xref: /illumos-gate/usr/src/uts/common/io/e1000api/e1000_ich8lan.c (revision 1ec00b5abd071c76e2dc0cfa7905965b6b7a89a9)
1 /******************************************************************************
2 
3   Copyright (c) 2001-2015, Intel Corporation
4   All rights reserved.
5 
6   Redistribution and use in source and binary forms, with or without
7   modification, are permitted provided that the following conditions are met:
8 
9    1. Redistributions of source code must retain the above copyright notice,
10       this list of conditions and the following disclaimer.
11 
12    2. Redistributions in binary form must reproduce the above copyright
13       notice, this list of conditions and the following disclaimer in the
14       documentation and/or other materials provided with the distribution.
15 
16    3. Neither the name of the Intel Corporation nor the names of its
17       contributors may be used to endorse or promote products derived from
18       this software without specific prior written permission.
19 
20   THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
21   AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
22   IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
23   ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
24   LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
25   CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
26   SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
27   INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
28   CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
29   ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
30   POSSIBILITY OF SUCH DAMAGE.
31 
32 ******************************************************************************/
33 /*$FreeBSD$*/
34 
35 /* 82562G 10/100 Network Connection
36  * 82562G-2 10/100 Network Connection
37  * 82562GT 10/100 Network Connection
38  * 82562GT-2 10/100 Network Connection
39  * 82562V 10/100 Network Connection
40  * 82562V-2 10/100 Network Connection
41  * 82566DC-2 Gigabit Network Connection
42  * 82566DC Gigabit Network Connection
43  * 82566DM-2 Gigabit Network Connection
44  * 82566DM Gigabit Network Connection
45  * 82566MC Gigabit Network Connection
46  * 82566MM Gigabit Network Connection
47  * 82567LM Gigabit Network Connection
48  * 82567LF Gigabit Network Connection
49  * 82567V Gigabit Network Connection
50  * 82567LM-2 Gigabit Network Connection
51  * 82567LF-2 Gigabit Network Connection
52  * 82567V-2 Gigabit Network Connection
53  * 82567LF-3 Gigabit Network Connection
54  * 82567LM-3 Gigabit Network Connection
55  * 82567LM-4 Gigabit Network Connection
56  * 82577LM Gigabit Network Connection
57  * 82577LC Gigabit Network Connection
58  * 82578DM Gigabit Network Connection
59  * 82578DC Gigabit Network Connection
60  * 82579LM Gigabit Network Connection
61  * 82579V Gigabit Network Connection
62  * Ethernet Connection I217-LM
63  * Ethernet Connection I217-V
64  * Ethernet Connection I218-V
65  * Ethernet Connection I218-LM
66  * Ethernet Connection (2) I218-LM
67  * Ethernet Connection (2) I218-V
68  * Ethernet Connection (3) I218-LM
69  * Ethernet Connection (3) I218-V
70  */
71 
72 #include "e1000_api.h"
73 
74 static s32  e1000_acquire_swflag_ich8lan(struct e1000_hw *hw);
75 static void e1000_release_swflag_ich8lan(struct e1000_hw *hw);
76 static s32  e1000_acquire_nvm_ich8lan(struct e1000_hw *hw);
77 static void e1000_release_nvm_ich8lan(struct e1000_hw *hw);
78 static bool e1000_check_mng_mode_ich8lan(struct e1000_hw *hw);
79 static bool e1000_check_mng_mode_pchlan(struct e1000_hw *hw);
80 static int  e1000_rar_set_pch2lan(struct e1000_hw *hw, u8 *addr, u32 index);
81 static int  e1000_rar_set_pch_lpt(struct e1000_hw *hw, u8 *addr, u32 index);
82 static s32 e1000_sw_lcd_config_ich8lan(struct e1000_hw *hw);
83 static void e1000_update_mc_addr_list_pch2lan(struct e1000_hw *hw,
84 					      u8 *mc_addr_list,
85 					      u32 mc_addr_count);
86 static s32  e1000_check_reset_block_ich8lan(struct e1000_hw *hw);
87 static s32  e1000_phy_hw_reset_ich8lan(struct e1000_hw *hw);
88 static s32  e1000_set_lplu_state_pchlan(struct e1000_hw *hw, bool active);
89 static s32  e1000_set_d0_lplu_state_ich8lan(struct e1000_hw *hw,
90 					    bool active);
91 static s32  e1000_set_d3_lplu_state_ich8lan(struct e1000_hw *hw,
92 					    bool active);
93 static s32  e1000_read_nvm_ich8lan(struct e1000_hw *hw, u16 offset,
94 				   u16 words, u16 *data);
95 static s32  e1000_read_nvm_spt(struct e1000_hw *hw, u16 offset, u16 words,
96 			       u16 *data);
97 static s32  e1000_write_nvm_ich8lan(struct e1000_hw *hw, u16 offset,
98 				    u16 words, u16 *data);
99 static s32  e1000_validate_nvm_checksum_ich8lan(struct e1000_hw *hw);
100 static s32  e1000_update_nvm_checksum_ich8lan(struct e1000_hw *hw);
101 static s32  e1000_update_nvm_checksum_spt(struct e1000_hw *hw);
102 static s32  e1000_valid_led_default_ich8lan(struct e1000_hw *hw,
103 					    u16 *data);
104 static s32 e1000_id_led_init_pchlan(struct e1000_hw *hw);
105 static s32  e1000_get_bus_info_ich8lan(struct e1000_hw *hw);
106 static s32  e1000_reset_hw_ich8lan(struct e1000_hw *hw);
107 static s32  e1000_init_hw_ich8lan(struct e1000_hw *hw);
108 static s32  e1000_setup_link_ich8lan(struct e1000_hw *hw);
109 static s32  e1000_setup_copper_link_ich8lan(struct e1000_hw *hw);
110 static s32  e1000_setup_copper_link_pch_lpt(struct e1000_hw *hw);
111 static s32  e1000_get_link_up_info_ich8lan(struct e1000_hw *hw,
112 					   u16 *speed, u16 *duplex);
113 static s32  e1000_cleanup_led_ich8lan(struct e1000_hw *hw);
114 static s32  e1000_led_on_ich8lan(struct e1000_hw *hw);
115 static s32  e1000_led_off_ich8lan(struct e1000_hw *hw);
116 static s32  e1000_k1_gig_workaround_hv(struct e1000_hw *hw, bool link);
117 static s32  e1000_setup_led_pchlan(struct e1000_hw *hw);
118 static s32  e1000_cleanup_led_pchlan(struct e1000_hw *hw);
119 static s32  e1000_led_on_pchlan(struct e1000_hw *hw);
120 static s32  e1000_led_off_pchlan(struct e1000_hw *hw);
121 static void e1000_clear_hw_cntrs_ich8lan(struct e1000_hw *hw);
122 static s32  e1000_erase_flash_bank_ich8lan(struct e1000_hw *hw, u32 bank);
123 static void e1000_initialize_hw_bits_ich8lan(struct e1000_hw *hw);
124 static s32  e1000_kmrn_lock_loss_workaround_ich8lan(struct e1000_hw *hw);
125 static s32  e1000_read_flash_byte_ich8lan(struct e1000_hw *hw,
126 					  u32 offset, u8 *data);
127 static s32  e1000_read_flash_data_ich8lan(struct e1000_hw *hw, u32 offset,
128 					  u8 size, u16 *data);
129 static s32  e1000_read_flash_data32_ich8lan(struct e1000_hw *hw, u32 offset,
130 					    u32 *data);
131 static s32  e1000_read_flash_dword_ich8lan(struct e1000_hw *hw,
132 					   u32 offset, u32 *data);
133 static s32  e1000_write_flash_data32_ich8lan(struct e1000_hw *hw,
134 					     u32 offset, u32 data);
135 static s32  e1000_retry_write_flash_dword_ich8lan(struct e1000_hw *hw,
136 						  u32 offset, u32 dword);
137 static s32  e1000_read_flash_word_ich8lan(struct e1000_hw *hw,
138 					  u32 offset, u16 *data);
139 static s32  e1000_retry_write_flash_byte_ich8lan(struct e1000_hw *hw,
140 						 u32 offset, u8 byte);
141 static s32 e1000_get_cfg_done_ich8lan(struct e1000_hw *hw);
142 static void e1000_power_down_phy_copper_ich8lan(struct e1000_hw *hw);
143 static s32 e1000_check_for_copper_link_ich8lan(struct e1000_hw *hw);
144 static s32 e1000_set_mdio_slow_mode_hv(struct e1000_hw *hw);
145 static s32 e1000_k1_workaround_lv(struct e1000_hw *hw);
146 static void e1000_gate_hw_phy_config_ich8lan(struct e1000_hw *hw, bool gate);
147 static s32 e1000_set_obff_timer_pch_lpt(struct e1000_hw *hw, u32 itr);
148 
149 /* ICH GbE Flash Hardware Sequencing Flash Status Register bit breakdown */
150 /* Offset 04h HSFSTS */
151 union ich8_hws_flash_status {
152 	struct ich8_hsfsts {
153 		u16 flcdone:1; /* bit 0 Flash Cycle Done */
154 		u16 flcerr:1; /* bit 1 Flash Cycle Error */
155 		u16 dael:1; /* bit 2 Direct Access error Log */
156 		u16 berasesz:2; /* bit 4:3 Sector Erase Size */
157 		u16 flcinprog:1; /* bit 5 flash cycle in Progress */
158 		u16 reserved1:2; /* bit 13:6 Reserved */
159 		u16 reserved2:6; /* bit 13:6 Reserved */
160 		u16 fldesvalid:1; /* bit 14 Flash Descriptor Valid */
161 		u16 flockdn:1; /* bit 15 Flash Config Lock-Down */
162 	} hsf_status;
163 	u16 regval;
164 };
165 
166 /* ICH GbE Flash Hardware Sequencing Flash control Register bit breakdown */
167 /* Offset 06h FLCTL */
168 union ich8_hws_flash_ctrl {
169 	struct ich8_hsflctl {
170 		u16 flcgo:1;   /* 0 Flash Cycle Go */
171 		u16 flcycle:2;   /* 2:1 Flash Cycle */
172 		u16 reserved:5;   /* 7:3 Reserved  */
173 		u16 fldbcount:2;   /* 9:8 Flash Data Byte Count */
174 		u16 flockdn:6;   /* 15:10 Reserved */
175 	} hsf_ctrl;
176 	u16 regval;
177 };
178 
179 /* ICH Flash Region Access Permissions */
180 union ich8_hws_flash_regacc {
181 	struct ich8_flracc {
182 		u32 grra:8; /* 0:7 GbE region Read Access */
183 		u32 grwa:8; /* 8:15 GbE region Write Access */
184 		u32 gmrag:8; /* 23:16 GbE Master Read Access Grant */
185 		u32 gmwag:8; /* 31:24 GbE Master Write Access Grant */
186 	} hsf_flregacc;
187 	u16 regval;
188 };
189 
190 /**
191  *  e1000_phy_is_accessible_pchlan - Check if able to access PHY registers
192  *  @hw: pointer to the HW structure
193  *
194  *  Test access to the PHY registers by reading the PHY ID registers.  If
195  *  the PHY ID is already known (e.g. resume path) compare it with known ID,
196  *  otherwise assume the read PHY ID is correct if it is valid.
