex_exit(&e1000g_nvm_lock);
1385 
1386 	if (result != E1000_SUCCESS) {
1387 		e1000g_fm_ereport(Adapter, DDI_FM_DEVICE_INVAL_STATE);
1388 		goto init_fail;
1389 	}
1390 
1391 	/* disable wakeup control by default */
1392 	if (hw->mac.type >= e1000_82544)
1393 		E1000_WRITE_REG(hw, E1000_WUC, 0);
1394 
1395 	/*
1396 	 * MWI should be disabled on 82546.
1397 	 */
1398 	if (hw->mac.type == e1000_82546)
1399 		e1000_pci_clear_mwi(hw);
1400 	else
1401 		e1000_pci_set_mwi(hw);
1402 
1403 	/*
1404 	 * Configure/Initialize hardware
1405 	 */
1406 	mutex_enter(&e1000g_nvm_lock);
1407 	result = e1000_init_hw(hw);
1408 	mutex_exit(&e1000g_nvm_lock);
1409 
1410 	if (result < E1000_SUCCESS) {
1411 		e1000g_log(Adapter, CE_WARN, "Initialize hw failed");
1412 		e1000g_fm_ereport(Adapter, DDI_FM_DEVICE_INVAL_STATE);
1413 		goto init_fail;
1414 	}
1415 
1416 	/*
1417 	 * Restore LED settings to the default from EEPROM
1418 	 * to meet the standard for Sun platforms.
1419 	 */
1420 	(void) e1000_cleanup_led(hw);
1421 
1422 	/* Disable Smart Power Down */
1423 	phy_spd_state(hw, B_FALSE);
1424 
1425 	/* Make sure driver has control */
1426 	e1000g_get_driver_control(hw);
1427 
1428 	/*
1429 	 * Initialize unicast addresses.
1430 	 */
1431 	e1000g_init_unicst(Adapter);
1432 
1433 	/*
1434 	 * Setup and initialize the mctable structures.  After this routine
1435 	 * completes  Multicast table will be set
1436 	 */
1437 	e1000_update_mc_addr_list(hw,
1438 	    (uint8_t *)Adapter->mcast_table, Adapter->mcast_count);
1439 	msec_delay(5);
1440 
1441 	/*
1442 	 * Implement Adaptive IFS
1443 	 */
1444 	e1000_reset_adaptive(hw);
1445 
1446 	/* Setup Interrupt Throttling Register */
1447 	if (hw->mac.type >= e1000_82540) {
1448 		E1000_WRITE_REG(hw, E1000_ITR, Adapter->intr_throttling_rate);
1449 	} else
1450 		Adapter->intr_adaptive = B_FALSE;
1451 
1452 	/* Start the timer for link setup */
1453 	if (hw->mac.autoneg)
1454 		link_timeout = PHY_AUTO_NEG_LIMIT * drv_usectohz(100000);
1455 	else
1456 		link_timeout = PHY_FORCE_LIMIT * drv_usectohz(100000);
1457 
1458 	mutex_enter(&Adapter->link_lock);
1459 	if (hw->phy.autoneg_wait_to_complete) {
1460 		Adapter->link_complete = B_TRUE;
1461 	} else {
1462 		Adapter->link_complete = B_FALSE;
1463 		Adapter->link_tid = timeout(e1000g_link_timer,
1464 		    (void *)Adapter, link_timeout);
1465 	}
1466 	mutex_exit(&Adapter->link_lock);
1467 
1468 	/* Save the state of the phy */
1469 	e1000g_get_phy_state(Adapter);
1470 
1471 	e1000g_param_sync(Adapter);
1472 
1473 	Adapter->init_count++;
1474 
1475 	if (e1000g_check_acc_handle(Adapter->osdep.cfg_handle) != DDI_FM_OK) {
1476 		goto init_fail;
1477 	}
1478 	if (e1000g_check_acc_handle(Adapter->osdep.reg_handle) != DDI_FM_OK) {
1479 		goto init_fail;
1480 	}
1481 
1482 	Adapter->poll_mode = e1000g_poll_mode;
1483 
1484 	return (DDI_SUCCESS);
1485 
1486 init_fail:
1487 	ddi_fm_service_impact(Adapter->dip, DDI_SERVICE_LOST);
1488 	return (DDI_FAILURE);
1489 }
1490 
1491 static int
1492 e1000g_alloc_rx_data(struct e1000g *Adapter)
1493 {
1494 	e1000g_rx_ring_t *rx_ring;
1495 	e1000g_rx_data_t *rx_data;
1496 
1497 	rx_ring = Adapter->rx_ring;
1498 
1499 	rx_data = kmem_zalloc(sizeof (e1000g_rx_data_t), KM_NOSLEEP);
1500 
1501 	if (rx_data == NULL)
1502 		return (DDI_FAILURE);
1503 
1504 	rx_data->priv_devi_node = Adapter->priv_devi_node;
1505 	rx_data->rx_ring = rx_ring;
1506 
1507 	mutex_init(&rx_data->freelist_lock, NULL,
1508 	    MUTEX_DRIVER, DDI_INTR_PRI(Adapter->intr_pri));
1509 	mutex_init(&rx_data->recycle_lock, NULL,
1510 	    MUTEX_DRIVER, DDI_INTR_PRI(Adapter->intr_pri));
1511 
1512 	rx_ring->rx_data = rx_data;
1513 
1514 	return (DDI_SUCCESS);
1515 }
1516 
1517 void
1518 e1000g_free_rx_pending_buffers(e1000g_rx_data_t *rx_data)
1519 {
1520 	rx_sw_packet_t *packet, *next_packet;
1521 
1522 	if (rx_data == NULL)
1523 		return;
1524 
1525 	packet = rx_data->packet_area;
1526 	while (packet != NULL) {
1527 		next_packet = packet->next;
1528 		e1000g_free_rx_sw_packet(packet, B_TRUE);
1529 		packet = next_packet;
1530 	}
1531 	rx_data->packet_area = NULL;
1532 }
1533 
1534 void
1535 e1000g_free_rx_data(e1000g_rx_data_t *rx_data)
1536 {
1537 	if (rx_data == NULL)
1538 		return;
1539 
1540 	mutex_destroy(&rx_data->freelist_lock);
1541 	mutex_destroy(&rx_data->recycle_lock);
1542 
1543 	kmem_free(rx_data, sizeof (e1000g_rx_data_t));
1544 }
1545 
1546 /*
1547  * Check if the link is up
1548  */
1549 static boolean_t
1550 e1000g_link_up(struct e1000g *Adapter)
1551 {
1552 	struct e1000_hw *hw = &Adapter->shared;
1553 	boolean_t link_up = B_FALSE;
1554 
1555 	/*
1556 	 * get_link_status is set in the interrupt handler on link-status-change
1557 	 * or rx sequence error interrupt.  get_link_status will stay
1558 	 * false until the e1000_check_for_link establishes link only
1559 	 * for copper adapters.
1560 	 */
1561 	switch (hw->phy.media_type) {
1562 	case e1000_media_type_copper:
1563 		if (hw->mac.get_link_status) {
1564 			(void) e1000_check_for_link(hw);
1565 			link_up = !hw->mac.get_link_status;
1566 		} else {
1567 			link_up = B_TRUE;
1568 		}
1569 		break;
1570 	case e1000_media_type_fiber:
1571 		(void) e1000_check_for_link(hw);
1572 		link_up = (E1000_READ_REG(hw, E1000_STATUS) &
1573 		    E1000_STATUS_LU);
1574 		break;
1575 	case e1000_media_type_internal_serdes:
1576 		(void) e1000_check_for_link(hw);
1577 		link_up = hw->mac.serdes_has_link;
1578 		break;
1579 	}
1580 
1581 	return (link_up);
1582 }
1583 
1584 static void
1585 e1000g_m_ioctl(void *arg, queue_t *q, mblk_t *mp)
1586 {
1587 	struct iocblk *iocp;
1588 	struct e1000g *e1000gp;
1589 	enum ioc_reply status;
1590 
1591 	iocp = (struct iocblk *)(uintptr_t)mp->b_rptr;
1592 	iocp->ioc_error = 0;
1593 	e1000gp = (struct e1000g *)arg;
1594 
1595 	ASSERT(e1000gp);
1596 	if (e1000gp == NULL) {
1597 		miocnak(q, mp, 0, EINVAL);
1598 		return;
1599 	}
1600 
1601 	rw_enter(&e1000gp->chip_lock, RW_READER);
1602 	if (e1000gp->e1000g_state & E1000G_SUSPENDED) {
1603 		rw_exit(&e1000gp->chip_lock);
1604 		miocnak(q, mp, 0, EINVAL);
1605 		return;
1606 	}
1607 	rw_exit(&e1000gp->chip_lock);
1608 
1609 	switch (iocp->ioc_cmd) {
1610 
1611 	case LB_GET_INFO_SIZE:
1612 	case LB_GET_INFO:
1613 	case LB_GET_MODE:
1614 	case LB_SET_MODE:
1615 		status = e1000g_loopback_ioctl(e1000gp, iocp, mp);
1616 		break;
1617 
1618 
1619 #ifdef E1000G_DEBUG
1620 	case E1000G_IOC_REG_PEEK:
1621 	case E1000G_IOC_REG_POKE:
1622 		status = e1000g_pp_ioctl(e1000gp, iocp, mp);
1623 		break;
1624 	case E1000G_IOC_CHIP_RESET:
1625 		e1000gp->reset_count++;
1626 		if (e1000g_reset_adapter(e1000gp))
1627 			status = IOC_ACK;
1628 		else
1629 			status = IOC_INVAL;
1630 		break;
1631 #endif
1632 	default:
1633 		status = IOC_INVAL;
1634 		break;
1635 	}
1636 
1637 	/*
1638 	 * Decide how to reply
1639 	 */
1640 	switch (status) {
1641 	default:
1642 	case IOC_INVAL:
1643 		/*
1644 		 * Error, reply with a NAK and EINVAL or the specified error
1645 		 */
1646 		miocnak(q, mp, 0, iocp->ioc_error == 0 ?
1647 		    EINVAL : iocp->ioc_error);
1648 		break;
1649 
1650 	case IOC_DONE:
1651 		/*
1652 		 * OK, reply already sent
1653 		 */
1654 		break;
1655 
1656 	case IOC_ACK:
1657 		/*
1658 		 * OK, reply with an ACK
1659 		 */
1660 		miocack(q, mp, 0, 0);
1661 		break;
1662 
1663 	case IOC_REPLY:
1664 		/*
1665 		 * OK, send prepared reply as ACK or NAK
1666 		 */
1667 		mp->b_datap->db_type = iocp->ioc_error == 0 ?
1668 		    M_IOCACK : M_IOCNAK;
1669 		qreply(q, mp);
1670 		break;
1671 	}
1672 }
1673 
1674 /*
1675  * The default value of e1000g_poll_mode == 0 assumes that the NIC is
1676  * capable of supporting only one interrupt and we shouldn't disable
1677  * the physical interrupt. In this case we let the interrupt come and
1678  * we queue the packets in the rx ring itself in case we are in polling
1679  * mode (better latency but slightly lower performance and a very
1680  * high intrrupt count in mpstat which is harmless).
1681  *
1682  * e1000g_poll_mode == 1 assumes that we have per Rx ring interrupt
1683  * which can be disabled in poll mode. This gives better overall
1684  * throughput (compared to the mode above), shows very low interrupt
1685  * count but has slightly higher latency since we pick the packets when
1686  * the poll thread does polling.
1687  *
1688  * Currently, this flag should be enabled only while doing performance
1689  * measurement or when it can be guaranteed that entire NIC going
1690  * in poll mode will not harm any traffic like cluster heartbeat etc.
1691  */
1692 int e1000g_poll_mode = 0;
1693 
1694 /*
1695  * Called from the upper layers when driver is in polling mode to
1696  * pick up any queued packets. Care should be taken to not block
1697  * this thread.
1698  */
1699 static mblk_t *e1000g_poll_ring(void *arg, int bytes_to_pickup)
1700 {
1701 	e1000g_rx_ring_t	*rx_ring = (e1000g_rx_ring_t *)arg;
1702 	mblk_t			*mp = NULL;
1703 	mblk_t			*tail;
1704 	struct e1000g 		*adapter;
1705 
1706 	adapter = rx_ring->adapter;
1707 
1708 	rw_enter(&adapter->chip_lock, RW_READER);
1709 
1710 	if (adapter->e1000g_state & E1000G_SUSPENDED) {
1711 		rw_exit(&adapter->chip_lock);
1712 		return (NULL);
1713 	}
1714 
1715 	mutex_enter(&rx_ring->rx_lock);
1716 	mp = e1000g_receive(rx_ring, &tail, bytes_to_pickup);
1717 	mutex_exit(&rx_ring->rx_lock);
1718 	rw_exit(&adapter->chip_lock);
1719 	return (mp);
1720 }
1721 
1722 static int
1723 e1000g_m_start(void *arg)
1724 {
1725 	struct e1000g *Adapter = (struct e1000g *)arg;
1726 
1727 	rw_enter(&Adapter->chip_lock, RW_WRITER);
1728 
1729 	if (Adapter->e1000g_state & E1000G_SUSPENDED) {
1730 		rw_exit(&Adapter->chip_lock);
1731 		return (ECANCELED);
1732 	}
1733 
1734 	if (e1000g_start(Adapter, B_TRUE) != DDI_SUCCESS) {
1735 		rw_exit(&Adapter->chip_lock);
1736 		return (ENOTACTIVE);
1737 	}
1738 
1739 	Adapter->e1000g_state |= E1000G_STARTED;
1740 
1741 	rw_exit(&Adapter->chip_lock);
1742 
1743 	/* Enable and start the watchdog timer */
1744 	enable_watchdog_timer(Adapter);
1745 
1746 	return (0);
1747 }
1748 
1749 static int
1750 e1000g_start(struct e1000g *Adapter, boolean_t global)
1751 {
1752 	e1000g_rx_data_t *rx_data;
1753 
1754 	if (global) {
1755 		if (e1000g_alloc_rx_data(Adapter) != DDI_SUCCESS) {
1756 			e1000g_log(Adapter, CE_WARN, "Allocate rx data failed");
1757 			goto start_fail;
1758 		}
1759 
1760 		/* Allocate dma resources for descriptors and buffers */
1761 		if (e1000g_alloc_dma_resources(Adapter) != DDI_SUCCESS) {
1762 			e1000g_log(Adapter, CE_WARN,
1763 			    "Alloc DMA resources failed");
1764 			goto start_fail;
1765 		}
1766 		Adapter->rx_buffer_setup = B_FALSE;
1767 	}
1768 
1769 	if (!(Adapter->attach_progress & ATTACH_PROGRESS_INIT)) {
1770 		if (e1000g_init(Adapter) != DDI_SUCCESS) {
1771 			e1000g_log(Adapter, CE_WARN,
1772 			    "Adapter initialization failed");
1773 			goto start_fail;
1774 		}
1775 	}
1776 
1777 	/* Setup and initialize the transmit structures */
1778 	e1000g_tx_setup(Adapter);
1779 	msec_delay(5);
1780 
1781 	/* Setup and initialize the receive structures */
1782 	e1000g_rx_setup(Adapter);
1783 	msec_delay(5);
1784 
1785 	/* Restore the e1000g promiscuous mode */
1786 	e1000g_restore_promisc(Adapter);
1787 
1788 	e1000g_mask_interrupt(Adapter);
1789 
1790 	Adapter->attach_progress |= ATTACH_PROGRESS_INIT;
1791 
1792 	if (e1000g_check_acc_handle(Adapter->osdep.reg_handle) != DDI_FM_OK) {
1793 		ddi_fm_service_impact(Adapter->dip, DDI_SERVICE_LOST);
1794 		goto start_fail;
1795 	}
1796 
1797 	return (DDI_SUCCESS);
1798 
1799 start_fail:
1800 	rx_data = Adapter->rx_ring->rx_data;
1801 
1802 	if (global) {
1803 		e1000g_release_dma_resources(Adapter);
1804 		e1000g_free_rx_pending_buffers(rx_data);
1805 		e1000g_free_rx_data(rx_data);
1806 	}
1807 
1808 	mutex_enter(&e1000g_nvm_lock);
1809 	(void) e1000_reset_hw(&Adapter->shared);
1810 	mutex_exit(&e1000g_nvm_lock);
1811 
1812 	return (DDI_FAILURE);
1813 }
1814 
1815 static void
1816 e1000g_m_stop(void *arg)
1817 {
1818 	struct e1000g *Adapter = (struct e1000g *)arg;
1819 
1820 	/* Drain tx sessions */
1821 	(void) e1000g_tx_drain(Adapter);
1822 
1823 	rw_enter(&Adapter->chip_lock, RW_WRITER);
1824 
1825 	if (Adapter->e1000g_state & E1000G_SUSPENDED) {
1826 		rw_exit(&Adapter->chip_lock);
1827 		return;
1828 	}
1829 	Adapter->e1000g_state &= ~E1000G_STARTED;
1830 	e1000g_stop(Adapter, B_TRUE);
1831 
1832 	rw_exit(&Adapter->chip_lock);
1833 
1834 	/* Disable and stop all the timers */
1835 	disable_watchdog_timer(Adapter);
1836 	stop_link_timer(Adapter);
1837 	stop_82547_timer(Adapter->tx_ring);
1838 }
1839 
1840 static void
1841 e1000g_stop(struct e1000g *Adapter, boolean_t global)
1842 {
1843 	private_devi_list_t *devi_node;
1844 	e1000g_rx_data_t *rx_data;
1845 	int result;
1846 
1847 	Adapter->attach_progress &= ~ATTACH_PROGRESS_INIT;
1848 
1849 	/* Stop the chip and release pending resources */
1850 
1851 	/* Tell firmware driver is no longer in control */
1852 	e1000g_release_driver_control(&Adapter->shared);
1853 
1854 	e1000g_clear_all_interrupts(Adapter);
1855 
1856 	mutex_enter(&e1000g_nvm_lock);
1857 	result = e1000_reset_hw(&Adapter->shared);
1858 	mutex_exit(&e1000g_nvm_lock);
1859 
1860 	if (result != E1000_SUCCESS) {
1861 		e1000g_fm_ereport(Adapter, DDI_FM_DEVICE_INVAL_STATE);
1862 		ddi_fm_service_impact(Adapter->dip, DDI_SERVICE_LOST);
1863 	}
1864 
1865 	/* Release resources still held by the TX descriptors */
1866 	e1000g_tx_clean(Adapter);
1867 
1868 	if (e1000g_check_acc_handle(Adapter->osdep.reg_handle) != DDI_FM_OK)
1869 		ddi_fm_service_impact(Adapter->dip, DDI_SERVICE_LOST);
1870 
1871 	/* Clean the pending rx jumbo packet fragment */
1872 	e1000g_rx_clean(Adapter);
1873 
1874 	if (global) {
1875 		e1000g_release_dma_resources(Adapter);
1876 
1877 		mutex_enter(&e1000g_rx_detach_lock);
1878 		rx_data = Adapter->rx_ring->rx_data;
1879 		rx_data->flag |= E1000G_RX_STOPPED;
1880 
1881 		if (rx_data->pending_count == 0) {
1882 			e1000g_free_rx_pending_buffers(rx_data);
1883 			e1000g_free_rx_data(rx_data);
1884 		} else {
1885 			devi_node = rx_data->priv_devi_node;
1886 			if (devi_node != NULL)
1887 				atomic_inc_32(&devi_node->pending_rx_count);
1888 			else
1889 				atomic_inc_32(&Adapter->pending_rx_count);
1890 		}
1891 		mutex_exit(&e1000g_rx_detach_lock);
1892 	}
1893 
1894 	if (Adapter->link_state == LINK_STATE_UP) {
1895 		Adapter->link_state = LINK_STATE_UNKNOWN;
1896 		mac_link_update(Adapter->mh, Adapter->link_state);
1897 	}
1898 }
1899 
1900 static void
1901 e1000g_rx_clean(struct e1000g *Adapter)
1902 {
1903 	e1000g_rx_data_t *rx_data = Adapter->rx_ring->rx_data;
1904 
1905 	if (rx_data == NULL)
1906 		return;
1907 
1908 	if (rx_data->rx_mblk != NULL) {
1909 		freemsg(rx_data->rx_mblk);
1910 		rx_data->rx_mblk = NULL;
1911 		rx_data->rx_mblk_tail = NULL;
1912 		rx_data->rx_mblk_len = 0;
1913 	}
1914 }
1915 
1916 static void
1917 e1000g_tx_clean(struct e1000g *Adapter)
1918 {
1919 	e1000g_tx_ring_t *tx_ring;
1920 	p_tx_sw_packet_t packet;
1921 	mblk_t *mp;
1922 	mblk_t *nmp;
1923 	uint32_t packet_count;
1924 
1925 	tx_ring = Adapter->tx_ring;
1926 
1927 	/*
1928 	 * Here we don't need to protect the lists using
1929 	 * the usedlist_lock and freelist_lock, for they
1930 	 * have been protected by the chip_lock.
1931 	 */
1932 	mp = NULL;
1933 	nmp = NULL;
1934 	packet_count = 0;
1935 	packet = (p_tx_sw_packet_t)QUEUE_GET_HEAD(&tx_ring->used_list);
1936 	while (packet != NULL) {
1937 		if (packet->mp != NULL) {
1938 			/* Assemble the message chain */
1939 			if (mp == NULL) {
1940 				mp = packet->mp;
1941 				nmp = packet->mp;
1942 			} else {
1943 				nmp->b_next = packet->mp;
1944 				nmp = packet->mp;
1945 			}
1946 			/* Disconnect the message from the sw packet */
1947 			packet->mp = NULL;
1948 		}
1949 
1950 		e1000g_free_tx_swpkt(packet);
1951 		packet_count++;
1952 
1953 		packet = (p_tx_sw_packet_t)
1954 		    QUEUE_GET_NEXT(&tx_ring->used_list, &packet->Link);
1955 	}
1956 
1957 	if (mp != NULL)
1958 		freemsgchain(mp);
1959 
1960 	if (packet_count > 0) {
1961 		QUEUE_APPEND(&tx_ring->free_list, &tx_ring->used_list);
1962 		QUEUE_INIT_LIST(&tx_ring->used_list);
1963 
1964 		/* Setup TX descriptor pointers */
1965 		tx_ring->tbd_next = tx_ring->tbd_first;
1966 		tx_ring->tbd_oldest = tx_ring->tbd_first;
1967 
1968 		/* Setup our HW Tx Head & Tail descriptor pointers */
1969 		E1000_WRITE_REG(&Adapter->shared, E1000_TDH(0), 0);
1970 		E1000_WRITE_REG(&Adapter->shared, E1000_TDT(0), 0);
1971 	}
1972 }
1973 
1974 static boolean_t
1975 e1000g_tx_drain(struct e1000g *Adapter)
1976 {
1977 	int i;
1978 	boolean_t done;
1979 	e1000g_tx_ring_t *tx_ring;
1980 
1981 	tx_ring = Adapter->tx_ring;
1982 
1983 	/* Allow up to 'wsdraintime' for pending xmit's to complete. */
1984 	for (i = 0; i < TX_DRAIN_TIME; i++) {
1985 		mutex_enter(&tx_ring->usedlist_lock);
1986 		done = IS_QUEUE_EMPTY(&tx_ring->used_list);
1987 		mutex_exit(&tx_ring->usedlist_lock);
1988 
1989 		if (done)
1990 			break;
1991 
1992 		msec_delay(1);
1993 	}
1994 
1995 	return (done);
1996 }
1997 
1998 static boolean_t
1999 e1000g_rx_drain(struct e1000g *Adapter)
2000 {
2001 	int i;
2002 	boolean_t done;
2003 
2004 	/*
2005 	 * Allow up to RX_DRAIN_TIME for pending received packets to complete.
2006 	 */
2007 	for (i = 0; i < RX_DRAIN_TIME; i++) {
2008 		done = (Adapter->pending_rx_count == 0);
2009 
2010 		if (done)
2011 			break;
2012 
2013 		msec_delay(1);
2014 	}
2015 
2016 	return (done);
2017 }
2018 
2019 static boolean_t
2020 e1000g_reset_adapter(struct e1000g *Adapter)
2021 {
2022 	/* Disable and stop all the timers */
2023 	disable_watchdog_timer(Adapter);
2024 	stop_link_timer(Adapter);
2025 	stop_82547_timer(Adapter->tx_ring);
2026 
2027 	rw_enter(&Adapter->chip_lock, RW_WRITER);
2028 
2029 	if (!(Adapter->e1000g_state & E1000G_STARTED)) {
2030 		rw_exit(&Adapter->chip_lock);
2031 		return (B_TRUE);
2032 	}
2033 
2034 	e1000g_stop(Adapter, B_FALSE);
2035 
2036 	if (e1000g_start(Adapter, B_FALSE) != DDI_SUCCESS) {
2037 		rw_exit(&Adapter->chip_lock);
2038 		e1000g_log(Adapter, CE_WARN, "Reset failed");
2039 			return (B_FALSE);
2040 	}
2041 
2042 	rw_exit(&Adapter->chip_lock);
2043 
2044 	/* Enable and start the watchdog timer */
2045 	enable_watchdog_timer(Adapter);
2046 
2047 	return (B_TRUE);
2048 }
2049 
2050 boolean_t
2051 e1000g_global_reset(struct e1000g *Adapter)
2052 {
2053 	/* Disable and stop all the timers */
2054 	disable_watchdog_timer(Adapter);
2055 	stop_link_timer(Adapter);
2056 	stop_82547_timer(Adapter->tx_ring);
2057 
2058 	rw_enter(&Adapter->chip_lock, RW_WRITER);
2059 
2060 	e1000g_stop(Adapter, B_TRUE);
2061 
2062 	Adapter->init_count = 0;
2063 
2064 	if (e1000g_start(Adapter, B_TRUE) != DDI_SUCCESS) {
2065 		rw_exit(&Adapter->chip_lock);
2066 		e1000g_log(Adapter, CE_WARN, "Reset failed");
2067 		return (B_FALSE);
2068 	}
2069 
2070 	rw_exit(&Adapter->chip_lock);
2071 
2072 	/* Enable and start the watchdog timer */
2073 	enable_watchdog_timer(Adapter);
2074 
2075 	return (B_TRUE);
2076 }
2077 
2078 /*
2079  * e1000g_intr_pciexpress - ISR for PCI Express chipsets
2080  *
2081  * This interrupt service routine is for PCI-Express adapters.
