xref: /illumos-gate/usr/src/uts/common/io/e1000g/e1000g_main.c (revision 600d77457b335b6f448f13d5f33bf7e70dfbb39d)
1 /*
2  * This file is provided under a CDDLv1 license.  When using or
3  * redistributing this file, you may do so under this license.
4  * In redistributing this file this license must be included
5  * and no other modification of this header file is permitted.
6  *
7  * CDDL LICENSE SUMMARY
8  *
9  * Copyright(c) 1999 - 2007 Intel Corporation. All rights reserved.
10  *
11  * The contents of this file are subject to the terms of Version
12  * 1.0 of the Common Development and Distribution License (the "License").
13  *
14  * You should have received a copy of the License with this software.
15  * You can obtain a copy of the License at
16  *	http://www.opensolaris.org/os/licensing.
17  * See the License for the specific language governing permissions
18  * and limitations under the License.
19  */
20 
21 /*
22  * Copyright 2007 Sun Microsystems, Inc.  All rights reserved.
23  * Use is subject to license terms of the CDDLv1.
24  */
25 
26 #pragma ident	"%Z%%M%	%I%	%E% SMI"
27 
28 /*
29  * **********************************************************************
30  *									*
31  * Module Name:								*
32  *   e1000g_main.c							*
33  *									*
34  * Abstract:								*
35  *   This file contains the interface routine for the solaris OS.	*
36  *   It has all DDI entry point routines and GLD entry point		*
37  *   routines.								*
38  *   This file also contains routines that takes care of initialization	*
39  *   uninit routine and interrupt routine				*
40  *									*
41  *									*
42  * Environment:								*
43  *   Kernel Mode -							*
44  *									*
45  * **********************************************************************
46  */
47 
48 #include <sys/dlpi.h>
49 #include <sys/mac.h>
50 #include "e1000g_sw.h"
51 #include "e1000g_debug.h"
52 
53 #define	E1000_RX_INTPT_TIME	128
54 #define	E1000_RX_PKT_CNT	8
55 
56 static char ident[] = "Intel PRO/1000 Ethernet 5.1.8";
57 static char e1000g_string[] = "Intel(R) PRO/1000 Network Connection";
58 static char e1000g_version[] = "Driver Ver. 5.1.8";
59 
60 /*
61  * Proto types for DDI entry points
62  */
63 static int e1000gattach(dev_info_t *, ddi_attach_cmd_t);
64 static int e1000gdetach(dev_info_t *, ddi_detach_cmd_t);
65 
66 /*
67  * init and intr routines prototype
68  */
69 static int e1000g_resume(dev_info_t *devinfo);
70 static int e1000g_suspend(dev_info_t *devinfo);
71 static uint_t e1000g_intr_pciexpress(caddr_t);
72 static uint_t e1000g_intr(caddr_t);
73 static void e1000g_intr_work(struct e1000g *, uint32_t);
74 #pragma inline(e1000g_intr_work)
75 static int e1000g_init(struct e1000g *);
76 static int e1000g_start(struct e1000g *);
77 static void e1000g_stop(struct e1000g *);
78 static int e1000g_m_start(void *);
79 static void e1000g_m_stop(void *);
80 static int e1000g_m_promisc(void *, boolean_t);
81 static boolean_t e1000g_m_getcapab(void *, mac_capab_t, void *);
82 static int e1000g_m_unicst(void *, const uint8_t *);
83 static int e1000g_m_unicst_add(void *, mac_multi_addr_t *);
84 static int e1000g_m_unicst_remove(void *, mac_addr_slot_t);
85 static int e1000g_m_unicst_modify(void *, mac_multi_addr_t *);
86 static int e1000g_m_unicst_get(void *, mac_multi_addr_t *);
87 static int e1000g_m_multicst(void *, boolean_t, const uint8_t *);
88 static void e1000g_m_blank(void *, time_t, uint32_t);
89 static void e1000g_m_resources(void *);
90 static void e1000g_m_ioctl(void *, queue_t *, mblk_t *);
91 static void e1000g_init_locks(struct e1000g *Adapter);
92 static void e1000g_destroy_locks(struct e1000g *Adapter);
93 static int e1000g_set_driver_params(struct e1000g *Adapter);
94 static int e1000g_register_mac(struct e1000g *Adapter);
95 static boolean_t e1000g_rx_drain(struct e1000g *Adapter);
96 static boolean_t e1000g_tx_drain(struct e1000g *Adapter);
97 static void e1000g_init_unicst(struct e1000g *Adapter);
98 static int e1000g_unicst_set(struct e1000g *, const uint8_t *, mac_addr_slot_t);
99 
100 /*
101  * Local routines
102  */
103 static void e1000g_tx_drop(struct e1000g *Adapter);
104 static void e1000g_link_timer(void *);
105 static void e1000g_LocalTimer(void *);
106 static boolean_t e1000g_link_check(struct e1000g *);
107 static boolean_t e1000g_stall_check(struct e1000g *);
108 static void e1000g_smartspeed(struct e1000g *);
109 static void e1000g_getparam(struct e1000g *Adapter);
110 static int e1000g_getprop(struct e1000g *, char *, int, int, int);
111 static void e1000g_error(dev_info_t *dip, char *fmt, char *a1,
112     char *a2, char *a3, char *a4, char *a5, char *a6);
113 static void enable_timeout(struct e1000g *Adapter);
114 static void disable_timeout(struct e1000g *Adapter);
115 static void start_timeout(struct e1000g *Adapter);
116 static void restart_timeout(struct e1000g *Adapter);
117 static void stop_timeout(struct e1000g *Adapter);
118 static void e1000g_force_speed_duplex(struct e1000g *Adapter);
119 static void e1000g_get_max_frame_size(struct e1000g *Adapter);
120 static boolean_t is_valid_mac_addr(uint8_t *mac_addr);
121 static void e1000g_unattach(dev_info_t *, struct e1000g *);
122 static void e1000g_ioc_peek_reg(struct e1000g *e1000gp, e1000g_peekpoke_t *ppd);
123 static void e1000g_ioc_poke_reg(struct e1000g *e1000gp, e1000g_peekpoke_t *ppd);
124 static void e1000g_ioc_peek_mem(struct e1000g *e1000gp, e1000g_peekpoke_t *ppd);
125 static void e1000g_ioc_poke_mem(struct e1000g *e1000gp, e1000g_peekpoke_t *ppd);
126 static enum ioc_reply e1000g_pp_ioctl(struct e1000g *e1000gp,
127     struct iocblk *iocp, mblk_t *mp);
128 static enum ioc_reply e1000g_loopback_ioctl(struct e1000g *Adapter,
129     struct iocblk *iocp, mblk_t *mp);
130 static boolean_t e1000g_set_loopback_mode(struct e1000g *Adapter,
131     uint32_t mode);
132 static void e1000g_set_internal_loopback(struct e1000g *Adapter);
133 static void e1000g_set_external_loopback_1000(struct e1000g *Adapter);
134 static void e1000g_set_external_loopback_100(struct e1000g *Adapter);
135 static void e1000g_set_external_loopback_10(struct e1000g *Adapter);
136 static int e1000g_add_intrs(struct e1000g *Adapter);
137 static int e1000g_intr_add(struct e1000g *Adapter, int intr_type);
138 static int e1000g_rem_intrs(struct e1000g *Adapter);
139 static int e1000g_enable_intrs(struct e1000g *Adapter);
140 static int e1000g_disable_intrs(struct e1000g *Adapter);
141 static boolean_t e1000g_link_up(struct e1000g *Adapter);
142 #ifdef __sparc
143 static boolean_t e1000g_find_mac_address(struct e1000g *Adapter);
144 #endif
145 
146 static struct cb_ops cb_ws_ops = {
147 	nulldev,		/* cb_open */
148 	nulldev,		/* cb_close */
149 	nodev,			/* cb_strategy */
150 	nodev,			/* cb_print */
151 	nodev,			/* cb_dump */
152 	nodev,			/* cb_read */
153 	nodev,			/* cb_write */
154 	nodev,			/* cb_ioctl */
155 	nodev,			/* cb_devmap */
156 	nodev,			/* cb_mmap */
157 	nodev,			/* cb_segmap */
158 	nochpoll,		/* cb_chpoll */
159 	ddi_prop_op,		/* cb_prop_op */
160 	NULL,			/* cb_stream */
161 	D_MP | D_HOTPLUG,	/* cb_flag */
162 	CB_REV,			/* cb_rev */
163 	nodev,			/* cb_aread */
164 	nodev			/* cb_awrite */
165 };
166 
167 static struct dev_ops ws_ops = {
168 	DEVO_REV,		/* devo_rev */
169 	0,			/* devo_refcnt */
170 	NULL,			/* devo_getinfo */
171 	nulldev,		/* devo_identify */
172 	nulldev,		/* devo_probe */
173 	e1000gattach,		/* devo_attach */
174 	e1000gdetach,		/* devo_detach */
175 	nodev,			/* devo_reset */
176 	&cb_ws_ops,		/* devo_cb_ops */
177 	NULL,			/* devo_bus_ops */
178 	ddi_power		/* devo_power */
179 };
180 
181 static struct modldrv modldrv = {
182 	&mod_driverops,		/* Type of module.  This one is a driver */
183 	ident,			/* Discription string */
184 	&ws_ops,		/* driver ops */
185 };
186 
187 static struct modlinkage modlinkage = {
188 	MODREV_1, &modldrv, NULL
189 };
190 
191 /*
192  * DMA access attributes <Little Endian Card>
193  */
194 static ddi_device_acc_attr_t accattr1 = {
195 	DDI_DEVICE_ATTR_V0,
196 	DDI_STRUCTURE_LE_ACC,
197 	DDI_STRICTORDER_ACC,
198 };
199 
200 #define	E1000G_M_CALLBACK_FLAGS	(MC_RESOURCES | MC_IOCTL | MC_GETCAPAB)
201 
202 static mac_callbacks_t e1000g_m_callbacks = {
203 	E1000G_M_CALLBACK_FLAGS,
204 	e1000g_m_stat,
205 	e1000g_m_start,
206 	e1000g_m_stop,
207 	e1000g_m_promisc,
208 	e1000g_m_multicst,
209 	e1000g_m_unicst,
210 	e1000g_m_tx,
211 	e1000g_m_resources,
212 	e1000g_m_ioctl,
213 	e1000g_m_getcapab
214 };
215 
216 /*
217  * Global variables
218  */
219 boolean_t force_detach_enabled = B_FALSE;
220 uint32_t e1000g_mblks_pending = 0;
221 /*
222  * The rwlock is defined to protect the whole processing of rx recycling
223  * and the rx packets release in detach processing to make them mutually
224  * exclusive.
225  * The rx recycling processes different rx packets in different threads,
226  * so it will be protected with RW_READER and it won't block any other rx
227  * recycling threads.
228  * While the detach processing will be protected with RW_WRITER to make
229  * it mutually exclusive with the rx recycling.
230  */
231 krwlock_t e1000g_rx_detach_lock;
232 /*
233  * The rwlock e1000g_dma_type_lock is defined to protect the global flag
234  * e1000g_dma_type. For SPARC, the initial value of the flag is "USE_DVMA".
235  * If there are many e1000g instances, the system may run out of DVMA
236  * resources during the initialization of the instances, then the flag will
237  * be changed to "USE_DMA". Because different e1000g instances are initialized
238  * in parallel, we need to use this lock to protect the flag.
239  */
240 krwlock_t e1000g_dma_type_lock;
241 
242 
243 /*
244  * Loadable module configuration entry points for the driver
245  */
246 
247 /*
248  * **********************************************************************
249  * Name:      _init							*
250  *									*
251  * Description:								*
252  *     Initializes a loadable module. It is  called  before		*
253  *     any other routine in a loadable module.				*
254  *     All global locks are intialised here and it returns the retun 	*
255  *     value from mod_install()						*
256  *     This is mandotary function for the driver			*
257  * Parameter Passed:							*
258  *     None								*
259  * Return Value:							*
260  *     0 on success							*
261  * Functions called							*
262  *     mod_install()	     (system call)				*
263  *									*
264  * **********************************************************************
265  */
266 int
267 _init(void)
268 {
269 	int status;
270 
271 	mac_init_ops(&ws_ops, WSNAME);
272 	status = mod_install(&modlinkage);
273 	if (status != DDI_SUCCESS)
274 		mac_fini_ops(&ws_ops);
275 	else {
276 		rw_init(&e1000g_rx_detach_lock, NULL, RW_DRIVER, NULL);
277 		rw_init(&e1000g_dma_type_lock, NULL, RW_DRIVER, NULL);
278 	}
279 
280 	return (status);
281 }
282 
283 /*
284  * **********************************************************************
285  *  Name:      _fini							*
286  *									*
287  *  Description:							*
288  *     Prepares a loadable module  for  unloading.   It  is		*
289  *     called  when  the  system  wants to unload a module.		*
290  *     This is mandotary function for the driver			*
291  *  Parameter Passed:							*
292  *     None								*
293  *  Return Value:							*
294  *     0 on success							*
295  *  Functions called							*
296  *     mod_remove()	      (system call)				*
297  *									*
298  *									*
299  *									*
300  * **********************************************************************
301  */
302 int
303 _fini(void)
304 {
305 	int status;
306 
307 	rw_enter(&e1000g_rx_detach_lock, RW_READER);
308 	if (e1000g_mblks_pending != 0) {
309 		rw_exit(&e1000g_rx_detach_lock);
310 		return (EBUSY);
311 	}
312 	rw_exit(&e1000g_rx_detach_lock);
313 
314 	status = mod_remove(&modlinkage);
315 	if (status == DDI_SUCCESS) {
316 		mac_fini_ops(&ws_ops);
317 		rw_destroy(&e1000g_rx_detach_lock);
318 		rw_destroy(&e1000g_dma_type_lock);
319 	}
320 
321 	return (status);
322 }
323 
324 /*
325  * **********************************************************************
326  * Name:      _info							*
327  *									*
328  * Description:								*
329  *     Returns  information  about  a   loadable   module.		*
330  *     This is mandotary function for the driver			*
331  * Parameter Passed:							*
332  *     module info structure						*
333  * Return Value:							*
334  *     0 on success							*
335  * Functions called							*
336  *     mod_info()		(system call)				*
337  *									*
338  *									*
339  * **********************************************************************
340  */
341 int
342 _info(struct modinfo *modinfop)
343 {
344 	return (mod_info(&modlinkage, modinfop));
345 }
346 
347 /*
348  * Interface exists: make available by filling in network interface
349  * record.  System will initialize the interface when it is ready
350  * to accept packets.
351  */
352 
353 /*
354  * **********************************************************************
355  * Name:      e1000gattach						*
356  *									*
357  * Description:								*
358  *     This function is the device-specific  initialization		*
359  *     entry point.  This entry point is required and must be writ-	*
360  *     ten.  The DDI_ATTACH command must be provided in the  attach	*
361  *     entry point. When attach() is called with cmd set to DDI_ATTACH,	*
362  *     all normal kernel services (such as  kmem_alloc(9F))  are	*
363  *     available  for  use by the driver. Device interrupts are not	*
364  *     blocked when attaching a device to the system.			*
365  *									*
366  *     The attach() function will be called once for each  instance	*
367  *     of  the  device  on  the  system with cmd set to DDI_ATTACH.	*
368  *     Until attach() succeeds, the only driver entry points  which	*
369  *     may  be called are open(9E) and getinfo(9E).			*
370  *									*
371  *									*
372  *									*
373  * Parameter Passed:							*
374  *									*
375  * Return Value:							*
376  *									*
377  * Functions called							*
378  *									*
379  *									*
380  * **********************************************************************
381  */
382 static int
383 e1000gattach(dev_info_t *devinfo, ddi_attach_cmd_t cmd)
384 {
385 	struct e1000g *Adapter;
386 	struct e1000_hw *hw;
387 	ddi_acc_handle_t handle;
388 	off_t mem_size;
389 	int instance;
390 
391 	switch (cmd) {
392 	default:
393 		e1000g_log(NULL, CE_WARN,
394 		    "Unsupported command send to e1000gattach... ");
395 		return (DDI_FAILURE);
396 
397 	case DDI_RESUME:
398 		return (e1000g_resume(devinfo));
399 
400 	case DDI_ATTACH:
401 		break;
402 	}
403 
404 	/*
405 	 * get device instance number
406 	 */
407 	instance = ddi_get_instance(devinfo);
408 
409 	/*
410 	 * Allocate soft data structure
411 	 */
412 	Adapter =
413 	    (struct e1000g *)kmem_zalloc(sizeof (*Adapter), KM_SLEEP);
414 
415 	Adapter->dip = devinfo;
416 	Adapter->AdapterInstance = instance;
417 	Adapter->tx_ring->adapter = Adapter;
418 	Adapter->rx_ring->adapter = Adapter;
419 
420 	ddi_set_driver_private(devinfo, (caddr_t)Adapter);
421 
422 	hw = &Adapter->Shared;
423 
424 	/*
425 	 * Map in the device registers.
426 	 *
427 	 * first get the size of device register to be mapped. The
428 	 * second parameter is the register we are interested. I our
429 	 * wiseman 0 is for config registers and 1 is for memory mapped
430 	 * registers Mem size should have memory mapped region size
431 	 */
432 	ddi_dev_regsize(devinfo, 1, /* register of interest */
433 	    (off_t *)&mem_size);
434 
435 	if ((ddi_regs_map_setup(devinfo, 1, /* register of interest */
436 		(caddr_t *)&hw->hw_addr,
437 		0, mem_size, &accattr1, &Adapter->E1000_handle))
438 		!= DDI_SUCCESS) {
439 		e1000g_log(Adapter, CE_WARN, "ddi_regs_map_setup failed");
440 		goto attach_fail;
441 	}
442 	Adapter->attach_progress |= ATTACH_PROGRESS_REGSMAPPED;
443 
444 	Adapter->osdep.E1000_handle = Adapter->E1000_handle;
445 	hw->back = &Adapter->osdep;
446 
447 	/*
448 	 * PCI Configure
449 	 */
450 	if (pci_config_setup(devinfo, &handle) != DDI_SUCCESS) {
451 		e1000g_log(Adapter, CE_WARN,
452 		    "PCI configuration could not be read.");
453 		goto attach_fail;
454 	}
455 
456 	Adapter->handle = handle;
457 	Adapter->osdep.handle = handle;
458 
459 	hw->vendor_id =
460 	    pci_config_get16(handle, PCI_CONF_VENID);
461 	hw->device_id =
462 	    pci_config_get16(handle, PCI_CONF_DEVID);
463 	hw->revision_id =
464 	    pci_config_get8(handle, PCI_CONF_REVID);
465 	hw->subsystem_id =
466 	    pci_config_get16(handle, PCI_CONF_SUBSYSID);
467 	hw->subsystem_vendor_id =
468 	    pci_config_get16(handle, PCI_CONF_SUBVENID);
469 
470 	Adapter->attach_progress |= ATTACH_PROGRESS_PCICONFIG;
471 
472 	/*
473 	 * Initialize driver parameters
474 	 */
475 	if (e1000g_set_driver_params(Adapter) != DDI_SUCCESS) {
476 		goto attach_fail;
477 	}
478 	Adapter->attach_progress |= ATTACH_PROGRESS_PROP;
479 
480 	/*
481 	 * Initialize interrupts
482 	 */
483 	if (e1000g_add_intrs(Adapter) != DDI_SUCCESS) {
484 		e1000g_log(Adapter, CE_WARN, "Add interrupts failed");
485 		goto attach_fail;
486 	}
487 	Adapter->tx_softint_pri = DDI_INTR_SOFTPRI_MAX;
488 	Adapter->attach_progress |= ATTACH_PROGRESS_INTRADDED;
489 
490 	/*
491 	 * Initialize mutex's for this device.
492 	 * Do this before enabling the interrupt handler and
493 	 * register the softint to avoid the condition where
494 	 * interrupt handler can try using uninitialized mutex
495 	 */
496 	e1000g_init_locks(Adapter);
497 	Adapter->attach_progress |= ATTACH_PROGRESS_LOCKS;
498 
499 	if (ddi_intr_add_softint(devinfo,
500 	    &Adapter->tx_softint_handle, Adapter->tx_softint_pri,
501 	    e1000g_tx_freemsg, (caddr_t)Adapter) != DDI_SUCCESS) {
502 		e1000g_log(Adapter, CE_WARN, "Add soft intr failed");
503 		goto attach_fail;
504 	}
505 	Adapter->attach_progress |= ATTACH_PROGRESS_SOFTINTR;
506 
507 	/*
508 	 * Initialize Driver Counters
509 	 */
510 	if (InitStatsCounters(Adapter) != DDI_SUCCESS) {
511 		e1000g_log(Adapter, CE_WARN, "Init stats failed");
512 		goto attach_fail;
513 	}
514 	Adapter->attach_progress |= ATTACH_PROGRESS_KSTATS;
515 
516 	/*
517 	 * Allocate dma resources for descriptors and buffers
518 	 */
519 	if (e1000g_alloc_dma_resources(Adapter) != DDI_SUCCESS) {
520 		e1000g_log(Adapter, CE_WARN, "Alloc dma resources failed");
521 		goto attach_fail;
522 	}
523 	Adapter->attach_progress |= ATTACH_PROGRESS_ALLOC;
524 
525 	/*
526 	 * Initialize chip hardware and software structures
527 	 */
528 	if (e1000g_init(Adapter) != DDI_SUCCESS) {
529 		e1000g_log(Adapter, CE_WARN, "Adapter initialization failed");
530 		goto attach_fail;
531 	}
532 	Adapter->attach_progress |= ATTACH_PROGRESS_INIT;
533 
534 	/*
535 	 * Initialize NDD parameters
536 	 */
537 	if (e1000g_nd_init(Adapter) != DDI_SUCCESS) {
538 		e1000g_log(Adapter, CE_WARN, "Init NDD failed");
539 		goto attach_fail;
540 	}
541 	Adapter->attach_progress |= ATTACH_PROGRESS_NDD;
542 
543 	/*
544 	 * Register the driver to the MAC
545 	 */
546 	if (e1000g_register_mac(Adapter) != DDI_SUCCESS) {
547 		e1000g_log(Adapter, CE_WARN, "Register MAC failed");
548 		goto attach_fail;
549 	}
550 	Adapter->attach_progress |= ATTACH_PROGRESS_MACREGISTERED;
551 
552 	/*
553 	 * Now that mutex locks are initialized, and the chip is also
554 	 * initialized, enable interrupts.