197  *
198  *  Assumes the sw/fw/hw semaphore is already acquired.
199  **/
200 static bool e1000_phy_is_accessible_pchlan(struct e1000_hw *hw)
201 {
202 	u16 phy_reg = 0;
203 	u32 phy_id = 0;
204 	s32 ret_val = 0;
205 	u16 retry_count;
206 	u32 mac_reg = 0;
207 
208 	for (retry_count = 0; retry_count < 2; retry_count++) {
209 		ret_val = hw->phy.ops.read_reg_locked(hw, PHY_ID1, &phy_reg);
210 		if (ret_val || (phy_reg == 0xFFFF))
211 			continue;
212 		phy_id = (u32)(phy_reg << 16);
213 
214 		ret_val = hw->phy.ops.read_reg_locked(hw, PHY_ID2, &phy_reg);
215 		if (ret_val || (phy_reg == 0xFFFF)) {
216 			phy_id = 0;
217 			continue;
218 		}
219 		phy_id |= (u32)(phy_reg & PHY_REVISION_MASK);
220 		break;
221 	}
222 
223 	if (hw->phy.id) {
224 		if  (hw->phy.id == phy_id)
225 			goto out;
226 	} else if (phy_id) {
227 		hw->phy.id = phy_id;
228 		hw->phy.revision = (u32)(phy_reg & ~PHY_REVISION_MASK);
229 		goto out;
230 	}
231 
232 	/* In case the PHY needs to be in mdio slow mode,
233 	 * set slow mode and try to get the PHY id again.
234 	 */
235 	if (hw->mac.type < e1000_pch_lpt) {
236 		hw->phy.ops.release(hw);
237 		ret_val = e1000_set_mdio_slow_mode_hv(hw);
238 		if (!ret_val)
239 			ret_val = e1000_get_phy_id(hw);
240 		hw->phy.ops.acquire(hw);
241 	}
242 
243 	if (ret_val)
244 		return FALSE;
245 out:
246 	if (hw->mac.type >= e1000_pch_lpt) {
247 		/* Only unforce SMBus if ME is not active */
248 		if (!(E1000_READ_REG(hw, E1000_FWSM) &
249 		    E1000_ICH_FWSM_FW_VALID)) {
250 			/* Unforce SMBus mode in PHY */
251 			hw->phy.ops.read_reg_locked(hw, CV_SMB_CTRL, &phy_reg);
252 			phy_reg &= ~CV_SMB_CTRL_FORCE_SMBUS;
253 			hw->phy.ops.write_reg_locked(hw, CV_SMB_CTRL, phy_reg);
254 
255 			/* Unforce SMBus mode in MAC */
256 			mac_reg = E1000_READ_REG(hw, E1000_CTRL_EXT);
257 			mac_reg &= ~E1000_CTRL_EXT_FORCE_SMBUS;
258 			E1000_WRITE_REG(hw, E1000_CTRL_EXT, mac_reg);
259 		}
260 	}
261 
262 	return TRUE;
263 }
264 
265 /**
266  *  e1000_toggle_lanphypc_pch_lpt - toggle the LANPHYPC pin value
267  *  @hw: pointer to the HW structure
268  *
269  *  Toggling the LANPHYPC pin value fully power-cycles the PHY and is
270  *  used to reset the PHY to a quiescent state when necessary.
271  **/
272 static void e1000_toggle_lanphypc_pch_lpt(struct e1000_hw *hw)
273 {
274 	u32 mac_reg;
275 
276 	DEBUGFUNC("e1000_toggle_lanphypc_pch_lpt");
277 
278 	/* Set Phy Config Counter to 50msec */
279 	mac_reg = E1000_READ_REG(hw, E1000_FEXTNVM3);
280 	mac_reg &= ~E1000_FEXTNVM3_PHY_CFG_COUNTER_MASK;
281 	mac_reg |= E1000_FEXTNVM3_PHY_CFG_COUNTER_50MSEC;
282 	E1000_WRITE_REG(hw, E1000_FEXTNVM3, mac_reg);
283 
284 	/* Toggle LANPHYPC Value bit */
285 	mac_reg = E1000_READ_REG(hw, E1000_CTRL);
286 	mac_reg |= E1000_CTRL_LANPHYPC_OVERRIDE;
287 	mac_reg &= ~E1000_CTRL_LANPHYPC_VALUE;
288 	E1000_WRITE_REG(hw, E1000_CTRL, mac_reg);
289 	E1000_WRITE_FLUSH(hw);
290 	msec_delay(1);
291 	mac_reg &= ~E1000_CTRL_LANPHYPC_OVERRIDE;
292 	E1000_WRITE_REG(hw, E1000_CTRL, mac_reg);
293 	E1000_WRITE_FLUSH(hw);
294 
295 	if (hw->mac.type < e1000_pch_lpt) {
296 		msec_delay(50);
297 	} else {
298 		u16 count = 20;
299 
300 		do {
301 			msec_delay(5);
302 		} while (!(E1000_READ_REG(hw, E1000_CTRL_EXT) &
303 			   E1000_CTRL_EXT_LPCD) && count--);
304 
305 		msec_delay(30);
306 	}
307 }
308 
309 /**
310  *  e1000_init_phy_workarounds_pchlan - PHY initialization workarounds
311  *  @hw: pointer to the HW structure
312  *
313  *  Workarounds/flow necessary for PHY initialization during driver load
314  *  and resume paths.
315  **/
316 static s32 e1000_init_phy_workarounds_pchlan(struct e1000_hw *hw)
317 {
318 	u32 mac_reg, fwsm = E1000_READ_REG(hw, E1000_FWSM);
319 	s32 ret_val;
320 
321 	DEBUGFUNC("e1000_init_phy_workarounds_pchlan");
322 
323 	/* Gate automatic PHY configuration by hardware on managed and
324 	 * non-managed 82579 and newer adapters.
325 	 */
326 	e1000_gate_hw_phy_config_ich8lan(hw, TRUE);
327 
328 	/* It is not possible to be certain of the current state of ULP
329 	 * so forcibly disable it.
330 	 */
331 	hw->dev_spec.ich8lan.ulp_state = e1000_ulp_state_unknown;
332 	e1000_disable_ulp_lpt_lp(hw, TRUE);
333 
334 	ret_val = hw->phy.ops.acquire(hw);
335 	if (ret_val) {
336 		DEBUGOUT("Failed to initialize PHY flow\n");
337 		goto out;
338 	}
339 
340 	/* The MAC-PHY interconnect may be in SMBus mode.  If the PHY is
341 	 * inaccessible and resetting the PHY is not blocked, toggle the
342 	 * LANPHYPC Value bit to force the interconnect to PCIe mode.
343 	 */
344 	switch (hw->mac.type) {
345 	case e1000_pch_lpt:
346 	case e1000_pch_spt:
347 	case e1000_pch_cnp:
348 		if (e1000_phy_is_accessible_pchlan(hw))
349 			break;
350 
351 		/* Before toggling LANPHYPC, see if PHY is accessible by
352 		 * forcing MAC to SMBus mode first.