2082  * The ICR contents is valid only when the E1000_ICR_INT_ASSERTED
2083  * bit is set.
2084  */
2085 static uint_t
2086 e1000g_intr_pciexpress(caddr_t arg)
2087 {
2088 	struct e1000g *Adapter;
2089 	uint32_t icr;
2090 
2091 	Adapter = (struct e1000g *)(uintptr_t)arg;
2092 	icr = E1000_READ_REG(&Adapter->shared, E1000_ICR);
2093 
2094 	if (e1000g_check_acc_handle(Adapter->osdep.reg_handle) != DDI_FM_OK) {
2095 		ddi_fm_service_impact(Adapter->dip, DDI_SERVICE_DEGRADED);
2096 		return (DDI_INTR_CLAIMED);
2097 	}
2098 
2099 	if (icr & E1000_ICR_INT_ASSERTED) {
2100 		/*
2101 		 * E1000_ICR_INT_ASSERTED bit was set:
2102 		 * Read(Clear) the ICR, claim this interrupt,
2103 		 * look for work to do.
2104 		 */
2105 		e1000g_intr_work(Adapter, icr);
2106 		return (DDI_INTR_CLAIMED);
2107 	} else {
2108 		/*
2109 		 * E1000_ICR_INT_ASSERTED bit was not set:
2110 		 * Don't claim this interrupt, return immediately.
2111 		 */
2112 		return (DDI_INTR_UNCLAIMED);
2113 	}
2114 }
2115 
2116 /*
2117  * e1000g_intr - ISR for PCI/PCI-X chipsets
2118  *
2119  * This interrupt service routine is for PCI/PCI-X adapters.
2120  * We check the ICR contents no matter the E1000_ICR_INT_ASSERTED
2121  * bit is set or not.
2122  */
2123 static uint_t
2124 e1000g_intr(caddr_t arg)
2125 {
2126 	struct e1000g *Adapter;
2127 	uint32_t icr;
2128 
2129 	Adapter = (struct e1000g *)(uintptr_t)arg;
2130 	icr = E1000_READ_REG(&Adapter->shared, E1000_ICR);
2131 
2132 	if (e1000g_check_acc_handle(Adapter->osdep.reg_handle) != DDI_FM_OK) {
2133 		ddi_fm_service_impact(Adapter->dip, DDI_SERVICE_DEGRADED);
2134 		return (DDI_INTR_CLAIMED);
2135 	}
2136 
2137 	if (icr) {
2138 		/*
2139 		 * Any bit was set in ICR:
2140 		 * Read(Clear) the ICR, claim this interrupt,
2141 		 * look for work to do.
2142 		 */
2143 		e1000g_intr_work(Adapter, icr);
2144 		return (DDI_INTR_CLAIMED);
2145 	} else {
2146 		/*
2147 		 * No bit was set in ICR:
2148 		 * Don't claim this interrupt, return immediately.
2149 		 */
2150 		return (DDI_INTR_UNCLAIMED);
2151 	}
2152 }
2153 
2154 /*
2155  * e1000g_intr_work - actual processing of ISR
2156  *
2157  * Read(clear) the ICR contents and call appropriate interrupt
2158  * processing routines.
2159  */
2160 static void
2161 e1000g_intr_work(struct e1000g *Adapter, uint32_t icr)
2162 {
2163 	struct e1000_hw *hw;
2164 	hw = &Adapter->shared;
2165 	e1000g_tx_ring_t *tx_ring = Adapter->tx_ring;
2166 
2167 	Adapter->rx_pkt_cnt = 0;
2168 	Adapter->tx_pkt_cnt = 0;
2169 
2170 	rw_enter(&Adapter->chip_lock, RW_READER);
2171 
2172 	if (Adapter->e1000g_state & E1000G_SUSPENDED) {
2173 		rw_exit(&Adapter->chip_lock);
2174 		return;
2175 	}
2176 	/*
2177 	 * Here we need to check the "e1000g_state" flag within the chip_lock to
2178 	 * ensure the receive routine will not execute when the adapter is
2179 	 * being reset.
2180 	 */
2181 	if (!(Adapter->e1000g_state & E1000G_STARTED)) {
2182 		rw_exit(&Adapter->chip_lock);
2183 		return;
2184 	}
2185 
2186 	if (icr & E1000_ICR_RXT0) {
2187 		mblk_t			*mp = NULL;
2188 		mblk_t			*tail = NULL;
2189 		e1000g_rx_ring_t	*rx_ring;
2190 
2191 		rx_ring = Adapter->rx_ring;
2192 		mutex_enter(&rx_ring->rx_lock);
2193 		/*
2194 		 * Sometimes with legacy interrupts, it possible that
2195 		 * there is a single interrupt for Rx/Tx. In which
2196 		 * case, if poll flag is set, we shouldn't really
2197 		 * be doing Rx processing.
2198 		 */
2199 		if (!rx_ring->poll_flag)
2200 			mp = e1000g_receive(rx_ring, &tail,
2201 			    E1000G_CHAIN_NO_LIMIT);
2202 		mutex_exit(&rx_ring->rx_lock);
2203 		rw_exit(&Adapter->chip_lock);
2204 		if (mp != NULL)
2205 			mac_rx_ring(Adapter->mh, rx_ring->mrh,
2206 			    mp, rx_ring->ring_gen_num);
2207 	} else
2208 		rw_exit(&Adapter->chip_lock);
2209 
2210 	if (icr & E1000_ICR_TXDW) {
2211 		if (!Adapter->tx_intr_enable)
2212 			e1000g_clear_tx_interrupt(Adapter);
2213 
2214 		/* Recycle the tx descriptors */
2215 		rw_enter(&Adapter->chip_lock, RW_READER);
2216 		(void) e1000g_recycle(tx_ring);
2217 		E1000G_DEBUG_STAT(tx_ring->stat_recycle_intr);
2218 		rw_exit(&Adapter->chip_lock);
2219 
2220 		if (tx_ring->resched_needed &&
2221 		    (tx_ring->tbd_avail > DEFAULT_TX_UPDATE_THRESHOLD)) {
2222 			tx_ring->resched_needed = B_FALSE;
2223 			mac_tx_update(Adapter->mh);
2224 			E1000G_STAT(tx_ring->stat_reschedule);
2225 		}
2226 	}
2227 
2228 	/*
2229 	 * The Receive Sequence errors RXSEQ and the link status change LSC
2230 	 * are checked to detect that the cable has been pulled out. For
2231 	 * the Wiseman 2.0 silicon, the receive sequence errors interrupt
2232 	 * are an indication that cable is not connected.
2233 	 */
2234 	if ((icr & E1000_ICR_RXSEQ) ||
2235 	    (icr & E1000_ICR_LSC) ||
2236 	    (icr & E1000_ICR_GPI_EN1)) {
2237 		boolean_t link_changed;
2238 		timeout_id_t tid = 0;
2239 
2240 		stop_watchdog_timer(Adapter);
2241 
2242 		rw_enter(&Adapter->chip_lock, RW_WRITER);
2243 
2244 		/*
2245 		 * Because we got a link-status-change interrupt, force
2246 		 * e1000_check_for_link() to look at phy
2247 		 */
2248 		Adapter->shared.mac.get_link_status = B_TRUE;
2249 
2250 		/* e1000g_link_check takes care of link status change */
2251 		link_changed = e1000g_link_check(Adapter);
2252 
2253 		/* Get new phy state */
2254 		e1000g_get_phy_state(Adapter);
2255 
2256 		/*
2257 		 * If the link timer has not timed out, we'll not notify
2258 		 * the upper layer with any link state until the link is up.
2259 		 */
2260 		if (link_changed && !Adapter->link_complete) {
2261 			if (Adapter->link_state == LINK_STATE_UP) {
2262 				mutex_enter(&Adapter->link_lock);
2263 				Adapter->link_complete = B_TRUE;
2264 				tid = Adapter->link_tid;
2265 				Adapter->link_tid = 0;
2266 				mutex_exit(&Adapter->link_lock);
2267 			} else {
2268 				link_changed = B_FALSE;
2269 			}
2270 		}
2271 		rw_exit(&Adapter->chip_lock);
2272 
2273 		if (link_changed) {
2274 			if (tid != 0)
2275 				(void) untimeout(tid);
2276 
2277 			/*
2278 			 * Workaround for esb2. Data stuck in fifo on a link
2279 			 * down event. Stop receiver here and reset in watchdog.
2280 			 */
2281 			if ((Adapter->link_state == LINK_STATE_DOWN) &&
2282 			    (Adapter->shared.mac.type == e1000_80003es2lan)) {
2283 				uint32_t rctl = E1000_READ_REG(hw, E1000_RCTL);
2284 				E1000_WRITE_REG(hw, E1000_RCTL,
2285 				    rctl & ~E1000_RCTL_EN);
2286 				e1000g_log(Adapter, CE_WARN,
2287 				    "ESB2 receiver disabled");
2288 				Adapter->esb2_workaround = B_TRUE;
2289 			}
2290 			if (!Adapter->reset_flag)
2291 				mac_link_update(Adapter->mh,
2292 				    Adapter->link_state);
2293 			if (Adapter->link_state == LINK_STATE_UP)
2294 				Adapter->reset_flag = B_FALSE;
2295 		}
2296 
2297 		start_watchdog_timer(Adapter);
2298 	}
2299 }
2300 
2301 static void
2302 e1000g_init_unicst(struct e1000g *Adapter)
2303 {
2304 	struct e1000_hw *hw;
2305 	int slot;
2306 
2307 	hw = &Adapter->shared;
2308 
2309 	if (Adapter->init_count == 0) {
2310 		/* Initialize the multiple unicast addresses */
2311 		Adapter->unicst_total = MAX_NUM_UNICAST_ADDRESSES;
2312 
2313 		/* Workaround for an erratum of 82571 chipst */
2314 		if ((hw->mac.type == e1000_82571) &&
2315 		    (e1000_get_laa_state_82571(hw) == B_TRUE))
2316 			Adapter->unicst_total--;
2317 
2318 		Adapter->unicst_avail = Adapter->unicst_total;
2319 
2320 		for (slot = 0; slot < Adapter->unicst_total; slot++) {
2321 			/* Clear both the flag and MAC address */
2322 			Adapter->unicst_addr[slot].reg.high = 0;
2323 			Adapter->unicst_addr[slot].reg.low = 0;
2324 		}
2325 	} else {
2326 		/* Workaround for an erratum of 82571 chipst */
2327 		if ((hw->mac.type == e1000_82571) &&
2328 		    (e1000_get_laa_state_82571(hw) == B_TRUE))
2329 			e1000_rar_set(hw, hw->mac.addr, LAST_RAR_ENTRY);
2330 
2331 		/* Re-configure the RAR registers */
2332 		for (slot = 0; slot < Adapter->unicst_total; slot++)
2333 			if (Adapter->unicst_addr[slot].mac.set == 1)
2334 				e1000_rar_set(hw,
2335 				    Adapter->unicst_addr[slot].mac.addr, slot);
2336 	}
2337 
2338 	if (e1000g_check_acc_handle(Adapter->osdep.reg_handle) != DDI_FM_OK)
2339 		ddi_fm_service_impact(Adapter->dip, DDI_SERVICE_DEGRADED);
2340 }
2341 
2342 static int
2343 e1000g_unicst_set(struct e1000g *Adapter, const uint8_t *mac_addr,
2344     int slot)
2345 {
2346 	struct e1000_hw *hw;
2347 
2348 	hw = &Adapter->shared;
2349 
2350 	/*
2351 	 * The first revision of Wiseman silicon (rev 2.0) has an errata
2352 	 * that requires the receiver to be in reset when any of the
2353 	 * receive address registers (RAR regs) are accessed.  The first
2354 	 * rev of Wiseman silicon also requires MWI to be disabled when
2355 	 * a global reset or a receive reset is issued.  So before we
2356 	 * initialize the RARs, we check the rev of the Wiseman controller
2357 	 * and work around any necessary HW errata.
2358 	 */
2359 	if ((hw->mac.type == e1000_82542) &&
2360 	    (hw->revision_id == E1000_REVISION_2)) {
2361 		e1000_pci_clear_mwi(hw);
2362 		E1000_WRITE_REG(hw, E1000_RCTL, E1000_RCTL_RST);
2363 		msec_delay(5);
2364 	}
2365 	if (mac_addr == NULL) {
2366 		E1000_WRITE_REG_ARRAY(hw, E1000_RA, slot << 1, 0);
2367 		E1000_WRITE_FLUSH(hw);
2368 		E1000_WRITE_REG_ARRAY(hw, E1000_RA, (slot << 1) + 1, 0);
2369 		E1000_WRITE_FLUSH(hw);
2370 		/* Clear both the flag and MAC address */
2371 		Adapter->unicst_addr[slot].reg.high = 0;
2372 		Adapter->unicst_addr[slot].reg.low = 0;
2373 	} else {
2374 		bcopy(mac_addr, Adapter->unicst_addr[slot].mac.addr,
2375 		    ETHERADDRL);
2376 		e1000_rar_set(hw, (uint8_t *)mac_addr, slot);
2377 		Adapter->unicst_addr[slot].mac.set = 1;
2378 	}
2379 
2380 	/* Workaround for an erratum of 82571 chipst */
2381 	if (slot == 0) {
2382 		if ((hw->mac.type == e1000_82571) &&
2383 		    (e1000_get_laa_state_82571(hw) == B_TRUE))
2384 			if (mac_addr == NULL) {
2385 				E1000_WRITE_REG_ARRAY(hw, E1000_RA,
2386 				    slot << 1, 0);
2387 				E1000_WRITE_FLUSH(hw);
2388 				E1000_WRITE_REG_ARRAY(hw, E1000_RA,
2389 				    (slot << 1) + 1, 0);
2390 				E1000_WRITE_FLUSH(hw);
2391 			} else {
2392 				e1000_rar_set(hw, (uint8_t *)mac_addr,
2393 				    LAST_RAR_ENTRY);
2394 			}
2395 	}
2396 
2397 	/*
2398 	 * If we are using Wiseman rev 2.0 silicon, we will have previously
2399 	 * put the receive in reset, and disabled MWI, to work around some
2400 	 * HW errata.  Now we should take the receiver out of reset, and
2401 	 * re-enabled if MWI if it was previously enabled by the PCI BIOS.
2402 	 */
2403 	if ((hw->mac.type == e1000_82542) &&
2404 	    (hw->revision_id == E1000_REVISION_2)) {
2405 		E1000_WRITE_REG(hw, E1000_RCTL, 0);
2406 		msec_delay(1);
2407 		if (hw->bus.pci_cmd_word & CMD_MEM_WRT_INVALIDATE)
2408 			e1000_pci_set_mwi(hw);
2409 		e1000g_rx_setup(Adapter);
2410 	}
2411 
2412 	if (e1000g_check_acc_handle(Adapter->osdep.reg_handle) != DDI_FM_OK) {
2413 		ddi_fm_service_impact(Adapter->dip, DDI_SERVICE_DEGRADED);
2414 		return (EIO);
2415 	}
2416 
2417 	return (0);
2418 }
2419 
2420 static int
2421 multicst_add(struct e1000g *Adapter, const uint8_t *multiaddr)
2422 {
2423 	struct e1000_hw *hw = &Adapter->shared;
2424 	struct ether_addr *newtable;
2425 	size_t new_len;
2426 	size_t old_len;
2427 	int res = 0;
2428 
2429 	if ((multiaddr[0] & 01) == 0) {
2430 		res = EINVAL;
2431 		e1000g_log(Adapter, CE_WARN, "Illegal multicast address");
2432 		goto done;
2433 	}
2434 
2435 	if (Adapter->mcast_count >= Adapter->mcast_max_num) {
2436 		res = ENOENT;
2437 		e1000g_log(Adapter, CE_WARN,
2438 		    "Adapter requested more than %d mcast addresses",
2439 		    Adapter->mcast_max_num);
2440 		goto done;
2441 	}
2442 
2443 
2444 	if (Adapter->mcast_count == Adapter->mcast_alloc_count) {
2445 		old_len = Adapter->mcast_alloc_count *
2446 		    sizeof (struct ether_addr);
2447 		new_len = (Adapter->mcast_alloc_count + MCAST_ALLOC_SIZE) *
2448 		    sizeof (struct ether_addr);
2449 
2450 		newtable = kmem_alloc(new_len, KM_NOSLEEP);
2451 		if (newtable == NULL) {
2452 			res = ENOMEM;
2453 			e1000g_log(Adapter, CE_WARN,
2454 			    "Not enough memory to alloc mcast table");
2455 			goto done;
2456 		}
2457 
2458 		if (Adapter->mcast_table != NULL) {
2459 			bcopy(Adapter->mcast_table, newtable, old_len);
2460 			kmem_free(Adapter->mcast_table, old_len);
2461 		}
2462 		Adapter->mcast_alloc_count += MCAST_ALLOC_SIZE;
2463 		Adapter->mcast_table = newtable;
2464 	}
2465 
2466 	bcopy(multiaddr,
2467 	    &Adapter->mcast_table[Adapter->mcast_count], ETHERADDRL);
2468 	Adapter->mcast_count++;
2469 
2470 	/*
2471 	 * Update the MC table in the hardware
2472 	 */
2473 	e1000g_clear_interrupt(Adapter);
2474 
2475 	e1000_update_mc_addr_list(hw,
2476 	    (uint8_t *)Adapter->mcast_table, Adapter->mcast_count);
2477 
2478 	e1000g_mask_interrupt(Adapter);
2479 
2480 	if (e1000g_check_acc_handle(Adapter->osdep.reg_handle) != DDI_FM_OK) {
2481 		ddi_fm_service_impact(Adapter->dip, DDI_SERVICE_DEGRADED);
2482 		res = EIO;
2483 	}
2484 
2485 done:
2486 	return (res);
2487 }
2488 
2489 static int
2490 multicst_remove(struct e1000g *Adapter, const uint8_t *multiaddr)
2491 {
2492 	struct e1000_hw *hw = &Adapter->shared;
2493 	struct ether_addr *newtable;
2494 	size_t new_len;
2495 	size_t old_len;
2496 	unsigned i;
2497 
2498 	for (i = 0; i < Adapter->mcast_count; i++) {
2499 		if (bcmp(multiaddr, &Adapter->mcast_table[i],
2500 		    ETHERADDRL) == 0) {
2501 			for (i++; i < Adapter->mcast_count; i++) {
2502 				Adapter->mcast_table[i - 1] =
2503 				    Adapter->mcast_table[i];
2504 			}
2505 			Adapter->mcast_count--;
2506 			break;
2507 		}
2508 	}
2509 
2510 	if ((Adapter->mcast_alloc_count - Adapter->mcast_count) >
2511 	    MCAST_ALLOC_SIZE) {
2512 		old_len = Adapter->mcast_alloc_count *
2513 		    sizeof (struct ether_addr);
2514 		new_len = (Adapter->mcast_alloc_count - MCAST_ALLOC_SIZE) *
2515 		    sizeof (struct ether_addr);
2516 
2517 		newtable = kmem_alloc(new_len, KM_NOSLEEP);
2518 		if (newtable != NULL) {
2519 			bcopy(Adapter->mcast_table, newtable, new_len);
2520 			kmem_free(Adapter->mcast_table, old_len);
2521 
2522 			Adapter->mcast_alloc_count -= MCAST_ALLOC_SIZE;
2523 			Adapter->mcast_table = newtable;
2524 		}
2525 	}
2526 
2527 	/*
2528 	 * Update the MC table in the hardware
2529 	 */
2530 	e1000g_clear_interrupt(Adapter);
2531 
2532 	e1000_update_mc_addr_list(hw,
2533 	    (uint8_t *)Adapter->mcast_table, Adapter->mcast_count);
2534 
2535 	e1000g_mask_interrupt(Adapter);
2536 
2537 	if (e1000g_check_acc_handle(Adapter->osdep.reg_handle) != DDI_FM_OK) {
2538 		ddi_fm_service_impact(Adapter->dip, DDI_SERVICE_DEGRADED);
2539 		return (EIO);
2540 	}
2541 
2542 	return (0);
2543 }
2544 
2545 static void
2546 e1000g_release_multicast(struct e1000g *Adapter)
2547 {
2548 	if (Adapter->mcast_table != NULL) {
2549 		kmem_free(Adapter->mcast_table,
2550 		    Adapter->mcast_alloc_count * sizeof (struct ether_addr));
2551 		Adapter->mcast_table = NULL;
2552 	}
2553 }
2554 
2555 int
2556 e1000g_m_multicst(void *arg, boolean_t add, const uint8_t *addr)
2557 {
2558 	struct e1000g *Adapter = (struct e1000g *)arg;
2559 	int result;
2560 
2561 	rw_enter(&Adapter->chip_lock, RW_WRITER);
2562 
2563 	if (Adapter->e1000g_state & E1000G_SUSPENDED) {
2564 		result = ECANCELED;
2565 		goto done;
2566 	}
2567 
2568 	result = (add) ? multicst_add(Adapter, addr)
2569 	    : multicst_remove(Adapter, addr);
2570 
2571 done:
2572 	rw_exit(&Adapter->chip_lock);
2573 	return (result);
2574 
2575 }
2576 
2577 int
2578 e1000g_m_promisc(void *arg, boolean_t on)
2579 {
2580 	struct e1000g *Adapter = (struct e1000g *)arg;
2581 	uint32_t rctl;
2582 
2583 	rw_enter(&Adapter->chip_lock, RW_WRITER);
2584 
2585 	if (Adapter->e1000g_state & E1000G_SUSPENDED) {
2586 		rw_exit(&Adapter->chip_lock);
2587 		return (ECANCELED);
2588 	}
2589 
2590 	rctl = E1000_READ_REG(&Adapter->shared, E1000_RCTL);
2591 
2592 	if (on)
2593 		rctl |=
2594 		    (E1000_RCTL_UPE | E1000_RCTL_MPE | E1000_RCTL_BAM);
2595 	else
2596 		rctl &= (~(E1000_RCTL_UPE | E1000_RCTL_MPE));
2597 
2598 	E1000_WRITE_REG(&Adapter->shared, E1000_RCTL, rctl);
2599 
2600 	Adapter->e1000g_promisc = on;
2601 
2602 	rw_exit(&Adapter->chip_lock);
2603 
2604 	if (e1000g_check_acc_handle(Adapter->osdep.reg_handle) != DDI_FM_OK) {
2605 		ddi_fm_service_impact(Adapter->dip, DDI_SERVICE_DEGRADED);
2606 		return (EIO);
2607 	}
2608 
2609 	return (0);
2610 }
2611 
2612 /*
2613  * Entry points to enable and disable interrupts at the granularity of
2614  * a group.
2615  * Turns the poll_mode for the whole adapter on and off to enable or
2616  * override the ring level polling control over the hardware interrupts.
2617  */
2618 static int
2619 e1000g_rx_group_intr_enable(mac_intr_handle_t arg)
2620 {
2621 	struct e1000g		*adapter = (struct e1000g *)arg;
2622 	e1000g_rx_ring_t *rx_ring = adapter->rx_ring;
2623 
2624 	/*
2625 	 * Later interrupts at the granularity of the this ring will
2626 	 * invoke mac_rx() with NULL, indicating the need for another
2627 	 * software classification.
2628 	 * We have a single ring usable per adapter now, so we only need to
2629 	 * reset the rx handle for that one.
2630 	 * When more RX rings can be used, we should update each one of them.
2631 	 */
2632 	mutex_enter(&rx_ring->rx_lock);
2633 	rx_ring->mrh = NULL;
2634 	adapter->poll_mode = B_FALSE;
2635 	mutex_exit(&rx_ring->rx_lock);
2636 	return (0);
2637 }
2638 
2639 static int
2640 e1000g_rx_group_intr_disable(mac_intr_handle_t arg)
2641 {
2642 	struct e1000g *adapter = (struct e1000g *)arg;
2643 	e1000g_rx_ring_t *rx_ring = adapter->rx_ring;
2644 
2645 	mutex_enter(&rx_ring->rx_lock);
2646 
2647 	/*
2648 	 * Later interrupts at the granularity of the this ring will
2649 	 * invoke mac_rx() with the handle for this ring;
2650 	 */
2651 	adapter->poll_mode = B_TRUE;
2652 	rx_ring->mrh = rx_ring->mrh_init;
2653 	mutex_exit(&rx_ring->rx_lock);
2654 	return (0);
2655 }
2656 
2657 /*
2658  * Entry points to enable and disable interrupts at the granularity of
2659  * a ring.
2660  * adapter poll_mode controls whether we actually proceed with hardware
2661  * interrupt toggling.
