xref: /illumos-gate/usr/src/uts/common/io/e1000g/e1000g_main.c (revision 62c8caf3fac65817982e780c1efa988846153bf0)
1 /*
2  * This file is provided under a CDDLv1 license.  When using or
3  * redistributing this file, you may do so under this license.
4  * In redistributing this file this license must be included
5  * and no other modification of this header file is permitted.
6  *
7  * CDDL LICENSE SUMMARY
8  *
9  * Copyright(c) 1999 - 2008 Intel Corporation. All rights reserved.
10  *
11  * The contents of this file are subject to the terms of Version
12  * 1.0 of the Common Development and Distribution License (the "License").
13  *
14  * You should have received a copy of the License with this software.
15  * You can obtain a copy of the License at
16  *	http://www.opensolaris.org/os/licensing.
17  * See the License for the specific language governing permissions
18  * and limitations under the License.
19  */
20 
21 /*
22  * Copyright 2008 Sun Microsystems, Inc.  All rights reserved.
23  * Use is subject to license terms of the CDDLv1.
24  */
25 
26 /*
27  * **********************************************************************
28  *									*
29  * Module Name:								*
30  *   e1000g_main.c							*
31  *									*
32  * Abstract:								*
33  *   This file contains the interface routines for the solaris OS.	*
34  *   It has all DDI entry point routines and GLD entry point routines.	*
35  *									*
36  *   This file also contains routines that take care of initialization	*
37  *   uninit routine and interrupt routine.				*
38  *									*
39  * **********************************************************************
40  */
41 
42 #include <sys/dlpi.h>
43 #include <sys/mac.h>
44 #include "e1000g_sw.h"
45 #include "e1000g_debug.h"
46 
47 static char ident[] = "Intel PRO/1000 Ethernet 5.2.12";
48 static char e1000g_string[] = "Intel(R) PRO/1000 Network Connection";
49 static char e1000g_version[] = "Driver Ver. 5.2.12";
50 
51 /*
52  * Proto types for DDI entry points
53  */
54 static int e1000g_attach(dev_info_t *, ddi_attach_cmd_t);
55 static int e1000g_detach(dev_info_t *, ddi_detach_cmd_t);
56 
57 /*
58  * init and intr routines prototype
59  */
60 static int e1000g_resume(dev_info_t *);
61 static int e1000g_suspend(dev_info_t *);
62 static uint_t e1000g_intr_pciexpress(caddr_t);
63 static uint_t e1000g_intr(caddr_t);
64 static void e1000g_intr_work(struct e1000g *, uint32_t);
65 #pragma inline(e1000g_intr_work)
66 static uint32_t e1000g_get_itr(uint32_t, uint32_t, uint32_t);
67 #pragma inline(e1000g_get_itr)
68 static int e1000g_init(struct e1000g *);
69 static int e1000g_start(struct e1000g *, boolean_t);
70 static void e1000g_stop(struct e1000g *, boolean_t);
71 static int e1000g_m_start(void *);
72 static void e1000g_m_stop(void *);
73 static int e1000g_m_promisc(void *, boolean_t);
74 static boolean_t e1000g_m_getcapab(void *, mac_capab_t, void *);
75 static int e1000g_m_unicst(void *, const uint8_t *);
76 static int e1000g_m_unicst_add(void *, mac_multi_addr_t *);
77 static int e1000g_m_unicst_remove(void *, mac_addr_slot_t);
78 static int e1000g_m_unicst_modify(void *, mac_multi_addr_t *);
79 static int e1000g_m_unicst_get(void *, mac_multi_addr_t *);
80 static int e1000g_m_multicst(void *, boolean_t, const uint8_t *);
81 static void e1000g_m_ioctl(void *, queue_t *, mblk_t *);
82 static int e1000g_m_setprop(void *, const char *, mac_prop_id_t,
83     uint_t, const void *);
84 static int e1000g_m_getprop(void *, const char *, mac_prop_id_t,
85     uint_t, uint_t, void *);
86 static int e1000g_set_priv_prop(struct e1000g *, const char *, uint_t,
87     const void *);
88 static int e1000g_get_priv_prop(struct e1000g *, const char *, uint_t,
89     uint_t, void *);
90 static void e1000g_init_locks(struct e1000g *);
91 static void e1000g_destroy_locks(struct e1000g *);
92 static int e1000g_identify_hardware(struct e1000g *);
93 static int e1000g_regs_map(struct e1000g *);
94 static int e1000g_set_driver_params(struct e1000g *);
95 static void e1000g_set_bufsize(struct e1000g *);
96 static int e1000g_register_mac(struct e1000g *);
97 static boolean_t e1000g_rx_drain(struct e1000g *);
98 static boolean_t e1000g_tx_drain(struct e1000g *);
99 static void e1000g_init_unicst(struct e1000g *);
100 static int e1000g_unicst_set(struct e1000g *, const uint8_t *, mac_addr_slot_t);
101 
102 /*
103  * Local routines
104  */
105 static void e1000g_tx_clean(struct e1000g *);
106 static void e1000g_rx_clean(struct e1000g *);
107 static void e1000g_link_timer(void *);
108 static void e1000g_local_timer(void *);
109 static boolean_t e1000g_link_check(struct e1000g *);
110 static boolean_t e1000g_stall_check(struct e1000g *);
111 static void e1000g_smartspeed(struct e1000g *);
112 static void e1000g_get_conf(struct e1000g *);
113 static int e1000g_get_prop(struct e1000g *, char *, int, int, int);
114 static void enable_watchdog_timer(struct e1000g *);
115 static void disable_watchdog_timer(struct e1000g *);
116 static void start_watchdog_timer(struct e1000g *);
117 static void restart_watchdog_timer(struct e1000g *);
118 static void stop_watchdog_timer(struct e1000g *);
119 static void stop_link_timer(struct e1000g *);
120 static void stop_82547_timer(e1000g_tx_ring_t *);
121 static void e1000g_force_speed_duplex(struct e1000g *);
122 static void e1000g_get_max_frame_size(struct e1000g *);
123 static boolean_t is_valid_mac_addr(uint8_t *);
124 static void e1000g_unattach(dev_info_t *, struct e1000g *);
125 #ifdef E1000G_DEBUG
126 static void e1000g_ioc_peek_reg(struct e1000g *, e1000g_peekpoke_t *);
127 static void e1000g_ioc_poke_reg(struct e1000g *, e1000g_peekpoke_t *);
128 static void e1000g_ioc_peek_mem(struct e1000g *, e1000g_peekpoke_t *);
129 static void e1000g_ioc_poke_mem(struct e1000g *, e1000g_peekpoke_t *);
130 static enum ioc_reply e1000g_pp_ioctl(struct e1000g *,
131     struct iocblk *, mblk_t *);
132 #endif
133 static enum ioc_reply e1000g_loopback_ioctl(struct e1000g *,
134     struct iocblk *, mblk_t *);
135 static boolean_t e1000g_check_loopback_support(struct e1000_hw *);
136 static boolean_t e1000g_set_loopback_mode(struct e1000g *, uint32_t);
137 static void e1000g_set_internal_loopback(struct e1000g *);
138 static void e1000g_set_external_loopback_1000(struct e1000g *);
139 static void e1000g_set_external_loopback_100(struct e1000g *);
140 static void e1000g_set_external_loopback_10(struct e1000g *);
141 static int e1000g_add_intrs(struct e1000g *);
142 static int e1000g_intr_add(struct e1000g *, int);
143 static int e1000g_rem_intrs(struct e1000g *);
144 static int e1000g_enable_intrs(struct e1000g *);
145 static int e1000g_disable_intrs(struct e1000g *);
146 static boolean_t e1000g_link_up(struct e1000g *);
147 #ifdef __sparc
148 static boolean_t e1000g_find_mac_address(struct e1000g *);
149 #endif
150 static void e1000g_get_phy_state(struct e1000g *);
151 static void e1000g_free_priv_devi_node(struct e1000g *, boolean_t);
152 static int e1000g_fm_error_cb(dev_info_t *dip, ddi_fm_error_t *err,
153     const void *impl_data);
154 static void e1000g_fm_init(struct e1000g *Adapter);
155 static void e1000g_fm_fini(struct e1000g *Adapter);
156 static int e1000g_get_def_val(struct e1000g *, mac_prop_id_t, uint_t, void *);
157 static void e1000g_param_sync(struct e1000g *);
158 
159 mac_priv_prop_t e1000g_priv_props[] = {
160 	{"_tx_bcopy_threshold", MAC_PROP_PERM_RW},
161 	{"_tx_interrupt_enable", MAC_PROP_PERM_RW},
162 	{"_tx_intr_delay", MAC_PROP_PERM_RW},
163 	{"_tx_intr_abs_delay", MAC_PROP_PERM_RW},
164 	{"_rx_bcopy_threshold", MAC_PROP_PERM_RW},
165 	{"_max_num_rcv_packets", MAC_PROP_PERM_RW},
166 	{"_rx_intr_delay", MAC_PROP_PERM_RW},
167 	{"_rx_intr_abs_delay", MAC_PROP_PERM_RW},
168 	{"_intr_throttling_rate", MAC_PROP_PERM_RW},
169 	{"_intr_adaptive", MAC_PROP_PERM_RW},
170 	{"_tx_recycle_thresh", MAC_PROP_PERM_RW},
171 	{"_adv_pause_cap", MAC_PROP_PERM_READ},
172 	{"_adv_asym_pause_cap", MAC_PROP_PERM_READ},
173 	{"_tx_recycle_num", MAC_PROP_PERM_RW}
174 };
175 #define	E1000G_MAX_PRIV_PROPS	\
176 	(sizeof (e1000g_priv_props)/sizeof (mac_priv_prop_t))
177 
178 
179 static struct cb_ops cb_ws_ops = {
180 	nulldev,		/* cb_open */
181 	nulldev,		/* cb_close */
182 	nodev,			/* cb_strategy */
183 	nodev,			/* cb_print */
184 	nodev,			/* cb_dump */
185 	nodev,			/* cb_read */
186 	nodev,			/* cb_write */
187 	nodev,			/* cb_ioctl */
188 	nodev,			/* cb_devmap */
189 	nodev,			/* cb_mmap */
190 	nodev,			/* cb_segmap */
191 	nochpoll,		/* cb_chpoll */
192 	ddi_prop_op,		/* cb_prop_op */
193 	NULL,			/* cb_stream */
194 	D_MP | D_HOTPLUG,	/* cb_flag */
195 	CB_REV,			/* cb_rev */
196 	nodev,			/* cb_aread */
197 	nodev			/* cb_awrite */
198 };
199 
200 static struct dev_ops ws_ops = {
201 	DEVO_REV,		/* devo_rev */
202 	0,			/* devo_refcnt */
203 	NULL,			/* devo_getinfo */
204 	nulldev,		/* devo_identify */
205 	nulldev,		/* devo_probe */
206 	e1000g_attach,		/* devo_attach */
207 	e1000g_detach,		/* devo_detach */
208 	nodev,			/* devo_reset */
209 	&cb_ws_ops,		/* devo_cb_ops */
210 	NULL,			/* devo_bus_ops */
211 	ddi_power		/* devo_power */
212 };
213 
214 static struct modldrv modldrv = {
215 	&mod_driverops,		/* Type of module.  This one is a driver */
216 	ident,			/* Discription string */
217 	&ws_ops,		/* driver ops */
218 };
219 
220 static struct modlinkage modlinkage = {
221 	MODREV_1, &modldrv, NULL
222 };
223 
224 /* Access attributes for register mapping */
225 static ddi_device_acc_attr_t e1000g_regs_acc_attr = {
226 	DDI_DEVICE_ATTR_V0,
227 	DDI_STRUCTURE_LE_ACC,
228 	DDI_STRICTORDER_ACC,
229 	DDI_FLAGERR_ACC
230 };
231 
232 #define	E1000G_M_CALLBACK_FLAGS \
233 	(MC_IOCTL | MC_GETCAPAB | MC_SETPROP | MC_GETPROP)
234 
235 static mac_callbacks_t e1000g_m_callbacks = {
236 	E1000G_M_CALLBACK_FLAGS,
237 	e1000g_m_stat,
238 	e1000g_m_start,
239 	e1000g_m_stop,
240 	e1000g_m_promisc,
241 	e1000g_m_multicst,
242 	e1000g_m_unicst,
243 	e1000g_m_tx,
244 	NULL,
245 	e1000g_m_ioctl,
246 	e1000g_m_getcapab,
247 	NULL,
248 	NULL,
249 	e1000g_m_setprop,
250 	e1000g_m_getprop
251 };
252 
253 /*
254  * Global variables
255  */
256 uint32_t e1000g_mblks_pending = 0;
257 /*
258  * Workaround for Dynamic Reconfiguration support, for x86 platform only.
259  * Here we maintain a private dev_info list if e1000g_force_detach is
260  * enabled. If we force the driver to detach while there are still some
261  * rx buffers retained in the upper layer, we have to keep a copy of the
262  * dev_info. In some cases (Dynamic Reconfiguration), the dev_info data
263  * structure will be freed after the driver is detached. However when we
264  * finally free those rx buffers released by the upper layer, we need to
265  * refer to the dev_info to free the dma buffers. So we save a copy of
266  * the dev_info for this purpose. On x86 platform, we assume this copy
267  * of dev_info is always valid, but on SPARC platform, it could be invalid
268  * after the system board level DR operation. For this reason, the global
269  * variable e1000g_force_detach must be B_FALSE on SPARC platform.
270  */
271 #ifdef __sparc
272 boolean_t e1000g_force_detach = B_FALSE;
273 #else
274 boolean_t e1000g_force_detach = B_TRUE;
275 #endif
276 private_devi_list_t *e1000g_private_devi_list = NULL;
277 
278 /*
279  * The rwlock is defined to protect the whole processing of rx recycling
280  * and the rx packets release in detach processing to make them mutually
281  * exclusive.
282  * The rx recycling processes different rx packets in different threads,
283  * so it will be protected with RW_READER and it won't block any other rx
284  * recycling threads.
285  * While the detach processing will be protected with RW_WRITER to make
286  * it mutually exclusive with the rx recycling.
287  */
288 krwlock_t e1000g_rx_detach_lock;
289 /*
290  * The rwlock e1000g_dma_type_lock is defined to protect the global flag
291  * e1000g_dma_type. For SPARC, the initial value of the flag is "USE_DVMA".
292  * If there are many e1000g instances, the system may run out of DVMA
293  * resources during the initialization of the instances, then the flag will
294  * be changed to "USE_DMA". Because different e1000g instances are initialized
295  * in parallel, we need to use this lock to protect the flag.
296  */
297 krwlock_t e1000g_dma_type_lock;
298 
299 /*
300  * The 82546 chipset is a dual-port device, both the ports share one eeprom.
301  * Based on the information from Intel, the 82546 chipset has some hardware
302  * problem. When one port is being reset and the other port is trying to
303  * access the eeprom, it could cause system hang or panic. To workaround this
304  * hardware problem, we use a global mutex to prevent such operations from
305  * happening simultaneously on different instances. This workaround is applied
306  * to all the devices supported by this driver.
307  */
308 kmutex_t e1000g_nvm_lock;
309 
310 /*
311  * Loadable module configuration entry points for the driver
312  */
313 
314 /*
315  * _init - module initialization
316  */
317 int
318 _init(void)
319 {
320 	int status;
321 
322 	mac_init_ops(&ws_ops, WSNAME);
323 	status = mod_install(&modlinkage);
324 	if (status != DDI_SUCCESS)
325 		mac_fini_ops(&ws_ops);
326 	else {
327 		rw_init(&e1000g_rx_detach_lock, NULL, RW_DRIVER, NULL);
328 		rw_init(&e1000g_dma_type_lock, NULL, RW_DRIVER, NULL);
329 		mutex_init(&e1000g_nvm_lock, NULL, MUTEX_DRIVER, NULL);
330 	}
331 
332 	return (status);
333 }
334 
335 /*
336  * _fini - module finalization
337  */
338 int
339 _fini(void)
340 {
341 	int status;
342 
343 	rw_enter(&e1000g_rx_detach_lock, RW_READER);
344 	if (e1000g_mblks_pending != 0) {
345 		rw_exit(&e1000g_rx_detach_lock);
346 		return (EBUSY);
347 	}
348 	rw_exit(&e1000g_rx_detach_lock);
349 
350 	status = mod_remove(&modlinkage);
351 	if (status == DDI_SUCCESS) {
352 		mac_fini_ops(&ws_ops);
353 
354 		if (e1000g_force_detach) {
355 			private_devi_list_t *devi_node;
356 
357 			rw_enter(&e1000g_rx_detach_lock, RW_WRITER);
358 			while (e1000g_private_devi_list != NULL) {
359 				devi_node = e1000g_private_devi_list;
360 				e1000g_private_devi_list =
361 				    e1000g_private_devi_list->next;
362 
363 				kmem_free(devi_node->priv_dip,
364 				    sizeof (struct dev_info));
365 				kmem_free(devi_node,
366 				    sizeof (private_devi_list_t));
367 			}
368 			rw_exit(&e1000g_rx_detach_lock);
369 		}
370 
371 		rw_destroy(&e1000g_rx_detach_lock);
372 		rw_destroy(&e1000g_dma_type_lock);
373 		mutex_destroy(&e1000g_nvm_lock);
374 	}
375 
376 	return (status);
377 }
378 
379 /*
380  * _info - module information
381  */
382 int
383 _info(struct modinfo *modinfop)
384 {
385 	return (mod_info(&modlinkage, modinfop));
386 }
387 
388 /*
389  * e1000g_attach - driver attach
390  *
391  * This function is the device-specific initialization entry
392  * point. This entry point is required and must be written.
393  * The DDI_ATTACH command must be provided in the attach entry
394  * point. When attach() is called with cmd set to DDI_ATTACH,
395  * all normal kernel services (such as kmem_alloc(9F)) are
396  * available for use by the driver.
397  *
398  * The attach() function will be called once for each instance
399  * of  the  device  on  the  system with cmd set to DDI_ATTACH.
400  * Until attach() succeeds, the only driver entry points which
401  * may be called are open(9E) and getinfo(9E).
402  */
403 static int
404 e1000g_attach(dev_info_t *devinfo, ddi_attach_cmd_t cmd)
405 {
406 	struct e1000g *Adapter;
407 	struct e1000_hw *hw;
408 	struct e1000g_osdep *osdep;
409 	int instance;
410 
411 	switch (cmd) {
412 	default:
413 		e1000g_log(NULL, CE_WARN,
414 		    "Unsupported command send to e1000g_attach... ");
415 		return (DDI_FAILURE);
416 
417 	case DDI_RESUME:
418 		return (e1000g_resume(devinfo));
419 
420 	case DDI_ATTACH:
421 		break;
422 	}
423 
424 	/*
425 	 * get device instance number
426 	 */
427 	instance = ddi_get_instance(devinfo);
428 
429 	/*
430 	 * Allocate soft data structure
431 	 */
432 	Adapter =
433 	    (struct e1000g *)kmem_zalloc(sizeof (*Adapter), KM_SLEEP);
434 
435 	Adapter->dip = devinfo;
436 	Adapter->instance = instance;
437 	Adapter->tx_ring->adapter = Adapter;
438 	Adapter->rx_ring->adapter = Adapter;
439 
440 	hw = &Adapter->shared;
441 	osdep = &Adapter->osdep;
442 	hw->back = osdep;
443 	osdep->adapter = Adapter;
444 
445 	ddi_set_driver_private(devinfo, (caddr_t)Adapter);
446 
447 	/*
448 	 * Initialize for fma support
449 	 */
450 	Adapter->fm_capabilities = e1000g_get_prop(Adapter, "fm-capable",
451 	    0, 0x0f,
452 	    DDI_FM_EREPORT_CAPABLE | DDI_FM_ACCCHK_CAPABLE |
453 	    DDI_FM_DMACHK_CAPABLE | DDI_FM_ERRCB_CAPABLE);
454 	e1000g_fm_init(Adapter);
455 	Adapter->attach_progress |= ATTACH_PROGRESS_FMINIT;
456 
457 	/*
458 	 * PCI Configure
459 	 */
460 	if (pci_config_setup(devinfo, &osdep->cfg_handle) != DDI_SUCCESS) {
461 		e1000g_log(Adapter, CE_WARN, "PCI configuration failed");
462 		goto attach_fail;
463 	}
464 	Adapter->attach_progress |= ATTACH_PROGRESS_PCI_CONFIG;
465 
466 	/*
467 	 * Setup hardware
468 	 */
469 	if (e1000g_identify_hardware(Adapter) != DDI_SUCCESS) {
470 		e1000g_log(Adapter, CE_WARN, "Identify hardware failed");
471 		goto attach_fail;
472 	}
473 
474 	/*
475 	 * Map in the device registers.
476 	 */
477 	if (e1000g_regs_map(Adapter) != DDI_SUCCESS) {
478 		e1000g_log(Adapter, CE_WARN, "Mapping registers failed");
479 		goto attach_fail;
480 	}
481 	Adapter->attach_progress |= ATTACH_PROGRESS_REGS_MAP;
482 
483 	/*
484 	 * Initialize driver parameters
485 	 */
486 	if (e1000g_set_driver_params(Adapter) != DDI_SUCCESS) {
487 		goto attach_fail;
488 	}
489 	Adapter->attach_progress |= ATTACH_PROGRESS_SETUP;
490 
491 	if (e1000g_check_acc_handle(Adapter->osdep.cfg_handle) != DDI_FM_OK) {
492 		ddi_fm_service_impact(Adapter->dip, DDI_SERVICE_LOST);
493 		goto attach_fail;
494 	}
495 
496 	/*
497 	 * Initialize interrupts
498 	 */
499 	if (e1000g_add_intrs(Adapter) != DDI_SUCCESS) {
500 		e1000g_log(Adapter, CE_WARN, "Add interrupts failed");
501 		goto attach_fail;
502 	}
503 	Adapter->attach_progress |= ATTACH_PROGRESS_ADD_INTR;
504 
505 	/*
506 	 * Initialize mutex's for this device.
507 	 * Do this before enabling the interrupt handler and
508 	 * register the softint to avoid the condition where
509 	 * interrupt handler can try using uninitialized mutex
510 	 */
511 	e1000g_init_locks(Adapter);
512 	Adapter->attach_progress |= ATTACH_PROGRESS_LOCKS;
513 
514 	/*
515 	 * Initialize Driver Counters
516 	 */
517 	if (e1000g_init_stats(Adapter) != DDI_SUCCESS) {
518 		e1000g_log(Adapter, CE_WARN, "Init stats failed");
519 		goto attach_fail;
520 	}
521 	Adapter->attach_progress |= ATTACH_PROGRESS_KSTATS;
522 
523 	/*
524 	 * Initialize chip hardware and software structures
525 	 */
526 	if (e1000g_init(Adapter) != DDI_SUCCESS) {
527 		e1000g_log(Adapter, CE_WARN, "Adapter initialization failed");
528 		goto attach_fail;
529 	}
530 	Adapter->attach_progress |= ATTACH_PROGRESS_INIT;
531 
532 	/*
533 	 * Register the driver to the MAC
534 	 */
535 	if (e1000g_register_mac(Adapter) != DDI_SUCCESS) {
536 		e1000g_log(Adapter, CE_WARN, "Register MAC failed");
537 		goto attach_fail;
538 	}
539 	Adapter->attach_progress |= ATTACH_PROGRESS_MAC;
540 
541 	/*
542 	 * Now that mutex locks are initialized, and the chip is also
543 	 * initialized, enable interrupts.
544 	 */
545 	if (e1000g_enable_intrs(Adapter) != DDI_SUCCESS) {
546 		e1000g_log(Adapter, CE_WARN, "Enable DDI interrupts failed");
547 		goto attach_fail;
548 	}
549 	Adapter->attach_progress |= ATTACH_PROGRESS_ENABLE_INTR;
550 
551 	/*
552 	 * If e1000g_force_detach is enabled, in global private dip list,
553 	 * we will create a new entry, which maintains the priv_dip for DR
554 	 * supports after driver detached.