353 		 */
354 		mac_reg = E1000_READ_REG(hw, E1000_CTRL_EXT);
355 		mac_reg |= E1000_CTRL_EXT_FORCE_SMBUS;
356 		E1000_WRITE_REG(hw, E1000_CTRL_EXT, mac_reg);
357 
358 		/* Wait 50 milliseconds for MAC to finish any retries
359 		 * that it might be trying to perform from previous
360 		 * attempts to acknowledge any phy read requests.
361 		 */
362 		 msec_delay(50);
363 
364 		/* fall-through */
365 	case e1000_pch2lan:
366 		if (e1000_phy_is_accessible_pchlan(hw))
367 			break;
368 
369 		/* fall-through */
370 	case e1000_pchlan:
371 		if ((hw->mac.type == e1000_pchlan) &&
372 		    (fwsm & E1000_ICH_FWSM_FW_VALID))
373 			break;
374 
375 		if (hw->phy.ops.check_reset_block(hw)) {
376 			DEBUGOUT("Required LANPHYPC toggle blocked by ME\n");
377 			ret_val = -E1000_ERR_PHY;
378 			break;
379 		}
380 
381 		/* Toggle LANPHYPC Value bit */
382 		e1000_toggle_lanphypc_pch_lpt(hw);
383 		if (hw->mac.type >= e1000_pch_lpt) {
384 			if (e1000_phy_is_accessible_pchlan(hw))
385 				break;
386 
387 			/* Toggling LANPHYPC brings the PHY out of SMBus mode
388 			 * so ensure that the MAC is also out of SMBus mode
389 			 */
390 			mac_reg = E1000_READ_REG(hw, E1000_CTRL_EXT);
391 			mac_reg &= ~E1000_CTRL_EXT_FORCE_SMBUS;
392 			E1000_WRITE_REG(hw, E1000_CTRL_EXT, mac_reg);
393 
394 			if (e1000_phy_is_accessible_pchlan(hw))
395 				break;
396 
397 			ret_val = -E1000_ERR_PHY;
398 		}
399 		break;
400 	default:
401 		break;
402 	}
403 
404 	hw->phy.ops.release(hw);
405 	if (!ret_val) {
406 
407 		/* Check to see if able to reset PHY.  Print error if not */
408 		if (hw->phy.ops.check_reset_block(hw)) {
409 			ERROR_REPORT("Reset blocked by ME\n");
410 			goto out;
411 		}
412 
413 		/* Reset the PHY before any access to it.  Doing so, ensures
414 		 * that the PHY is in a known good state before we read/write
415 		 * PHY registers.  The generic reset is sufficient here,
416 		 * because we haven't determined the PHY type yet.
417 		 */
418 		ret_val = e1000_phy_hw_reset_generic(hw);
419 		if (ret_val)
420 			goto out;
421 
422 		/* On a successful reset, possibly need to wait for the PHY
423 		 * to quiesce to an accessible state before returning control
424 		 * to the calling function.  If the PHY does not quiesce, then
425 		 * return E1000E_BLK_PHY_RESET, as this is the condition that
426 		 *  the PHY is in.
427 		 */
428 		ret_val = hw->phy.ops.check_reset_block(hw);
429 		if (ret_val)
430 			ERROR_REPORT("ME blocked access to PHY after reset\n");
431 	}
432 
433 out:
434 	/* Ungate automatic PHY configuration on non-managed 82579 */
435 	if ((hw->mac.type == e1000_pch2lan) &&
436 	    !(fwsm & E1000_ICH_FWSM_FW_VALID)) {
437 		msec_delay(10);
438 		e1000_gate_hw_phy_config_ich8lan(hw, FALSE);
439 	}
440 
441 	return ret_val;
442 }
443 
444 /**
445  *  e1000_init_phy_params_pchlan - Initialize PHY function pointers
446  *  @hw: pointer to the HW structure
447  *
448  *  Initialize family-specific PHY parameters and function pointers.
449  **/
450 static s32 e1000_init_phy_params_pchlan(struct e1000_hw *hw)
451 {
452 	struct e1000_phy_info *phy = &hw->phy;
453 	s32 ret_val;
454 
455 	DEBUGFUNC("e1000_init_phy_params_pchlan");
456 
457 	phy->addr		= 1;
458 	phy->reset_delay_us	= 100;
459 
460 	phy->ops.acquire	= e1000_acquire_swflag_ich8lan;
461 	phy->ops.check_reset_block = e1000_check_reset_block_ich8lan;
462 	phy->ops.get_cfg_done	= e1000_get_cfg_done_ich8lan;
463 	phy->ops.set_page	= e1000_set_page_igp;
464 	phy->ops.read_reg	= e1000_read_phy_reg_hv;
465 	phy->ops.read_reg_locked = e1000_read_phy_reg_hv_locked;
466 	phy->ops.read_reg_page	= e1000_read_phy_reg_page_hv;
467 	phy->ops.release	= e1000_release_swflag_ich8lan;
468 	phy->ops.reset		= e1000_phy_hw_reset_ich8lan;
469 	phy->ops.set_d0_lplu_state = e1000_set_lplu_state_pchlan;
470 	phy->ops.set_d3_lplu_state = e1000_set_lplu_state_pchlan;
471 	phy->ops.write_reg	= e1000_write_phy_reg_hv;
472 	phy->ops.write_reg_locked = e1000_write_phy_reg_hv_locked;
473 	phy->ops.write_reg_page	= e1000_write_phy_reg_page_hv;
474 	phy->ops.power_up	= e1000_power_up_phy_copper;
475 	phy->ops.power_down	= e1000_power_down_phy_copper_ich8lan;
476 	phy->autoneg_mask	= AUTONEG_ADVERTISE_SPEED_DEFAULT;
477 
478 	phy->id = e1000_phy_unknown;
479 
480 	ret_val = e1000_init_phy_workarounds_pchlan(hw);
481 	if (ret_val)
482 		return ret_val;
483 
484 	if (phy->id == e1000_phy_unknown)
485 		switch (hw->mac.type) {
486 		default:
487 			ret_val = e1000_get_phy_id(hw);
488 			if (ret_val)
489 				return ret_val;
490 			if ((phy->id != 0) && (phy->id != PHY_REVISION_MASK))
491 				break;
492 			/* fall-through */
493 		case e1000_pch2lan:
494 		case e1000_pch_lpt:
495 		case e1000_pch_spt:
496 		case e1000_pch_cnp:
497 			/* In case the PHY needs to be in mdio slow mode,
498 			 * set slow mode and try to get the PHY id again.
499 			 */
500 			ret_val = e1000_set_mdio_slow_mode_hv(hw);
501 			if (ret_val)
502 				return ret_val;
503 			ret_val = e1000_get_phy_id(hw);
504 			if (ret_val)
505 				return ret_val;
506 			break;
507 		}
508 	phy->type = e1000_get_phy_type_from_id(phy->id);
509 
510 	switch (phy->type) {
511 	case e1000_phy_82577:
512 	case e1000_phy_82579:
513 	case e1000_phy_i217:
514 		phy->ops.check_polarity = e1000_check_polarity_82577;
515 		phy->ops.force_speed_duplex =
516 			e1000_phy_force_speed_duplex_82577;
517 		phy->ops.get_cable_length = e1000_get_cable_length_82577;
518 		phy->ops.get_info = e1000_get_phy_info_82577;
519 		phy->ops.commit = e1000_phy_sw_reset_generic;
520 		break;
521 	case e1000_phy_82578:
522 		phy->ops.check_polarity = e1000_check_polarity_m88;
523 		phy->ops.force_speed_duplex = e1000_phy_force_speed_duplex_m88;
524 		phy->ops.get_cable_length = e1000_get_cable_length_m88;
525 		phy->ops.get_info = e1000_get_phy_info_m88;
526 		break;
527 	default:
528 		ret_val = -E1000_ERR_PHY;
529 		break;
530 	}
531 
532 	return ret_val;
533 }
534 
535 /**
536  *  e1000_init_phy_params_ich8lan - Initialize PHY function pointers
537  *  @hw: pointer to the HW structure
538  *
539  *  Initialize family-specific PHY parameters and function pointers.