2662  */
2663 static int
2664 e1000g_rx_ring_intr_enable(mac_intr_handle_t intrh)
2665 {
2666 	e1000g_rx_ring_t	*rx_ring = (e1000g_rx_ring_t *)intrh;
2667 	struct e1000g 		*adapter = rx_ring->adapter;
2668 	struct e1000_hw 	*hw = &adapter->shared;
2669 	uint32_t		intr_mask;
2670 
2671 	rw_enter(&adapter->chip_lock, RW_READER);
2672 
2673 	if (adapter->e1000g_state & E1000G_SUSPENDED) {
2674 		rw_exit(&adapter->chip_lock);
2675 		return (0);
2676 	}
2677 
2678 	mutex_enter(&rx_ring->rx_lock);
2679 	rx_ring->poll_flag = 0;
2680 	mutex_exit(&rx_ring->rx_lock);
2681 
2682 	/* Rx interrupt enabling for MSI and legacy */
2683 	intr_mask = E1000_READ_REG(hw, E1000_IMS);
2684 	intr_mask |= E1000_IMS_RXT0;
2685 	E1000_WRITE_REG(hw, E1000_IMS, intr_mask);
2686 	E1000_WRITE_FLUSH(hw);
2687 
2688 	/* Trigger a Rx interrupt to check Rx ring */
2689 	E1000_WRITE_REG(hw, E1000_ICS, E1000_IMS_RXT0);
2690 	E1000_WRITE_FLUSH(hw);
2691 
2692 	rw_exit(&adapter->chip_lock);
2693 	return (0);
2694 }
2695 
2696 static int
2697 e1000g_rx_ring_intr_disable(mac_intr_handle_t intrh)
2698 {
2699 	e1000g_rx_ring_t	*rx_ring = (e1000g_rx_ring_t *)intrh;
2700 	struct e1000g 		*adapter = rx_ring->adapter;
2701 	struct e1000_hw 	*hw = &adapter->shared;
2702 
2703 	rw_enter(&adapter->chip_lock, RW_READER);
2704 
2705 	if (adapter->e1000g_state & E1000G_SUSPENDED) {
2706 		rw_exit(&adapter->chip_lock);
2707 		return (0);
2708 	}
2709 	mutex_enter(&rx_ring->rx_lock);
2710 	rx_ring->poll_flag = 1;
2711 	mutex_exit(&rx_ring->rx_lock);
2712 
2713 	/* Rx interrupt disabling for MSI and legacy */
2714 	E1000_WRITE_REG(hw, E1000_IMC, E1000_IMS_RXT0);
2715 	E1000_WRITE_FLUSH(hw);
2716 
2717 	rw_exit(&adapter->chip_lock);
2718 	return (0);
2719 }
2720 
2721 /*
2722  * e1000g_unicst_find - Find the slot for the specified unicast address
2723  */
2724 static int
2725 e1000g_unicst_find(struct e1000g *Adapter, const uint8_t *mac_addr)
2726 {
2727 	int slot;
2728 
2729 	for (slot = 0; slot < Adapter->unicst_total; slot++) {
2730 		if ((Adapter->unicst_addr[slot].mac.set == 1) &&
2731 		    (bcmp(Adapter->unicst_addr[slot].mac.addr,
2732 		    mac_addr, ETHERADDRL) == 0))
2733 				return (slot);
2734 	}
2735 
2736 	return (-1);
2737 }
2738 
2739 /*
2740  * Entry points to add and remove a MAC address to a ring group.
2741  * The caller takes care of adding and removing the MAC addresses
2742  * to the filter via these two routines.
2743  */
2744 
2745 static int
2746 e1000g_addmac(void *arg, const uint8_t *mac_addr)
2747 {
2748 	struct e1000g *Adapter = (struct e1000g *)arg;
2749 	int slot, err;
2750 
2751 	rw_enter(&Adapter->chip_lock, RW_WRITER);
2752 
2753 	if (Adapter->e1000g_state & E1000G_SUSPENDED) {
2754 		rw_exit(&Adapter->chip_lock);
2755 		return (ECANCELED);
2756 	}
2757 
2758 	if (e1000g_unicst_find(Adapter, mac_addr) != -1) {
2759 		/* The same address is already in slot */
2760 		rw_exit(&Adapter->chip_lock);
2761 		return (0);
2762 	}
2763 
2764 	if (Adapter->unicst_avail == 0) {
2765 		/* no slots available */
2766 		rw_exit(&Adapter->chip_lock);
2767 		return (ENOSPC);
2768 	}
2769 
2770 	/* Search for a free slot */
2771 	for (slot = 0; slot < Adapter->unicst_total; slot++) {
2772 		if (Adapter->unicst_addr[slot].mac.set == 0)
2773 			break;
2774 	}
2775 	ASSERT(slot < Adapter->unicst_total);
2776 
2777 	err = e1000g_unicst_set(Adapter, mac_addr, slot);
2778 	if (err == 0)
2779 		Adapter->unicst_avail--;
2780 
2781 	rw_exit(&Adapter->chip_lock);
2782 
2783 	return (err);
2784 }
2785 
2786 static int
2787 e1000g_remmac(void *arg, const uint8_t *mac_addr)
2788 {
2789 	struct e1000g *Adapter = (struct e1000g *)arg;
2790 	int slot, err;
2791 
2792 	rw_enter(&Adapter->chip_lock, RW_WRITER);
2793 
2794 	if (Adapter->e1000g_state & E1000G_SUSPENDED) {
2795 		rw_exit(&Adapter->chip_lock);
2796 		return (ECANCELED);
2797 	}
2798 
2799 	slot = e1000g_unicst_find(Adapter, mac_addr);
2800 	if (slot == -1) {
2801 		rw_exit(&Adapter->chip_lock);
2802 		return (EINVAL);
2803 	}
2804 
2805 	ASSERT(Adapter->unicst_addr[slot].mac.set);
2806 
2807 	/* Clear this slot */
2808 	err = e1000g_unicst_set(Adapter, NULL, slot);
2809 	if (err == 0)
2810 		Adapter->unicst_avail++;
2811 
2812 	rw_exit(&Adapter->chip_lock);
2813 
2814 	return (err);
2815 }
2816 
2817 static int
2818 e1000g_ring_start(mac_ring_driver_t rh, uint64_t mr_gen_num)
2819 {
2820 	e1000g_rx_ring_t *rx_ring = (e1000g_rx_ring_t *)rh;
2821 
2822 	mutex_enter(&rx_ring->rx_lock);
2823 	rx_ring->ring_gen_num = mr_gen_num;
2824 	mutex_exit(&rx_ring->rx_lock);
2825 	return (0);
2826 }
2827 
2828 /*
2829  * Callback funtion for MAC layer to register all rings.
2830  *
2831  * The hardware supports a single group with currently only one ring
2832  * available.
2833  * Though not offering virtualization ability per se, exposing the
2834  * group/ring still enables the polling and interrupt toggling.
2835  */
2836 void
2837 e1000g_fill_ring(void *arg, mac_ring_type_t rtype, const int grp_index,
2838     const int ring_index, mac_ring_info_t *infop, mac_ring_handle_t rh)
2839 {
2840 	struct e1000g *Adapter = (struct e1000g *)arg;
2841 	e1000g_rx_ring_t *rx_ring = Adapter->rx_ring;
2842 	mac_intr_t *mintr;
2843 
2844 	/*
2845 	 * We advertised only RX group/rings, so the MAC framework shouldn't
2846 	 * ask for any thing else.
2847 	 */
2848 	ASSERT(rtype == MAC_RING_TYPE_RX && grp_index == 0 && ring_index == 0);
2849 
2850 	rx_ring->mrh = rx_ring->mrh_init = rh;
2851 	infop->mri_driver = (mac_ring_driver_t)rx_ring;
2852 	infop->mri_start = e1000g_ring_start;
2853 	infop->mri_stop = NULL;
2854 	infop->mri_poll = e1000g_poll_ring;
2855 
2856 	/* Ring level interrupts */
2857 	mintr = &infop->mri_intr;
2858 	mintr->mi_handle = (mac_intr_handle_t)rx_ring;
2859 	mintr->mi_enable = e1000g_rx_ring_intr_enable;
2860 	mintr->mi_disable = e1000g_rx_ring_intr_disable;
2861 }
2862 
2863 static void
2864 e1000g_fill_group(void *arg, mac_ring_type_t rtype, const int grp_index,
2865     mac_group_info_t *infop, mac_group_handle_t gh)
2866 {
2867 	struct e1000g *Adapter = (struct e1000g *)arg;
2868 	mac_intr_t *mintr;
2869 
2870 	/*
2871 	 * We advertised a single RX ring. Getting a request for anything else
2872 	 * signifies a bug in the MAC framework.
2873 	 */
2874 	ASSERT(rtype == MAC_RING_TYPE_RX && grp_index == 0);
2875 
2876 	Adapter->rx_group = gh;
2877 
2878 	infop->mgi_driver = (mac_group_driver_t)Adapter;
2879 	infop->mgi_start = NULL;
2880 	infop->mgi_stop = NULL;
2881 	infop->mgi_addmac = e1000g_addmac;
2882 	infop->mgi_remmac = e1000g_remmac;
2883 	infop->mgi_count = 1;
2884 
2885 	/* Group level interrupts */
2886 	mintr = &infop->mgi_intr;
2887 	mintr->mi_handle = (mac_intr_handle_t)Adapter;
2888 	mintr->mi_enable = e1000g_rx_group_intr_enable;
2889 	mintr->mi_disable = e1000g_rx_group_intr_disable;
2890 }
2891 
2892 static boolean_t
2893 e1000g_m_getcapab(void *arg, mac_capab_t cap, void *cap_data)
2894 {
2895 	struct e1000g *Adapter = (struct e1000g *)arg;
2896 
2897 	switch (cap) {
2898 	case MAC_CAPAB_HCKSUM: {
2899 		uint32_t *txflags = cap_data;
2900 
2901 		if (Adapter->tx_hcksum_enable)
2902 			*txflags = HCKSUM_IPHDRCKSUM |
2903 			    HCKSUM_INET_PARTIAL;
2904 		else
2905 			return (B_FALSE);
2906 		break;
2907 	}
2908 
2909 	case MAC_CAPAB_LSO: {
2910 		mac_capab_lso_t *cap_lso = cap_data;
2911 
2912 		if (Adapter->lso_enable) {
2913 			cap_lso->lso_flags = LSO_TX_BASIC_TCP_IPV4;
2914 			cap_lso->lso_basic_tcp_ipv4.lso_max =
2915 			    E1000_LSO_MAXLEN;
2916 		} else
2917 			return (B_FALSE);
2918 		break;
2919 	}
2920 	case MAC_CAPAB_RINGS: {
2921 		mac_capab_rings_t *cap_rings = cap_data;
2922 
2923 		/* No TX rings exposed yet */
2924 		if (cap_rings->mr_type != MAC_RING_TYPE_RX)
2925 			return (B_FALSE);
2926 
2927 		cap_rings->mr_group_type = MAC_GROUP_TYPE_STATIC;
2928 		cap_rings->mr_rnum = 1;
2929 		cap_rings->mr_gnum = 1;
2930 		cap_rings->mr_rget = e1000g_fill_ring;
2931 		cap_rings->mr_gget = e1000g_fill_group;
2932 		break;
2933 	}
2934 	default:
2935 		return (B_FALSE);
2936 	}
2937 	return (B_TRUE);
2938 }
2939 
2940 static boolean_t
2941 e1000g_param_locked(mac_prop_id_t pr_num)
2942 {
2943 	/*
2944 	 * All en_* parameters are locked (read-only) while
2945 	 * the device is in any sort of loopback mode ...
2946 	 */
2947 	switch (pr_num) {
2948 		case MAC_PROP_EN_1000FDX_CAP:
2949 		case MAC_PROP_EN_1000HDX_CAP:
2950 		case MAC_PROP_EN_100FDX_CAP:
2951 		case MAC_PROP_EN_100HDX_CAP:
2952 		case MAC_PROP_EN_10FDX_CAP:
2953 		case MAC_PROP_EN_10HDX_CAP:
2954 		case MAC_PROP_AUTONEG:
2955 		case MAC_PROP_FLOWCTRL:
2956 			return (B_TRUE);
2957 	}
2958 	return (B_FALSE);
2959 }
2960 
2961 /*
2962  * callback function for set/get of properties
2963  */
2964 static int
2965 e1000g_m_setprop(void *arg, const char *pr_name, mac_prop_id_t pr_num,
2966     uint_t pr_valsize, const void *pr_val)
2967 {
2968 	struct e1000g *Adapter = arg;
2969 	struct e1000_hw *hw = &Adapter->shared;
2970 	struct e1000_fc_info *fc = &Adapter->shared.fc;
2971 	int err = 0;
2972 	link_flowctrl_t flowctrl;
2973 	uint32_t cur_mtu, new_mtu;
2974 
2975 	rw_enter(&Adapter->chip_lock, RW_WRITER);
2976 
2977 	if (Adapter->e1000g_state & E1000G_SUSPENDED) {
2978 		rw_exit(&Adapter->chip_lock);
2979 		return (ECANCELED);
2980 	}
2981 
2982 	if (Adapter->loopback_mode != E1000G_LB_NONE &&
2983 	    e1000g_param_locked(pr_num)) {
2984 		/*
2985 		 * All en_* parameters are locked (read-only)
2986 		 * while the device is in any sort of loopback mode.
2987 		 */
2988 		rw_exit(&Adapter->chip_lock);
2989 		return (EBUSY);
2990 	}
2991 
2992 	switch (pr_num) {
2993 		case MAC_PROP_EN_1000FDX_CAP:
2994 			if (hw->phy.media_type != e1000_media_type_copper) {
2995 				err = ENOTSUP;
2996 				break;
2997 			}
2998 			Adapter->param_en_1000fdx = *(uint8_t *)pr_val;
2999 			Adapter->param_adv_1000fdx = *(uint8_t *)pr_val;
3000 			goto reset;
3001 		case MAC_PROP_EN_100FDX_CAP:
3002 			if (hw->phy.media_type != e1000_media_type_copper) {
3003 				err = ENOTSUP;
3004 				break;
3005 			}
3006 			Adapter->param_en_100fdx = *(uint8_t *)pr_val;
3007 			Adapter->param_adv_100fdx = *(uint8_t *)pr_val;
3008 			goto reset;
3009 		case MAC_PROP_EN_100HDX_CAP:
3010 			if (hw->phy.media_type != e1000_media_type_copper) {
3011 				err = ENOTSUP;
3012 				break;
3013 			}
3014 			Adapter->param_en_100hdx = *(uint8_t *)pr_val;
3015 			Adapter->param_adv_100hdx = *(uint8_t *)pr_val;
3016 			goto reset;
3017 		case MAC_PROP_EN_10FDX_CAP:
3018 			if (hw->phy.media_type != e1000_media_type_copper) {
3019 				err = ENOTSUP;
3020 				break;
3021 			}
3022 			Adapter->param_en_10fdx = *(uint8_t *)pr_val;
3023 			Adapter->param_adv_10fdx = *(uint8_t *)pr_val;
3024 			goto reset;
3025 		case MAC_PROP_EN_10HDX_CAP:
3026 			if (hw->phy.media_type != e1000_media_type_copper) {
3027 				err = ENOTSUP;
3028 				break;
3029 			}
3030 			Adapter->param_en_10hdx = *(uint8_t *)pr_val;
3031 			Adapter->param_adv_10hdx = *(uint8_t *)pr_val;
3032 			goto reset;
3033 		case MAC_PROP_AUTONEG:
3034 			if (hw->phy.media_type != e1000_media_type_copper) {
3035 				err = ENOTSUP;
3036 				break;
3037 			}
3038 			Adapter->param_adv_autoneg = *(uint8_t *)pr_val;
3039 			goto reset;
3040 		case MAC_PROP_FLOWCTRL:
3041 			fc->send_xon = B_TRUE;
3042 			bcopy(pr_val, &flowctrl, sizeof (flowctrl));
3043 
3044 			switch (flowctrl) {
3045 			default:
3046 				err = EINVAL;
3047 				break;
3048 			case LINK_FLOWCTRL_NONE:
3049 				fc->requested_mode = e1000_fc_none;
3050 				break;
3051 			case LINK_FLOWCTRL_RX:
3052 				fc->requested_mode = e1000_fc_rx_pause;
3053 				break;
3054 			case LINK_FLOWCTRL_TX:
3055 				fc->requested_mode = e1000_fc_tx_pause;
3056 				break;
3057 			case LINK_FLOWCTRL_BI:
3058 				fc->requested_mode = e1000_fc_full;
3059 				break;
3060 			}
3061 reset:
3062 			if (err == 0) {
3063 				/* check PCH limits & reset the link */
3064 				e1000g_pch_limits(Adapter);
3065 				if (e1000g_reset_link(Adapter) != DDI_SUCCESS)
3066 					err = EINVAL;
3067 			}
3068 			break;
3069 		case MAC_PROP_ADV_1000FDX_CAP:
3070 		case MAC_PROP_ADV_1000HDX_CAP:
3071 		case MAC_PROP_ADV_100FDX_CAP:
3072 		case MAC_PROP_ADV_100HDX_CAP:
3073 		case MAC_PROP_ADV_10FDX_CAP:
3074 		case MAC_PROP_ADV_10HDX_CAP:
3075 		case MAC_PROP_EN_1000HDX_CAP:
3076 		case MAC_PROP_STATUS:
3077 		case MAC_PROP_SPEED:
3078 		case MAC_PROP_DUPLEX:
3079 			err = ENOTSUP; /* read-only prop. Can't set this. */
3080 			break;
3081 		case MAC_PROP_MTU:
3082 			/* adapter must be stopped for an MTU change */
3083 			if (Adapter->e1000g_state & E1000G_STARTED) {
3084 				err = EBUSY;
3085 				break;
3086 			}
3087 
3088 			cur_mtu = Adapter->default_mtu;
3089 
3090 			/* get new requested MTU */
3091 			bcopy(pr_val, &new_mtu, sizeof (new_mtu));
3092 			if (new_mtu == cur_mtu) {
3093 				err = 0;
3094 				break;
3095 			}
3096 
3097 			if ((new_mtu < DEFAULT_MTU) ||
3098 			    (new_mtu > Adapter->max_mtu)) {
3099 				err = EINVAL;
3100 				break;
3101 			}
3102 
3103 			/* inform MAC framework of new MTU */
3104 			err = mac_maxsdu_update(Adapter->mh, new_mtu);
3105 
3106 			if (err == 0) {
3107 				Adapter->default_mtu = new_mtu;
3108 				Adapter->max_frame_size =
3109 				    e1000g_mtu2maxframe(new_mtu);
3110 
3111 				/*
3112 				 * check PCH limits & set buffer sizes to
3113 				 * match new MTU
3114 				 */
3115 				e1000g_pch_limits(Adapter);
3116 				e1000g_set_bufsize(Adapter);
3117 			}
3118 			break;
3119 		case MAC_PROP_PRIVATE:
3120 			err = e1000g_set_priv_prop(Adapter, pr_name,
3121 			    pr_valsize, pr_val);
3122 			break;
3123 		default:
3124 			err = ENOTSUP;
3125 			break;
3126 	}
3127 	rw_exit(&Adapter->chip_lock);
3128 	return (err);
3129 }
3130 
3131 static int
3132 e1000g_m_getprop(void *arg, const char *pr_name, mac_prop_id_t pr_num,
3133     uint_t pr_flags, uint_t pr_valsize, void *pr_val, uint_t *perm)
3134 {
3135 	struct e1000g *Adapter = arg;
3136 	struct e1000_fc_info *fc = &Adapter->shared.fc;
3137 	struct e1000_hw *hw = &Adapter->shared;
3138 	int err = 0;
3139 	link_flowctrl_t flowctrl;
3140 	uint64_t tmp = 0;
3141 
3142 	if (pr_valsize == 0)
3143 		return (EINVAL);
3144 
3145 	*perm = MAC_PROP_PERM_RW;
3146 
3147 	bzero(pr_val, pr_valsize);
3148 	if ((pr_flags & MAC_PROP_DEFAULT) && (pr_num != MAC_PROP_PRIVATE)) {
3149 		return (e1000g_get_def_val(Adapter, pr_num,
3150 		    pr_valsize, pr_val));
3151 	}
3152 
3153 	switch (pr_num) {
3154 		case MAC_PROP_DUPLEX:
3155 			*perm = MAC_PROP_PERM_READ;
3156 			if (pr_valsize >= sizeof (link_duplex_t)) {
3157 				bcopy(&Adapter->link_duplex, pr_val,
3158 				    sizeof (link_duplex_t));
3159 			} else
3160 				err = EINVAL;
3161 			break;
3162 		case MAC_PROP_SPEED:
3163 			*perm = MAC_PROP_PERM_READ;
3164 			if (pr_valsize >= sizeof (uint64_t)) {
3165 				tmp = Adapter->link_speed * 1000000ull;
3166 				bcopy(&tmp, pr_val, sizeof (tmp));
3167 			} else
3168 				err = EINVAL;
3169 			break;
3170 		case MAC_PROP_AUTONEG:
3171 			if (hw->phy.media_type != e1000_media_type_copper)
3172 				*perm = MAC_PROP_PERM_READ;
3173 			*(uint8_t *)pr_val = Adapter->param_adv_autoneg;
3174 			break;
3175 		case MAC_PROP_FLOWCTRL:
3176 			if (pr_valsize >= sizeof (link_flowctrl_t)) {
3177 				switch (fc->current_mode) {
3178 					case e1000_fc_none:
3179 						flowctrl = LINK_FLOWCTRL_NONE;
3180 						break;
3181 					case e1000_fc_rx_pause:
3182 						flowctrl = LINK_FLOWCTRL_RX;
3183 						break;
3184 					case e1000_fc_tx_pause:
3185 						flowctrl = LINK_FLOWCTRL_TX;
3186 						break;
3187 					case e1000_fc_full:
3188 						flowctrl = LINK_FLOWCTRL_BI;
3189 						break;
3190 				}
3191 				bcopy(&flowctrl, pr_val, sizeof (flowctrl));
3192 			} else
3193 				err = EINVAL;
3194 			break;
3195 		case MAC_PROP_ADV_1000FDX_CAP:
3196 			*perm = MAC_PROP_PERM_READ;
3197 			*(uint8_t *)pr_val = Adapter->param_adv_1000fdx;
3198 			break;
3199 		case MAC_PROP_EN_1000FDX_CAP:
3200 			if (hw->phy.media_type != e1000_media_type_copper)
3201 				*perm = MAC_PROP_PERM_READ;
3202 			*(uint8_t *)pr_val = Adapter->param_en_1000fdx;
3203 			break;
3204 		case MAC_PROP_ADV_1000HDX_CAP:
3205 			*perm = MAC_PROP_PERM_READ;
3206 			*(uint8_t *)pr_val = Adapter->param_adv_1000hdx;
3207 			break;
3208 		case MAC_PROP_EN_1000HDX_CAP:
3209 			*perm = MAC_PROP_PERM_READ;
3210 			*(uint8_t *)pr_val = Adapter->param_en_1000hdx;
3211 			break;
3212 		case MAC_PROP_ADV_100FDX_CAP:
3213 			*perm = MAC_PROP_PERM_READ;
3214 			*(uint8_t *)pr_val = Adapter->param_adv_100fdx;
3215 			break;
3216 		case MAC_PROP_EN_100FDX_CAP:
3217 			if (hw->phy.media_type != e1000_media_type_copper)
3218 				*perm = MAC_PROP_PERM_READ;
3219 			*(uint8_t *)pr_val = Adapter->param_en_100fdx;
3220 			break;
3221 		case MAC_PROP_ADV_100HDX_CAP:
3222 			*perm = MAC_PROP_PERM_READ;
3223 			*(uint8_t *)pr_val = Adapter->param_adv_100hdx;
3224 			break;
3225 		case MAC_PROP_EN_100HDX_CAP:
3226 			if (hw->phy.media_type != e1000_media_type_copper)
3227 				*perm = MAC_PROP_PERM_READ;
3228 			*(uint8_t *)pr_val = Adapter->param_en_100hdx;
3229 			break;
3230 		case MAC_PROP_ADV_10FDX_CAP:
3231 			*perm = MAC_PROP_PERM_READ;
3232 			*(uint8_t *)pr_val = Adapter->param_adv_10fdx;
3233 			break;
3234 		case MAC_PROP_EN_10FDX_CAP:
3235 			if (hw->phy.media_type != e1000_media_type_copper)
3236 				*perm = MAC_PROP_PERM_READ;
3237 			*(uint8_t *)pr_val = Adapter->param_en_10fdx;
3238 			break;
3239 		case MAC_PROP_ADV_10HDX_CAP:
3240 			*perm = MAC_PROP_PERM_READ;
3241 			*(uint8_t *)pr_val = Adapter->param_adv_10hdx;
3242 			break;
3243 		case MAC_PROP_EN_10HDX_CAP:
3244 			if (hw->phy.media_type != e1000_media_type_copper)
3245 				*perm = MAC_PROP_PERM_READ;
3246 			*(uint8_t *)pr_val = Adapter->param_en_10hdx;
3247 			break;
3248 		case MAC_PROP_ADV_100T4_CAP:
3249 		case MAC_PROP_EN_100T4_CAP:
3250 			*perm = MAC_PROP_PERM_READ;
3251 			*(uint8_t *)pr_val = Adapter->param_adv_100t4;
3252 			break;
3253 		case MAC_PROP_PRIVATE:
3254 			err = e1000g_get_priv_prop(Adapter, pr_name,
3255 			    pr_flags, pr_valsize, pr_val, perm);
3256 			break;
3257 		case MAC_PROP_MTU: {
3258 			struct e1000_mac_info *mac = &Adapter->shared.mac;
3259 			struct e1000_phy_info *phy = &Adapter->shared.phy;
3260 			mac_propval_range_t range;
3261 
3262 			if (!(pr_flags & MAC_PROP_POSSIBLE))
3263 				return (ENOTSUP);
3264 			if (pr_valsize < sizeof (mac_propval_range_t))
3265 				return (EINVAL);
3266 			range.mpr_count = 1;
3267 			range.mpr_type = MAC_PROPVAL_UINT32;
3268 			range.range_uint32[0].mpur_min = DEFAULT_MTU;
3269 			range.range_uint32[0].mpur_max = Adapter->max_mtu;
3270 			/* following MAC type do not support jumbo frames */
3271 			if ((mac->type == e1000_ich8lan) ||
3272 			    ((mac->type == e1000_ich9lan) && (phy->type ==
3273 			    e1000_phy_ife))) {
3274 				range.range_uint32[0].mpur_max = DEFAULT_MTU;
3275 			}
3276 			bcopy(&range, pr_val, sizeof (range));
3277 			break;
3278 		}
3279 		default:
3280 			err = ENOTSUP;
3281 			break;
3282 	}
3283 	return (err);
3284 }
3285 
3286 /* ARGSUSED2 */
3287 static int
3288 e1000g_set_priv_prop(struct e1000g *Adapter, const char *pr_name,
3289     uint_t pr_valsize, const void *pr_val)
3290 {
3291 	int err = 0;
3292 	long result;
3293 	struct e1000_hw *hw = &Adapter->shared;
3294 
3295 	if (strcmp(pr_name, "_tx_bcopy_threshold") == 0) {
3296 		if (pr_val == NULL) {
3297 			err = EINVAL;
3298 			return (err);
3299 		}
3300 		(void) ddi_strtol(pr_val, (char **)NULL, 0, &result);
3301 		if (result < MIN_TX_BCOPY_THRESHOLD ||
3302 		    result > MAX_TX_BCOPY_THRESHOLD)
3303 			err = EINVAL;
3304 		else {
3305 			Adapter->tx_bcopy_thresh = (uint32_t)result;
3306 		}
3307 		return (err);
3308 	}
3309 	if (strcmp(pr_name, "_tx_interrupt_enable") == 0) {
3310 		if (pr_val == NULL) {
3311 			err = EINVAL;
3312 			return (err);
3313 		}
3314 		(void) ddi_strtol(pr_val, (char **)NULL, 0, &result);
3315 		if (result < 0 || result > 1)
3316 			err = EINVAL;