555 	 */
556 	if (e1000g_enable_intrs(Adapter) != DDI_SUCCESS) {
557 		e1000g_log(Adapter, CE_WARN, "Enable DDI interrupts failed");
558 		goto attach_fail;
559 	}
560 	Adapter->attach_progress |= ATTACH_PROGRESS_INTRENABLED;
561 
562 	cmn_err(CE_CONT, "!%s, %s\n", e1000g_string, e1000g_version);
563 
564 	return (DDI_SUCCESS);
565 
566 attach_fail:
567 	e1000g_unattach(devinfo, Adapter);
568 	return (DDI_FAILURE);
569 }
570 
571 static int
572 e1000g_register_mac(struct e1000g *Adapter)
573 {
574 	struct e1000_hw *hw = &Adapter->Shared;
575 	mac_register_t *mac;
576 	int err;
577 
578 	if ((mac = mac_alloc(MAC_VERSION)) == NULL)
579 		return (DDI_FAILURE);
580 	mac->m_type_ident = MAC_PLUGIN_IDENT_ETHER;
581 	mac->m_driver = Adapter;
582 	mac->m_dip = Adapter->dip;
583 	mac->m_src_addr = hw->mac_addr;
584 	mac->m_callbacks = &e1000g_m_callbacks;
585 	mac->m_min_sdu = 0;
586 	mac->m_max_sdu =
587 	    (hw->max_frame_size > FRAME_SIZE_UPTO_8K) ?
588 	    hw->max_frame_size - 256 :
589 	    (hw->max_frame_size != ETHERMAX) ?
590 	    hw->max_frame_size - 24 : ETHERMTU;
591 	err = mac_register(mac, &Adapter->mh);
592 	mac_free(mac);
593 	return (err == 0 ? DDI_SUCCESS : DDI_FAILURE);
594 }
595 
596 static int
597 e1000g_set_driver_params(struct e1000g *Adapter)
598 {
599 	dev_info_t *devinfo;
600 	ddi_acc_handle_t handle;
601 	struct e1000_hw *hw;
602 	uint32_t mem_bar, io_bar;
603 #ifdef __sparc
604 	ulong_t iommu_pagesize;
605 #endif
606 
607 	devinfo = Adapter->dip;
608 	handle = Adapter->handle;
609 	hw = &Adapter->Shared;
610 
611 	/* Set Mac Type */
612 	if (e1000_set_mac_type(hw) != 0) {
613 		e1000g_log(Adapter, CE_WARN,
614 		    "Could not identify hardware");
615 		return (DDI_FAILURE);
616 	}
617 
618 	/* ich8 needs to map flash memory */
619 	if (hw->mac_type == e1000_ich8lan) {
620 		/* get flash size */
621 		if (ddi_dev_regsize(devinfo, ICH_FLASH_REG_SET,
622 		    &Adapter->osdep.ich_flash_size) != DDI_SUCCESS) {
623 			e1000g_log(Adapter, CE_WARN,
624 			    "ddi_dev_regsize for ich8 flash failed");
625 			return (DDI_FAILURE);
626 		}
627 
628 		/* map flash in */
629 		if (ddi_regs_map_setup(devinfo, ICH_FLASH_REG_SET,
630 		    &Adapter->osdep.ich_flash_base, 0,
631 		    Adapter->osdep.ich_flash_size,
632 		    &accattr1,
633 		    &Adapter->osdep.ich_flash_handle) != DDI_SUCCESS) {
634 			e1000g_log(Adapter, CE_WARN,
635 			    "ddi_regs_map_setup for for ich8 flash failed");
636 			return (DDI_FAILURE);
637 		}
638 	}
639 
640 	/* get mem_base addr */
641 	mem_bar = pci_config_get32(handle, PCI_CONF_BASE0);
642 	Adapter->bar64 = mem_bar & PCI_BASE_TYPE_ALL;
643 
644 	/* get io_base addr */
645 	if (hw->mac_type >= e1000_82544) {
646 		if (Adapter->bar64) {
647 			/* IO BAR is different for 64 bit BAR mode */
648 			io_bar = pci_config_get32(handle, PCI_CONF_BASE4);
649 		} else {
650 			/* normal 32-bit BAR mode */
651 			io_bar = pci_config_get32(handle, PCI_CONF_BASE2);
652 		}
653 		hw->io_base = io_bar & PCI_BASE_IO_ADDR_M;
654 	} else {
655 		/* no I/O access for adapters prior to 82544 */
656 		hw->io_base = 0x0;
657 	}
658 
659 	e1000_read_pci_cfg(hw,
660 	    PCI_COMMAND_REGISTER, &(hw->pci_cmd_word));
661 
662 	/* Set the wait_autoneg_complete flag to B_FALSE */
663 	hw->wait_autoneg_complete = B_FALSE;
664 
665 	/* Adaptive IFS related changes */
666 	hw->adaptive_ifs = B_TRUE;
667 
668 	/* set phy init script revision */
669 	if ((hw->mac_type == e1000_82547) ||
670 	    (hw->mac_type == e1000_82541) ||
671 	    (hw->mac_type == e1000_82547_rev_2) ||
672 	    (hw->mac_type == e1000_82541_rev_2))
673 		hw->phy_init_script = 1;
674 
675 	/* Enable the TTL workaround for TnT: DCR 49 */
676 	hw->ttl_wa_activation = 1;
677 
678 	if (hw->mac_type == e1000_82571)
679 		hw->laa_is_present = B_TRUE;
680 
681 	/* Get conf file properties */
682 	e1000g_getparam(Adapter);
683 
684 	hw->forced_speed_duplex = e1000_100_full;
685 	hw->autoneg_advertised = AUTONEG_ADVERTISE_SPEED_DEFAULT;
686 	e1000g_force_speed_duplex(Adapter);
687 
688 	e1000g_get_max_frame_size(Adapter);
689 	hw->min_frame_size =
690 	    MINIMUM_ETHERNET_PACKET_SIZE + CRC_LENGTH;
691 
692 #ifdef __sparc
693 	/* Get the system page size */
694 	Adapter->sys_page_sz = ddi_ptob(devinfo, (ulong_t)1);
695 	iommu_pagesize = dvma_pagesize(devinfo);
696 	if (iommu_pagesize != 0) {
697 		if (Adapter->sys_page_sz == iommu_pagesize) {
698 			if (iommu_pagesize > 0x4000)
699 				Adapter->sys_page_sz = 0x4000;
700 		} else {
701 			if (Adapter->sys_page_sz > iommu_pagesize)
702 				Adapter->sys_page_sz = iommu_pagesize;
703 		}
704 	}
705 	Adapter->dvma_page_num = hw->max_frame_size /
706 	    Adapter->sys_page_sz + E1000G_DEFAULT_DVMA_PAGE_NUM;
707 	ASSERT(Adapter->dvma_page_num >= E1000G_DEFAULT_DVMA_PAGE_NUM);
708 #endif
709 
710 	/* Set Rx/Tx buffer size */
711 	switch (hw->max_frame_size) {
712 	case ETHERMAX:
713 		Adapter->RxBufferSize = E1000_RX_BUFFER_SIZE_2K;
714 		Adapter->TxBufferSize = E1000_TX_BUFFER_SIZE_2K;
715 		break;
716 	case FRAME_SIZE_UPTO_4K:
717 		Adapter->RxBufferSize = E1000_RX_BUFFER_SIZE_4K;
718 		Adapter->TxBufferSize = E1000_TX_BUFFER_SIZE_4K;
719 		break;
720 	case FRAME_SIZE_UPTO_8K:
721 		Adapter->RxBufferSize = E1000_RX_BUFFER_SIZE_8K;
722 		Adapter->TxBufferSize = E1000_TX_BUFFER_SIZE_8K;
723 		break;
724 	case FRAME_SIZE_UPTO_10K:
725 	case FRAME_SIZE_UPTO_16K:
726 		Adapter->RxBufferSize = E1000_RX_BUFFER_SIZE_16K;
727 		Adapter->TxBufferSize = E1000_TX_BUFFER_SIZE_16K;
728 		break;
729 	default:
730 		Adapter->RxBufferSize = E1000_RX_BUFFER_SIZE_2K;
731 		Adapter->TxBufferSize = E1000_TX_BUFFER_SIZE_2K;
732 		break;
733 	}
734 	Adapter->RxBufferSize += E1000G_IPALIGNPRESERVEROOM;
735 
736 	/*
737 	 * For Wiseman adapters we have an requirement of having receive
738 	 * buffers aligned at 256 byte boundary. Since Livengood does not
739 	 * require this and forcing it for all hardwares will have
740 	 * performance implications, I am making it applicable only for
741 	 * Wiseman and for Jumbo frames enabled mode as rest of the time,
742 	 * it is okay to have normal frames...but it does involve a
743 	 * potential risk where we may loose data if buffer is not
744 	 * aligned...so all wiseman boards to have 256 byte aligned
745 	 * buffers
746 	 */
747 	if (hw->mac_type < e1000_82543)
748 		Adapter->RcvBufferAlignment = RECEIVE_BUFFER_ALIGN_SIZE;
749 	else
750 		/*
751 		 * For livengood, there is no such Rcv buf alignment
752 		 * requirement
753 		 */
754 		Adapter->RcvBufferAlignment = 1;
755 
756 	/* DmaFairness */
757 	if (hw->mac_type <= e1000_82543)
758 		hw->dma_fairness = DEFAULTRXPCIPRIORITYVAL;
759 	else
760 		hw->dma_fairness = 0;
761 
762 	/* MasterLatencyTimer */
763 	Adapter->MasterLatencyTimer = DEFAULTMASTERLATENCYTIMERVAL;
764 
765 	/* MWIEnable */
766 	Adapter->MWIEnable = DEFAULTMWIENABLEVAL;
767 
768 	/* profile jumbo traffic */
769 	Adapter->ProfileJumboTraffic = DEFAULTPROFILEJUMBOTRAFFIC;
770 
771 	e1000_set_media_type(hw);
772 	/* copper options */
773 	if (hw->media_type == e1000_media_type_copper) {
774 		hw->mdix = 0;	/* AUTO_ALL_MODES */
775 		hw->disable_polarity_correction = B_FALSE;
776 		hw->master_slave = e1000_ms_hw_default;	/* E1000_MASTER_SLAVE */
777 	}
778 
779 	Adapter->link_state = LINK_STATE_UNKNOWN;
780 
781 	return (DDI_SUCCESS);
782 }
783 
784 /*
785  * **********************************************************************
786  * Name:      e1000gdettach						*
787  *									*
788  * Description:								*
789  *    The detach() function is the complement of the attach routine.	*
790  *    If cmd is set to DDI_DETACH, detach() is used to remove  the	*
791  *    state  associated  with  a  given  instance of a device node	*
792  *    prior to the removal of that instance from the system.		*
793  *									*
794  *    The detach() function will be called once for each  instance	*
795  *    of the device for which there has been a successful attach()	*
796  *    once there are no longer  any  opens  on  the  device.		*
797  *									*
798  *    Interrupts routine are disabled, All memory allocated by this	*
799  *    driver are freed.							*
800  *									*
801  * Parameter Passed:							*
802  *    devinfo structure, cmd						*
803  *									*
804  * Return Value:							*
805  *    DDI_SUCCESS on success						*
806  *									*
807  * Functions called							*
808  *									*
809  *									*
810  * **********************************************************************
811  */
812 static int
813 e1000gdetach(dev_info_t *devinfo, ddi_detach_cmd_t cmd)
814 {
815 	struct e1000g *Adapter;
816 
817 	switch (cmd) {
818 	default:
819 		return (DDI_FAILURE);
820 
821 	case DDI_SUSPEND:
822 		return (e1000g_suspend(devinfo));
823 
824 	case DDI_DETACH:
825 		break;
826 	}
827 
828 	Adapter = (struct e1000g *)ddi_get_driver_private(devinfo);
829 	if (Adapter == NULL)
830 		return (DDI_FAILURE);
831 
832 	if (Adapter->started)
833 		e1000g_stop(Adapter);
834 
835 	if (!e1000g_rx_drain(Adapter)) {
836 		if (!force_detach_enabled)
837 			return (DDI_FAILURE);
838 	}
839 
840 	if (e1000g_disable_intrs(Adapter) != DDI_SUCCESS) {
841 		e1000g_log(Adapter, CE_WARN,
842 		    "Disable DDI interrupts failed");
843 		return (DDI_FAILURE);
844 	}
845 	Adapter->attach_progress &= ~ATTACH_PROGRESS_INTRENABLED;
846 
847 	if (mac_unregister(Adapter->mh) != 0) {
848 		e1000g_log(Adapter, CE_WARN,
849 		    "Unregister MAC failed");
850 		return (DDI_FAILURE);
851 	}
852 	Adapter->attach_progress &= ~ATTACH_PROGRESS_MACREGISTERED;
853 
854 	e1000g_unattach(devinfo, Adapter);
855 
856 	return (DDI_SUCCESS);
857 }
858 
859 static void
860 e1000g_unattach(dev_info_t *devinfo, struct e1000g *Adapter)
861 {
862 	if (Adapter->attach_progress & ATTACH_PROGRESS_INTRENABLED) {
863 		(void) e1000g_disable_intrs(Adapter);
864 	}
865 
866 	if (Adapter->attach_progress & ATTACH_PROGRESS_MACREGISTERED) {
867 		(void) mac_unregister(Adapter->mh);
868 	}
869 
870 	if (Adapter->attach_progress & ATTACH_PROGRESS_NDD) {
871 		e1000g_nd_cleanup(Adapter);
872 	}
873 
874 	if (Adapter->attach_progress & ATTACH_PROGRESS_INTRADDED) {
875 		(void) e1000g_rem_intrs(Adapter);
876 	}
877 
878 	if (Adapter->attach_progress & ATTACH_PROGRESS_SOFTINTR) {
879 		(void) ddi_intr_remove_softint(Adapter->tx_softint_handle);
880 	}
881 
882 	if (Adapter->attach_progress & ATTACH_PROGRESS_PROP) {
883 		(void) ddi_prop_remove_all(devinfo);
884 	}
885 
886 	if (Adapter->attach_progress & ATTACH_PROGRESS_KSTATS) {
887 		kstat_delete((kstat_t *)Adapter->e1000g_ksp);
888 	}
889 
890 	if (Adapter->attach_progress & ATTACH_PROGRESS_INIT) {
891 		timeout_id_t tid = 0;
892 
893 		/* Disable the link timer */
894 		mutex_enter(&Adapter->e1000g_linklock);
895 		tid = Adapter->link_tid;
896 		Adapter->link_tid = 0;
897 		mutex_exit(&Adapter->e1000g_linklock);
898 
899 		if (tid != 0)
900 			(void) untimeout(tid);
901 
902 		e1000_reset_hw(&Adapter->Shared);
903 	}
904 
905 	if (Adapter->attach_progress & ATTACH_PROGRESS_REGSMAPPED) {
906 		ddi_regs_map_free(&Adapter->E1000_handle);
907 	}
908 
909 	if (Adapter->attach_progress & ATTACH_PROGRESS_PCICONFIG) {
910 		pci_config_teardown(&Adapter->handle);
911 	}
912 
913 	if (Adapter->attach_progress & ATTACH_PROGRESS_ALLOC) {
914 		e1000g_release_dma_resources(Adapter);
915 	}
916 
917 	if (Adapter->attach_progress & ATTACH_PROGRESS_LOCKS) {
918 		e1000g_destroy_locks(Adapter);
919 	}
920 
921 	kmem_free((caddr_t)Adapter, sizeof (struct e1000g));
922 
923 	/*
924 	 * Another hotplug spec requirement,
925 	 * run ddi_set_driver_private(devinfo, null);
926 	 */
927 	ddi_set_driver_private(devinfo, NULL);
928 }
929 
930 static void
931 e1000g_init_locks(struct e1000g *Adapter)
932 {
933 	e1000g_tx_ring_t *tx_ring;
934 	e1000g_rx_ring_t *rx_ring;
935 
936 	rw_init(&Adapter->chip_lock, NULL,
937 	    RW_DRIVER, DDI_INTR_PRI(Adapter->intr_pri));
938 	mutex_init(&Adapter->e1000g_linklock, NULL,
939 	    MUTEX_DRIVER, DDI_INTR_PRI(Adapter->intr_pri));
940 	mutex_init(&Adapter->e1000g_timeout_lock, NULL,
941 	    MUTEX_DRIVER, DDI_INTR_PRI(Adapter->intr_pri));
942 	mutex_init(&Adapter->TbiCntrMutex, NULL,
943 	    MUTEX_DRIVER, DDI_INTR_PRI(Adapter->intr_pri));
944 
945 	mutex_init(&Adapter->tx_msg_chain->lock, NULL,
946 	    MUTEX_DRIVER, DDI_INTR_PRI(Adapter->tx_softint_pri));
947 
948 	tx_ring = Adapter->tx_ring;
949 
950 	mutex_init(&tx_ring->tx_lock, NULL,
951 	    MUTEX_DRIVER, DDI_INTR_PRI(Adapter->intr_pri));
952 	mutex_init(&tx_ring->usedlist_lock, NULL,
953 	    MUTEX_DRIVER, DDI_INTR_PRI(Adapter->intr_pri));
954 	mutex_init(&tx_ring->freelist_lock, NULL,
955 	    MUTEX_DRIVER, DDI_INTR_PRI(Adapter->intr_pri));
956 
957 	rx_ring = Adapter->rx_ring;
958 
959 	mutex_init(&rx_ring->rx_lock, NULL,
960 	    MUTEX_DRIVER, DDI_INTR_PRI(Adapter->intr_pri));
961 	mutex_init(&rx_ring->freelist_lock, NULL,
962 	    MUTEX_DRIVER, DDI_INTR_PRI(Adapter->intr_pri));
963 }
964 
965 static void
966 e1000g_destroy_locks(struct e1000g *Adapter)
967 {
968 	e1000g_tx_ring_t *tx_ring;
969 	e1000g_rx_ring_t *rx_ring;
970 
971 	tx_ring = Adapter->tx_ring;
972 	mutex_destroy(&tx_ring->tx_lock);
973 	mutex_destroy(&tx_ring->usedlist_lock);
974 	mutex_destroy(&tx_ring->freelist_lock);
975 
976 	rx_ring = Adapter->rx_ring;
977 	mutex_destroy(&rx_ring->rx_lock);
978 	mutex_destroy(&rx_ring->freelist_lock);
979 
980 	mutex_destroy(&Adapter->tx_msg_chain->lock);
981 	mutex_destroy(&Adapter->e1000g_linklock);
982 	mutex_destroy(&Adapter->TbiCntrMutex);
983 	mutex_destroy(&Adapter->e1000g_timeout_lock);
984 	rw_destroy(&Adapter->chip_lock);
985 }
986 
987 static int
988 e1000g_resume(dev_info_t *devinfo)
989 {
990 	struct e1000g *Adapter;
991 
992 	Adapter = (struct e1000g *)ddi_get_driver_private(devinfo);
993 	if (Adapter == NULL)
994 		return (DDI_FAILURE);
995 
996 	if (e1000g_start(Adapter))
997 		return (DDI_FAILURE);
998 
999 	return (DDI_SUCCESS);
1000 }
1001 
1002 static int
1003 e1000g_suspend(dev_info_t *devinfo)
1004 {
1005 	struct e1000g *Adapter;
1006 
1007 	Adapter = (struct e1000g *)ddi_get_driver_private(devinfo);
1008 	if (Adapter == NULL)
1009 		return (DDI_FAILURE);
1010 
1011 	e1000g_stop(Adapter);
1012 
1013 	return (DDI_SUCCESS);
1014 }
1015 
1016 static int
1017 e1000g_init(struct e1000g *Adapter)
1018 {
1019 	uint32_t pba;
1020 	uint32_t ctrl;
1021 	struct e1000_hw *hw;
1022 	clock_t link_timeout;
1023 
1024 	hw = &Adapter->Shared;
1025 
1026 	rw_enter(&Adapter->chip_lock, RW_WRITER);
1027 
1028 	/* Preserve manageability features */
1029 	e1000_check_phy_reset_block(hw);
1030 
1031 	/*
1032 	 * reset to put the hardware in a known state
1033 	 * before we try to do anything with the eeprom
1034 	 */
1035 	(void) e1000_reset_hw(hw);
1036 
1037 	(void) e1000_init_eeprom_params(hw);
1038 
1039 	if (e1000_validate_eeprom_checksum(hw) < 0) {
1040 		/*
1041 		 * Some PCI-E parts fail the first check due to
1042 		 * the link being in sleep state.  Call it again,
1043 		 * if it fails a second time its a real issue.
1044 		 */
1045 		if (e1000_validate_eeprom_checksum(hw) < 0) {
1046 			e1000g_log(Adapter, CE_WARN,
1047 			    "Invalid EEPROM checksum. Please contact "
1048 			    "the vendor to update the EEPROM.");
1049 			goto init_fail;
1050 		}
1051 	}
1052 
1053 #ifdef __sparc
1054 	/*
1055 	 * Firstly, we try to get the local ethernet address from OBP. If
1056 	 * fail, we get from EEPROM of NIC card.