540  **/
541 static s32 e1000_init_phy_params_ich8lan(struct e1000_hw *hw)
542 {
543 	struct e1000_phy_info *phy = &hw->phy;
544 	s32 ret_val;
545 	u16 i = 0;
546 
547 	DEBUGFUNC("e1000_init_phy_params_ich8lan");
548 
549 	phy->addr		= 1;
550 	phy->reset_delay_us	= 100;
551 
552 	phy->ops.acquire	= e1000_acquire_swflag_ich8lan;
553 	phy->ops.check_reset_block = e1000_check_reset_block_ich8lan;
554 	phy->ops.get_cable_length = e1000_get_cable_length_igp_2;
555 	phy->ops.get_cfg_done	= e1000_get_cfg_done_ich8lan;
556 	phy->ops.read_reg	= e1000_read_phy_reg_igp;
557 	phy->ops.release	= e1000_release_swflag_ich8lan;
558 	phy->ops.reset		= e1000_phy_hw_reset_ich8lan;
559 	phy->ops.set_d0_lplu_state = e1000_set_d0_lplu_state_ich8lan;
560 	phy->ops.set_d3_lplu_state = e1000_set_d3_lplu_state_ich8lan;
561 	phy->ops.write_reg	= e1000_write_phy_reg_igp;
562 	phy->ops.power_up	= e1000_power_up_phy_copper;
563 	phy->ops.power_down	= e1000_power_down_phy_copper_ich8lan;
564 
565 	/* We may need to do this twice - once for IGP and if that fails,
566 	 * we'll set BM func pointers and try again
567 	 */
568 	ret_val = e1000_determine_phy_address(hw);
569 	if (ret_val) {
570 		phy->ops.write_reg = e1000_write_phy_reg_bm;
571 		phy->ops.read_reg  = e1000_read_phy_reg_bm;
572 		ret_val = e1000_determine_phy_address(hw);
573 		if (ret_val) {
574 			DEBUGOUT("Cannot determine PHY addr. Erroring out\n");
575 			return ret_val;
576 		}
577 	}
578 
579 	phy->id = 0;
580 	while ((e1000_phy_unknown == e1000_get_phy_type_from_id(phy->id)) &&
581 	       (i++ < 100)) {
582 		msec_delay(1);
583 		ret_val = e1000_get_phy_id(hw);
584 		if (ret_val)
585 			return ret_val;
586 	}
587 
588 	/* Verify phy id */
589 	switch (phy->id) {
590 	case IGP03E1000_E_PHY_ID:
591 		phy->type = e1000_phy_igp_3;
592 		phy->autoneg_mask = AUTONEG_ADVERTISE_SPEED_DEFAULT;
593 		phy->ops.read_reg_locked = e1000_read_phy_reg_igp_locked;
594 		phy->ops.write_reg_locked = e1000_write_phy_reg_igp_locked;
595 		phy->ops.get_info = e1000_get_phy_info_igp;
596 		phy->ops.check_polarity = e1000_check_polarity_igp;
597 		phy->ops.force_speed_duplex = e1000_phy_force_speed_duplex_igp;
598 		break;
599 	case IFE_E_PHY_ID:
600 	case IFE_PLUS_E_PHY_ID:
601 	case IFE_C_E_PHY_ID:
602 		phy->type = e1000_phy_ife;
603 		phy->autoneg_mask = E1000_ALL_NOT_GIG;
604 		phy->ops.get_info = e1000_get_phy_info_ife;
605 		phy->ops.check_polarity = e1000_check_polarity_ife;
606 		phy->ops.force_speed_duplex = e1000_phy_force_speed_duplex_ife;
607 		break;
608 	case BME1000_E_PHY_ID:
609 		phy->type = e1000_phy_bm;
610 		phy->autoneg_mask = AUTONEG_ADVERTISE_SPEED_DEFAULT;
611 		phy->ops.read_reg = e1000_read_phy_reg_bm;
612 		phy->ops.write_reg = e1000_write_phy_reg_bm;
613 		phy->ops.commit = e1000_phy_sw_reset_generic;
614 		phy->ops.get_info = e1000_get_phy_info_m88;
615 		phy->ops.check_polarity = e1000_check_polarity_m88;
616 		phy->ops.force_speed_duplex = e1000_phy_force_speed_duplex_m88;
617 		break;
618 	default:
619 		return -E1000_ERR_PHY;
620 		break;
621 	}
622 
623 	return E1000_SUCCESS;
624 }
625 
626 /**
627  *  e1000_init_nvm_params_ich8lan - Initialize NVM function pointers
628  *  @hw: pointer to the HW structure
629  *
630  *  Initialize family-specific NVM parameters and function
631  *  pointers.
632  **/
633 static s32 e1000_init_nvm_params_ich8lan(struct e1000_hw *hw)
634 {
635 	struct e1000_nvm_info *nvm = &hw->nvm;
636 	struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
637 	u32 gfpreg, sector_base_addr, sector_end_addr;
638 	u16 i;
639 	u32 nvm_size;
640 
641 	DEBUGFUNC("e1000_init_nvm_params_ich8lan");
642 
643 	nvm->type = e1000_nvm_flash_sw;
644 
645 	if (hw->mac.type >= e1000_pch_spt) {
646 		/* in SPT, gfpreg doesn't exist. NVM size is taken from the
647 		 * STRAP register. This is because in SPT the GbE Flash region
648 		 * is no longer accessed through the flash registers. Instead,
649 		 * the mechanism has changed, and the Flash region access
650 		 * registers are now implemented in GbE memory space.
651 		 */
652 		nvm->flash_base_addr = 0;
653 		nvm_size =
654 		    (((E1000_READ_REG(hw, E1000_STRAP) >> 1) & 0x1F) + 1)
655 		    * NVM_SIZE_MULTIPLIER;
656 		nvm->flash_bank_size = nvm_size / 2;
657 		/* Adjust to word count */
658 		nvm->flash_bank_size /= sizeof(u16);
659 		/* Set the base address for flash register access */
660 		hw->flash_address = hw->hw_addr + E1000_FLASH_BASE_ADDR;
661 	} else {
662 		/* Can't read flash registers if register set isn't mapped. */
663 		if (!hw->flash_address) {
664 			DEBUGOUT("ERROR: Flash registers not mapped\n");
665 			return -E1000_ERR_CONFIG;
666 		}
667 
668 		gfpreg = E1000_READ_FLASH_REG(hw, ICH_FLASH_GFPREG);
669 
670 		/* sector_X_addr is a "sector"-aligned address (4096 bytes)
671 		 * Add 1 to sector_end_addr since this sector is included in
672 		 * the overall size.
673 		 */
674 		sector_base_addr = gfpreg & FLASH_GFPREG_BASE_MASK;
675 		sector_end_addr = ((gfpreg >> 16) & FLASH_GFPREG_BASE_MASK) + 1;
676 
677 		/* flash_base_addr is byte-aligned */
678 		nvm->flash_base_addr = sector_base_addr
679 				       << FLASH_SECTOR_ADDR_SHIFT;
680 
681 		/* find total size of the NVM, then cut in half since the total
682 		 * size represents two separate NVM banks.
683 		 */
684 		nvm->flash_bank_size = ((sector_end_addr - sector_base_addr)
685 					<< FLASH_SECTOR_ADDR_SHIFT);
686 		nvm->flash_bank_size /= 2;
687 		/* Adjust to word count */
688 		nvm->flash_bank_size /= sizeof(u16);
689 	}
690 
691 	nvm->word_size = E1000_SHADOW_RAM_WORDS;
692 
693 	/* Clear shadow ram */
694 	for (i = 0; i < nvm->word_size; i++) {
695 		dev_spec->shadow_ram[i].modified = FALSE;
696 		dev_spec->shadow_ram[i].value    = 0xFFFF;
697 	}
698 
699 	E1000_MUTEX_INIT(&dev_spec->nvm_mutex);
700 	E1000_MUTEX_INIT(&dev_spec->swflag_mutex);
701 
702 	/* Function Pointers */
703 	nvm->ops.acquire	= e1000_acquire_nvm_ich8lan;
704 	nvm->ops.release	= e1000_release_nvm_ich8lan;
705 	if (hw->mac.type >= e1000_pch_spt) {
706 		nvm->ops.read	= e1000_read_nvm_spt;
707 		nvm->ops.update	= e1000_update_nvm_checksum_spt;
708 	} else {
709 		nvm->ops.read	= e1000_read_nvm_ich8lan;
710 		nvm->ops.update	= e1000_update_nvm_checksum_ich8lan;
711 	}
712 	nvm->ops.valid_led_default = e1000_valid_led_default_ich8lan;
713 	nvm->ops.validate	= e1000_validate_nvm_checksum_ich8lan;
714 	nvm->ops.write		= e1000_write_nvm_ich8lan;
715 
716 	return E1000_SUCCESS;
717 }
718 
719 /**
720  *  e1000_init_mac_params_ich8lan - Initialize MAC function pointers
721  *  @hw: pointer to the HW structure
722  *
723  *  Initialize family-specific MAC parameters and function
724  *  pointers.