3317 		else {
3318 			Adapter->tx_intr_enable = (result == 1) ?
3319 			    B_TRUE: B_FALSE;
3320 			if (Adapter->tx_intr_enable)
3321 				e1000g_mask_tx_interrupt(Adapter);
3322 			else
3323 				e1000g_clear_tx_interrupt(Adapter);
3324 			if (e1000g_check_acc_handle(
3325 			    Adapter->osdep.reg_handle) != DDI_FM_OK) {
3326 				ddi_fm_service_impact(Adapter->dip,
3327 				    DDI_SERVICE_DEGRADED);
3328 				err = EIO;
3329 			}
3330 		}
3331 		return (err);
3332 	}
3333 	if (strcmp(pr_name, "_tx_intr_delay") == 0) {
3334 		if (pr_val == NULL) {
3335 			err = EINVAL;
3336 			return (err);
3337 		}
3338 		(void) ddi_strtol(pr_val, (char **)NULL, 0, &result);
3339 		if (result < MIN_TX_INTR_DELAY ||
3340 		    result > MAX_TX_INTR_DELAY)
3341 			err = EINVAL;
3342 		else {
3343 			Adapter->tx_intr_delay = (uint32_t)result;
3344 			E1000_WRITE_REG(hw, E1000_TIDV, Adapter->tx_intr_delay);
3345 			if (e1000g_check_acc_handle(
3346 			    Adapter->osdep.reg_handle) != DDI_FM_OK) {
3347 				ddi_fm_service_impact(Adapter->dip,
3348 				    DDI_SERVICE_DEGRADED);
3349 				err = EIO;
3350 			}
3351 		}
3352 		return (err);
3353 	}
3354 	if (strcmp(pr_name, "_tx_intr_abs_delay") == 0) {
3355 		if (pr_val == NULL) {
3356 			err = EINVAL;
3357 			return (err);
3358 		}
3359 		(void) ddi_strtol(pr_val, (char **)NULL, 0, &result);
3360 		if (result < MIN_TX_INTR_ABS_DELAY ||
3361 		    result > MAX_TX_INTR_ABS_DELAY)
3362 			err = EINVAL;
3363 		else {
3364 			Adapter->tx_intr_abs_delay = (uint32_t)result;
3365 			E1000_WRITE_REG(hw, E1000_TADV,
3366 			    Adapter->tx_intr_abs_delay);
3367 			if (e1000g_check_acc_handle(
3368 			    Adapter->osdep.reg_handle) != DDI_FM_OK) {
3369 				ddi_fm_service_impact(Adapter->dip,
3370 				    DDI_SERVICE_DEGRADED);
3371 				err = EIO;
3372 			}
3373 		}
3374 		return (err);
3375 	}
3376 	if (strcmp(pr_name, "_rx_bcopy_threshold") == 0) {
3377 		if (pr_val == NULL) {
3378 			err = EINVAL;
3379 			return (err);
3380 		}
3381 		(void) ddi_strtol(pr_val, (char **)NULL, 0, &result);
3382 		if (result < MIN_RX_BCOPY_THRESHOLD ||
3383 		    result > MAX_RX_BCOPY_THRESHOLD)
3384 			err = EINVAL;
3385 		else
3386 			Adapter->rx_bcopy_thresh = (uint32_t)result;
3387 		return (err);
3388 	}
3389 	if (strcmp(pr_name, "_max_num_rcv_packets") == 0) {
3390 		if (pr_val == NULL) {
3391 			err = EINVAL;
3392 			return (err);
3393 		}
3394 		(void) ddi_strtol(pr_val, (char **)NULL, 0, &result);
3395 		if (result < MIN_RX_LIMIT_ON_INTR ||
3396 		    result > MAX_RX_LIMIT_ON_INTR)
3397 			err = EINVAL;
3398 		else
3399 			Adapter->rx_limit_onintr = (uint32_t)result;
3400 		return (err);
3401 	}
3402 	if (strcmp(pr_name, "_rx_intr_delay") == 0) {
3403 		if (pr_val == NULL) {
3404 			err = EINVAL;
3405 			return (err);
3406 		}
3407 		(void) ddi_strtol(pr_val, (char **)NULL, 0, &result);
3408 		if (result < MIN_RX_INTR_DELAY ||
3409 		    result > MAX_RX_INTR_DELAY)
3410 			err = EINVAL;
3411 		else {
3412 			Adapter->rx_intr_delay = (uint32_t)result;
3413 			E1000_WRITE_REG(hw, E1000_RDTR, Adapter->rx_intr_delay);
3414 			if (e1000g_check_acc_handle(
3415 			    Adapter->osdep.reg_handle) != DDI_FM_OK) {
3416 				ddi_fm_service_impact(Adapter->dip,
3417 				    DDI_SERVICE_DEGRADED);
3418 				err = EIO;
3419 			}
3420 		}
3421 		return (err);
3422 	}
3423 	if (strcmp(pr_name, "_rx_intr_abs_delay") == 0) {
3424 		if (pr_val == NULL) {
3425 			err = EINVAL;
3426 			return (err);
3427 		}
3428 		(void) ddi_strtol(pr_val, (char **)NULL, 0, &result);
3429 		if (result < MIN_RX_INTR_ABS_DELAY ||
3430 		    result > MAX_RX_INTR_ABS_DELAY)
3431 			err = EINVAL;
3432 		else {
3433 			Adapter->rx_intr_abs_delay = (uint32_t)result;
3434 			E1000_WRITE_REG(hw, E1000_RADV,
3435 			    Adapter->rx_intr_abs_delay);
3436 			if (e1000g_check_acc_handle(
3437 			    Adapter->osdep.reg_handle) != DDI_FM_OK) {
3438 				ddi_fm_service_impact(Adapter->dip,
3439 				    DDI_SERVICE_DEGRADED);
3440 				err = EIO;
3441 			}
3442 		}
3443 		return (err);
3444 	}
3445 	if (strcmp(pr_name, "_intr_throttling_rate") == 0) {
3446 		if (pr_val == NULL) {
3447 			err = EINVAL;
3448 			return (err);
3449 		}
3450 		(void) ddi_strtol(pr_val, (char **)NULL, 0, &result);
3451 		if (result < MIN_INTR_THROTTLING ||
3452 		    result > MAX_INTR_THROTTLING)
3453 			err = EINVAL;
3454 		else {
3455 			if (hw->mac.type >= e1000_82540) {
3456 				Adapter->intr_throttling_rate =
3457 				    (uint32_t)result;
3458 				E1000_WRITE_REG(hw, E1000_ITR,
3459 				    Adapter->intr_throttling_rate);
3460 				if (e1000g_check_acc_handle(
3461 				    Adapter->osdep.reg_handle) != DDI_FM_OK) {
3462 					ddi_fm_service_impact(Adapter->dip,
3463 					    DDI_SERVICE_DEGRADED);
3464 					err = EIO;
3465 				}
3466 			} else
3467 				err = EINVAL;
3468 		}
3469 		return (err);
3470 	}
3471 	if (strcmp(pr_name, "_intr_adaptive") == 0) {
3472 		if (pr_val == NULL) {
3473 			err = EINVAL;
3474 			return (err);
3475 		}
3476 		(void) ddi_strtol(pr_val, (char **)NULL, 0, &result);
3477 		if (result < 0 || result > 1)
3478 			err = EINVAL;
3479 		else {
3480 			if (hw->mac.type >= e1000_82540) {
3481 				Adapter->intr_adaptive = (result == 1) ?
3482 				    B_TRUE : B_FALSE;
3483 			} else {
3484 				err = EINVAL;
3485 			}
3486 		}
3487 		return (err);
3488 	}
3489 	return (ENOTSUP);
3490 }
3491 
3492 static int
3493 e1000g_get_priv_prop(struct e1000g *Adapter, const char *pr_name,
3494     uint_t pr_flags, uint_t pr_valsize, void *pr_val, uint_t *perm)
3495 {
3496 	int err = ENOTSUP;
3497 	boolean_t is_default = (pr_flags & MAC_PROP_DEFAULT);
3498 	int value;
3499 
3500 	if (strcmp(pr_name, "_adv_pause_cap") == 0) {
3501 		*perm = MAC_PROP_PERM_READ;
3502 		if (is_default)
3503 			goto done;
3504 		value = Adapter->param_adv_pause;
3505 		err = 0;
3506 		goto done;
3507 	}
3508 	if (strcmp(pr_name, "_adv_asym_pause_cap") == 0) {
3509 		*perm = MAC_PROP_PERM_READ;
3510 		if (is_default)
3511 			goto done;
3512 		value = Adapter->param_adv_asym_pause;
3513 		err = 0;
3514 		goto done;
3515 	}
3516 	if (strcmp(pr_name, "_tx_bcopy_threshold") == 0) {
3517 		value = (is_default ? DEFAULT_TX_BCOPY_THRESHOLD :
3518 		    Adapter->tx_bcopy_thresh);
3519 		err = 0;
3520 		goto done;
3521 	}
3522 	if (strcmp(pr_name, "_tx_interrupt_enable") == 0) {
3523 		value = (is_default ? DEFAULT_TX_INTR_ENABLE :
3524 		    Adapter->tx_intr_enable);
3525 		err = 0;
3526 		goto done;
3527 	}
3528 	if (strcmp(pr_name, "_tx_intr_delay") == 0) {
3529 		value = (is_default ? DEFAULT_TX_INTR_DELAY :
3530 		    Adapter->tx_intr_delay);
3531 		err = 0;
3532 		goto done;
3533 	}
3534 	if (strcmp(pr_name, "_tx_intr_abs_delay") == 0) {
3535 		value = (is_default ? DEFAULT_TX_INTR_ABS_DELAY :
3536 		    Adapter->tx_intr_abs_delay);
3537 		err = 0;
3538 		goto done;
3539 	}
3540 	if (strcmp(pr_name, "_rx_bcopy_threshold") == 0) {
3541 		value = (is_default ? DEFAULT_RX_BCOPY_THRESHOLD :
3542 		    Adapter->rx_bcopy_thresh);
3543 		err = 0;
3544 		goto done;
3545 	}
3546 	if (strcmp(pr_name, "_max_num_rcv_packets") == 0) {
3547 		value = (is_default ? DEFAULT_RX_LIMIT_ON_INTR :
3548 		    Adapter->rx_limit_onintr);
3549 		err = 0;
3550 		goto done;
3551 	}
3552 	if (strcmp(pr_name, "_rx_intr_delay") == 0) {
3553 		value = (is_default ? DEFAULT_RX_INTR_DELAY :
3554 		    Adapter->rx_intr_delay);
3555 		err = 0;
3556 		goto done;
3557 	}
3558 	if (strcmp(pr_name, "_rx_intr_abs_delay") == 0) {
3559 		value = (is_default ? DEFAULT_RX_INTR_ABS_DELAY :
3560 		    Adapter->rx_intr_abs_delay);
3561 		err = 0;
3562 		goto done;
3563 	}
3564 	if (strcmp(pr_name, "_intr_throttling_rate") == 0) {
3565 		value = (is_default ? DEFAULT_INTR_THROTTLING :
3566 		    Adapter->intr_throttling_rate);
3567 		err = 0;
3568 		goto done;
3569 	}
3570 	if (strcmp(pr_name, "_intr_adaptive") == 0) {
3571 		value = (is_default ? 1 : Adapter->intr_adaptive);
3572 		err = 0;
3573 		goto done;
3574 	}
3575 done:
3576 	if (err == 0) {
3577 		(void) snprintf(pr_val, pr_valsize, "%d", value);
3578 	}
3579 	return (err);
3580 }
3581 
3582 /*
3583  * e1000g_get_conf - get configurations set in e1000g.conf
3584  * This routine gets user-configured values out of the configuration
3585  * file e1000g.conf.
3586  *
3587  * For each configurable value, there is a minimum, a maximum, and a
3588  * default.
3589  * If user does not configure a value, use the default.
3590  * If user configures below the minimum, use the minumum.
3591  * If user configures above the maximum, use the maxumum.
3592  */
3593 static void
3594 e1000g_get_conf(struct e1000g *Adapter)
3595 {
3596 	struct e1000_hw *hw = &Adapter->shared;
3597 	boolean_t tbi_compatibility = B_FALSE;
3598 
3599 	/*
3600 	 * get each configurable property from e1000g.conf
3601 	 */
3602 
3603 	/*
3604 	 * NumTxDescriptors
3605 	 */
3606 	Adapter->tx_desc_num =
3607 	    e1000g_get_prop(Adapter, "NumTxDescriptors",
3608 	    MIN_NUM_TX_DESCRIPTOR, MAX_NUM_TX_DESCRIPTOR,
3609 	    DEFAULT_NUM_TX_DESCRIPTOR);
3610 
3611 	/*
3612 	 * NumRxDescriptors
3613 	 */
3614 	Adapter->rx_desc_num =
3615 	    e1000g_get_prop(Adapter, "NumRxDescriptors",
3616 	    MIN_NUM_RX_DESCRIPTOR, MAX_NUM_RX_DESCRIPTOR,
3617 	    DEFAULT_NUM_RX_DESCRIPTOR);
3618 
3619 	/*
3620 	 * NumRxFreeList
3621 	 */
3622 	Adapter->rx_freelist_num =
3623 	    e1000g_get_prop(Adapter, "NumRxFreeList",
3624 	    MIN_NUM_RX_FREELIST, MAX_NUM_RX_FREELIST,
3625 	    DEFAULT_NUM_RX_FREELIST);
3626 
3627 	/*
3628 	 * NumTxPacketList
3629 	 */
3630 	Adapter->tx_freelist_num =
3631 	    e1000g_get_prop(Adapter, "NumTxPacketList",
3632 	    MIN_NUM_TX_FREELIST, MAX_NUM_TX_FREELIST,
3633 	    DEFAULT_NUM_TX_FREELIST);
3634 
3635 	/*
3636 	 * FlowControl
3637 	 */
3638 	hw->fc.send_xon = B_TRUE;
3639 	hw->fc.requested_mode =
3640 	    e1000g_get_prop(Adapter, "FlowControl",
3641 	    e1000_fc_none, 4, DEFAULT_FLOW_CONTROL);
3642 	/* 4 is the setting that says "let the eeprom decide" */
3643 	if (hw->fc.requested_mode == 4)
3644 		hw->fc.requested_mode = e1000_fc_default;
3645 
3646 	/*
3647 	 * Max Num Receive Packets on Interrupt
3648 	 */
3649 	Adapter->rx_limit_onintr =
3650 	    e1000g_get_prop(Adapter, "MaxNumReceivePackets",
3651 	    MIN_RX_LIMIT_ON_INTR, MAX_RX_LIMIT_ON_INTR,
3652 	    DEFAULT_RX_LIMIT_ON_INTR);
3653 
3654 	/*
3655 	 * PHY master slave setting
3656 	 */
3657 	hw->phy.ms_type =
3658 	    e1000g_get_prop(Adapter, "SetMasterSlave",
3659 	    e1000_ms_hw_default, e1000_ms_auto,
3660 	    e1000_ms_hw_default);
3661 
3662 	/*
3663 	 * Parameter which controls TBI mode workaround, which is only
3664 	 * needed on certain switches such as Cisco 6500/Foundry
3665 	 */
3666 	tbi_compatibility =
3667 	    e1000g_get_prop(Adapter, "TbiCompatibilityEnable",
3668 	    0, 1, DEFAULT_TBI_COMPAT_ENABLE);
3669 	e1000_set_tbi_compatibility_82543(hw, tbi_compatibility);
3670 
3671 	/*
3672 	 * MSI Enable
3673 	 */
3674 	Adapter->msi_enable =
3675 	    e1000g_get_prop(Adapter, "MSIEnable",
3676 	    0, 1, DEFAULT_MSI_ENABLE);
3677 
3678 	/*
3679 	 * Interrupt Throttling Rate
3680 	 */
3681 	Adapter->intr_throttling_rate =
3682 	    e1000g_get_prop(Adapter, "intr_throttling_rate",
3683 	    MIN_INTR_THROTTLING, MAX_INTR_THROTTLING,
3684 	    DEFAULT_INTR_THROTTLING);
3685 
3686 	/*
3687 	 * Adaptive Interrupt Blanking Enable/Disable
3688 	 * It is enabled by default
3689 	 */
3690 	Adapter->intr_adaptive =
3691 	    (e1000g_get_prop(Adapter, "intr_adaptive", 0, 1, 1) == 1) ?
3692 	    B_TRUE : B_FALSE;
3693 
3694 	/*
3695 	 * Hardware checksum enable/disable parameter
3696 	 */
3697 	Adapter->tx_hcksum_enable =
3698 	    e1000g_get_prop(Adapter, "tx_hcksum_enable",
3699 	    0, 1, DEFAULT_TX_HCKSUM_ENABLE);
3700 	/*
3701 	 * Checksum on/off selection via global parameters.
3702 	 *
3703 	 * If the chip is flagged as not capable of (correctly)
3704 	 * handling checksumming, we don't enable it on either
3705 	 * Rx or Tx side.  Otherwise, we take this chip's settings
3706 	 * from the patchable global defaults.
3707 	 *
3708 	 * We advertise our capabilities only if TX offload is
3709 	 * enabled.  On receive, the stack will accept checksummed
3710 	 * packets anyway, even if we haven't said we can deliver
3711 	 * them.
3712 	 */
3713 	switch (hw->mac.type) {
3714 		case e1000_82540:
3715 		case e1000_82544:
3716 		case e1000_82545:
3717 		case e1000_82545_rev_3:
3718 		case e1000_82546:
3719 		case e1000_82546_rev_3:
3720 		case e1000_82571:
3721 		case e1000_82572:
3722 		case e1000_82573:
3723 		case e1000_80003es2lan:
3724 			break;
3725 		/*
3726 		 * For the following Intel PRO/1000 chipsets, we have not
3727 		 * tested the hardware checksum offload capability, so we
3728 		 * disable the capability for them.
3729 		 *	e1000_82542,
3730 		 *	e1000_82543,
3731 		 *	e1000_82541,
3732 		 *	e1000_82541_rev_2,
3733 		 *	e1000_82547,
3734 		 *	e1000_82547_rev_2,
3735 		 */
3736 		default:
3737 			Adapter->tx_hcksum_enable = B_FALSE;
3738 	}
3739 
3740 	/*
3741 	 * Large Send Offloading(LSO) Enable/Disable
3742 	 * If the tx hardware checksum is not enabled, LSO should be
3743 	 * disabled.
3744 	 */
3745 	Adapter->lso_enable =
3746 	    e1000g_get_prop(Adapter, "lso_enable",
3747 	    0, 1, DEFAULT_LSO_ENABLE);
3748 
3749 	switch (hw->mac.type) {
3750 		case e1000_82546:
3751 		case e1000_82546_rev_3:
3752 			if (Adapter->lso_enable)
3753 				Adapter->lso_premature_issue = B_TRUE;
3754 			/* FALLTHRU */
3755 		case e1000_82571:
3756 		case e1000_82572:
3757 		case e1000_82573:
3758 		case e1000_80003es2lan:
3759 			break;
3760 		default:
3761 			Adapter->lso_enable = B_FALSE;
3762 	}
3763 
3764 	if (!Adapter->tx_hcksum_enable) {
3765 		Adapter->lso_premature_issue = B_FALSE;
3766 		Adapter->lso_enable = B_FALSE;
3767 	}
3768 
3769 	/*
3770 	 * If mem_workaround_82546 is enabled, the rx buffer allocated by
3771 	 * e1000_82545, e1000_82546 and e1000_82546_rev_3
3772 	 * will not cross 64k boundary.
3773 	 */
3774 	Adapter->mem_workaround_82546 =
3775 	    e1000g_get_prop(Adapter, "mem_workaround_82546",
3776 	    0, 1, DEFAULT_MEM_WORKAROUND_82546);
3777 
3778 	/*
3779 	 * Max number of multicast addresses
3780 	 */
3781 	Adapter->mcast_max_num =
3782 	    e1000g_get_prop(Adapter, "mcast_max_num",
3783 	    MIN_MCAST_NUM, MAX_MCAST_NUM, hw->mac.mta_reg_count * 32);
3784 }
3785 
3786 /*
3787  * e1000g_get_prop - routine to read properties
3788  *
3789  * Get a user-configure property value out of the configuration
3790  * file e1000g.conf.
3791  *
3792  * Caller provides name of the property, a default value, a minimum
3793  * value, and a maximum value.
3794  *
3795  * Return configured value of the property, with default, minimum and
3796  * maximum properly applied.
3797  */
3798 static int
3799 e1000g_get_prop(struct e1000g *Adapter,	/* point to per-adapter structure */
3800     char *propname,		/* name of the property */
3801     int minval,			/* minimum acceptable value */
3802     int maxval,			/* maximim acceptable value */
3803     int defval)			/* default value */
3804 {
3805 	int propval;		/* value returned for requested property */
3806 	int *props;		/* point to array of properties returned */
3807 	uint_t nprops;		/* number of property value returned */
3808 
3809 	/*
3810 	 * get the array of properties from the config file
3811 	 */
3812 	if (ddi_prop_lookup_int_array(DDI_DEV_T_ANY, Adapter->dip,
3813 	    DDI_PROP_DONTPASS, propname, &props, &nprops) == DDI_PROP_SUCCESS) {
3814 		/* got some properties, test if we got enough */
3815 		if (Adapter->instance < nprops) {
3816 			propval = props[Adapter->instance];
3817 		} else {
3818 			/* not enough properties configured */
3819 			propval = defval;
3820 			E1000G_DEBUGLOG_2(Adapter, E1000G_INFO_LEVEL,
3821 			    "Not Enough %s values found in e1000g.conf"
3822 			    " - set to %d\n",
3823 			    propname, propval);
3824 		}
3825 
3826 		/* free memory allocated for properties */
3827 		ddi_prop_free(props);
3828 
3829 	} else {
3830 		propval = defval;
3831 	}
3832 
3833 	/*
3834 	 * enforce limits
3835 	 */
3836 	if (propval > maxval) {
3837 		propval = maxval;
3838 		E1000G_DEBUGLOG_2(Adapter, E1000G_INFO_LEVEL,
3839 		    "Too High %s value in e1000g.conf - set to %d\n",
3840 		    propname, propval);
3841 	}
3842 
3843 	if (propval < minval) {
3844 		propval = minval;
3845 		E1000G_DEBUGLOG_2(Adapter, E1000G_INFO_LEVEL,
3846 		    "Too Low %s value in e1000g.conf - set to %d\n",
3847 		    propname, propval);
3848 	}
3849 
3850 	return (propval);
3851 }
3852 
3853 static boolean_t
3854 e1000g_link_check(struct e1000g *Adapter)
3855 {
3856 	uint16_t speed, duplex, phydata;
3857 	boolean_t link_changed = B_FALSE;
3858 	struct e1000_hw *hw;
3859 	uint32_t reg_tarc;
3860 
3861 	hw = &Adapter->shared;
3862 
3863 	if (e1000g_link_up(Adapter)) {
3864 		/*
3865 		 * The Link is up, check whether it was marked as down earlier
3866 		 */
3867 		if (Adapter->link_state != LINK_STATE_UP) {
3868 			(void) e1000_get_speed_and_duplex(hw, &speed, &duplex);
3869 			Adapter->link_speed = speed;
3870 			Adapter->link_duplex = duplex;
3871 			Adapter->link_state = LINK_STATE_UP;
3872 			link_changed = B_TRUE;
3873 
3874 			if (Adapter->link_speed == SPEED_1000)
3875 				Adapter->stall_threshold = TX_STALL_TIME_2S;
3876 			else
3877 				Adapter->stall_threshold = TX_STALL_TIME_8S;
3878 
3879 			Adapter->tx_link_down_timeout = 0;
3880 
3881 			if ((hw->mac.type == e1000_82571) ||
3882 			    (hw->mac.type == e1000_82572)) {
3883 				reg_tarc = E1000_READ_REG(hw, E1000_TARC(0));
3884 				if (speed == SPEED_1000)
3885 					reg_tarc |= (1 << 21);
3886 				else
3887 					reg_tarc &= ~(1 << 21);
3888 				E1000_WRITE_REG(hw, E1000_TARC(0), reg_tarc);
3889 			}
3890 		}
3891 		Adapter->smartspeed = 0;
3892 	} else {
3893 		if (Adapter->link_state != LINK_STATE_DOWN) {
3894 			Adapter->link_speed = 0;
3895 			Adapter->link_duplex = 0;
3896 			Adapter->link_state = LINK_STATE_DOWN;
3897 			link_changed = B_TRUE;
3898 
3899 			/*
3900 			 * SmartSpeed workaround for Tabor/TanaX, When the
3901 			 * driver loses link disable auto master/slave
3902 			 * resolution.