555 	 */
556 	if (e1000g_force_detach) {
557 		private_devi_list_t *devi_node;
558 
559 		Adapter->priv_dip =
560 		    kmem_zalloc(sizeof (struct dev_info), KM_SLEEP);
561 		bcopy(DEVI(devinfo), DEVI(Adapter->priv_dip),
562 		    sizeof (struct dev_info));
563 
564 		devi_node =
565 		    kmem_zalloc(sizeof (private_devi_list_t), KM_SLEEP);
566 
567 		rw_enter(&e1000g_rx_detach_lock, RW_WRITER);
568 		devi_node->priv_dip = Adapter->priv_dip;
569 		devi_node->flag = E1000G_PRIV_DEVI_ATTACH;
570 		devi_node->next = e1000g_private_devi_list;
571 		e1000g_private_devi_list = devi_node;
572 		rw_exit(&e1000g_rx_detach_lock);
573 	}
574 
575 	cmn_err(CE_CONT, "!%s, %s\n", e1000g_string, e1000g_version);
576 
577 	return (DDI_SUCCESS);
578 
579 attach_fail:
580 	e1000g_unattach(devinfo, Adapter);
581 	return (DDI_FAILURE);
582 }
583 
584 static int
585 e1000g_register_mac(struct e1000g *Adapter)
586 {
587 	struct e1000_hw *hw = &Adapter->shared;
588 	mac_register_t *mac;
589 	int err;
590 
591 	if ((mac = mac_alloc(MAC_VERSION)) == NULL)
592 		return (DDI_FAILURE);
593 
594 	mac->m_type_ident = MAC_PLUGIN_IDENT_ETHER;
595 	mac->m_driver = Adapter;
596 	mac->m_dip = Adapter->dip;
597 	mac->m_src_addr = hw->mac.addr;
598 	mac->m_callbacks = &e1000g_m_callbacks;
599 	mac->m_min_sdu = 0;
600 	mac->m_max_sdu = Adapter->default_mtu;
601 	mac->m_margin = VLAN_TAGSZ;
602 	mac->m_priv_props = e1000g_priv_props;
603 	mac->m_priv_prop_count = E1000G_MAX_PRIV_PROPS;
604 
605 	err = mac_register(mac, &Adapter->mh);
606 	mac_free(mac);
607 
608 	return (err == 0 ? DDI_SUCCESS : DDI_FAILURE);
609 }
610 
611 static int
612 e1000g_identify_hardware(struct e1000g *Adapter)
613 {
614 	struct e1000_hw *hw = &Adapter->shared;
615 	struct e1000g_osdep *osdep = &Adapter->osdep;
616 
617 	/* Get the device id */
618 	hw->vendor_id =
619 	    pci_config_get16(osdep->cfg_handle, PCI_CONF_VENID);
620 	hw->device_id =
621 	    pci_config_get16(osdep->cfg_handle, PCI_CONF_DEVID);
622 	hw->revision_id =
623 	    pci_config_get8(osdep->cfg_handle, PCI_CONF_REVID);
624 	hw->subsystem_device_id =
625 	    pci_config_get16(osdep->cfg_handle, PCI_CONF_SUBSYSID);
626 	hw->subsystem_vendor_id =
627 	    pci_config_get16(osdep->cfg_handle, PCI_CONF_SUBVENID);
628 
629 	if (e1000_set_mac_type(hw) != E1000_SUCCESS) {
630 		E1000G_DEBUGLOG_0(Adapter, E1000G_INFO_LEVEL,
631 		    "MAC type could not be set properly.");
632 		return (DDI_FAILURE);
633 	}
634 
635 	return (DDI_SUCCESS);
636 }
637 
638 static int
639 e1000g_regs_map(struct e1000g *Adapter)
640 {
641 	dev_info_t *devinfo = Adapter->dip;
642 	struct e1000_hw *hw = &Adapter->shared;
643 	struct e1000g_osdep *osdep = &Adapter->osdep;
644 	off_t mem_size;
645 
646 	/*
647 	 * first get the size of device register to be mapped. The
648 	 * second parameter is the register we are interested. I our
649 	 * wiseman 0 is for config registers and 1 is for memory mapped
650 	 * registers Mem size should have memory mapped region size
651 	 */
652 	if (ddi_dev_regsize(devinfo, 1, &mem_size) != DDI_SUCCESS) {
653 		E1000G_DEBUGLOG_0(Adapter, CE_WARN,
654 		    "ddi_dev_regsize for registers failed");
655 		return (DDI_FAILURE);
656 	}
657 
658 	if ((ddi_regs_map_setup(devinfo, 1, /* register of interest */
659 	    (caddr_t *)&hw->hw_addr, 0, mem_size, &e1000g_regs_acc_attr,
660 	    &osdep->reg_handle)) != DDI_SUCCESS) {
661 		E1000G_DEBUGLOG_0(Adapter, CE_WARN,
662 		    "ddi_regs_map_setup for registers failed");
663 		goto regs_map_fail;
664 	}
665 
666 	/* ICH needs to map flash memory */
667 	if (hw->mac.type == e1000_ich8lan || hw->mac.type == e1000_ich9lan) {
668 		/* get flash size */
669 		if (ddi_dev_regsize(devinfo, ICH_FLASH_REG_SET,
670 		    &mem_size) != DDI_SUCCESS) {
671 			E1000G_DEBUGLOG_0(Adapter, CE_WARN,
672 			    "ddi_dev_regsize for ICH flash failed");
673 			goto regs_map_fail;
674 		}
675 
676 		/* map flash in */
677 		if (ddi_regs_map_setup(devinfo, ICH_FLASH_REG_SET,
678 		    (caddr_t *)&hw->flash_address, 0,
679 		    mem_size, &e1000g_regs_acc_attr,
680 		    &osdep->ich_flash_handle) != DDI_SUCCESS) {
681 			E1000G_DEBUGLOG_0(Adapter, CE_WARN,
682 			    "ddi_regs_map_setup for ICH flash failed");
683 			goto regs_map_fail;
684 		}
685 	}
686 
687 	return (DDI_SUCCESS);
688 
689 regs_map_fail:
690 	if (osdep->reg_handle != NULL)
691 		ddi_regs_map_free(&osdep->reg_handle);
692 
693 	return (DDI_FAILURE);
694 }
695 
696 static int
697 e1000g_set_driver_params(struct e1000g *Adapter)
698 {
699 	struct e1000_hw *hw;
700 	uint32_t mem_bar, io_bar, bar64;
701 
702 	hw = &Adapter->shared;
703 
704 	/* Set MAC type and initialize hardware functions */
705 	if (e1000_setup_init_funcs(hw, B_TRUE) != E1000_SUCCESS) {
706 		E1000G_DEBUGLOG_0(Adapter, CE_WARN,
707 		    "Could not setup hardware functions");
708 		return (DDI_FAILURE);
709 	}
710 
711 	/* Get bus information */
712 	if (e1000_get_bus_info(hw) != E1000_SUCCESS) {
713 		E1000G_DEBUGLOG_0(Adapter, CE_WARN,
714 		    "Could not get bus information");
715 		return (DDI_FAILURE);
716 	}
717 
718 	/* get mem_base addr */
719 	mem_bar = pci_config_get32(Adapter->osdep.cfg_handle, PCI_CONF_BASE0);
720 	bar64 = mem_bar & PCI_BASE_TYPE_ALL;
721 
722 	/* get io_base addr */
723 	if (hw->mac.type >= e1000_82544) {
724 		if (bar64) {
725 			/* IO BAR is different for 64 bit BAR mode */
726 			io_bar = pci_config_get32(Adapter->osdep.cfg_handle,
727 			    PCI_CONF_BASE4);
728 		} else {
729 			/* normal 32-bit BAR mode */
730 			io_bar = pci_config_get32(Adapter->osdep.cfg_handle,
731 			    PCI_CONF_BASE2);
732 		}
733 		hw->io_base = io_bar & PCI_BASE_IO_ADDR_M;
734 	} else {
735 		/* no I/O access for adapters prior to 82544 */
736 		hw->io_base = 0x0;
737 	}
738 
739 	e1000_read_pci_cfg(hw, PCI_COMMAND_REGISTER, &hw->bus.pci_cmd_word);
740 
741 	hw->mac.autoneg_failed = B_TRUE;
742 
743 	/* Set the autoneg_wait_to_complete flag to B_FALSE */
744 	hw->phy.autoneg_wait_to_complete = B_FALSE;
745 
746 	/* Adaptive IFS related changes */
747 	hw->mac.adaptive_ifs = B_TRUE;
748 
749 	/* Enable phy init script for IGP phy of 82541/82547 */
750 	if ((hw->mac.type == e1000_82547) ||
751 	    (hw->mac.type == e1000_82541) ||
752 	    (hw->mac.type == e1000_82547_rev_2) ||
753 	    (hw->mac.type == e1000_82541_rev_2))
754 		e1000_init_script_state_82541(hw, B_TRUE);
755 
756 	/* Enable the TTL workaround for 82541/82547 */
757 	e1000_set_ttl_workaround_state_82541(hw, B_TRUE);
758 
759 #ifdef __sparc
760 	Adapter->strip_crc = B_TRUE;
761 #else
762 	Adapter->strip_crc = B_FALSE;
763 #endif
764 
765 	/* Get conf file properties */
766 	e1000g_get_conf(Adapter);
767 
768 	/* Get speed/duplex settings in conf file */
769 	hw->mac.forced_speed_duplex = ADVERTISE_100_FULL;
770 	hw->phy.autoneg_advertised = AUTONEG_ADVERTISE_SPEED_DEFAULT;
771 	e1000g_force_speed_duplex(Adapter);
772 
773 	/* Get Jumbo Frames settings in conf file */
774 	e1000g_get_max_frame_size(Adapter);
775 
776 	/* Set Rx/Tx buffer size */
777 	e1000g_set_bufsize(Adapter);
778 
779 	/* Master Latency Timer */
780 	Adapter->master_latency_timer = DEFAULT_MASTER_LATENCY_TIMER;
781 
782 	/* copper options */
783 	if (hw->phy.media_type == e1000_media_type_copper) {
784 		hw->phy.mdix = 0;	/* AUTO_ALL_MODES */
785 		hw->phy.disable_polarity_correction = B_FALSE;
786 		hw->phy.ms_type = e1000_ms_hw_default;	/* E1000_MASTER_SLAVE */
787 	}
788 
789 	/* The initial link state should be "unknown" */
790 	Adapter->link_state = LINK_STATE_UNKNOWN;
791 
792 	/* Initialize rx parameters */
793 	Adapter->rx_intr_delay = DEFAULT_RX_INTR_DELAY;
794 	Adapter->rx_intr_abs_delay = DEFAULT_RX_INTR_ABS_DELAY;
795 
796 	/* Initialize tx parameters */
797 	Adapter->tx_intr_enable = DEFAULT_TX_INTR_ENABLE;
798 	Adapter->tx_bcopy_thresh = DEFAULT_TX_BCOPY_THRESHOLD;
799 	Adapter->tx_intr_delay = DEFAULT_TX_INTR_DELAY;
800 	Adapter->tx_intr_abs_delay = DEFAULT_TX_INTR_ABS_DELAY;
801 
802 	/* Initialize rx parameters */
803 	Adapter->rx_bcopy_thresh = DEFAULT_RX_BCOPY_THRESHOLD;
804 
805 	return (DDI_SUCCESS);
806 }
807 
808 static void
809 e1000g_set_bufsize(struct e1000g *Adapter)
810 {
811 	struct e1000_mac_info *mac = &Adapter->shared.mac;
812 	uint64_t rx_size;
813 	uint64_t tx_size;
814 
815 #ifdef __sparc
816 	dev_info_t *devinfo = Adapter->dip;
817 	ulong_t iommu_pagesize;
818 
819 	/* Get the system page size */
820 	Adapter->sys_page_sz = ddi_ptob(devinfo, (ulong_t)1);
821 	iommu_pagesize = dvma_pagesize(devinfo);
822 	if (iommu_pagesize != 0) {
823 		if (Adapter->sys_page_sz == iommu_pagesize) {
824 			if (iommu_pagesize > 0x4000)
825 				Adapter->sys_page_sz = 0x4000;
826 		} else {
827 			if (Adapter->sys_page_sz > iommu_pagesize)
828 				Adapter->sys_page_sz = iommu_pagesize;
829 		}
830 	}
831 	if (Adapter->lso_enable) {
832 		Adapter->dvma_page_num = E1000_LSO_MAXLEN /
833 		    Adapter->sys_page_sz + E1000G_DEFAULT_DVMA_PAGE_NUM;
834 	} else {
835 		Adapter->dvma_page_num = Adapter->max_frame_size /
836 		    Adapter->sys_page_sz + E1000G_DEFAULT_DVMA_PAGE_NUM;
837 	}
838 	ASSERT(Adapter->dvma_page_num >= E1000G_DEFAULT_DVMA_PAGE_NUM);
839 #endif
840 
841 	Adapter->min_frame_size = ETHERMIN + ETHERFCSL;
842 
843 	rx_size = Adapter->max_frame_size + E1000G_IPALIGNPRESERVEROOM;
844 	if ((rx_size > FRAME_SIZE_UPTO_2K) && (rx_size <= FRAME_SIZE_UPTO_4K))
845 		Adapter->rx_buffer_size = E1000_RX_BUFFER_SIZE_4K;
846 	else if ((rx_size > FRAME_SIZE_UPTO_4K) &&
847 	    (rx_size <= FRAME_SIZE_UPTO_8K))
848 		Adapter->rx_buffer_size = E1000_RX_BUFFER_SIZE_8K;
849 	else if ((rx_size > FRAME_SIZE_UPTO_8K) &&
850 	    (rx_size <= FRAME_SIZE_UPTO_16K))
851 		Adapter->rx_buffer_size = E1000_RX_BUFFER_SIZE_16K;
852 	else
853 		Adapter->rx_buffer_size = E1000_RX_BUFFER_SIZE_2K;
854 
855 	tx_size = Adapter->max_frame_size;
856 	if ((tx_size > FRAME_SIZE_UPTO_2K) && (tx_size <= FRAME_SIZE_UPTO_4K))
857 		Adapter->tx_buffer_size = E1000_TX_BUFFER_SIZE_4K;
858 	else if ((tx_size > FRAME_SIZE_UPTO_4K) &&
859 	    (tx_size <= FRAME_SIZE_UPTO_8K))
860 		Adapter->tx_buffer_size = E1000_TX_BUFFER_SIZE_8K;
861 	else if ((tx_size > FRAME_SIZE_UPTO_8K) &&
862 	    (tx_size <= FRAME_SIZE_UPTO_16K))
863 		Adapter->tx_buffer_size = E1000_TX_BUFFER_SIZE_16K;
864 	else
865 		Adapter->tx_buffer_size = E1000_TX_BUFFER_SIZE_2K;
866 
867 	/*
868 	 * For Wiseman adapters we have an requirement of having receive
869 	 * buffers aligned at 256 byte boundary. Since Livengood does not
870 	 * require this and forcing it for all hardwares will have
871 	 * performance implications, I am making it applicable only for
872 	 * Wiseman and for Jumbo frames enabled mode as rest of the time,
873 	 * it is okay to have normal frames...but it does involve a
874 	 * potential risk where we may loose data if buffer is not
875 	 * aligned...so all wiseman boards to have 256 byte aligned
876 	 * buffers
877 	 */
878 	if (mac->type < e1000_82543)
879 		Adapter->rx_buf_align = RECEIVE_BUFFER_ALIGN_SIZE;
880 	else
881 		Adapter->rx_buf_align = 1;
882 }
883 
884 /*
885  * e1000g_detach - driver detach
886  *
887  * The detach() function is the complement of the attach routine.
888  * If cmd is set to DDI_DETACH, detach() is used to remove  the
889  * state  associated  with  a  given  instance of a device node
890  * prior to the removal of that instance from the system.
891  *
892  * The detach() function will be called once for each  instance
893  * of the device for which there has been a successful attach()
894  * once there are no longer  any  opens  on  the  device.
895  *
896  * Interrupts routine are disabled, All memory allocated by this
897  * driver are freed.
898  */
899 static int
900 e1000g_detach(dev_info_t *devinfo, ddi_detach_cmd_t cmd)
901 {
902 	struct e1000g *Adapter;
903 	boolean_t rx_drain;
904 
905 	switch (cmd) {
906 	default:
907 		return (DDI_FAILURE);
908 
909 	case DDI_SUSPEND:
910 		return (e1000g_suspend(devinfo));
911 
912 	case DDI_DETACH:
913 		break;
914 	}
915 
916 	Adapter = (struct e1000g *)ddi_get_driver_private(devinfo);
917 	if (Adapter == NULL)
918 		return (DDI_FAILURE);
919 
920 	if (mac_unregister(Adapter->mh) != 0) {
921 		e1000g_log(Adapter, CE_WARN, "Unregister MAC failed");
922 		return (DDI_FAILURE);
923 	}
924 	Adapter->attach_progress &= ~ATTACH_PROGRESS_MAC;
925 
926 
927 	if (Adapter->chip_state != E1000G_STOP)
928 		e1000g_stop(Adapter, B_TRUE);
929 
930 	rx_drain = e1000g_rx_drain(Adapter);
931 
932 	/*
933 	 * If e1000g_force_detach is enabled, driver detach is safe.
934 	 * We will let e1000g_free_priv_devi_node routine determine
935 	 * whether we need to free the priv_dip entry for current
936 	 * driver instance.
937 	 */
938 	if (e1000g_force_detach) {
939 		e1000g_free_priv_devi_node(Adapter, rx_drain);
940 	} else {
941 		if (!rx_drain)
942 			return (DDI_FAILURE);
943 	}
944 
945 	e1000g_unattach(devinfo, Adapter);
946 
947 	return (DDI_SUCCESS);
948 }
949 
950 /*
951  * e1000g_free_priv_devi_node - free a priv_dip entry for driver instance
952  *
953  * If free_flag is true, that indicates the upper layer is not holding
954  * the rx buffers, we could free the priv_dip entry safely.
955  *
956  * Otherwise, we have to keep this entry even after driver detached,
957  * and we also need to mark this entry with E1000G_PRIV_DEVI_DETACH flag,
958  * so that driver could free it while all of rx buffers are returned
959  * by upper layer later.
960  */
961 static void
962 e1000g_free_priv_devi_node(struct e1000g *Adapter, boolean_t free_flag)
963 {
964 	private_devi_list_t *devi_node, *devi_del;
965 
966 	rw_enter(&e1000g_rx_detach_lock, RW_WRITER);
967 	ASSERT(e1000g_private_devi_list != NULL);
968 	ASSERT(Adapter->priv_dip != NULL);
969 
970 	devi_node = e1000g_private_devi_list;
971 	if (devi_node->priv_dip == Adapter->priv_dip) {
972 		if (free_flag) {
973 			e1000g_private_devi_list =
974 			    devi_node->next;
975 			kmem_free(devi_node->priv_dip,
976 			    sizeof (struct dev_info));
977 			kmem_free(devi_node,
978 			    sizeof (private_devi_list_t));
979 		} else {
980 			ASSERT(e1000g_mblks_pending != 0);
981 			devi_node->flag =
982 			    E1000G_PRIV_DEVI_DETACH;
983 		}
984 		rw_exit(&e1000g_rx_detach_lock);
985 		return;
986 	}
987 
988 	devi_node = e1000g_private_devi_list;
989 	while (devi_node->next != NULL) {
990 		if (devi_node->next->priv_dip == Adapter->priv_dip) {
991 			if (free_flag) {
992 				devi_del = devi_node->next;
993 				devi_node->next = devi_del->next;
994 				kmem_free(devi_del->priv_dip,
995 				    sizeof (struct dev_info));
996 				kmem_free(devi_del,
997 				    sizeof (private_devi_list_t));
998 			} else {
999 				ASSERT(e1000g_mblks_pending != 0);
1000 				devi_node->next->flag =
1001 				    E1000G_PRIV_DEVI_DETACH;
1002 			}
1003 			break;
1004 		}
1005 		devi_node = devi_node->next;
1006 	}
1007 	rw_exit(&e1000g_rx_detach_lock);
1008 }
1009 
1010 static void
1011 e1000g_unattach(dev_info_t *devinfo, struct e1000g *Adapter)
1012 {
1013 	int result;
1014 
1015 	if (Adapter->attach_progress & ATTACH_PROGRESS_ENABLE_INTR) {
1016 		(void) e1000g_disable_intrs(Adapter);
1017 	}
1018 
1019 	if (Adapter->attach_progress & ATTACH_PROGRESS_MAC) {
1020 		(void) mac_unregister(Adapter->mh);
1021 	}
1022 
1023 	if (Adapter->attach_progress & ATTACH_PROGRESS_ADD_INTR) {
1024 		(void) e1000g_rem_intrs(Adapter);
1025 	}
1026 
1027 	if (Adapter->attach_progress & ATTACH_PROGRESS_SETUP) {
1028 		(void) ddi_prop_remove_all(devinfo);
1029 	}
1030 
1031 	if (Adapter->attach_progress & ATTACH_PROGRESS_KSTATS) {
1032 		kstat_delete((kstat_t *)Adapter->e1000g_ksp);
1033 	}
1034 
1035 	if (Adapter->attach_progress & ATTACH_PROGRESS_INIT) {
1036 		stop_link_timer(Adapter);
1037 
1038 		mutex_enter(&e1000g_nvm_lock);
1039 		result = e1000_reset_hw(&Adapter->shared);
1040 		mutex_exit(&e1000g_nvm_lock);
1041 
1042 		if (result != E1000_SUCCESS) {
1043 			e1000g_fm_ereport(Adapter, DDI_FM_DEVICE_INVAL_STATE);
1044 			ddi_fm_service_impact(Adapter->dip, DDI_SERVICE_LOST);
1045 		}
1046 	}
1047 
1048 	if (Adapter->attach_progress & ATTACH_PROGRESS_REGS_MAP) {
1049 		if (Adapter->osdep.reg_handle != NULL)
1050 			ddi_regs_map_free(&Adapter->osdep.reg_handle);
1051 		if (Adapter->osdep.ich_flash_handle != NULL)
1052 			ddi_regs_map_free(&Adapter->osdep.ich_flash_handle);
1053 	}
1054 
1055 	if (Adapter->attach_progress & ATTACH_PROGRESS_PCI_CONFIG) {
1056 		if (Adapter->osdep.cfg_handle != NULL)
1057 			pci_config_teardown(&Adapter->osdep.cfg_handle);
1058 	}
1059 
1060 	if (Adapter->attach_progress & ATTACH_PROGRESS_LOCKS) {
1061 		e1000g_destroy_locks(Adapter);
1062 	}
1063 
1064 	if (Adapter->attach_progress & ATTACH_PROGRESS_FMINIT) {
1065 		e1000g_fm_fini(Adapter);
1066 	}
1067 
1068 	e1000_remove_device(&Adapter->shared);
1069 
1070 	kmem_free((caddr_t)Adapter, sizeof (struct e1000g));
1071 
1072 	/*
1073 	 * Another hotplug spec requirement,
1074 	 * run ddi_set_driver_private(devinfo, null);
1075 	 */
1076 	ddi_set_driver_private(devinfo, NULL);
1077 }
1078 
1079 static void
1080 e1000g_init_locks(struct e1000g *Adapter)
1081 {
1082 	e1000g_tx_ring_t *tx_ring;
1083 	e1000g_rx_ring_t *rx_ring;
1084 
1085 	rw_init(&Adapter->chip_lock, NULL,
1086 	    RW_DRIVER, DDI_INTR_PRI(Adapter->intr_pri));
1087 	mutex_init(&Adapter->link_lock, NULL,
1088 	    MUTEX_DRIVER, DDI_INTR_PRI(Adapter->intr_pri));
1089 	mutex_init(&Adapter->watchdog_lock, NULL,
1090 	    MUTEX_DRIVER, DDI_INTR_PRI(Adapter->intr_pri));
1091 
1092 	tx_ring = Adapter->tx_ring;
1093 
1094 	mutex_init(&tx_ring->tx_lock, NULL,
1095 	    MUTEX_DRIVER, DDI_INTR_PRI(Adapter->intr_pri));
1096 	mutex_init(&tx_ring->usedlist_lock, NULL,
1097 	    MUTEX_DRIVER, DDI_INTR_PRI(Adapter->intr_pri));
1098 	mutex_init(&tx_ring->freelist_lock, NULL,
1099 	    MUTEX_DRIVER, DDI_INTR_PRI(Adapter->intr_pri));
1100 
1101 	rx_ring = Adapter->rx_ring;
1102 
1103 	mutex_init(&rx_ring->rx_lock, NULL,
1104 	    MUTEX_DRIVER, DDI_INTR_PRI(Adapter->intr_pri));
1105 	mutex_init(&rx_ring->freelist_lock, NULL,
1106 	    MUTEX_DRIVER, DDI_INTR_PRI(Adapter->intr_pri));
1107 }
1108 
1109 static void
1110 e1000g_destroy_locks(struct e1000g *Adapter)
1111 {
1112 	e1000g_tx_ring_t *tx_ring;
1113 	e1000g_rx_ring_t *rx_ring;
1114 
1115 	tx_ring = Adapter->tx_ring;
1116 	mutex_destroy(&tx_ring->tx_lock);
1117 	mutex_destroy(&tx_ring->usedlist_lock);
1118 	mutex_destroy(&tx_ring->freelist_lock);
1119 
1120 	rx_ring = Adapter->rx_ring;
1121 	mutex_destroy(&rx_ring->rx_lock);
1122 	mutex_destroy(&rx_ring->freelist_lock);
1123 
1124 	mutex_destroy(&Adapter->link_lock);
1125 	mutex_destroy(&Adapter->watchdog_lock);
1126 	rw_destroy(&Adapter->chip_lock);
1127 }
1128 
1129 static int
1130 e1000g_resume(dev_info_t *devinfo)
1131 {
1132 	struct e1000g *Adapter;
1133 
1134 	Adapter = (struct e1000g *)ddi_get_driver_private(devinfo);
1135 	if (Adapter == NULL)
1136 		return (DDI_FAILURE);
1137 
1138 	if (e1000g_start(Adapter, B_TRUE))
1139 		return (DDI_FAILURE);
1140 
1141 	return (DDI_SUCCESS);
1142 }
1143 
1144 static int
1145 e1000g_suspend(dev_info_t *devinfo)
1146 {
1147 	struct e1000g *Adapter;
1148 
1149 	Adapter = (struct e1000g *)ddi_get_driver_private(devinfo);
1150 	if (Adapter == NULL)
1151 		return (DDI_FAILURE);
1152 
1153 	e1000g_stop(Adapter, B_TRUE);
1154 
1155 	return (DDI_SUCCESS);
1156 }
1157 
1158 static int
1159 e1000g_init(struct e1000g *Adapter)
1160 {
1161 	uint32_t pba;
1162 	uint32_t high_water;
1163 	struct e1000_hw *hw;
1164 	clock_t link_timeout;
1165 	int result;
1166 
1167 	hw = &Adapter->shared;
1168 
1169 	rw_enter(&Adapter->chip_lock, RW_WRITER);
1170 
1171 	/*
1172 	 * reset to put the hardware in a known state
1173 	 * before we try to do anything with the eeprom
1174 	 */
1175 	mutex_enter(&e1000g_nvm_lock);
1176 	result = e1000_reset_hw(hw);
1177 	mutex_exit(&e1000g_nvm_lock);
1178 
1179 	if (result != E1000_SUCCESS) {
1180 		e1000g_fm_ereport(Adapter, DDI_FM_DEVICE_INVAL_STATE);
1181 		goto init_fail;
1182 	}
1183 
1184 	mutex_enter(&e1000g_nvm_lock);
1185 	result = e1000_validate_nvm_checksum(hw);
1186 	if (result < E1000_SUCCESS) {
1187 		/*
1188 		 * Some PCI-E parts fail the first check due to
1189 		 * the link being in sleep state.  Call it again,
1190 		 * if it fails a second time its a real issue.
1191 		 */
1192 		result = e1000_validate_nvm_checksum(hw);
1193 	}
1194 	mutex_exit(&e1000g_nvm_lock);
1195 
1196 	if (result < E1000_SUCCESS) {
1197 		e1000g_log(Adapter, CE_WARN,
1198 		    "Invalid NVM checksum. Please contact "
1199 		    "the vendor to update the NVM.");
1200 		e1000g_fm_ereport(Adapter, DDI_FM_DEVICE_INVAL_STATE);
1201 		goto init_fail;
1202 	}
1203 
1204 	result = 0;
1205 #ifdef __sparc
1206 	/*
1207 	 * Firstly, we try to get the local ethernet address from OBP. If
1208 	 * failed, then we get it from the EEPROM of NIC card.
1209 	 */
1210 	result = e1000g_find_mac_address(Adapter);
1211 #endif
1212 	/* Get the local ethernet address. */
1213 	if (!result) {
1214 		mutex_enter(&e1000g_nvm_lock);
1215 		result = e1000_read_mac_addr(hw);
1216 		mutex_exit(&e1000g_nvm_lock);
1217 	}
1218 
1219 	if (result < E1000_SUCCESS) {
1220 		e1000g_log(Adapter, CE_WARN, "Read mac addr failed");
1221 		e1000g_fm_ereport(Adapter, DDI_FM_DEVICE_INVAL_STATE);
1222 		goto init_fail;
1223 	}
1224 
1225 	/* check for valid mac address */
1226 	if (!is_valid_mac_addr(hw->mac.addr)) {
1227 		e1000g_log(Adapter, CE_WARN, "Invalid mac addr");
1228 		e1000g_fm_ereport(Adapter, DDI_FM_DEVICE_INVAL_STATE);
1229 		goto init_fail;
1230 	}
1231 
1232 	/* Set LAA state for 82571 chipset */
1233 	e1000_set_laa_state_82571(hw, B_TRUE);
1234 
1235 	/* Master Latency Timer implementation */
1236 	if (Adapter->master_latency_timer) {
1237 		pci_config_put8(Adapter->osdep.cfg_handle,
1238 		    PCI_CONF_LATENCY_TIMER, Adapter->master_latency_timer);
1239 	}
1240 
1241 	if (hw->mac.type < e1000_82547) {
1242 		/*
1243 		 * Total FIFO is 64K
1244 		 */
1245 		if (Adapter->max_frame_size > FRAME_SIZE_UPTO_8K)
1246 			pba = E1000_PBA_40K;	/* 40K for Rx, 24K for Tx */
1247 		else
1248 			pba = E1000_PBA_48K;	/* 48K for Rx, 16K for Tx */
1249 	} else if ((hw->mac.type == e1000_82571) ||
1250 	    (hw->mac.type == e1000_82572) ||
1251 	    (hw->mac.type == e1000_80003es2lan)) {
1252 		/*
1253 		 * Total FIFO is 48K
1254 		 */
1255 		if (Adapter->max_frame_size > FRAME_SIZE_UPTO_8K)
1256 			pba = E1000_PBA_30K;	/* 30K for Rx, 18K for Tx */
1257 		else
1258 			pba = E1000_PBA_38K;	/* 38K for Rx, 10K for Tx */
1259 	} else if (hw->mac.type == e1000_ich8lan) {
1260 		pba = E1000_PBA_8K;		/* 8K for Rx, 12K for Tx */
1261 	} else if (hw->mac.type == e1000_ich9lan) {
1262 		pba = E1000_PBA_12K;
1263 	} else {
1264 		/*
1265 		 * Total FIFO is 40K
1266 		 */
1267 		if (Adapter->max_frame_size > FRAME_SIZE_UPTO_8K)
1268 			pba = E1000_PBA_22K;	/* 22K for Rx, 18K for Tx */
1269 		else
1270 			pba = E1000_PBA_30K;	/* 30K for Rx, 10K for Tx */
1271 	}
1272 	E1000_WRITE_REG(hw, E1000_PBA, pba);
1273 
1274 	/*
1275 	 * These parameters set thresholds for the adapter's generation(Tx)
1276 	 * and response(Rx) to Ethernet PAUSE frames.  These are just threshold
1277 	 * settings.  Flow control is enabled or disabled in the configuration
1278 	 * file.
1279 	 * High-water mark is set down from the top of the rx fifo (not
1280 	 * sensitive to max_frame_size) and low-water is set just below
1281 	 * high-water mark.
1282 	 * The high water mark must be low enough to fit one full frame above
1283 	 * it in the rx FIFO.  Should be the lower of:
1284 	 * 90% of the Rx FIFO size and the full Rx FIFO size minus the early
1285 	 * receive size (assuming ERT set to E1000_ERT_2048), or the full
1286 	 * Rx FIFO size minus one full frame.
1287 	 */
1288 	high_water = min(((pba << 10) * 9 / 10),
1289 	    ((hw->mac.type == e1000_82573 || hw->mac.type == e1000_ich9lan) ?
1290 	    ((pba << 10) - (E1000_ERT_2048 << 3)) :
1291 	    ((pba << 10) - Adapter->max_frame_size)));
1292 
1293 	hw->fc.high_water = high_water & 0xFFF8;
1294 	hw->fc.low_water = hw->fc.high_water - 8;
1295 
1296 	if (hw->mac.type == e1000_80003es2lan)
1297 		hw->fc.pause_time = 0xFFFF;
1298 	else
1299 		hw->fc.pause_time = E1000_FC_PAUSE_TIME;
1300 	hw->fc.send_xon = B_TRUE;
1301 
1302 	/*
1303 	 * Reset the adapter hardware the second time.
1304 	 */
1305 	mutex_enter(&e1000g_nvm_lock);
1306 	result = e1000_reset_hw(hw);
1307 	mutex_exit(&e1000g_nvm_lock);
1308 
1309 	if (result != E1000_SUCCESS) {
1310 		e1000g_fm_ereport(Adapter, DDI_FM_DEVICE_INVAL_STATE);
1311 		goto init_fail;
1312 	}
1313 
1314 	/* disable wakeup control by default */
1315 	if (hw->mac.type >= e1000_82544)
1316 		E1000_WRITE_REG(hw, E1000_WUC, 0);
1317 
1318 	/* MWI setup */
1319 	e1000_pci_set_mwi(hw);
1320 
1321 	/*
1322 	 * Configure/Initialize hardware
1323 	 */
1324 	mutex_enter(&e1000g_nvm_lock);
1325 	result = e1000_init_hw(hw);
1326 	mutex_exit(&e1000g_nvm_lock);
1327 
1328 	if (result < E1000_SUCCESS) {
1329 		e1000g_log(Adapter, CE_WARN, "Initialize hw failed");
1330 		e1000g_fm_ereport(Adapter, DDI_FM_DEVICE_INVAL_STATE);
1331 		goto init_fail;
1332 	}
1333 
1334 	/*
1335 	 * Restore LED settings to the default from EEPROM
1336 	 * to meet the standard for Sun platforms.
1337 	 */
1338 	(void) e1000_cleanup_led(hw);
1339 
1340 	/* Disable Smart Power Down */
1341 	phy_spd_state(hw, B_FALSE);
1342 
1343 	/* Make sure driver has control */
1344 	e1000g_get_driver_control(hw);
1345 
1346 	/*
1347 	 * Initialize unicast addresses.