725  **/
726 static s32 e1000_init_mac_params_ich8lan(struct e1000_hw *hw)
727 {
728 	struct e1000_mac_info *mac = &hw->mac;
729 
730 	DEBUGFUNC("e1000_init_mac_params_ich8lan");
731 
732 	/* Set media type function pointer */
733 	hw->phy.media_type = e1000_media_type_copper;
734 
735 	/* Set mta register count */
736 	mac->mta_reg_count = 32;
737 	/* Set rar entry count */
738 	mac->rar_entry_count = E1000_ICH_RAR_ENTRIES;
739 	if (mac->type == e1000_ich8lan)
740 		mac->rar_entry_count--;
741 	/* Set if part includes ASF firmware */
742 	mac->asf_firmware_present = TRUE;
743 	/* FWSM register */
744 	mac->has_fwsm = TRUE;
745 	/* ARC subsystem not supported */
746 	mac->arc_subsystem_valid = FALSE;
747 	/* Adaptive IFS supported */
748 	mac->adaptive_ifs = TRUE;
749 
750 	/* Function pointers */
751 
752 	/* bus type/speed/width */
753 	mac->ops.get_bus_info = e1000_get_bus_info_ich8lan;
754 	/* function id */
755 	mac->ops.set_lan_id = e1000_set_lan_id_single_port;
756 	/* reset */
757 	mac->ops.reset_hw = e1000_reset_hw_ich8lan;
758 	/* hw initialization */
759 	mac->ops.init_hw = e1000_init_hw_ich8lan;
760 	/* link setup */
761 	mac->ops.setup_link = e1000_setup_link_ich8lan;
762 	/* physical interface setup */
763 	mac->ops.setup_physical_interface = e1000_setup_copper_link_ich8lan;
764 	/* check for link */
765 	mac->ops.check_for_link = e1000_check_for_copper_link_ich8lan;
766 	/* link info */
767 	mac->ops.get_link_up_info = e1000_get_link_up_info_ich8lan;
768 	/* multicast address update */
769 	mac->ops.update_mc_addr_list = e1000_update_mc_addr_list_generic;
770 	/* clear hardware counters */
771 	mac->ops.clear_hw_cntrs = e1000_clear_hw_cntrs_ich8lan;
772 
773 	/* LED and other operations */
774 	switch (mac->type) {
775 	case e1000_ich8lan:
776 	case e1000_ich9lan:
777 	case e1000_ich10lan:
778 		/* check management mode */
779 		mac->ops.check_mng_mode = e1000_check_mng_mode_ich8lan;
780 		/* ID LED init */
781 		mac->ops.id_led_init = e1000_id_led_init_generic;
782 		/* blink LED */
783 		mac->ops.blink_led = e1000_blink_led_generic;
784 		/* setup LED */
785 		mac->ops.setup_led = e1000_setup_led_generic;
786 		/* cleanup LED */
787 		mac->ops.cleanup_led = e1000_cleanup_led_ich8lan;
788 		/* turn on/off LED */
789 		mac->ops.led_on = e1000_led_on_ich8lan;
790 		mac->ops.led_off = e1000_led_off_ich8lan;
791 		break;
792 	case e1000_pch2lan:
793 		mac->rar_entry_count = E1000_PCH2_RAR_ENTRIES;
794 		mac->ops.rar_set = e1000_rar_set_pch2lan;
795 		/* fall-through */
796 	case e1000_pch_lpt:
797 	case e1000_pch_spt:
798 	case e1000_pch_cnp:
799 		/* multicast address update for pch2 */
800 		mac->ops.update_mc_addr_list =
801 			e1000_update_mc_addr_list_pch2lan;
802 		/* fall-through */
803 	case e1000_pchlan:
804 		/* check management mode */
805 		mac->ops.check_mng_mode = e1000_check_mng_mode_pchlan;
806 		/* ID LED init */
807 		mac->ops.id_led_init = e1000_id_led_init_pchlan;
808 		/* setup LED */
809 		mac->ops.setup_led = e1000_setup_led_pchlan;
810 		/* cleanup LED */
811 		mac->ops.cleanup_led = e1000_cleanup_led_pchlan;
812 		/* turn on/off LED */
813 		mac->ops.led_on = e1000_led_on_pchlan;
814 		mac->ops.led_off = e1000_led_off_pchlan;
815 		break;
816 	default:
817 		break;
818 	}
819 
820 	if (mac->type >= e1000_pch_lpt) {
821 		mac->rar_entry_count = E1000_PCH_LPT_RAR_ENTRIES;
822 		mac->ops.rar_set = e1000_rar_set_pch_lpt;
823 		mac->ops.setup_physical_interface = e1000_setup_copper_link_pch_lpt;
824 		mac->ops.set_obff_timer = e1000_set_obff_timer_pch_lpt;
825 	}
826 
827 	/* Enable PCS Lock-loss workaround for ICH8 */
828 	if (mac->type == e1000_ich8lan)
829 		e1000_set_kmrn_lock_loss_workaround_ich8lan(hw, TRUE);
830 
831 	return E1000_SUCCESS;
832 }
833 
834 /**
835  *  __e1000_access_emi_reg_locked - Read/write EMI register
836  *  @hw: pointer to the HW structure
837  *  @addr: EMI address to program
838  *  @data: pointer to value to read/write from/to the EMI address
839  *  @read: boolean flag to indicate read or write
840  *
841  *  This helper function assumes the SW/FW/HW Semaphore is already acquired.
842  **/
843 static s32 __e1000_access_emi_reg_locked(struct e1000_hw *hw, u16 address,
844 					 u16 *data, bool read)
845 {
846 	s32 ret_val;
847 
848 	DEBUGFUNC("__e1000_access_emi_reg_locked");
849 
850 	ret_val = hw->phy.ops.write_reg_locked(hw, I82579_EMI_ADDR, address);
851 	if (ret_val)
852 		return ret_val;
853 
854 	if (read)
855 		ret_val = hw->phy.ops.read_reg_locked(hw, I82579_EMI_DATA,
856 						      data);
857 	else
858 		ret_val = hw->phy.ops.write_reg_locked(hw, I82579_EMI_DATA,
859 						       *data);
860 
861 	return ret_val;
862 }
863 
864 /**
865  *  e1000_read_emi_reg_locked - Read Extended Management Interface register
866  *  @hw: pointer to the HW structure
867  *  @addr: EMI address to program
868  *  @data: value to be read from the EMI address
869  *
870  *  Assumes the SW/FW/HW Semaphore is already acquired.
871  **/
872 s32 e1000_read_emi_reg_locked(struct e1000_hw *hw, u16 addr, u16 *data)
873 {
874 	DEBUGFUNC("e1000_read_emi_reg_locked");
875 
876 	return __e1000_access_emi_reg_locked(hw, addr, data, TRUE);
877 }
878 
879 /**
880  *  e1000_write_emi_reg_locked - Write Extended Management Interface register
881  *  @hw: pointer to the HW structure
882  *  @addr: EMI address to program
883  *  @data: value to be written to the EMI address
884  *
885  *  Assumes the SW/FW/HW Semaphore is already acquired.
886  **/
887 s32 e1000_write_emi_reg_locked(struct e1000_hw *hw, u16 addr, u16 data)
888 {
889 	DEBUGFUNC("e1000_read_emi_reg_locked");
890 
891 	return __e1000_access_emi_reg_locked(hw, addr, &data, FALSE);
892 }
893 
894 /**
895  *  e1000_set_eee_pchlan - Enable/disable EEE support
896  *  @hw: pointer to the HW structure
897  *
898  *  Enable/disable EEE based on setting in dev_spec structure, the duplex of
899  *  the link and the EEE capabilities of the link partner.  The LPI Control
900  *  register bits will remain set only if/when link is up.
901  *
902  *  EEE LPI must not be asserted earlier than one second after link is up.
903  *  On 82579, EEE LPI should not be enabled until such time otherwise there
904  *  can be link issues with some switches.  Other devices can have EEE LPI
905  *  enabled immediately upon link up since they have a timer in hardware which
906  *  prevents LPI from being asserted too early.
907  **/
908 s32 e1000_set_eee_pchlan(struct e1000_hw *hw)
909 {
910 	struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
911 	s32 ret_val;
912 	u16 lpa, pcs_status, adv, adv_addr, lpi_ctrl, data;
913 
914 	DEBUGFUNC("e1000_set_eee_pchlan");
915 
916 	switch (hw->phy.type) {
917 	case e1000_phy_82579:
918 		lpa = I82579_EEE_LP_ABILITY;
919 		pcs_status = I82579_EEE_PCS_STATUS;
920 		adv_addr = I82579_EEE_ADVERTISEMENT;
921 		break;
922 	case e1000_phy_i217:
923 		lpa = I217_EEE_LP_ABILITY;
924 		pcs_status = I217_EEE_PCS_STATUS;
925 		adv_addr = I217_EEE_ADVERTISEMENT;
926 		break;
927 	default:
928 		return E1000_SUCCESS;
929 	}
930 
931 	ret_val = hw->phy.ops.acquire(hw);
932 	if (ret_val)
933 		return ret_val;
934 
935 	ret_val = hw->phy.ops.read_reg_locked(hw, I82579_LPI_CTRL, &lpi_ctrl);
936 	if (ret_val)
937 		goto release;
938 
939 	/* Clear bits that enable EEE in various speeds */
940 	lpi_ctrl &= ~I82579_LPI_CTRL_ENABLE_MASK;
941 
942 	/* Enable EEE if not disabled by user */
943 	if (!dev_spec->eee_disable) {
944 		/* Save off link partner's EEE ability */
945 		ret_val = e1000_read_emi_reg_locked(hw, lpa,
946 						    &dev_spec->eee_lp_ability);
947 		if (ret_val)
948 			goto release;
949 
950 		/* Read EEE advertisement */
951 		ret_val = e1000_read_emi_reg_locked(hw, adv_addr, &adv);
952 		if (ret_val)
953 			goto release;
954 
955 		/* Enable EEE only for speeds in which the link partner is
956 		 * EEE capable and for which we advertise EEE.
957 		 */
958 		if (adv & dev_spec->eee_lp_ability & I82579_EEE_1000_SUPPORTED)
959 			lpi_ctrl |= I82579_LPI_CTRL_1000_ENABLE;
960 
961 		if (adv & dev_spec->eee_lp_ability & I82579_EEE_100_SUPPORTED) {
962 			hw->phy.ops.read_reg_locked(hw, PHY_LP_ABILITY, &data);
963 			if (data & NWAY_LPAR_100TX_FD_CAPS)
964 				lpi_ctrl |= I82579_LPI_CTRL_100_ENABLE;
965 			else
966 				/* EEE is not supported in 100Half, so ignore
967 				 * partner's EEE in 100 ability if full-duplex
968 				 * is not advertised.