3903 			 */
3904 			if (hw->phy.type == e1000_phy_igp) {
3905 				(void) e1000_read_phy_reg(hw,
3906 				    PHY_1000T_CTRL, &phydata);
3907 				phydata |= CR_1000T_MS_ENABLE;
3908 				(void) e1000_write_phy_reg(hw,
3909 				    PHY_1000T_CTRL, phydata);
3910 			}
3911 		} else {
3912 			e1000g_smartspeed(Adapter);
3913 		}
3914 
3915 		if (Adapter->e1000g_state & E1000G_STARTED) {
3916 			if (Adapter->tx_link_down_timeout <
3917 			    MAX_TX_LINK_DOWN_TIMEOUT) {
3918 				Adapter->tx_link_down_timeout++;
3919 			} else if (Adapter->tx_link_down_timeout ==
3920 			    MAX_TX_LINK_DOWN_TIMEOUT) {
3921 				e1000g_tx_clean(Adapter);
3922 				Adapter->tx_link_down_timeout++;
3923 			}
3924 		}
3925 	}
3926 
3927 	if (e1000g_check_acc_handle(Adapter->osdep.reg_handle) != DDI_FM_OK)
3928 		ddi_fm_service_impact(Adapter->dip, DDI_SERVICE_DEGRADED);
3929 
3930 	return (link_changed);
3931 }
3932 
3933 /*
3934  * e1000g_reset_link - Using the link properties to setup the link
3935  */
3936 int
3937 e1000g_reset_link(struct e1000g *Adapter)
3938 {
3939 	struct e1000_mac_info *mac;
3940 	struct e1000_phy_info *phy;
3941 	struct e1000_hw *hw;
3942 	boolean_t invalid;
3943 
3944 	mac = &Adapter->shared.mac;
3945 	phy = &Adapter->shared.phy;
3946 	hw = &Adapter->shared;
3947 	invalid = B_FALSE;
3948 
3949 	if (hw->phy.media_type != e1000_media_type_copper)
3950 		goto out;
3951 
3952 	if (Adapter->param_adv_autoneg == 1) {
3953 		mac->autoneg = B_TRUE;
3954 		phy->autoneg_advertised = 0;
3955 
3956 		/*
3957 		 * 1000hdx is not supported for autonegotiation
3958 		 */
3959 		if (Adapter->param_adv_1000fdx == 1)
3960 			phy->autoneg_advertised |= ADVERTISE_1000_FULL;
3961 
3962 		if (Adapter->param_adv_100fdx == 1)
3963 			phy->autoneg_advertised |= ADVERTISE_100_FULL;
3964 
3965 		if (Adapter->param_adv_100hdx == 1)
3966 			phy->autoneg_advertised |= ADVERTISE_100_HALF;
3967 
3968 		if (Adapter->param_adv_10fdx == 1)
3969 			phy->autoneg_advertised |= ADVERTISE_10_FULL;
3970 
3971 		if (Adapter->param_adv_10hdx == 1)
3972 			phy->autoneg_advertised |= ADVERTISE_10_HALF;
3973 
3974 		if (phy->autoneg_advertised == 0)
3975 			invalid = B_TRUE;
3976 	} else {
3977 		mac->autoneg = B_FALSE;
3978 
3979 		/*
3980 		 * For Intel copper cards, 1000fdx and 1000hdx are not
3981 		 * supported for forced link
3982 		 */
3983 		if (Adapter->param_adv_100fdx == 1)
3984 			mac->forced_speed_duplex = ADVERTISE_100_FULL;
3985 		else if (Adapter->param_adv_100hdx == 1)
3986 			mac->forced_speed_duplex = ADVERTISE_100_HALF;
3987 		else if (Adapter->param_adv_10fdx == 1)
3988 			mac->forced_speed_duplex = ADVERTISE_10_FULL;
3989 		else if (Adapter->param_adv_10hdx == 1)
3990 			mac->forced_speed_duplex = ADVERTISE_10_HALF;
3991 		else
3992 			invalid = B_TRUE;
3993 
3994 	}
3995 
3996 	if (invalid) {
3997 		e1000g_log(Adapter, CE_WARN,
3998 		    "Invalid link settings. Setup link to "
3999 		    "support autonegotiation with all link capabilities.");
4000 		mac->autoneg = B_TRUE;
4001 		phy->autoneg_advertised = AUTONEG_ADVERTISE_SPEED_DEFAULT;
4002 	}
4003 
4004 out:
4005 	return (e1000_setup_link(&Adapter->shared));
4006 }
4007 
4008 static void
4009 e1000g_timer_tx_resched(struct e1000g *Adapter)
4010 {
4011 	e1000g_tx_ring_t *tx_ring = Adapter->tx_ring;
4012 
4013 	rw_enter(&Adapter->chip_lock, RW_READER);
4014 
4015 	if (tx_ring->resched_needed &&
4016 	    ((ddi_get_lbolt() - tx_ring->resched_timestamp) >
4017 	    drv_usectohz(1000000)) &&
4018 	    (Adapter->e1000g_state & E1000G_STARTED) &&
4019 	    (tx_ring->tbd_avail >= DEFAULT_TX_NO_RESOURCE)) {
4020 		tx_ring->resched_needed = B_FALSE;
4021 		mac_tx_update(Adapter->mh);
4022 		E1000G_STAT(tx_ring->stat_reschedule);
4023 		E1000G_STAT(tx_ring->stat_timer_reschedule);
4024 	}
4025 
4026 	rw_exit(&Adapter->chip_lock);
4027 }
4028 
4029 static void
4030 e1000g_local_timer(void *ws)
4031 {
4032 	struct e1000g *Adapter = (struct e1000g *)ws;
4033 	struct e1000_hw *hw;
4034 	e1000g_ether_addr_t ether_addr;
4035 	boolean_t link_changed;
4036 
4037 	hw = &Adapter->shared;
4038 
4039 	if (Adapter->e1000g_state & E1000G_ERROR) {
4040 		rw_enter(&Adapter->chip_lock, RW_WRITER);
4041 		Adapter->e1000g_state &= ~E1000G_ERROR;
4042 		rw_exit(&Adapter->chip_lock);
4043 
4044 		Adapter->reset_count++;
4045 		if (e1000g_global_reset(Adapter)) {
4046 			ddi_fm_service_impact(Adapter->dip,
4047 			    DDI_SERVICE_RESTORED);
4048 			e1000g_timer_tx_resched(Adapter);
4049 		} else
4050 			ddi_fm_service_impact(Adapter->dip,
4051 			    DDI_SERVICE_LOST);
4052 		return;
4053 	}
4054 
4055 	if (e1000g_stall_check(Adapter)) {
4056 		E1000G_DEBUGLOG_0(Adapter, E1000G_INFO_LEVEL,
4057 		    "Tx stall detected. Activate automatic recovery.\n");
4058 		e1000g_fm_ereport(Adapter, DDI_FM_DEVICE_STALL);
4059 		ddi_fm_service_impact(Adapter->dip, DDI_SERVICE_LOST);
4060 		Adapter->reset_count++;
4061 		if (e1000g_reset_adapter(Adapter)) {
4062 			ddi_fm_service_impact(Adapter->dip,
4063 			    DDI_SERVICE_RESTORED);
4064 			e1000g_timer_tx_resched(Adapter);
4065 		}
4066 		return;
4067 	}
4068 
4069 	link_changed = B_FALSE;
4070 	rw_enter(&Adapter->chip_lock, RW_READER);
4071 	if (Adapter->link_complete)
4072 		link_changed = e1000g_link_check(Adapter);
4073 	rw_exit(&Adapter->chip_lock);
4074 
4075 	if (link_changed) {
4076 		if (!Adapter->reset_flag)
4077 			mac_link_update(Adapter->mh, Adapter->link_state);
4078 		if (Adapter->link_state == LINK_STATE_UP)
4079 			Adapter->reset_flag = B_FALSE;
4080 	}
4081 	/*
4082 	 * Workaround for esb2. Data stuck in fifo on a link
4083 	 * down event. Reset the adapter to recover it.
4084 	 */
4085 	if (Adapter->esb2_workaround) {
4086 		Adapter->esb2_workaround = B_FALSE;
4087 		(void) e1000g_reset_adapter(Adapter);
4088 		return;
4089 	}
4090 
4091 	/*
4092 	 * With 82571 controllers, any locally administered address will
4093 	 * be overwritten when there is a reset on the other port.
4094 	 * Detect this circumstance and correct it.
4095 	 */
4096 	if ((hw->mac.type == e1000_82571) &&
4097 	    (e1000_get_laa_state_82571(hw) == B_TRUE)) {
4098 		ether_addr.reg.low = E1000_READ_REG_ARRAY(hw, E1000_RA, 0);
4099 		ether_addr.reg.high = E1000_READ_REG_ARRAY(hw, E1000_RA, 1);
4100 
4101 		ether_addr.reg.low = ntohl(ether_addr.reg.low);
4102 		ether_addr.reg.high = ntohl(ether_addr.reg.high);
4103 
4104 		if ((ether_addr.mac.addr[5] != hw->mac.addr[0]) ||
4105 		    (ether_addr.mac.addr[4] != hw->mac.addr[1]) ||
4106 		    (ether_addr.mac.addr[3] != hw->mac.addr[2]) ||
4107 		    (ether_addr.mac.addr[2] != hw->mac.addr[3]) ||
4108 		    (ether_addr.mac.addr[1] != hw->mac.addr[4]) ||
4109 		    (ether_addr.mac.addr[0] != hw->mac.addr[5])) {
4110 			e1000_rar_set(hw, hw->mac.addr, 0);
4111 		}
4112 	}
4113 
4114 	/*
4115 	 * Long TTL workaround for 82541/82547
4116 	 */
4117 	(void) e1000_igp_ttl_workaround_82547(hw);
4118 
4119 	/*
4120 	 * Check for Adaptive IFS settings If there are lots of collisions
4121 	 * change the value in steps...
4122 	 * These properties should only be set for 10/100
4123 	 */
4124 	if ((hw->phy.media_type == e1000_media_type_copper) &&
4125 	    ((Adapter->link_speed == SPEED_100) ||
4126 	    (Adapter->link_speed == SPEED_10))) {
4127 		e1000_update_adaptive(hw);
4128 	}
4129 	/*
4130 	 * Set Timer Interrupts
4131 	 */
4132 	E1000_WRITE_REG(hw, E1000_ICS, E1000_IMS_RXT0);
4133 
4134 	if (e1000g_check_acc_handle(Adapter->osdep.reg_handle) != DDI_FM_OK)
4135 		ddi_fm_service_impact(Adapter->dip, DDI_SERVICE_DEGRADED);
4136 	else
4137 		e1000g_timer_tx_resched(Adapter);
4138 
4139 	restart_watchdog_timer(Adapter);
4140 }
4141 
4142 /*
4143  * The function e1000g_link_timer() is called when the timer for link setup
4144  * is expired, which indicates the completion of the link setup. The link
4145  * state will not be updated until the link setup is completed. And the
4146  * link state will not be sent to the upper layer through mac_link_update()
4147  * in this function. It will be updated in the local timer routine or the
4148  * interrupt service routine after the interface is started (plumbed).
4149  */
4150 static void
4151 e1000g_link_timer(void *arg)
4152 {
4153 	struct e1000g *Adapter = (struct e1000g *)arg;
4154 
4155 	mutex_enter(&Adapter->link_lock);
4156 	Adapter->link_complete = B_TRUE;
4157 	Adapter->link_tid = 0;
4158 	mutex_exit(&Adapter->link_lock);
4159 }
4160 
4161 /*
4162  * e1000g_force_speed_duplex - read forced speed/duplex out of e1000g.conf
4163  *
4164  * This function read the forced speed and duplex for 10/100 Mbps speeds
4165  * and also for 1000 Mbps speeds from the e1000g.conf file
4166  */
4167 static void
4168 e1000g_force_speed_duplex(struct e1000g *Adapter)
4169 {
4170 	int forced;
4171 	struct e1000_mac_info *mac = &Adapter->shared.mac;
4172 	struct e1000_phy_info *phy = &Adapter->shared.phy;
4173 
4174 	/*
4175 	 * get value out of config file
4176 	 */
4177 	forced = e1000g_get_prop(Adapter, "ForceSpeedDuplex",
4178 	    GDIAG_10_HALF, GDIAG_ANY, GDIAG_ANY);
4179 
4180 	switch (forced) {
4181 	case GDIAG_10_HALF:
4182 		/*
4183 		 * Disable Auto Negotiation
4184 		 */
4185 		mac->autoneg = B_FALSE;
4186 		mac->forced_speed_duplex = ADVERTISE_10_HALF;
4187 		break;
4188 	case GDIAG_10_FULL:
4189 		/*
4190 		 * Disable Auto Negotiation
4191 		 */
4192 		mac->autoneg = B_FALSE;
4193 		mac->forced_speed_duplex = ADVERTISE_10_FULL;
4194 		break;
4195 	case GDIAG_100_HALF:
4196 		/*
4197 		 * Disable Auto Negotiation
4198 		 */
4199 		mac->autoneg = B_FALSE;
4200 		mac->forced_speed_duplex = ADVERTISE_100_HALF;
4201 		break;
4202 	case GDIAG_100_FULL:
4203 		/*
4204 		 * Disable Auto Negotiation
4205 		 */
4206 		mac->autoneg = B_FALSE;
4207 		mac->forced_speed_duplex = ADVERTISE_100_FULL;
4208 		break;
4209 	case GDIAG_1000_FULL:
4210 		/*
4211 		 * The gigabit spec requires autonegotiation.  Therefore,
4212 		 * when the user wants to force the speed to 1000Mbps, we
4213 		 * enable AutoNeg, but only allow the harware to advertise
4214 		 * 1000Mbps.  This is different from 10/100 operation, where
4215 		 * we are allowed to link without any negotiation.
4216 		 */
4217 		mac->autoneg = B_TRUE;
4218 		phy->autoneg_advertised = ADVERTISE_1000_FULL;
4219 		break;
4220 	default:	/* obey the setting of AutoNegAdvertised */
4221 		mac->autoneg = B_TRUE;
4222 		phy->autoneg_advertised =
4223 		    (uint16_t)e1000g_get_prop(Adapter, "AutoNegAdvertised",
4224 		    0, AUTONEG_ADVERTISE_SPEED_DEFAULT,
4225 		    AUTONEG_ADVERTISE_SPEED_DEFAULT);
4226 		break;
4227 	}	/* switch */
4228 }
4229 
4230 /*
4231  * e1000g_get_max_frame_size - get jumbo frame setting from e1000g.conf
4232  *
4233  * This function reads MaxFrameSize from e1000g.conf
4234  */
4235 static void
4236 e1000g_get_max_frame_size(struct e1000g *Adapter)
4237 {
4238 	int max_frame;
4239 
4240 	/*
4241 	 * get value out of config file
4242 	 */
4243 	max_frame = e1000g_get_prop(Adapter, "MaxFrameSize", 0, 3, 0);
4244 
4245 	switch (max_frame) {
4246 	case 0:
4247 		Adapter->default_mtu = ETHERMTU;
4248 		break;
4249 	/*
4250 	 * To avoid excessive memory allocation for rx buffers,
4251 	 * the bytes of E1000G_IPALIGNPRESERVEROOM are reserved.
4252 	 */
4253 	case 1:
4254 		Adapter->default_mtu = FRAME_SIZE_UPTO_4K -
4255 		    sizeof (struct ether_vlan_header) - ETHERFCSL -
4256 		    E1000G_IPALIGNPRESERVEROOM;
4257 		break;
4258 	case 2:
4259 		Adapter->default_mtu = FRAME_SIZE_UPTO_8K -
4260 		    sizeof (struct ether_vlan_header) - ETHERFCSL -
4261 		    E1000G_IPALIGNPRESERVEROOM;
4262 		break;
4263 	case 3:
4264 		Adapter->default_mtu = FRAME_SIZE_UPTO_16K -
4265 		    sizeof (struct ether_vlan_header) - ETHERFCSL -
4266 		    E1000G_IPALIGNPRESERVEROOM;
4267 		break;
4268 	default:
4269 		Adapter->default_mtu = ETHERMTU;
4270 		break;
4271 	}	/* switch */
4272 
4273 	/*
4274 	 * If the user configed MTU is larger than the deivce's maximum MTU,
4275 	 * the MTU is set to the deivce's maximum value.
4276 	 */
4277 	if (Adapter->default_mtu > Adapter->max_mtu)
4278 		Adapter->default_mtu = Adapter->max_mtu;
4279 
4280 	Adapter->max_frame_size = e1000g_mtu2maxframe(Adapter->default_mtu);
4281 }
4282 
4283 /*
4284  * e1000g_pch_limits - Apply limits of the PCH silicon type
4285  *
4286  * At any frame size larger than the ethernet default,
4287  * prevent linking at 10/100 speeds.
4288  */
4289 static void
4290 e1000g_pch_limits(struct e1000g *Adapter)
4291 {
4292 	struct e1000_hw *hw = &Adapter->shared;
4293 
4294 	/* only applies to PCH silicon type */
4295 	if (hw->mac.type != e1000_pchlan)
4296 		return;
4297 
4298 	/* only applies to frames larger than ethernet default */
4299 	if (Adapter->max_frame_size > DEFAULT_FRAME_SIZE) {
4300 		hw->mac.autoneg = B_TRUE;
4301 		hw->phy.autoneg_advertised = ADVERTISE_1000_FULL;
4302 
4303 		Adapter->param_adv_autoneg = 1;
4304 		Adapter->param_adv_1000fdx = 1;
4305 
4306 		Adapter->param_adv_100fdx = 0;
4307 		Adapter->param_adv_100hdx = 0;
4308 		Adapter->param_adv_10fdx = 0;
4309 		Adapter->param_adv_10hdx = 0;
4310 
4311 		e1000g_param_sync(Adapter);
4312 	}
4313 }
4314 
4315 /*
4316  * e1000g_mtu2maxframe - convert given MTU to maximum frame size
4317  */
4318 static uint32_t
4319 e1000g_mtu2maxframe(uint32_t mtu)
4320 {
4321 	uint32_t maxframe;
4322 
4323 	maxframe = mtu + sizeof (struct ether_vlan_header) + ETHERFCSL;
4324 
4325 	return (maxframe);
4326 }
4327 
4328 static void
4329 arm_watchdog_timer(struct e1000g *Adapter)
4330 {
4331 	Adapter->watchdog_tid =
4332 	    timeout(e1000g_local_timer,
4333 	    (void *)Adapter, 1 * drv_usectohz(1000000));
4334 }
4335 #pragma inline(arm_watchdog_timer)
4336 
4337 static void
4338 enable_watchdog_timer(struct e1000g *Adapter)
4339 {
4340 	mutex_enter(&Adapter->watchdog_lock);
4341 
4342 	if (!Adapter->watchdog_timer_enabled) {
4343 		Adapter->watchdog_timer_enabled = B_TRUE;
4344 		Adapter->watchdog_timer_started = B_TRUE;
4345 		arm_watchdog_timer(Adapter);
4346 	}
4347 
4348 	mutex_exit(&Adapter->watchdog_lock);
4349 }
4350 
4351 static void
4352 disable_watchdog_timer(struct e1000g *Adapter)
4353 {
4354 	timeout_id_t tid;
4355 
4356 	mutex_enter(&Adapter->watchdog_lock);
4357 
4358 	Adapter->watchdog_timer_enabled = B_FALSE;
4359 	Adapter->watchdog_timer_started = B_FALSE;
4360 	tid = Adapter->watchdog_tid;
4361 	Adapter->watchdog_tid = 0;
4362 
4363 	mutex_exit(&Adapter->watchdog_lock);
4364 
4365 	if (tid != 0)
4366 		(void) untimeout(tid);
4367 }
4368 
4369 static void
4370 start_watchdog_timer(struct e1000g *Adapter)
4371 {
4372 	mutex_enter(&Adapter->watchdog_lock);
4373 
4374 	if (Adapter->watchdog_timer_enabled) {
4375 		if (!Adapter->watchdog_timer_started) {
4376 			Adapter->watchdog_timer_started = B_TRUE;
4377 			arm_watchdog_timer(Adapter);
4378 		}
4379 	}
4380 
4381 	mutex_exit(&Adapter->watchdog_lock);
4382 }
4383 
4384 static void
4385 restart_watchdog_timer(struct e1000g *Adapter)
4386 {
4387 	mutex_enter(&Adapter->watchdog_lock);
4388 
4389 	if (Adapter->watchdog_timer_started)
4390 		arm_watchdog_timer(Adapter);
4391 
4392 	mutex_exit(&Adapter->watchdog_lock);
4393 }
4394 
4395 static void
4396 stop_watchdog_timer(struct e1000g *Adapter)
4397 {
4398 	timeout_id_t tid;
4399 
4400 	mutex_enter(&Adapter->watchdog_lock);
4401 
4402 	Adapter->watchdog_timer_started = B_FALSE;
4403 	tid = Adapter->watchdog_tid;
4404 	Adapter->watchdog_tid = 0;
4405 
4406 	mutex_exit(&Adapter->watchdog_lock);
4407 
4408 	if (tid != 0)
4409 		(void) untimeout(tid);
4410 }
4411 
4412 static void
4413 stop_link_timer(struct e1000g *Adapter)
4414 {
4415 	timeout_id_t tid;
4416 
4417 	/* Disable the link timer */
4418 	mutex_enter(&Adapter->link_lock);
4419 
4420 	tid = Adapter->link_tid;
4421 	Adapter->link_tid = 0;
4422 
4423 	mutex_exit(&Adapter->link_lock);
4424 
4425 	if (tid != 0)
4426 		(void) untimeout(tid);
4427 }
4428 
4429 static void
4430 stop_82547_timer(e1000g_tx_ring_t *tx_ring)
4431 {
4432 	timeout_id_t tid;
4433 
4434 	/* Disable the tx timer for 82547 chipset */
4435 	mutex_enter(&tx_ring->tx_lock);
4436 
4437 	tx_ring->timer_enable_82547 = B_FALSE;
4438 	tid = tx_ring->timer_id_82547;
4439 	tx_ring->timer_id_82547 = 0;
4440 
4441 	mutex_exit(&tx_ring->tx_lock);
4442 
4443 	if (tid != 0)
4444 		(void) untimeout(tid);
4445 }
4446 
4447 void
4448 e1000g_clear_interrupt(struct e1000g *Adapter)
4449 {
4450 	E1000_WRITE_REG(&Adapter->shared, E1000_IMC,
4451 	    0xffffffff & ~E1000_IMS_RXSEQ);
4452 }
4453 
4454 void
4455 e1000g_mask_interrupt(struct e1000g *Adapter)
4456 {
4457 	E1000_WRITE_REG(&Adapter->shared, E1000_IMS,
4458 	    IMS_ENABLE_MASK & ~E1000_IMS_TXDW);
4459 
4460 	if (Adapter->tx_intr_enable)
4461 		e1000g_mask_tx_interrupt(Adapter);
4462 }
4463 
4464 /*
4465  * This routine is called by e1000g_quiesce(), therefore must not block.
4466  */
4467 void
4468 e1000g_clear_all_interrupts(struct e1000g *Adapter)
4469 {
4470 	E1000_WRITE_REG(&Adapter->shared, E1000_IMC, 0xffffffff);
4471 }
4472 
4473 void
4474 e1000g_mask_tx_interrupt(struct e1000g *Adapter)
4475 {
4476 	E1000_WRITE_REG(&Adapter->shared, E1000_IMS, E1000_IMS_TXDW);
4477 }
4478 
4479 void
4480 e1000g_clear_tx_interrupt(struct e1000g *Adapter)
4481 {
4482 	E1000_WRITE_REG(&Adapter->shared, E1000_IMC, E1000_IMS_TXDW);
4483 }
4484 
4485 static void
4486 e1000g_smartspeed(struct e1000g *Adapter)
4487 {
4488 	struct e1000_hw *hw = &Adapter->shared;
4489 	uint16_t phy_status;
4490 	uint16_t phy_ctrl;
4491 
4492 	/*
4493 	 * If we're not T-or-T, or we're not autoneg'ing, or we're not
4494 	 * advertising 1000Full, we don't even use the workaround
4495 	 */
4496 	if ((hw->phy.type != e1000_phy_igp) ||
4497 	    !hw->mac.autoneg ||
4498 	    !(hw->phy.autoneg_advertised & ADVERTISE_1000_FULL))
4499 		return;
4500 
4501 	/*
4502 	 * True if this is the first call of this function or after every
4503 	 * 30 seconds of not having link
4504 	 */
4505 	if (Adapter->smartspeed == 0) {
4506 		/*
4507 		 * If Master/Slave config fault is asserted twice, we
4508 		 * assume back-to-back
4509 		 */
4510 		(void) e1000_read_phy_reg(hw, PHY_1000T_STATUS, &phy_status);
4511 		if (!(phy_status & SR_1000T_MS_CONFIG_FAULT))
4512 			return;
4513 
4514 		(void) e1000_read_phy_reg(hw, PHY_1000T_STATUS, &phy_status);
4515 		if (!(phy_status & SR_1000T_MS_CONFIG_FAULT))
4516 			return;
4517 		/*
4518 		 * We're assuming back-2-back because our status register
4519 		 * insists! there's a fault in the master/slave
4520 		 * relationship that was "negotiated"
4521 		 */
4522 		(void) e1000_read_phy_reg(hw, PHY_1000T_CTRL, &phy_ctrl);
4523 		/*
4524 		 * Is the phy configured for manual configuration of
4525 		 * master/slave?
4526 		 */
4527 		if (phy_ctrl & CR_1000T_MS_ENABLE) {
4528 			/*
4529 			 * Yes.  Then disable manual configuration (enable
4530 			 * auto configuration) of master/slave
4531 			 */
4532 			phy_ctrl &= ~CR_1000T_MS_ENABLE;
4533 			(void) e1000_write_phy_reg(hw,
4534 			    PHY_1000T_CTRL, phy_ctrl);
4535 			/*
4536 			 * Effectively starting the clock
4537 			 */
4538 			Adapter->smartspeed++;
4539 			/*
4540 			 * Restart autonegotiation
4541 			 */
4542 			if (!e1000_phy_setup_autoneg(hw) &&
4543 			    !e1000_read_phy_reg(hw, PHY_CONTROL, &phy_ctrl)) {
4544 				phy_ctrl |= (MII_CR_AUTO_NEG_EN |
4545 				    MII_CR_RESTART_AUTO_NEG);
4546 				(void) e1000_write_phy_reg(hw,
4547 				    PHY_CONTROL, phy_ctrl);
4548 			}
4549 		}
4550 		return;
4551 		/*
4552 		 * Has 6 seconds transpired still without link? Remember,
4553 		 * you should reset the smartspeed counter once you obtain
4554 		 * link
4555 		 */
4556 	} else if (Adapter->smartspeed == E1000_SMARTSPEED_DOWNSHIFT) {
4557 		/*
4558 		 * Yes.  Remember, we did at the start determine that
4559 		 * there's a master/slave configuration fault, so we're
4560 		 * still assuming there's someone on the other end, but we
4561 		 * just haven't yet been able to talk to it. We then
4562 		 * re-enable auto configuration of master/slave to see if
4563 		 * we're running 2/3 pair cables.