1348 	 */
1349 	e1000g_init_unicst(Adapter);
1350 
1351 	/*
1352 	 * Setup and initialize the mctable structures.  After this routine
1353 	 * completes  Multicast table will be set
1354 	 */
1355 	e1000g_setup_multicast(Adapter);
1356 	msec_delay(5);
1357 
1358 	/*
1359 	 * Implement Adaptive IFS
1360 	 */
1361 	e1000_reset_adaptive(hw);
1362 
1363 	/* Setup Interrupt Throttling Register */
1364 	if (hw->mac.type >= e1000_82540) {
1365 		E1000_WRITE_REG(hw, E1000_ITR, Adapter->intr_throttling_rate);
1366 	} else
1367 		Adapter->intr_adaptive = B_FALSE;
1368 
1369 	/* Start the timer for link setup */
1370 	if (hw->mac.autoneg)
1371 		link_timeout = PHY_AUTO_NEG_LIMIT * drv_usectohz(100000);
1372 	else
1373 		link_timeout = PHY_FORCE_LIMIT * drv_usectohz(100000);
1374 
1375 	mutex_enter(&Adapter->link_lock);
1376 	if (hw->phy.autoneg_wait_to_complete) {
1377 		Adapter->link_complete = B_TRUE;
1378 	} else {
1379 		Adapter->link_complete = B_FALSE;
1380 		Adapter->link_tid = timeout(e1000g_link_timer,
1381 		    (void *)Adapter, link_timeout);
1382 	}
1383 	mutex_exit(&Adapter->link_lock);
1384 
1385 	/* Enable PCI-Ex master */
1386 	if (hw->bus.type == e1000_bus_type_pci_express) {
1387 		e1000_enable_pciex_master(hw);
1388 	}
1389 
1390 	/* Save the state of the phy */
1391 	e1000g_get_phy_state(Adapter);
1392 
1393 	e1000g_param_sync(Adapter);
1394 
1395 	Adapter->init_count++;
1396 
1397 	if (e1000g_check_acc_handle(Adapter->osdep.cfg_handle) != DDI_FM_OK) {
1398 		goto init_fail;
1399 	}
1400 	if (e1000g_check_acc_handle(Adapter->osdep.reg_handle) != DDI_FM_OK) {
1401 		goto init_fail;
1402 	}
1403 
1404 	rw_exit(&Adapter->chip_lock);
1405 
1406 	return (DDI_SUCCESS);
1407 
1408 init_fail:
1409 	rw_exit(&Adapter->chip_lock);
1410 	ddi_fm_service_impact(Adapter->dip, DDI_SERVICE_LOST);
1411 	return (DDI_FAILURE);
1412 }
1413 
1414 /*
1415  * Check if the link is up
1416  */
1417 static boolean_t
1418 e1000g_link_up(struct e1000g *Adapter)
1419 {
1420 	struct e1000_hw *hw;
1421 	boolean_t link_up;
1422 
1423 	hw = &Adapter->shared;
1424 
1425 	(void) e1000_check_for_link(hw);
1426 
1427 	if ((E1000_READ_REG(hw, E1000_STATUS) & E1000_STATUS_LU) ||
1428 	    ((!hw->mac.get_link_status) && (hw->mac.type == e1000_82543)) ||
1429 	    ((hw->phy.media_type == e1000_media_type_internal_serdes) &&
1430 	    (hw->mac.serdes_has_link))) {
1431 		link_up = B_TRUE;
1432 	} else {
1433 		link_up = B_FALSE;
1434 	}
1435 
1436 	return (link_up);
1437 }
1438 
1439 static void
1440 e1000g_m_ioctl(void *arg, queue_t *q, mblk_t *mp)
1441 {
1442 	struct iocblk *iocp;
1443 	struct e1000g *e1000gp;
1444 	enum ioc_reply status;
1445 
1446 	iocp = (struct iocblk *)(uintptr_t)mp->b_rptr;
1447 	iocp->ioc_error = 0;
1448 	e1000gp = (struct e1000g *)arg;
1449 
1450 	ASSERT(e1000gp);
1451 	if (e1000gp == NULL) {
1452 		miocnak(q, mp, 0, EINVAL);
1453 		return;
1454 	}
1455 
1456 	switch (iocp->ioc_cmd) {
1457 
1458 	case LB_GET_INFO_SIZE:
1459 	case LB_GET_INFO:
1460 	case LB_GET_MODE:
1461 	case LB_SET_MODE:
1462 		status = e1000g_loopback_ioctl(e1000gp, iocp, mp);
1463 		break;
1464 
1465 
1466 #ifdef E1000G_DEBUG
1467 	case E1000G_IOC_REG_PEEK:
1468 	case E1000G_IOC_REG_POKE:
1469 		status = e1000g_pp_ioctl(e1000gp, iocp, mp);
1470 		break;
1471 	case E1000G_IOC_CHIP_RESET:
1472 		e1000gp->reset_count++;
1473 		if (e1000g_reset(e1000gp))
1474 			status = IOC_ACK;
1475 		else
1476 			status = IOC_INVAL;
1477 		break;
1478 #endif
1479 	default:
1480 		status = IOC_INVAL;
1481 		break;
1482 	}
1483 
1484 	/*
1485 	 * Decide how to reply
1486 	 */
1487 	switch (status) {
1488 	default:
1489 	case IOC_INVAL:
1490 		/*
1491 		 * Error, reply with a NAK and EINVAL or the specified error
1492 		 */
1493 		miocnak(q, mp, 0, iocp->ioc_error == 0 ?
1494 		    EINVAL : iocp->ioc_error);
1495 		break;
1496 
1497 	case IOC_DONE:
1498 		/*
1499 		 * OK, reply already sent
1500 		 */
1501 		break;
1502 
1503 	case IOC_ACK:
1504 		/*
1505 		 * OK, reply with an ACK
1506 		 */
1507 		miocack(q, mp, 0, 0);
1508 		break;
1509 
1510 	case IOC_REPLY:
1511 		/*
1512 		 * OK, send prepared reply as ACK or NAK
1513 		 */
1514 		mp->b_datap->db_type = iocp->ioc_error == 0 ?
1515 		    M_IOCACK : M_IOCNAK;
1516 		qreply(q, mp);
1517 		break;
1518 	}
1519 }
1520 
1521 static int
1522 e1000g_m_start(void *arg)
1523 {
1524 	struct e1000g *Adapter = (struct e1000g *)arg;
1525 
1526 	return (e1000g_start(Adapter, B_TRUE));
1527 }
1528 
1529 static int
1530 e1000g_start(struct e1000g *Adapter, boolean_t global)
1531 {
1532 	if (global) {
1533 		/* Allocate dma resources for descriptors and buffers */
1534 		if (e1000g_alloc_dma_resources(Adapter) != DDI_SUCCESS) {
1535 			e1000g_log(Adapter, CE_WARN,
1536 			    "Alloc DMA resources failed");
1537 			return (ENOTACTIVE);
1538 		}
1539 		Adapter->rx_buffer_setup = B_FALSE;
1540 	}
1541 
1542 	if (!(Adapter->attach_progress & ATTACH_PROGRESS_INIT)) {
1543 		if (e1000g_init(Adapter) != DDI_SUCCESS) {
1544 			e1000g_log(Adapter, CE_WARN,
1545 			    "Adapter initialization failed");
1546 			if (global)
1547 				e1000g_release_dma_resources(Adapter);
1548 			return (ENOTACTIVE);
1549 		}
1550 	}
1551 
1552 	rw_enter(&Adapter->chip_lock, RW_WRITER);
1553 
1554 	/* Setup and initialize the transmit structures */
1555 	e1000g_tx_setup(Adapter);
1556 	msec_delay(5);
1557 
1558 	/* Setup and initialize the receive structures */
1559 	e1000g_rx_setup(Adapter);
1560 	msec_delay(5);
1561 
1562 	e1000g_mask_interrupt(Adapter);
1563 
1564 	if (e1000g_check_acc_handle(Adapter->osdep.reg_handle) != DDI_FM_OK) {
1565 		rw_exit(&Adapter->chip_lock);
1566 		ddi_fm_service_impact(Adapter->dip, DDI_SERVICE_LOST);
1567 		return (ENOTACTIVE);
1568 	}
1569 
1570 	Adapter->chip_state = E1000G_START;
1571 	Adapter->attach_progress |= ATTACH_PROGRESS_INIT;
1572 
1573 	rw_exit(&Adapter->chip_lock);
1574 
1575 	/* Enable and start the watchdog timer */
1576 	enable_watchdog_timer(Adapter);
1577 
1578 	return (0);
1579 }
1580 
1581 static void
1582 e1000g_m_stop(void *arg)
1583 {
1584 	struct e1000g *Adapter = (struct e1000g *)arg;
1585 
1586 	e1000g_stop(Adapter, B_TRUE);
1587 }
1588 
1589 static void
1590 e1000g_stop(struct e1000g *Adapter, boolean_t global)
1591 {
1592 	int result;
1593 
1594 	/* Set stop flags */
1595 	rw_enter(&Adapter->chip_lock, RW_WRITER);
1596 
1597 	Adapter->chip_state = E1000G_STOP;
1598 	Adapter->attach_progress &= ~ATTACH_PROGRESS_INIT;
1599 
1600 	rw_exit(&Adapter->chip_lock);
1601 
1602 	/* Drain tx sessions */
1603 	(void) e1000g_tx_drain(Adapter);
1604 
1605 	/* Disable and stop all the timers */
1606 	disable_watchdog_timer(Adapter);
1607 	stop_link_timer(Adapter);
1608 	stop_82547_timer(Adapter->tx_ring);
1609 
1610 	/* Stop the chip and release pending resources */
1611 	rw_enter(&Adapter->chip_lock, RW_WRITER);
1612 
1613 	e1000g_clear_all_interrupts(Adapter);
1614 
1615 	mutex_enter(&e1000g_nvm_lock);
1616 	result = e1000_reset_hw(&Adapter->shared);
1617 	mutex_exit(&e1000g_nvm_lock);
1618 
1619 	if (result != E1000_SUCCESS) {
1620 		e1000g_fm_ereport(Adapter, DDI_FM_DEVICE_INVAL_STATE);
1621 		ddi_fm_service_impact(Adapter->dip, DDI_SERVICE_LOST);
1622 	}
1623 
1624 	/* Release resources still held by the TX descriptors */
1625 	e1000g_tx_clean(Adapter);
1626 
1627 	if (e1000g_check_acc_handle(Adapter->osdep.reg_handle) != DDI_FM_OK)
1628 		ddi_fm_service_impact(Adapter->dip, DDI_SERVICE_LOST);
1629 
1630 	/* Clean the pending rx jumbo packet fragment */
1631 	e1000g_rx_clean(Adapter);
1632 
1633 	rw_exit(&Adapter->chip_lock);
1634 
1635 	if (global)
1636 		e1000g_release_dma_resources(Adapter);
1637 }
1638 
1639 static void
1640 e1000g_rx_clean(struct e1000g *Adapter)
1641 {
1642 	e1000g_rx_ring_t *rx_ring = Adapter->rx_ring;
1643 
1644 	if (rx_ring->rx_mblk != NULL) {
1645 		freemsg(rx_ring->rx_mblk);
1646 		rx_ring->rx_mblk = NULL;
1647 		rx_ring->rx_mblk_tail = NULL;
1648 		rx_ring->rx_mblk_len = 0;
1649 	}
1650 }
1651 
1652 static void
1653 e1000g_tx_clean(struct e1000g *Adapter)
1654 {
1655 	e1000g_tx_ring_t *tx_ring;
1656 	p_tx_sw_packet_t packet;
1657 	mblk_t *mp;
1658 	mblk_t *nmp;
1659 	uint32_t packet_count;
1660 
1661 	tx_ring = Adapter->tx_ring;
1662 
1663 	/*
1664 	 * Here we don't need to protect the lists using
1665 	 * the usedlist_lock and freelist_lock, for they
1666 	 * have been protected by the chip_lock.
1667 	 */
1668 	mp = NULL;
1669 	nmp = NULL;
1670 	packet_count = 0;
1671 	packet = (p_tx_sw_packet_t)QUEUE_GET_HEAD(&tx_ring->used_list);
1672 	while (packet != NULL) {
1673 		if (packet->mp != NULL) {
1674 			/* Assemble the message chain */
1675 			if (mp == NULL) {
1676 				mp = packet->mp;
1677 				nmp = packet->mp;
1678 			} else {
1679 				nmp->b_next = packet->mp;
1680 				nmp = packet->mp;
1681 			}
1682 			/* Disconnect the message from the sw packet */
1683 			packet->mp = NULL;
1684 		}
1685 
1686 		e1000g_free_tx_swpkt(packet);
1687 		packet_count++;
1688 
1689 		packet = (p_tx_sw_packet_t)
1690 		    QUEUE_GET_NEXT(&tx_ring->used_list, &packet->Link);
1691 	}
1692 
1693 	if (mp != NULL)
1694 		freemsgchain(mp);
1695 
1696 	if (packet_count > 0) {
1697 		QUEUE_APPEND(&tx_ring->free_list, &tx_ring->used_list);
1698 		QUEUE_INIT_LIST(&tx_ring->used_list);
1699 
1700 		/* Setup TX descriptor pointers */
1701 		tx_ring->tbd_next = tx_ring->tbd_first;
1702 		tx_ring->tbd_oldest = tx_ring->tbd_first;
1703 
1704 		/* Setup our HW Tx Head & Tail descriptor pointers */
1705 		E1000_WRITE_REG(&Adapter->shared, E1000_TDH(0), 0);
1706 		E1000_WRITE_REG(&Adapter->shared, E1000_TDT(0), 0);
1707 	}
1708 }
1709 
1710 static boolean_t
1711 e1000g_tx_drain(struct e1000g *Adapter)
1712 {
1713 	int i;
1714 	boolean_t done;
1715 	e1000g_tx_ring_t *tx_ring;
1716 
1717 	tx_ring = Adapter->tx_ring;
1718 
1719 	/* Allow up to 'wsdraintime' for pending xmit's to complete. */
1720 	for (i = 0; i < TX_DRAIN_TIME; i++) {
1721 		mutex_enter(&tx_ring->usedlist_lock);
1722 		done = IS_QUEUE_EMPTY(&tx_ring->used_list);
1723 		mutex_exit(&tx_ring->usedlist_lock);
1724 
1725 		if (done)
1726 			break;
1727 
1728 		msec_delay(1);
1729 	}
1730 
1731 	return (done);
1732 }
1733 
1734 static boolean_t
1735 e1000g_rx_drain(struct e1000g *Adapter)
1736 {
1737 	e1000g_rx_ring_t *rx_ring;
1738 	p_rx_sw_packet_t packet;
1739 	boolean_t done;
1740 
1741 	rx_ring = Adapter->rx_ring;
1742 	done = B_TRUE;
1743 
1744 	rw_enter(&e1000g_rx_detach_lock, RW_WRITER);
1745 
1746 	while (rx_ring->pending_list != NULL) {
1747 		packet = rx_ring->pending_list;
1748 		rx_ring->pending_list =
1749 		    rx_ring->pending_list->next;
1750 
1751 		if (packet->flag == E1000G_RX_SW_STOP) {
1752 			packet->flag = E1000G_RX_SW_DETACH;
1753 			done = B_FALSE;
1754 		} else {
1755 			ASSERT(packet->flag == E1000G_RX_SW_FREE);
1756 			ASSERT(packet->mp == NULL);
1757 			e1000g_free_rx_sw_packet(packet);
1758 		}
1759 	}
1760 
1761 	rw_exit(&e1000g_rx_detach_lock);
1762 
1763 	return (done);
1764 }
1765 
1766 boolean_t
1767 e1000g_reset(struct e1000g *Adapter)
1768 {
1769 	e1000g_stop(Adapter, B_FALSE);
1770 
1771 	if (e1000g_start(Adapter, B_FALSE)) {
1772 		e1000g_log(Adapter, CE_WARN, "Reset failed");
1773 		return (B_FALSE);
1774 	}
1775 
1776 	return (B_TRUE);
1777 }
1778 
1779 boolean_t
1780 e1000g_global_reset(struct e1000g *Adapter)
1781 {
1782 	e1000g_stop(Adapter, B_TRUE);
1783 
1784 	Adapter->init_count = 0;
1785 
1786 	if (e1000g_start(Adapter, B_TRUE)) {
1787 		e1000g_log(Adapter, CE_WARN, "Reset failed");
1788 		return (B_FALSE);
1789 	}
1790 
1791 	return (B_TRUE);
1792 }
1793 
1794 /*
1795  * e1000g_intr_pciexpress - ISR for PCI Express chipsets
1796  *
1797  * This interrupt service routine is for PCI-Express adapters.
1798  * The ICR contents is valid only when the E1000_ICR_INT_ASSERTED
1799  * bit is set.
1800  */
1801 static uint_t
1802 e1000g_intr_pciexpress(caddr_t arg)
1803 {
1804 	struct e1000g *Adapter;
1805 	uint32_t icr;
1806 
1807 	Adapter = (struct e1000g *)(uintptr_t)arg;
1808 	icr = E1000_READ_REG(&Adapter->shared, E1000_ICR);
1809 
1810 	if (e1000g_check_acc_handle(Adapter->osdep.reg_handle) != DDI_FM_OK)
1811 		ddi_fm_service_impact(Adapter->dip, DDI_SERVICE_DEGRADED);
1812 
1813 	if (icr & E1000_ICR_INT_ASSERTED) {
1814 		/*
1815 		 * E1000_ICR_INT_ASSERTED bit was set:
1816 		 * Read(Clear) the ICR, claim this interrupt,
1817 		 * look for work to do.
1818 		 */
1819 		e1000g_intr_work(Adapter, icr);
1820 		return (DDI_INTR_CLAIMED);
1821 	} else {
1822 		/*
1823 		 * E1000_ICR_INT_ASSERTED bit was not set:
1824 		 * Don't claim this interrupt, return immediately.
1825 		 */
1826 		return (DDI_INTR_UNCLAIMED);
1827 	}
1828 }
1829 
1830 /*
1831  * e1000g_intr - ISR for PCI/PCI-X chipsets
1832  *
1833  * This interrupt service routine is for PCI/PCI-X adapters.
1834  * We check the ICR contents no matter the E1000_ICR_INT_ASSERTED
1835  * bit is set or not.
1836  */
1837 static uint_t
1838 e1000g_intr(caddr_t arg)
1839 {
1840 	struct e1000g *Adapter;
1841 	uint32_t icr;
1842 
1843 	Adapter = (struct e1000g *)(uintptr_t)arg;
1844 	icr = E1000_READ_REG(&Adapter->shared, E1000_ICR);
1845 
1846 	if (e1000g_check_acc_handle(Adapter->osdep.reg_handle) != DDI_FM_OK)
1847 		ddi_fm_service_impact(Adapter->dip, DDI_SERVICE_DEGRADED);
1848 
1849 	if (icr) {
1850 		/*
1851 		 * Any bit was set in ICR:
1852 		 * Read(Clear) the ICR, claim this interrupt,
1853 		 * look for work to do.
1854 		 */
1855 		e1000g_intr_work(Adapter, icr);
1856 		return (DDI_INTR_CLAIMED);
1857 	} else {
1858 		/*
1859 		 * No bit was set in ICR:
1860 		 * Don't claim this interrupt, return immediately.
1861 		 */
1862 		return (DDI_INTR_UNCLAIMED);
1863 	}
1864 }
1865 
1866 /*
1867  * e1000g_intr_work - actual processing of ISR
1868  *
1869  * Read(clear) the ICR contents and call appropriate interrupt
1870  * processing routines.
1871  */
1872 static void
1873 e1000g_intr_work(struct e1000g *Adapter, uint32_t icr)
1874 {
1875 	struct e1000_hw *hw;
1876 	hw = &Adapter->shared;
1877 	e1000g_tx_ring_t *tx_ring = Adapter->tx_ring;
1878 	uint32_t itr;
1879 
1880 	Adapter->rx_pkt_cnt = 0;
1881 	Adapter->tx_pkt_cnt = 0;
1882 
1883 	rw_enter(&Adapter->chip_lock, RW_READER);
1884 	/*
1885 	 * Here we need to check the "chip_state" flag within the chip_lock to
1886 	 * ensure the receive routine will not execute when the adapter is
1887 	 * being reset.
1888 	 */
1889 	if (Adapter->chip_state != E1000G_START) {
1890 		rw_exit(&Adapter->chip_lock);
1891 		return;
1892 	}
1893 
1894 	if (icr & E1000_ICR_RXT0) {
1895 		mblk_t *mp;
1896 
1897 		mutex_enter(&Adapter->rx_ring->rx_lock);
1898 		mp = e1000g_receive(Adapter);
1899 		mutex_exit(&Adapter->rx_ring->rx_lock);
1900 
1901 		rw_exit(&Adapter->chip_lock);
1902 
1903 		if (mp != NULL)
1904 			mac_rx(Adapter->mh, Adapter->mrh, mp);
1905 	} else
1906 		rw_exit(&Adapter->chip_lock);
1907 
1908 	if (icr & E1000_ICR_TXDW) {
1909 		if (!Adapter->tx_intr_enable)
1910 			e1000g_clear_tx_interrupt(Adapter);
1911 
1912 		/* Recycle the tx descriptors */
1913 		rw_enter(&Adapter->chip_lock, RW_READER);
1914 		(void) e1000g_recycle(tx_ring);
1915 		E1000G_DEBUG_STAT(tx_ring->stat_recycle_intr);
1916 		rw_exit(&Adapter->chip_lock);
1917 
1918 		/* Schedule the re-transmit */
1919 		if (tx_ring->resched_needed &&
1920 		    (tx_ring->tbd_avail > DEFAULT_TX_UPDATE_THRESHOLD)) {
1921 			tx_ring->resched_needed = B_FALSE;
1922 			mac_tx_update(Adapter->mh);
1923 			E1000G_STAT(tx_ring->stat_reschedule);
1924 		}
1925 	}
1926 
1927 	if (Adapter->intr_adaptive) {
1928 		itr = e1000g_get_itr(Adapter->rx_pkt_cnt, Adapter->tx_pkt_cnt,
1929 		    Adapter->intr_throttling_rate);
1930 		if (itr) {
1931 			E1000_WRITE_REG(hw, E1000_ITR, itr);
1932 			Adapter->intr_throttling_rate = itr;
1933 		}
1934 	}
1935 
1936 	/*
1937 	 * The Receive Sequence errors RXSEQ and the link status change LSC
1938 	 * are checked to detect that the cable has been pulled out. For
1939 	 * the Wiseman 2.0 silicon, the receive sequence errors interrupt
1940 	 * are an indication that cable is not connected.
1941 	 */
1942 	if ((icr & E1000_ICR_RXSEQ) ||
1943 	    (icr & E1000_ICR_LSC) ||
1944 	    (icr & E1000_ICR_GPI_EN1)) {
1945 		boolean_t link_changed;
1946 		timeout_id_t tid = 0;
1947 
1948 		stop_watchdog_timer(Adapter);
1949 
1950 		rw_enter(&Adapter->chip_lock, RW_WRITER);
1951 
1952 		/*
1953 		 * Because we got a link-status-change interrupt, force
1954 		 * e1000_check_for_link() to look at phy
1955 		 */
1956 		Adapter->shared.mac.get_link_status = B_TRUE;
1957 
1958 		/* e1000g_link_check takes care of link status change */
1959 		link_changed = e1000g_link_check(Adapter);
1960 
1961 		/* Get new phy state */
1962 		e1000g_get_phy_state(Adapter);
1963 
1964 		/*
1965 		 * If the link timer has not timed out, we'll not notify
1966 		 * the upper layer with any link state until the link is up.
1967 		 */
1968 		if (link_changed && !Adapter->link_complete) {
1969 			if (Adapter->link_state == LINK_STATE_UP) {
1970 				mutex_enter(&Adapter->link_lock);
1971 				Adapter->link_complete = B_TRUE;
1972 				tid = Adapter->link_tid;
1973 				Adapter->link_tid = 0;
1974 				mutex_exit(&Adapter->link_lock);
1975 			} else {
1976 				link_changed = B_FALSE;
1977 			}
1978 		}
1979 		rw_exit(&Adapter->chip_lock);
1980 
1981 		if (link_changed) {
1982 			if (tid != 0)
1983 				(void) untimeout(tid);
1984 
1985 			/*
1986 			 * Workaround for esb2. Data stuck in fifo on a link
1987 			 * down event. Stop receiver here and reset in watchdog.
1988 			 */
1989 			if ((Adapter->link_state == LINK_STATE_DOWN) &&
1990 			    (Adapter->shared.mac.type == e1000_80003es2lan)) {
1991 				uint32_t rctl = E1000_READ_REG(hw, E1000_RCTL);
1992 				E1000_WRITE_REG(hw, E1000_RCTL,
1993 				    rctl & ~E1000_RCTL_EN);
1994 				e1000g_log(Adapter, CE_WARN,
1995 				    "ESB2 receiver disabled");
1996 				Adapter->esb2_workaround = B_TRUE;
1997 			}
1998 
1999 			mac_link_update(Adapter->mh, Adapter->link_state);
2000 		}
2001 
2002 		start_watchdog_timer(Adapter);
2003 	}
2004 }
2005 
2006 static uint32_t
2007 e1000g_get_itr(uint32_t rx_packet, uint32_t tx_packet, uint32_t cur_itr)
2008 {
2009 	uint32_t new_itr;
2010 
2011 	/*
2012 	 * Determine a propper itr according to rx/tx packet count
2013 	 * per interrupt, the value of itr are based on document
2014 	 * and testing.
2015 	 */
2016 	if ((rx_packet < DEFAULT_INTR_PACKET_LOW) ||
2017 	    (tx_packet < DEFAULT_INTR_PACKET_LOW)) {
2018 		new_itr = DEFAULT_INTR_THROTTLING_LOW;
2019 		goto itr_done;
2020 	}
2021 	if ((rx_packet > DEFAULT_INTR_PACKET_HIGH) ||
2022 	    (tx_packet > DEFAULT_INTR_PACKET_HIGH)) {
2023 		new_itr = DEFAULT_INTR_THROTTLING_LOW;
2024 		goto itr_done;
2025 	}
2026 	if (cur_itr < DEFAULT_INTR_THROTTLING_HIGH) {
2027 		new_itr = cur_itr + (DEFAULT_INTR_THROTTLING_HIGH >> 2);
2028 		if (new_itr > DEFAULT_INTR_THROTTLING_HIGH)
2029 			new_itr = DEFAULT_INTR_THROTTLING_HIGH;
2030 	} else
2031 		new_itr = DEFAULT_INTR_THROTTLING_HIGH;
2032 
2033 itr_done:
2034 	if (cur_itr == new_itr)
2035 		return (0);
2036 	else
2037 		return (new_itr);
2038 }
2039 
2040 static void
2041 e1000g_init_unicst(struct e1000g *Adapter)
2042 {
2043 	struct e1000_hw *hw;
2044 	int slot;
2045 
2046 	hw = &Adapter->shared;
2047 
2048 	if (!Adapter->unicst_init) {
2049 		/* Initialize the multiple unicast addresses */
2050 		Adapter->unicst_total = MAX_NUM_UNICAST_ADDRESSES;
2051 
2052 		if ((hw->mac.type == e1000_82571) &&
2053 		    (e1000_get_laa_state_82571(hw) == B_TRUE))
2054 			Adapter->unicst_total--;
2055 
2056 		Adapter->unicst_avail = Adapter->unicst_total - 1;
2057 
2058 		/* Store the default mac address */
2059 		e1000_rar_set(hw, hw->mac.addr, 0);
2060 		if ((hw->mac.type == e1000_82571) &&
2061 		    (e1000_get_laa_state_82571(hw) == B_TRUE))
2062 			e1000_rar_set(hw, hw->mac.addr, LAST_RAR_ENTRY);
2063 
2064 		bcopy(hw->mac.addr, Adapter->unicst_addr[0].mac.addr,
2065 		    ETHERADDRL);
2066 		Adapter->unicst_addr[0].mac.set = 1;
2067 
2068 		for (slot = 1; slot < Adapter->unicst_total; slot++)
2069 			Adapter->unicst_addr[slot].mac.set = 0;
2070 
2071 		Adapter->unicst_init = B_TRUE;
2072 	} else {
2073 		/* Recover the default mac address */
2074 		bcopy(Adapter->unicst_addr[0].mac.addr, hw->mac.addr,
2075 		    ETHERADDRL);
2076 
2077 		/* Store the default mac address */
2078 		e1000_rar_set(hw, hw->mac.addr, 0);
2079 		if ((hw->mac.type == e1000_82571) &&
2080 		    (e1000_get_laa_state_82571(hw) == B_TRUE))
2081 			e1000_rar_set(hw, hw->mac.addr, LAST_RAR_ENTRY);
2082 
2083 		/* Re-configure the RAR registers */
2084 		for (slot = 1; slot < Adapter->unicst_total; slot++)
2085 			e1000_rar_set(hw,
2086 			    Adapter->unicst_addr[slot].mac.addr, slot);
2087 	}
2088 
2089 	if (e1000g_check_acc_handle(Adapter->osdep.reg_handle) != DDI_FM_OK)
2090 		ddi_fm_service_impact(Adapter->dip, DDI_SERVICE_DEGRADED);
2091 }
2092 
2093 static int
2094 e1000g_m_unicst(void *arg, const uint8_t *mac_addr)
2095 {
2096 	struct e1000g *Adapter;
2097 
2098 	Adapter = (struct e1000g *)arg;
2099 
2100 	/* Store the default MAC address */
2101 	bcopy(mac_addr, Adapter->shared.mac.addr, ETHERADDRL);
2102 
2103 	/* Set MAC address in address slot 0, which is the default address */
2104 	return (e1000g_unicst_set(Adapter, mac_addr, 0));
2105 }
2106 
2107 static int
2108 e1000g_unicst_set(struct e1000g *Adapter, const uint8_t *mac_addr,
2109     mac_addr_slot_t slot)
2110 {
2111 	struct e1000_hw *hw;
2112 
2113 	hw = &Adapter->shared;
2114 
2115 	rw_enter(&Adapter->chip_lock, RW_WRITER);
2116 
2117 	/*
2118 	 * The first revision of Wiseman silicon (rev 2.0) has an errata
2119 	 * that requires the receiver to be in reset when any of the
2120 	 * receive address registers (RAR regs) are accessed.  The first
2121 	 * rev of Wiseman silicon also requires MWI to be disabled when
2122 	 * a global reset or a receive reset is issued.  So before we
2123 	 * initialize the RARs, we check the rev of the Wiseman controller
2124 	 * and work around any necessary HW errata.
2125 	 */
2126 	if ((hw->mac.type == e1000_82542) &&
2127 	    (hw->revision_id == E1000_REVISION_2)) {
2128 		e1000_pci_clear_mwi(hw);
2129 		E1000_WRITE_REG(hw, E1000_RCTL, E1000_RCTL_RST);
2130 		msec_delay(5);
2131 	}
2132 
2133 	bcopy(mac_addr, Adapter->unicst_addr[slot].mac.addr, ETHERADDRL);
2134 	e1000_rar_set(hw, (uint8_t *)mac_addr, slot);
2135 
2136 	if (slot == 0) {
2137 		if ((hw->mac.type == e1000_82571) &&
2138 		    (e1000_get_laa_state_82571(hw) == B_TRUE))
2139 			e1000_rar_set(hw, (uint8_t *)mac_addr, LAST_RAR_ENTRY);
2140 	}
2141 
2142 	/*
2143 	 * If we are using Wiseman rev 2.0 silicon, we will have previously
2144 	 * put the receive in reset, and disabled MWI, to work around some
2145 	 * HW errata.  Now we should take the receiver out of reset, and
2146 	 * re-enabled if MWI if it was previously enabled by the PCI BIOS.