969 				 */
970 				dev_spec->eee_lp_ability &=
971 				    ~I82579_EEE_100_SUPPORTED;
972 		}
973 	}
974 
975 	if (hw->phy.type == e1000_phy_82579) {
976 		ret_val = e1000_read_emi_reg_locked(hw, I82579_LPI_PLL_SHUT,
977 						    &data);
978 		if (ret_val)
979 			goto release;
980 
981 		data &= ~I82579_LPI_100_PLL_SHUT;
982 		ret_val = e1000_write_emi_reg_locked(hw, I82579_LPI_PLL_SHUT,
983 						     data);
984 	}
985 
986 	/* R/Clr IEEE MMD 3.1 bits 11:10 - Tx/Rx LPI Received */
987 	ret_val = e1000_read_emi_reg_locked(hw, pcs_status, &data);
988 	if (ret_val)
989 		goto release;
990 
991 	ret_val = hw->phy.ops.write_reg_locked(hw, I82579_LPI_CTRL, lpi_ctrl);
992 release:
993 	hw->phy.ops.release(hw);
994 
995 	return ret_val;
996 }
997 
998 /**
999  *  e1000_k1_workaround_lpt_lp - K1 workaround on Lynxpoint-LP
1000  *  @hw:   pointer to the HW structure
1001  *  @link: link up bool flag
1002  *
1003  *  When K1 is enabled for 1Gbps, the MAC can miss 2 DMA completion indications
1004  *  preventing further DMA write requests.  Workaround the issue by disabling
1005  *  the de-assertion of the clock request when in 1Gpbs mode.
1006  *  Also, set appropriate Tx re-transmission timeouts for 10 and 100Half link
1007  *  speeds in order to avoid Tx hangs.
1008  **/
1009 static s32 e1000_k1_workaround_lpt_lp(struct e1000_hw *hw, bool link)
1010 {
1011 	u32 fextnvm6 = E1000_READ_REG(hw, E1000_FEXTNVM6);
1012 	u32 status = E1000_READ_REG(hw, E1000_STATUS);
1013 	s32 ret_val = E1000_SUCCESS;
1014 	u16 reg;
1015 
1016 	if (link && (status & E1000_STATUS_SPEED_1000)) {
1017 		ret_val = hw->phy.ops.acquire(hw);
1018 		if (ret_val)
1019 			return ret_val;
1020 
1021 		ret_val =
1022 		    e1000_read_kmrn_reg_locked(hw, E1000_KMRNCTRLSTA_K1_CONFIG,
1023 					       &reg);
1024 		if (ret_val)
1025 			goto release;
1026 
1027 		ret_val =
1028 		    e1000_write_kmrn_reg_locked(hw,
1029 						E1000_KMRNCTRLSTA_K1_CONFIG,
1030 						reg &
1031 						~E1000_KMRNCTRLSTA_K1_ENABLE);
1032 		if (ret_val)
1033 			goto release;
1034 
1035 		usec_delay(10);
1036 
1037 		E1000_WRITE_REG(hw, E1000_FEXTNVM6,
1038 				fextnvm6 | E1000_FEXTNVM6_REQ_PLL_CLK);
1039 
1040 		ret_val =
1041 		    e1000_write_kmrn_reg_locked(hw,
1042 						E1000_KMRNCTRLSTA_K1_CONFIG,
1043 						reg);
1044 release:
1045 		hw->phy.ops.release(hw);
1046 	} else {
1047 		/* clear FEXTNVM6 bit 8 on link down or 10/100 */
1048 		fextnvm6 &= ~E1000_FEXTNVM6_REQ_PLL_CLK;
1049 
1050 		if ((hw->phy.revision > 5) || !link ||
1051 		    ((status & E1000_STATUS_SPEED_100) &&
1052 		     (status & E1000_STATUS_FD)))
1053 			goto update_fextnvm6;
1054 
1055 		ret_val = hw->phy.ops.read_reg(hw, I217_INBAND_CTRL, &reg);
1056 		if (ret_val)
1057 			return ret_val;
1058 
1059 		/* Clear link status transmit timeout */
1060 		reg &= ~I217_INBAND_CTRL_LINK_STAT_TX_TIMEOUT_MASK;
1061 
1062 		if (status & E1000_STATUS_SPEED_100) {
1063 			/* Set inband Tx timeout to 5x10us for 100Half */
1064 			reg |= 5 << I217_INBAND_CTRL_LINK_STAT_TX_TIMEOUT_SHIFT;
1065 
1066 			/* Do not extend the K1 entry latency for 100Half */
1067 			fextnvm6 &= ~E1000_FEXTNVM6_ENABLE_K1_ENTRY_CONDITION;
1068 		} else {
1069 			/* Set inband Tx timeout to 50x10us for 10Full/Half */
1070 			reg |= 50 <<
1071 			       I217_INBAND_CTRL_LINK_STAT_TX_TIMEOUT_SHIFT;
1072 
1073 			/* Extend the K1 entry latency for 10 Mbps */
1074 			fextnvm6 |= E1000_FEXTNVM6_ENABLE_K1_ENTRY_CONDITION;
1075 		}
1076 
1077 		ret_val = hw->phy.ops.write_reg(hw, I217_INBAND_CTRL, reg);
1078 		if (ret_val)
1079 			return ret_val;
1080 
1081 update_fextnvm6:
1082 		E1000_WRITE_REG(hw, E1000_FEXTNVM6, fextnvm6);
1083 	}
1084 
1085 	return ret_val;
1086 }
1087 
1088 static u64 e1000_ltr2ns(u16 ltr)
1089 {
1090 	u32 value, scale;
1091 
1092 	/* Determine the latency in nsec based on the LTR value & scale */
1093 	value = ltr & E1000_LTRV_VALUE_MASK;
1094 	scale = (ltr & E1000_LTRV_SCALE_MASK) >> E1000_LTRV_SCALE_SHIFT;
1095 
1096 	return value * (1 << (scale * E1000_LTRV_SCALE_FACTOR));
1097 }
1098 
1099 /**
1100  *  e1000_platform_pm_pch_lpt - Set platform power management values
1101  *  @hw: pointer to the HW structure
1102  *  @link: bool indicating link status
1103  *
1104  *  Set the Latency Tolerance Reporting (LTR) values for the "PCIe-like"
1105  *  GbE MAC in the Lynx Point PCH based on Rx buffer size and link speed
1106  *  when link is up (which must not exceed the maximum latency supported
1107  *  by the platform), otherwise specify there is no LTR requirement.
1108  *  Unlike TRUE-PCIe devices which set the LTR maximum snoop/no-snoop
1109  *  latencies in the LTR Extended Capability Structure in the PCIe Extended
1110  *  Capability register set, on this device LTR is set by writing the
1111  *  equivalent snoop/no-snoop latencies in the LTRV register in the MAC and
1112  *  set the SEND bit to send an Intel On-chip System Fabric sideband (IOSF-SB)
1113  *  message to the PMC.
1114  *
1115  *  Use the LTR value to calculate the Optimized Buffer Flush/Fill (OBFF)
1116  *  high-water mark.
1117  **/
1118 static s32 e1000_platform_pm_pch_lpt(struct e1000_hw *hw, bool link)
1119 {
1120 	u32 reg = link << (E1000_LTRV_REQ_SHIFT + E1000_LTRV_NOSNOOP_SHIFT) |
1121 		  link << E1000_LTRV_REQ_SHIFT | E1000_LTRV_SEND;
1122 	u16 lat_enc = 0;	/* latency encoded */
1123 	s32 obff_hwm = 0;
1124 
1125 	DEBUGFUNC("e1000_platform_pm_pch_lpt");
1126 
1127 	if (link) {
1128 		u16 speed, duplex, scale = 0;
1129 		u16 max_snoop, max_nosnoop;
1130 		u16 max_ltr_enc;	/* max LTR latency encoded */
1131 		s64 lat_ns;
1132 		s64 value;
1133 		u32 rxa;
1134 
1135 		if (!hw->mac.max_frame_size) {
1136 			DEBUGOUT("max_frame_size not set.\n");
1137 			return -E1000_ERR_CONFIG;
1138 		}
1139 
1140 		hw->mac.ops.get_link_up_info(hw, &speed, &duplex);
1141 		if (!speed) {
1142 			DEBUGOUT("Speed not set.\n");
1143 			return -E1000_ERR_CONFIG;
1144 		}
1145 
1146 		/* Rx Packet Buffer Allocation size (KB) */
1147 		rxa = E1000_READ_REG(hw, E1000_PBA) & E1000_PBA_RXA_MASK;
1148 
1149 		/* Determine the maximum latency tolerated by the device.
1150 		 *
1151 		 * Per the PCIe spec, the tolerated latencies are encoded as
1152 		 * a 3-bit encoded scale (only 0-5 are valid) multiplied by
1153 		 * a 10-bit value (0-1023) to provide a range from 1 ns to
1154 		 * 2^25*(2^10-1) ns.  The scale is encoded as 0=2^0ns,
1155 		 * 1=2^5ns, 2=2^10ns,...5=2^25ns.