4564 		 */
4565 		/*
4566 		 * If still no link, perhaps using 2/3 pair cable
4567 		 */
4568 		(void) e1000_read_phy_reg(hw, PHY_1000T_CTRL, &phy_ctrl);
4569 		phy_ctrl |= CR_1000T_MS_ENABLE;
4570 		(void) e1000_write_phy_reg(hw, PHY_1000T_CTRL, phy_ctrl);
4571 		/*
4572 		 * Restart autoneg with phy enabled for manual
4573 		 * configuration of master/slave
4574 		 */
4575 		if (!e1000_phy_setup_autoneg(hw) &&
4576 		    !e1000_read_phy_reg(hw, PHY_CONTROL, &phy_ctrl)) {
4577 			phy_ctrl |=
4578 			    (MII_CR_AUTO_NEG_EN | MII_CR_RESTART_AUTO_NEG);
4579 			(void) e1000_write_phy_reg(hw, PHY_CONTROL, phy_ctrl);
4580 		}
4581 		/*
4582 		 * Hopefully, there are no more faults and we've obtained
4583 		 * link as a result.
4584 		 */
4585 	}
4586 	/*
4587 	 * Restart process after E1000_SMARTSPEED_MAX iterations (30
4588 	 * seconds)
4589 	 */
4590 	if (Adapter->smartspeed++ == E1000_SMARTSPEED_MAX)
4591 		Adapter->smartspeed = 0;
4592 }
4593 
4594 static boolean_t
4595 is_valid_mac_addr(uint8_t *mac_addr)
4596 {
4597 	const uint8_t addr_test1[6] = { 0, 0, 0, 0, 0, 0 };
4598 	const uint8_t addr_test2[6] =
4599 	    { 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF };
4600 
4601 	if (!(bcmp(addr_test1, mac_addr, ETHERADDRL)) ||
4602 	    !(bcmp(addr_test2, mac_addr, ETHERADDRL)))
4603 		return (B_FALSE);
4604 
4605 	return (B_TRUE);
4606 }
4607 
4608 /*
4609  * e1000g_stall_check - check for tx stall
4610  *
4611  * This function checks if the adapter is stalled (in transmit).
4612  *
4613  * It is called each time the watchdog timeout is invoked.
4614  * If the transmit descriptor reclaim continuously fails,
4615  * the watchdog value will increment by 1. If the watchdog
4616  * value exceeds the threshold, the adapter is assumed to
4617  * have stalled and need to be reset.
4618  */
4619 static boolean_t
4620 e1000g_stall_check(struct e1000g *Adapter)
4621 {
4622 	e1000g_tx_ring_t *tx_ring;
4623 
4624 	tx_ring = Adapter->tx_ring;
4625 
4626 	if (Adapter->link_state != LINK_STATE_UP)
4627 		return (B_FALSE);
4628 
4629 	(void) e1000g_recycle(tx_ring);
4630 
4631 	if (Adapter->stall_flag) {
4632 		Adapter->stall_flag = B_FALSE;
4633 		Adapter->reset_flag = B_TRUE;
4634 		return (B_TRUE);
4635 	}
4636 
4637 	return (B_FALSE);
4638 }
4639 
4640 #ifdef E1000G_DEBUG
4641 static enum ioc_reply
4642 e1000g_pp_ioctl(struct e1000g *e1000gp, struct iocblk *iocp, mblk_t *mp)
4643 {
4644 	void (*ppfn)(struct e1000g *e1000gp, e1000g_peekpoke_t *ppd);
4645 	e1000g_peekpoke_t *ppd;
4646 	uint64_t mem_va;
4647 	uint64_t maxoff;
4648 	boolean_t peek;
4649 
4650 	switch (iocp->ioc_cmd) {
4651 
4652 	case E1000G_IOC_REG_PEEK:
4653 		peek = B_TRUE;
4654 		break;
4655 
4656 	case E1000G_IOC_REG_POKE:
4657 		peek = B_FALSE;
4658 		break;
4659 
4660 	deault:
4661 		E1000G_DEBUGLOG_1(e1000gp, E1000G_INFO_LEVEL,
4662 		    "e1000g_diag_ioctl: invalid ioctl command 0x%X\n",
4663 		    iocp->ioc_cmd);
4664 		return (IOC_INVAL);
4665 	}
4666 
4667 	/*
4668 	 * Validate format of ioctl
4669 	 */
4670 	if (iocp->ioc_count != sizeof (e1000g_peekpoke_t))
4671 		return (IOC_INVAL);
4672 	if (mp->b_cont == NULL)
4673 		return (IOC_INVAL);
4674 
4675 	ppd = (e1000g_peekpoke_t *)(uintptr_t)mp->b_cont->b_rptr;
4676 
4677 	/*
4678 	 * Validate request parameters
4679 	 */
4680 	switch (ppd->pp_acc_space) {
4681 
4682 	default:
4683 		E1000G_DEBUGLOG_1(e1000gp, E1000G_INFO_LEVEL,
4684 		    "e1000g_diag_ioctl: invalid access space 0x%X\n",
4685 		    ppd->pp_acc_space);
4686 		return (IOC_INVAL);
4687 
4688 	case E1000G_PP_SPACE_REG:
4689 		/*
4690 		 * Memory-mapped I/O space
4691 		 */
4692 		ASSERT(ppd->pp_acc_size == 4);
4693 		if (ppd->pp_acc_size != 4)
4694 			return (IOC_INVAL);
4695 
4696 		if ((ppd->pp_acc_offset % ppd->pp_acc_size) != 0)
4697 			return (IOC_INVAL);
4698 
4699 		mem_va = 0;
4700 		maxoff = 0x10000;
4701 		ppfn = peek ? e1000g_ioc_peek_reg : e1000g_ioc_poke_reg;
4702 		break;
4703 
4704 	case E1000G_PP_SPACE_E1000G:
4705 		/*
4706 		 * E1000g data structure!
4707 		 */
4708 		mem_va = (uintptr_t)e1000gp;
4709 		maxoff = sizeof (struct e1000g);
4710 		ppfn = peek ? e1000g_ioc_peek_mem : e1000g_ioc_poke_mem;
4711 		break;
4712 
4713 	}
4714 
4715 	if (ppd->pp_acc_offset >= maxoff)
4716 		return (IOC_INVAL);
4717 
4718 	if (ppd->pp_acc_offset + ppd->pp_acc_size > maxoff)
4719 		return (IOC_INVAL);
4720 
4721 	/*
4722 	 * All OK - go!
4723 	 */
4724 	ppd->pp_acc_offset += mem_va;
4725 	(*ppfn)(e1000gp, ppd);
4726 	return (peek ? IOC_REPLY : IOC_ACK);
4727 }
4728 
4729 static void
4730 e1000g_ioc_peek_reg(struct e1000g *e1000gp, e1000g_peekpoke_t *ppd)
4731 {
4732 	ddi_acc_handle_t handle;
4733 	uint32_t *regaddr;
4734 
4735 	handle = e1000gp->osdep.reg_handle;
4736 	regaddr = (uint32_t *)((uintptr_t)e1000gp->shared.hw_addr +
4737 	    (uintptr_t)ppd->pp_acc_offset);
4738 
4739 	ppd->pp_acc_data = ddi_get32(handle, regaddr);
4740 }
4741 
4742 static void
4743 e1000g_ioc_poke_reg(struct e1000g *e1000gp, e1000g_peekpoke_t *ppd)
4744 {
4745 	ddi_acc_handle_t handle;
4746 	uint32_t *regaddr;
4747 	uint32_t value;
4748 
4749 	handle = e1000gp->osdep.reg_handle;
4750 	regaddr = (uint32_t *)((uintptr_t)e1000gp->shared.hw_addr +
4751 	    (uintptr_t)ppd->pp_acc_offset);
4752 	value = (uint32_t)ppd->pp_acc_data;
4753 
4754 	ddi_put32(handle, regaddr, value);
4755 }
4756 
4757 static void
4758 e1000g_ioc_peek_mem(struct e1000g *e1000gp, e1000g_peekpoke_t *ppd)
4759 {
4760 	uint64_t value;
4761 	void *vaddr;
4762 
4763 	vaddr = (void *)(uintptr_t)ppd->pp_acc_offset;
4764 
4765 	switch (ppd->pp_acc_size) {
4766 	case 1:
4767 		value = *(uint8_t *)vaddr;
4768 		break;
4769 
4770 	case 2:
4771 		value = *(uint16_t *)vaddr;
4772 		break;
4773 
4774 	case 4:
4775 		value = *(uint32_t *)vaddr;
4776 		break;
4777 
4778 	case 8:
4779 		value = *(uint64_t *)vaddr;
4780 		break;
4781 	}
4782 
4783 	E1000G_DEBUGLOG_4(e1000gp, E1000G_INFO_LEVEL,
4784 	    "e1000g_ioc_peek_mem($%p, $%p) peeked 0x%llx from $%p\n",
4785 	    (void *)e1000gp, (void *)ppd, value, vaddr);
4786 
4787 	ppd->pp_acc_data = value;
4788 }
4789 
4790 static void
4791 e1000g_ioc_poke_mem(struct e1000g *e1000gp, e1000g_peekpoke_t *ppd)
4792 {
4793 	uint64_t value;
4794 	void *vaddr;
4795 
4796 	vaddr = (void *)(uintptr_t)ppd->pp_acc_offset;
4797 	value = ppd->pp_acc_data;
4798 
4799 	E1000G_DEBUGLOG_4(e1000gp, E1000G_INFO_LEVEL,
4800 	    "e1000g_ioc_poke_mem($%p, $%p) poking 0x%llx at $%p\n",
4801 	    (void *)e1000gp, (void *)ppd, value, vaddr);
4802 
4803 	switch (ppd->pp_acc_size) {
4804 	case 1:
4805 		*(uint8_t *)vaddr = (uint8_t)value;
4806 		break;
4807 
4808 	case 2:
4809 		*(uint16_t *)vaddr = (uint16_t)value;
4810 		break;
4811 
4812 	case 4:
4813 		*(uint32_t *)vaddr = (uint32_t)value;
4814 		break;
4815 
4816 	case 8:
4817 		*(uint64_t *)vaddr = (uint64_t)value;
4818 		break;
4819 	}
4820 }
4821 #endif
4822 
4823 /*
4824  * Loopback Support
4825  */
4826 static lb_property_t lb_normal =
4827 	{ normal,	"normal",	E1000G_LB_NONE		};
4828 static lb_property_t lb_external1000 =
4829 	{ external,	"1000Mbps",	E1000G_LB_EXTERNAL_1000	};
4830 static lb_property_t lb_external100 =
4831 	{ external,	"100Mbps",	E1000G_LB_EXTERNAL_100	};
4832 static lb_property_t lb_external10 =
4833 	{ external,	"10Mbps",	E1000G_LB_EXTERNAL_10	};
4834 static lb_property_t lb_phy =
4835 	{ internal,	"PHY",		E1000G_LB_INTERNAL_PHY	};
4836 
4837 static enum ioc_reply
4838 e1000g_loopback_ioctl(struct e1000g *Adapter, struct iocblk *iocp, mblk_t *mp)
4839 {
4840 	lb_info_sz_t *lbsp;
4841 	lb_property_t *lbpp;
4842 	struct e1000_hw *hw;
4843 	uint32_t *lbmp;
4844 	uint32_t size;
4845 	uint32_t value;
4846 
4847 	hw = &Adapter->shared;
4848 
4849 	if (mp->b_cont == NULL)
4850 		return (IOC_INVAL);
4851 
4852 	if (!e1000g_check_loopback_support(hw)) {
4853 		e1000g_log(NULL, CE_WARN,
4854 		    "Loopback is not supported on e1000g%d", Adapter->instance);
4855 		return (IOC_INVAL);
4856 	}
4857 
4858 	switch (iocp->ioc_cmd) {
4859 	default:
4860 		return (IOC_INVAL);
4861 
4862 	case LB_GET_INFO_SIZE:
4863 		size = sizeof (lb_info_sz_t);
4864 		if (iocp->ioc_count != size)
4865 			return (IOC_INVAL);
4866 
4867 		rw_enter(&Adapter->chip_lock, RW_WRITER);
4868 		e1000g_get_phy_state(Adapter);
4869 
4870 		/*
4871 		 * Workaround for hardware faults. In order to get a stable
4872 		 * state of phy, we will wait for a specific interval and
4873 		 * try again. The time delay is an experiential value based
4874 		 * on our testing.
4875 		 */
4876 		msec_delay(100);
4877 		e1000g_get_phy_state(Adapter);
4878 		rw_exit(&Adapter->chip_lock);
4879 
4880 		value = sizeof (lb_normal);
4881 		if ((Adapter->phy_ext_status & IEEE_ESR_1000T_FD_CAPS) ||
4882 		    (Adapter->phy_ext_status & IEEE_ESR_1000X_FD_CAPS) ||
4883 		    (hw->phy.media_type == e1000_media_type_fiber) ||
4884 		    (hw->phy.media_type == e1000_media_type_internal_serdes)) {
4885 			value += sizeof (lb_phy);
4886 			switch (hw->mac.type) {
4887 			case e1000_82571:
4888 			case e1000_82572:
4889 			case e1000_80003es2lan:
4890 				value += sizeof (lb_external1000);
4891 				break;
4892 			}
4893 		}
4894 		if ((Adapter->phy_status & MII_SR_100X_FD_CAPS) ||
4895 		    (Adapter->phy_status & MII_SR_100T2_FD_CAPS))
4896 			value += sizeof (lb_external100);
4897 		if (Adapter->phy_status & MII_SR_10T_FD_CAPS)
4898 			value += sizeof (lb_external10);
4899 
4900 		lbsp = (lb_info_sz_t *)(uintptr_t)mp->b_cont->b_rptr;
4901 		*lbsp = value;
4902 		break;
4903 
4904 	case LB_GET_INFO:
4905 		value = sizeof (lb_normal);
4906 		if ((Adapter->phy_ext_status & IEEE_ESR_1000T_FD_CAPS) ||
4907 		    (Adapter->phy_ext_status & IEEE_ESR_1000X_FD_CAPS) ||
4908 		    (hw->phy.media_type == e1000_media_type_fiber) ||
4909 		    (hw->phy.media_type == e1000_media_type_internal_serdes)) {
4910 			value += sizeof (lb_phy);
4911 			switch (hw->mac.type) {
4912 			case e1000_82571:
4913 			case e1000_82572:
4914 			case e1000_80003es2lan:
4915 				value += sizeof (lb_external1000);
4916 				break;
4917 			}
4918 		}
4919 		if ((Adapter->phy_status & MII_SR_100X_FD_CAPS) ||
4920 		    (Adapter->phy_status & MII_SR_100T2_FD_CAPS))
4921 			value += sizeof (lb_external100);
4922 		if (Adapter->phy_status & MII_SR_10T_FD_CAPS)
4923 			value += sizeof (lb_external10);
4924 
4925 		size = value;
4926 		if (iocp->ioc_count != size)
4927 			return (IOC_INVAL);
4928 
4929 		value = 0;
4930 		lbpp = (lb_property_t *)(uintptr_t)mp->b_cont->b_rptr;
4931 		lbpp[value++] = lb_normal;
4932 		if ((Adapter->phy_ext_status & IEEE_ESR_1000T_FD_CAPS) ||
4933 		    (Adapter->phy_ext_status & IEEE_ESR_1000X_FD_CAPS) ||
4934 		    (hw->phy.media_type == e1000_media_type_fiber) ||
4935 		    (hw->phy.media_type == e1000_media_type_internal_serdes)) {
4936 			lbpp[value++] = lb_phy;
4937 			switch (hw->mac.type) {
4938 			case e1000_82571:
4939 			case e1000_82572:
4940 			case e1000_80003es2lan:
4941 				lbpp[value++] = lb_external1000;
4942 				break;
4943 			}
4944 		}
4945 		if ((Adapter->phy_status & MII_SR_100X_FD_CAPS) ||
4946 		    (Adapter->phy_status & MII_SR_100T2_FD_CAPS))
4947 			lbpp[value++] = lb_external100;
4948 		if (Adapter->phy_status & MII_SR_10T_FD_CAPS)
4949 			lbpp[value++] = lb_external10;
4950 		break;
4951 
4952 	case LB_GET_MODE:
4953 		size = sizeof (uint32_t);
4954 		if (iocp->ioc_count != size)
4955 			return (IOC_INVAL);
4956 
4957 		lbmp = (uint32_t *)(uintptr_t)mp->b_cont->b_rptr;
4958 		*lbmp = Adapter->loopback_mode;
4959 		break;
4960 
4961 	case LB_SET_MODE:
4962 		size = 0;
4963 		if (iocp->ioc_count != sizeof (uint32_t))
4964 			return (IOC_INVAL);
4965 
4966 		lbmp = (uint32_t *)(uintptr_t)mp->b_cont->b_rptr;
4967 		if (!e1000g_set_loopback_mode(Adapter, *lbmp))
4968 			return (IOC_INVAL);
4969 		break;
4970 	}
4971 
4972 	iocp->ioc_count = size;
4973 	iocp->ioc_error = 0;
4974 
4975 	if (e1000g_check_acc_handle(Adapter->osdep.reg_handle) != DDI_FM_OK) {
4976 		ddi_fm_service_impact(Adapter->dip, DDI_SERVICE_DEGRADED);
4977 		return (IOC_INVAL);
4978 	}
4979 
4980 	return (IOC_REPLY);
4981 }
4982 
4983 static boolean_t
4984 e1000g_check_loopback_support(struct e1000_hw *hw)
4985 {
4986 	switch (hw->mac.type) {
4987 	case e1000_82540:
4988 	case e1000_82545:
4989 	case e1000_82545_rev_3:
4990 	case e1000_82546:
4991 	case e1000_82546_rev_3:
4992 	case e1000_82541:
4993 	case e1000_82541_rev_2:
4994 	case e1000_82547:
4995 	case e1000_82547_rev_2:
4996 	case e1000_82571:
4997 	case e1000_82572:
4998 	case e1000_82573:
4999 	case e1000_82574:
5000 	case e1000_80003es2lan:
5001 	case e1000_ich9lan:
5002 	case e1000_ich10lan:
5003 		return (B_TRUE);
5004 	}
5005 	return (B_FALSE);
5006 }
5007 
5008 static boolean_t
5009 e1000g_set_loopback_mode(struct e1000g *Adapter, uint32_t mode)
5010 {
5011 	struct e1000_hw *hw;
5012 	int i, times;
5013 	boolean_t link_up;
5014 
5015 	if (mode == Adapter->loopback_mode)
5016 		return (B_TRUE);
5017 
5018 	hw = &Adapter->shared;
5019 	times = 0;
5020 
5021 	Adapter->loopback_mode = mode;
5022 
5023 	if (mode == E1000G_LB_NONE) {
5024 		/* Reset the chip */
5025 		hw->phy.autoneg_wait_to_complete = B_TRUE;
5026 		(void) e1000g_reset_adapter(Adapter);
5027 		hw->phy.autoneg_wait_to_complete = B_FALSE;
5028 		return (B_TRUE);
5029 	}
5030 
5031 again:
5032 
5033 	rw_enter(&Adapter->chip_lock, RW_WRITER);
5034 
5035 	switch (mode) {
5036 	default:
5037 		rw_exit(&Adapter->chip_lock);
5038 		return (B_FALSE);
5039 
5040 	case E1000G_LB_EXTERNAL_1000:
5041 		e1000g_set_external_loopback_1000(Adapter);
5042 		break;
5043 
5044 	case E1000G_LB_EXTERNAL_100:
5045 		e1000g_set_external_loopback_100(Adapter);
5046 		break;
5047 
5048 	case E1000G_LB_EXTERNAL_10:
5049 		e1000g_set_external_loopback_10(Adapter);
5050 		break;
5051 
5052 	case E1000G_LB_INTERNAL_PHY:
5053 		e1000g_set_internal_loopback(Adapter);
5054 		break;
5055 	}
5056 
5057 	times++;
5058 
5059 	rw_exit(&Adapter->chip_lock);
5060 
5061 	/* Wait for link up */
5062 	for (i = (PHY_FORCE_LIMIT * 2); i > 0; i--)
5063 		msec_delay(100);
5064 
5065 	rw_enter(&Adapter->chip_lock, RW_WRITER);
5066 
5067 	link_up = e1000g_link_up(Adapter);
5068 
5069 	rw_exit(&Adapter->chip_lock);
5070 
5071 	if (!link_up) {
5072 		E1000G_DEBUGLOG_0(Adapter, E1000G_INFO_LEVEL,
5073 		    "Failed to get the link up");
5074 		if (times < 2) {
5075 			/* Reset the link */
5076 			E1000G_DEBUGLOG_0(Adapter, E1000G_INFO_LEVEL,
5077 			    "Reset the link ...");
5078 			(void) e1000g_reset_adapter(Adapter);
5079 			goto again;
5080 		}
5081 	}
5082 
5083 	return (B_TRUE);
5084 }
5085 
5086 /*
5087  * The following loopback settings are from Intel's technical
5088  * document - "How To Loopback". All the register settings and
5089  * time delay values are directly inherited from the document
5090  * without more explanations available.
5091  */
5092 static void
5093 e1000g_set_internal_loopback(struct e1000g *Adapter)
5094 {
5095 	struct e1000_hw *hw;
5096 	uint32_t ctrl;
5097 	uint32_t status;
5098 	uint16_t phy_ctrl;
5099 	uint16_t phy_reg;
5100 	uint32_t txcw;
5101 
5102 	hw = &Adapter->shared;
5103 
5104 	/* Disable Smart Power Down */
5105 	phy_spd_state(hw, B_FALSE);
5106 
5107 	(void) e1000_read_phy_reg(hw, PHY_CONTROL, &phy_ctrl);
5108 	phy_ctrl &= ~(MII_CR_AUTO_NEG_EN | MII_CR_SPEED_100 | MII_CR_SPEED_10);
5109 	phy_ctrl |= MII_CR_FULL_DUPLEX | MII_CR_SPEED_1000;
5110 
5111 	switch (hw->mac.type) {
5112 	case e1000_82540:
5113 	case e1000_82545:
5114 	case e1000_82545_rev_3:
5115 	case e1000_82546:
5116 	case e1000_82546_rev_3:
5117 	case e1000_82573:
5118 		/* Auto-MDI/MDIX off */
5119 		(void) e1000_write_phy_reg(hw, M88E1000_PHY_SPEC_CTRL, 0x0808);
5120 		/* Reset PHY to update Auto-MDI/MDIX */
5121 		(void) e1000_write_phy_reg(hw, PHY_CONTROL,
5122 		    phy_ctrl | MII_CR_RESET | MII_CR_AUTO_NEG_EN);
5123 		/* Reset PHY to auto-neg off and force 1000 */
5124 		(void) e1000_write_phy_reg(hw, PHY_CONTROL,
5125 		    phy_ctrl | MII_CR_RESET);
5126 		/*
5127 		 * Disable PHY receiver for 82540/545/546 and 82573 Family.
5128 		 * See comments above e1000g_set_internal_loopback() for the
5129 		 * background.
5130 		 */
5131 		(void) e1000_write_phy_reg(hw, 29, 0x001F);
5132 		(void) e1000_write_phy_reg(hw, 30, 0x8FFC);
5133 		(void) e1000_write_phy_reg(hw, 29, 0x001A);
5134 		(void) e1000_write_phy_reg(hw, 30, 0x8FF0);
5135 		break;
5136 	case e1000_80003es2lan:
5137 		/* Force Link Up */
5138 		(void) e1000_write_phy_reg(hw, GG82563_PHY_KMRN_MODE_CTRL,
5139 		    0x1CC);
5140 		/* Sets PCS loopback at 1Gbs */
5141 		(void) e1000_write_phy_reg(hw, GG82563_PHY_MAC_SPEC_CTRL,
5142 		    0x1046);
5143 		break;
5144 	}
5145 
5146 	/*
5147 	 * The following registers should be set for e1000_phy_bm phy type.
5148 	 * e1000_82574, e1000_ich10lan and some e1000_ich9lan use this phy.
5149 	 * For others, we do not need to set these registers.