1057 	 */
1058 	if (!e1000g_find_mac_address(Adapter)) {
1059 		if (e1000_read_mac_addr(hw) < 0) {
1060 			e1000g_log(Adapter, CE_WARN, "Read mac addr failed");
1061 			goto init_fail;
1062 		}
1063 	}
1064 #else
1065 	/* Get the local ethernet address. */
1066 	if (e1000_read_mac_addr(hw) < 0) {
1067 		e1000g_log(Adapter, CE_WARN, "Read mac addr failed");
1068 		goto init_fail;
1069 	}
1070 #endif
1071 
1072 	/* check for valid mac address */
1073 	if (!is_valid_mac_addr(hw->mac_addr)) {
1074 		e1000g_log(Adapter, CE_WARN, "Invalid mac addr");
1075 		goto init_fail;
1076 	}
1077 
1078 	e1000_get_bus_info(hw);
1079 
1080 	/* Master Latency Timer implementation */
1081 	if (Adapter->MasterLatencyTimer) {
1082 		pci_config_put8(Adapter->handle, PCI_CONF_LATENCY_TIMER,
1083 		    Adapter->MasterLatencyTimer);
1084 	}
1085 
1086 	if (hw->mac_type < e1000_82547) {
1087 		/*
1088 		 * Total FIFO is 64K
1089 		 */
1090 		if (hw->max_frame_size > FRAME_SIZE_UPTO_8K)
1091 			pba = E1000_PBA_40K;	/* 40K for Rx, 24K for Tx */
1092 		else
1093 			pba = E1000_PBA_48K;	/* 48K for Rx, 16K for Tx */
1094 	} else if (hw->mac_type >= e1000_82571 &&
1095 			hw->mac_type <= e1000_82572) {
1096 		/*
1097 		 * Total FIFO is 48K
1098 		 */
1099 		if (hw->max_frame_size > FRAME_SIZE_UPTO_8K)
1100 			pba = E1000_PBA_30K;	/* 30K for Rx, 18K for Tx */
1101 		else
1102 			pba = E1000_PBA_38K;	/* 38K for Rx, 10K for Tx */
1103 	} else if (hw->mac_type == e1000_ich8lan) {
1104 		pba = E1000_PBA_8K;		/* 8K for Rx, 12K for Tx */
1105 	} else {
1106 		/*
1107 		 * Total FIFO is 40K
1108 		 */
1109 		if (hw->max_frame_size > FRAME_SIZE_UPTO_8K)
1110 			pba = E1000_PBA_22K;	/* 22K for Rx, 18K for Tx */
1111 		else
1112 			pba = E1000_PBA_30K;	/* 30K for Rx, 10K for Tx */
1113 	}
1114 	E1000_WRITE_REG(hw, PBA, pba);
1115 
1116 	/*
1117 	 * These parameters set thresholds for the adapter's generation(Tx)
1118 	 * and response(Rx) to Ethernet PAUSE frames.  These are just threshold
1119 	 * settings.  Flow control is enabled or disabled in the configuration
1120 	 * file.
1121 	 * High-water mark is set down from the top of the rx fifo (not
1122 	 * sensitive to max_frame_size) and low-water is set just below
1123 	 * high-water mark.
1124 	 */
1125 	hw->fc_high_water =
1126 	    ((pba & E1000_PBA_MASK) << E1000_PBA_SHIFT) -
1127 	    E1000_FC_HIGH_DIFF;
1128 	hw->fc_low_water =
1129 	    ((pba & E1000_PBA_MASK) << E1000_PBA_SHIFT) -
1130 	    E1000_FC_LOW_DIFF;
1131 	hw->fc_pause_time = E1000_FC_PAUSE_TIME;
1132 	hw->fc_send_xon = B_TRUE;
1133 
1134 	/*
1135 	 * Reset the adapter hardware the second time.
1136 	 */
1137 	(void) e1000_reset_hw(hw);
1138 
1139 	/* disable wakeup control by default */
1140 	if (hw->mac_type >= e1000_82544)
1141 		E1000_WRITE_REG(hw, WUC, 0);
1142 
1143 	/* MWI setup */
1144 	if (Adapter->MWIEnable) {
1145 		hw->pci_cmd_word |= CMD_MEM_WRT_INVALIDATE;
1146 		e1000_pci_set_mwi(hw);
1147 	} else
1148 		e1000_pci_clear_mwi(hw);
1149 
1150 	/*
1151 	 * Configure/Initialize hardware
1152 	 */
1153 	if (e1000_init_hw(hw) < 0) {
1154 		e1000g_log(Adapter, CE_WARN, "Initialize hw failed");
1155 		goto init_fail;
1156 	}
1157 
1158 	/* Disable Smart Power Down */
1159 	phy_spd_state(hw, B_FALSE);
1160 
1161 	/*
1162 	 * Initialize unicast addresses.
1163 	 */
1164 	e1000g_init_unicst(Adapter);
1165 
1166 	/*
1167 	 * Setup and initialize the transmit structures.
1168 	 */
1169 	SetupTransmitStructures(Adapter);
1170 	DelayInMilliseconds(5);
1171 
1172 	/*
1173 	 * Setup and initialize the mctable structures.  After this routine
1174 	 * completes  Multicast table will be set
1175 	 */
1176 	SetupMulticastTable(Adapter);
1177 	DelayInMilliseconds(5);
1178 
1179 	/*
1180 	 * Setup and initialize the receive structures.  After this routine
1181 	 * completes we can receive packets off of the wire.
1182 	 */
1183 	SetupReceiveStructures(Adapter);
1184 	DelayInMilliseconds(5);
1185 
1186 	/*
1187 	 * Implement Adaptive IFS
1188 	 */
1189 	e1000_reset_adaptive(hw);
1190 
1191 	/* Setup Interrupt Throttling Register */
1192 	E1000_WRITE_REG(hw, ITR, Adapter->intr_throttling_rate);
1193 
1194 	/* Start the timer for link setup */
1195 	if (hw->autoneg)
1196 		link_timeout = PHY_AUTO_NEG_TIME * drv_usectohz(100000);
1197 	else
1198 		link_timeout = PHY_FORCE_TIME * drv_usectohz(100000);
1199 
1200 	mutex_enter(&Adapter->e1000g_linklock);
1201 	if (hw->wait_autoneg_complete) {
1202 		Adapter->link_complete = B_TRUE;
1203 	} else {
1204 		Adapter->link_complete = B_FALSE;
1205 		Adapter->link_tid = timeout(e1000g_link_timer,
1206 		    (void *)Adapter, link_timeout);
1207 	}
1208 	mutex_exit(&Adapter->e1000g_linklock);
1209 
1210 	/* Enable PCI-Ex master */
1211 	if (hw->bus_type == e1000_bus_type_pci_express) {
1212 		e1000_enable_pciex_master(hw);
1213 	}
1214 
1215 	Adapter->init_count++;
1216 
1217 	rw_exit(&Adapter->chip_lock);
1218 
1219 	return (DDI_SUCCESS);
1220 
1221 init_fail:
1222 	rw_exit(&Adapter->chip_lock);
1223 	return (DDI_FAILURE);
1224 }
1225 
1226 /*
1227  * Check if the link is up
1228  */
1229 static boolean_t
1230 e1000g_link_up(struct e1000g *Adapter)
1231 {
1232 	struct e1000_hw *hw;
1233 	boolean_t link_up;
1234 
1235 	hw = &Adapter->Shared;
1236 
1237 	/* Ensure this is set to get accurate copper link status */
1238 	hw->get_link_status = B_TRUE;
1239 
1240 	e1000_check_for_link(hw);
1241 
1242 	if ((E1000_READ_REG(hw, STATUS) & E1000_STATUS_LU) ||
1243 	    ((!hw->get_link_status) && (hw->mac_type == e1000_82543)) ||
1244 	    ((hw->media_type == e1000_media_type_internal_serdes) &&
1245 		(!hw->serdes_link_down))) {
1246 		link_up = B_TRUE;
1247 	} else {
1248 		link_up = B_FALSE;
1249 	}
1250 
1251 	return (link_up);
1252 }
1253 
1254 static void
1255 e1000g_m_ioctl(void *arg, queue_t *q, mblk_t *mp)
1256 {
1257 	struct iocblk *iocp;
1258 	struct e1000g *e1000gp;
1259 	enum ioc_reply status;
1260 	int err;
1261 
1262 	iocp = (struct iocblk *)mp->b_rptr;
1263 	iocp->ioc_error = 0;
1264 	e1000gp = (struct e1000g *)arg;
1265 
1266 	ASSERT(e1000gp);
1267 	if (e1000gp == NULL) {
1268 		miocnak(q, mp, 0, EINVAL);
1269 		return;
1270 	}
1271 
1272 	switch (iocp->ioc_cmd) {
1273 
1274 	case LB_GET_INFO_SIZE:
1275 	case LB_GET_INFO:
1276 	case LB_GET_MODE:
1277 	case LB_SET_MODE:
1278 		status = e1000g_loopback_ioctl(e1000gp, iocp, mp);
1279 		break;
1280 
1281 	case ND_GET:
1282 	case ND_SET:
1283 		status = e1000g_nd_ioctl(e1000gp, q, mp, iocp);
1284 		break;
1285 
1286 	case E1000G_IOC_REG_PEEK:
1287 	case E1000G_IOC_REG_POKE:
1288 		status = e1000g_pp_ioctl(e1000gp, iocp, mp);
1289 		break;
1290 	case E1000G_IOC_CHIP_RESET:
1291 		e1000gp->reset_count++;
1292 		if (e1000g_reset(e1000gp))
1293 			status = IOC_ACK;
1294 		else
1295 			status = IOC_INVAL;
1296 		break;
1297 	default:
1298 		status = IOC_INVAL;
1299 		break;
1300 	}
1301 
1302 	/*
1303 	 * Decide how to reply
1304 	 */
1305 	switch (status) {
1306 	default:
1307 	case IOC_INVAL:
1308 		/*
1309 		 * Error, reply with a NAK and EINVAL or the specified error
1310 		 */
1311 		miocnak(q, mp, 0, iocp->ioc_error == 0 ?
1312 			EINVAL : iocp->ioc_error);
1313 		break;
1314 
1315 	case IOC_DONE:
1316 		/*
1317 		 * OK, reply already sent
1318 		 */
1319 		break;
1320 
1321 	case IOC_ACK:
1322 		/*
1323 		 * OK, reply with an ACK
1324 		 */
1325 		miocack(q, mp, 0, 0);
1326 		break;
1327 
1328 	case IOC_REPLY:
1329 		/*
1330 		 * OK, send prepared reply as ACK or NAK
1331 		 */
1332 		mp->b_datap->db_type = iocp->ioc_error == 0 ?
1333 			M_IOCACK : M_IOCNAK;
1334 		qreply(q, mp);
1335 		break;
1336 	}
1337 }
1338 
1339 static void e1000g_m_blank(void *arg, time_t ticks, uint32_t count)
1340 {
1341 	struct e1000g *Adapter;
1342 
1343 	Adapter = (struct e1000g *)arg;
1344 
1345 	/*
1346 	 * Adjust ITR (Interrupt Throttling Register) to coalesce
1347 	 * interrupts. This formula and its coefficient come from
1348 	 * our experiments.
1349 	 */
1350 	if (Adapter->intr_adaptive) {
1351 		Adapter->intr_throttling_rate = count << 5;
1352 		E1000_WRITE_REG(&Adapter->Shared, ITR,
1353 		    Adapter->intr_throttling_rate);
1354 	}
1355 }
1356 
1357 static void
1358 e1000g_m_resources(void *arg)
1359 {
1360 	struct e1000g *adapter = (struct e1000g *)arg;
1361 	mac_rx_fifo_t mrf;
1362 
1363 	mrf.mrf_type = MAC_RX_FIFO;
1364 	mrf.mrf_blank = e1000g_m_blank;
1365 	mrf.mrf_arg = (void *)adapter;
1366 	mrf.mrf_normal_blank_time = E1000_RX_INTPT_TIME;
1367 	mrf.mrf_normal_pkt_count = E1000_RX_PKT_CNT;
1368 
1369 	adapter->mrh = mac_resource_add(adapter->mh, (mac_resource_t *)&mrf);
1370 }
1371 
1372 static int
1373 e1000g_m_start(void *arg)
1374 {
1375 	struct e1000g *Adapter = (struct e1000g *)arg;
1376 
1377 	return (e1000g_start(Adapter));
1378 }
1379 
1380 static int
1381 e1000g_start(struct e1000g *Adapter)
1382 {
1383 	if (!(Adapter->attach_progress & ATTACH_PROGRESS_INIT)) {
1384 		if (e1000g_init(Adapter) != DDI_SUCCESS) {
1385 			e1000g_log(Adapter, CE_WARN,
1386 			    "Adapter initialization failed");
1387 			return (ENOTACTIVE);
1388 		}
1389 	}
1390 
1391 	enable_timeout(Adapter);
1392 
1393 	rw_enter(&Adapter->chip_lock, RW_WRITER);
1394 
1395 	e1000g_EnableInterrupt(Adapter);
1396 	if (Adapter->tx_intr_enable)
1397 		e1000g_EnableTxInterrupt(Adapter);
1398 
1399 	Adapter->started = B_TRUE;
1400 	Adapter->attach_progress |= ATTACH_PROGRESS_INIT;
1401 
1402 	rw_exit(&Adapter->chip_lock);
1403 
1404 	return (0);
1405 }
1406 
1407 static void
1408 e1000g_m_stop(void *arg)
1409 {
1410 	struct e1000g *Adapter = (struct e1000g *)arg;
1411 
1412 	e1000g_stop(Adapter);
1413 }
1414 
1415 static void
1416 e1000g_stop(struct e1000g *Adapter)
1417 {
1418 	timeout_id_t tid;
1419 	e1000g_tx_ring_t *tx_ring;
1420 	boolean_t link_changed;
1421 
1422 	tx_ring = Adapter->tx_ring;
1423 
1424 	/* Set stop flags */
1425 	rw_enter(&Adapter->chip_lock, RW_WRITER);
1426 
1427 	Adapter->started = B_FALSE;
1428 	Adapter->attach_progress &= ~ATTACH_PROGRESS_INIT;
1429 
1430 	rw_exit(&Adapter->chip_lock);
1431 
1432 	/* Drain tx sessions */
1433 	(void) e1000g_tx_drain(Adapter);
1434 
1435 	/* Disable timers */
1436 	disable_timeout(Adapter);
1437 
1438 	/* Disable the tx timer for 82547 chipset */
1439 	mutex_enter(&tx_ring->tx_lock);
1440 	tx_ring->timer_enable_82547 = B_FALSE;
1441 	tid = tx_ring->timer_id_82547;
1442 	tx_ring->timer_id_82547 = 0;
1443 	mutex_exit(&tx_ring->tx_lock);
1444 
1445 	if (tid != 0)
1446 		(void) untimeout(tid);
1447 
1448 	/* Disable the link timer */
1449 	mutex_enter(&Adapter->e1000g_linklock);
1450 	tid = Adapter->link_tid;
1451 	Adapter->link_tid = 0;
1452 	mutex_exit(&Adapter->e1000g_linklock);
1453 
1454 	if (tid != 0)
1455 		(void) untimeout(tid);
1456 
1457 	/* Stop the chip and release pending resources */
1458 	rw_enter(&Adapter->chip_lock, RW_WRITER);
1459 
1460 	e1000g_DisableAllInterrupts(Adapter);
1461 
1462 	e1000_reset_hw(&Adapter->Shared);
1463 
1464 	/* Release resources still held by the TX descriptors */
1465 	e1000g_tx_drop(Adapter);
1466 
1467 	/* Clean the pending rx jumbo packet fragment */
1468 	if (Adapter->rx_mblk != NULL) {
1469 		freemsg(Adapter->rx_mblk);
1470 		Adapter->rx_mblk = NULL;
1471 		Adapter->rx_mblk_tail = NULL;
1472 		Adapter->rx_packet_len = 0;
1473 	}
1474 
1475 	rw_exit(&Adapter->chip_lock);
1476 }
1477 
1478 static void
1479 e1000g_tx_drop(struct e1000g *Adapter)
1480 {
1481 	e1000g_tx_ring_t *tx_ring;
1482 	e1000g_msg_chain_t *msg_chain;
1483 	PTX_SW_PACKET packet;
1484 	mblk_t *mp;
1485 	mblk_t *nmp;
1486 	uint32_t packet_count;
1487 
1488 	tx_ring = Adapter->tx_ring;
1489 
1490 	/*
1491 	 * Here we don't need to protect the lists using
1492 	 * the usedlist_lock and freelist_lock, for they
1493 	 * have been protected by the chip_lock.
1494 	 */
1495 	mp = NULL;
1496 	nmp = NULL;
1497 	packet_count = 0;
1498 	packet = (PTX_SW_PACKET) QUEUE_GET_HEAD(&tx_ring->used_list);
1499 	while (packet != NULL) {
1500 		if (packet->mp != NULL) {
1501 			/* Assemble the message chain */
1502 			if (mp == NULL) {
1503 				mp = packet->mp;
1504 				nmp = packet->mp;
1505 			} else {
1506 				nmp->b_next = packet->mp;
1507 				nmp = packet->mp;
1508 			}
1509 			/* Disconnect the message from the sw packet */
1510 			packet->mp = NULL;
1511 		}
1512 
1513 		FreeTxSwPacket(packet);
1514 		packet_count++;
1515 
1516 		packet = (PTX_SW_PACKET)
1517 		    QUEUE_GET_NEXT(&tx_ring->used_list, &packet->Link);
1518 	}
1519 
1520 	if (mp != NULL) {
1521 		msg_chain = Adapter->tx_msg_chain;
1522 		mutex_enter(&msg_chain->lock);
1523 		if (msg_chain->head == NULL) {
1524 			msg_chain->head = mp;
1525 			msg_chain->tail = nmp;
1526 		} else {
1527 			msg_chain->tail->b_next = mp;
1528 			msg_chain->tail = nmp;
1529 		}
1530 		mutex_exit(&msg_chain->lock);
1531 	}
1532 
1533 	ddi_intr_trigger_softint(Adapter->tx_softint_handle, NULL);
1534 
1535 	if (packet_count > 0) {
1536 		QUEUE_APPEND(&tx_ring->free_list, &tx_ring->used_list);
1537 		QUEUE_INIT_LIST(&tx_ring->used_list);
1538 
1539 		/* Setup TX descriptor pointers */
1540 		tx_ring->tbd_next = tx_ring->tbd_first;
1541 		tx_ring->tbd_oldest = tx_ring->tbd_first;
1542 
1543 		/* Setup our HW Tx Head & Tail descriptor pointers */
1544 		E1000_WRITE_REG(&Adapter->Shared, TDH, 0);
1545 		E1000_WRITE_REG(&Adapter->Shared, TDT, 0);
1546 	}
1547 }
1548 
1549 static boolean_t
1550 e1000g_tx_drain(struct e1000g *Adapter)
1551 {
1552 	int i;
1553 	boolean_t done;
1554 	e1000g_tx_ring_t *tx_ring;
1555 
1556 	tx_ring = Adapter->tx_ring;
1557 
1558 	/* Allow up to 'wsdraintime' for pending xmit's to complete. */
1559 	for (i = 0; i < WSDRAINTIME; i++) {
1560 		mutex_enter(&tx_ring->usedlist_lock);
1561 		done = IS_QUEUE_EMPTY(&tx_ring->used_list);
1562 		mutex_exit(&tx_ring->usedlist_lock);
1563 
1564 		if (done)
1565 			break;
1566 
1567 		msec_delay(1);
1568 	}
1569 
1570 	return (done);
1571 }
1572 
1573 static boolean_t
1574 e1000g_rx_drain(struct e1000g *Adapter)
1575 {
1576 	boolean_t done;
1577 
1578 	mutex_enter(&Adapter->rx_ring->freelist_lock);
1579 	done = (Adapter->rx_avail_freepkt == Adapter->NumRxFreeList);
1580 	mutex_exit(&Adapter->rx_ring->freelist_lock);
1581 
1582 	return (done);
1583 }
1584 
1585 boolean_t
1586 e1000g_reset(struct e1000g *Adapter)
1587 {
1588 	e1000g_stop(Adapter);
1589 
1590 	if (e1000g_start(Adapter)) {
1591 		e1000g_log(Adapter, CE_WARN, "Reset failed");
1592 		return (B_FALSE);
1593 	}
1594 
1595 	return (B_TRUE);
1596 }
1597 
1598 /*
1599  * **********************************************************************
1600  * Name:	e1000g_intr_pciexpress					*
1601  *									*
1602  * Description:								*
1603  *	This interrupt service routine is for PCI-Express adapters.	*
1604  *	The ICR contents is valid only when the E1000_ICR_INT_ASSERTED	*
1605  *	bit is set.							*
1606  *									*
1607  * Parameter Passed:							*
1608  *									*
1609  * Return Value:							*
1610  *									*
1611  * Functions called:							*
1612  *	e1000g_intr_work						*
1613  *									*
1614  * **********************************************************************
1615  */
1616 static uint_t
1617 e1000g_intr_pciexpress(caddr_t arg)
1618 {
1619 	struct e1000g *Adapter;
1620 	uint32_t ICRContents;
1621 
1622 	Adapter = (struct e1000g *)arg;
1623 	ICRContents = E1000_READ_REG(&Adapter->Shared, ICR);
1624 
1625 	if (ICRContents & E1000_ICR_INT_ASSERTED) {
1626 		/*
1627 		 * E1000_ICR_INT_ASSERTED bit was set:
1628 		 * Read(Clear) the ICR, claim this interrupt,
1629 		 * look for work to do.