1156 		 */
1157 		lat_ns = ((s64)rxa * 1024 -
1158 			  (2 * (s64)hw->mac.max_frame_size)) * 8 * 1000;
1159 		if (lat_ns < 0)
1160 			lat_ns = 0;
1161 		else
1162 			lat_ns /= speed;
1163 		value = lat_ns;
1164 
1165 		while (value > E1000_LTRV_VALUE_MASK) {
1166 			scale++;
1167 			value = E1000_DIVIDE_ROUND_UP(value, (1 << 5));
1168 		}
1169 		if (scale > E1000_LTRV_SCALE_MAX) {
1170 			DEBUGOUT1("Invalid LTR latency scale %d\n", scale);
1171 			return -E1000_ERR_CONFIG;
1172 		}
1173 		lat_enc = (u16)((scale << E1000_LTRV_SCALE_SHIFT) | value);
1174 
1175 		/* Determine the maximum latency tolerated by the platform */
1176 		e1000_read_pci_cfg(hw, E1000_PCI_LTR_CAP_LPT, &max_snoop);
1177 		e1000_read_pci_cfg(hw, E1000_PCI_LTR_CAP_LPT + 2, &max_nosnoop);
1178 		max_ltr_enc = E1000_MAX(max_snoop, max_nosnoop);
1179 
1180 		if (lat_enc > max_ltr_enc) {
1181 			lat_enc = max_ltr_enc;
1182 			lat_ns = e1000_ltr2ns(max_ltr_enc);
1183 		}
1184 
1185 		if (lat_ns) {
1186 			lat_ns *= speed * 1000;
1187 			lat_ns /= 8;
1188 			lat_ns /= 1000000000;
1189 			obff_hwm = (s32)(rxa - lat_ns);
1190 		}
1191 		if ((obff_hwm < 0) || (obff_hwm > E1000_SVT_OFF_HWM_MASK)) {
1192 			DEBUGOUT1("Invalid high water mark %d\n", obff_hwm);
1193 			return -E1000_ERR_CONFIG;
1194 		}
1195 	}
1196 
1197 	/* Set Snoop and No-Snoop latencies the same */
1198 	reg |= lat_enc | (lat_enc << E1000_LTRV_NOSNOOP_SHIFT);
1199 	E1000_WRITE_REG(hw, E1000_LTRV, reg);
1200 
1201 	/* Set OBFF high water mark */
1202 	reg = E1000_READ_REG(hw, E1000_SVT) & ~E1000_SVT_OFF_HWM_MASK;
1203 	reg |= obff_hwm;
1204 	E1000_WRITE_REG(hw, E1000_SVT, reg);
1205 
1206 	/* Enable OBFF */
1207 	reg = E1000_READ_REG(hw, E1000_SVCR);
1208 	reg |= E1000_SVCR_OFF_EN;
1209 	/* Always unblock interrupts to the CPU even when the system is
1210 	 * in OBFF mode. This ensures that small round-robin traffic
1211 	 * (like ping) does not get dropped or experience long latency.
1212 	 */
1213 	reg |= E1000_SVCR_OFF_MASKINT;
1214 	E1000_WRITE_REG(hw, E1000_SVCR, reg);
1215 
1216 	return E1000_SUCCESS;
1217 }
1218 
1219 /**
1220  *  e1000_set_obff_timer_pch_lpt - Update Optimized Buffer Flush/Fill timer
1221  *  @hw: pointer to the HW structure
1222  *  @itr: interrupt throttling rate
1223  *
1224  *  Configure OBFF with the updated interrupt rate.
1225  **/
1226 static s32 e1000_set_obff_timer_pch_lpt(struct e1000_hw *hw, u32 itr)
1227 {
1228 	u32 svcr;
1229 	s32 timer;
1230 
1231 	DEBUGFUNC("e1000_set_obff_timer_pch_lpt");
1232 
1233 	/* Convert ITR value into microseconds for OBFF timer */
1234 	timer = itr & E1000_ITR_MASK;
1235 	timer = (timer * E1000_ITR_MULT) / 1000;
1236 
1237 	if ((timer < 0) || (timer > E1000_ITR_MASK)) {
1238 		DEBUGOUT1("Invalid OBFF timer %d\n", timer);
1239 		return -E1000_ERR_CONFIG;
1240 	}
1241 
1242 	svcr = E1000_READ_REG(hw, E1000_SVCR);
1243 	svcr &= ~E1000_SVCR_OFF_TIMER_MASK;
1244 	svcr |= timer << E1000_SVCR_OFF_TIMER_SHIFT;
1245 	E1000_WRITE_REG(hw, E1000_SVCR, svcr);
1246 
1247 	return E1000_SUCCESS;
1248 }
1249 
1250 /**
1251  *  e1000_enable_ulp_lpt_lp - configure Ultra Low Power mode for LynxPoint-LP
1252  *  @hw: pointer to the HW structure
1253  *  @to_sx: boolean indicating a system power state transition to Sx
1254  *
1255  *  When link is down, configure ULP mode to significantly reduce the power
1256  *  to the PHY.  If on a Manageability Engine (ME) enabled system, tell the
1257  *  ME firmware to start the ULP configuration.  If not on an ME enabled
1258  *  system, configure the ULP mode by software.
1259  */
1260 s32 e1000_enable_ulp_lpt_lp(struct e1000_hw *hw, bool to_sx)
1261 {
1262 	u32 mac_reg;
1263 	s32 ret_val = E1000_SUCCESS;
1264 	u16 phy_reg;
1265 	u16 oem_reg = 0;
1266 
1267 	if ((hw->mac.type < e1000_pch_lpt) ||
1268 	    (hw->device_id == E1000_DEV_ID_PCH_LPT_I217_LM) ||
1269 	    (hw->device_id == E1000_DEV_ID_PCH_LPT_I217_V) ||
1270 	    (hw->device_id == E1000_DEV_ID_PCH_I218_LM2) ||
1271 	    (hw->device_id == E1000_DEV_ID_PCH_I218_V2) ||
1272 	    (hw->dev_spec.ich8lan.ulp_state == e1000_ulp_state_on))
1273 		return 0;
1274 
1275 	if (E1000_READ_REG(hw, E1000_FWSM) & E1000_ICH_FWSM_FW_VALID) {
1276 		/* Request ME configure ULP mode in the PHY */
1277 		mac_reg = E1000_READ_REG(hw, E1000_H2ME);
1278 		mac_reg |= E1000_H2ME_ULP | E1000_H2ME_ENFORCE_SETTINGS;
1279 		E1000_WRITE_REG(hw, E1000_H2ME, mac_reg);
1280 
1281 		goto out;
1282 	}
1283 
1284 	if (!to_sx) {
1285 		int i = 0;
1286 
1287 		/* Poll up to 5 seconds for Cable Disconnected indication */
1288 		while (!(E1000_READ_REG(hw, E1000_FEXT) &
1289 			 E1000_FEXT_PHY_CABLE_DISCONNECTED)) {
1290 			/* Bail if link is re-acquired */
1291 			if (E1000_READ_REG(hw, E1000_STATUS) & E1000_STATUS_LU)
1292 				return -E1000_ERR_PHY;
1293 
1294 			if (i++ == 100)
1295 				break;
1296 
1297 			msec_delay(50);
1298 		}
1299 		DEBUGOUT2("CABLE_DISCONNECTED %s set after %dmsec\n",
1300 			 (E1000_READ_REG(hw, E1000_FEXT) &
1301 			  E1000_FEXT_PHY_CABLE_DISCONNECTED) ? "" : "not",
1302 			 i * 50);
1303 	}
1304 
1305 	ret_val = hw->phy.ops.acquire(hw);
1306 	if (ret_val)
1307 		goto out;
1308 
1309 	/* Force SMBus mode in PHY */
1310 	ret_val = e1000_read_phy_reg_hv_locked(hw, CV_SMB_CTRL, &phy_reg);
1311 	if (ret_val)
1312 		goto release;
1313 	phy_reg |= CV_SMB_CTRL_FORCE_SMBUS;
1314 	e1000_write_phy_reg_hv_locked(hw, CV_SMB_CTRL, phy_reg);
1315 
1316 	/* Force SMBus mode in MAC */
1317 	mac_reg = E1000_READ_REG(hw, E1000_CTRL_EXT);
1318 	mac_reg |= E1000_CTRL_EXT_FORCE_SMBUS;
1319 	E1000_WRITE_REG(hw, E1000_CTRL_EXT, mac_reg);
1320 
1321 	/* Si workaround for ULP entry flow on i127/rev6 h/w.  Enable
1322 	 * LPLU and disable Gig speed when entering ULP
1323 	 */
1324 	if ((hw->phy.type == e1000_phy_i217) && (hw->phy.revision == 6)) {
1325 		ret_val = e1000_read_phy_reg_hv_locked(hw, HV_OEM_BITS,
1326 						       &oem_reg);
1327 		if (ret_val)
1328 			goto release;
1329 
1330 		phy_reg = oem_reg;
1331 		phy_reg |= HV_OEM_BITS_LPLU | HV_OEM_BITS_GBE_DIS;
1332 
1333 		ret_val = e1000_write_phy_reg_hv_locked(hw, HV_OEM_BITS,
1334 							phy_reg);
1335 
1336 		if (ret_val)