5150 	 */
5151 	if (hw->phy.type == e1000_phy_bm) {
5152 		/* Set Default MAC Interface speed to 1GB */
5153 		(void) e1000_read_phy_reg(hw, PHY_REG(2, 21), &phy_reg);
5154 		phy_reg &= ~0x0007;
5155 		phy_reg |= 0x006;
5156 		(void) e1000_write_phy_reg(hw, PHY_REG(2, 21), phy_reg);
5157 		/* Assert SW reset for above settings to take effect */
5158 		(void) e1000_phy_commit(hw);
5159 		msec_delay(1);
5160 		/* Force Full Duplex */
5161 		(void) e1000_read_phy_reg(hw, PHY_REG(769, 16), &phy_reg);
5162 		(void) e1000_write_phy_reg(hw, PHY_REG(769, 16),
5163 		    phy_reg | 0x000C);
5164 		/* Set Link Up (in force link) */
5165 		(void) e1000_read_phy_reg(hw, PHY_REG(776, 16), &phy_reg);
5166 		(void) e1000_write_phy_reg(hw, PHY_REG(776, 16),
5167 		    phy_reg | 0x0040);
5168 		/* Force Link */
5169 		(void) e1000_read_phy_reg(hw, PHY_REG(769, 16), &phy_reg);
5170 		(void) e1000_write_phy_reg(hw, PHY_REG(769, 16),
5171 		    phy_reg | 0x0040);
5172 		/* Set Early Link Enable */
5173 		(void) e1000_read_phy_reg(hw, PHY_REG(769, 20), &phy_reg);
5174 		(void) e1000_write_phy_reg(hw, PHY_REG(769, 20),
5175 		    phy_reg | 0x0400);
5176 	}
5177 
5178 	/* Set loopback */
5179 	(void) e1000_write_phy_reg(hw, PHY_CONTROL, phy_ctrl | MII_CR_LOOPBACK);
5180 
5181 	msec_delay(250);
5182 
5183 	/* Now set up the MAC to the same speed/duplex as the PHY. */
5184 	ctrl = E1000_READ_REG(hw, E1000_CTRL);
5185 	ctrl &= ~E1000_CTRL_SPD_SEL;	/* Clear the speed sel bits */
5186 	ctrl |= (E1000_CTRL_FRCSPD |	/* Set the Force Speed Bit */
5187 	    E1000_CTRL_FRCDPX |		/* Set the Force Duplex Bit */
5188 	    E1000_CTRL_SPD_1000 |	/* Force Speed to 1000 */
5189 	    E1000_CTRL_FD);		/* Force Duplex to FULL */
5190 
5191 	switch (hw->mac.type) {
5192 	case e1000_82540:
5193 	case e1000_82545:
5194 	case e1000_82545_rev_3:
5195 	case e1000_82546:
5196 	case e1000_82546_rev_3:
5197 		/*
5198 		 * For some serdes we'll need to commit the writes now
5199 		 * so that the status is updated on link
5200 		 */
5201 		if (hw->phy.media_type == e1000_media_type_internal_serdes) {
5202 			E1000_WRITE_REG(hw, E1000_CTRL, ctrl);
5203 			msec_delay(100);
5204 			ctrl = E1000_READ_REG(hw, E1000_CTRL);
5205 		}
5206 
5207 		if (hw->phy.media_type == e1000_media_type_copper) {
5208 			/* Invert Loss of Signal */
5209 			ctrl |= E1000_CTRL_ILOS;
5210 		} else {
5211 			/* Set ILOS on fiber nic if half duplex is detected */
5212 			status = E1000_READ_REG(hw, E1000_STATUS);
5213 			if ((status & E1000_STATUS_FD) == 0)
5214 				ctrl |= E1000_CTRL_ILOS | E1000_CTRL_SLU;
5215 		}
5216 		break;
5217 
5218 	case e1000_82571:
5219 	case e1000_82572:
5220 		/*
5221 		 * The fiber/SerDes versions of this adapter do not contain an
5222 		 * accessible PHY. Therefore, loopback beyond MAC must be done
5223 		 * using SerDes analog loopback.
5224 		 */
5225 		if (hw->phy.media_type != e1000_media_type_copper) {
5226 			/* Disable autoneg by setting bit 31 of TXCW to zero */
5227 			txcw = E1000_READ_REG(hw, E1000_TXCW);
5228 			txcw &= ~((uint32_t)1 << 31);
5229 			E1000_WRITE_REG(hw, E1000_TXCW, txcw);
5230 
5231 			/*
5232 			 * Write 0x410 to Serdes Control register
5233 			 * to enable Serdes analog loopback
5234 			 */
5235 			E1000_WRITE_REG(hw, E1000_SCTL, 0x0410);
5236 			msec_delay(10);
5237 		}
5238 
5239 		status = E1000_READ_REG(hw, E1000_STATUS);
5240 		/* Set ILOS on fiber nic if half duplex is detected */
5241 		if ((hw->phy.media_type == e1000_media_type_fiber) &&
5242 		    ((status & E1000_STATUS_FD) == 0 ||
5243 		    (status & E1000_STATUS_LU) == 0))
5244 			ctrl |= E1000_CTRL_ILOS | E1000_CTRL_SLU;
5245 		else if (hw->phy.media_type == e1000_media_type_internal_serdes)
5246 			ctrl |= E1000_CTRL_SLU;
5247 		break;
5248 
5249 	case e1000_82573:
5250 		ctrl |= E1000_CTRL_ILOS;
5251 		break;
5252 	case e1000_ich9lan:
5253 	case e1000_ich10lan:
5254 		ctrl |= E1000_CTRL_SLU;
5255 		break;
5256 	}
5257 	if (hw->phy.type == e1000_phy_bm)
5258 		ctrl |= E1000_CTRL_SLU | E1000_CTRL_ILOS;
5259 
5260 	E1000_WRITE_REG(hw, E1000_CTRL, ctrl);
5261 }
5262 
5263 static void
5264 e1000g_set_external_loopback_1000(struct e1000g *Adapter)
5265 {
5266 	struct e1000_hw *hw;
5267 	uint32_t rctl;
5268 	uint32_t ctrl_ext;
5269 	uint32_t ctrl;
5270 	uint32_t status;
5271 	uint32_t txcw;
5272 	uint16_t phydata;
5273 
5274 	hw = &Adapter->shared;
5275 
5276 	/* Disable Smart Power Down */
5277 	phy_spd_state(hw, B_FALSE);
5278 
5279 	switch (hw->mac.type) {
5280 	case e1000_82571:
5281 	case e1000_82572:
5282 		switch (hw->phy.media_type) {
5283 		case e1000_media_type_copper:
5284 			/* Force link up (Must be done before the PHY writes) */
5285 			ctrl = E1000_READ_REG(hw, E1000_CTRL);
5286 			ctrl |= E1000_CTRL_SLU;	/* Force Link Up */
5287 			E1000_WRITE_REG(hw, E1000_CTRL, ctrl);
5288 
5289 			rctl = E1000_READ_REG(hw, E1000_RCTL);
5290 			rctl |= (E1000_RCTL_EN |
5291 			    E1000_RCTL_SBP |
5292 			    E1000_RCTL_UPE |
5293 			    E1000_RCTL_MPE |
5294 			    E1000_RCTL_LPE |
5295 			    E1000_RCTL_BAM);		/* 0x803E */
5296 			E1000_WRITE_REG(hw, E1000_RCTL, rctl);
5297 
5298 			ctrl_ext = E1000_READ_REG(hw, E1000_CTRL_EXT);
5299 			ctrl_ext |= (E1000_CTRL_EXT_SDP4_DATA |
5300 			    E1000_CTRL_EXT_SDP6_DATA |
5301 			    E1000_CTRL_EXT_SDP3_DATA |
5302 			    E1000_CTRL_EXT_SDP4_DIR |
5303 			    E1000_CTRL_EXT_SDP6_DIR |
5304 			    E1000_CTRL_EXT_SDP3_DIR);	/* 0x0DD0 */
5305 			E1000_WRITE_REG(hw, E1000_CTRL_EXT, ctrl_ext);
5306 
5307 			/*
5308 			 * This sequence tunes the PHY's SDP and no customer
5309 			 * settable values. For background, see comments above
5310 			 * e1000g_set_internal_loopback().
5311 			 */
5312 			(void) e1000_write_phy_reg(hw, 0x0, 0x140);
5313 			msec_delay(10);
5314 			(void) e1000_write_phy_reg(hw, 0x9, 0x1A00);
5315 			(void) e1000_write_phy_reg(hw, 0x12, 0xC10);
5316 			(void) e1000_write_phy_reg(hw, 0x12, 0x1C10);
5317 			(void) e1000_write_phy_reg(hw, 0x1F37, 0x76);
5318 			(void) e1000_write_phy_reg(hw, 0x1F33, 0x1);
5319 			(void) e1000_write_phy_reg(hw, 0x1F33, 0x0);
5320 
5321 			(void) e1000_write_phy_reg(hw, 0x1F35, 0x65);
5322 			(void) e1000_write_phy_reg(hw, 0x1837, 0x3F7C);
5323 			(void) e1000_write_phy_reg(hw, 0x1437, 0x3FDC);
5324 			(void) e1000_write_phy_reg(hw, 0x1237, 0x3F7C);
5325 			(void) e1000_write_phy_reg(hw, 0x1137, 0x3FDC);
5326 
5327 			msec_delay(50);
5328 			break;
5329 		case e1000_media_type_fiber:
5330 		case e1000_media_type_internal_serdes:
5331 			status = E1000_READ_REG(hw, E1000_STATUS);
5332 			if (((status & E1000_STATUS_LU) == 0) ||
5333 			    (hw->phy.media_type ==
5334 			    e1000_media_type_internal_serdes)) {
5335 				ctrl = E1000_READ_REG(hw, E1000_CTRL);
5336 				ctrl |= E1000_CTRL_ILOS | E1000_CTRL_SLU;
5337 				E1000_WRITE_REG(hw, E1000_CTRL, ctrl);
5338 			}
5339 
5340 			/* Disable autoneg by setting bit 31 of TXCW to zero */
5341 			txcw = E1000_READ_REG(hw, E1000_TXCW);
5342 			txcw &= ~((uint32_t)1 << 31);
5343 			E1000_WRITE_REG(hw, E1000_TXCW, txcw);
5344 
5345 			/*
5346 			 * Write 0x410 to Serdes Control register
5347 			 * to enable Serdes analog loopback
5348 			 */
5349 			E1000_WRITE_REG(hw, E1000_SCTL, 0x0410);
5350 			msec_delay(10);
5351 			break;
5352 		default:
5353 			break;
5354 		}
5355 		break;
5356 	case e1000_82574:
5357 	case e1000_80003es2lan:
5358 	case e1000_ich9lan:
5359 	case e1000_ich10lan:
5360 		(void) e1000_read_phy_reg(hw, GG82563_REG(6, 16), &phydata);
5361 		(void) e1000_write_phy_reg(hw, GG82563_REG(6, 16),
5362 		    phydata | (1 << 5));
5363 		Adapter->param_adv_autoneg = 1;
5364 		Adapter->param_adv_1000fdx = 1;
5365 		(void) e1000g_reset_link(Adapter);
5366 		break;
5367 	}
5368 }
5369 
5370 static void
5371 e1000g_set_external_loopback_100(struct e1000g *Adapter)
5372 {
5373 	struct e1000_hw *hw;
5374 	uint32_t ctrl;
5375 	uint16_t phy_ctrl;
5376 
5377 	hw = &Adapter->shared;
5378 
5379 	/* Disable Smart Power Down */
5380 	phy_spd_state(hw, B_FALSE);
5381 
5382 	phy_ctrl = (MII_CR_FULL_DUPLEX |
5383 	    MII_CR_SPEED_100);
5384 
5385 	/* Force 100/FD, reset PHY */
5386 	(void) e1000_write_phy_reg(hw, PHY_CONTROL,
5387 	    phy_ctrl | MII_CR_RESET);	/* 0xA100 */
5388 	msec_delay(10);
5389 
5390 	/* Force 100/FD */
5391 	(void) e1000_write_phy_reg(hw, PHY_CONTROL,
5392 	    phy_ctrl);			/* 0x2100 */
5393 	msec_delay(10);
5394 
5395 	/* Now setup the MAC to the same speed/duplex as the PHY. */
5396 	ctrl = E1000_READ_REG(hw, E1000_CTRL);
5397 	ctrl &= ~E1000_CTRL_SPD_SEL;	/* Clear the speed sel bits */
5398 	ctrl |= (E1000_CTRL_SLU |	/* Force Link Up */
5399 	    E1000_CTRL_FRCSPD |		/* Set the Force Speed Bit */
5400 	    E1000_CTRL_FRCDPX |		/* Set the Force Duplex Bit */
5401 	    E1000_CTRL_SPD_100 |	/* Force Speed to 100 */
5402 	    E1000_CTRL_FD);		/* Force Duplex to FULL */
5403 
5404 	E1000_WRITE_REG(hw, E1000_CTRL, ctrl);
5405 }
5406 
5407 static void
5408 e1000g_set_external_loopback_10(struct e1000g *Adapter)
5409 {
5410 	struct e1000_hw *hw;
5411 	uint32_t ctrl;
5412 	uint16_t phy_ctrl;
5413 
5414 	hw = &Adapter->shared;
5415 
5416 	/* Disable Smart Power Down */
5417 	phy_spd_state(hw, B_FALSE);
5418 
5419 	phy_ctrl = (MII_CR_FULL_DUPLEX |
5420 	    MII_CR_SPEED_10);
5421 
5422 	/* Force 10/FD, reset PHY */
5423 	(void) e1000_write_phy_reg(hw, PHY_CONTROL,
5424 	    phy_ctrl | MII_CR_RESET);	/* 0x8100 */
5425 	msec_delay(10);
5426 
5427 	/* Force 10/FD */
5428 	(void) e1000_write_phy_reg(hw, PHY_CONTROL,
5429 	    phy_ctrl);			/* 0x0100 */
5430 	msec_delay(10);
5431 
5432 	/* Now setup the MAC to the same speed/duplex as the PHY. */
5433 	ctrl = E1000_READ_REG(hw, E1000_CTRL);
5434 	ctrl &= ~E1000_CTRL_SPD_SEL;	/* Clear the speed sel bits */
5435 	ctrl |= (E1000_CTRL_SLU |	/* Force Link Up */
5436 	    E1000_CTRL_FRCSPD |		/* Set the Force Speed Bit */
5437 	    E1000_CTRL_FRCDPX |		/* Set the Force Duplex Bit */
5438 	    E1000_CTRL_SPD_10 |		/* Force Speed to 10 */
5439 	    E1000_CTRL_FD);		/* Force Duplex to FULL */
5440 
5441 	E1000_WRITE_REG(hw, E1000_CTRL, ctrl);
5442 }
5443 
5444 #ifdef __sparc
5445 static boolean_t
5446 e1000g_find_mac_address(struct e1000g *Adapter)
5447 {
5448 	struct e1000_hw *hw = &Adapter->shared;
5449 	uchar_t *bytes;
5450 	struct ether_addr sysaddr;
5451 	uint_t nelts;
5452 	int err;
5453 	boolean_t found = B_FALSE;
5454 
5455 	/*
5456 	 * The "vendor's factory-set address" may already have
5457 	 * been extracted from the chip, but if the property
5458 	 * "local-mac-address" is set we use that instead.
5459 	 *
5460 	 * We check whether it looks like an array of 6
5461 	 * bytes (which it should, if OBP set it).  If we can't
5462 	 * make sense of it this way, we'll ignore it.
5463 	 */
5464 	err = ddi_prop_lookup_byte_array(DDI_DEV_T_ANY, Adapter->dip,
5465 	    DDI_PROP_DONTPASS, "local-mac-address", &bytes, &nelts);
5466 	if (err == DDI_PROP_SUCCESS) {
5467 		if (nelts == ETHERADDRL) {
5468 			while (nelts--)
5469 				hw->mac.addr[nelts] = bytes[nelts];
5470 			found = B_TRUE;
5471 		}
5472 		ddi_prop_free(bytes);
5473 	}
5474 
5475 	/*
5476 	 * Look up the OBP property "local-mac-address?". If the user has set
5477 	 * 'local-mac-address? = false', use "the system address" instead.
5478 	 */
5479 	if (ddi_prop_lookup_byte_array(DDI_DEV_T_ANY, Adapter->dip, 0,
5480 	    "local-mac-address?", &bytes, &nelts) == DDI_PROP_SUCCESS) {
5481 		if (strncmp("false", (caddr_t)bytes, (size_t)nelts) == 0) {
5482 			if (localetheraddr(NULL, &sysaddr) != 0) {
5483 				bcopy(&sysaddr, hw->mac.addr, ETHERADDRL);
5484 				found = B_TRUE;
5485 			}
5486 		}
5487 		ddi_prop_free(bytes);
5488 	}
5489 
5490 	/*
5491 	 * Finally(!), if there's a valid "mac-address" property (created
5492 	 * if we netbooted from this interface), we must use this instead
5493 	 * of any of the above to ensure that the NFS/install server doesn't
5494 	 * get confused by the address changing as Solaris takes over!
5495 	 */
5496 	err = ddi_prop_lookup_byte_array(DDI_DEV_T_ANY, Adapter->dip,
5497 	    DDI_PROP_DONTPASS, "mac-address", &bytes, &nelts);
5498 	if (err == DDI_PROP_SUCCESS) {
5499 		if (nelts == ETHERADDRL) {
5500 			while (nelts--)
5501 				hw->mac.addr[nelts] = bytes[nelts];
5502 			found = B_TRUE;
5503 		}
5504 		ddi_prop_free(bytes);
5505 	}
5506 
5507 	if (found) {
5508 		bcopy(hw->mac.addr, hw->mac.perm_addr,
5509 		    ETHERADDRL);
5510 	}
5511 
5512 	return (found);
5513 }
5514 #endif
5515 
5516 static int
5517 e1000g_add_intrs(struct e1000g *Adapter)
5518 {
5519 	dev_info_t *devinfo;
5520 	int intr_types;
5521 	int rc;
5522 
5523 	devinfo = Adapter->dip;
5524 
5525 	/* Get supported interrupt types */
5526 	rc = ddi_intr_get_supported_types(devinfo, &intr_types);
5527 
5528 	if (rc != DDI_SUCCESS) {
5529 		E1000G_DEBUGLOG_1(Adapter, E1000G_WARN_LEVEL,
5530 		    "Get supported interrupt types failed: %d\n", rc);
5531 		return (DDI_FAILURE);
5532 	}
5533 
5534 	/*
5535 	 * Based on Intel Technical Advisory document (TA-160), there are some
5536 	 * cases where some older Intel PCI-X NICs may "advertise" to the OS
5537 	 * that it supports MSI, but in fact has problems.
5538 	 * So we should only enable MSI for PCI-E NICs and disable MSI for old
5539 	 * PCI/PCI-X NICs.
5540 	 */
5541 	if (Adapter->shared.mac.type < e1000_82571)
5542 		Adapter->msi_enable = B_FALSE;
5543 
5544 	if ((intr_types & DDI_INTR_TYPE_MSI) && Adapter->msi_enable) {
5545 		rc = e1000g_intr_add(Adapter, DDI_INTR_TYPE_MSI);
5546 
5547 		if (rc != DDI_SUCCESS) {
5548 			E1000G_DEBUGLOG_0(Adapter, E1000G_WARN_LEVEL,
5549 			    "Add MSI failed, trying Legacy interrupts\n");
5550 		} else {
5551 			Adapter->intr_type = DDI_INTR_TYPE_MSI;
5552 		}
5553 	}
5554 
5555 	if ((Adapter->intr_type == 0) &&
5556 	    (intr_types & DDI_INTR_TYPE_FIXED)) {
5557 		rc = e1000g_intr_add(Adapter, DDI_INTR_TYPE_FIXED);
5558 
5559 		if (rc != DDI_SUCCESS) {
5560 			E1000G_DEBUGLOG_0(Adapter, E1000G_WARN_LEVEL,
5561 			    "Add Legacy interrupts failed\n");
5562 			return (DDI_FAILURE);
5563 		}
5564 
5565 		Adapter->intr_type = DDI_INTR_TYPE_FIXED;
5566 	}
5567 
5568 	if (Adapter->intr_type == 0) {
5569 		E1000G_DEBUGLOG_0(Adapter, E1000G_WARN_LEVEL,
5570 		    "No interrupts registered\n");
5571 		return (DDI_FAILURE);
5572 	}
5573 
5574 	return (DDI_SUCCESS);
5575 }
5576 
5577 /*
5578  * e1000g_intr_add() handles MSI/Legacy interrupts
5579  */
5580 static int
5581 e1000g_intr_add(struct e1000g *Adapter, int intr_type)
5582 {
5583 	dev_info_t *devinfo;
5584 	int count, avail, actual;
5585 	int x, y, rc, inum = 0;
5586 	int flag;
5587 	ddi_intr_handler_t *intr_handler;
5588 
5589 	devinfo = Adapter->dip;
5590 
5591 	/* get number of interrupts */
5592 	rc = ddi_intr_get_nintrs(devinfo, intr_type, &count);
5593 	if ((rc != DDI_SUCCESS) || (count == 0)) {
5594 		E1000G_DEBUGLOG_2(Adapter, E1000G_WARN_LEVEL,
5595 		    "Get interrupt number failed. Return: %d, count: %d\n",
5596 		    rc, count);
5597 		return (DDI_FAILURE);
5598 	}
5599 
5600 	/* get number of available interrupts */
5601 	rc = ddi_intr_get_navail(devinfo, intr_type, &avail);
5602 	if ((rc != DDI_SUCCESS) || (avail == 0)) {
5603 		E1000G_DEBUGLOG_2(Adapter, E1000G_WARN_LEVEL,
5604 		    "Get interrupt available number failed. "
5605 		    "Return: %d, available: %d\n", rc, avail);
5606 		return (DDI_FAILURE);
5607 	}
5608 
5609 	if (avail < count) {
5610 		E1000G_DEBUGLOG_2(Adapter, E1000G_WARN_LEVEL,
5611 		    "Interrupts count: %d, available: %d\n",
5612 		    count, avail);
5613 	}
5614 
5615 	/* Allocate an array of interrupt handles */
5616 	Adapter->intr_size = count * sizeof (ddi_intr_handle_t);
5617 	Adapter->htable = kmem_alloc(Adapter->intr_size, KM_SLEEP);
5618 
5619 	/* Set NORMAL behavior for both MSI and FIXED interrupt */
5620 	flag = DDI_INTR_ALLOC_NORMAL;
5621 
5622 	/* call ddi_intr_alloc() */
5623 	rc = ddi_intr_alloc(devinfo, Adapter->htable, intr_type, inum,
5624 	    count, &actual, flag);
5625 
5626 	if ((rc != DDI_SUCCESS) || (actual == 0)) {
5627 		E1000G_DEBUGLOG_1(Adapter, E1000G_WARN_LEVEL,
5628 		    "Allocate interrupts failed: %d\n", rc);
5629 
5630 		kmem_free(Adapter->htable, Adapter->intr_size);
5631 		return (DDI_FAILURE);
5632 	}
5633 
5634 	if (actual < count) {
5635 		E1000G_DEBUGLOG_2(Adapter, E1000G_WARN_LEVEL,
5636 		    "Interrupts requested: %d, received: %d\n",
5637 		    count, actual);
5638 	}
5639 
5640 	Adapter->intr_cnt = actual;
5641 
5642 	/* Get priority for first msi, assume remaining are all the same */
5643 	rc = ddi_intr_get_pri(Adapter->htable[0], &Adapter->intr_pri);
5644 
5645 	if (rc != DDI_SUCCESS) {
5646 		E1000G_DEBUGLOG_1(Adapter, E1000G_WARN_LEVEL,
5647 		    "Get interrupt priority failed: %d\n", rc);
5648 
5649 		/* Free already allocated intr */
5650 		for (y = 0; y < actual; y++)
5651 			(void) ddi_intr_free(Adapter->htable[y]);
5652 
5653 		kmem_free(Adapter->htable, Adapter->intr_size);
5654 		return (DDI_FAILURE);
5655 	}
5656 
5657 	/*
5658 	 * In Legacy Interrupt mode, for PCI-Express adapters, we should
5659 	 * use the interrupt service routine e1000g_intr_pciexpress()
5660 	 * to avoid interrupt stealing when sharing interrupt with other
5661 	 * devices.