1630 		 */
1631 		e1000g_intr_work(Adapter, ICRContents);
1632 		return (DDI_INTR_CLAIMED);
1633 	} else {
1634 		/*
1635 		 * E1000_ICR_INT_ASSERTED bit was not set:
1636 		 * Don't claim this interrupt, return immediately.
1637 		 */
1638 		return (DDI_INTR_UNCLAIMED);
1639 	}
1640 }
1641 
1642 /*
1643  * **********************************************************************
1644  * Name:	e1000g_intr						*
1645  *									*
1646  * Description:								*
1647  *	This interrupt service routine is for PCI/PCI-X adapters.	*
1648  *	We check the ICR contents no matter the E1000_ICR_INT_ASSERTED	*
1649  *	bit is set or not.						*
1650  *									*
1651  * Parameter Passed:							*
1652  *									*
1653  * Return Value:							*
1654  *									*
1655  * Functions called:							*
1656  *	e1000g_intr_work						*
1657  *									*
1658  * **********************************************************************
1659  */
1660 static uint_t
1661 e1000g_intr(caddr_t arg)
1662 {
1663 	struct e1000g *Adapter;
1664 	uint32_t ICRContents;
1665 
1666 	Adapter = (struct e1000g *)arg;
1667 	ICRContents = E1000_READ_REG(&Adapter->Shared, ICR);
1668 
1669 	if (ICRContents) {
1670 		/*
1671 		 * Any bit was set in ICR:
1672 		 * Read(Clear) the ICR, claim this interrupt,
1673 		 * look for work to do.
1674 		 */
1675 		e1000g_intr_work(Adapter, ICRContents);
1676 		return (DDI_INTR_CLAIMED);
1677 	} else {
1678 		/*
1679 		 * No bit was set in ICR:
1680 		 * Don't claim this interrupt, return immediately.
1681 		 */
1682 		return (DDI_INTR_UNCLAIMED);
1683 	}
1684 }
1685 
1686 /*
1687  * **********************************************************************
1688  * Name:	e1000g_intr_work					*
1689  *									*
1690  * Description:								*
1691  *	Called from interrupt service routines.				*
1692  *	Read(clear) the ICR contents and call appropriate interrupt	*
1693  *	processing routines.						*
1694  *									*
1695  * Parameter Passed:							*
1696  *									*
1697  * Return Value:							*
1698  *									*
1699  * Functions called:							*
1700  *	e1000g_receive							*
1701  *	e1000g_link_check						*
1702  *	e1000g_recycle							*
1703  *									*
1704  * **********************************************************************
1705  */
1706 static void
1707 e1000g_intr_work(struct e1000g *Adapter, uint32_t ICRContents)
1708 {
1709 	if (ICRContents & E1000_ICR_RXT0) {
1710 		mblk_t *mp;
1711 
1712 		rw_enter(&Adapter->chip_lock, RW_READER);
1713 		/*
1714 		 * Here we need to check the "started" flag to ensure the
1715 		 * receive routine will not execute when the adapter is
1716 		 * stopped or being reset.
1717 		 */
1718 		if (Adapter->started) {
1719 			mutex_enter(&Adapter->rx_ring->rx_lock);
1720 			mp = e1000g_receive(Adapter);
1721 			mutex_exit(&Adapter->rx_ring->rx_lock);
1722 
1723 			rw_exit(&Adapter->chip_lock);
1724 
1725 			if (mp != NULL)
1726 				mac_rx(Adapter->mh, Adapter->mrh, mp);
1727 		} else {
1728 			rw_exit(&Adapter->chip_lock);
1729 		}
1730 	}
1731 
1732 	/*
1733 	 * The Receive Sequence errors RXSEQ and the link status change LSC
1734 	 * are checked to detect that the cable has been pulled out. For
1735 	 * the Wiseman 2.0 silicon, the receive sequence errors interrupt
1736 	 * are an indication that cable is not connected.
1737 	 */
1738 	if ((ICRContents & E1000_ICR_RXSEQ) ||
1739 	    (ICRContents & E1000_ICR_LSC) ||
1740 	    (ICRContents & E1000_ICR_GPI_EN1)) {
1741 		boolean_t link_changed;
1742 		timeout_id_t tid = 0;
1743 
1744 		/*
1745 		 * Encountered RX Sequence Error!!! Link maybe forced and
1746 		 * the cable may have just been disconnected so we will
1747 		 * read the LOS to see.
1748 		 */
1749 		if (ICRContents & E1000_ICR_RXSEQ)
1750 			Adapter->rx_seq_intr++;
1751 
1752 		stop_timeout(Adapter);
1753 
1754 		mutex_enter(&Adapter->e1000g_linklock);
1755 		/* e1000g_link_check takes care of link status change */
1756 		link_changed = e1000g_link_check(Adapter);
1757 		/*
1758 		 * If the link timer has not timed out, we'll not notify
1759 		 * the upper layer with any link state until the link
1760 		 * is up.
1761 		 */
1762 		if (link_changed && !Adapter->link_complete) {
1763 			if (Adapter->link_state == LINK_STATE_UP) {
1764 				Adapter->link_complete = B_TRUE;
1765 				tid = Adapter->link_tid;
1766 				Adapter->link_tid = 0;
1767 			} else {
1768 				link_changed = B_FALSE;
1769 			}
1770 		}
1771 		mutex_exit(&Adapter->e1000g_linklock);
1772 
1773 		if (link_changed) {
1774 			if (tid != 0)
1775 				(void) untimeout(tid);
1776 
1777 			/*
1778 			 * Workaround for esb2. Data stuck in fifo on a link
1779 			 * down event. Reset the adapter to recover it.
1780 			 */
1781 			if ((Adapter->link_state == LINK_STATE_DOWN) &&
1782 			    (Adapter->Shared.mac_type == e1000_80003es2lan))
1783 				(void) e1000g_reset(Adapter);
1784 
1785 			mac_link_update(Adapter->mh, Adapter->link_state);
1786 		}
1787 
1788 		start_timeout(Adapter);
1789 	}
1790 
1791 	if (ICRContents & E1000G_ICR_TX_INTR) {
1792 		if (!Adapter->tx_intr_enable)
1793 			e1000g_DisableTxInterrupt(Adapter);
1794 		/* Schedule the re-transmit */
1795 		if (Adapter->resched_needed) {
1796 			Adapter->tx_reschedule++;
1797 			Adapter->resched_needed = B_FALSE;
1798 			mac_tx_update(Adapter->mh);
1799 		}
1800 		if (Adapter->tx_intr_enable) {
1801 			/* Recycle the tx descriptors */
1802 			rw_enter(&Adapter->chip_lock, RW_READER);
1803 			Adapter->tx_recycle_intr++;
1804 			e1000g_recycle(Adapter->tx_ring);
1805 			rw_exit(&Adapter->chip_lock);
1806 			/* Free the recycled messages */
1807 			ddi_intr_trigger_softint(Adapter->tx_softint_handle,
1808 			    NULL);
1809 		}
1810 	}
1811 }
1812 
1813 static void
1814 e1000g_init_unicst(struct e1000g *Adapter)
1815 {
1816 	struct e1000_hw *hw;
1817 	int slot;
1818 
1819 	hw = &Adapter->Shared;
1820 
1821 	if (Adapter->init_count == 0) {
1822 		/* Initialize the multiple unicast addresses */
1823 		Adapter->unicst_total = MAX_NUM_UNICAST_ADDRESSES;
1824 
1825 		if ((hw->mac_type == e1000_82571) && hw->laa_is_present)
1826 			Adapter->unicst_total--;
1827 
1828 		Adapter->unicst_avail = Adapter->unicst_total - 1;
1829 
1830 		/* Store the default mac address */
1831 		e1000_rar_set(hw, hw->mac_addr, 0);
1832 		if ((hw->mac_type == e1000_82571) && hw->laa_is_present)
1833 			e1000_rar_set(hw, hw->mac_addr, LAST_RAR_ENTRY);
1834 
1835 		bcopy(hw->mac_addr, Adapter->unicst_addr[0].mac.addr,
1836 		    ETHERADDRL);
1837 		Adapter->unicst_addr[0].mac.set = 1;
1838 
1839 		for (slot = 1; slot < Adapter->unicst_total; slot++)
1840 			Adapter->unicst_addr[slot].mac.set = 0;
1841 	} else {
1842 		/* Recover the default mac address */
1843 		bcopy(Adapter->unicst_addr[0].mac.addr, hw->mac_addr,
1844 		    ETHERADDRL);
1845 
1846 		/* Store the default mac address */
1847 		e1000_rar_set(hw, hw->mac_addr, 0);
1848 		if ((hw->mac_type == e1000_82571) && hw->laa_is_present)
1849 			e1000_rar_set(hw, hw->mac_addr, LAST_RAR_ENTRY);
1850 
1851 		/* Re-configure the RAR registers */
1852 		for (slot = 1; slot < Adapter->unicst_total; slot++)
1853 			e1000_rar_set(hw,
1854 			    Adapter->unicst_addr[slot].mac.addr, slot);
1855 	}
1856 }
1857 
1858 static int
1859 e1000g_m_unicst(void *arg, const uint8_t *mac_addr)
1860 {
1861 	struct e1000g *Adapter;
1862 
1863 	Adapter = (struct e1000g *)arg;
1864 
1865 	/* Store the default MAC address */
1866 	bcopy(mac_addr, Adapter->Shared.mac_addr, ETHERADDRL);
1867 
1868 	/* Set MAC address in address slot 0, which is the default address */
1869 	return (e1000g_unicst_set(Adapter, mac_addr, 0));
1870 }
1871 
1872 static int
1873 e1000g_unicst_set(struct e1000g *Adapter, const uint8_t *mac_addr,
1874     mac_addr_slot_t slot)
1875 {
1876 	struct e1000_hw *hw;
1877 
1878 	hw = &Adapter->Shared;
1879 
1880 	/*
1881 	 * Error if the address specified is a multicast or broadcast
1882 	 * address.
1883 	 */
1884 	if (((mac_addr[0] & 01) == 1) ||
1885 	    (bcmp(mac_addr, &etherbroadcastaddr, ETHERADDRL) == 0))
1886 		return (EINVAL);
1887 
1888 	rw_enter(&Adapter->chip_lock, RW_WRITER);
1889 
1890 	/*
1891 	 * The first revision of Wiseman silicon (rev 2.0) has an errata
1892 	 * that requires the receiver to be in reset when any of the
1893 	 * receive address registers (RAR regs) are accessed.  The first
1894 	 * rev of Wiseman silicon also requires MWI to be disabled when
1895 	 * a global reset or a receive reset is issued.  So before we
1896 	 * initialize the RARs, we check the rev of the Wiseman controller
1897 	 * and work around any necessary HW errata.
1898 	 */
1899 	if (hw->mac_type == e1000_82542_rev2_0) {
1900 		e1000_pci_clear_mwi(hw);
1901 		E1000_WRITE_REG(hw, RCTL, E1000_RCTL_RST);
1902 		DelayInMilliseconds(5);
1903 	}
1904 
1905 	bcopy(mac_addr, Adapter->unicst_addr[slot].mac.addr, ETHERADDRL);
1906 	e1000_rar_set(hw, (uint8_t *)mac_addr, slot);
1907 
1908 	if (slot == 0) {
1909 		if ((hw->mac_type == e1000_82571) && hw->laa_is_present)
1910 			e1000_rar_set(hw, hw->mac_addr, LAST_RAR_ENTRY);
1911 	}
1912 
1913 	/*
1914 	 * If we are using Wiseman rev 2.0 silicon, we will have previously
1915 	 * put the receive in reset, and disabled MWI, to work around some
1916 	 * HW errata.  Now we should take the receiver out of reset, and
1917 	 * re-enabled if MWI if it was previously enabled by the PCI BIOS.
1918 	 */
1919 	if (hw->mac_type == e1000_82542_rev2_0) {
1920 		E1000_WRITE_REG(hw, RCTL, 0);
1921 		DelayInMilliseconds(1);
1922 		if (hw->pci_cmd_word & CMD_MEM_WRT_INVALIDATE)
1923 			e1000_pci_set_mwi(hw);
1924 		SetupReceiveStructures(Adapter);
1925 	}
1926 
1927 	rw_exit(&Adapter->chip_lock);
1928 
1929 	return (0);
1930 }
1931 
1932 /*
1933  * e1000g_m_unicst_add() - will find an unused address slot, set the
1934  * address value to the one specified, reserve that slot and enable
1935  * the NIC to start filtering on the new MAC address.
1936  * Returns 0 on success.
1937  */
1938 static int
1939 e1000g_m_unicst_add(void *arg, mac_multi_addr_t *maddr)
1940 {
1941 	struct e1000g *Adapter = (struct e1000g *)arg;
1942 	mac_addr_slot_t slot;
1943 	int err;
1944 
1945 	if (mac_unicst_verify(Adapter->mh,
1946 	    maddr->mma_addr, maddr->mma_addrlen) == B_FALSE)
1947 		return (EINVAL);
1948 
1949 	rw_enter(&Adapter->chip_lock, RW_WRITER);
1950 	if (Adapter->unicst_avail == 0) {
1951 		/* no slots available */
1952 		rw_exit(&Adapter->chip_lock);
1953 		return (ENOSPC);
1954 	}
1955 
1956 	/*
1957 	 * Primary/default address is in slot 0. The next addresses
1958 	 * are the multiple MAC addresses. So multiple MAC address 0
1959 	 * is in slot 1, 1 in slot 2, and so on. So the first multiple
1960 	 * MAC address resides in slot 1.
1961 	 */
1962 	for (slot = 1; slot < Adapter->unicst_total; slot++) {
1963 		if (Adapter->unicst_addr[slot].mac.set == 0) {
1964 			Adapter->unicst_addr[slot].mac.set = 1;
1965 			break;
1966 		}
1967 	}
1968 
1969 	ASSERT((slot > 0) && (slot < Adapter->unicst_total));
1970 
1971 	Adapter->unicst_avail--;
1972 	rw_exit(&Adapter->chip_lock);
1973 
1974 	maddr->mma_slot = slot;
1975 
1976 	if ((err = e1000g_unicst_set(Adapter, maddr->mma_addr, slot)) != 0) {
1977 		rw_enter(&Adapter->chip_lock, RW_WRITER);
1978 		Adapter->unicst_addr[slot].mac.set = 0;
1979 		Adapter->unicst_avail++;
1980 		rw_exit(&Adapter->chip_lock);
1981 	}
1982 
1983 	return (err);
1984 }
1985 
1986 /*
1987  * e1000g_m_unicst_remove() - removes a MAC address that was added by a
1988  * call to e1000g_m_unicst_add(). The slot number that was returned in
1989  * e1000g_m_unicst_add() is passed in the call to remove the address.
1990  * Returns 0 on success.
1991  */
1992 static int
1993 e1000g_m_unicst_remove(void *arg, mac_addr_slot_t slot)
1994 {
1995 	struct e1000g *Adapter = (struct e1000g *)arg;
1996 	int err;
1997 
1998 	if ((slot <= 0) || (slot >= Adapter->unicst_total))
1999 		return (EINVAL);
2000 
2001 	rw_enter(&Adapter->chip_lock, RW_WRITER);
2002 	if (Adapter->unicst_addr[slot].mac.set == 1) {
2003 		Adapter->unicst_addr[slot].mac.set = 0;
2004 		Adapter->unicst_avail++;
2005 		rw_exit(&Adapter->chip_lock);
2006 
2007 		/* Copy the default address to the passed slot */
2008 		if (err = e1000g_unicst_set(Adapter,
2009 		    Adapter->unicst_addr[0].mac.addr, slot) != 0) {
2010 			rw_enter(&Adapter->chip_lock, RW_WRITER);
2011 			Adapter->unicst_addr[slot].mac.set = 1;
2012 			Adapter->unicst_avail--;
2013 			rw_exit(&Adapter->chip_lock);
2014 		}
2015 		return (err);
2016 	}
2017 	rw_exit(&Adapter->chip_lock);
2018 
2019 	return (EINVAL);
2020 }
2021 
2022 /*
2023  * e1000g_m_unicst_modify() - modifies the value of an address that
2024  * has been added by e1000g_m_unicst_add(). The new address, address
2025  * length and the slot number that was returned in the call to add
2026  * should be passed to e1000g_m_unicst_modify(). mma_flags should be
2027  * set to 0. Returns 0 on success.
2028  */
2029 static int
2030 e1000g_m_unicst_modify(void *arg, mac_multi_addr_t *maddr)
2031 {
2032 	struct e1000g *Adapter = (struct e1000g *)arg;
2033 	mac_addr_slot_t slot;
2034 
2035 	if (mac_unicst_verify(Adapter->mh,
2036 	    maddr->mma_addr, maddr->mma_addrlen) == B_FALSE)
2037 		return (EINVAL);
2038 
2039 	slot = maddr->mma_slot;
2040 
2041 	if ((slot <= 0) || (slot >= Adapter->unicst_total))
2042 		return (EINVAL);
2043 
2044 	rw_enter(&Adapter->chip_lock, RW_WRITER);
2045 	if (Adapter->unicst_addr[slot].mac.set == 1) {
2046 		rw_exit(&Adapter->chip_lock);
2047 
2048 		return (e1000g_unicst_set(Adapter, maddr->mma_addr, slot));
2049 	}
2050 	rw_exit(&Adapter->chip_lock);
2051 
2052 	return (EINVAL);
2053 }
2054 
2055 /*
2056  * e1000g_m_unicst_get() - will get the MAC address and all other
2057  * information related to the address slot passed in mac_multi_addr_t.
2058  * mma_flags should be set to 0 in the call.
2059  * On return, mma_flags can take the following values:
2060  * 1) MMAC_SLOT_UNUSED
2061  * 2) MMAC_SLOT_USED | MMAC_VENDOR_ADDR
2062  * 3) MMAC_SLOT_UNUSED | MMAC_VENDOR_ADDR
2063  * 4) MMAC_SLOT_USED
2064  */
2065 static int
2066 e1000g_m_unicst_get(void *arg, mac_multi_addr_t *maddr)
2067 {
2068 	struct e1000g *Adapter = (struct e1000g *)arg;
2069 	mac_addr_slot_t slot;
2070 
2071 	slot = maddr->mma_slot;
2072 
2073 	if ((slot <= 0) || (slot >= Adapter->unicst_total))
2074 		return (EINVAL);
2075 
2076 	rw_enter(&Adapter->chip_lock, RW_WRITER);
2077 	if (Adapter->unicst_addr[slot].mac.set == 1) {
2078 		bcopy(Adapter->unicst_addr[slot].mac.addr,
2079 		    maddr->mma_addr, ETHERADDRL);
2080 		maddr->mma_flags = MMAC_SLOT_USED;
2081 	} else {
2082 		maddr->mma_flags = MMAC_SLOT_UNUSED;
2083 	}
2084 	rw_exit(&Adapter->chip_lock);
2085 
2086 	return (0);
2087 }
2088 
2089 static int
2090 multicst_add(struct e1000g *Adapter, const uint8_t *multiaddr)
2091 {
2092 	unsigned i;
2093 	int res = 0;
2094 
2095 	rw_enter(&Adapter->chip_lock, RW_WRITER);
2096 
2097 	if ((multiaddr[0] & 01) == 0) {
2098 		res = EINVAL;
2099 		goto done;
2100 	}
2101 
2102 	if (Adapter->mcast_count >= MAX_NUM_MULTICAST_ADDRESSES) {
2103 		res = ENOENT;
2104 		goto done;
2105 	}
2106 
2107 	bcopy(multiaddr,
2108 	    &Adapter->mcast_table[Adapter->mcast_count], ETHERADDRL);
2109 	Adapter->mcast_count++;
2110 
2111 	/*
2112 	 * Update the MC table in the hardware
2113 	 */
2114 	e1000g_DisableInterrupt(Adapter);
2115 
2116 	SetupMulticastTable(Adapter);
2117 
2118 	if (Adapter->Shared.mac_type == e1000_82542_rev2_0)
2119 		SetupReceiveStructures(Adapter);
2120 
2121 	e1000g_EnableInterrupt(Adapter);
2122 
2123 done:
2124 	rw_exit(&Adapter->chip_lock);
2125 	return (res);
2126 }
2127 
2128 static int
2129 multicst_remove(struct e1000g *Adapter, const uint8_t *multiaddr)
2130 {
2131 	unsigned i;
2132 
2133 	rw_enter(&Adapter->chip_lock, RW_WRITER);
2134 
2135 	for (i = 0; i < Adapter->mcast_count; i++) {
2136 		if (bcmp(multiaddr, &Adapter->mcast_table[i],
2137 		    ETHERADDRL) == 0) {
2138 			for (i++; i < Adapter->mcast_count; i++) {
2139 				Adapter->mcast_table[i - 1] =
2140 				    Adapter->mcast_table[i];
2141 			}
2142 			Adapter->mcast_count--;
2143 			break;
2144 		}
2145 	}
2146 
2147 	/*
2148 	 * Update the MC table in the hardware
2149 	 */
2150 	e1000g_DisableInterrupt(Adapter);
2151 
2152 	SetupMulticastTable(Adapter);
2153 
2154 	if (Adapter->Shared.mac_type == e1000_82542_rev2_0)
2155 		SetupReceiveStructures(Adapter);
2156 
2157 	e1000g_EnableInterrupt(Adapter);
2158 
2159 done:
2160 	rw_exit(&Adapter->chip_lock);
2161 	return (0);
2162 }
2163 
2164 int
2165 e1000g_m_multicst(void *arg, boolean_t add, const uint8_t *addr)
2166 {
2167 	struct e1000g *Adapter = (struct e1000g *)arg;
2168 
2169 	return ((add) ? multicst_add(Adapter, addr)
2170 		: multicst_remove(Adapter, addr));
2171 }
2172 
2173 int
2174 e1000g_m_promisc(void *arg, boolean_t on)
2175 {
2176 	struct e1000g *Adapter = (struct e1000g *)arg;
2177 	ULONG RctlRegValue;
2178 
2179 	rw_enter(&Adapter->chip_lock, RW_WRITER);
2180 
2181 	RctlRegValue = E1000_READ_REG(&Adapter->Shared, RCTL);
2182 
2183 	if (on)
2184 		RctlRegValue |=
2185 		    (E1000_RCTL_UPE | E1000_RCTL_MPE | E1000_RCTL_BAM);
2186 	else
2187 		RctlRegValue &= (~(E1000_RCTL_UPE | E1000_RCTL_MPE));
2188 
2189 	E1000_WRITE_REG(&Adapter->Shared, RCTL, RctlRegValue);
2190 
2191 	Adapter->e1000g_promisc = on;
2192 
2193 	rw_exit(&Adapter->chip_lock);
2194 
2195 	return (0);
2196 }
2197 
2198 static boolean_t
2199 e1000g_m_getcapab(void *arg, mac_capab_t cap, void *cap_data)
2200 {
2201 	struct e1000g *Adapter = (struct e1000g *)arg;
2202 
2203 	switch (cap) {
2204 	case MAC_CAPAB_HCKSUM: {
2205 		uint32_t *txflags = cap_data;
2206 
2207 		/*
2208 		 * In Jumbo mode, enabling hardware checksum will cause
2209 		 * port hang.