2147 	 */
2148 	if ((hw->mac.type == e1000_82542) &&
2149 	    (hw->revision_id == E1000_REVISION_2)) {
2150 		E1000_WRITE_REG(hw, E1000_RCTL, 0);
2151 		msec_delay(1);
2152 		if (hw->bus.pci_cmd_word & CMD_MEM_WRT_INVALIDATE)
2153 			e1000_pci_set_mwi(hw);
2154 		e1000g_rx_setup(Adapter);
2155 	}
2156 
2157 	rw_exit(&Adapter->chip_lock);
2158 
2159 	if (e1000g_check_acc_handle(Adapter->osdep.reg_handle) != DDI_FM_OK) {
2160 		ddi_fm_service_impact(Adapter->dip, DDI_SERVICE_DEGRADED);
2161 		return (EIO);
2162 	}
2163 
2164 	return (0);
2165 }
2166 
2167 /*
2168  * e1000g_m_unicst_add() - will find an unused address slot, set the
2169  * address value to the one specified, reserve that slot and enable
2170  * the NIC to start filtering on the new MAC address.
2171  * Returns 0 on success.
2172  */
2173 static int
2174 e1000g_m_unicst_add(void *arg, mac_multi_addr_t *maddr)
2175 {
2176 	struct e1000g *Adapter = (struct e1000g *)arg;
2177 	mac_addr_slot_t slot;
2178 	int err;
2179 
2180 	if (mac_unicst_verify(Adapter->mh,
2181 	    maddr->mma_addr, maddr->mma_addrlen) == B_FALSE)
2182 		return (EINVAL);
2183 
2184 	rw_enter(&Adapter->chip_lock, RW_WRITER);
2185 	if (Adapter->unicst_avail == 0) {
2186 		/* no slots available */
2187 		rw_exit(&Adapter->chip_lock);
2188 		return (ENOSPC);
2189 	}
2190 
2191 	/*
2192 	 * Primary/default address is in slot 0. The next addresses
2193 	 * are the multiple MAC addresses. So multiple MAC address 0
2194 	 * is in slot 1, 1 in slot 2, and so on. So the first multiple
2195 	 * MAC address resides in slot 1.
2196 	 */
2197 	for (slot = 1; slot < Adapter->unicst_total; slot++) {
2198 		if (Adapter->unicst_addr[slot].mac.set == 0) {
2199 			Adapter->unicst_addr[slot].mac.set = 1;
2200 			break;
2201 		}
2202 	}
2203 
2204 	ASSERT((slot > 0) && (slot < Adapter->unicst_total));
2205 
2206 	Adapter->unicst_avail--;
2207 	rw_exit(&Adapter->chip_lock);
2208 
2209 	maddr->mma_slot = slot;
2210 
2211 	if ((err = e1000g_unicst_set(Adapter, maddr->mma_addr, slot)) != 0) {
2212 		rw_enter(&Adapter->chip_lock, RW_WRITER);
2213 		Adapter->unicst_addr[slot].mac.set = 0;
2214 		Adapter->unicst_avail++;
2215 		rw_exit(&Adapter->chip_lock);
2216 	}
2217 
2218 	return (err);
2219 }
2220 
2221 /*
2222  * e1000g_m_unicst_remove() - removes a MAC address that was added by a
2223  * call to e1000g_m_unicst_add(). The slot number that was returned in
2224  * e1000g_m_unicst_add() is passed in the call to remove the address.
2225  * Returns 0 on success.
2226  */
2227 static int
2228 e1000g_m_unicst_remove(void *arg, mac_addr_slot_t slot)
2229 {
2230 	struct e1000g *Adapter = (struct e1000g *)arg;
2231 	int err;
2232 
2233 	if ((slot <= 0) || (slot >= Adapter->unicst_total))
2234 		return (EINVAL);
2235 
2236 	rw_enter(&Adapter->chip_lock, RW_WRITER);
2237 	if (Adapter->unicst_addr[slot].mac.set == 1) {
2238 		Adapter->unicst_addr[slot].mac.set = 0;
2239 		Adapter->unicst_avail++;
2240 		rw_exit(&Adapter->chip_lock);
2241 
2242 		/* Copy the default address to the passed slot */
2243 		if ((err = e1000g_unicst_set(Adapter,
2244 		    Adapter->unicst_addr[0].mac.addr, slot)) != 0) {
2245 			rw_enter(&Adapter->chip_lock, RW_WRITER);
2246 			Adapter->unicst_addr[slot].mac.set = 1;
2247 			Adapter->unicst_avail--;
2248 			rw_exit(&Adapter->chip_lock);
2249 		}
2250 		return (err);
2251 	}
2252 	rw_exit(&Adapter->chip_lock);
2253 
2254 	return (EINVAL);
2255 }
2256 
2257 /*
2258  * e1000g_m_unicst_modify() - modifies the value of an address that
2259  * has been added by e1000g_m_unicst_add(). The new address, address
2260  * length and the slot number that was returned in the call to add
2261  * should be passed to e1000g_m_unicst_modify(). mma_flags should be
2262  * set to 0. Returns 0 on success.
2263  */
2264 static int
2265 e1000g_m_unicst_modify(void *arg, mac_multi_addr_t *maddr)
2266 {
2267 	struct e1000g *Adapter = (struct e1000g *)arg;
2268 	mac_addr_slot_t slot;
2269 
2270 	if (mac_unicst_verify(Adapter->mh,
2271 	    maddr->mma_addr, maddr->mma_addrlen) == B_FALSE)
2272 		return (EINVAL);
2273 
2274 	slot = maddr->mma_slot;
2275 
2276 	if ((slot <= 0) || (slot >= Adapter->unicst_total))
2277 		return (EINVAL);
2278 
2279 	rw_enter(&Adapter->chip_lock, RW_WRITER);
2280 	if (Adapter->unicst_addr[slot].mac.set == 1) {
2281 		rw_exit(&Adapter->chip_lock);
2282 
2283 		return (e1000g_unicst_set(Adapter, maddr->mma_addr, slot));
2284 	}
2285 	rw_exit(&Adapter->chip_lock);
2286 
2287 	return (EINVAL);
2288 }
2289 
2290 /*
2291  * e1000g_m_unicst_get() - will get the MAC address and all other
2292  * information related to the address slot passed in mac_multi_addr_t.
2293  * mma_flags should be set to 0 in the call.
2294  * On return, mma_flags can take the following values:
2295  * 1) MMAC_SLOT_UNUSED
2296  * 2) MMAC_SLOT_USED | MMAC_VENDOR_ADDR
2297  * 3) MMAC_SLOT_UNUSED | MMAC_VENDOR_ADDR
2298  * 4) MMAC_SLOT_USED
2299  */
2300 static int
2301 e1000g_m_unicst_get(void *arg, mac_multi_addr_t *maddr)
2302 {
2303 	struct e1000g *Adapter = (struct e1000g *)arg;
2304 	mac_addr_slot_t slot;
2305 
2306 	slot = maddr->mma_slot;
2307 
2308 	if ((slot <= 0) || (slot >= Adapter->unicst_total))
2309 		return (EINVAL);
2310 
2311 	rw_enter(&Adapter->chip_lock, RW_WRITER);
2312 	if (Adapter->unicst_addr[slot].mac.set == 1) {
2313 		bcopy(Adapter->unicst_addr[slot].mac.addr,
2314 		    maddr->mma_addr, ETHERADDRL);
2315 		maddr->mma_flags = MMAC_SLOT_USED;
2316 	} else {
2317 		maddr->mma_flags = MMAC_SLOT_UNUSED;
2318 	}
2319 	rw_exit(&Adapter->chip_lock);
2320 
2321 	return (0);
2322 }
2323 
2324 static int
2325 multicst_add(struct e1000g *Adapter, const uint8_t *multiaddr)
2326 {
2327 	struct e1000_hw *hw = &Adapter->shared;
2328 	int res = 0;
2329 
2330 	rw_enter(&Adapter->chip_lock, RW_WRITER);
2331 
2332 	if ((multiaddr[0] & 01) == 0) {
2333 		res = EINVAL;
2334 		goto done;
2335 	}
2336 
2337 	if (Adapter->mcast_count >= MAX_NUM_MULTICAST_ADDRESSES) {
2338 		res = ENOENT;
2339 		goto done;
2340 	}
2341 
2342 	bcopy(multiaddr,
2343 	    &Adapter->mcast_table[Adapter->mcast_count], ETHERADDRL);
2344 	Adapter->mcast_count++;
2345 
2346 	/*
2347 	 * Update the MC table in the hardware
2348 	 */
2349 	e1000g_clear_interrupt(Adapter);
2350 
2351 	e1000g_setup_multicast(Adapter);
2352 
2353 	if ((hw->mac.type == e1000_82542) &&
2354 	    (hw->revision_id == E1000_REVISION_2))
2355 		e1000g_rx_setup(Adapter);
2356 
2357 	e1000g_mask_interrupt(Adapter);
2358 
2359 done:
2360 	rw_exit(&Adapter->chip_lock);
2361 	if (e1000g_check_acc_handle(Adapter->osdep.reg_handle) != DDI_FM_OK) {
2362 		ddi_fm_service_impact(Adapter->dip, DDI_SERVICE_DEGRADED);
2363 		res = EIO;
2364 	}
2365 
2366 	return (res);
2367 }
2368 
2369 static int
2370 multicst_remove(struct e1000g *Adapter, const uint8_t *multiaddr)
2371 {
2372 	struct e1000_hw *hw = &Adapter->shared;
2373 	unsigned i;
2374 
2375 	rw_enter(&Adapter->chip_lock, RW_WRITER);
2376 
2377 	for (i = 0; i < Adapter->mcast_count; i++) {
2378 		if (bcmp(multiaddr, &Adapter->mcast_table[i],
2379 		    ETHERADDRL) == 0) {
2380 			for (i++; i < Adapter->mcast_count; i++) {
2381 				Adapter->mcast_table[i - 1] =
2382 				    Adapter->mcast_table[i];
2383 			}
2384 			Adapter->mcast_count--;
2385 			break;
2386 		}
2387 	}
2388 
2389 	/*
2390 	 * Update the MC table in the hardware
2391 	 */
2392 	e1000g_clear_interrupt(Adapter);
2393 
2394 	e1000g_setup_multicast(Adapter);
2395 
2396 	if ((hw->mac.type == e1000_82542) &&
2397 	    (hw->revision_id == E1000_REVISION_2))
2398 		e1000g_rx_setup(Adapter);
2399 
2400 	e1000g_mask_interrupt(Adapter);
2401 
2402 done:
2403 	rw_exit(&Adapter->chip_lock);
2404 	if (e1000g_check_acc_handle(Adapter->osdep.reg_handle) != DDI_FM_OK) {
2405 		ddi_fm_service_impact(Adapter->dip, DDI_SERVICE_DEGRADED);
2406 		return (EIO);
2407 	}
2408 
2409 	return (0);
2410 }
2411 
2412 /*
2413  * e1000g_setup_multicast - setup multicast data structures
2414  *
2415  * This routine initializes all of the multicast related structures.
2416  */
2417 void
2418 e1000g_setup_multicast(struct e1000g *Adapter)
2419 {
2420 	uint8_t *mc_addr_list;
2421 	uint32_t mc_addr_count;
2422 	uint32_t rctl;
2423 	struct e1000_hw *hw;
2424 
2425 	hw = &Adapter->shared;
2426 
2427 	/*
2428 	 * The e1000g has the ability to do perfect filtering of 16
2429 	 * addresses. The driver uses one of the e1000g's 16 receive
2430 	 * address registers for its node/network/mac/individual address.
2431 	 * So, we have room for up to 15 multicast addresses in the CAM,
2432 	 * additional MC addresses are handled by the MTA (Multicast Table
2433 	 * Array)
2434 	 */
2435 
2436 	rctl = E1000_READ_REG(hw, E1000_RCTL);
2437 
2438 	mc_addr_list = (uint8_t *)Adapter->mcast_table;
2439 
2440 	if (Adapter->mcast_count > MAX_NUM_MULTICAST_ADDRESSES) {
2441 		E1000G_DEBUGLOG_1(Adapter, CE_WARN,
2442 		    "Adapter requested more than %d MC Addresses.\n",
2443 		    MAX_NUM_MULTICAST_ADDRESSES);
2444 		mc_addr_count = MAX_NUM_MULTICAST_ADDRESSES;
2445 	} else {
2446 		/*
2447 		 * Set the number of MC addresses that we are being
2448 		 * requested to use
2449 		 */
2450 		mc_addr_count = Adapter->mcast_count;
2451 	}
2452 	/*
2453 	 * The Wiseman 2.0 silicon has an errata by which the receiver will
2454 	 * hang  while writing to the receive address registers if the receiver
2455 	 * is not in reset before writing to the registers. Updating the RAR
2456 	 * is done during the setting up of the multicast table, hence the
2457 	 * receiver has to be put in reset before updating the multicast table
2458 	 * and then taken out of reset at the end
2459 	 */
2460 	/*
2461 	 * if WMI was enabled then dis able it before issueing the global
2462 	 * reset to the hardware.
2463 	 */
2464 	/*
2465 	 * Only required for WISEMAN_2_0
2466 	 */
2467 	if ((hw->mac.type == e1000_82542) &&
2468 	    (hw->revision_id == E1000_REVISION_2)) {
2469 		e1000_pci_clear_mwi(hw);
2470 		/*
2471 		 * The e1000g must be in reset before changing any RA
2472 		 * registers. Reset receive unit.  The chip will remain in
2473 		 * the reset state until software explicitly restarts it.
2474 		 */
2475 		E1000_WRITE_REG(hw, E1000_RCTL, E1000_RCTL_RST);
2476 		/* Allow receiver time to go in to reset */
2477 		msec_delay(5);
2478 	}
2479 
2480 	e1000_update_mc_addr_list(hw, mc_addr_list, mc_addr_count,
2481 	    Adapter->unicst_total, hw->mac.rar_entry_count);
2482 
2483 	/*
2484 	 * Only for Wiseman_2_0
2485 	 * If MWI was enabled then re-enable it after issueing (as we
2486 	 * disabled it up there) the receive reset command.
2487 	 * Wainwright does not have a receive reset command and only thing
2488 	 * close to it is global reset which will require tx setup also
2489 	 */
2490 	if ((hw->mac.type == e1000_82542) &&
2491 	    (hw->revision_id == E1000_REVISION_2)) {
2492 		/*
2493 		 * if WMI was enabled then reenable it after issueing the
2494 		 * global or receive reset to the hardware.
2495 		 */
2496 
2497 		/*
2498 		 * Take receiver out of reset
2499 		 * clear E1000_RCTL_RST bit (and all others)
2500 		 */
2501 		E1000_WRITE_REG(hw, E1000_RCTL, 0);
2502 		msec_delay(5);
2503 		if (hw->bus.pci_cmd_word & CMD_MEM_WRT_INVALIDATE)
2504 			e1000_pci_set_mwi(hw);
2505 	}
2506 
2507 	/*
2508 	 * Restore original value
2509 	 */
2510 	E1000_WRITE_REG(hw, E1000_RCTL, rctl);
2511 }
2512 
2513 int
2514 e1000g_m_multicst(void *arg, boolean_t add, const uint8_t *addr)
2515 {
2516 	struct e1000g *Adapter = (struct e1000g *)arg;
2517 
2518 	return ((add) ? multicst_add(Adapter, addr)
2519 	    : multicst_remove(Adapter, addr));
2520 }
2521 
2522 int
2523 e1000g_m_promisc(void *arg, boolean_t on)
2524 {
2525 	struct e1000g *Adapter = (struct e1000g *)arg;
2526 	uint32_t rctl;
2527 
2528 	rw_enter(&Adapter->chip_lock, RW_WRITER);
2529 
2530 	rctl = E1000_READ_REG(&Adapter->shared, E1000_RCTL);
2531 
2532 	if (on)
2533 		rctl |=
2534 		    (E1000_RCTL_UPE | E1000_RCTL_MPE | E1000_RCTL_BAM);
2535 	else
2536 		rctl &= (~(E1000_RCTL_UPE | E1000_RCTL_MPE));
2537 
2538 	E1000_WRITE_REG(&Adapter->shared, E1000_RCTL, rctl);
2539 
2540 	Adapter->e1000g_promisc = on;
2541 
2542 	rw_exit(&Adapter->chip_lock);
2543 
2544 	if (e1000g_check_acc_handle(Adapter->osdep.reg_handle) != DDI_FM_OK) {
2545 		ddi_fm_service_impact(Adapter->dip, DDI_SERVICE_DEGRADED);
2546 		return (EIO);
2547 	}
2548 
2549 	return (0);
2550 }
2551 
2552 static boolean_t
2553 e1000g_m_getcapab(void *arg, mac_capab_t cap, void *cap_data)
2554 {
2555 	struct e1000g *Adapter = (struct e1000g *)arg;
2556 
2557 	switch (cap) {
2558 	case MAC_CAPAB_HCKSUM: {
2559 		uint32_t *txflags = cap_data;
2560 
2561 		if (Adapter->tx_hcksum_enable)
2562 			*txflags = HCKSUM_IPHDRCKSUM |
2563 			    HCKSUM_INET_PARTIAL;
2564 		else
2565 			return (B_FALSE);
2566 		break;
2567 	}
2568 	case MAC_CAPAB_POLL:
2569 		/*
2570 		 * There's nothing for us to fill in, simply returning
2571 		 * B_TRUE stating that we support polling is sufficient.
2572 		 */
2573 		break;
2574 
2575 	case MAC_CAPAB_MULTIADDRESS: {
2576 		multiaddress_capab_t *mmacp = cap_data;
2577 
2578 		/*
2579 		 * The number of MAC addresses made available by
2580 		 * this capability is one less than the total as
2581 		 * the primary address in slot 0 is counted in
2582 		 * the total.
2583 		 */
2584 		mmacp->maddr_naddr = Adapter->unicst_total - 1;
2585 		mmacp->maddr_naddrfree = Adapter->unicst_avail;
2586 		/* No multiple factory addresses, set mma_flag to 0 */
2587 		mmacp->maddr_flag = 0;
2588 		mmacp->maddr_handle = Adapter;
2589 		mmacp->maddr_add = e1000g_m_unicst_add;
2590 		mmacp->maddr_remove = e1000g_m_unicst_remove;
2591 		mmacp->maddr_modify = e1000g_m_unicst_modify;
2592 		mmacp->maddr_get = e1000g_m_unicst_get;
2593 		mmacp->maddr_reserve = NULL;
2594 		break;
2595 	}
2596 
2597 	case MAC_CAPAB_LSO: {
2598 		mac_capab_lso_t *cap_lso = cap_data;
2599 
2600 		if (Adapter->lso_enable) {
2601 			cap_lso->lso_flags = LSO_TX_BASIC_TCP_IPV4;
2602 			cap_lso->lso_basic_tcp_ipv4.lso_max =
2603 			    E1000_LSO_MAXLEN;
2604 		} else
2605 			return (B_FALSE);
2606 		break;
2607 	}
2608 
2609 	default:
2610 		return (B_FALSE);
2611 	}
2612 	return (B_TRUE);
2613 }
2614 
2615 static boolean_t
2616 e1000g_param_locked(mac_prop_id_t pr_num)
2617 {
2618 	/*
2619 	 * All en_* parameters are locked (read-only) while
2620 	 * the device is in any sort of loopback mode ...
2621 	 */
2622 	switch (pr_num) {
2623 		case MAC_PROP_EN_1000FDX_CAP:
2624 		case MAC_PROP_EN_1000HDX_CAP:
2625 		case MAC_PROP_EN_100FDX_CAP:
2626 		case MAC_PROP_EN_100HDX_CAP:
2627 		case MAC_PROP_EN_10FDX_CAP:
2628 		case MAC_PROP_EN_10HDX_CAP:
2629 		case MAC_PROP_AUTONEG:
2630 		case MAC_PROP_FLOWCTRL:
2631 			return (B_TRUE);
2632 	}
2633 	return (B_FALSE);
2634 }
2635 
2636 /*
2637  * callback function for set/get of properties
2638  */
2639 static int
2640 e1000g_m_setprop(void *arg, const char *pr_name, mac_prop_id_t pr_num,
2641     uint_t pr_valsize, const void *pr_val)
2642 {
2643 	struct e1000g *Adapter = arg;
2644 	struct e1000_mac_info *mac = &Adapter->shared.mac;
2645 	struct e1000_phy_info *phy = &Adapter->shared.phy;
2646 	struct e1000_fc_info *fc = &Adapter->shared.fc;
2647 	int err = 0;
2648 	link_flowctrl_t flowctrl;
2649 	uint32_t cur_mtu, new_mtu;
2650 	uint64_t tmp = 0;
2651 
2652 	rw_enter(&Adapter->chip_lock, RW_WRITER);
2653 	if (Adapter->loopback_mode != E1000G_LB_NONE &&
2654 	    e1000g_param_locked(pr_num)) {
2655 		/*
2656 		 * All en_* parameters are locked (read-only)
2657 		 * while the device is in any sort of loopback mode.
2658 		 */
2659 		rw_exit(&Adapter->chip_lock);
2660 		return (EBUSY);
2661 	}
2662 
2663 	switch (pr_num) {
2664 		case MAC_PROP_EN_1000FDX_CAP:
2665 			Adapter->param_en_1000fdx = *(uint8_t *)pr_val;
2666 			Adapter->param_adv_1000fdx = *(uint8_t *)pr_val;
2667 			goto reset;
2668 		case MAC_PROP_EN_1000HDX_CAP:
2669 			Adapter->param_en_1000hdx = *(uint8_t *)pr_val;
2670 			Adapter->param_adv_1000hdx = *(uint8_t *)pr_val;
2671 			goto reset;
2672 		case MAC_PROP_EN_100FDX_CAP:
2673 			Adapter->param_en_100fdx = *(uint8_t *)pr_val;
2674 			Adapter->param_adv_100fdx = *(uint8_t *)pr_val;
2675 			goto reset;
2676 		case MAC_PROP_EN_100HDX_CAP:
2677 			Adapter->param_en_100hdx = *(uint8_t *)pr_val;
2678 			Adapter->param_adv_100hdx = *(uint8_t *)pr_val;
2679 			goto reset;
2680 		case MAC_PROP_EN_10FDX_CAP:
2681 			Adapter->param_en_10fdx = *(uint8_t *)pr_val;
2682 			Adapter->param_adv_10fdx = *(uint8_t *)pr_val;
2683 			goto reset;
2684 		case MAC_PROP_EN_10HDX_CAP:
2685 			Adapter->param_en_10hdx = *(uint8_t *)pr_val;
2686 			Adapter->param_adv_10hdx = *(uint8_t *)pr_val;
2687 			goto reset;
2688 		case MAC_PROP_AUTONEG:
2689 			Adapter->param_adv_autoneg = *(uint8_t *)pr_val;
2690 			goto reset;
2691 		case MAC_PROP_FLOWCTRL:
2692 			fc->send_xon = B_TRUE;
2693 			bcopy(pr_val, &flowctrl, sizeof (flowctrl));
2694 
2695 			switch (flowctrl) {
2696 			default:
2697 				err = EINVAL;
2698 				break;
2699 			case LINK_FLOWCTRL_NONE:
2700 				fc->type = e1000_fc_none;
2701 				break;
2702 			case LINK_FLOWCTRL_RX:
2703 				fc->type = e1000_fc_rx_pause;
2704 				break;
2705 			case LINK_FLOWCTRL_TX:
2706 				fc->type = e1000_fc_tx_pause;
2707 				break;
2708 			case LINK_FLOWCTRL_BI:
2709 				fc->type = e1000_fc_full;
2710 				break;
2711 			}
2712 reset:
2713 			if (err == 0) {
2714 				if (e1000g_reset_link(Adapter) != DDI_SUCCESS)
2715 					err = EINVAL;
2716 			}
2717 			break;
2718 		case MAC_PROP_ADV_1000FDX_CAP:
2719 		case MAC_PROP_ADV_1000HDX_CAP:
2720 		case MAC_PROP_ADV_100FDX_CAP:
2721 		case MAC_PROP_ADV_100HDX_CAP:
2722 		case MAC_PROP_ADV_10FDX_CAP:
2723 		case MAC_PROP_ADV_10HDX_CAP:
2724 		case MAC_PROP_STATUS:
2725 		case MAC_PROP_SPEED:
2726 		case MAC_PROP_DUPLEX:
2727 			err = ENOTSUP; /* read-only prop. Can't set this. */
2728 			break;
2729 		case MAC_PROP_MTU:
2730 			cur_mtu = Adapter->default_mtu;
2731 			bcopy(pr_val, &new_mtu, sizeof (new_mtu));
2732 			if (new_mtu == cur_mtu) {
2733 				err = 0;
2734 				break;
2735 			}
2736 
2737 			tmp = new_mtu + sizeof (struct ether_vlan_header) +
2738 			    ETHERFCSL;
2739 			if ((tmp < DEFAULT_FRAME_SIZE) ||
2740 			    (tmp > MAXIMUM_FRAME_SIZE)) {
2741 				err = EINVAL;
2742 				break;
2743 			}
2744 
2745 			/* ich8 doed not support jumbo frames */
2746 			if ((mac->type == e1000_ich8lan) &&
2747 			    (tmp > DEFAULT_FRAME_SIZE)) {
2748 				err = EINVAL;
2749 				break;
2750 			}
2751 			/* ich9 does not do jumbo frames on one phy type */
2752 			if ((mac->type == e1000_ich9lan) &&
2753 			    (phy->type == e1000_phy_ife) &&
2754 			    (tmp > DEFAULT_FRAME_SIZE)) {
2755 				err = EINVAL;
2756 				break;
2757 			}
2758 			if (Adapter->chip_state != E1000G_STOP) {
2759 				err = EBUSY;
2760 				break;
2761 			}
2762 
2763 			err = mac_maxsdu_update(Adapter->mh, new_mtu);
2764 			if (err == 0) {
2765 				Adapter->max_frame_size = (uint32_t)tmp;
2766 				Adapter->default_mtu = new_mtu;
2767 				e1000g_set_bufsize(Adapter);
2768 			}
2769 			break;
2770 		case MAC_PROP_PRIVATE:
2771 			err = e1000g_set_priv_prop(Adapter, pr_name,
2772 			    pr_valsize, pr_val);
2773 			break;
2774 		default:
2775 			err = ENOTSUP;
2776 			break;
2777 	}
2778 	rw_exit(&Adapter->chip_lock);
2779 	return (err);
2780 }
2781 
2782 static int
2783 e1000g_m_getprop(void *arg, const char *pr_name, mac_prop_id_t pr_num,
2784     uint_t pr_flags, uint_t pr_valsize, void *pr_val)
2785 {
2786 	struct e1000g *Adapter = arg;
2787 	struct e1000_fc_info *fc = &Adapter->shared.fc;
2788 	int err = 0;
2789 	link_flowctrl_t flowctrl;
2790 	uint64_t tmp = 0;
2791 
2792 	if (pr_valsize == 0)
2793 		return (EINVAL);
2794 
2795 	bzero(pr_val, pr_valsize);
2796 	if ((pr_flags & MAC_PROP_DEFAULT) && (pr_num != MAC_PROP_PRIVATE)) {
2797 		return (e1000g_get_def_val(Adapter, pr_num,
2798 		    pr_valsize, pr_val));
2799 	}
2800 
2801 	switch (pr_num) {
2802 		case MAC_PROP_DUPLEX:
2803 			if (pr_valsize >= sizeof (link_duplex_t)) {
2804 				bcopy(&Adapter->link_duplex, pr_val,
2805 				    sizeof (link_duplex_t));
2806 			} else
2807 				err = EINVAL;
2808 			break;
2809 		case MAC_PROP_SPEED:
2810 			if (pr_valsize >= sizeof (uint64_t)) {
2811 				tmp = Adapter->link_speed * 1000000ull;
2812 				bcopy(&tmp, pr_val, sizeof (tmp));
2813 			} else
2814 				err = EINVAL;
2815 			break;
2816 		case MAC_PROP_AUTONEG:
2817 			*(uint8_t *)pr_val = Adapter->param_adv_autoneg;
2818 			break;
2819 		case MAC_PROP_FLOWCTRL:
2820 			if (pr_valsize >= sizeof (link_flowctrl_t)) {
2821 				switch (fc->type) {
2822 					case e1000_fc_none:
2823 						flowctrl = LINK_FLOWCTRL_NONE;
2824 						break;
2825 					case e1000_fc_rx_pause:
2826 						flowctrl = LINK_FLOWCTRL_RX;
2827 						break;
2828 					case e1000_fc_tx_pause:
2829 						flowctrl = LINK_FLOWCTRL_TX;
2830 						break;
2831 					case e1000_fc_full:
2832 						flowctrl = LINK_FLOWCTRL_BI;
2833 						break;
2834 				}
2835 				bcopy(&flowctrl, pr_val, sizeof (flowctrl));
2836 			} else
2837 				err = EINVAL;
2838 			break;
2839 		case MAC_PROP_ADV_1000FDX_CAP:
2840 			*(uint8_t *)pr_val = Adapter->param_adv_1000fdx;
2841 			break;
2842 		case MAC_PROP_EN_1000FDX_CAP:
2843 			*(uint8_t *)pr_val = Adapter->param_en_1000fdx;
2844 			break;
2845 		case MAC_PROP_ADV_1000HDX_CAP:
2846 			*(uint8_t *)pr_val = Adapter->param_adv_1000hdx;
2847 			break;
2848 		case MAC_PROP_EN_1000HDX_CAP:
2849 			*(uint8_t *)pr_val = Adapter->param_en_1000hdx;
2850 			break;
2851 		case MAC_PROP_ADV_100FDX_CAP:
2852 			*(uint8_t *)pr_val = Adapter->param_adv_100fdx;
2853 			break;
2854 		case MAC_PROP_EN_100FDX_CAP:
2855 			*(uint8_t *)pr_val = Adapter->param_en_100fdx;
2856 			break;
2857 		case MAC_PROP_ADV_100HDX_CAP:
2858 			*(uint8_t *)pr_val = Adapter->param_adv_100hdx;
2859 			break;
2860 		case MAC_PROP_EN_100HDX_CAP:
2861 			*(uint8_t *)pr_val = Adapter->param_en_100hdx;
2862 			break;
2863 		case MAC_PROP_ADV_10FDX_CAP:
2864 			*(uint8_t *)pr_val = Adapter->param_adv_10fdx;
2865 			break;
2866 		case MAC_PROP_EN_10FDX_CAP:
2867 			*(uint8_t *)pr_val = Adapter->param_en_10fdx;
2868 			break;
2869 		case MAC_PROP_ADV_10HDX_CAP:
2870 			*(uint8_t *)pr_val = Adapter->param_adv_10hdx;
2871 			break;
2872 		case MAC_PROP_EN_10HDX_CAP:
2873 			*(uint8_t *)pr_val = Adapter->param_en_10hdx;
2874 			break;
2875 		case MAC_PROP_ADV_100T4_CAP:
2876 		case MAC_PROP_EN_100T4_CAP:
2877 			*(uint8_t *)pr_val = Adapter->param_adv_100t4;
2878 			break;
2879 		case MAC_PROP_PRIVATE:
2880 			err = e1000g_get_priv_prop(Adapter, pr_name,
2881 			    pr_flags, pr_valsize, pr_val);
2882 			break;
2883 		default:
2884 			err = ENOTSUP;
2885 			break;
2886 	}
2887 	return (err);
2888 }
2889 
2890 /* ARGSUSED2 */
2891 static int
2892 e1000g_set_priv_prop(struct e1000g *Adapter, const char *pr_name,
2893     uint_t pr_valsize, const void *pr_val)
2894 {
2895 	int err = 0;
2896 	long result;
2897 	struct e1000_hw *hw = &Adapter->shared;
2898 
2899 	if (strcmp(pr_name, "_tx_bcopy_threshold") == 0) {
2900 		if (pr_val == NULL) {
2901 			err = EINVAL;
2902 			return (err);
2903 		}
2904 		(void) ddi_strtol(pr_val, (char **)NULL, 0, &result);
2905 		if (result < MIN_TX_BCOPY_THRESHOLD ||
2906 		    result > MAX_TX_BCOPY_THRESHOLD)
2907 			err = EINVAL;
2908 		else {
2909 			Adapter->tx_bcopy_thresh = (uint32_t)result;
2910 		}
2911 		return (err);
2912 	}
2913 	if (strcmp(pr_name, "_tx_interrupt_enable") == 0) {
2914 		if (pr_val == NULL) {
2915 			err = EINVAL;
2916 			return (err);
2917 		}
2918 		(void) ddi_strtol(pr_val, (char **)NULL, 0, &result);
2919 		if (result < 0 || result > 1)
2920 			err = EINVAL;