5662 	 */
5663 	if (Adapter->shared.mac.type < e1000_82571)
5664 		intr_handler = (ddi_intr_handler_t *)e1000g_intr;
5665 	else
5666 		intr_handler = (ddi_intr_handler_t *)e1000g_intr_pciexpress;
5667 
5668 	/* Call ddi_intr_add_handler() */
5669 	for (x = 0; x < actual; x++) {
5670 		rc = ddi_intr_add_handler(Adapter->htable[x],
5671 		    intr_handler, (caddr_t)Adapter, NULL);
5672 
5673 		if (rc != DDI_SUCCESS) {
5674 			E1000G_DEBUGLOG_1(Adapter, E1000G_WARN_LEVEL,
5675 			    "Add interrupt handler failed: %d\n", rc);
5676 
5677 			/* Remove already added handler */
5678 			for (y = 0; y < x; y++)
5679 				(void) ddi_intr_remove_handler(
5680 				    Adapter->htable[y]);
5681 
5682 			/* Free already allocated intr */
5683 			for (y = 0; y < actual; y++)
5684 				(void) ddi_intr_free(Adapter->htable[y]);
5685 
5686 			kmem_free(Adapter->htable, Adapter->intr_size);
5687 			return (DDI_FAILURE);
5688 		}
5689 	}
5690 
5691 	rc = ddi_intr_get_cap(Adapter->htable[0], &Adapter->intr_cap);
5692 
5693 	if (rc != DDI_SUCCESS) {
5694 		E1000G_DEBUGLOG_1(Adapter, E1000G_WARN_LEVEL,
5695 		    "Get interrupt cap failed: %d\n", rc);
5696 
5697 		/* Free already allocated intr */
5698 		for (y = 0; y < actual; y++) {
5699 			(void) ddi_intr_remove_handler(Adapter->htable[y]);
5700 			(void) ddi_intr_free(Adapter->htable[y]);
5701 		}
5702 
5703 		kmem_free(Adapter->htable, Adapter->intr_size);
5704 		return (DDI_FAILURE);
5705 	}
5706 
5707 	return (DDI_SUCCESS);
5708 }
5709 
5710 static int
5711 e1000g_rem_intrs(struct e1000g *Adapter)
5712 {
5713 	int x;
5714 	int rc;
5715 
5716 	for (x = 0; x < Adapter->intr_cnt; x++) {
5717 		rc = ddi_intr_remove_handler(Adapter->htable[x]);
5718 		if (rc != DDI_SUCCESS) {
5719 			E1000G_DEBUGLOG_1(Adapter, E1000G_WARN_LEVEL,
5720 			    "Remove intr handler failed: %d\n", rc);
5721 			return (DDI_FAILURE);
5722 		}
5723 
5724 		rc = ddi_intr_free(Adapter->htable[x]);
5725 		if (rc != DDI_SUCCESS) {
5726 			E1000G_DEBUGLOG_1(Adapter, E1000G_WARN_LEVEL,
5727 			    "Free intr failed: %d\n", rc);
5728 			return (DDI_FAILURE);
5729 		}
5730 	}
5731 
5732 	kmem_free(Adapter->htable, Adapter->intr_size);
5733 
5734 	return (DDI_SUCCESS);
5735 }
5736 
5737 static int
5738 e1000g_enable_intrs(struct e1000g *Adapter)
5739 {
5740 	int x;
5741 	int rc;
5742 
5743 	/* Enable interrupts */
5744 	if (Adapter->intr_cap & DDI_INTR_FLAG_BLOCK) {
5745 		/* Call ddi_intr_block_enable() for MSI */
5746 		rc = ddi_intr_block_enable(Adapter->htable,
5747 		    Adapter->intr_cnt);
5748 		if (rc != DDI_SUCCESS) {
5749 			E1000G_DEBUGLOG_1(Adapter, E1000G_WARN_LEVEL,
5750 			    "Enable block intr failed: %d\n", rc);
5751 			return (DDI_FAILURE);
5752 		}
5753 	} else {
5754 		/* Call ddi_intr_enable() for Legacy/MSI non block enable */
5755 		for (x = 0; x < Adapter->intr_cnt; x++) {
5756 			rc = ddi_intr_enable(Adapter->htable[x]);
5757 			if (rc != DDI_SUCCESS) {
5758 				E1000G_DEBUGLOG_1(Adapter, E1000G_WARN_LEVEL,
5759 				    "Enable intr failed: %d\n", rc);
5760 				return (DDI_FAILURE);
5761 			}
5762 		}
5763 	}
5764 
5765 	return (DDI_SUCCESS);
5766 }
5767 
5768 static int
5769 e1000g_disable_intrs(struct e1000g *Adapter)
5770 {
5771 	int x;
5772 	int rc;
5773 
5774 	/* Disable all interrupts */
5775 	if (Adapter->intr_cap & DDI_INTR_FLAG_BLOCK) {
5776 		rc = ddi_intr_block_disable(Adapter->htable,
5777 		    Adapter->intr_cnt);
5778 		if (rc != DDI_SUCCESS) {
5779 			E1000G_DEBUGLOG_1(Adapter, E1000G_WARN_LEVEL,
5780 			    "Disable block intr failed: %d\n", rc);
5781 			return (DDI_FAILURE);
5782 		}
5783 	} else {
5784 		for (x = 0; x < Adapter->intr_cnt; x++) {
5785 			rc = ddi_intr_disable(Adapter->htable[x]);
5786 			if (rc != DDI_SUCCESS) {
5787 				E1000G_DEBUGLOG_1(Adapter, E1000G_WARN_LEVEL,
5788 				    "Disable intr failed: %d\n", rc);
5789 				return (DDI_FAILURE);
5790 			}
5791 		}
5792 	}
5793 
5794 	return (DDI_SUCCESS);
5795 }
5796 
5797 /*
5798  * e1000g_get_phy_state - get the state of PHY registers, save in the adapter
5799  */
5800 static void
5801 e1000g_get_phy_state(struct e1000g *Adapter)
5802 {
5803 	struct e1000_hw *hw = &Adapter->shared;
5804 
5805 	if (hw->phy.media_type == e1000_media_type_copper) {
5806 		(void) e1000_read_phy_reg(hw, PHY_CONTROL, &Adapter->phy_ctrl);
5807 		(void) e1000_read_phy_reg(hw, PHY_STATUS, &Adapter->phy_status);
5808 		(void) e1000_read_phy_reg(hw, PHY_AUTONEG_ADV,
5809 		    &Adapter->phy_an_adv);
5810 		(void) e1000_read_phy_reg(hw, PHY_AUTONEG_EXP,
5811 		    &Adapter->phy_an_exp);
5812 		(void) e1000_read_phy_reg(hw, PHY_EXT_STATUS,
5813 		    &Adapter->phy_ext_status);
5814 		(void) e1000_read_phy_reg(hw, PHY_1000T_CTRL,
5815 		    &Adapter->phy_1000t_ctrl);
5816 		(void) e1000_read_phy_reg(hw, PHY_1000T_STATUS,
5817 		    &Adapter->phy_1000t_status);
5818 		(void) e1000_read_phy_reg(hw, PHY_LP_ABILITY,
5819 		    &Adapter->phy_lp_able);
5820 
5821 		Adapter->param_autoneg_cap =
5822 		    (Adapter->phy_status & MII_SR_AUTONEG_CAPS) ? 1 : 0;
5823 		Adapter->param_pause_cap =
5824 		    (Adapter->phy_an_adv & NWAY_AR_PAUSE) ? 1 : 0;
5825 		Adapter->param_asym_pause_cap =
5826 		    (Adapter->phy_an_adv & NWAY_AR_ASM_DIR) ? 1 : 0;
5827 		Adapter->param_1000fdx_cap =
5828 		    ((Adapter->phy_ext_status & IEEE_ESR_1000T_FD_CAPS) ||
5829 		    (Adapter->phy_ext_status & IEEE_ESR_1000X_FD_CAPS)) ? 1 : 0;
5830 		Adapter->param_1000hdx_cap =
5831 		    ((Adapter->phy_ext_status & IEEE_ESR_1000T_HD_CAPS) ||
5832 		    (Adapter->phy_ext_status & IEEE_ESR_1000X_HD_CAPS)) ? 1 : 0;
5833 		Adapter->param_100t4_cap =
5834 		    (Adapter->phy_status & MII_SR_100T4_CAPS) ? 1 : 0;
5835 		Adapter->param_100fdx_cap =
5836 		    ((Adapter->phy_status & MII_SR_100X_FD_CAPS) ||
5837 		    (Adapter->phy_status & MII_SR_100T2_FD_CAPS)) ? 1 : 0;
5838 		Adapter->param_100hdx_cap =
5839 		    ((Adapter->phy_status & MII_SR_100X_HD_CAPS) ||
5840 		    (Adapter->phy_status & MII_SR_100T2_HD_CAPS)) ? 1 : 0;
5841 		Adapter->param_10fdx_cap =
5842 		    (Adapter->phy_status & MII_SR_10T_FD_CAPS) ? 1 : 0;
5843 		Adapter->param_10hdx_cap =
5844 		    (Adapter->phy_status & MII_SR_10T_HD_CAPS) ? 1 : 0;
5845 
5846 		Adapter->param_adv_autoneg = hw->mac.autoneg;
5847 		Adapter->param_adv_pause =
5848 		    (Adapter->phy_an_adv & NWAY_AR_PAUSE) ? 1 : 0;
5849 		Adapter->param_adv_asym_pause =
5850 		    (Adapter->phy_an_adv & NWAY_AR_ASM_DIR) ? 1 : 0;
5851 		Adapter->param_adv_1000hdx =
5852 		    (Adapter->phy_1000t_ctrl & CR_1000T_HD_CAPS) ? 1 : 0;
5853 		Adapter->param_adv_100t4 =
5854 		    (Adapter->phy_an_adv & NWAY_AR_100T4_CAPS) ? 1 : 0;
5855 		if (Adapter->param_adv_autoneg == 1) {
5856 			Adapter->param_adv_1000fdx =
5857 			    (Adapter->phy_1000t_ctrl & CR_1000T_FD_CAPS)
5858 			    ? 1 : 0;
5859 			Adapter->param_adv_100fdx =
5860 			    (Adapter->phy_an_adv & NWAY_AR_100TX_FD_CAPS)
5861 			    ? 1 : 0;
5862 			Adapter->param_adv_100hdx =
5863 			    (Adapter->phy_an_adv & NWAY_AR_100TX_HD_CAPS)
5864 			    ? 1 : 0;
5865 			Adapter->param_adv_10fdx =
5866 			    (Adapter->phy_an_adv & NWAY_AR_10T_FD_CAPS) ? 1 : 0;
5867 			Adapter->param_adv_10hdx =
5868 			    (Adapter->phy_an_adv & NWAY_AR_10T_HD_CAPS) ? 1 : 0;
5869 		}
5870 
5871 		Adapter->param_lp_autoneg =
5872 		    (Adapter->phy_an_exp & NWAY_ER_LP_NWAY_CAPS) ? 1 : 0;
5873 		Adapter->param_lp_pause =
5874 		    (Adapter->phy_lp_able & NWAY_LPAR_PAUSE) ? 1 : 0;
5875 		Adapter->param_lp_asym_pause =
5876 		    (Adapter->phy_lp_able & NWAY_LPAR_ASM_DIR) ? 1 : 0;
5877 		Adapter->param_lp_1000fdx =
5878 		    (Adapter->phy_1000t_status & SR_1000T_LP_FD_CAPS) ? 1 : 0;
5879 		Adapter->param_lp_1000hdx =
5880 		    (Adapter->phy_1000t_status & SR_1000T_LP_HD_CAPS) ? 1 : 0;
5881 		Adapter->param_lp_100t4 =
5882 		    (Adapter->phy_lp_able & NWAY_LPAR_100T4_CAPS) ? 1 : 0;
5883 		Adapter->param_lp_100fdx =
5884 		    (Adapter->phy_lp_able & NWAY_LPAR_100TX_FD_CAPS) ? 1 : 0;
5885 		Adapter->param_lp_100hdx =
5886 		    (Adapter->phy_lp_able & NWAY_LPAR_100TX_HD_CAPS) ? 1 : 0;
5887 		Adapter->param_lp_10fdx =
5888 		    (Adapter->phy_lp_able & NWAY_LPAR_10T_FD_CAPS) ? 1 : 0;
5889 		Adapter->param_lp_10hdx =
5890 		    (Adapter->phy_lp_able & NWAY_LPAR_10T_HD_CAPS) ? 1 : 0;
5891 	} else {
5892 		/*
5893 		 * 1Gig Fiber adapter only offers 1Gig Full Duplex. Meaning,
5894 		 * it can only work with 1Gig Full Duplex Link Partner.
5895 		 */
5896 		Adapter->param_autoneg_cap = 0;
5897 		Adapter->param_pause_cap = 1;
5898 		Adapter->param_asym_pause_cap = 1;
5899 		Adapter->param_1000fdx_cap = 1;
5900 		Adapter->param_1000hdx_cap = 0;
5901 		Adapter->param_100t4_cap = 0;
5902 		Adapter->param_100fdx_cap = 0;
5903 		Adapter->param_100hdx_cap = 0;
5904 		Adapter->param_10fdx_cap = 0;
5905 		Adapter->param_10hdx_cap = 0;
5906 
5907 		Adapter->param_adv_autoneg = 0;
5908 		Adapter->param_adv_pause = 1;
5909 		Adapter->param_adv_asym_pause = 1;
5910 		Adapter->param_adv_1000fdx = 1;
5911 		Adapter->param_adv_1000hdx = 0;
5912 		Adapter->param_adv_100t4 = 0;
5913 		Adapter->param_adv_100fdx = 0;
5914 		Adapter->param_adv_100hdx = 0;
5915 		Adapter->param_adv_10fdx = 0;
5916 		Adapter->param_adv_10hdx = 0;
5917 
5918 		Adapter->param_lp_autoneg = 0;
5919 		Adapter->param_lp_pause = 0;
5920 		Adapter->param_lp_asym_pause = 0;
5921 		Adapter->param_lp_1000fdx = 0;
5922 		Adapter->param_lp_1000hdx = 0;
5923 		Adapter->param_lp_100t4 = 0;
5924 		Adapter->param_lp_100fdx = 0;
5925 		Adapter->param_lp_100hdx = 0;
5926 		Adapter->param_lp_10fdx = 0;
5927 		Adapter->param_lp_10hdx = 0;
5928 	}
5929 }
5930 
5931 /*
5932  * FMA support
5933  */
5934 
5935 int
5936 e1000g_check_acc_handle(ddi_acc_handle_t handle)
5937 {
5938 	ddi_fm_error_t de;
5939 
5940 	ddi_fm_acc_err_get(handle, &de, DDI_FME_VERSION);
5941 	ddi_fm_acc_err_clear(handle, DDI_FME_VERSION);
5942 	return (de.fme_status);
5943 }
5944 
5945 int
5946 e1000g_check_dma_handle(ddi_dma_handle_t handle)
5947 {
5948 	ddi_fm_error_t de;
5949 
5950 	ddi_fm_dma_err_get(handle, &de, DDI_FME_VERSION);
5951 	return (de.fme_status);
5952 }
5953 
5954 /*
5955  * The IO fault service error handling callback function
5956  */
5957 /* ARGSUSED2 */
5958 static int
5959 e1000g_fm_error_cb(dev_info_t *dip, ddi_fm_error_t *err, const void *impl_data)
5960 {
5961 	/*
5962 	 * as the driver can always deal with an error in any dma or
5963 	 * access handle, we can just return the fme_status value.
5964 	 */
5965 	pci_ereport_post(dip, err, NULL);
5966 	return (err->fme_status);
5967 }
5968 
5969 static void
5970 e1000g_fm_init(struct e1000g *Adapter)
5971 {
5972 	ddi_iblock_cookie_t iblk;
5973 	int fma_acc_flag, fma_dma_flag;
5974 
5975 	/* Only register with IO Fault Services if we have some capability */
5976 	if (Adapter->fm_capabilities & DDI_FM_ACCCHK_CAPABLE) {
5977 		e1000g_regs_acc_attr.devacc_attr_access = DDI_FLAGERR_ACC;
5978 		fma_acc_flag = 1;
5979 	} else {
5980 		e1000g_regs_acc_attr.devacc_attr_access = DDI_DEFAULT_ACC;
5981 		fma_acc_flag = 0;
5982 	}
5983 
5984 	if (Adapter->fm_capabilities & DDI_FM_DMACHK_CAPABLE) {
5985 		fma_dma_flag = 1;
5986 	} else {
5987 		fma_dma_flag = 0;
5988 	}
5989 
5990 	(void) e1000g_set_fma_flags(Adapter, fma_acc_flag, fma_dma_flag);
5991 
5992 	if (Adapter->fm_capabilities) {
5993 
5994 		/* Register capabilities with IO Fault Services */
5995 		ddi_fm_init(Adapter->dip, &Adapter->fm_capabilities, &iblk);
5996 
5997 		/*
5998 		 * Initialize pci ereport capabilities if ereport capable
5999 		 */
6000 		if (DDI_FM_EREPORT_CAP(Adapter->fm_capabilities) ||
6001 		    DDI_FM_ERRCB_CAP(Adapter->fm_capabilities))
6002 			pci_ereport_setup(Adapter->dip);
6003 
6004 		/*
6005 		 * Register error callback if error callback capable
6006 		 */
6007 		if (DDI_FM_ERRCB_CAP(Adapter->fm_capabilities))
6008 			ddi_fm_handler_register(Adapter->dip,
6009 			    e1000g_fm_error_cb, (void*) Adapter);
6010 	}
6011 }
6012 
6013 static void
6014 e1000g_fm_fini(struct e1000g *Adapter)
6015 {
6016 	/* Only unregister FMA capabilities if we registered some */
6017 	if (Adapter->fm_capabilities) {
6018 
6019 		/*
6020 		 * Release any resources allocated by pci_ereport_setup()
6021 		 */
6022 		if (DDI_FM_EREPORT_CAP(Adapter->fm_capabilities) ||
6023 		    DDI_FM_ERRCB_CAP(Adapter->fm_capabilities))
6024 			pci_ereport_teardown(Adapter->dip);
6025 
6026 		/*
6027 		 * Un-register error callback if error callback capable
6028 		 */
6029 		if (DDI_FM_ERRCB_CAP(Adapter->fm_capabilities))
6030 			ddi_fm_handler_unregister(Adapter->dip);
6031 
6032 		/* Unregister from IO Fault Services */
6033 		mutex_enter(&e1000g_rx_detach_lock);
6034 		ddi_fm_fini(Adapter->dip);
6035 		if (Adapter->priv_dip != NULL) {
6036 			DEVI(Adapter->priv_dip)->devi_fmhdl = NULL;
6037 		}
6038 		mutex_exit(&e1000g_rx_detach_lock);
6039 	}
6040 }
6041 
6042 void
6043 e1000g_fm_ereport(struct e1000g *Adapter, char *detail)
6044 {
6045 	uint64_t ena;
6046 	char buf[FM_MAX_CLASS];
6047 
6048 	(void) snprintf(buf, FM_MAX_CLASS, "%s.%s", DDI_FM_DEVICE, detail);
6049 	ena = fm_ena_generate(0, FM_ENA_FMT1);
6050 	if (DDI_FM_EREPORT_CAP(Adapter->fm_capabilities)) {
6051 		ddi_fm_ereport_post(Adapter->dip, buf, ena, DDI_NOSLEEP,
6052 		    FM_VERSION, DATA_TYPE_UINT8, FM_EREPORT_VERS0, NULL);
6053 	}
6054 }
6055 
6056 /*
6057  * quiesce(9E) entry point.
6058  *
6059  * This function is called when the system is single-threaded at high
6060  * PIL with preemption disabled. Therefore, this function must not be
6061  * blocked.
6062  *
6063  * This function returns DDI_SUCCESS on success, or DDI_FAILURE on failure.
6064  * DDI_FAILURE indicates an error condition and should almost never happen.
6065  */
6066 static int
6067 e1000g_quiesce(dev_info_t *devinfo)
6068 {
6069 	struct e1000g *Adapter;
6070 
6071 	Adapter = (struct e1000g *)ddi_get_driver_private(devinfo);
6072 
6073 	if (Adapter == NULL)
6074 		return (DDI_FAILURE);
6075 
6076 	e1000g_clear_all_interrupts(Adapter);
6077 
6078 	(void) e1000_reset_hw(&Adapter->shared);
6079 
6080 	/* Setup our HW Tx Head & Tail descriptor pointers */
6081 	E1000_WRITE_REG(&Adapter->shared, E1000_TDH(0), 0);
6082 	E1000_WRITE_REG(&Adapter->shared, E1000_TDT(0), 0);
6083 
6084 	/* Setup our HW Rx Head & Tail descriptor pointers */
6085 	E1000_WRITE_REG(&Adapter->shared, E1000_RDH(0), 0);
6086 	E1000_WRITE_REG(&Adapter->shared, E1000_RDT(0), 0);
6087 
6088 	return (DDI_SUCCESS);
6089 }
6090 
6091 static int
6092 e1000g_get_def_val(struct e1000g *Adapter, mac_prop_id_t pr_num,
6093     uint_t pr_valsize, void *pr_val)
6094 {
6095 	link_flowctrl_t fl;
6096 	struct e1000_hw *hw = &Adapter->shared;
6097 	int err = 0;
6098 
6099 	ASSERT(pr_valsize > 0);
6100 	switch (pr_num) {
6101 	case MAC_PROP_AUTONEG:
6102 		if (hw->phy.media_type != e1000_media_type_copper)
6103 			*(uint8_t *)pr_val = 0;
6104 		else
6105 			*(uint8_t *)pr_val =
6106 			    ((Adapter->phy_status & MII_SR_AUTONEG_CAPS)
6107 			    ? 1 : 0);
6108 		break;
6109 	case MAC_PROP_FLOWCTRL:
6110 		if (pr_valsize < sizeof (link_flowctrl_t))
6111 			return (EINVAL);
6112 		fl = LINK_FLOWCTRL_BI;
6113 		bcopy(&fl, pr_val, sizeof (fl));
6114 		break;
6115 	case MAC_PROP_ADV_1000FDX_CAP:
6116 	case MAC_PROP_EN_1000FDX_CAP:
6117 		if (hw->phy.media_type != e1000_media_type_copper)
6118 			*(uint8_t *)pr_val = 1;
6119 		else
6120 			*(uint8_t *)pr_val =
6121 			    ((Adapter->phy_ext_status &
6122 			    IEEE_ESR_1000T_FD_CAPS) ||
6123 			    (Adapter->phy_ext_status & IEEE_ESR_1000X_FD_CAPS))
6124 			    ? 1 : 0;
6125 		break;
6126 	case MAC_PROP_ADV_1000HDX_CAP:
6127 	case MAC_PROP_EN_1000HDX_CAP:
6128 		*(uint8_t *)pr_val = 0;
6129 		break;
6130 	case MAC_PROP_ADV_100FDX_CAP:
6131 	case MAC_PROP_EN_100FDX_CAP:
6132 		if (hw->phy.media_type != e1000_media_type_copper)
6133 			*(uint8_t *)pr_val = 0;
6134 		else
6135 			*(uint8_t *)pr_val =
6136 			    ((Adapter->phy_status & MII_SR_100X_FD_CAPS) ||
6137 			    (Adapter->phy_status & MII_SR_100T2_FD_CAPS))
6138 			    ? 1 : 0;
6139 		break;
6140 	case MAC_PROP_ADV_100HDX_CAP:
6141 	case MAC_PROP_EN_100HDX_CAP:
6142 		if (hw->phy.media_type != e1000_media_type_copper)
6143 			*(uint8_t *)pr_val = 0;
6144 		else
6145 			*(uint8_t *)pr_val =
6146 			    ((Adapter->phy_status & MII_SR_100X_HD_CAPS) ||
6147 			    (Adapter->phy_status & MII_SR_100T2_HD_CAPS))
6148 			    ? 1 : 0;
6149 		break;
6150 	case MAC_PROP_ADV_10FDX_CAP:
6151 	case MAC_PROP_EN_10FDX_CAP:
6152 		if (hw->phy.media_type != e1000_media_type_copper)
6153 			*(uint8_t *)pr_val = 0;
6154 		else
6155 			*(uint8_t *)pr_val =
6156 			    (Adapter->phy_status & MII_SR_10T_FD_CAPS) ? 1 : 0;
6157 		break;
6158 	case MAC_PROP_ADV_10HDX_CAP:
6159 	case MAC_PROP_EN_10HDX_CAP:
6160 		if (hw->phy.media_type != e1000_media_type_copper)
6161 			*(uint8_t *)pr_val = 0;
6162 		else
6163 			*(uint8_t *)pr_val =
6164 			    (Adapter->phy_status & MII_SR_10T_HD_CAPS) ? 1 : 0;
6165 		break;
6166 	default:
6167 		err = ENOTSUP;
6168 		break;
6169 	}
6170 	return (err);
6171 }
6172 
6173 /*
6174  * synchronize the adv* and en* parameters.
6175  *
6176  * See comments in <sys/dld.h> for details of the *_en_*
6177  * parameters. The usage of ndd for setting adv parameters will
6178  * synchronize all the en parameters with the e1000g parameters,
6179  * implicitly disabling any settings made via dladm.
6180  */
6181 static void
6182 e1000g_param_sync(struct e1000g *Adapter)
6183 {
6184 	Adapter->param_en_1000fdx = Adapter->param_adv_1000fdx;
6185 	Adapter->param_en_1000hdx = Adapter->param_adv_1000hdx;
6186 	Adapter->param_en_100fdx = Adapter->param_adv_100fdx;
6187 	Adapter->param_en_100hdx = Adapter->param_adv_100hdx;
6188 	Adapter->param_en_10fdx = Adapter->param_adv_10fdx;
6189 	Adapter->param_en_10hdx = Adapter->param_adv_10hdx;
6190 }
6191 
6192 /*
6193  * e1000g_get_driver_control - tell manageability firmware that the driver
6194  * has control.
6195  */
6196 static void
6197 e1000g_get_driver_control(struct e1000_hw *hw)
6198 {
6199 	uint32_t ctrl_ext;
6200 	uint32_t swsm;
6201 
6202 	/* tell manageability firmware the driver has taken over */
6203 	switch (hw->mac.type) {
6204 	case e1000_82573:
6205 		swsm = E1000_READ_REG(hw, E1000_SWSM);
6206 		E1000_WRITE_REG(hw, E1000_SWSM, swsm | E1000_SWSM_DRV_LOAD);
6207 		break;
6208 	case e1000_82571:
6209 	case e1000_82572:
6210 	case e1000_82574:
6211 	case e1000_80003es2lan:
6212 	case e1000_ich8lan:
6213 	case e1000_ich9lan:
6214 	case e1000_ich10lan:
6215 	case e1000_pchlan:
6216 		ctrl_ext = E1000_READ_REG(hw, E1000_CTRL_EXT);
6217 		E1000_WRITE_REG(hw, E1000_CTRL_EXT,
6218 		    ctrl_ext | E1000_CTRL_EXT_DRV_LOAD);
6219 		break;
6220 	default:
6221 		/* no manageability firmware: do nothing */
6222 		break;
6223 	}
6224 }
6225 
6226 /*
6227  * e1000g_release_driver_control - tell manageability firmware that the driver
6228  * has released control.
6229  */
6230 static void
6231 e1000g_release_driver_control(struct e1000_hw *hw)
6232 {
6233 	uint32_t ctrl_ext;
6234 	uint32_t swsm;
6235 
6236 	/* tell manageability firmware the driver has released control */
6237 	switch (hw->mac.type) {
6238 	case e1000_82573:
6239 		swsm = E1000_READ_REG(hw, E1000_SWSM);
6240 		E1000_WRITE_REG(hw, E1000_SWSM, swsm & ~E1000_SWSM_DRV_LOAD);
6241 		break;
6242 	case e1000_82571:
6243 	case e1000_82572:
6244 	case e1000_82574:
6245 	case e1000_80003es2lan:
6246 	case e1000_ich8lan:
6247 	case e1000_ich9lan:
6248 	case e1000_ich10lan:
6249 	case e1000_pchlan:
6250 		ctrl_ext = E1000_READ_REG(hw, E1000_CTRL_EXT);
6251 		E1000_WRITE_REG(hw, E1000_CTRL_EXT,
6252 		    ctrl_ext & ~E1000_CTRL_EXT_DRV_LOAD);
6253 		break;
6254 	default:
6255 		/* no manageability firmware: do nothing */
6256 		break;
6257 	}
6258 }
6259 
6260 /*
6261  * Restore e1000g promiscuous mode.
6262  */
6263 static void
6264 e1000g_restore_promisc(struct e1000g *Adapter)
6265 {
6266 	if (Adapter->e1000g_promisc) {
6267 		uint32_t rctl;
6268 
6269 		rctl = E1000_READ_REG(&Adapter->shared, E1000_RCTL);
6270 		rctl |= (E1000_RCTL_UPE | E1000_RCTL_MPE | E1000_RCTL_BAM);
6271 		E1000_WRITE_REG(&Adapter->shared, E1000_RCTL, rctl);
6272 	}
6273 }
6274