2210 		 */
2211 		if (Adapter->Shared.max_frame_size > ETHERMAX)
2212 			return (B_FALSE);
2213 
2214 		/*
2215 		 * Checksum on/off selection via global parameters.
2216 		 *
2217 		 * If the chip is flagged as not capable of (correctly)
2218 		 * handling FULL checksumming, we don't enable it on either
2219 		 * Rx or Tx side.  Otherwise, we take this chip's settings
2220 		 * from the patchable global defaults.
2221 		 *
2222 		 * We advertise our capabilities only if TX offload is
2223 		 * enabled.  On receive, the stack will accept checksummed
2224 		 * packets anyway, even if we haven't said we can deliver
2225 		 * them.
2226 		 */
2227 		switch (Adapter->Shared.mac_type) {
2228 		/*
2229 		 * Switch on hardware checksum offload of
2230 		 * chip 82540, 82545, 82546
2231 		 */
2232 		case e1000_82540:
2233 		case e1000_82544:	/* pci8086,1008 */
2234 		case e1000_82545:
2235 		case e1000_82545_rev_3:	/* pci8086,1026 */
2236 		case e1000_82571:
2237 		case e1000_82572:
2238 		case e1000_82573:
2239 		case e1000_80003es2lan:
2240 			*txflags = HCKSUM_IPHDRCKSUM | HCKSUM_INET_PARTIAL;
2241 			break;
2242 
2243 		case e1000_82546:	/* 82546EB. devID: 1010, 101d */
2244 		case e1000_82546_rev_3:	/* 82546GB. devID: 1079, 107a */
2245 #if !defined(__sparc) && !defined(__amd64)
2246 			/* Workaround for Galaxy on 32bit */
2247 			return (B_FALSE);
2248 #else
2249 			*txflags = HCKSUM_IPHDRCKSUM | HCKSUM_INET_PARTIAL;
2250 			break;
2251 #endif
2252 
2253 		/*
2254 		 * We don't have the following PRO 1000 chip types at
2255 		 * hand and haven't tested their hardware checksum
2256 		 * offload capability.  We had better switch them off.
2257 		 *	e1000_undefined = 0,
2258 		 *	e1000_82542_rev2_0,
2259 		 *	e1000_82542_rev2_1,
2260 		 *	e1000_82543,
2261 		 *	e1000_82541,
2262 		 *	e1000_82541_rev_2,
2263 		 *	e1000_82547,
2264 		 *	e1000_82547_rev_2,
2265 		 *	e1000_num_macs
2266 		 */
2267 		default:
2268 			return (B_FALSE);
2269 		}
2270 
2271 		break;
2272 	}
2273 	case MAC_CAPAB_POLL:
2274 		/*
2275 		 * There's nothing for us to fill in, simply returning
2276 		 * B_TRUE stating that we support polling is sufficient.
2277 		 */
2278 		break;
2279 
2280 	case MAC_CAPAB_MULTIADDRESS: {
2281 		multiaddress_capab_t *mmacp = cap_data;
2282 
2283 		/*
2284 		 * The number of MAC addresses made available by
2285 		 * this capability is one less than the total as
2286 		 * the primary address in slot 0 is counted in
2287 		 * the total.
2288 		 */
2289 		mmacp->maddr_naddr = Adapter->unicst_total - 1;
2290 		mmacp->maddr_naddrfree = Adapter->unicst_avail;
2291 		/* No multiple factory addresses, set mma_flag to 0 */
2292 		mmacp->maddr_flag = 0;
2293 		mmacp->maddr_handle = Adapter;
2294 		mmacp->maddr_add = e1000g_m_unicst_add;
2295 		mmacp->maddr_remove = e1000g_m_unicst_remove;
2296 		mmacp->maddr_modify = e1000g_m_unicst_modify;
2297 		mmacp->maddr_get = e1000g_m_unicst_get;
2298 		mmacp->maddr_reserve = NULL;
2299 		break;
2300 	}
2301 	default:
2302 		return (B_FALSE);
2303 	}
2304 	return (B_TRUE);
2305 }
2306 
2307 /*
2308  * **********************************************************************
2309  * Name:	 e1000g_getparam					*
2310  *									*
2311  * Description: This routine gets user-configured values out of the	*
2312  *	      configuration file e1000g.conf.				*
2313  * For each configurable value, there is a minimum, a maximum, and a	*
2314  * default.								*
2315  * If user does not configure a value, use the default.			*
2316  * If user configures below the minimum, use the minumum.		*
2317  * If user configures above the maximum, use the maxumum.		*
2318  *									*
2319  * Arguments:								*
2320  *      Adapter - A pointer to our adapter structure			*
2321  *									*
2322  * Returns:     None							*
2323  * **********************************************************************
2324  */
2325 static void
2326 e1000g_getparam(struct e1000g *Adapter)
2327 {
2328 	/*
2329 	 * get each configurable property from e1000g.conf
2330 	 */
2331 
2332 	/*
2333 	 * NumTxDescriptors
2334 	 */
2335 	Adapter->NumTxDescriptors =
2336 	    e1000g_getprop(Adapter, "NumTxDescriptors",
2337 		MINNUMTXDESCRIPTOR, MAXNUMTXDESCRIPTOR,
2338 		DEFAULTNUMTXDESCRIPTOR);
2339 
2340 	/*
2341 	 * NumRxDescriptors
2342 	 */
2343 	Adapter->NumRxDescriptors =
2344 	    e1000g_getprop(Adapter, "NumRxDescriptors",
2345 		MINNUMRXDESCRIPTOR, MAXNUMRXDESCRIPTOR,
2346 		DEFAULTNUMRXDESCRIPTOR);
2347 
2348 	/*
2349 	 * NumRxFreeList
2350 	 */
2351 	Adapter->NumRxFreeList =
2352 	    e1000g_getprop(Adapter, "NumRxFreeList",
2353 		MINNUMRXFREELIST, MAXNUMRXFREELIST,
2354 		DEFAULTNUMRXFREELIST);
2355 
2356 	/*
2357 	 * NumTxPacketList
2358 	 */
2359 	Adapter->NumTxSwPacket =
2360 	    e1000g_getprop(Adapter, "NumTxPacketList",
2361 		MINNUMTXSWPACKET, MAXNUMTXSWPACKET,
2362 		DEFAULTNUMTXSWPACKET);
2363 
2364 	/*
2365 	 * FlowControl
2366 	 */
2367 	Adapter->Shared.fc_send_xon = B_TRUE;
2368 	Adapter->Shared.fc =
2369 	    e1000g_getprop(Adapter, "FlowControl",
2370 	    E1000_FC_NONE, 4, DEFAULTFLOWCONTROLVAL);
2371 	/* 4 is the setting that says "let the eeprom decide" */
2372 	if (Adapter->Shared.fc == 4)
2373 		Adapter->Shared.fc = E1000_FC_DEFAULT;
2374 
2375 	/*
2376 	 * MaxNumReceivePackets
2377 	 */
2378 	Adapter->MaxNumReceivePackets =
2379 	    e1000g_getprop(Adapter, "MaxNumReceivePackets",
2380 	    MINNUMRCVPKTONINTR, MAXNUMRCVPKTONINTR,
2381 	    DEFAULTMAXNUMRCVPKTONINTR);
2382 
2383 	/*
2384 	 * TxInterruptDelay
2385 	 */
2386 	Adapter->TxInterruptDelay =
2387 	    e1000g_getprop(Adapter, "TxInterruptDelay",
2388 	    MINTXINTERRUPTDELAYVAL, MAXTXINTERRUPTDELAYVAL,
2389 	    DEFAULTTXINTERRUPTDELAYVAL);
2390 
2391 	/*
2392 	 * PHY master slave setting
2393 	 */
2394 	Adapter->Shared.master_slave =
2395 	    e1000g_getprop(Adapter, "SetMasterSlave",
2396 	    e1000_ms_hw_default, e1000_ms_auto,
2397 	    e1000_ms_hw_default);
2398 
2399 	/*
2400 	 * Parameter which controls TBI mode workaround, which is only
2401 	 * needed on certain switches such as Cisco 6500/Foundry
2402 	 */
2403 	Adapter->Shared.tbi_compatibility_en =
2404 	    e1000g_getprop(Adapter, "TbiCompatibilityEnable",
2405 	    0, 1, DEFAULTTBICOMPATIBILITYENABLE);
2406 
2407 	/*
2408 	 * MSI Enable
2409 	 */
2410 	Adapter->msi_enabled =
2411 	    e1000g_getprop(Adapter, "MSIEnable",
2412 	    0, 1, DEFAULTMSIENABLE);
2413 
2414 	/*
2415 	 * Interrupt Throttling Rate
2416 	 */
2417 	Adapter->intr_throttling_rate =
2418 	    e1000g_getprop(Adapter, "intr_throttling_rate",
2419 	    MININTERRUPTTHROTTLINGVAL, MAXINTERRUPTTHROTTLINGVAL,
2420 	    DEFAULTINTERRUPTTHROTTLINGVAL);
2421 
2422 	/*
2423 	 * Adaptive Interrupt Blanking Enable/Disable
2424 	 * It is enabled by default
2425 	 */
2426 	Adapter->intr_adaptive =
2427 	    (e1000g_getprop(Adapter, "intr_adaptive", 0, 1, 1) == 1) ?
2428 	    B_TRUE : B_FALSE;
2429 }
2430 
2431 /*
2432  * **********************************************************************
2433  * Name:	 e1000g_getprop						*
2434  *									*
2435  * Description: get a user-configure property value out of the		*
2436  *   configuration file e1000g.conf.					*
2437  *   Caller provides name of the property, a default value, a		*
2438  *   minimum value, and a maximum value.				*
2439  *									*
2440  * Returns: configured value of the property, with default, minimum and	*
2441  *   maximum properly applied.						*
2442  * **********************************************************************
2443  */
2444 static int
2445 e1000g_getprop(struct e1000g *Adapter,	/* point to per-adapter structure */
2446     char *propname,		/* name of the property */
2447     int minval,			/* minimum acceptable value */
2448     int maxval,			/* maximim acceptable value */
2449     int defval)			/* default value */
2450 {
2451 	int propval;		/* value returned for requested property */
2452 	int *props;		/* point to array of properties returned */
2453 	uint_t nprops;		/* number of property value returned */
2454 
2455 	/*
2456 	 * get the array of properties from the config file
2457 	 */
2458 	if (ddi_prop_lookup_int_array(DDI_DEV_T_ANY, Adapter->dip,
2459 	    DDI_PROP_DONTPASS, propname, &props, &nprops) == DDI_PROP_SUCCESS) {
2460 		/* got some properties, test if we got enough */
2461 		if (Adapter->AdapterInstance < nprops) {
2462 			propval = props[Adapter->AdapterInstance];
2463 		} else {
2464 			/* not enough properties configured */
2465 			propval = defval;
2466 			e1000g_DEBUGLOG_2(Adapter, e1000g_INFO_LEVEL,
2467 			    "Not Enough %s values found in e1000g.conf"
2468 			    " - set to %d\n",
2469 			    propname, propval);
2470 		}
2471 
2472 		/* free memory allocated for properties */
2473 		ddi_prop_free(props);
2474 
2475 	} else {
2476 		propval = defval;
2477 	}
2478 
2479 	/*
2480 	 * enforce limits
2481 	 */
2482 	if (propval > maxval) {
2483 		propval = maxval;
2484 		e1000g_DEBUGLOG_2(Adapter, e1000g_INFO_LEVEL,
2485 		    "Too High %s value in e1000g.conf - set to %d\n",
2486 		    propname, propval);
2487 	}
2488 
2489 	if (propval < minval) {
2490 		propval = minval;
2491 		e1000g_DEBUGLOG_2(Adapter, e1000g_INFO_LEVEL,
2492 		    "Too Low %s value in e1000g.conf - set to %d\n",
2493 		    propname, propval);
2494 	}
2495 
2496 	return (propval);
2497 }
2498 
2499 static boolean_t
2500 e1000g_link_check(struct e1000g *Adapter)
2501 {
2502 	uint16_t speed, duplex, phydata;
2503 	boolean_t link_changed = B_FALSE;
2504 	struct e1000_hw *hw;
2505 	uint32_t reg_tarc;
2506 
2507 	hw = &Adapter->Shared;
2508 
2509 	if (e1000g_link_up(Adapter)) {
2510 		/*
2511 		 * The Link is up, check whether it was marked as down earlier
2512 		 */
2513 		if (Adapter->link_state != LINK_STATE_UP) {
2514 			e1000_get_speed_and_duplex(hw, &speed, &duplex);
2515 			Adapter->link_speed = speed;
2516 			Adapter->link_duplex = duplex;
2517 			Adapter->link_state = LINK_STATE_UP;
2518 			link_changed = B_TRUE;
2519 
2520 			Adapter->tx_link_down_timeout = 0;
2521 
2522 			if ((hw->mac_type == e1000_82571) ||
2523 			    (hw->mac_type == e1000_82572)) {
2524 				reg_tarc = E1000_READ_REG(hw, TARC0);
2525 				if (speed == SPEED_1000)
2526 					reg_tarc |= (1 << 21);
2527 				else
2528 					reg_tarc &= ~(1 << 21);
2529 				E1000_WRITE_REG(hw, TARC0, reg_tarc);
2530 			}
2531 
2532 			e1000g_log(Adapter, CE_NOTE,
2533 			    "Adapter %dMbps %s %s link is up.", speed,
2534 			    ((duplex == FULL_DUPLEX) ?
2535 				"full duplex" : "half duplex"),
2536 			    ((hw->media_type == e1000_media_type_copper) ?
2537 				"copper" : "fiber"));
2538 		}
2539 		Adapter->smartspeed = 0;
2540 	} else {
2541 		if (Adapter->link_state != LINK_STATE_DOWN) {
2542 			Adapter->link_speed = 0;
2543 			Adapter->link_duplex = 0;
2544 			Adapter->link_state = LINK_STATE_DOWN;
2545 			link_changed = B_TRUE;
2546 
2547 			e1000g_log(Adapter, CE_NOTE,
2548 			    "Adapter %s link is down.",
2549 			    ((hw->media_type == e1000_media_type_copper) ?
2550 				"copper" : "fiber"));
2551 
2552 			/*
2553 			 * SmartSpeed workaround for Tabor/TanaX, When the
2554 			 * driver loses link disable auto master/slave
2555 			 * resolution.
2556 			 */
2557 			if (hw->phy_type == e1000_phy_igp) {
2558 				e1000_read_phy_reg(hw,
2559 				    PHY_1000T_CTRL, &phydata);
2560 				phydata |= CR_1000T_MS_ENABLE;
2561 				e1000_write_phy_reg(hw,
2562 				    PHY_1000T_CTRL, phydata);
2563 			}
2564 		} else {
2565 			e1000g_smartspeed(Adapter);
2566 		}
2567 
2568 		if (Adapter->started) {
2569 			if (Adapter->tx_link_down_timeout <
2570 			    MAX_TX_LINK_DOWN_TIMEOUT) {
2571 				Adapter->tx_link_down_timeout++;
2572 			} else if (Adapter->tx_link_down_timeout ==
2573 			    MAX_TX_LINK_DOWN_TIMEOUT) {
2574 				rw_enter(&Adapter->chip_lock, RW_WRITER);
2575 				e1000g_tx_drop(Adapter);
2576 				rw_exit(&Adapter->chip_lock);
2577 				Adapter->tx_link_down_timeout++;
2578 			}
2579 		}
2580 	}
2581 
2582 	return (link_changed);
2583 }
2584 
2585 static void
2586 e1000g_LocalTimer(void *ws)
2587 {
2588 	struct e1000g *Adapter = (struct e1000g *)ws;
2589 	struct e1000_hw *hw;
2590 	e1000g_ether_addr_t ether_addr;
2591 	boolean_t link_changed;
2592 
2593 	hw = &Adapter->Shared;
2594 
2595 	(void) e1000g_tx_freemsg((caddr_t)Adapter, NULL);
2596 
2597 	if (e1000g_stall_check(Adapter)) {
2598 		e1000g_DEBUGLOG_0(Adapter, e1000g_INFO_LEVEL,
2599 		    "Tx stall detected. Activate automatic recovery.\n");
2600 		Adapter->StallWatchdog = 0;
2601 		Adapter->tx_recycle_fail = 0;
2602 		Adapter->reset_count++;
2603 		(void) e1000g_reset(Adapter);
2604 	}
2605 
2606 	link_changed = B_FALSE;
2607 	mutex_enter(&Adapter->e1000g_linklock);
2608 	if (Adapter->link_complete)
2609 		link_changed = e1000g_link_check(Adapter);
2610 	mutex_exit(&Adapter->e1000g_linklock);
2611 
2612 	if (link_changed) {
2613 		/*
2614 		 * Workaround for esb2. Data stuck in fifo on a link
2615 		 * down event. Reset the adapter to recover it.
2616 		 */
2617 		if ((Adapter->link_state == LINK_STATE_DOWN) &&
2618 		    (hw->mac_type == e1000_80003es2lan))
2619 			(void) e1000g_reset(Adapter);
2620 
2621 		mac_link_update(Adapter->mh, Adapter->link_state);
2622 	}
2623 
2624 	/*
2625 	 * With 82571 controllers, any locally administered address will
2626 	 * be overwritten when there is a reset on the other port.
2627 	 * Detect this circumstance and correct it.
2628 	 */
2629 	if ((hw->mac_type == e1000_82571) && hw->laa_is_present) {
2630 		ether_addr.reg.low = E1000_READ_REG_ARRAY(hw, RA, 0);
2631 		ether_addr.reg.high = E1000_READ_REG_ARRAY(hw, RA, 1);
2632 
2633 		ether_addr.reg.low = ntohl(ether_addr.reg.low);
2634 		ether_addr.reg.high = ntohl(ether_addr.reg.high);
2635 
2636 		if ((ether_addr.mac.addr[5] != hw->mac_addr[0]) ||
2637 		    (ether_addr.mac.addr[4] != hw->mac_addr[1]) ||
2638 		    (ether_addr.mac.addr[3] != hw->mac_addr[2]) ||
2639 		    (ether_addr.mac.addr[2] != hw->mac_addr[3]) ||
2640 		    (ether_addr.mac.addr[1] != hw->mac_addr[4]) ||
2641 		    (ether_addr.mac.addr[0] != hw->mac_addr[5])) {
2642 			e1000_rar_set(hw, hw->mac_addr, 0);
2643 		}
2644 	}
2645 
2646 	/*
2647 	 * RP: ttl_workaround : DCR 49
2648 	 */
2649 	e1000_igp_ttl_workaround(hw);
2650 
2651 	/*
2652 	 * Check for Adaptive IFS settings If there are lots of collisions
2653 	 * change the value in steps...
2654 	 * These properties should only be set for 10/100
2655 	 */
2656 	if ((hw->media_type == e1000_media_type_copper) &&
2657 	    ((Adapter->link_speed == SPEED_100) ||
2658 	    (Adapter->link_speed == SPEED_10))) {
2659 		e1000_update_adaptive(hw);
2660 	}
2661 	/*
2662 	 * Set Timer Interrupts
2663 	 */
2664 	E1000_WRITE_REG(hw, ICS, E1000_IMS_RXT0);
2665 
2666 	restart_timeout(Adapter);
2667 }
2668 
2669 /*
2670  * The function e1000g_link_timer() is called when the timer for link setup
2671  * is expired, which indicates the completion of the link setup. The link
2672  * state will not be updated until the link setup is completed. And the
2673  * link state will not be sent to the upper layer through mac_link_update()
2674  * in this function. It will be updated in the local timer routine or the
2675  * interrupt service routine after the interface is started (plumbed).