2921 		else {
2922 			Adapter->tx_intr_enable = (result == 1) ?
2923 			    B_TRUE: B_FALSE;
2924 			if (Adapter->tx_intr_enable)
2925 				e1000g_mask_tx_interrupt(Adapter);
2926 			else
2927 				e1000g_clear_tx_interrupt(Adapter);
2928 			if (e1000g_check_acc_handle(
2929 			    Adapter->osdep.reg_handle) != DDI_FM_OK)
2930 				ddi_fm_service_impact(Adapter->dip,
2931 				    DDI_SERVICE_DEGRADED);
2932 		}
2933 		return (err);
2934 	}
2935 	if (strcmp(pr_name, "_tx_intr_delay") == 0) {
2936 		if (pr_val == NULL) {
2937 			err = EINVAL;
2938 			return (err);
2939 		}
2940 		(void) ddi_strtol(pr_val, (char **)NULL, 0, &result);
2941 		if (result < MIN_TX_INTR_DELAY ||
2942 		    result > MAX_TX_INTR_DELAY)
2943 			err = EINVAL;
2944 		else {
2945 			Adapter->tx_intr_delay = (uint32_t)result;
2946 			E1000_WRITE_REG(hw, E1000_TIDV, Adapter->tx_intr_delay);
2947 			if (e1000g_check_acc_handle(
2948 			    Adapter->osdep.reg_handle) != DDI_FM_OK)
2949 				ddi_fm_service_impact(Adapter->dip,
2950 				    DDI_SERVICE_DEGRADED);
2951 		}
2952 		return (err);
2953 	}
2954 	if (strcmp(pr_name, "_tx_intr_abs_delay") == 0) {
2955 		if (pr_val == NULL) {
2956 			err = EINVAL;
2957 			return (err);
2958 		}
2959 		(void) ddi_strtol(pr_val, (char **)NULL, 0, &result);
2960 		if (result < MIN_TX_INTR_ABS_DELAY ||
2961 		    result > MAX_TX_INTR_ABS_DELAY)
2962 			err = EINVAL;
2963 		else {
2964 			Adapter->tx_intr_abs_delay = (uint32_t)result;
2965 			E1000_WRITE_REG(hw, E1000_TADV,
2966 			    Adapter->tx_intr_abs_delay);
2967 			if (e1000g_check_acc_handle(
2968 			    Adapter->osdep.reg_handle) != DDI_FM_OK)
2969 				ddi_fm_service_impact(Adapter->dip,
2970 				    DDI_SERVICE_DEGRADED);
2971 		}
2972 		return (err);
2973 	}
2974 	if (strcmp(pr_name, "_rx_bcopy_threshold") == 0) {
2975 		if (pr_val == NULL) {
2976 			err = EINVAL;
2977 			return (err);
2978 		}
2979 		(void) ddi_strtol(pr_val, (char **)NULL, 0, &result);
2980 		if (result < MIN_RX_BCOPY_THRESHOLD ||
2981 		    result > MAX_RX_BCOPY_THRESHOLD)
2982 			err = EINVAL;
2983 		else
2984 			Adapter->rx_bcopy_thresh = (uint32_t)result;
2985 		return (err);
2986 	}
2987 	if (strcmp(pr_name, "_max_num_rcv_packets") == 0) {
2988 		if (pr_val == NULL) {
2989 			err = EINVAL;
2990 			return (err);
2991 		}
2992 		(void) ddi_strtol(pr_val, (char **)NULL, 0, &result);
2993 		if (result < MIN_RX_LIMIT_ON_INTR ||
2994 		    result > MAX_RX_LIMIT_ON_INTR)
2995 			err = EINVAL;
2996 		else
2997 			Adapter->rx_limit_onintr = (uint32_t)result;
2998 		return (err);
2999 	}
3000 	if (strcmp(pr_name, "_rx_intr_delay") == 0) {
3001 		if (pr_val == NULL) {
3002 			err = EINVAL;
3003 			return (err);
3004 		}
3005 		(void) ddi_strtol(pr_val, (char **)NULL, 0, &result);
3006 		if (result < MIN_RX_INTR_DELAY ||
3007 		    result > MAX_RX_INTR_DELAY)
3008 			err = EINVAL;
3009 		else {
3010 			Adapter->rx_intr_delay = (uint32_t)result;
3011 			E1000_WRITE_REG(hw, E1000_RDTR, Adapter->rx_intr_delay);
3012 			if (e1000g_check_acc_handle(
3013 			    Adapter->osdep.reg_handle) != DDI_FM_OK)
3014 				ddi_fm_service_impact(Adapter->dip,
3015 				    DDI_SERVICE_DEGRADED);
3016 		}
3017 		return (err);
3018 	}
3019 	if (strcmp(pr_name, "_rx_intr_abs_delay") == 0) {
3020 		if (pr_val == NULL) {
3021 			err = EINVAL;
3022 			return (err);
3023 		}
3024 		(void) ddi_strtol(pr_val, (char **)NULL, 0, &result);
3025 		if (result < MIN_RX_INTR_ABS_DELAY ||
3026 		    result > MAX_RX_INTR_ABS_DELAY)
3027 			err = EINVAL;
3028 		else {
3029 			Adapter->rx_intr_abs_delay = (uint32_t)result;
3030 			E1000_WRITE_REG(hw, E1000_RADV,
3031 			    Adapter->rx_intr_abs_delay);
3032 			if (e1000g_check_acc_handle(
3033 			    Adapter->osdep.reg_handle) != DDI_FM_OK)
3034 				ddi_fm_service_impact(Adapter->dip,
3035 				    DDI_SERVICE_DEGRADED);
3036 		}
3037 		return (err);
3038 	}
3039 	if (strcmp(pr_name, "_intr_throttling_rate") == 0) {
3040 		if (pr_val == NULL) {
3041 			err = EINVAL;
3042 			return (err);
3043 		}
3044 		(void) ddi_strtol(pr_val, (char **)NULL, 0, &result);
3045 		if (result < MIN_INTR_THROTTLING ||
3046 		    result > MAX_INTR_THROTTLING)
3047 			err = EINVAL;
3048 		else {
3049 			if (hw->mac.type >= e1000_82540) {
3050 				Adapter->intr_throttling_rate =
3051 				    (uint32_t)result;
3052 				E1000_WRITE_REG(hw, E1000_ITR,
3053 				    Adapter->intr_throttling_rate);
3054 				if (e1000g_check_acc_handle(
3055 				    Adapter->osdep.reg_handle) != DDI_FM_OK)
3056 					ddi_fm_service_impact(Adapter->dip,
3057 					    DDI_SERVICE_DEGRADED);
3058 			} else
3059 				err = EINVAL;
3060 		}
3061 		return (err);
3062 	}
3063 	if (strcmp(pr_name, "_intr_adaptive") == 0) {
3064 		if (pr_val == NULL) {
3065 			err = EINVAL;
3066 			return (err);
3067 		}
3068 		(void) ddi_strtol(pr_val, (char **)NULL, 0, &result);
3069 		if (result < 0 || result > 1)
3070 			err = EINVAL;
3071 		else {
3072 			if (hw->mac.type >= e1000_82540) {
3073 				Adapter->intr_adaptive = (result == 1) ?
3074 				    B_TRUE : B_FALSE;
3075 			} else {
3076 				err = EINVAL;
3077 			}
3078 		}
3079 		return (err);
3080 	}
3081 	if (strcmp(pr_name, "_tx_recycle_thresh") == 0) {
3082 		if (pr_val == NULL) {
3083 			err = EINVAL;
3084 			return (err);
3085 		}
3086 		(void) ddi_strtol(pr_val, (char **)NULL, 0, &result);
3087 		if (result < MIN_TX_RECYCLE_THRESHOLD ||
3088 		    result > MAX_TX_RECYCLE_THRESHOLD)
3089 			err = EINVAL;
3090 		else
3091 			Adapter->tx_recycle_thresh = (uint32_t)result;
3092 		return (err);
3093 	}
3094 	if (strcmp(pr_name, "_tx_recycle_num") == 0) {
3095 		if (pr_val == NULL) {
3096 			err = EINVAL;
3097 			return (err);
3098 		}
3099 		(void) ddi_strtol(pr_val, (char **)NULL, 0, &result);
3100 		if (result < MIN_TX_RECYCLE_NUM ||
3101 		    result > MAX_TX_RECYCLE_NUM)
3102 			err = EINVAL;
3103 		else
3104 			Adapter->tx_recycle_num = (uint32_t)result;
3105 		return (err);
3106 	}
3107 	return (ENOTSUP);
3108 }
3109 
3110 static int
3111 e1000g_get_priv_prop(struct e1000g *Adapter, const char *pr_name,
3112     uint_t pr_flags, uint_t pr_valsize, void *pr_val)
3113 {
3114 	int err = ENOTSUP;
3115 	boolean_t is_default = (pr_flags & MAC_PROP_DEFAULT);
3116 	int value;
3117 
3118 	if (strcmp(pr_name, "_adv_pause_cap") == 0) {
3119 		if (is_default)
3120 			goto done;
3121 		value = Adapter->param_adv_pause;
3122 		err = 0;
3123 		goto done;
3124 	}
3125 	if (strcmp(pr_name, "_adv_asym_pause_cap") == 0) {
3126 		if (is_default)
3127 			goto done;
3128 		value = Adapter->param_adv_asym_pause;
3129 		err = 0;
3130 		goto done;
3131 	}
3132 	if (strcmp(pr_name, "_tx_bcopy_threshold") == 0) {
3133 		value = (is_default ? DEFAULT_TX_BCOPY_THRESHOLD :
3134 		    Adapter->tx_bcopy_thresh);
3135 		err = 0;
3136 		goto done;
3137 	}
3138 	if (strcmp(pr_name, "_tx_interrupt_enable") == 0) {
3139 		value = (is_default ? DEFAULT_TX_INTR_ENABLE :
3140 		    Adapter->tx_intr_enable);
3141 		err = 0;
3142 		goto done;
3143 	}
3144 	if (strcmp(pr_name, "_tx_intr_delay") == 0) {
3145 		value = (is_default ? DEFAULT_TX_INTR_DELAY :
3146 		    Adapter->tx_intr_delay);
3147 		err = 0;
3148 		goto done;
3149 	}
3150 	if (strcmp(pr_name, "_tx_intr_abs_delay") == 0) {
3151 		value = (is_default ? DEFAULT_TX_INTR_ABS_DELAY :
3152 		    Adapter->tx_intr_abs_delay);
3153 		err = 0;
3154 		goto done;
3155 	}
3156 	if (strcmp(pr_name, "_rx_bcopy_threshold") == 0) {
3157 		value = (is_default ? DEFAULT_RX_BCOPY_THRESHOLD :
3158 		    Adapter->rx_bcopy_thresh);
3159 		err = 0;
3160 		goto done;
3161 	}
3162 	if (strcmp(pr_name, "_max_num_rcv_packets") == 0) {
3163 		value = (is_default ? DEFAULT_RX_LIMIT_ON_INTR :
3164 		    Adapter->rx_limit_onintr);
3165 		err = 0;
3166 		goto done;
3167 	}
3168 	if (strcmp(pr_name, "_rx_intr_delay") == 0) {
3169 		value = (is_default ? DEFAULT_RX_INTR_DELAY :
3170 		    Adapter->rx_intr_delay);
3171 		err = 0;
3172 		goto done;
3173 	}
3174 	if (strcmp(pr_name, "_rx_intr_abs_delay") == 0) {
3175 		value = (is_default ? DEFAULT_RX_INTR_ABS_DELAY :
3176 		    Adapter->rx_intr_abs_delay);
3177 		err = 0;
3178 		goto done;
3179 	}
3180 	if (strcmp(pr_name, "_intr_throttling_rate") == 0) {
3181 		value = (is_default ? DEFAULT_INTR_THROTTLING :
3182 		    Adapter->intr_throttling_rate);
3183 		err = 0;
3184 		goto done;
3185 	}
3186 	if (strcmp(pr_name, "_intr_adaptive") == 0) {
3187 		value = (is_default ? 1 : Adapter->intr_adaptive);
3188 		err = 0;
3189 		goto done;
3190 	}
3191 	if (strcmp(pr_name, "_tx_recycle_thresh") == 0) {
3192 		value = (is_default ? DEFAULT_TX_RECYCLE_THRESHOLD :
3193 		    Adapter->tx_recycle_thresh);
3194 		err = 0;
3195 		goto done;
3196 	}
3197 	if (strcmp(pr_name, "_tx_recycle_num") == 0) {
3198 		value = (is_default ? DEFAULT_TX_RECYCLE_NUM :
3199 		    Adapter->tx_recycle_num);
3200 		err = 0;
3201 		goto done;
3202 	}
3203 done:
3204 	if (err == 0) {
3205 		(void) snprintf(pr_val, pr_valsize, "%d", value);
3206 	}
3207 	return (err);
3208 }
3209 
3210 /*
3211  * e1000g_get_conf - get configurations set in e1000g.conf
3212  * This routine gets user-configured values out of the configuration
3213  * file e1000g.conf.
3214  *
3215  * For each configurable value, there is a minimum, a maximum, and a
3216  * default.
3217  * If user does not configure a value, use the default.
3218  * If user configures below the minimum, use the minumum.
3219  * If user configures above the maximum, use the maxumum.
3220  */
3221 static void
3222 e1000g_get_conf(struct e1000g *Adapter)
3223 {
3224 	struct e1000_hw *hw = &Adapter->shared;
3225 	boolean_t tbi_compatibility = B_FALSE;
3226 
3227 	/*
3228 	 * get each configurable property from e1000g.conf
3229 	 */
3230 
3231 	/*
3232 	 * NumTxDescriptors
3233 	 */
3234 	Adapter->tx_desc_num =
3235 	    e1000g_get_prop(Adapter, "NumTxDescriptors",
3236 	    MIN_NUM_TX_DESCRIPTOR, MAX_NUM_TX_DESCRIPTOR,
3237 	    DEFAULT_NUM_TX_DESCRIPTOR);
3238 
3239 	/*
3240 	 * NumRxDescriptors
3241 	 */
3242 	Adapter->rx_desc_num =
3243 	    e1000g_get_prop(Adapter, "NumRxDescriptors",
3244 	    MIN_NUM_RX_DESCRIPTOR, MAX_NUM_RX_DESCRIPTOR,
3245 	    DEFAULT_NUM_RX_DESCRIPTOR);
3246 
3247 	/*
3248 	 * NumRxFreeList
3249 	 */
3250 	Adapter->rx_freelist_num =
3251 	    e1000g_get_prop(Adapter, "NumRxFreeList",
3252 	    MIN_NUM_RX_FREELIST, MAX_NUM_RX_FREELIST,
3253 	    DEFAULT_NUM_RX_FREELIST);
3254 
3255 	/*
3256 	 * NumTxPacketList
3257 	 */
3258 	Adapter->tx_freelist_num =
3259 	    e1000g_get_prop(Adapter, "NumTxPacketList",
3260 	    MIN_NUM_TX_FREELIST, MAX_NUM_TX_FREELIST,
3261 	    DEFAULT_NUM_TX_FREELIST);
3262 
3263 	/*
3264 	 * FlowControl
3265 	 */
3266 	hw->fc.send_xon = B_TRUE;
3267 	hw->fc.type =
3268 	    e1000g_get_prop(Adapter, "FlowControl",
3269 	    e1000_fc_none, 4, DEFAULT_FLOW_CONTROL);
3270 	/* 4 is the setting that says "let the eeprom decide" */
3271 	if (hw->fc.type == 4)
3272 		hw->fc.type = e1000_fc_default;
3273 
3274 	/*
3275 	 * Max Num Receive Packets on Interrupt
3276 	 */
3277 	Adapter->rx_limit_onintr =
3278 	    e1000g_get_prop(Adapter, "MaxNumReceivePackets",
3279 	    MIN_RX_LIMIT_ON_INTR, MAX_RX_LIMIT_ON_INTR,
3280 	    DEFAULT_RX_LIMIT_ON_INTR);
3281 
3282 	/*
3283 	 * PHY master slave setting
3284 	 */
3285 	hw->phy.ms_type =
3286 	    e1000g_get_prop(Adapter, "SetMasterSlave",
3287 	    e1000_ms_hw_default, e1000_ms_auto,
3288 	    e1000_ms_hw_default);
3289 
3290 	/*
3291 	 * Parameter which controls TBI mode workaround, which is only
3292 	 * needed on certain switches such as Cisco 6500/Foundry
3293 	 */
3294 	tbi_compatibility =
3295 	    e1000g_get_prop(Adapter, "TbiCompatibilityEnable",
3296 	    0, 1, DEFAULT_TBI_COMPAT_ENABLE);
3297 	e1000_set_tbi_compatibility_82543(hw, tbi_compatibility);
3298 
3299 	/*
3300 	 * MSI Enable
3301 	 */
3302 	Adapter->msi_enable =
3303 	    e1000g_get_prop(Adapter, "MSIEnable",
3304 	    0, 1, DEFAULT_MSI_ENABLE);
3305 
3306 	/*
3307 	 * Interrupt Throttling Rate
3308 	 */
3309 	Adapter->intr_throttling_rate =
3310 	    e1000g_get_prop(Adapter, "intr_throttling_rate",
3311 	    MIN_INTR_THROTTLING, MAX_INTR_THROTTLING,
3312 	    DEFAULT_INTR_THROTTLING);
3313 
3314 	/*
3315 	 * Adaptive Interrupt Blanking Enable/Disable
3316 	 * It is enabled by default
3317 	 */
3318 	Adapter->intr_adaptive =
3319 	    (e1000g_get_prop(Adapter, "intr_adaptive", 0, 1, 1) == 1) ?
3320 	    B_TRUE : B_FALSE;
3321 
3322 	/*
3323 	 * Tx recycle threshold
3324 	 */
3325 	Adapter->tx_recycle_thresh =
3326 	    e1000g_get_prop(Adapter, "tx_recycle_thresh",
3327 	    MIN_TX_RECYCLE_THRESHOLD, MAX_TX_RECYCLE_THRESHOLD,
3328 	    DEFAULT_TX_RECYCLE_THRESHOLD);
3329 
3330 	/*
3331 	 * Tx recycle descriptor number
3332 	 */
3333 	Adapter->tx_recycle_num =
3334 	    e1000g_get_prop(Adapter, "tx_recycle_num",
3335 	    MIN_TX_RECYCLE_NUM, MAX_TX_RECYCLE_NUM,
3336 	    DEFAULT_TX_RECYCLE_NUM);
3337 
3338 	/*
3339 	 * Hardware checksum enable/disable parameter
3340 	 */
3341 	Adapter->tx_hcksum_enable =
3342 	    e1000g_get_prop(Adapter, "tx_hcksum_enable",
3343 	    0, 1, DEFAULT_TX_HCKSUM_ENABLE);
3344 	/*
3345 	 * Checksum on/off selection via global parameters.
3346 	 *
3347 	 * If the chip is flagged as not capable of (correctly)
3348 	 * handling checksumming, we don't enable it on either
3349 	 * Rx or Tx side.  Otherwise, we take this chip's settings
3350 	 * from the patchable global defaults.
3351 	 *
3352 	 * We advertise our capabilities only if TX offload is
3353 	 * enabled.  On receive, the stack will accept checksummed
3354 	 * packets anyway, even if we haven't said we can deliver
3355 	 * them.
3356 	 */
3357 	switch (hw->mac.type) {
3358 		case e1000_82540:
3359 		case e1000_82544:
3360 		case e1000_82545:
3361 		case e1000_82545_rev_3:
3362 		case e1000_82546:
3363 		case e1000_82546_rev_3:
3364 		case e1000_82571:
3365 		case e1000_82572:
3366 		case e1000_82573:
3367 		case e1000_80003es2lan:
3368 			break;
3369 		/*
3370 		 * For the following Intel PRO/1000 chipsets, we have not
3371 		 * tested the hardware checksum offload capability, so we
3372 		 * disable the capability for them.
3373 		 *	e1000_82542,
3374 		 *	e1000_82543,
3375 		 *	e1000_82541,
3376 		 *	e1000_82541_rev_2,
3377 		 *	e1000_82547,
3378 		 *	e1000_82547_rev_2,
3379 		 */
3380 		default:
3381 			Adapter->tx_hcksum_enable = B_FALSE;
3382 	}
3383 
3384 	/*
3385 	 * Large Send Offloading(LSO) Enable/Disable
3386 	 * If the tx hardware checksum is not enabled, LSO should be
3387 	 * disabled.
3388 	 */
3389 	Adapter->lso_enable =
3390 	    e1000g_get_prop(Adapter, "lso_enable",
3391 	    0, 1, DEFAULT_LSO_ENABLE);
3392 
3393 	switch (hw->mac.type) {
3394 		case e1000_82546:
3395 		case e1000_82546_rev_3:
3396 			if (Adapter->lso_enable)
3397 				Adapter->lso_premature_issue = B_TRUE;
3398 			/* FALLTHRU */
3399 		case e1000_82571:
3400 		case e1000_82572:
3401 		case e1000_82573:
3402 			break;
3403 		default:
3404 			Adapter->lso_enable = B_FALSE;
3405 	}
3406 
3407 	if (!Adapter->tx_hcksum_enable) {
3408 		Adapter->lso_premature_issue = B_FALSE;
3409 		Adapter->lso_enable = B_FALSE;
3410 	}
3411 }
3412 
3413 /*
3414  * e1000g_get_prop - routine to read properties
3415  *
3416  * Get a user-configure property value out of the configuration
3417  * file e1000g.conf.
3418  *
3419  * Caller provides name of the property, a default value, a minimum
3420  * value, and a maximum value.
3421  *
3422  * Return configured value of the property, with default, minimum and
3423  * maximum properly applied.
3424  */
3425 static int
3426 e1000g_get_prop(struct e1000g *Adapter,	/* point to per-adapter structure */
3427     char *propname,		/* name of the property */
3428     int minval,			/* minimum acceptable value */
3429     int maxval,			/* maximim acceptable value */
3430     int defval)			/* default value */
3431 {
3432 	int propval;		/* value returned for requested property */
3433 	int *props;		/* point to array of properties returned */
3434 	uint_t nprops;		/* number of property value returned */
3435 
3436 	/*
3437 	 * get the array of properties from the config file
3438 	 */
3439 	if (ddi_prop_lookup_int_array(DDI_DEV_T_ANY, Adapter->dip,
3440 	    DDI_PROP_DONTPASS, propname, &props, &nprops) == DDI_PROP_SUCCESS) {
3441 		/* got some properties, test if we got enough */
3442 		if (Adapter->instance < nprops) {
3443 			propval = props[Adapter->instance];
3444 		} else {
3445 			/* not enough properties configured */
3446 			propval = defval;
3447 			E1000G_DEBUGLOG_2(Adapter, E1000G_INFO_LEVEL,
3448 			    "Not Enough %s values found in e1000g.conf"
3449 			    " - set to %d\n",
3450 			    propname, propval);
3451 		}
3452 
3453 		/* free memory allocated for properties */
3454 		ddi_prop_free(props);
3455 
3456 	} else {
3457 		propval = defval;
3458 	}
3459 
3460 	/*
3461 	 * enforce limits
3462 	 */
3463 	if (propval > maxval) {
3464 		propval = maxval;
3465 		E1000G_DEBUGLOG_2(Adapter, E1000G_INFO_LEVEL,
3466 		    "Too High %s value in e1000g.conf - set to %d\n",
3467 		    propname, propval);
3468 	}
3469 
3470 	if (propval < minval) {
3471 		propval = minval;
3472 		E1000G_DEBUGLOG_2(Adapter, E1000G_INFO_LEVEL,
3473 		    "Too Low %s value in e1000g.conf - set to %d\n",
3474 		    propname, propval);
3475 	}
3476 
3477 	return (propval);
3478 }
3479 
3480 static boolean_t
3481 e1000g_link_check(struct e1000g *Adapter)
3482 {
3483 	uint16_t speed, duplex, phydata;
3484 	boolean_t link_changed = B_FALSE;
3485 	struct e1000_hw *hw;
3486 	uint32_t reg_tarc;
3487 
3488 	hw = &Adapter->shared;
3489 
3490 	if (e1000g_link_up(Adapter)) {
3491 		/*
3492 		 * The Link is up, check whether it was marked as down earlier
3493 		 */
3494 		if (Adapter->link_state != LINK_STATE_UP) {
3495 			(void) e1000_get_speed_and_duplex(hw, &speed, &duplex);
3496 			Adapter->link_speed = speed;
3497 			Adapter->link_duplex = duplex;
3498 			Adapter->link_state = LINK_STATE_UP;
3499 			link_changed = B_TRUE;
3500 
3501 			Adapter->tx_link_down_timeout = 0;
3502 
3503 			if ((hw->mac.type == e1000_82571) ||
3504 			    (hw->mac.type == e1000_82572)) {
3505 				reg_tarc = E1000_READ_REG(hw, E1000_TARC(0));
3506 				if (speed == SPEED_1000)
3507 					reg_tarc |= (1 << 21);
3508 				else
3509 					reg_tarc &= ~(1 << 21);
3510 				E1000_WRITE_REG(hw, E1000_TARC(0), reg_tarc);
3511 			}
3512 		}
3513 		Adapter->smartspeed = 0;
3514 	} else {
3515 		if (Adapter->link_state != LINK_STATE_DOWN) {
3516 			Adapter->link_speed = 0;
3517 			Adapter->link_duplex = 0;
3518 			Adapter->link_state = LINK_STATE_DOWN;
3519 			link_changed = B_TRUE;
3520 
3521 			/*
3522 			 * SmartSpeed workaround for Tabor/TanaX, When the
3523 			 * driver loses link disable auto master/slave
3524 			 * resolution.