2676  */
2677 static void
2678 e1000g_link_timer(void *arg)
2679 {
2680 	struct e1000g *Adapter = (struct e1000g *)arg;
2681 
2682 	mutex_enter(&Adapter->e1000g_linklock);
2683 	Adapter->link_complete = B_TRUE;
2684 	Adapter->link_tid = 0;
2685 	mutex_exit(&Adapter->e1000g_linklock);
2686 }
2687 
2688 /*
2689  * **********************************************************************
2690  * Name:      e1000g_force_speed_duplex					*
2691  *									*
2692  * Description:								*
2693  *   This function forces speed and duplex for 10/100 Mbps speeds	*
2694  *   and also for 1000 Mbps speeds, it advertises half or full duplex	*
2695  *									*
2696  * Parameter Passed:							*
2697  *   struct e1000g* (information of adpater)				*
2698  *									*
2699  * Return Value:							*
2700  *									*
2701  * Functions called:							*
2702  * **********************************************************************
2703  */
2704 static void
2705 e1000g_force_speed_duplex(struct e1000g *Adapter)
2706 {
2707 	int forced;
2708 
2709 	/*
2710 	 * get value out of config file
2711 	 */
2712 	forced = e1000g_getprop(Adapter, "ForceSpeedDuplex",
2713 	    GDIAG_10_HALF, GDIAG_ANY, GDIAG_ANY);
2714 
2715 	switch (forced) {
2716 	case GDIAG_10_HALF:
2717 		/*
2718 		 * Disable Auto Negotiation
2719 		 */
2720 		Adapter->Shared.autoneg = B_FALSE;
2721 		Adapter->Shared.forced_speed_duplex = e1000_10_half;
2722 		break;
2723 	case GDIAG_10_FULL:
2724 		/*
2725 		 * Disable Auto Negotiation
2726 		 */
2727 		Adapter->Shared.autoneg = B_FALSE;
2728 		Adapter->Shared.forced_speed_duplex = e1000_10_full;
2729 		break;
2730 	case GDIAG_100_HALF:
2731 		/*
2732 		 * Disable Auto Negotiation
2733 		 */
2734 		Adapter->Shared.autoneg = B_FALSE;
2735 		Adapter->Shared.forced_speed_duplex = e1000_100_half;
2736 		break;
2737 	case GDIAG_100_FULL:
2738 		/*
2739 		 * Disable Auto Negotiation
2740 		 */
2741 		Adapter->Shared.autoneg = B_FALSE;
2742 		Adapter->Shared.forced_speed_duplex = e1000_100_full;
2743 		break;
2744 	case GDIAG_1000_FULL:
2745 		/*
2746 		 * The gigabit spec requires autonegotiation.  Therefore,
2747 		 * when the user wants to force the speed to 1000Mbps, we
2748 		 * enable AutoNeg, but only allow the harware to advertise
2749 		 * 1000Mbps.  This is different from 10/100 operation, where
2750 		 * we are allowed to link without any negotiation.
2751 		 */
2752 		Adapter->Shared.autoneg = B_TRUE;
2753 		Adapter->Shared.autoneg_advertised = ADVERTISE_1000_FULL;
2754 		break;
2755 	default:	/* obey the setting of AutoNegAdvertised */
2756 		Adapter->Shared.autoneg = B_TRUE;
2757 		Adapter->Shared.autoneg_advertised =
2758 		    (uint16_t)e1000g_getprop(Adapter, "AutoNegAdvertised",
2759 			0, AUTONEG_ADVERTISE_SPEED_DEFAULT,
2760 			AUTONEG_ADVERTISE_SPEED_DEFAULT);
2761 		break;
2762 	}	/* switch */
2763 }
2764 
2765 /*
2766  * **********************************************************************
2767  * Name:      e1000g_get_max_frame_size					*
2768  *									*
2769  * Description:								*
2770  *   This function reads MaxFrameSize from e1000g.conf and sets it for	*
2771  *   adapter.								*
2772  *									*
2773  * Parameter Passed:							*
2774  *   struct e1000g* (information of adpater)				*
2775  *									*
2776  * Return Value:							*
2777  *									*
2778  * Functions called:							*
2779  * **********************************************************************
2780  */
2781 static void
2782 e1000g_get_max_frame_size(struct e1000g *Adapter)
2783 {
2784 	int max_frame;
2785 
2786 	/*
2787 	 * get value out of config file
2788 	 */
2789 	max_frame = e1000g_getprop(Adapter, "MaxFrameSize", 0, 3, 0);
2790 
2791 	switch (max_frame) {
2792 	case 0:
2793 		Adapter->Shared.max_frame_size = ETHERMAX;
2794 		break;
2795 	case 1:
2796 		Adapter->Shared.max_frame_size = FRAME_SIZE_UPTO_4K;
2797 		break;
2798 	case 2:
2799 		Adapter->Shared.max_frame_size = FRAME_SIZE_UPTO_8K;
2800 		break;
2801 	case 3:
2802 		if (Adapter->Shared.mac_type < e1000_82571)
2803 			Adapter->Shared.max_frame_size = FRAME_SIZE_UPTO_16K;
2804 		else
2805 			Adapter->Shared.max_frame_size = FRAME_SIZE_UPTO_10K;
2806 		break;
2807 	default:
2808 		Adapter->Shared.max_frame_size = ETHERMAX;
2809 		break;
2810 	}	/* switch */
2811 
2812 	/* ich8 does not do jumbo frames */
2813 	if (Adapter->Shared.mac_type == e1000_ich8lan) {
2814 		Adapter->Shared.max_frame_size = ETHERMAX;
2815 	}
2816 }
2817 
2818 static void
2819 arm_timer(struct e1000g *Adapter)
2820 {
2821 	Adapter->WatchDogTimer_id =
2822 	    timeout(e1000g_LocalTimer,
2823 	    (void *)Adapter, 1 * drv_usectohz(1000000));
2824 }
2825 
2826 static void
2827 enable_timeout(struct e1000g *Adapter)
2828 {
2829 	mutex_enter(&Adapter->e1000g_timeout_lock);
2830 
2831 	if (!Adapter->timeout_enabled) {
2832 		Adapter->timeout_enabled = B_TRUE;
2833 		Adapter->timeout_started = B_TRUE;
2834 
2835 		arm_timer(Adapter);
2836 	}
2837 
2838 	mutex_exit(&Adapter->e1000g_timeout_lock);
2839 }
2840 
2841 static void
2842 disable_timeout(struct e1000g *Adapter)
2843 {
2844 	timeout_id_t tid;
2845 
2846 	mutex_enter(&Adapter->e1000g_timeout_lock);
2847 
2848 	Adapter->timeout_enabled = B_FALSE;
2849 	Adapter->timeout_started = B_FALSE;
2850 
2851 	tid = Adapter->WatchDogTimer_id;
2852 	Adapter->WatchDogTimer_id = 0;
2853 
2854 	mutex_exit(&Adapter->e1000g_timeout_lock);
2855 
2856 	if (tid != 0)
2857 		(void) untimeout(tid);
2858 }
2859 
2860 static void
2861 start_timeout(struct e1000g *Adapter)
2862 {
2863 	mutex_enter(&Adapter->e1000g_timeout_lock);
2864 
2865 	if (Adapter->timeout_enabled) {
2866 		if (!Adapter->timeout_started) {
2867 			Adapter->timeout_started = B_TRUE;
2868 			arm_timer(Adapter);
2869 		}
2870 	}
2871 
2872 	mutex_exit(&Adapter->e1000g_timeout_lock);
2873 }
2874 
2875 static void
2876 restart_timeout(struct e1000g *Adapter)
2877 {
2878 	mutex_enter(&Adapter->e1000g_timeout_lock);
2879 
2880 	if (Adapter->timeout_started)
2881 		arm_timer(Adapter);
2882 
2883 	mutex_exit(&Adapter->e1000g_timeout_lock);
2884 }
2885 
2886 static void
2887 stop_timeout(struct e1000g *Adapter)
2888 {
2889 	timeout_id_t tid;
2890 
2891 	mutex_enter(&Adapter->e1000g_timeout_lock);
2892 
2893 	Adapter->timeout_started = B_FALSE;
2894 
2895 	tid = Adapter->WatchDogTimer_id;
2896 	Adapter->WatchDogTimer_id = 0;
2897 
2898 	mutex_exit(&Adapter->e1000g_timeout_lock);
2899 
2900 	if (tid != 0)
2901 		(void) untimeout(tid);
2902 }
2903 
2904 void
2905 e1000g_DisableInterrupt(struct e1000g *Adapter)
2906 {
2907 	E1000_WRITE_REG(&Adapter->Shared, IMC,
2908 	    0xffffffff & ~E1000_IMC_RXSEQ);
2909 }
2910 
2911 void
2912 e1000g_EnableInterrupt(struct e1000g *Adapter)
2913 {
2914 	E1000_WRITE_REG(&Adapter->Shared, IMS,
2915 	    IMS_ENABLE_MASK & ~E1000_IMS_TXDW & ~E1000_IMS_TXQE);
2916 }
2917 
2918 void
2919 e1000g_DisableAllInterrupts(struct e1000g *Adapter)
2920 {
2921 	E1000_WRITE_REG(&Adapter->Shared, IMC, 0xffffffff)
2922 }
2923 
2924 void
2925 e1000g_EnableTxInterrupt(struct e1000g *Adapter)
2926 {
2927 	E1000_WRITE_REG(&Adapter->Shared, IMS, E1000G_IMS_TX_INTR);
2928 }
2929 
2930 void
2931 e1000g_DisableTxInterrupt(struct e1000g *Adapter)
2932 {
2933 	E1000_WRITE_REG(&Adapter->Shared, IMC, E1000G_IMC_TX_INTR);
2934 }
2935 
2936 void
2937 e1000_pci_set_mwi(struct e1000_hw *hw)
2938 {
2939 	uint16_t val = hw->pci_cmd_word | CMD_MEM_WRT_INVALIDATE;
2940 	e1000_write_pci_cfg(hw, PCI_COMMAND_REGISTER, &val);
2941 }
2942 
2943 void
2944 e1000_pci_clear_mwi(struct e1000_hw *hw)
2945 {
2946 	uint16_t val = hw->pci_cmd_word & ~CMD_MEM_WRT_INVALIDATE;
2947 	e1000_write_pci_cfg(hw, PCI_COMMAND_REGISTER, &val);
2948 }
2949 
2950 void
2951 e1000_write_pci_cfg(struct e1000_hw *adapter,
2952     uint32_t reg, uint16_t *value)
2953 {
2954 	pci_config_put16(((struct e1000g_osdep *)(adapter->back))->handle,
2955 	    reg, *value);
2956 }
2957 
2958 void
2959 e1000_read_pci_cfg(struct e1000_hw *adapter,
2960     uint32_t reg, uint16_t *value)
2961 {
2962 	*value =
2963 	    pci_config_get16(((struct e1000g_osdep *)(adapter->back))->
2964 	    handle, reg);
2965 }
2966 
2967 #ifndef __sparc
2968 void
2969 e1000_io_write(struct e1000_hw *hw, unsigned long port, uint32_t value)
2970 {
2971 	outl(port, value);
2972 }
2973 
2974 uint32_t
2975 e1000_io_read(struct e1000_hw *hw, unsigned long port)
2976 {
2977 	return (inl(port));
2978 }
2979 #endif
2980 
2981 static void
2982 e1000g_smartspeed(struct e1000g *adapter)
2983 {
2984 	uint16_t phy_status;
2985 	uint16_t phy_ctrl;
2986 
2987 	/*
2988 	 * If we're not T-or-T, or we're not autoneg'ing, or we're not
2989 	 * advertising 1000Full, we don't even use the workaround
2990 	 */
2991 	if ((adapter->Shared.phy_type != e1000_phy_igp) ||
2992 	    !adapter->Shared.autoneg ||
2993 	    !(adapter->Shared.autoneg_advertised & ADVERTISE_1000_FULL))
2994 		return;
2995 
2996 	/*
2997 	 * True if this is the first call of this function or after every
2998 	 * 30 seconds of not having link
2999 	 */
3000 	if (adapter->smartspeed == 0) {
3001 		/*
3002 		 * If Master/Slave config fault is asserted twice, we
3003 		 * assume back-to-back
3004 		 */
3005 		e1000_read_phy_reg(&adapter->Shared, PHY_1000T_STATUS,
3006 		    &phy_status);
3007 		if (!(phy_status & SR_1000T_MS_CONFIG_FAULT))
3008 			return;
3009 
3010 		e1000_read_phy_reg(&adapter->Shared, PHY_1000T_STATUS,
3011 		    &phy_status);
3012 		if (!(phy_status & SR_1000T_MS_CONFIG_FAULT))
3013 			return;
3014 		/*
3015 		 * We're assuming back-2-back because our status register
3016 		 * insists! there's a fault in the master/slave
3017 		 * relationship that was "negotiated"
3018 		 */
3019 		e1000_read_phy_reg(&adapter->Shared, PHY_1000T_CTRL,
3020 		    &phy_ctrl);
3021 		/*
3022 		 * Is the phy configured for manual configuration of
3023 		 * master/slave?
3024 		 */
3025 		if (phy_ctrl & CR_1000T_MS_ENABLE) {
3026 			/*
3027 			 * Yes.  Then disable manual configuration (enable
3028 			 * auto configuration) of master/slave
3029 			 */
3030 			phy_ctrl &= ~CR_1000T_MS_ENABLE;
3031 			e1000_write_phy_reg(&adapter->Shared,
3032 			    PHY_1000T_CTRL, phy_ctrl);
3033 			/*
3034 			 * Effectively starting the clock
3035 			 */
3036 			adapter->smartspeed++;
3037 			/*
3038 			 * Restart autonegotiation
3039 			 */
3040 			if (!e1000_phy_setup_autoneg(&adapter->Shared) &&
3041 			    !e1000_read_phy_reg(&adapter->Shared, PHY_CTRL,
3042 				&phy_ctrl)) {
3043 				phy_ctrl |= (MII_CR_AUTO_NEG_EN |
3044 				    MII_CR_RESTART_AUTO_NEG);
3045 				e1000_write_phy_reg(&adapter->Shared,
3046 				    PHY_CTRL, phy_ctrl);
3047 			}
3048 		}
3049 		return;
3050 		/*
3051 		 * Has 6 seconds transpired still without link? Remember,
3052 		 * you should reset the smartspeed counter once you obtain
3053 		 * link
3054 		 */
3055 	} else if (adapter->smartspeed == E1000_SMARTSPEED_DOWNSHIFT) {
3056 		/*
3057 		 * Yes.  Remember, we did at the start determine that
3058 		 * there's a master/slave configuration fault, so we're
3059 		 * still assuming there's someone on the other end, but we
3060 		 * just haven't yet been able to talk to it. We then
3061 		 * re-enable auto configuration of master/slave to see if
3062 		 * we're running 2/3 pair cables.
3063 		 */
3064 		/*
3065 		 * If still no link, perhaps using 2/3 pair cable
3066 		 */
3067 		e1000_read_phy_reg(&adapter->Shared, PHY_1000T_CTRL,
3068 		    &phy_ctrl);
3069 		phy_ctrl |= CR_1000T_MS_ENABLE;
3070 		e1000_write_phy_reg(&adapter->Shared, PHY_1000T_CTRL,
3071 		    phy_ctrl);
3072 		/*
3073 		 * Restart autoneg with phy enabled for manual
3074 		 * configuration of master/slave
3075 		 */
3076 		if (!e1000_phy_setup_autoneg(&adapter->Shared) &&
3077 		    !e1000_read_phy_reg(&adapter->Shared, PHY_CTRL,
3078 			&phy_ctrl)) {
3079 			phy_ctrl |=
3080 			    (MII_CR_AUTO_NEG_EN | MII_CR_RESTART_AUTO_NEG);
3081 			e1000_write_phy_reg(&adapter->Shared, PHY_CTRL,
3082 			    phy_ctrl);
3083 		}
3084 		/*
3085 		 * Hopefully, there are no more faults and we've obtained
3086 		 * link as a result.
3087 		 */
3088 	}
3089 	/*
3090 	 * Restart process after E1000_SMARTSPEED_MAX iterations (30
3091 	 * seconds)
3092 	 */
3093 	if (adapter->smartspeed++ == E1000_SMARTSPEED_MAX)
3094 		adapter->smartspeed = 0;
3095 }
3096 
3097 static boolean_t
3098 is_valid_mac_addr(uint8_t *mac_addr)
3099 {
3100 	const uint8_t addr_test1[6] = { 0, 0, 0, 0, 0, 0 };
3101 	const uint8_t addr_test2[6] =
3102 	    { 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF };
3103 
3104 	if (!(bcmp(addr_test1, mac_addr, ETHERADDRL)) ||
3105 	    !(bcmp(addr_test2, mac_addr, ETHERADDRL)))
3106 		return (B_FALSE);
3107 
3108 	return (B_TRUE);
3109 }
3110 
3111 /*
3112  * **********************************************************************
3113  * Name:								*
3114  *	e1000g_stall_check						*
3115  *									*
3116  * Description:								*
3117  *	This function checks if the adapter is stalled. (In transmit)	*
3118  *									*
3119  *	It is called each time the timeout is invoked.			*
3120  *	If the transmit descriptor reclaim continuously fails,		*
3121  *	the watchdog value will increment by 1. If the watchdog		*
3122  *	value exceeds the threshold, the adapter is assumed to		*
3123  *	have stalled and need to be reset.				*
3124  *									*
3125  * Arguments:								*
3126  *	Adapter - A pointer to our context sensitive "Adapter"		*
3127  *	structure.							*
3128  *									*
3129  * Returns:								*
3130  *	B_TRUE - The dapter is assumed to have stalled.			*
3131  *	B_FALSE								*
3132  *									*
3133  * **********************************************************************
3134  */
3135 static boolean_t
3136 e1000g_stall_check(struct e1000g *Adapter)
3137 {
3138 	if (Adapter->link_state != LINK_STATE_UP)
3139 		return (B_FALSE);
3140 
3141 	if (Adapter->tx_recycle_fail > 0)
3142 		Adapter->StallWatchdog++;
3143 	else
3144 		Adapter->StallWatchdog = 0;
3145 
3146 	if (Adapter->StallWatchdog < E1000G_STALL_WATCHDOG_COUNT)
3147 		return (B_FALSE);
3148 
3149 	return (B_TRUE);
3150 }
3151 
3152 
3153 static enum ioc_reply
3154 e1000g_pp_ioctl(struct e1000g *e1000gp, struct iocblk *iocp, mblk_t *mp)
3155 {
3156 	void (*ppfn)(struct e1000g *e1000gp, e1000g_peekpoke_t *ppd);
3157 	e1000g_peekpoke_t *ppd;
3158 	uint64_t mem_va;
3159 	uint64_t maxoff;
3160 	boolean_t peek;
3161 
3162 	switch (iocp->ioc_cmd) {
3163 
3164 	case E1000G_IOC_REG_PEEK:
3165 		peek = B_TRUE;
3166 		break;
3167 
3168 	case E1000G_IOC_REG_POKE:
3169 		peek = B_FALSE;
3170 		break;
3171 
3172 	deault:
3173 		e1000g_DEBUGLOG_1(e1000gp, e1000g_INFO_LEVEL,
3174 			"e1000g_diag_ioctl: invalid ioctl command 0x%X\n",
3175 			iocp->ioc_cmd);
3176 		return (IOC_INVAL);
3177 	}
3178 
3179 	/*
3180 	 * Validate format of ioctl
3181 	 */
3182 	if (iocp->ioc_count != sizeof (e1000g_peekpoke_t))
3183 		return (IOC_INVAL);
3184 	if (mp->b_cont == NULL)
3185 		return (IOC_INVAL);
3186 
3187 	ppd = (e1000g_peekpoke_t *)mp->b_cont->b_rptr;
3188 
3189 	/*
3190 	 * Validate request parameters
3191 	 */
3192 	switch (ppd->pp_acc_space) {
3193 
3194 	default:
3195 		e1000g_DEBUGLOG_1(e1000gp, e1000g_INFO_LEVEL,
3196 			"e1000g_diag_ioctl: invalid access space 0x%X\n",
3197 			ppd->pp_acc_space);
3198 		return (IOC_INVAL);
3199 
3200 	case E1000G_PP_SPACE_REG:
3201 		/*
3202 		 * Memory-mapped I/O space
3203 		 */
3204 		ASSERT(ppd->pp_acc_size == 4);
3205 		if (ppd->pp_acc_size != 4)
3206 			return (IOC_INVAL);
3207 
3208 		if ((ppd->pp_acc_offset % ppd->pp_acc_size) != 0)
3209 			return (IOC_INVAL);
3210 
3211 		mem_va = 0;
3212 		maxoff = 0x10000;
3213 		ppfn = peek ? e1000g_ioc_peek_reg : e1000g_ioc_poke_reg;
3214 		break;
3215 
3216 	case E1000G_PP_SPACE_E1000G:
3217 		/*
3218 		 * E1000g data structure!
3219 		 */
3220 		mem_va = (uintptr_t)e1000gp;
3221 		maxoff = sizeof (struct e1000g);
3222 		ppfn = peek ? e1000g_ioc_peek_mem : e1000g_ioc_poke_mem;
3223 		break;
3224 
3225 	}
3226 
3227 	if (ppd->pp_acc_offset >= maxoff)
3228 		return (IOC_INVAL);
3229 
3230 	if (ppd->pp_acc_offset + ppd->pp_acc_size > maxoff)
3231 		return (IOC_INVAL);
3232 
3233 	/*
3234 	 * All OK - go!
3235 	 */
3236 	ppd->pp_acc_offset += mem_va;
3237 	(*ppfn)(e1000gp, ppd);
3238 	return (peek ? IOC_REPLY : IOC_ACK);
3239 }
3240 
3241 static void
3242 e1000g_ioc_peek_reg(struct e1000g *e1000gp, e1000g_peekpoke_t *ppd)
3243 {
3244 	ddi_acc_handle_t handle;
3245 	uint32_t *regaddr;
3246 
3247 	handle =
3248 	    ((struct e1000g_osdep *)(&e1000gp->Shared)->back)->E1000_handle,
3249 	regaddr =
3250 	    (uint32_t *)((&e1000gp->Shared)->hw_addr + ppd->pp_acc_offset);
3251 
3252 	ppd->pp_acc_data = ddi_get32(handle, regaddr);
3253 }
3254 
3255 static void
3256 e1000g_ioc_poke_reg(struct e1000g *e1000gp, e1000g_peekpoke_t *ppd)
3257 {
3258 	ddi_acc_handle_t handle;
3259 	uint32_t *regaddr;
3260 	uint32_t value;
3261 
3262 	handle =
3263 	    ((struct e1000g_osdep *)(&e1000gp->Shared)->back)->E1000_handle,
3264 	regaddr =
3265 	    (uint32_t *)((&e1000gp->Shared)->hw_addr + ppd->pp_acc_offset);
3266 	value = (uint32_t)ppd->pp_acc_data;
3267 
3268 	ddi_put32(handle, regaddr, value);
3269 }
3270 
3271 static void
3272 e1000g_ioc_peek_mem(struct e1000g *e1000gp, e1000g_peekpoke_t *ppd)
3273 {
3274 	uint64_t value;
3275 	void *vaddr;
3276 
3277 	vaddr = (void *)(uintptr_t)ppd->pp_acc_offset;
3278 
3279 	switch (ppd->pp_acc_size) {
3280 	case 1:
3281 		value = *(uint8_t *)vaddr;
3282 		break;
3283 
3284 	case 2:
3285 		value = *(uint16_t *)vaddr;
3286 		break;
3287 
3288 	case 4:
3289 		value = *(uint32_t *)vaddr;
3290 		break;
3291 
3292 	case 8:
3293 		value = *(uint64_t *)vaddr;
3294 		break;
3295 	}
3296 
3297 	e1000g_DEBUGLOG_4(e1000gp, e1000g_INFO_LEVEL,
3298 		"e1000g_ioc_peek_mem($%p, $%p) peeked 0x%llx from $%p\n",
3299 		(void *)e1000gp, (void *)ppd, value, vaddr);
3300 
3301 	ppd->pp_acc_data = value;
3302 }
3303 
3304 static void
3305 e1000g_ioc_poke_mem(struct e1000g *e1000gp, e1000g_peekpoke_t *ppd)
3306 {
3307 	uint64_t value;
3308 	void *vaddr;
3309 
3310 	vaddr = (void *)(uintptr_t)ppd->pp_acc_offset;
3311 	value = ppd->pp_acc_data;
3312 
3313 	e1000g_DEBUGLOG_4(e1000gp, e1000g_INFO_LEVEL,
3314 		"e1000g_ioc_poke_mem($%p, $%p) poking 0x%llx at $%p\n",
3315 		(void *)e1000gp, (void *)ppd, value, vaddr);
3316 
3317 	switch (ppd->pp_acc_size) {
3318 	case 1:
3319 		*(uint8_t *)vaddr = (uint8_t)value;
3320 		break;
3321 
3322 	case 2:
3323 		*(uint16_t *)vaddr = (uint16_t)value;
3324 		break;
3325 
3326 	case 4:
3327 		*(uint32_t *)vaddr = (uint32_t)value;
3328 		break;
3329 
3330 	case 8:
3331 		*(uint64_t *)vaddr = (uint64_t)value;
3332 		break;
3333 	}
3334 }
3335 
3336 /*
3337  * Loopback Support
3338  */
3339 static lb_property_t lb_normal =
3340 	{ normal,	"normal",	E1000G_LB_NONE		};
3341 static lb_property_t lb_external1000 =
3342 	{ external,	"1000Mbps",	E1000G_LB_EXTERNAL_1000	};
3343 static lb_property_t lb_external100 =
3344 	{ external,	"100Mbps",	E1000G_LB_EXTERNAL_100	};
3345 static lb_property_t lb_external10 =
3346 	{ external,	"10Mbps",	E1000G_LB_EXTERNAL_10	};
3347 static lb_property_t lb_phy =
3348 	{ internal,	"PHY",		E1000G_LB_INTERNAL_PHY	};
3349 
3350 static enum ioc_reply
3351 e1000g_loopback_ioctl(struct e1000g *Adapter, struct iocblk *iocp, mblk_t *mp)
3352 {
3353 	lb_info_sz_t *lbsp;
3354 	lb_property_t *lbpp;
3355 	struct e1000_hw *hw;
3356 	uint32_t *lbmp;
3357 	uint32_t size;
3358 	uint32_t value;
3359 	uint16_t phy_status;
3360 	uint16_t phy_ext_status;
3361 
3362 	hw = &Adapter->Shared;
3363 
3364 	if (mp->b_cont == NULL)
3365 		return (IOC_INVAL);
3366 
3367 	switch (iocp->ioc_cmd) {
3368 	default:
3369 		return (IOC_INVAL);
3370 
3371 	case LB_GET_INFO_SIZE:
3372 		size = sizeof (lb_info_sz_t);
3373 		if (iocp->ioc_count != size)
3374 			return (IOC_INVAL);
3375 
3376 		e1000_read_phy_reg(hw, PHY_EXT_STATUS, &phy_ext_status);
3377 		e1000_read_phy_reg(hw, PHY_STATUS, &phy_status);
3378 
3379 		value = sizeof (lb_normal);
3380 		if ((phy_ext_status & IEEE_ESR_1000T_FD_CAPS) ||
3381 		    (phy_ext_status & IEEE_ESR_1000X_FD_CAPS) ||
3382 		    (hw->media_type == e1000_media_type_fiber) ||
3383 		    (hw->media_type == e1000_media_type_internal_serdes)) {
3384 			value += sizeof (lb_phy);
3385 			switch (hw->mac_type) {
3386 			case e1000_82571:
3387 			case e1000_82572:
3388 				value += sizeof (lb_external1000);
3389 				break;
3390 			}
3391 		}
3392 		if ((phy_status & MII_SR_100X_FD_CAPS) ||
3393 		    (phy_status & MII_SR_100T2_FD_CAPS))
3394 			value += sizeof (lb_external100);
3395 		if (phy_status & MII_SR_10T_FD_CAPS)
3396 			value += sizeof (lb_external10);
3397 
3398 		lbsp = (lb_info_sz_t *)mp->b_cont->b_rptr;
3399 		*lbsp = value;
3400 		break;
3401 
3402 	case LB_GET_INFO:
3403 		e1000_read_phy_reg(hw, PHY_EXT_STATUS, &phy_ext_status);
3404 		e1000_read_phy_reg(hw, PHY_STATUS, &phy_status);
3405 
3406 		value = sizeof (lb_normal);
3407 		if ((phy_ext_status & IEEE_ESR_1000T_FD_CAPS) ||
3408 		    (phy_ext_status & IEEE_ESR_1000X_FD_CAPS) ||
3409 		    (hw->media_type == e1000_media_type_fiber) ||
3410 		    (hw->media_type == e1000_media_type_internal_serdes)) {
3411 			value += sizeof (lb_phy);
3412 			switch (hw->mac_type) {
3413 			case e1000_82571:
3414 			case e1000_82572:
3415 				value += sizeof (lb_external1000);
3416 				break;
3417 			}
3418 		}
3419 		if ((phy_status & MII_SR_100X_FD_CAPS) ||
3420 		    (phy_status & MII_SR_100T2_FD_CAPS))
3421 			value += sizeof (lb_external100);
3422 		if (phy_status & MII_SR_10T_FD_CAPS)
3423 			value += sizeof (lb_external10);
3424 
3425 		size = value;
3426 		if (iocp->ioc_count != size)
3427 			return (IOC_INVAL);
3428 
3429 		value = 0;
3430 		lbpp = (lb_property_t *)mp->b_cont->b_rptr;
3431 		lbpp[value++] = lb_normal;
3432 		if ((phy_ext_status & IEEE_ESR_1000T_FD_CAPS) ||
3433 		    (phy_ext_status & IEEE_ESR_1000X_FD_CAPS) ||
3434 		    (hw->media_type == e1000_media_type_fiber) ||
3435 		    (hw->media_type == e1000_media_type_internal_serdes)) {
3436 			lbpp[value++] = lb_phy;
3437 			switch (hw->mac_type) {
3438 			case e1000_82571:
3439 			case e1000_82572:
3440 				lbpp[value++] = lb_external1000;
3441 				break;
3442 			}
3443 		}
3444 		if ((phy_status & MII_SR_100X_FD_CAPS) ||
3445 		    (phy_status & MII_SR_100T2_FD_CAPS))
3446 			lbpp[value++] = lb_external100;
3447 		if (phy_status & MII_SR_10T_FD_CAPS)
3448 			lbpp[value++] = lb_external10;
3449 		break;
3450 
3451 	case LB_GET_MODE:
3452 		size = sizeof (uint32_t);
3453 		if (iocp->ioc_count != size)
3454 			return (IOC_INVAL);
3455 
3456 		lbmp = (uint32_t *)mp->b_cont->b_rptr;
3457 		*lbmp = Adapter->loopback_mode;
3458 		break;
3459 
3460 	case LB_SET_MODE:
3461 		size = 0;
3462 		if (iocp->ioc_count != sizeof (uint32_t))
3463 			return (IOC_INVAL);
3464 
3465 		lbmp = (uint32_t *)mp->b_cont->b_rptr;
3466 		if (!e1000g_set_loopback_mode(Adapter, *lbmp))
3467 			return (IOC_INVAL);
3468 		break;
3469 	}
3470 
3471 	iocp->ioc_count = size;
3472 	iocp->ioc_error = 0;
3473 
3474 	return (IOC_REPLY);
3475 }
3476 
3477 static boolean_t
3478 e1000g_set_loopback_mode(struct e1000g *Adapter, uint32_t mode)
3479 {
3480 	struct e1000_hw *hw;
3481 #ifndef __sparc
3482 	uint32_t reg_rctl;
3483 #endif
3484 	int i, times;
3485 
3486 	if (mode == Adapter->loopback_mode)
3487 		return (B_TRUE);
3488 
3489 	hw = &Adapter->Shared;
3490 	times = 0;
3491 
3492 again:
3493 	switch (mode) {
3494 	default:
3495 		return (B_FALSE);
3496 
3497 	case E1000G_LB_NONE:
3498 		/* Get original speed and duplex settings */
3499 		e1000g_force_speed_duplex(Adapter);
3500 		/* Reset the chip */
3501 		hw->wait_autoneg_complete = B_TRUE;
3502 		(void) e1000g_reset(Adapter);
3503 		hw->wait_autoneg_complete = B_FALSE;
3504 		break;
3505 
3506 	case E1000G_LB_EXTERNAL_1000:
3507 		e1000g_set_external_loopback_1000(Adapter);
3508 		break;
3509 
3510 	case E1000G_LB_EXTERNAL_100:
3511 		e1000g_set_external_loopback_100(Adapter);
3512 		break;
3513 
3514 	case E1000G_LB_EXTERNAL_10:
3515 		e1000g_set_external_loopback_10(Adapter);
3516 		break;
3517 
3518 	case E1000G_LB_INTERNAL_PHY:
3519 		e1000g_set_internal_loopback(Adapter);
3520 		break;
3521 	}
3522 
3523 	times++;
3524 
3525 	switch (mode) {
3526 	case E1000G_LB_EXTERNAL_1000:
3527 	case E1000G_LB_EXTERNAL_100:
3528 	case E1000G_LB_EXTERNAL_10:
3529 	case E1000G_LB_INTERNAL_PHY:
3530 #ifndef __sparc
3531 		/* Enable the CRC stripping for loopback */
3532 		reg_rctl = E1000_READ_REG(hw, RCTL);
3533 		reg_rctl |= E1000_RCTL_SECRC;
3534 		E1000_WRITE_REG(hw, RCTL, reg_rctl);
3535 #endif
3536 		/* Wait for link up */
3537 		for (i = (PHY_FORCE_TIME * 2); i > 0; i--)
3538 			msec_delay(100);
3539 
3540 		if (!e1000g_link_up(Adapter)) {
3541 			e1000g_DEBUGLOG_0(Adapter, e1000g_INFO_LEVEL,
3542 			    "Failed to get the link up");
3543 			if (times < 2) {
3544 				/* Reset the link */
3545 				e1000g_DEBUGLOG_0(Adapter, e1000g_INFO_LEVEL,
3546 				    "Reset the link ...");
3547 				(void) e1000g_reset(Adapter);
3548 				goto again;
3549 			}
3550 		}
3551 		break;
3552 	}
3553 
3554 	Adapter->loopback_mode = mode;
3555 
3556 	return (B_TRUE);
3557 }
3558 
3559 /*
3560  * The following loopback settings are from Intel's technical
3561  * document - "How To Loopback". All the register settings and
3562  * time delay values are directly inherited from the document
3563  * without more explanations available.
3564  */
3565 static void
3566 e1000g_set_internal_loopback(struct e1000g *Adapter)
3567 {
3568 	struct e1000_hw *hw;
3569 	uint32_t ctrl;
3570 	uint32_t status;
3571 	uint16_t phy_ctrl;
3572 
3573 	hw = &Adapter->Shared;
3574 
3575 	/* Disable Smart Power Down */
3576 	phy_spd_state(hw, B_FALSE);
3577 
3578 	e1000_read_phy_reg(hw, PHY_CTRL, &phy_ctrl);
3579 	phy_ctrl &= ~(MII_CR_AUTO_NEG_EN | MII_CR_SPEED_100 | MII_CR_SPEED_10);
3580 	phy_ctrl |= MII_CR_FULL_DUPLEX | MII_CR_SPEED_1000;
3581 
3582 	switch (hw->mac_type) {
3583 	case e1000_82540:
3584 	case e1000_82545:
3585 	case e1000_82545_rev_3:
3586 	case e1000_82546:
3587 	case e1000_82546_rev_3:
3588 	case e1000_82573:
3589 		/* Auto-MDI/MDIX off */
3590 		e1000_write_phy_reg(hw, M88E1000_PHY_SPEC_CTRL, 0x0808);
3591 		/* Reset PHY to update Auto-MDI/MDIX */
3592 		e1000_write_phy_reg(hw, PHY_CTRL,
3593 			phy_ctrl | MII_CR_RESET | MII_CR_AUTO_NEG_EN);
3594 		/* Reset PHY to auto-neg off and force 1000 */
3595 		e1000_write_phy_reg(hw, PHY_CTRL,
3596 			phy_ctrl | MII_CR_RESET);
3597 		break;
3598 	}
3599 
3600 	/* Set loopback */
3601 	e1000_write_phy_reg(hw, PHY_CTRL, phy_ctrl | MII_CR_LOOPBACK);
3602 
3603 	msec_delay(250);
3604 
3605 	/* Now set up the MAC to the same speed/duplex as the PHY. */
3606 	ctrl = E1000_READ_REG(hw, CTRL);
3607 	ctrl &= ~E1000_CTRL_SPD_SEL;	/* Clear the speed sel bits */
3608 	ctrl |= (E1000_CTRL_FRCSPD |	/* Set the Force Speed Bit */
3609 		E1000_CTRL_FRCDPX |	/* Set the Force Duplex Bit */
3610 		E1000_CTRL_SPD_1000 |	/* Force Speed to 1000 */
3611 		E1000_CTRL_FD);		/* Force Duplex to FULL */
3612 
3613 	switch (hw->mac_type) {
3614 	case e1000_82540:
3615 	case e1000_82545:
3616 	case e1000_82545_rev_3:
3617 	case e1000_82546:
3618 	case e1000_82546_rev_3:
3619 		/*
3620 		 * For some serdes we'll need to commit the writes now
3621 		 * so that the status is updated on link
3622 		 */
3623 		if (hw->media_type == e1000_media_type_internal_serdes) {
3624 			E1000_WRITE_REG(hw, CTRL, ctrl);
3625 			msec_delay(100);
3626 			ctrl = E1000_READ_REG(hw, CTRL);
3627 		}
3628 
3629 		if (hw->media_type == e1000_media_type_copper) {
3630 			/* Invert Loss of Signal */
3631 			ctrl |= E1000_CTRL_ILOS;
3632 		} else {
3633 			/* Set ILOS on fiber nic if half duplex is detected */
3634 			status = E1000_READ_REG(hw, STATUS);
3635 			if ((status & E1000_STATUS_FD) == 0)
3636 				ctrl |= E1000_CTRL_ILOS | E1000_CTRL_SLU;
3637 		}
3638 		break;
3639 
3640 	case e1000_82571:
3641 	case e1000_82572:
3642 		if (hw->media_type != e1000_media_type_copper) {
3643 			/* Set ILOS on fiber nic if half duplex is detected */
3644 			status = E1000_READ_REG(hw, STATUS);
3645 			if ((status & E1000_STATUS_FD) == 0)
3646 				ctrl |= E1000_CTRL_ILOS | E1000_CTRL_SLU;
3647 		}
3648 		break;
3649 
3650 	case e1000_82573:
3651 		ctrl |= E1000_CTRL_ILOS;
3652 		break;
3653 	}
3654 
3655 	E1000_WRITE_REG(hw, CTRL, ctrl);
3656 
3657 	/*
3658 	 * Disable PHY receiver for 82540/545/546 and 82573 Family.
3659 	 * For background, see comments above e1000g_set_internal_loopback().
3660 	 */
3661 	switch (hw->mac_type) {
3662 	case e1000_82540:
3663 	case e1000_82545:
3664 	case e1000_82545_rev_3:
3665 	case e1000_82546:
3666 	case e1000_82546_rev_3:
3667 	case e1000_82573:
3668 		e1000_write_phy_reg(hw, 29, 0x001F);
3669 		e1000_write_phy_reg(hw, 30, 0x8FFC);
3670 		e1000_write_phy_reg(hw, 29, 0x001A);
3671 		e1000_write_phy_reg(hw, 30, 0x8FF0);
3672 		break;
3673 	}
3674 }
3675 
3676 static void
3677 e1000g_set_external_loopback_1000(struct e1000g *Adapter)
3678 {
3679 	struct e1000_hw *hw;
3680 	uint32_t rctl;
3681 	uint32_t ctrl_ext;
3682 	uint32_t ctrl;
3683 	uint32_t status;
3684 	uint32_t txcw;
3685 
3686 	hw = &Adapter->Shared;
3687 
3688 	/* Disable Smart Power Down */
3689 	phy_spd_state(hw, B_FALSE);
3690 
3691 	switch (hw->media_type) {
3692 	case e1000_media_type_copper:
3693 		/* Force link up (Must be done before the PHY writes) */
3694 		ctrl = E1000_READ_REG(hw, CTRL);
3695 		ctrl |= E1000_CTRL_SLU;	/* Force Link Up */
3696 		E1000_WRITE_REG(hw, CTRL, ctrl);
3697 
3698 		rctl = E1000_READ_REG(hw, RCTL);
3699 		rctl |= (E1000_RCTL_EN |
3700 			E1000_RCTL_SBP |
3701 			E1000_RCTL_UPE |
3702 			E1000_RCTL_MPE |
3703 			E1000_RCTL_LPE |
3704 			E1000_RCTL_BAM);		/* 0x803E */
3705 		E1000_WRITE_REG(hw, RCTL, rctl);
3706 
3707 		ctrl_ext = E1000_READ_REG(hw, CTRL_EXT);
3708 		ctrl_ext |= (E1000_CTRL_EXT_SDP4_DATA |
3709 			E1000_CTRL_EXT_SDP6_DATA |
3710 			E1000_CTRL_EXT_SDP7_DATA |
3711 			E1000_CTRL_EXT_SDP4_DIR |
3712 			E1000_CTRL_EXT_SDP6_DIR |
3713 			E1000_CTRL_EXT_SDP7_DIR);	/* 0x0DD0 */
3714 		E1000_WRITE_REG(hw, CTRL_EXT, ctrl_ext);
3715 
3716 		/*
3717 		 * This sequence tunes the PHY's SDP and no customer
3718 		 * settable values. For background, see comments above
3719 		 * e1000g_set_internal_loopback().