3525 			 */
3526 			if (hw->phy.type == e1000_phy_igp) {
3527 				(void) e1000_read_phy_reg(hw,
3528 				    PHY_1000T_CTRL, &phydata);
3529 				phydata |= CR_1000T_MS_ENABLE;
3530 				(void) e1000_write_phy_reg(hw,
3531 				    PHY_1000T_CTRL, phydata);
3532 			}
3533 		} else {
3534 			e1000g_smartspeed(Adapter);
3535 		}
3536 
3537 		if (Adapter->chip_state == E1000G_START) {
3538 			if (Adapter->tx_link_down_timeout <
3539 			    MAX_TX_LINK_DOWN_TIMEOUT) {
3540 				Adapter->tx_link_down_timeout++;
3541 			} else if (Adapter->tx_link_down_timeout ==
3542 			    MAX_TX_LINK_DOWN_TIMEOUT) {
3543 				e1000g_tx_clean(Adapter);
3544 				Adapter->tx_link_down_timeout++;
3545 			}
3546 		}
3547 	}
3548 
3549 	if (e1000g_check_acc_handle(Adapter->osdep.reg_handle) != DDI_FM_OK)
3550 		ddi_fm_service_impact(Adapter->dip, DDI_SERVICE_DEGRADED);
3551 
3552 	return (link_changed);
3553 }
3554 
3555 /*
3556  * e1000g_reset_link - Using the link properties to setup the link
3557  */
3558 int
3559 e1000g_reset_link(struct e1000g *Adapter)
3560 {
3561 	struct e1000_mac_info *mac;
3562 	struct e1000_phy_info *phy;
3563 	boolean_t invalid;
3564 
3565 	mac = &Adapter->shared.mac;
3566 	phy = &Adapter->shared.phy;
3567 	invalid = B_FALSE;
3568 
3569 	if (Adapter->param_adv_autoneg == 1) {
3570 		mac->autoneg = B_TRUE;
3571 		phy->autoneg_advertised = 0;
3572 
3573 		/*
3574 		 * 1000hdx is not supported for autonegotiation
3575 		 */
3576 		if (Adapter->param_adv_1000fdx == 1)
3577 			phy->autoneg_advertised |= ADVERTISE_1000_FULL;
3578 
3579 		if (Adapter->param_adv_100fdx == 1)
3580 			phy->autoneg_advertised |= ADVERTISE_100_FULL;
3581 
3582 		if (Adapter->param_adv_100hdx == 1)
3583 			phy->autoneg_advertised |= ADVERTISE_100_HALF;
3584 
3585 		if (Adapter->param_adv_10fdx == 1)
3586 			phy->autoneg_advertised |= ADVERTISE_10_FULL;
3587 
3588 		if (Adapter->param_adv_10hdx == 1)
3589 			phy->autoneg_advertised |= ADVERTISE_10_HALF;
3590 
3591 		if (phy->autoneg_advertised == 0)
3592 			invalid = B_TRUE;
3593 	} else {
3594 		mac->autoneg = B_FALSE;
3595 
3596 		/*
3597 		 * 1000fdx and 1000hdx are not supported for forced link
3598 		 */
3599 		if (Adapter->param_adv_100fdx == 1)
3600 			mac->forced_speed_duplex = ADVERTISE_100_FULL;
3601 		else if (Adapter->param_adv_100hdx == 1)
3602 			mac->forced_speed_duplex = ADVERTISE_100_HALF;
3603 		else if (Adapter->param_adv_10fdx == 1)
3604 			mac->forced_speed_duplex = ADVERTISE_10_FULL;
3605 		else if (Adapter->param_adv_10hdx == 1)
3606 			mac->forced_speed_duplex = ADVERTISE_10_HALF;
3607 		else
3608 			invalid = B_TRUE;
3609 
3610 	}
3611 
3612 	if (invalid) {
3613 		e1000g_log(Adapter, CE_WARN,
3614 		    "Invalid link sets. Setup link to"
3615 		    "support autonegotiation with all link capabilities.");
3616 		mac->autoneg = B_TRUE;
3617 		phy->autoneg_advertised = ADVERTISE_1000_FULL |
3618 		    ADVERTISE_100_FULL | ADVERTISE_100_HALF |
3619 		    ADVERTISE_10_FULL | ADVERTISE_10_HALF;
3620 	}
3621 
3622 	return (e1000_setup_link(&Adapter->shared));
3623 }
3624 
3625 static void
3626 e1000g_local_timer(void *ws)
3627 {
3628 	struct e1000g *Adapter = (struct e1000g *)ws;
3629 	struct e1000_hw *hw;
3630 	e1000g_ether_addr_t ether_addr;
3631 	boolean_t link_changed;
3632 
3633 	hw = &Adapter->shared;
3634 
3635 	if (Adapter->chip_state == E1000G_ERROR) {
3636 		Adapter->reset_count++;
3637 		if (e1000g_global_reset(Adapter))
3638 			ddi_fm_service_impact(Adapter->dip,
3639 			    DDI_SERVICE_RESTORED);
3640 		else
3641 			ddi_fm_service_impact(Adapter->dip,
3642 			    DDI_SERVICE_LOST);
3643 		return;
3644 	}
3645 
3646 	if (e1000g_stall_check(Adapter)) {
3647 		E1000G_DEBUGLOG_0(Adapter, E1000G_INFO_LEVEL,
3648 		    "Tx stall detected. Activate automatic recovery.\n");
3649 		e1000g_fm_ereport(Adapter, DDI_FM_DEVICE_STALL);
3650 		Adapter->reset_count++;
3651 		if (e1000g_reset(Adapter))
3652 			ddi_fm_service_impact(Adapter->dip,
3653 			    DDI_SERVICE_RESTORED);
3654 		else
3655 			ddi_fm_service_impact(Adapter->dip,
3656 			    DDI_SERVICE_LOST);
3657 		return;
3658 	}
3659 
3660 	link_changed = B_FALSE;
3661 	rw_enter(&Adapter->chip_lock, RW_READER);
3662 	if (Adapter->link_complete)
3663 		link_changed = e1000g_link_check(Adapter);
3664 	rw_exit(&Adapter->chip_lock);
3665 
3666 	if (link_changed)
3667 		mac_link_update(Adapter->mh, Adapter->link_state);
3668 
3669 	/*
3670 	 * Workaround for esb2. Data stuck in fifo on a link
3671 	 * down event. Reset the adapter to recover it.
3672 	 */
3673 	if (Adapter->esb2_workaround) {
3674 		Adapter->esb2_workaround = B_FALSE;
3675 		(void) e1000g_reset(Adapter);
3676 	}
3677 
3678 	/*
3679 	 * With 82571 controllers, any locally administered address will
3680 	 * be overwritten when there is a reset on the other port.
3681 	 * Detect this circumstance and correct it.
3682 	 */
3683 	if ((hw->mac.type == e1000_82571) &&
3684 	    (e1000_get_laa_state_82571(hw) == B_TRUE)) {
3685 		ether_addr.reg.low = E1000_READ_REG_ARRAY(hw, E1000_RA, 0);
3686 		ether_addr.reg.high = E1000_READ_REG_ARRAY(hw, E1000_RA, 1);
3687 
3688 		ether_addr.reg.low = ntohl(ether_addr.reg.low);
3689 		ether_addr.reg.high = ntohl(ether_addr.reg.high);
3690 
3691 		if ((ether_addr.mac.addr[5] != hw->mac.addr[0]) ||
3692 		    (ether_addr.mac.addr[4] != hw->mac.addr[1]) ||
3693 		    (ether_addr.mac.addr[3] != hw->mac.addr[2]) ||
3694 		    (ether_addr.mac.addr[2] != hw->mac.addr[3]) ||
3695 		    (ether_addr.mac.addr[1] != hw->mac.addr[4]) ||
3696 		    (ether_addr.mac.addr[0] != hw->mac.addr[5])) {
3697 			e1000_rar_set(hw, hw->mac.addr, 0);
3698 		}
3699 	}
3700 
3701 	/*
3702 	 * Long TTL workaround for 82541/82547
3703 	 */
3704 	(void) e1000_igp_ttl_workaround_82547(hw);
3705 
3706 	/*
3707 	 * Check for Adaptive IFS settings If there are lots of collisions
3708 	 * change the value in steps...
3709 	 * These properties should only be set for 10/100
3710 	 */
3711 	if ((hw->phy.media_type == e1000_media_type_copper) &&
3712 	    ((Adapter->link_speed == SPEED_100) ||
3713 	    (Adapter->link_speed == SPEED_10))) {
3714 		e1000_update_adaptive(hw);
3715 	}
3716 	/*
3717 	 * Set Timer Interrupts
3718 	 */
3719 	E1000_WRITE_REG(hw, E1000_ICS, E1000_IMS_RXT0);
3720 
3721 	if (e1000g_check_acc_handle(Adapter->osdep.reg_handle) != DDI_FM_OK)
3722 		ddi_fm_service_impact(Adapter->dip, DDI_SERVICE_DEGRADED);
3723 
3724 	restart_watchdog_timer(Adapter);
3725 }
3726 
3727 /*
3728  * The function e1000g_link_timer() is called when the timer for link setup
3729  * is expired, which indicates the completion of the link setup. The link
3730  * state will not be updated until the link setup is completed. And the
3731  * link state will not be sent to the upper layer through mac_link_update()
3732  * in this function. It will be updated in the local timer routine or the
3733  * interrupt service routine after the interface is started (plumbed).
3734  */
3735 static void
3736 e1000g_link_timer(void *arg)
3737 {
3738 	struct e1000g *Adapter = (struct e1000g *)arg;
3739 
3740 	mutex_enter(&Adapter->link_lock);
3741 	Adapter->link_complete = B_TRUE;
3742 	Adapter->link_tid = 0;
3743 	mutex_exit(&Adapter->link_lock);
3744 }
3745 
3746 /*
3747  * e1000g_force_speed_duplex - read forced speed/duplex out of e1000g.conf
3748  *
3749  * This function read the forced speed and duplex for 10/100 Mbps speeds
3750  * and also for 1000 Mbps speeds from the e1000g.conf file
3751  */
3752 static void
3753 e1000g_force_speed_duplex(struct e1000g *Adapter)
3754 {
3755 	int forced;
3756 	struct e1000_mac_info *mac = &Adapter->shared.mac;
3757 	struct e1000_phy_info *phy = &Adapter->shared.phy;
3758 
3759 	/*
3760 	 * get value out of config file
3761 	 */
3762 	forced = e1000g_get_prop(Adapter, "ForceSpeedDuplex",
3763 	    GDIAG_10_HALF, GDIAG_ANY, GDIAG_ANY);
3764 
3765 	switch (forced) {
3766 	case GDIAG_10_HALF:
3767 		/*
3768 		 * Disable Auto Negotiation
3769 		 */
3770 		mac->autoneg = B_FALSE;
3771 		mac->forced_speed_duplex = ADVERTISE_10_HALF;
3772 		break;
3773 	case GDIAG_10_FULL:
3774 		/*
3775 		 * Disable Auto Negotiation
3776 		 */
3777 		mac->autoneg = B_FALSE;
3778 		mac->forced_speed_duplex = ADVERTISE_10_FULL;
3779 		break;
3780 	case GDIAG_100_HALF:
3781 		/*
3782 		 * Disable Auto Negotiation
3783 		 */
3784 		mac->autoneg = B_FALSE;
3785 		mac->forced_speed_duplex = ADVERTISE_100_HALF;
3786 		break;
3787 	case GDIAG_100_FULL:
3788 		/*
3789 		 * Disable Auto Negotiation
3790 		 */
3791 		mac->autoneg = B_FALSE;
3792 		mac->forced_speed_duplex = ADVERTISE_100_FULL;
3793 		break;
3794 	case GDIAG_1000_FULL:
3795 		/*
3796 		 * The gigabit spec requires autonegotiation.  Therefore,
3797 		 * when the user wants to force the speed to 1000Mbps, we
3798 		 * enable AutoNeg, but only allow the harware to advertise
3799 		 * 1000Mbps.  This is different from 10/100 operation, where
3800 		 * we are allowed to link without any negotiation.
3801 		 */
3802 		mac->autoneg = B_TRUE;
3803 		phy->autoneg_advertised = ADVERTISE_1000_FULL;
3804 		break;
3805 	default:	/* obey the setting of AutoNegAdvertised */
3806 		mac->autoneg = B_TRUE;
3807 		phy->autoneg_advertised =
3808 		    (uint16_t)e1000g_get_prop(Adapter, "AutoNegAdvertised",
3809 		    0, AUTONEG_ADVERTISE_SPEED_DEFAULT,
3810 		    AUTONEG_ADVERTISE_SPEED_DEFAULT);
3811 		break;
3812 	}	/* switch */
3813 }
3814 
3815 /*
3816  * e1000g_get_max_frame_size - get jumbo frame setting from e1000g.conf
3817  *
3818  * This function reads MaxFrameSize from e1000g.conf
3819  */
3820 static void
3821 e1000g_get_max_frame_size(struct e1000g *Adapter)
3822 {
3823 	int max_frame;
3824 	struct e1000_mac_info *mac = &Adapter->shared.mac;
3825 	struct e1000_phy_info *phy = &Adapter->shared.phy;
3826 
3827 	/*
3828 	 * get value out of config file
3829 	 */
3830 	max_frame = e1000g_get_prop(Adapter, "MaxFrameSize", 0, 3, 0);
3831 
3832 	switch (max_frame) {
3833 	case 0:
3834 		Adapter->default_mtu = ETHERMTU;
3835 		break;
3836 	/*
3837 	 * To avoid excessive memory allocation for rx buffers,
3838 	 * the bytes of E1000G_IPALIGNPRESERVEROOM are reserved.
3839 	 */
3840 	case 1:
3841 		Adapter->default_mtu = FRAME_SIZE_UPTO_4K -
3842 		    sizeof (struct ether_vlan_header) - ETHERFCSL -
3843 		    E1000G_IPALIGNPRESERVEROOM;
3844 		break;
3845 	case 2:
3846 		Adapter->default_mtu = FRAME_SIZE_UPTO_8K -
3847 		    sizeof (struct ether_vlan_header) - ETHERFCSL -
3848 		    E1000G_IPALIGNPRESERVEROOM;
3849 		break;
3850 	case 3:
3851 		if (mac->type >= e1000_82571)
3852 			Adapter->default_mtu = MAXIMUM_MTU;
3853 		else
3854 			Adapter->default_mtu = FRAME_SIZE_UPTO_16K -
3855 			    sizeof (struct ether_vlan_header) - ETHERFCSL -
3856 			    E1000G_IPALIGNPRESERVEROOM;
3857 		break;
3858 	default:
3859 		Adapter->default_mtu = ETHERMTU;
3860 		break;
3861 	}	/* switch */
3862 
3863 	Adapter->max_frame_size = Adapter->default_mtu +
3864 	    sizeof (struct ether_vlan_header) + ETHERFCSL;
3865 
3866 	/* ich8 does not do jumbo frames */
3867 	if (mac->type == e1000_ich8lan) {
3868 		Adapter->max_frame_size = ETHERMTU +
3869 		    sizeof (struct ether_vlan_header) + ETHERFCSL;
3870 	}
3871 
3872 	/* ich9 does not do jumbo frames on one phy type */
3873 	if ((mac->type == e1000_ich9lan) &&
3874 	    (phy->type == e1000_phy_ife)) {
3875 		Adapter->max_frame_size = ETHERMTU +
3876 		    sizeof (struct ether_vlan_header) + ETHERFCSL;
3877 	}
3878 }
3879 
3880 static void
3881 arm_watchdog_timer(struct e1000g *Adapter)
3882 {
3883 	Adapter->watchdog_tid =
3884 	    timeout(e1000g_local_timer,
3885 	    (void *)Adapter, 1 * drv_usectohz(1000000));
3886 }
3887 #pragma inline(arm_watchdog_timer)
3888 
3889 static void
3890 enable_watchdog_timer(struct e1000g *Adapter)
3891 {
3892 	mutex_enter(&Adapter->watchdog_lock);
3893 
3894 	if (!Adapter->watchdog_timer_enabled) {
3895 		Adapter->watchdog_timer_enabled = B_TRUE;
3896 		Adapter->watchdog_timer_started = B_TRUE;
3897 		arm_watchdog_timer(Adapter);
3898 	}
3899 
3900 	mutex_exit(&Adapter->watchdog_lock);
3901 }
3902 
3903 static void
3904 disable_watchdog_timer(struct e1000g *Adapter)
3905 {
3906 	timeout_id_t tid;
3907 
3908 	mutex_enter(&Adapter->watchdog_lock);
3909 
3910 	Adapter->watchdog_timer_enabled = B_FALSE;
3911 	Adapter->watchdog_timer_started = B_FALSE;
3912 	tid = Adapter->watchdog_tid;
3913 	Adapter->watchdog_tid = 0;
3914 
3915 	mutex_exit(&Adapter->watchdog_lock);
3916 
3917 	if (tid != 0)
3918 		(void) untimeout(tid);
3919 }
3920 
3921 static void
3922 start_watchdog_timer(struct e1000g *Adapter)
3923 {
3924 	mutex_enter(&Adapter->watchdog_lock);
3925 
3926 	if (Adapter->watchdog_timer_enabled) {
3927 		if (!Adapter->watchdog_timer_started) {
3928 			Adapter->watchdog_timer_started = B_TRUE;
3929 			arm_watchdog_timer(Adapter);
3930 		}
3931 	}
3932 
3933 	mutex_exit(&Adapter->watchdog_lock);
3934 }
3935 
3936 static void
3937 restart_watchdog_timer(struct e1000g *Adapter)
3938 {
3939 	mutex_enter(&Adapter->watchdog_lock);
3940 
3941 	if (Adapter->watchdog_timer_started)
3942 		arm_watchdog_timer(Adapter);
3943 
3944 	mutex_exit(&Adapter->watchdog_lock);
3945 }
3946 
3947 static void
3948 stop_watchdog_timer(struct e1000g *Adapter)
3949 {
3950 	timeout_id_t tid;
3951 
3952 	mutex_enter(&Adapter->watchdog_lock);
3953 
3954 	Adapter->watchdog_timer_started = B_FALSE;
3955 	tid = Adapter->watchdog_tid;
3956 	Adapter->watchdog_tid = 0;
3957 
3958 	mutex_exit(&Adapter->watchdog_lock);
3959 
3960 	if (tid != 0)
3961 		(void) untimeout(tid);
3962 }
3963 
3964 static void
3965 stop_link_timer(struct e1000g *Adapter)
3966 {
3967 	timeout_id_t tid;
3968 
3969 	/* Disable the link timer */
3970 	mutex_enter(&Adapter->link_lock);
3971 
3972 	tid = Adapter->link_tid;
3973 	Adapter->link_tid = 0;
3974 
3975 	mutex_exit(&Adapter->link_lock);
3976 
3977 	if (tid != 0)
3978 		(void) untimeout(tid);
3979 }
3980 
3981 static void
3982 stop_82547_timer(e1000g_tx_ring_t *tx_ring)
3983 {
3984 	timeout_id_t tid;
3985 
3986 	/* Disable the tx timer for 82547 chipset */
3987 	mutex_enter(&tx_ring->tx_lock);
3988 
3989 	tx_ring->timer_enable_82547 = B_FALSE;
3990 	tid = tx_ring->timer_id_82547;
3991 	tx_ring->timer_id_82547 = 0;
3992 
3993 	mutex_exit(&tx_ring->tx_lock);
3994 
3995 	if (tid != 0)
3996 		(void) untimeout(tid);
3997 }
3998 
3999 void
4000 e1000g_clear_interrupt(struct e1000g *Adapter)
4001 {
4002 	E1000_WRITE_REG(&Adapter->shared, E1000_IMC,
4003 	    0xffffffff & ~E1000_IMS_RXSEQ);
4004 }
4005 
4006 void
4007 e1000g_mask_interrupt(struct e1000g *Adapter)
4008 {
4009 	E1000_WRITE_REG(&Adapter->shared, E1000_IMS,
4010 	    IMS_ENABLE_MASK & ~E1000_IMS_TXDW);
4011 
4012 	if (Adapter->tx_intr_enable)
4013 		e1000g_mask_tx_interrupt(Adapter);
4014 }
4015 
4016 void
4017 e1000g_clear_all_interrupts(struct e1000g *Adapter)
4018 {
4019 	E1000_WRITE_REG(&Adapter->shared, E1000_IMC, 0xffffffff);
4020 }
4021 
4022 void
4023 e1000g_mask_tx_interrupt(struct e1000g *Adapter)
4024 {
4025 	E1000_WRITE_REG(&Adapter->shared, E1000_IMS, E1000_IMS_TXDW);
4026 }
4027 
4028 void
4029 e1000g_clear_tx_interrupt(struct e1000g *Adapter)
4030 {
4031 	E1000_WRITE_REG(&Adapter->shared, E1000_IMC, E1000_IMS_TXDW);
4032 }
4033 
4034 static void
4035 e1000g_smartspeed(struct e1000g *Adapter)
4036 {
4037 	struct e1000_hw *hw = &Adapter->shared;
4038 	uint16_t phy_status;
4039 	uint16_t phy_ctrl;
4040 
4041 	/*
4042 	 * If we're not T-or-T, or we're not autoneg'ing, or we're not
4043 	 * advertising 1000Full, we don't even use the workaround
4044 	 */
4045 	if ((hw->phy.type != e1000_phy_igp) ||
4046 	    !hw->mac.autoneg ||
4047 	    !(hw->phy.autoneg_advertised & ADVERTISE_1000_FULL))
4048 		return;
4049 
4050 	/*
4051 	 * True if this is the first call of this function or after every
4052 	 * 30 seconds of not having link
4053 	 */
4054 	if (Adapter->smartspeed == 0) {
4055 		/*
4056 		 * If Master/Slave config fault is asserted twice, we
4057 		 * assume back-to-back
4058 		 */
4059 		(void) e1000_read_phy_reg(hw, PHY_1000T_STATUS, &phy_status);
4060 		if (!(phy_status & SR_1000T_MS_CONFIG_FAULT))
4061 			return;
4062 
4063 		(void) e1000_read_phy_reg(hw, PHY_1000T_STATUS, &phy_status);
4064 		if (!(phy_status & SR_1000T_MS_CONFIG_FAULT))
4065 			return;
4066 		/*
4067 		 * We're assuming back-2-back because our status register
4068 		 * insists! there's a fault in the master/slave
4069 		 * relationship that was "negotiated"
4070 		 */
4071 		(void) e1000_read_phy_reg(hw, PHY_1000T_CTRL, &phy_ctrl);
4072 		/*
4073 		 * Is the phy configured for manual configuration of
4074 		 * master/slave?
4075 		 */
4076 		if (phy_ctrl & CR_1000T_MS_ENABLE) {
4077 			/*
4078 			 * Yes.  Then disable manual configuration (enable
4079 			 * auto configuration) of master/slave
4080 			 */
4081 			phy_ctrl &= ~CR_1000T_MS_ENABLE;
4082 			(void) e1000_write_phy_reg(hw,
4083 			    PHY_1000T_CTRL, phy_ctrl);
4084 			/*
4085 			 * Effectively starting the clock
4086 			 */
4087 			Adapter->smartspeed++;
4088 			/*
4089 			 * Restart autonegotiation
4090 			 */
4091 			if (!e1000_phy_setup_autoneg(hw) &&
4092 			    !e1000_read_phy_reg(hw, PHY_CONTROL, &phy_ctrl)) {
4093 				phy_ctrl |= (MII_CR_AUTO_NEG_EN |
4094 				    MII_CR_RESTART_AUTO_NEG);
4095 				(void) e1000_write_phy_reg(hw,
4096 				    PHY_CONTROL, phy_ctrl);
4097 			}
4098 		}
4099 		return;
4100 		/*
4101 		 * Has 6 seconds transpired still without link? Remember,
4102 		 * you should reset the smartspeed counter once you obtain
4103 		 * link
4104 		 */
4105 	} else if (Adapter->smartspeed == E1000_SMARTSPEED_DOWNSHIFT) {
4106 		/*
4107 		 * Yes.  Remember, we did at the start determine that
4108 		 * there's a master/slave configuration fault, so we're
4109 		 * still assuming there's someone on the other end, but we
4110 		 * just haven't yet been able to talk to it. We then
4111 		 * re-enable auto configuration of master/slave to see if
4112 		 * we're running 2/3 pair cables.
4113 		 */
4114 		/*
4115 		 * If still no link, perhaps using 2/3 pair cable
4116 		 */
4117 		(void) e1000_read_phy_reg(hw, PHY_1000T_CTRL, &phy_ctrl);
4118 		phy_ctrl |= CR_1000T_MS_ENABLE;
4119 		(void) e1000_write_phy_reg(hw, PHY_1000T_CTRL, phy_ctrl);
4120 		/*
4121 		 * Restart autoneg with phy enabled for manual
4122 		 * configuration of master/slave
4123 		 */
4124 		if (!e1000_phy_setup_autoneg(hw) &&
4125 		    !e1000_read_phy_reg(hw, PHY_CONTROL, &phy_ctrl)) {
4126 			phy_ctrl |=
4127 			    (MII_CR_AUTO_NEG_EN | MII_CR_RESTART_AUTO_NEG);
4128 			(void) e1000_write_phy_reg(hw, PHY_CONTROL, phy_ctrl);
4129 		}
4130 		/*
4131 		 * Hopefully, there are no more faults and we've obtained
4132 		 * link as a result.
4133 		 */
4134 	}
4135 	/*
4136 	 * Restart process after E1000_SMARTSPEED_MAX iterations (30
4137 	 * seconds)
4138 	 */
4139 	if (Adapter->smartspeed++ == E1000_SMARTSPEED_MAX)
4140 		Adapter->smartspeed = 0;
4141 }
4142 
4143 static boolean_t
4144 is_valid_mac_addr(uint8_t *mac_addr)
4145 {
4146 	const uint8_t addr_test1[6] = { 0, 0, 0, 0, 0, 0 };
4147 	const uint8_t addr_test2[6] =
4148 	    { 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF };
4149 
4150 	if (!(bcmp(addr_test1, mac_addr, ETHERADDRL)) ||
4151 	    !(bcmp(addr_test2, mac_addr, ETHERADDRL)))
4152 		return (B_FALSE);
4153 
4154 	return (B_TRUE);
4155 }
4156 
4157 /*
4158  * e1000g_stall_check - check for tx stall
4159  *
4160  * This function checks if the adapter is stalled (in transmit).
4161  *
4162  * It is called each time the watchdog timeout is invoked.
4163  * If the transmit descriptor reclaim continuously fails,
4164  * the watchdog value will increment by 1. If the watchdog
4165  * value exceeds the threshold, the adapter is assumed to
4166  * have stalled and need to be reset.
4167  */
4168 static boolean_t
4169 e1000g_stall_check(struct e1000g *Adapter)
4170 {
4171 	e1000g_tx_ring_t *tx_ring;
4172 
4173 	tx_ring = Adapter->tx_ring;
4174 
4175 	if (Adapter->link_state != LINK_STATE_UP)
4176 		return (B_FALSE);
4177 
4178 	if (tx_ring->recycle_fail > 0)
4179 		tx_ring->stall_watchdog++;
4180 	else
4181 		tx_ring->stall_watchdog = 0;
4182 
4183 	if (tx_ring->stall_watchdog < E1000G_STALL_WATCHDOG_COUNT)
4184 		return (B_FALSE);
4185 
4186 	tx_ring->stall_watchdog = 0;
4187 	tx_ring->recycle_fail = 0;
4188 
4189 	return (B_TRUE);
4190 }
4191 
4192 #ifdef E1000G_DEBUG
4193 static enum ioc_reply
4194 e1000g_pp_ioctl(struct e1000g *e1000gp, struct iocblk *iocp, mblk_t *mp)
4195 {
4196 	void (*ppfn)(struct e1000g *e1000gp, e1000g_peekpoke_t *ppd);
4197 	e1000g_peekpoke_t *ppd;
4198 	uint64_t mem_va;
4199 	uint64_t maxoff;
4200 	boolean_t peek;
4201 
4202 	switch (iocp->ioc_cmd) {
4203 
4204 	case E1000G_IOC_REG_PEEK:
4205 		peek = B_TRUE;
4206 		break;
4207 
4208 	case E1000G_IOC_REG_POKE:
4209 		peek = B_FALSE;
4210 		break;
4211 
4212 	deault:
4213 		E1000G_DEBUGLOG_1(e1000gp, E1000G_INFO_LEVEL,
4214 		    "e1000g_diag_ioctl: invalid ioctl command 0x%X\n",
4215 		    iocp->ioc_cmd);
4216 		return (IOC_INVAL);
4217 	}
4218 
4219 	/*
4220 	 * Validate format of ioctl
4221 	 */
4222 	if (iocp->ioc_count != sizeof (e1000g_peekpoke_t))
4223 		return (IOC_INVAL);
4224 	if (mp->b_cont == NULL)
4225 		return (IOC_INVAL);
4226 
4227 	ppd = (e1000g_peekpoke_t *)(uintptr_t)mp->b_cont->b_rptr;
4228 
4229 	/*
4230 	 * Validate request parameters
4231 	 */
4232 	switch (ppd->pp_acc_space) {
4233 
4234 	default:
4235 		E1000G_DEBUGLOG_1(e1000gp, E1000G_INFO_LEVEL,
4236 		    "e1000g_diag_ioctl: invalid access space 0x%X\n",
4237 		    ppd->pp_acc_space);
4238 		return (IOC_INVAL);
4239 
4240 	case E1000G_PP_SPACE_REG:
4241 		/*
4242 		 * Memory-mapped I/O space
4243 		 */
4244 		ASSERT(ppd->pp_acc_size == 4);
4245 		if (ppd->pp_acc_size != 4)
4246 			return (IOC_INVAL);
4247 
4248 		if ((ppd->pp_acc_offset % ppd->pp_acc_size) != 0)
4249 			return (IOC_INVAL);
4250 
4251 		mem_va = 0;
4252 		maxoff = 0x10000;
4253 		ppfn = peek ? e1000g_ioc_peek_reg : e1000g_ioc_poke_reg;
4254 		break;
4255 
4256 	case E1000G_PP_SPACE_E1000G:
4257 		/*
4258 		 * E1000g data structure!
4259 		 */
4260 		mem_va = (uintptr_t)e1000gp;
4261 		maxoff = sizeof (struct e1000g);
4262 		ppfn = peek ? e1000g_ioc_peek_mem : e1000g_ioc_poke_mem;
4263 		break;
4264 
4265 	}
4266 
4267 	if (ppd->pp_acc_offset >= maxoff)
4268 		return (IOC_INVAL);
4269 
4270 	if (ppd->pp_acc_offset + ppd->pp_acc_size > maxoff)
4271 		return (IOC_INVAL);
4272 
4273 	/*
4274 	 * All OK - go!