3720 		 */
3721 		e1000_write_phy_reg(hw, 0x0, 0x140);
3722 		msec_delay(10);
3723 		e1000_write_phy_reg(hw, 0x9, 0x1A00);
3724 		e1000_write_phy_reg(hw, 0x12, 0xC10);
3725 		e1000_write_phy_reg(hw, 0x12, 0x1C10);
3726 		e1000_write_phy_reg(hw, 0x1F37, 0x76);
3727 		e1000_write_phy_reg(hw, 0x1F33, 0x1);
3728 		e1000_write_phy_reg(hw, 0x1F33, 0x0);
3729 
3730 		e1000_write_phy_reg(hw, 0x1F35, 0x65);
3731 		e1000_write_phy_reg(hw, 0x1837, 0x3F7C);
3732 		e1000_write_phy_reg(hw, 0x1437, 0x3FDC);
3733 		e1000_write_phy_reg(hw, 0x1237, 0x3F7C);
3734 		e1000_write_phy_reg(hw, 0x1137, 0x3FDC);
3735 
3736 		msec_delay(50);
3737 		break;
3738 	case e1000_media_type_fiber:
3739 	case e1000_media_type_internal_serdes:
3740 		status = E1000_READ_REG(hw, STATUS);
3741 		if (((status & E1000_STATUS_LU) == 0) ||
3742 		    (hw->media_type == e1000_media_type_internal_serdes)) {
3743 			ctrl = E1000_READ_REG(hw, CTRL);
3744 			ctrl |= E1000_CTRL_ILOS | E1000_CTRL_SLU;
3745 			E1000_WRITE_REG(hw, CTRL, ctrl);
3746 		}
3747 
3748 		/* Disable autoneg by setting bit 31 of TXCW to zero */
3749 		txcw = E1000_READ_REG(hw, TXCW);
3750 		txcw &= ~((uint32_t)1 << 31);
3751 		E1000_WRITE_REG(hw, TXCW, txcw);
3752 
3753 		/*
3754 		 * Write 0x410 to Serdes Control register
3755 		 * to enable Serdes analog loopback
3756 		 */
3757 		E1000_WRITE_REG(hw, SCTL, 0x0410);
3758 		msec_delay(10);
3759 		break;
3760 	default:
3761 		break;
3762 	}
3763 }
3764 
3765 static void
3766 e1000g_set_external_loopback_100(struct e1000g *Adapter)
3767 {
3768 	struct e1000_hw *hw;
3769 	uint32_t ctrl;
3770 	uint16_t phy_ctrl;
3771 
3772 	hw = &Adapter->Shared;
3773 
3774 	/* Disable Smart Power Down */
3775 	phy_spd_state(hw, B_FALSE);
3776 
3777 	phy_ctrl = (MII_CR_FULL_DUPLEX |
3778 		MII_CR_SPEED_100);
3779 
3780 	/* Force 100/FD, reset PHY */
3781 	e1000_write_phy_reg(hw, PHY_CTRL,
3782 		phy_ctrl | MII_CR_RESET);	/* 0xA100 */
3783 	msec_delay(10);
3784 
3785 	/* Force 100/FD */
3786 	e1000_write_phy_reg(hw, PHY_CTRL,
3787 		phy_ctrl);			/* 0x2100 */
3788 	msec_delay(10);
3789 
3790 	/* Now setup the MAC to the same speed/duplex as the PHY. */
3791 	ctrl = E1000_READ_REG(hw, CTRL);
3792 	ctrl &= ~E1000_CTRL_SPD_SEL;	/* Clear the speed sel bits */
3793 	ctrl |= (E1000_CTRL_SLU |	/* Force Link Up */
3794 		E1000_CTRL_FRCSPD |	/* Set the Force Speed Bit */
3795 		E1000_CTRL_FRCDPX |	/* Set the Force Duplex Bit */
3796 		E1000_CTRL_SPD_100 |	/* Force Speed to 100 */
3797 		E1000_CTRL_FD);		/* Force Duplex to FULL */
3798 
3799 	E1000_WRITE_REG(hw, CTRL, ctrl);
3800 }
3801 
3802 static void
3803 e1000g_set_external_loopback_10(struct e1000g *Adapter)
3804 {
3805 	struct e1000_hw *hw;
3806 	uint32_t ctrl;
3807 	uint16_t phy_ctrl;
3808 
3809 	hw = &Adapter->Shared;
3810 
3811 	/* Disable Smart Power Down */
3812 	phy_spd_state(hw, B_FALSE);
3813 
3814 	phy_ctrl = (MII_CR_FULL_DUPLEX |
3815 		MII_CR_SPEED_10);
3816 
3817 	/* Force 10/FD, reset PHY */
3818 	e1000_write_phy_reg(hw, PHY_CTRL,
3819 		phy_ctrl | MII_CR_RESET);	/* 0x8100 */
3820 	msec_delay(10);
3821 
3822 	/* Force 10/FD */
3823 	e1000_write_phy_reg(hw, PHY_CTRL,
3824 		phy_ctrl);			/* 0x0100 */
3825 	msec_delay(10);
3826 
3827 	/* Now setup the MAC to the same speed/duplex as the PHY. */
3828 	ctrl = E1000_READ_REG(hw, CTRL);
3829 	ctrl &= ~E1000_CTRL_SPD_SEL;	/* Clear the speed sel bits */
3830 	ctrl |= (E1000_CTRL_SLU |	/* Force Link Up */
3831 		E1000_CTRL_FRCSPD |	/* Set the Force Speed Bit */
3832 		E1000_CTRL_FRCDPX |	/* Set the Force Duplex Bit */
3833 		E1000_CTRL_SPD_10 |	/* Force Speed to 10 */
3834 		E1000_CTRL_FD);		/* Force Duplex to FULL */
3835 
3836 	E1000_WRITE_REG(hw, CTRL, ctrl);
3837 }
3838 
3839 #ifdef __sparc
3840 static boolean_t
3841 e1000g_find_mac_address(struct e1000g *Adapter)
3842 {
3843 	uchar_t *bytes;
3844 	struct ether_addr sysaddr;
3845 	uint_t nelts;
3846 	int err;
3847 	boolean_t found = B_FALSE;
3848 
3849 	/*
3850 	 * The "vendor's factory-set address" may already have
3851 	 * been extracted from the chip, but if the property
3852 	 * "local-mac-address" is set we use that instead.
3853 	 *
3854 	 * We check whether it looks like an array of 6
3855 	 * bytes (which it should, if OBP set it).  If we can't
3856 	 * make sense of it this way, we'll ignore it.
3857 	 */
3858 	err = ddi_prop_lookup_byte_array(DDI_DEV_T_ANY, Adapter->dip,
3859 	    DDI_PROP_DONTPASS, "local-mac-address", &bytes, &nelts);
3860 	if (err == DDI_PROP_SUCCESS) {
3861 		if (nelts == ETHERADDRL) {
3862 			while (nelts--)
3863 				Adapter->Shared.mac_addr[nelts] = bytes[nelts];
3864 			found = B_TRUE;
3865 		}
3866 		ddi_prop_free(bytes);
3867 	}
3868 
3869 	/*
3870 	 * Look up the OBP property "local-mac-address?". If the user has set
3871 	 * 'local-mac-address? = false', use "the system address" instead.
3872 	 */
3873 	if (ddi_prop_lookup_byte_array(DDI_DEV_T_ANY, Adapter->dip, 0,
3874 	    "local-mac-address?", &bytes, &nelts) == DDI_PROP_SUCCESS) {
3875 		if (strncmp("false", (caddr_t)bytes, (size_t)nelts) == 0) {
3876 			if (localetheraddr(NULL, &sysaddr) != 0) {
3877 				bcopy(&sysaddr, Adapter->Shared.mac_addr,
3878 				    ETHERADDRL);
3879 				found = B_TRUE;
3880 			}
3881 		}
3882 		ddi_prop_free(bytes);
3883 	}
3884 
3885 	/*
3886 	 * Finally(!), if there's a valid "mac-address" property (created
3887 	 * if we netbooted from this interface), we must use this instead
3888 	 * of any of the above to ensure that the NFS/install server doesn't
3889 	 * get confused by the address changing as Solaris takes over!
3890 	 */
3891 	err = ddi_prop_lookup_byte_array(DDI_DEV_T_ANY, Adapter->dip,
3892 	    DDI_PROP_DONTPASS, "mac-address", &bytes, &nelts);
3893 	if (err == DDI_PROP_SUCCESS) {
3894 		if (nelts == ETHERADDRL) {
3895 			while (nelts--)
3896 				Adapter->Shared.mac_addr[nelts] = bytes[nelts];
3897 			found = B_TRUE;
3898 		}
3899 		ddi_prop_free(bytes);
3900 	}
3901 
3902 	if (found) {
3903 		bcopy(Adapter->Shared.mac_addr, Adapter->Shared.perm_mac_addr,
3904 		    ETHERADDRL);
3905 	}
3906 
3907 	return (found);
3908 }
3909 #endif
3910 
3911 static int
3912 e1000g_add_intrs(struct e1000g *Adapter)
3913 {
3914 	dev_info_t *devinfo;
3915 	int intr_types;
3916 	int rc;
3917 
3918 	devinfo = Adapter->dip;
3919 
3920 	/* Get supported interrupt types */
3921 	rc = ddi_intr_get_supported_types(devinfo, &intr_types);
3922 
3923 	if (rc != DDI_SUCCESS) {
3924 		e1000g_DEBUGLOG_1(Adapter, e1000g_INFO_LEVEL,
3925 		    "Get supported interrupt types failed: %d\n", rc);
3926 		return (DDI_FAILURE);
3927 	}
3928 
3929 	/*
3930 	 * Based on Intel Technical Advisory document (TA-160), there are some
3931 	 * cases where some older Intel PCI-X NICs may "advertise" to the OS
3932 	 * that it supports MSI, but in fact has problems.
3933 	 * So we should only enable MSI for PCI-E NICs and disable MSI for old
3934 	 * PCI/PCI-X NICs.
3935 	 */
3936 	if (Adapter->Shared.mac_type < e1000_82571)
3937 		Adapter->msi_enabled = B_FALSE;
3938 
3939 	if ((intr_types & DDI_INTR_TYPE_MSI) && Adapter->msi_enabled) {
3940 		rc = e1000g_intr_add(Adapter, DDI_INTR_TYPE_MSI);
3941 
3942 		if (rc != DDI_SUCCESS) {
3943 			e1000g_DEBUGLOG_0(Adapter, e1000g_INFO_LEVEL,
3944 			    "Add MSI failed, trying Legacy interrupts\n");
3945 		} else {
3946 			Adapter->intr_type = DDI_INTR_TYPE_MSI;
3947 		}
3948 	}
3949 
3950 	if ((Adapter->intr_type == 0) &&
3951 	    (intr_types & DDI_INTR_TYPE_FIXED)) {
3952 		rc = e1000g_intr_add(Adapter, DDI_INTR_TYPE_FIXED);
3953 
3954 		if (rc != DDI_SUCCESS) {
3955 			e1000g_DEBUGLOG_0(Adapter, e1000g_INFO_LEVEL,
3956 			    "Add Legacy interrupts failed\n");
3957 			return (DDI_FAILURE);
3958 		}
3959 
3960 		Adapter->intr_type = DDI_INTR_TYPE_FIXED;
3961 	}
3962 
3963 	if (Adapter->intr_type == 0) {
3964 		e1000g_DEBUGLOG_0(Adapter, e1000g_INFO_LEVEL,
3965 		    "No interrupts registered\n");
3966 		return (DDI_FAILURE);
3967 	}
3968 
3969 	return (DDI_SUCCESS);
3970 }
3971 
3972 /*
3973  * e1000g_intr_add() handles MSI/Legacy interrupts
3974  */
3975 static int
3976 e1000g_intr_add(struct e1000g *Adapter, int intr_type)
3977 {
3978 	dev_info_t *devinfo;
3979 	int count, avail, actual;
3980 	int x, y, rc, inum = 0;
3981 	int flag;
3982 	ddi_intr_handler_t *intr_handler;
3983 
3984 	devinfo = Adapter->dip;
3985 
3986 	/* get number of interrupts */
3987 	rc = ddi_intr_get_nintrs(devinfo, intr_type, &count);
3988 	if ((rc != DDI_SUCCESS) || (count == 0)) {
3989 		e1000g_DEBUGLOG_2(Adapter, e1000g_INFO_LEVEL,
3990 		    "Get interrupt number failed. Return: %d, count: %d\n",
3991 		    rc, count);
3992 		return (DDI_FAILURE);
3993 	}
3994 
3995 	/* get number of available interrupts */
3996 	rc = ddi_intr_get_navail(devinfo, intr_type, &avail);
3997 	if ((rc != DDI_SUCCESS) || (avail == 0)) {
3998 		e1000g_DEBUGLOG_2(Adapter, e1000g_INFO_LEVEL,
3999 		    "Get interrupt available number failed. "
4000 		    "Return: %d, available: %d\n", rc, avail);
4001 		return (DDI_FAILURE);
4002 	}
4003 
4004 	if (avail < count) {
4005 		e1000g_DEBUGLOG_2(Adapter, e1000g_INFO_LEVEL,
4006 		    "Interrupts count: %d, available: %d\n",
4007 		    count, avail);
4008 	}
4009 
4010 	/* Allocate an array of interrupt handles */
4011 	Adapter->intr_size = count * sizeof (ddi_intr_handle_t);
4012 	Adapter->htable = kmem_alloc(Adapter->intr_size, KM_SLEEP);
4013 
4014 	/* Set NORMAL behavior for both MSI and FIXED interrupt */
4015 	flag = DDI_INTR_ALLOC_NORMAL;
4016 
4017 	/* call ddi_intr_alloc() */
4018 	rc = ddi_intr_alloc(devinfo, Adapter->htable, intr_type, inum,
4019 	    count, &actual, flag);
4020 
4021 	if ((rc != DDI_SUCCESS) || (actual == 0)) {
4022 		e1000g_DEBUGLOG_1(Adapter, e1000g_INFO_LEVEL,
4023 		    "Allocate interrupts failed: %d\n", rc);
4024 
4025 		kmem_free(Adapter->htable, Adapter->intr_size);
4026 		return (DDI_FAILURE);
4027 	}
4028 
4029 	if (actual < count) {
4030 		e1000g_DEBUGLOG_2(Adapter, e1000g_INFO_LEVEL,
4031 		    "Interrupts requested: %d, received: %d\n",
4032 		    count, actual);
4033 	}
4034 
4035 	Adapter->intr_cnt = actual;
4036 
4037 	/* Get priority for first msi, assume remaining are all the same */
4038 	rc = ddi_intr_get_pri(Adapter->htable[0], &Adapter->intr_pri);
4039 
4040 	if (rc != DDI_SUCCESS) {
4041 		e1000g_DEBUGLOG_1(Adapter, e1000g_INFO_LEVEL,
4042 		    "Get interrupt priority failed: %d\n", rc);
4043 
4044 		/* Free already allocated intr */
4045 		for (y = 0; y < actual; y++)
4046 			(void) ddi_intr_free(Adapter->htable[y]);
4047 
4048 		kmem_free(Adapter->htable, Adapter->intr_size);
4049 		return (DDI_FAILURE);
4050 	}
4051 
4052 	/*
4053 	 * In Legacy Interrupt mode, for PCI-Express adapters, we should
4054 	 * use the interrupt service routine e1000g_intr_pciexpress()
4055 	 * to avoid interrupt stealing when sharing interrupt with other
4056 	 * devices.
4057 	 */
4058 	if (Adapter->Shared.mac_type < e1000_82571)
4059 		intr_handler = (ddi_intr_handler_t *)e1000g_intr;
4060 	else
4061 		intr_handler = (ddi_intr_handler_t *)e1000g_intr_pciexpress;
4062 
4063 	/* Call ddi_intr_add_handler() */
4064 	for (x = 0; x < actual; x++) {
4065 		rc = ddi_intr_add_handler(Adapter->htable[x],
4066 		    intr_handler, (caddr_t)Adapter, NULL);
4067 
4068 		if (rc != DDI_SUCCESS) {
4069 			e1000g_DEBUGLOG_1(Adapter, e1000g_INFO_LEVEL,
4070 			    "Add interrupt handler failed: %d\n", rc);
4071 
4072 			/* Remove already added handler */
4073 			for (y = 0; y < x; y++)
4074 				(void) ddi_intr_remove_handler(
4075 				    Adapter->htable[y]);
4076 
4077 			/* Free already allocated intr */
4078 			for (y = 0; y < actual; y++)
4079 				(void) ddi_intr_free(Adapter->htable[y]);
4080 
4081 			kmem_free(Adapter->htable, Adapter->intr_size);
4082 			return (DDI_FAILURE);
4083 		}
4084 	}
4085 
4086 	rc = ddi_intr_get_cap(Adapter->htable[0], &Adapter->intr_cap);
4087 
4088 	if (rc != DDI_SUCCESS) {
4089 		e1000g_DEBUGLOG_1(Adapter, e1000g_INFO_LEVEL,
4090 		    "Get interrupt cap failed: %d\n", rc);
4091 
4092 		/* Free already allocated intr */
4093 		for (y = 0; y < actual; y++) {
4094 			(void) ddi_intr_remove_handler(Adapter->htable[y]);
4095 			(void) ddi_intr_free(Adapter->htable[y]);
4096 		}
4097 
4098 		kmem_free(Adapter->htable, Adapter->intr_size);
4099 		return (DDI_FAILURE);
4100 	}
4101 
4102 	return (DDI_SUCCESS);
4103 }
4104 
4105 static int
4106 e1000g_rem_intrs(struct e1000g *Adapter)
4107 {
4108 	int x;
4109 	int rc;
4110 
4111 	for (x = 0; x < Adapter->intr_cnt; x++) {
4112 		rc = ddi_intr_remove_handler(Adapter->htable[x]);
4113 		if (rc != DDI_SUCCESS) {
4114 			e1000g_DEBUGLOG_1(Adapter, e1000g_INFO_LEVEL,
4115 			    "Remove intr handler failed: %d\n", rc);
4116 			return (DDI_FAILURE);
4117 		}
4118 
4119 		rc = ddi_intr_free(Adapter->htable[x]);
4120 		if (rc != DDI_SUCCESS) {
4121 			e1000g_DEBUGLOG_1(Adapter, e1000g_INFO_LEVEL,
4122 			    "Free intr failed: %d\n", rc);
4123 			return (DDI_FAILURE);
4124 		}
4125 	}
4126 
4127 	kmem_free(Adapter->htable, Adapter->intr_size);
4128 
4129 	return (DDI_SUCCESS);
4130 }
4131 
4132 static int
4133 e1000g_enable_intrs(struct e1000g *Adapter)
4134 {
4135 	int x;
4136 	int rc;
4137 
4138 	/* Enable interrupts */
4139 	if (Adapter->intr_cap & DDI_INTR_FLAG_BLOCK) {
4140 		/* Call ddi_intr_block_enable() for MSI */
4141 		rc = ddi_intr_block_enable(Adapter->htable,
4142 		    Adapter->intr_cnt);
4143 		if (rc != DDI_SUCCESS) {
4144 			e1000g_DEBUGLOG_1(Adapter, e1000g_INFO_LEVEL,
4145 			    "Enable block intr failed: %d\n", rc);
4146 			return (DDI_FAILURE);
4147 		}
4148 	} else {
4149 		/* Call ddi_intr_enable() for Legacy/MSI non block enable */
4150 		for (x = 0; x < Adapter->intr_cnt; x++) {
4151 			rc = ddi_intr_enable(Adapter->htable[x]);
4152 			if (rc != DDI_SUCCESS) {
4153 				e1000g_DEBUGLOG_1(Adapter, e1000g_INFO_LEVEL,
4154 				    "Enable intr failed: %d\n", rc);
4155 				return (DDI_FAILURE);
4156 			}
4157 		}
4158 	}
4159 
4160 	return (DDI_SUCCESS);
4161 }
4162 
4163 static int
4164 e1000g_disable_intrs(struct e1000g *Adapter)
4165 {
4166 	int x;
4167 	int rc;
4168 
4169 	/* Disable all interrupts */
4170 	if (Adapter->intr_cap & DDI_INTR_FLAG_BLOCK) {
4171 		rc = ddi_intr_block_disable(Adapter->htable,
4172 		    Adapter->intr_cnt);
4173 		if (rc != DDI_SUCCESS) {
4174 			e1000g_DEBUGLOG_1(Adapter, e1000g_INFO_LEVEL,
4175 			    "Disable block intr failed: %d\n", rc);
4176 			return (DDI_FAILURE);
4177 		}
4178 	} else {
4179 		for (x = 0; x < Adapter->intr_cnt; x++) {
4180 			rc = ddi_intr_disable(Adapter->htable[x]);
4181 			if (rc != DDI_SUCCESS) {
4182 				e1000g_DEBUGLOG_1(Adapter, e1000g_INFO_LEVEL,
4183 				    "Disable intr failed: %d\n", rc);
4184 				return (DDI_FAILURE);
4185 			}
4186 		}
4187 	}
4188 
4189 	return (DDI_SUCCESS);
4190 }
4191 
4192 /*
4193  * phy_spd_state - set smart-power-down (SPD) state
4194  *
4195  * This only acts on the 82541/47 family and the 82571/72 family.
4196  * For any others, return without doing anything.
4197  */
4198 void
4199 phy_spd_state(struct e1000_hw *hw, boolean_t enable)
4200 {
4201 	int32_t offset;		/* offset to register */
4202 	uint16_t spd_bit;	/* bit to be set */
4203 	uint16_t reg;		/* register contents */
4204 
4205 	switch (hw->mac_type) {
4206 	case e1000_82541:
4207 	case e1000_82547:
4208 	case e1000_82541_rev_2:
4209 	case e1000_82547_rev_2:
4210 		offset = IGP01E1000_GMII_FIFO;
4211 		spd_bit = IGP01E1000_GMII_SPD;
4212 		break;
4213 	case e1000_82571:
4214 	case e1000_82572:
4215 		offset = IGP02E1000_PHY_POWER_MGMT;
4216 		spd_bit = IGP02E1000_PM_SPD;
4217 		break;
4218 	default:
4219 		return;		/* no action */
4220 	}
4221 
4222 	e1000_read_phy_reg(hw, offset, &reg);
4223 
4224 	if (enable)
4225 		reg |= spd_bit;		/* enable: set the spd bit */
4226 	else
4227 		reg &= ~spd_bit;	/* disable: clear the spd bit */
4228 
4229 	e1000_write_phy_reg(hw, offset, reg);
4230 }
4231 
4232 /*
4233  * The real intent of this routine is to return the value from pci-e
4234  * config space at offset reg into the capability space.
4235  * ICH devices are "PCI Express"-ish.  They have a configuration space,
4236  * but do not contain PCI Express Capability registers, so this returns
4237  * the equivalent of "not supported"
4238  */
4239 int32_t
4240 e1000_read_pcie_cap_reg(struct e1000_hw *hw, uint32_t reg, uint16_t *value)
4241 {
4242 	*value = pci_config_get16(((struct e1000g_osdep *)hw->back)->handle,
4243 		PCI_EX_CONF_CAP + reg);
4244 
4245 	return (0);
4246 }
4247 
4248 /*
4249  * Enables PCI-Express master access.
4250  *
4251  * hw: Struct containing variables accessed by shared code
4252  *
4253  * returns: - none.
4254  */
4255 void
4256 e1000_enable_pciex_master(struct e1000_hw *hw)
4257 {
4258 	uint32_t ctrl;
4259 
4260 	if (hw->bus_type != e1000_bus_type_pci_express)
4261 		return;
4262 
4263 	ctrl = E1000_READ_REG(hw, CTRL);
4264 	ctrl &= ~E1000_CTRL_GIO_MASTER_DISABLE;
4265 	E1000_WRITE_REG(hw, CTRL, ctrl);
4266 }
4267