4275 	 */
4276 	ppd->pp_acc_offset += mem_va;
4277 	(*ppfn)(e1000gp, ppd);
4278 	return (peek ? IOC_REPLY : IOC_ACK);
4279 }
4280 
4281 static void
4282 e1000g_ioc_peek_reg(struct e1000g *e1000gp, e1000g_peekpoke_t *ppd)
4283 {
4284 	ddi_acc_handle_t handle;
4285 	uint32_t *regaddr;
4286 
4287 	handle = e1000gp->osdep.reg_handle;
4288 	regaddr = (uint32_t *)((uintptr_t)e1000gp->shared.hw_addr +
4289 	    (uintptr_t)ppd->pp_acc_offset);
4290 
4291 	ppd->pp_acc_data = ddi_get32(handle, regaddr);
4292 }
4293 
4294 static void
4295 e1000g_ioc_poke_reg(struct e1000g *e1000gp, e1000g_peekpoke_t *ppd)
4296 {
4297 	ddi_acc_handle_t handle;
4298 	uint32_t *regaddr;
4299 	uint32_t value;
4300 
4301 	handle = e1000gp->osdep.reg_handle;
4302 	regaddr = (uint32_t *)((uintptr_t)e1000gp->shared.hw_addr +
4303 	    (uintptr_t)ppd->pp_acc_offset);
4304 	value = (uint32_t)ppd->pp_acc_data;
4305 
4306 	ddi_put32(handle, regaddr, value);
4307 }
4308 
4309 static void
4310 e1000g_ioc_peek_mem(struct e1000g *e1000gp, e1000g_peekpoke_t *ppd)
4311 {
4312 	uint64_t value;
4313 	void *vaddr;
4314 
4315 	vaddr = (void *)(uintptr_t)ppd->pp_acc_offset;
4316 
4317 	switch (ppd->pp_acc_size) {
4318 	case 1:
4319 		value = *(uint8_t *)vaddr;
4320 		break;
4321 
4322 	case 2:
4323 		value = *(uint16_t *)vaddr;
4324 		break;
4325 
4326 	case 4:
4327 		value = *(uint32_t *)vaddr;
4328 		break;
4329 
4330 	case 8:
4331 		value = *(uint64_t *)vaddr;
4332 		break;
4333 	}
4334 
4335 	E1000G_DEBUGLOG_4(e1000gp, E1000G_INFO_LEVEL,
4336 	    "e1000g_ioc_peek_mem($%p, $%p) peeked 0x%llx from $%p\n",
4337 	    (void *)e1000gp, (void *)ppd, value, vaddr);
4338 
4339 	ppd->pp_acc_data = value;
4340 }
4341 
4342 static void
4343 e1000g_ioc_poke_mem(struct e1000g *e1000gp, e1000g_peekpoke_t *ppd)
4344 {
4345 	uint64_t value;
4346 	void *vaddr;
4347 
4348 	vaddr = (void *)(uintptr_t)ppd->pp_acc_offset;
4349 	value = ppd->pp_acc_data;
4350 
4351 	E1000G_DEBUGLOG_4(e1000gp, E1000G_INFO_LEVEL,
4352 	    "e1000g_ioc_poke_mem($%p, $%p) poking 0x%llx at $%p\n",
4353 	    (void *)e1000gp, (void *)ppd, value, vaddr);
4354 
4355 	switch (ppd->pp_acc_size) {
4356 	case 1:
4357 		*(uint8_t *)vaddr = (uint8_t)value;
4358 		break;
4359 
4360 	case 2:
4361 		*(uint16_t *)vaddr = (uint16_t)value;
4362 		break;
4363 
4364 	case 4:
4365 		*(uint32_t *)vaddr = (uint32_t)value;
4366 		break;
4367 
4368 	case 8:
4369 		*(uint64_t *)vaddr = (uint64_t)value;
4370 		break;
4371 	}
4372 }
4373 #endif
4374 
4375 /*
4376  * Loopback Support
4377  */
4378 static lb_property_t lb_normal =
4379 	{ normal,	"normal",	E1000G_LB_NONE		};
4380 static lb_property_t lb_external1000 =
4381 	{ external,	"1000Mbps",	E1000G_LB_EXTERNAL_1000	};
4382 static lb_property_t lb_external100 =
4383 	{ external,	"100Mbps",	E1000G_LB_EXTERNAL_100	};
4384 static lb_property_t lb_external10 =
4385 	{ external,	"10Mbps",	E1000G_LB_EXTERNAL_10	};
4386 static lb_property_t lb_phy =
4387 	{ internal,	"PHY",		E1000G_LB_INTERNAL_PHY	};
4388 
4389 static enum ioc_reply
4390 e1000g_loopback_ioctl(struct e1000g *Adapter, struct iocblk *iocp, mblk_t *mp)
4391 {
4392 	lb_info_sz_t *lbsp;
4393 	lb_property_t *lbpp;
4394 	struct e1000_hw *hw;
4395 	uint32_t *lbmp;
4396 	uint32_t size;
4397 	uint32_t value;
4398 
4399 	hw = &Adapter->shared;
4400 
4401 	if (mp->b_cont == NULL)
4402 		return (IOC_INVAL);
4403 
4404 	if (!e1000g_check_loopback_support(hw)) {
4405 		e1000g_log(NULL, CE_WARN,
4406 		    "Loopback is not supported on e1000g%d", Adapter->instance);
4407 		return (IOC_INVAL);
4408 	}
4409 
4410 	switch (iocp->ioc_cmd) {
4411 	default:
4412 		return (IOC_INVAL);
4413 
4414 	case LB_GET_INFO_SIZE:
4415 		size = sizeof (lb_info_sz_t);
4416 		if (iocp->ioc_count != size)
4417 			return (IOC_INVAL);
4418 
4419 		rw_enter(&Adapter->chip_lock, RW_WRITER);
4420 		e1000g_get_phy_state(Adapter);
4421 
4422 		/*
4423 		 * Workaround for hardware faults. In order to get a stable
4424 		 * state of phy, we will wait for a specific interval and
4425 		 * try again. The time delay is an experiential value based
4426 		 * on our testing.
4427 		 */
4428 		msec_delay(100);
4429 		e1000g_get_phy_state(Adapter);
4430 		rw_exit(&Adapter->chip_lock);
4431 
4432 		value = sizeof (lb_normal);
4433 		if ((Adapter->phy_ext_status & IEEE_ESR_1000T_FD_CAPS) ||
4434 		    (Adapter->phy_ext_status & IEEE_ESR_1000X_FD_CAPS) ||
4435 		    (hw->phy.media_type == e1000_media_type_fiber) ||
4436 		    (hw->phy.media_type == e1000_media_type_internal_serdes)) {
4437 			value += sizeof (lb_phy);
4438 			switch (hw->mac.type) {
4439 			case e1000_82571:
4440 			case e1000_82572:
4441 			case e1000_80003es2lan:
4442 				value += sizeof (lb_external1000);
4443 				break;
4444 			}
4445 		}
4446 		if ((Adapter->phy_status & MII_SR_100X_FD_CAPS) ||
4447 		    (Adapter->phy_status & MII_SR_100T2_FD_CAPS))
4448 			value += sizeof (lb_external100);
4449 		if (Adapter->phy_status & MII_SR_10T_FD_CAPS)
4450 			value += sizeof (lb_external10);
4451 
4452 		lbsp = (lb_info_sz_t *)(uintptr_t)mp->b_cont->b_rptr;
4453 		*lbsp = value;
4454 		break;
4455 
4456 	case LB_GET_INFO:
4457 		value = sizeof (lb_normal);
4458 		if ((Adapter->phy_ext_status & IEEE_ESR_1000T_FD_CAPS) ||
4459 		    (Adapter->phy_ext_status & IEEE_ESR_1000X_FD_CAPS) ||
4460 		    (hw->phy.media_type == e1000_media_type_fiber) ||
4461 		    (hw->phy.media_type == e1000_media_type_internal_serdes)) {
4462 			value += sizeof (lb_phy);
4463 			switch (hw->mac.type) {
4464 			case e1000_82571:
4465 			case e1000_82572:
4466 			case e1000_80003es2lan:
4467 				value += sizeof (lb_external1000);
4468 				break;
4469 			}
4470 		}
4471 		if ((Adapter->phy_status & MII_SR_100X_FD_CAPS) ||
4472 		    (Adapter->phy_status & MII_SR_100T2_FD_CAPS))
4473 			value += sizeof (lb_external100);
4474 		if (Adapter->phy_status & MII_SR_10T_FD_CAPS)
4475 			value += sizeof (lb_external10);
4476 
4477 		size = value;
4478 		if (iocp->ioc_count != size)
4479 			return (IOC_INVAL);
4480 
4481 		value = 0;
4482 		lbpp = (lb_property_t *)(uintptr_t)mp->b_cont->b_rptr;
4483 		lbpp[value++] = lb_normal;
4484 		if ((Adapter->phy_ext_status & IEEE_ESR_1000T_FD_CAPS) ||
4485 		    (Adapter->phy_ext_status & IEEE_ESR_1000X_FD_CAPS) ||
4486 		    (hw->phy.media_type == e1000_media_type_fiber) ||
4487 		    (hw->phy.media_type == e1000_media_type_internal_serdes)) {
4488 			lbpp[value++] = lb_phy;
4489 			switch (hw->mac.type) {
4490 			case e1000_82571:
4491 			case e1000_82572:
4492 			case e1000_80003es2lan:
4493 				lbpp[value++] = lb_external1000;
4494 				break;
4495 			}
4496 		}
4497 		if ((Adapter->phy_status & MII_SR_100X_FD_CAPS) ||
4498 		    (Adapter->phy_status & MII_SR_100T2_FD_CAPS))
4499 			lbpp[value++] = lb_external100;
4500 		if (Adapter->phy_status & MII_SR_10T_FD_CAPS)
4501 			lbpp[value++] = lb_external10;
4502 		break;
4503 
4504 	case LB_GET_MODE:
4505 		size = sizeof (uint32_t);
4506 		if (iocp->ioc_count != size)
4507 			return (IOC_INVAL);
4508 
4509 		lbmp = (uint32_t *)(uintptr_t)mp->b_cont->b_rptr;
4510 		*lbmp = Adapter->loopback_mode;
4511 		break;
4512 
4513 	case LB_SET_MODE:
4514 		size = 0;
4515 		if (iocp->ioc_count != sizeof (uint32_t))
4516 			return (IOC_INVAL);
4517 
4518 		lbmp = (uint32_t *)(uintptr_t)mp->b_cont->b_rptr;
4519 		if (!e1000g_set_loopback_mode(Adapter, *lbmp))
4520 			return (IOC_INVAL);
4521 		break;
4522 	}
4523 
4524 	iocp->ioc_count = size;
4525 	iocp->ioc_error = 0;
4526 
4527 	if (e1000g_check_acc_handle(Adapter->osdep.reg_handle) != DDI_FM_OK) {
4528 		ddi_fm_service_impact(Adapter->dip, DDI_SERVICE_DEGRADED);
4529 		return (IOC_INVAL);
4530 	}
4531 
4532 	return (IOC_REPLY);
4533 }
4534 
4535 static boolean_t
4536 e1000g_check_loopback_support(struct e1000_hw *hw)
4537 {
4538 	switch (hw->mac.type) {
4539 	case e1000_82540:
4540 	case e1000_82545:
4541 	case e1000_82545_rev_3:
4542 	case e1000_82546:
4543 	case e1000_82546_rev_3:
4544 	case e1000_82541:
4545 	case e1000_82541_rev_2:
4546 	case e1000_82547:
4547 	case e1000_82547_rev_2:
4548 	case e1000_82571:
4549 	case e1000_82572:
4550 	case e1000_82573:
4551 	case e1000_80003es2lan:
4552 		return (B_TRUE);
4553 	}
4554 	return (B_FALSE);
4555 }
4556 
4557 static boolean_t
4558 e1000g_set_loopback_mode(struct e1000g *Adapter, uint32_t mode)
4559 {
4560 	struct e1000_hw *hw;
4561 	int i, times;
4562 	boolean_t link_up;
4563 
4564 	if (mode == Adapter->loopback_mode)
4565 		return (B_TRUE);
4566 
4567 	hw = &Adapter->shared;
4568 	times = 0;
4569 
4570 	Adapter->loopback_mode = mode;
4571 
4572 	if (mode == E1000G_LB_NONE) {
4573 		/* Reset the chip */
4574 		hw->phy.autoneg_wait_to_complete = B_TRUE;
4575 		(void) e1000g_reset(Adapter);
4576 		hw->phy.autoneg_wait_to_complete = B_FALSE;
4577 		return (B_TRUE);
4578 	}
4579 
4580 again:
4581 
4582 	rw_enter(&Adapter->chip_lock, RW_WRITER);
4583 
4584 	switch (mode) {
4585 	default:
4586 		rw_exit(&Adapter->chip_lock);
4587 		return (B_FALSE);
4588 
4589 	case E1000G_LB_EXTERNAL_1000:
4590 		e1000g_set_external_loopback_1000(Adapter);
4591 		break;
4592 
4593 	case E1000G_LB_EXTERNAL_100:
4594 		e1000g_set_external_loopback_100(Adapter);
4595 		break;
4596 
4597 	case E1000G_LB_EXTERNAL_10:
4598 		e1000g_set_external_loopback_10(Adapter);
4599 		break;
4600 
4601 	case E1000G_LB_INTERNAL_PHY:
4602 		e1000g_set_internal_loopback(Adapter);
4603 		break;
4604 	}
4605 
4606 	times++;
4607 
4608 	rw_exit(&Adapter->chip_lock);
4609 
4610 	/* Wait for link up */
4611 	for (i = (PHY_FORCE_LIMIT * 2); i > 0; i--)
4612 		msec_delay(100);
4613 
4614 	rw_enter(&Adapter->chip_lock, RW_WRITER);
4615 
4616 	link_up = e1000g_link_up(Adapter);
4617 
4618 	rw_exit(&Adapter->chip_lock);
4619 
4620 	if (!link_up) {
4621 		E1000G_DEBUGLOG_0(Adapter, E1000G_INFO_LEVEL,
4622 		    "Failed to get the link up");
4623 		if (times < 2) {
4624 			/* Reset the link */
4625 			E1000G_DEBUGLOG_0(Adapter, E1000G_INFO_LEVEL,
4626 			    "Reset the link ...");
4627 			(void) e1000g_reset(Adapter);
4628 			goto again;
4629 		}
4630 	}
4631 
4632 	return (B_TRUE);
4633 }
4634 
4635 /*
4636  * The following loopback settings are from Intel's technical
4637  * document - "How To Loopback". All the register settings and
4638  * time delay values are directly inherited from the document
4639  * without more explanations available.
4640  */
4641 static void
4642 e1000g_set_internal_loopback(struct e1000g *Adapter)
4643 {
4644 	struct e1000_hw *hw;
4645 	uint32_t ctrl;
4646 	uint32_t status;
4647 	uint16_t phy_ctrl;
4648 	uint32_t txcw;
4649 
4650 	hw = &Adapter->shared;
4651 
4652 	/* Disable Smart Power Down */
4653 	phy_spd_state(hw, B_FALSE);
4654 
4655 	(void) e1000_read_phy_reg(hw, PHY_CONTROL, &phy_ctrl);
4656 	phy_ctrl &= ~(MII_CR_AUTO_NEG_EN | MII_CR_SPEED_100 | MII_CR_SPEED_10);
4657 	phy_ctrl |= MII_CR_FULL_DUPLEX | MII_CR_SPEED_1000;
4658 
4659 	switch (hw->mac.type) {
4660 	case e1000_82540:
4661 	case e1000_82545:
4662 	case e1000_82545_rev_3:
4663 	case e1000_82546:
4664 	case e1000_82546_rev_3:
4665 	case e1000_82573:
4666 		/* Auto-MDI/MDIX off */
4667 		(void) e1000_write_phy_reg(hw, M88E1000_PHY_SPEC_CTRL, 0x0808);
4668 		/* Reset PHY to update Auto-MDI/MDIX */
4669 		(void) e1000_write_phy_reg(hw, PHY_CONTROL,
4670 		    phy_ctrl | MII_CR_RESET | MII_CR_AUTO_NEG_EN);
4671 		/* Reset PHY to auto-neg off and force 1000 */
4672 		(void) e1000_write_phy_reg(hw, PHY_CONTROL,
4673 		    phy_ctrl | MII_CR_RESET);
4674 		/*
4675 		 * Disable PHY receiver for 82540/545/546 and 82573 Family.
4676 		 * See comments above e1000g_set_internal_loopback() for the
4677 		 * background.
4678 		 */
4679 		(void) e1000_write_phy_reg(hw, 29, 0x001F);
4680 		(void) e1000_write_phy_reg(hw, 30, 0x8FFC);
4681 		(void) e1000_write_phy_reg(hw, 29, 0x001A);
4682 		(void) e1000_write_phy_reg(hw, 30, 0x8FF0);
4683 		break;
4684 	case e1000_80003es2lan:
4685 		/* Force Link Up */
4686 		(void) e1000_write_phy_reg(hw, GG82563_PHY_KMRN_MODE_CTRL,
4687 		    0x1CC);
4688 		/* Sets PCS loopback at 1Gbs */
4689 		(void) e1000_write_phy_reg(hw, GG82563_PHY_MAC_SPEC_CTRL,
4690 		    0x1046);
4691 		break;
4692 	}
4693 
4694 	/* Set loopback */
4695 	(void) e1000_write_phy_reg(hw, PHY_CONTROL, phy_ctrl | MII_CR_LOOPBACK);
4696 
4697 	msec_delay(250);
4698 
4699 	/* Now set up the MAC to the same speed/duplex as the PHY. */
4700 	ctrl = E1000_READ_REG(hw, E1000_CTRL);
4701 	ctrl &= ~E1000_CTRL_SPD_SEL;	/* Clear the speed sel bits */
4702 	ctrl |= (E1000_CTRL_FRCSPD |	/* Set the Force Speed Bit */
4703 	    E1000_CTRL_FRCDPX |		/* Set the Force Duplex Bit */
4704 	    E1000_CTRL_SPD_1000 |	/* Force Speed to 1000 */
4705 	    E1000_CTRL_FD);		/* Force Duplex to FULL */
4706 
4707 	switch (hw->mac.type) {
4708 	case e1000_82540:
4709 	case e1000_82545:
4710 	case e1000_82545_rev_3:
4711 	case e1000_82546:
4712 	case e1000_82546_rev_3:
4713 		/*
4714 		 * For some serdes we'll need to commit the writes now
4715 		 * so that the status is updated on link
4716 		 */
4717 		if (hw->phy.media_type == e1000_media_type_internal_serdes) {
4718 			E1000_WRITE_REG(hw, E1000_CTRL, ctrl);
4719 			msec_delay(100);
4720 			ctrl = E1000_READ_REG(hw, E1000_CTRL);
4721 		}
4722 
4723 		if (hw->phy.media_type == e1000_media_type_copper) {
4724 			/* Invert Loss of Signal */
4725 			ctrl |= E1000_CTRL_ILOS;
4726 		} else {
4727 			/* Set ILOS on fiber nic if half duplex is detected */
4728 			status = E1000_READ_REG(hw, E1000_STATUS);
4729 			if ((status & E1000_STATUS_FD) == 0)
4730 				ctrl |= E1000_CTRL_ILOS | E1000_CTRL_SLU;
4731 		}
4732 		E1000_WRITE_REG(hw, E1000_CTRL, ctrl);
4733 		break;
4734 
4735 	case e1000_82571:
4736 	case e1000_82572:
4737 		/*
4738 		 * The fiber/SerDes versions of this adapter do not contain an
4739 		 * accessible PHY. Therefore, loopback beyond MAC must be done
4740 		 * using SerDes analog loopback.
4741 		 */
4742 		if (hw->phy.media_type != e1000_media_type_copper) {
4743 			status = E1000_READ_REG(hw, E1000_STATUS);
4744 			/* Set ILOS on fiber nic if half duplex is detected */
4745 			if (((status & E1000_STATUS_LU) == 0) ||
4746 			    ((status & E1000_STATUS_FD) == 0) ||
4747 			    (hw->phy.media_type ==
4748 			    e1000_media_type_internal_serdes))
4749 				ctrl |= E1000_CTRL_ILOS | E1000_CTRL_SLU;
4750 
4751 			/* Disable autoneg by setting bit 31 of TXCW to zero */
4752 			txcw = E1000_READ_REG(hw, E1000_TXCW);
4753 			txcw &= ~((uint32_t)1 << 31);
4754 			E1000_WRITE_REG(hw, E1000_TXCW, txcw);
4755 
4756 			/*
4757 			 * Write 0x410 to Serdes Control register
4758 			 * to enable Serdes analog loopback
4759 			 */
4760 			E1000_WRITE_REG(hw, E1000_SCTL, 0x0410);
4761 			msec_delay(10);
4762 		}
4763 		E1000_WRITE_REG(hw, E1000_CTRL, ctrl);
4764 		break;
4765 
4766 	case e1000_82573:
4767 		ctrl |= E1000_CTRL_ILOS;
4768 		E1000_WRITE_REG(hw, E1000_CTRL, ctrl);
4769 		break;
4770 	}
4771 }
4772 
4773 static void
4774 e1000g_set_external_loopback_1000(struct e1000g *Adapter)
4775 {
4776 	struct e1000_hw *hw;
4777 	uint32_t rctl;
4778 	uint32_t ctrl_ext;
4779 	uint32_t ctrl;
4780 	uint32_t status;
4781 	uint32_t txcw;
4782 	uint16_t phydata;
4783 
4784 	hw = &Adapter->shared;
4785 
4786 	/* Disable Smart Power Down */
4787 	phy_spd_state(hw, B_FALSE);
4788 
4789 	switch (hw->mac.type) {
4790 	case e1000_82571:
4791 	case e1000_82572:
4792 		switch (hw->phy.media_type) {
4793 		case e1000_media_type_copper:
4794 			/* Force link up (Must be done before the PHY writes) */
4795 			ctrl = E1000_READ_REG(hw, E1000_CTRL);
4796 			ctrl |= E1000_CTRL_SLU;	/* Force Link Up */
4797 			E1000_WRITE_REG(hw, E1000_CTRL, ctrl);
4798 
4799 			rctl = E1000_READ_REG(hw, E1000_RCTL);
4800 			rctl |= (E1000_RCTL_EN |
4801 			    E1000_RCTL_SBP |
4802 			    E1000_RCTL_UPE |
4803 			    E1000_RCTL_MPE |
4804 			    E1000_RCTL_LPE |
4805 			    E1000_RCTL_BAM);		/* 0x803E */
4806 			E1000_WRITE_REG(hw, E1000_RCTL, rctl);
4807 
4808 			ctrl_ext = E1000_READ_REG(hw, E1000_CTRL_EXT);
4809 			ctrl_ext |= (E1000_CTRL_EXT_SDP4_DATA |
4810 			    E1000_CTRL_EXT_SDP6_DATA |
4811 			    E1000_CTRL_EXT_SDP7_DATA |
4812 			    E1000_CTRL_EXT_SDP4_DIR |
4813 			    E1000_CTRL_EXT_SDP6_DIR |
4814 			    E1000_CTRL_EXT_SDP7_DIR);	/* 0x0DD0 */
4815 			E1000_WRITE_REG(hw, E1000_CTRL_EXT, ctrl_ext);
4816 
4817 			/*
4818 			 * This sequence tunes the PHY's SDP and no customer
4819 			 * settable values. For background, see comments above
4820 			 * e1000g_set_internal_loopback().
4821 			 */
4822 			(void) e1000_write_phy_reg(hw, 0x0, 0x140);
4823 			msec_delay(10);
4824 			(void) e1000_write_phy_reg(hw, 0x9, 0x1A00);
4825 			(void) e1000_write_phy_reg(hw, 0x12, 0xC10);
4826 			(void) e1000_write_phy_reg(hw, 0x12, 0x1C10);
4827 			(void) e1000_write_phy_reg(hw, 0x1F37, 0x76);
4828 			(void) e1000_write_phy_reg(hw, 0x1F33, 0x1);
4829 			(void) e1000_write_phy_reg(hw, 0x1F33, 0x0);
4830 
4831 			(void) e1000_write_phy_reg(hw, 0x1F35, 0x65);
4832 			(void) e1000_write_phy_reg(hw, 0x1837, 0x3F7C);
4833 			(void) e1000_write_phy_reg(hw, 0x1437, 0x3FDC);
4834 			(void) e1000_write_phy_reg(hw, 0x1237, 0x3F7C);
4835 			(void) e1000_write_phy_reg(hw, 0x1137, 0x3FDC);
4836 
4837 			msec_delay(50);
4838 			break;
4839 		case e1000_media_type_fiber:
4840 		case e1000_media_type_internal_serdes:
4841 			status = E1000_READ_REG(hw, E1000_STATUS);
4842 			if (((status & E1000_STATUS_LU) == 0) ||
4843 			    (hw->phy.media_type ==
4844 			    e1000_media_type_internal_serdes)) {
4845 				ctrl = E1000_READ_REG(hw, E1000_CTRL);
4846 				ctrl |= E1000_CTRL_ILOS | E1000_CTRL_SLU;
4847 				E1000_WRITE_REG(hw, E1000_CTRL, ctrl);
4848 			}
4849 
4850 			/* Disable autoneg by setting bit 31 of TXCW to zero */
4851 			txcw = E1000_READ_REG(hw, E1000_TXCW);
4852 			txcw &= ~((uint32_t)1 << 31);
4853 			E1000_WRITE_REG(hw, E1000_TXCW, txcw);
4854 
4855 			/*
4856 			 * Write 0x410 to Serdes Control register
4857 			 * to enable Serdes analog loopback
4858 			 */
4859 			E1000_WRITE_REG(hw, E1000_SCTL, 0x0410);
4860 			msec_delay(10);
4861 			break;
4862 		default:
4863 			break;
4864 		}
4865 		break;
4866 	case e1000_80003es2lan:
4867 		(void) e1000_read_phy_reg(hw, GG82563_REG(6, 16), &phydata);
4868 		(void) e1000_write_phy_reg(hw, GG82563_REG(6, 16),
4869 		    phydata | (1 << 5));
4870 		Adapter->param_adv_autoneg = 1;
4871 		Adapter->param_adv_1000fdx = 1;
4872 		(void) e1000g_reset_link(Adapter);
4873 		break;
4874 	}
4875 }
4876 
4877 static void
4878 e1000g_set_external_loopback_100(struct e1000g *Adapter)
4879 {
4880 	struct e1000_hw *hw;
4881 	uint32_t ctrl;
4882 	uint16_t phy_ctrl;
4883 
4884 	hw = &Adapter->shared;
4885 
4886 	/* Disable Smart Power Down */
4887 	phy_spd_state(hw, B_FALSE);
4888 
4889 	phy_ctrl = (MII_CR_FULL_DUPLEX |
4890 	    MII_CR_SPEED_100);
4891 
4892 	/* Force 100/FD, reset PHY */
4893 	(void) e1000_write_phy_reg(hw, PHY_CONTROL,
4894 	    phy_ctrl | MII_CR_RESET);	/* 0xA100 */
4895 	msec_delay(10);
4896 
4897 	/* Force 100/FD */
4898 	(void) e1000_write_phy_reg(hw, PHY_CONTROL,
4899 	    phy_ctrl);			/* 0x2100 */
4900 	msec_delay(10);
4901 
4902 	/* Now setup the MAC to the same speed/duplex as the PHY. */
4903 	ctrl = E1000_READ_REG(hw, E1000_CTRL);
4904 	ctrl &= ~E1000_CTRL_SPD_SEL;	/* Clear the speed sel bits */
4905 	ctrl |= (E1000_CTRL_SLU |	/* Force Link Up */
4906 	    E1000_CTRL_FRCSPD |		/* Set the Force Speed Bit */
4907 	    E1000_CTRL_FRCDPX |		/* Set the Force Duplex Bit */
4908 	    E1000_CTRL_SPD_100 |	/* Force Speed to 100 */
4909 	    E1000_CTRL_FD);		/* Force Duplex to FULL */
4910 
4911 	E1000_WRITE_REG(hw, E1000_CTRL, ctrl);
4912 }
4913 
4914 static void
4915 e1000g_set_external_loopback_10(struct e1000g *Adapter)
4916 {
4917 	struct e1000_hw *hw;
4918 	uint32_t ctrl;
4919 	uint16_t phy_ctrl;
4920 
4921 	hw = &Adapter->shared;
4922 
4923 	/* Disable Smart Power Down */
4924 	phy_spd_state(hw, B_FALSE);
4925 
4926 	phy_ctrl = (MII_CR_FULL_DUPLEX |
4927 	    MII_CR_SPEED_10);
4928 
4929 	/* Force 10/FD, reset PHY */
4930 	(void) e1000_write_phy_reg(hw, PHY_CONTROL,
4931 	    phy_ctrl | MII_CR_RESET);	/* 0x8100 */
4932 	msec_delay(10);
4933 
4934 	/* Force 10/FD */
4935 	(void) e1000_write_phy_reg(hw, PHY_CONTROL,
4936 	    phy_ctrl);			/* 0x0100 */
4937 	msec_delay(10);
4938 
4939 	/* Now setup the MAC to the same speed/duplex as the PHY. */
4940 	ctrl = E1000_READ_REG(hw, E1000_CTRL);
4941 	ctrl &= ~E1000_CTRL_SPD_SEL;	/* Clear the speed sel bits */
4942 	ctrl |= (E1000_CTRL_SLU |	/* Force Link Up */
4943 	    E1000_CTRL_FRCSPD |		/* Set the Force Speed Bit */
4944 	    E1000_CTRL_FRCDPX |		/* Set the Force Duplex Bit */
4945 	    E1000_CTRL_SPD_10 |		/* Force Speed to 10 */
4946 	    E1000_CTRL_FD);		/* Force Duplex to FULL */
4947 
4948 	E1000_WRITE_REG(hw, E1000_CTRL, ctrl);
4949 }
4950 
4951 #ifdef __sparc
4952 static boolean_t
4953 e1000g_find_mac_address(struct e1000g *Adapter)
4954 {
4955 	struct e1000_hw *hw = &Adapter->shared;
4956 	uchar_t *bytes;
4957 	struct ether_addr sysaddr;
4958 	uint_t nelts;
4959 	int err;
4960 	boolean_t found = B_FALSE;
4961 
4962 	/*
4963 	 * The "vendor's factory-set address" may already have
4964 	 * been extracted from the chip, but if the property
4965 	 * "local-mac-address" is set we use that instead.
4966 	 *
4967 	 * We check whether it looks like an array of 6
4968 	 * bytes (which it should, if OBP set it).  If we can't
4969 	 * make sense of it this way, we'll ignore it.
4970 	 */
4971 	err = ddi_prop_lookup_byte_array(DDI_DEV_T_ANY, Adapter->dip,
4972 	    DDI_PROP_DONTPASS, "local-mac-address", &bytes, &nelts);
4973 	if (err == DDI_PROP_SUCCESS) {
4974 		if (nelts == ETHERADDRL) {
4975 			while (nelts--)
4976 				hw->mac.addr[nelts] = bytes[nelts];
4977 			found = B_TRUE;
4978 		}
4979 		ddi_prop_free(bytes);
4980 	}
4981 
4982 	/*
4983 	 * Look up the OBP property "local-mac-address?". If the user has set
4984 	 * 'local-mac-address? = false', use "the system address" instead.
4985 	 */
4986 	if (ddi_prop_lookup_byte_array(DDI_DEV_T_ANY, Adapter->dip, 0,
4987 	    "local-mac-address?", &bytes, &nelts) == DDI_PROP_SUCCESS) {
4988 		if (strncmp("false", (caddr_t)bytes, (size_t)nelts) == 0) {
4989 			if (localetheraddr(NULL, &sysaddr) != 0) {
4990 				bcopy(&sysaddr, hw->mac.addr, ETHERADDRL);
4991 				found = B_TRUE;
4992 			}
4993 		}
4994 		ddi_prop_free(bytes);
4995 	}
4996 
4997 	/*
4998 	 * Finally(!), if there's a valid "mac-address" property (created
4999 	 * if we netbooted from this interface), we must use this instead
5000 	 * of any of the above to ensure that the NFS/install server doesn't
5001 	 * get confused by the address changing as Solaris takes over!
5002 	 */
5003 	err = ddi_prop_lookup_byte_array(DDI_DEV_T_ANY, Adapter->dip,
5004 	    DDI_PROP_DONTPASS, "mac-address", &bytes, &nelts);
5005 	if (err == DDI_PROP_SUCCESS) {
5006 		if (nelts == ETHERADDRL) {
5007 			while (nelts--)
5008 				hw->mac.addr[nelts] = bytes[nelts];
5009 			found = B_TRUE;
5010 		}
5011 		ddi_prop_free(bytes);
5012 	}
5013 
5014 	if (found) {
5015 		bcopy(hw->mac.addr, hw->mac.perm_addr,
5016 		    ETHERADDRL);
5017 	}
5018 
5019 	return (found);
5020 }
5021 #endif
5022 
5023 static int
5024 e1000g_add_intrs(struct e1000g *Adapter)
5025 {
5026 	dev_info_t *devinfo;
5027 	int intr_types;
5028 	int rc;
5029 
5030 	devinfo = Adapter->dip;
5031 
5032 	/* Get supported interrupt types */
5033 	rc = ddi_intr_get_supported_types(devinfo, &intr_types);
5034 
5035 	if (rc != DDI_SUCCESS) {
5036 		E1000G_DEBUGLOG_1(Adapter, E1000G_WARN_LEVEL,
5037 		    "Get supported interrupt types failed: %d\n", rc);
5038 		return (DDI_FAILURE);
5039 	}
5040 
5041 	/*
5042 	 * Based on Intel Technical Advisory document (TA-160), there are some
5043 	 * cases where some older Intel PCI-X NICs may "advertise" to the OS
5044 	 * that it supports MSI, but in fact has problems.
5045 	 * So we should only enable MSI for PCI-E NICs and disable MSI for old
5046 	 * PCI/PCI-X NICs.
5047 	 */
5048 	if (Adapter->shared.mac.type < e1000_82571)
5049 		Adapter->msi_enable = B_FALSE;
5050 
5051 	if ((intr_types & DDI_INTR_TYPE_MSI) && Adapter->msi_enable) {
5052 		rc = e1000g_intr_add(Adapter, DDI_INTR_TYPE_MSI);
5053 
5054 		if (rc != DDI_SUCCESS) {
5055 			E1000G_DEBUGLOG_0(Adapter, E1000G_WARN_LEVEL,
5056 			    "Add MSI failed, trying Legacy interrupts\n");
5057 		} else {
5058 			Adapter->intr_type = DDI_INTR_TYPE_MSI;
5059 		}
5060 	}
5061 
5062 	if ((Adapter->intr_type == 0) &&
5063 	    (intr_types & DDI_INTR_TYPE_FIXED)) {
5064 		rc = e1000g_intr_add(Adapter, DDI_INTR_TYPE_FIXED);
5065 
5066 		if (rc != DDI_SUCCESS) {
5067 			E1000G_DEBUGLOG_0(Adapter, E1000G_WARN_LEVEL,
5068 			    "Add Legacy interrupts failed\n");
5069 			return (DDI_FAILURE);
5070 		}
5071 
5072 		Adapter->intr_type = DDI_INTR_TYPE_FIXED;
5073 	}
5074 
5075 	if (Adapter->intr_type == 0) {
5076 		E1000G_DEBUGLOG_0(Adapter, E1000G_WARN_LEVEL,
5077 		    "No interrupts registered\n");
5078 		return (DDI_FAILURE);
5079 	}
5080 
5081 	return (DDI_SUCCESS);
5082 }
5083 
5084 /*
5085  * e1000g_intr_add() handles MSI/Legacy interrupts
5086  */
5087 static int
5088 e1000g_intr_add(struct e1000g *Adapter, int intr_type)
5089 {
5090 	dev_info_t *devinfo;
5091 	int count, avail, actual;
5092 	int x, y, rc, inum = 0;
5093 	int flag;
5094 	ddi_intr_handler_t *intr_handler;
5095 
5096 	devinfo = Adapter->dip;
5097 
5098 	/* get number of interrupts */
5099 	rc = ddi_intr_get_nintrs(devinfo, intr_type, &count);
5100 	if ((rc != DDI_SUCCESS) || (count == 0)) {
5101 		E1000G_DEBUGLOG_2(Adapter, E1000G_WARN_LEVEL,
5102 		    "Get interrupt number failed. Return: %d, count: %d\n",
5103 		    rc, count);
5104 		return (DDI_FAILURE);
5105 	}
5106 
5107 	/* get number of available interrupts */
5108 	rc = ddi_intr_get_navail(devinfo, intr_type, &avail);
5109 	if ((rc != DDI_SUCCESS) || (avail == 0)) {
5110 		E1000G_DEBUGLOG_2(Adapter, E1000G_WARN_LEVEL,
5111 		    "Get interrupt available number failed. "
5112 		    "Return: %d, available: %d\n", rc, avail);
5113 		return (DDI_FAILURE);
5114 	}
5115 
5116 	if (avail < count) {
5117 		E1000G_DEBUGLOG_2(Adapter, E1000G_WARN_LEVEL,
5118 		    "Interrupts count: %d, available: %d\n",
5119 		    count, avail);
5120 	}
5121 
5122 	/* Allocate an array of interrupt handles */
5123 	Adapter->intr_size = count * sizeof (ddi_intr_handle_t);
5124 	Adapter->htable = kmem_alloc(Adapter->intr_size, KM_SLEEP);
5125 
5126 	/* Set NORMAL behavior for both MSI and FIXED interrupt */
5127 	flag = DDI_INTR_ALLOC_NORMAL;
5128 
5129 	/* call ddi_intr_alloc() */
5130 	rc = ddi_intr_alloc(devinfo, Adapter->htable, intr_type, inum,
5131 	    count, &actual, flag);
5132 
5133 	if ((rc != DDI_SUCCESS) || (actual == 0)) {
5134 		E1000G_DEBUGLOG_1(Adapter, E1000G_WARN_LEVEL,
5135 		    "Allocate interrupts failed: %d\n", rc);
5136 
5137 		kmem_free(Adapter->htable, Adapter->intr_size);
5138 		return (DDI_FAILURE);
5139 	}
5140 
5141 	if (actual < count) {
5142 		E1000G_DEBUGLOG_2(Adapter, E1000G_WARN_LEVEL,
5143 		    "Interrupts requested: %d, received: %d\n",
5144 		    count, actual);
5145 	}
5146 
5147 	Adapter->intr_cnt = actual;
5148 
5149 	/* Get priority for first msi, assume remaining are all the same */
5150 	rc = ddi_intr_get_pri(Adapter->htable[0], &Adapter->intr_pri);
5151 
5152 	if (rc != DDI_SUCCESS) {
5153 		E1000G_DEBUGLOG_1(Adapter, E1000G_WARN_LEVEL,
5154 		    "Get interrupt priority failed: %d\n", rc);
5155 
5156 		/* Free already allocated intr */
5157 		for (y = 0; y < actual; y++)
5158 			(void) ddi_intr_free(Adapter->htable[y]);
5159 
5160 		kmem_free(Adapter->htable, Adapter->intr_size);
5161 		return (DDI_FAILURE);
5162 	}
5163 
5164 	/*
5165 	 * In Legacy Interrupt mode, for PCI-Express adapters, we should
5166 	 * use the interrupt service routine e1000g_intr_pciexpress()
5167 	 * to avoid interrupt stealing when sharing interrupt with other
5168 	 * devices.
5169 	 */
5170 	if (Adapter->shared.mac.type < e1000_82571)
5171 		intr_handler = (ddi_intr_handler_t *)e1000g_intr;
5172 	else
5173 		intr_handler = (ddi_intr_handler_t *)e1000g_intr_pciexpress;
5174 
5175 	/* Call ddi_intr_add_handler() */
5176 	for (x = 0; x < actual; x++) {
5177 		rc = ddi_intr_add_handler(Adapter->htable[x],
5178 		    intr_handler, (caddr_t)Adapter, NULL);
5179 
5180 		if (rc != DDI_SUCCESS) {
5181 			E1000G_DEBUGLOG_1(Adapter, E1000G_WARN_LEVEL,
5182 			    "Add interrupt handler failed: %d\n", rc);
5183 
5184 			/* Remove already added handler */
5185 			for (y = 0; y < x; y++)
5186 				(void) ddi_intr_remove_handler(
5187 				    Adapter->htable[y]);
5188 
5189 			/* Free already allocated intr */
5190 			for (y = 0; y < actual; y++)
5191 				(void) ddi_intr_free(Adapter->htable[y]);
5192 
5193 			kmem_free(Adapter->htable, Adapter->intr_size);
5194 			return (DDI_FAILURE);
5195 		}
5196 	}
5197 
5198 	rc = ddi_intr_get_cap(Adapter->htable[0], &Adapter->intr_cap);
5199 
5200 	if (rc != DDI_SUCCESS) {
5201 		E1000G_DEBUGLOG_1(Adapter, E1000G_WARN_LEVEL,
5202 		    "Get interrupt cap failed: %d\n", rc);
5203 
5204 		/* Free already allocated intr */
5205 		for (y = 0; y < actual; y++) {
5206 			(void) ddi_intr_remove_handler(Adapter->htable[y]);
5207 			(void) ddi_intr_free(Adapter->htable[y]);
5208 		}
5209 
5210 		kmem_free(Adapter->htable, Adapter->intr_size);
5211 		return (DDI_FAILURE);
5212 	}
5213 
5214 	return (DDI_SUCCESS);
5215 }
5216 
5217 static int
5218 e1000g_rem_intrs(struct e1000g *Adapter)
5219 {
5220 	int x;
5221 	int rc;
5222 
5223 	for (x = 0; x < Adapter->intr_cnt; x++) {
5224 		rc = ddi_intr_remove_handler(Adapter->htable[x]);
5225 		if (rc != DDI_SUCCESS) {
5226 			E1000G_DEBUGLOG_1(Adapter, E1000G_WARN_LEVEL,
5227 			    "Remove intr handler failed: %d\n", rc);
5228 			return (DDI_FAILURE);
5229 		}
5230 
5231 		rc = ddi_intr_free(Adapter->htable[x]);
5232 		if (rc != DDI_SUCCESS) {
5233 			E1000G_DEBUGLOG_1(Adapter, E1000G_WARN_LEVEL,
5234 			    "Free intr failed: %d\n", rc);
5235 			return (DDI_FAILURE);
5236 		}
5237 	}
5238 
5239 	kmem_free(Adapter->htable, Adapter->intr_size);
5240 
5241 	return (DDI_SUCCESS);
5242 }
5243 
5244 static int
5245 e1000g_enable_intrs(struct e1000g *Adapter)
5246 {
5247 	int x;
5248 	int rc;
5249 
5250 	/* Enable interrupts */
5251 	if (Adapter->intr_cap & DDI_INTR_FLAG_BLOCK) {
5252 		/* Call ddi_intr_block_enable() for MSI */
5253 		rc = ddi_intr_block_enable(Adapter->htable,
5254 		    Adapter->intr_cnt);
5255 		if (rc != DDI_SUCCESS) {
5256 			E1000G_DEBUGLOG_1(Adapter, E1000G_WARN_LEVEL,
5257 			    "Enable block intr failed: %d\n", rc);
5258 			return (DDI_FAILURE);
5259 		}
5260 	} else {
5261 		/* Call ddi_intr_enable() for Legacy/MSI non block enable */
5262 		for (x = 0; x < Adapter->intr_cnt; x++) {
5263 			rc = ddi_intr_enable(Adapter->htable[x]);
5264 			if (rc != DDI_SUCCESS) {
5265 				E1000G_DEBUGLOG_1(Adapter, E1000G_WARN_LEVEL,
5266 				    "Enable intr failed: %d\n", rc);
5267 				return (DDI_FAILURE);
5268 			}
5269 		}
5270 	}
5271 
5272 	return (DDI_SUCCESS);
5273 }
5274 
5275 static int
5276 e1000g_disable_intrs(struct e1000g *Adapter)
5277 {
5278 	int x;
5279 	int rc;
5280 
5281 	/* Disable all interrupts */
5282 	if (Adapter->intr_cap & DDI_INTR_FLAG_BLOCK) {
5283 		rc = ddi_intr_block_disable(Adapter->htable,
5284 		    Adapter->intr_cnt);
5285 		if (rc != DDI_SUCCESS) {
5286 			E1000G_DEBUGLOG_1(Adapter, E1000G_WARN_LEVEL,
5287 			    "Disable block intr failed: %d\n", rc);
5288 			return (DDI_FAILURE);
5289 		}
5290 	} else {
5291 		for (x = 0; x < Adapter->intr_cnt; x++) {
5292 			rc = ddi_intr_disable(Adapter->htable[x]);
5293 			if (rc != DDI_SUCCESS) {
5294 				E1000G_DEBUGLOG_1(Adapter, E1000G_WARN_LEVEL,
5295 				    "Disable intr failed: %d\n", rc);
5296 				return (DDI_FAILURE);
5297 			}
5298 		}
5299 	}
5300 
5301 	return (DDI_SUCCESS);
5302 }
5303 
5304 /*
5305  * e1000g_get_phy_state - get the state of PHY registers, save in the adapter
5306  */
5307 static void
5308 e1000g_get_phy_state(struct e1000g *Adapter)
5309 {
5310 	struct e1000_hw *hw = &Adapter->shared;
5311 
5312 	(void) e1000_read_phy_reg(hw, PHY_CONTROL, &Adapter->phy_ctrl);
5313 	(void) e1000_read_phy_reg(hw, PHY_STATUS, &Adapter->phy_status);
5314 	(void) e1000_read_phy_reg(hw, PHY_AUTONEG_ADV, &Adapter->phy_an_adv);
5315 	(void) e1000_read_phy_reg(hw, PHY_AUTONEG_EXP, &Adapter->phy_an_exp);
5316 	(void) e1000_read_phy_reg(hw, PHY_EXT_STATUS, &Adapter->phy_ext_status);
5317 	(void) e1000_read_phy_reg(hw, PHY_1000T_CTRL, &Adapter->phy_1000t_ctrl);
5318 	(void) e1000_read_phy_reg(hw, PHY_1000T_STATUS,
5319 	    &Adapter->phy_1000t_status);
5320 	(void) e1000_read_phy_reg(hw, PHY_LP_ABILITY, &Adapter->phy_lp_able);
5321 
5322 	Adapter->param_autoneg_cap =
5323 	    (Adapter->phy_status & MII_SR_AUTONEG_CAPS) ? 1 : 0;
5324 	Adapter->param_pause_cap =
5325 	    (Adapter->phy_an_adv & NWAY_AR_PAUSE) ? 1 : 0;
5326 	Adapter->param_asym_pause_cap =
5327 	    (Adapter->phy_an_adv & NWAY_AR_ASM_DIR) ? 1 : 0;
5328 	Adapter->param_1000fdx_cap =
5329 	    ((Adapter->phy_ext_status & IEEE_ESR_1000T_FD_CAPS) ||
5330 	    (Adapter->phy_ext_status & IEEE_ESR_1000X_FD_CAPS)) ? 1 : 0;
5331 	Adapter->param_1000hdx_cap =
5332 	    ((Adapter->phy_ext_status & IEEE_ESR_1000T_HD_CAPS) ||
5333 	    (Adapter->phy_ext_status & IEEE_ESR_1000X_HD_CAPS)) ? 1 : 0;
5334 	Adapter->param_100t4_cap =
5335 	    (Adapter->phy_status & MII_SR_100T4_CAPS) ? 1 : 0;
5336 	Adapter->param_100fdx_cap =
5337 	    ((Adapter->phy_status & MII_SR_100X_FD_CAPS) ||
5338 	    (Adapter->phy_status & MII_SR_100T2_FD_CAPS)) ? 1 : 0;
5339 	Adapter->param_100hdx_cap =
5340 	    ((Adapter->phy_status & MII_SR_100X_HD_CAPS) ||
5341 	    (Adapter->phy_status & MII_SR_100T2_HD_CAPS)) ? 1 : 0;
5342 	Adapter->param_10fdx_cap =
5343 	    (Adapter->phy_status & MII_SR_10T_FD_CAPS) ? 1 : 0;
5344 	Adapter->param_10hdx_cap =
5345 	    (Adapter->phy_status & MII_SR_10T_HD_CAPS) ? 1 : 0;
5346 
5347 	Adapter->param_adv_autoneg = hw->mac.autoneg;
5348 	Adapter->param_adv_pause =
5349 	    (Adapter->phy_an_adv & NWAY_AR_PAUSE) ? 1 : 0;
5350 	Adapter->param_adv_asym_pause =
5351 	    (Adapter->phy_an_adv & NWAY_AR_ASM_DIR) ? 1 : 0;
5352 	Adapter->param_adv_1000hdx =
5353 	    (Adapter->phy_1000t_ctrl & CR_1000T_HD_CAPS) ? 1 : 0;
5354 	Adapter->param_adv_100t4 =
5355 	    (Adapter->phy_an_adv & NWAY_AR_100T4_CAPS) ? 1 : 0;
5356 	if (Adapter->param_adv_autoneg == 1) {
5357 		Adapter->param_adv_1000fdx =
5358 		    (Adapter->phy_1000t_ctrl & CR_1000T_FD_CAPS) ? 1 : 0;
5359 		Adapter->param_adv_100fdx =
5360 		    (Adapter->phy_an_adv & NWAY_AR_100TX_FD_CAPS) ? 1 : 0;
5361 		Adapter->param_adv_100hdx =
5362 		    (Adapter->phy_an_adv & NWAY_AR_100TX_HD_CAPS) ? 1 : 0;
5363 		Adapter->param_adv_10fdx =
5364 		    (Adapter->phy_an_adv & NWAY_AR_10T_FD_CAPS) ? 1 : 0;
5365 		Adapter->param_adv_10hdx =
5366 		    (Adapter->phy_an_adv & NWAY_AR_10T_HD_CAPS) ? 1 : 0;
5367 	}
5368 
5369 	Adapter->param_lp_autoneg =
5370 	    (Adapter->phy_an_exp & NWAY_ER_LP_NWAY_CAPS) ? 1 : 0;
5371 	Adapter->param_lp_pause =
5372 	    (Adapter->phy_lp_able & NWAY_LPAR_PAUSE) ? 1 : 0;
5373 	Adapter->param_lp_asym_pause =
5374 	    (Adapter->phy_lp_able & NWAY_LPAR_ASM_DIR) ? 1 : 0;
5375 	Adapter->param_lp_1000fdx =
5376 	    (Adapter->phy_1000t_status & SR_1000T_LP_FD_CAPS) ? 1 : 0;
5377 	Adapter->param_lp_1000hdx =
5378 	    (Adapter->phy_1000t_status & SR_1000T_LP_HD_CAPS) ? 1 : 0;
5379 	Adapter->param_lp_100t4 =
5380 	    (Adapter->phy_lp_able & NWAY_LPAR_100T4_CAPS) ? 1 : 0;
5381 	Adapter->param_lp_100fdx =
5382 	    (Adapter->phy_lp_able & NWAY_LPAR_100TX_FD_CAPS) ? 1 : 0;
5383 	Adapter->param_lp_100hdx =
5384 	    (Adapter->phy_lp_able & NWAY_LPAR_100TX_HD_CAPS) ? 1 : 0;
5385 	Adapter->param_lp_10fdx =
5386 	    (Adapter->phy_lp_able & NWAY_LPAR_10T_FD_CAPS) ? 1 : 0;
5387 	Adapter->param_lp_10hdx =
5388 	    (Adapter->phy_lp_able & NWAY_LPAR_10T_HD_CAPS) ? 1 : 0;
5389 }
5390 
5391 /*
5392  * FMA support
5393  */
5394 
5395 int
5396 e1000g_check_acc_handle(ddi_acc_handle_t handle)
5397 {
5398 	ddi_fm_error_t de;
5399 
5400 	ddi_fm_acc_err_get(handle, &de, DDI_FME_VERSION);
5401 	ddi_fm_acc_err_clear(handle, DDI_FME_VERSION);
5402 	return (de.fme_status);
5403 }
5404 
5405 int
5406 e1000g_check_dma_handle(ddi_dma_handle_t handle)
5407 {
5408 	ddi_fm_error_t de;
5409 
5410 	ddi_fm_dma_err_get(handle, &de, DDI_FME_VERSION);
5411 	return (de.fme_status);
5412 }
5413 
5414 /*
5415  * The IO fault service error handling callback function
5416  */
5417 /* ARGSUSED2 */
5418 static int
5419 e1000g_fm_error_cb(dev_info_t *dip, ddi_fm_error_t *err, const void *impl_data)
5420 {
5421 	/*
5422 	 * as the driver can always deal with an error in any dma or
5423 	 * access handle, we can just return the fme_status value.
5424 	 */
5425 	pci_ereport_post(dip, err, NULL);
5426 	return (err->fme_status);
5427 }
5428 
5429 static void
5430 e1000g_fm_init(struct e1000g *Adapter)
5431 {
5432 	ddi_iblock_cookie_t iblk;
5433 	int fma_acc_flag, fma_dma_flag;
5434 
5435 	/* Only register with IO Fault Services if we have some capability */
5436 	if (Adapter->fm_capabilities & DDI_FM_ACCCHK_CAPABLE) {
5437 		e1000g_regs_acc_attr.devacc_attr_access = DDI_FLAGERR_ACC;
5438 		fma_acc_flag = 1;
5439 	} else {
5440 		e1000g_regs_acc_attr.devacc_attr_access = DDI_DEFAULT_ACC;
5441 		fma_acc_flag = 0;
5442 	}
5443 
5444 	if (Adapter->fm_capabilities & DDI_FM_DMACHK_CAPABLE) {
5445 		fma_dma_flag = 1;
5446 	} else {
5447 		fma_dma_flag = 0;
5448 	}
5449 
5450 	(void) e1000g_set_fma_flags(Adapter, fma_acc_flag, fma_dma_flag);
5451 
5452 	if (Adapter->fm_capabilities) {
5453 
5454 		/* Register capabilities with IO Fault Services */
5455 		ddi_fm_init(Adapter->dip, &Adapter->fm_capabilities, &iblk);
5456 
5457 		/*
5458 		 * Initialize pci ereport capabilities if ereport capable
5459 		 */
5460 		if (DDI_FM_EREPORT_CAP(Adapter->fm_capabilities) ||
5461 		    DDI_FM_ERRCB_CAP(Adapter->fm_capabilities))
5462 			pci_ereport_setup(Adapter->dip);
5463 
5464 		/*
5465 		 * Register error callback if error callback capable
5466 		 */
5467 		if (DDI_FM_ERRCB_CAP(Adapter->fm_capabilities))
5468 			ddi_fm_handler_register(Adapter->dip,
5469 			    e1000g_fm_error_cb, (void*) Adapter);
5470 	}
5471 }
5472 
5473 static void
5474 e1000g_fm_fini(struct e1000g *Adapter)
5475 {
5476 	/* Only unregister FMA capabilities if we registered some */
5477 	if (Adapter->fm_capabilities) {
5478 
5479 		/*
5480 		 * Release any resources allocated by pci_ereport_setup()
5481 		 */
5482 		if (DDI_FM_EREPORT_CAP(Adapter->fm_capabilities) ||
5483 		    DDI_FM_ERRCB_CAP(Adapter->fm_capabilities))
5484 			pci_ereport_teardown(Adapter->dip);
5485 
5486 		/*
5487 		 * Un-register error callback if error callback capable
5488 		 */
5489 		if (DDI_FM_ERRCB_CAP(Adapter->fm_capabilities))
5490 			ddi_fm_handler_unregister(Adapter->dip);
5491 
5492 		/* Unregister from IO Fault Services */
5493 		ddi_fm_fini(Adapter->dip);
5494 	}
5495 }
5496 
5497 void
5498 e1000g_fm_ereport(struct e1000g *Adapter, char *detail)
5499 {
5500 	uint64_t ena;
5501 	char buf[FM_MAX_CLASS];
5502 
5503 	(void) snprintf(buf, FM_MAX_CLASS, "%s.%s", DDI_FM_DEVICE, detail);
5504 	ena = fm_ena_generate(0, FM_ENA_FMT1);
5505 	if (DDI_FM_EREPORT_CAP(Adapter->fm_capabilities)) {
5506 		ddi_fm_ereport_post(Adapter->dip, buf, ena, DDI_NOSLEEP,
5507 		    FM_VERSION, DATA_TYPE_UINT8, FM_EREPORT_VERS0, NULL);
5508 	}
5509 }
5510 
5511 static int
5512 e1000g_get_def_val(struct e1000g *Adapter, mac_prop_id_t pr_num,
5513     uint_t pr_valsize, void *pr_val)
5514 {
5515 	link_flowctrl_t fl;
5516 	int err = 0;
5517 
5518 	ASSERT(pr_valsize > 0);
5519 	switch (pr_num) {
5520 	case MAC_PROP_AUTONEG:
5521 		*(uint8_t *)pr_val =
5522 		    ((Adapter->phy_status & MII_SR_AUTONEG_CAPS) ? 1 : 0);
5523 		break;
5524 	case MAC_PROP_FLOWCTRL:
5525 		if (pr_valsize < sizeof (link_flowctrl_t))
5526 			return (EINVAL);
5527 		fl = LINK_FLOWCTRL_BI;
5528 		bcopy(&fl, pr_val, sizeof (fl));
5529 		break;
5530 	case MAC_PROP_ADV_1000FDX_CAP:
5531 	case MAC_PROP_EN_1000FDX_CAP:
5532 		*(uint8_t *)pr_val =
5533 		    ((Adapter->phy_ext_status & IEEE_ESR_1000T_FD_CAPS) ||
5534 		    (Adapter->phy_ext_status & IEEE_ESR_1000X_FD_CAPS)) ? 1 : 0;
5535 		break;
5536 	case MAC_PROP_ADV_1000HDX_CAP:
5537 	case MAC_PROP_EN_1000HDX_CAP:
5538 		*(uint8_t *)pr_val =
5539 		    ((Adapter->phy_ext_status & IEEE_ESR_1000T_HD_CAPS) ||
5540 		    (Adapter->phy_ext_status & IEEE_ESR_1000X_HD_CAPS)) ? 1 : 0;
5541 		break;
5542 	case MAC_PROP_ADV_100FDX_CAP:
5543 	case MAC_PROP_EN_100FDX_CAP:
5544 		*(uint8_t *)pr_val =
5545 		    ((Adapter->phy_status & MII_SR_100X_FD_CAPS) ||
5546 		    (Adapter->phy_status & MII_SR_100T2_FD_CAPS)) ? 1 : 0;
5547 		break;
5548 	case MAC_PROP_ADV_100HDX_CAP:
5549 	case MAC_PROP_EN_100HDX_CAP:
5550 		*(uint8_t *)pr_val =
5551 		    ((Adapter->phy_status & MII_SR_100X_HD_CAPS) ||
5552 		    (Adapter->phy_status & MII_SR_100T2_HD_CAPS)) ? 1 : 0;
5553 		break;
5554 	case MAC_PROP_ADV_10FDX_CAP:
5555 	case MAC_PROP_EN_10FDX_CAP:
5556 		*(uint8_t *)pr_val =
5557 		    (Adapter->phy_status & MII_SR_10T_FD_CAPS) ? 1 : 0;
5558 		break;
5559 	case MAC_PROP_ADV_10HDX_CAP:
5560 	case MAC_PROP_EN_10HDX_CAP:
5561 		*(uint8_t *)pr_val =
5562 		    (Adapter->phy_status & MII_SR_10T_HD_CAPS) ? 1 : 0;
5563 		break;
5564 	default:
5565 		err = ENOTSUP;
5566 		break;
5567 	}
5568 	return (err);
5569 }
5570 
5571 /*
5572  * synchronize the adv* and en* parameters.
5573  *
5574  * See comments in <sys/dld.h> for details of the *_en_*
5575  * parameters. The usage of ndd for setting adv parameters will
5576  * synchronize all the en parameters with the e1000g parameters,
5577  * implicity disalbing any settings made via dladm.
5578  */
5579 static void
5580 e1000g_param_sync(struct e1000g *Adapter)
5581 {
5582 	Adapter->param_en_1000fdx = Adapter->param_adv_1000fdx;
5583 	Adapter->param_en_1000hdx = Adapter->param_adv_1000hdx;
5584 	Adapter->param_en_100fdx = Adapter->param_adv_100fdx;
5585 	Adapter->param_en_100hdx = Adapter->param_adv_100hdx;
5586 	Adapter->param_en_10fdx = Adapter->param_adv_10fdx;
5587 	Adapter->param_en_10hdx = Adapter->param_adv_10hdx;
5588 }
5589