1337 			goto release;
1338 	}
1339 
1340 	/* Set Inband ULP Exit, Reset to SMBus mode and
1341 	 * Disable SMBus Release on PERST# in PHY
1342 	 */
1343 	ret_val = e1000_read_phy_reg_hv_locked(hw, I218_ULP_CONFIG1, &phy_reg);
1344 	if (ret_val)
1345 		goto release;
1346 	phy_reg |= (I218_ULP_CONFIG1_RESET_TO_SMBUS |
1347 		    I218_ULP_CONFIG1_DISABLE_SMB_PERST);
1348 	if (to_sx) {
1349 		if (E1000_READ_REG(hw, E1000_WUFC) & E1000_WUFC_LNKC)
1350 			phy_reg |= I218_ULP_CONFIG1_WOL_HOST;
1351 		else
1352 			phy_reg &= ~I218_ULP_CONFIG1_WOL_HOST;
1353 
1354 		phy_reg |= I218_ULP_CONFIG1_STICKY_ULP;
1355 		phy_reg &= ~I218_ULP_CONFIG1_INBAND_EXIT;
1356 	} else {
1357 		phy_reg |= I218_ULP_CONFIG1_INBAND_EXIT;
1358 		phy_reg &= ~I218_ULP_CONFIG1_STICKY_ULP;
1359 		phy_reg &= ~I218_ULP_CONFIG1_WOL_HOST;
1360 	}
1361 	e1000_write_phy_reg_hv_locked(hw, I218_ULP_CONFIG1, phy_reg);
1362 
1363 	/* Set Disable SMBus Release on PERST# in MAC */
1364 	mac_reg = E1000_READ_REG(hw, E1000_FEXTNVM7);
1365 	mac_reg |= E1000_FEXTNVM7_DISABLE_SMB_PERST;
1366 	E1000_WRITE_REG(hw, E1000_FEXTNVM7, mac_reg);
1367 
1368 	/* Commit ULP changes in PHY by starting auto ULP configuration */
1369 	phy_reg |= I218_ULP_CONFIG1_START;
1370 	e1000_write_phy_reg_hv_locked(hw, I218_ULP_CONFIG1, phy_reg);
1371 
1372 	if ((hw->phy.type == e1000_phy_i217) && (hw->phy.revision == 6) &&
1373 	    to_sx && (E1000_READ_REG(hw, E1000_STATUS) & E1000_STATUS_LU)) {
1374 		ret_val = e1000_write_phy_reg_hv_locked(hw, HV_OEM_BITS,
1375 							oem_reg);
1376 		if (ret_val)
1377 			goto release;
1378 	}
1379 
1380 release:
1381 	hw->phy.ops.release(hw);
1382 out:
1383 	if (ret_val)
1384 		DEBUGOUT1("Error in ULP enable flow: %d\n", ret_val);
1385 	else
1386 		hw->dev_spec.ich8lan.ulp_state = e1000_ulp_state_on;
1387 
1388 	return ret_val;
1389 }
1390 
1391 /**
1392  *  e1000_disable_ulp_lpt_lp - unconfigure Ultra Low Power mode for LynxPoint-LP
1393  *  @hw: pointer to the HW structure
1394  *  @force: boolean indicating whether or not to force disabling ULP
1395  *
1396  *  Un-configure ULP mode when link is up, the system is transitioned from
1397  *  Sx or the driver is unloaded.  If on a Manageability Engine (ME) enabled
1398  *  system, poll for an indication from ME that ULP has been un-configured.
1399  *  If not on an ME enabled system, un-configure the ULP mode by software.
1400  *
1401  *  During nominal operation, this function is called when link is acquired
1402  *  to disable ULP mode (force=FALSE); otherwise, for example when unloading
1403  *  the driver or during Sx->S0 transitions, this is called with force=TRUE
1404  *  to forcibly disable ULP.
1405  */
1406 s32 e1000_disable_ulp_lpt_lp(struct e1000_hw *hw, bool force)
1407 {
1408 	s32 ret_val = E1000_SUCCESS;
1409 	u32 mac_reg;
1410 	u16 phy_reg;
1411 	int i = 0;
1412 
1413 	if ((hw->mac.type < e1000_pch_lpt) ||
1414 	    (hw->device_id == E1000_DEV_ID_PCH_LPT_I217_LM) ||
1415 	    (hw->device_id == E1000_DEV_ID_PCH_LPT_I217_V) ||
1416 	    (hw->device_id == E1000_DEV_ID_PCH_I218_LM2) ||
1417 	    (hw->device_id == E1000_DEV_ID_PCH_I218_V2) ||
1418 	    (hw->dev_spec.ich8lan.ulp_state == e1000_ulp_state_off))
1419 		return 0;
1420 
1421 	if (E1000_READ_REG(hw, E1000_FWSM) & E1000_ICH_FWSM_FW_VALID) {
1422 		if (force) {
1423 			/* Request ME un-configure ULP mode in the PHY */
1424 			mac_reg = E1000_READ_REG(hw, E1000_H2ME);
1425 			mac_reg &= ~E1000_H2ME_ULP;
1426 			mac_reg |= E1000_H2ME_ENFORCE_SETTINGS;
1427 			E1000_WRITE_REG(hw, E1000_H2ME, mac_reg);
1428 		}
1429 
1430 		/* Poll up to 300msec for ME to clear ULP_CFG_DONE. */
1431 		while (E1000_READ_REG(hw, E1000_FWSM) &
1432 		       E1000_FWSM_ULP_CFG_DONE) {
1433 			if (i++ == 30) {
1434 				ret_val = -E1000_ERR_PHY;
1435 				goto out;
1436 			}
1437 
1438 			msec_delay(10);
1439 		}
1440 		DEBUGOUT1("ULP_CONFIG_DONE cleared after %dmsec\n", i * 10);
1441 
1442 		if (force) {
1443 			mac_reg = E1000_READ_REG(hw, E1000_H2ME);
1444 			mac_reg &= ~E1000_H2ME_ENFORCE_SETTINGS;
1445 			E1000_WRITE_REG(hw, E1000_H2ME, mac_reg);
1446 		} else {
1447 			/* Clear H2ME.ULP after ME ULP configuration */
1448 			mac_reg = E1000_READ_REG(hw, E1000_H2ME);
1449 			mac_reg &= ~E1000_H2ME_ULP;
1450 			E1000_WRITE_REG(hw, E1000_H2ME, mac_reg);
1451 		}
1452 
1453 		goto out;
1454 	}
1455 
1456 	ret_val = hw->phy.ops.acquire(hw);
1457 	if (ret_val)
1458 		goto out;
1459 
1460 	if (force)
1461 		/* Toggle LANPHYPC Value bit */
1462 		e1000_toggle_lanphypc_pch_lpt(hw);
1463 
1464 	/* Unforce SMBus mode in PHY */
1465 	ret_val = e1000_read_phy_reg_hv_locked(hw, CV_SMB_CTRL, &phy_reg);
1466 	if (ret_val) {
1467 		/* The MAC might be in PCIe mode, so temporarily force to
1468 		 * SMBus mode in order to access the PHY.
1469 		 */
1470 		mac_reg = E1000_READ_REG(hw, E1000_CTRL_EXT);
1471 		mac_reg |= E1000_CTRL_EXT_FORCE_SMBUS;
1472 		E1000_WRITE_REG(hw, E1000_CTRL_EXT, mac_reg);
1473 
1474 		msec_delay(50);
1475 
1476 		ret_val = e1000_read_phy_reg_hv_locked(hw, CV_SMB_CTRL,
1477 						       &phy_reg);
1478 		if (ret_val)
1479 			goto release;
1480 	}
1481 	phy_reg &= ~CV_SMB_CTRL_FORCE_SMBUS;
1482 	e1000_write_phy_reg_hv_locked(hw, CV_SMB_CTRL, phy_reg);
1483 
1484 	/* Unforce SMBus mode in MAC */
1485 	mac_reg = E1000_READ_REG(hw, E1000_CTRL_EXT);
1486 	mac_reg &= ~E1000_CTRL_EXT_FORCE_SMBUS;
1487 	E1000_WRITE_REG(hw, E1000_CTRL_EXT, mac_reg);
1488 
1489 	/* When ULP mode was previously entered, K1 was disabled by the
1490 	 * hardware.  Re-Enable K1 in the PHY when exiting ULP.
1491 	 */
1492 	ret_val = e1000_read_phy_reg_hv_locked(hw, HV_PM_CTRL, &phy_reg);
1493 	if (ret_val)
1494 		goto release;
1495 	phy_reg |= HV_PM_CTRL_K1_ENABLE;
1496 	e1000_write_phy_reg_hv_locked(hw, HV_PM_CTRL, phy_reg);
1497 
1498 	/* Clear ULP enabled configuration */
1499 	ret_val = e1000_read_phy_reg_hv_locked(hw, I218_ULP_CONFIG1, &phy_reg);
1500 	if (ret_val)
1501 		goto release;
1502 	phy_reg &= ~(I218_ULP_CONFIG1_IND |
1503 		     I218_ULP_CONFIG1_STICKY_ULP |
1504 		     I218_ULP_CONFIG1_RESET_TO_SMBUS |
1505 		     I218_ULP_CONFIG1_WOL_HOST |
1506 		     I218_ULP_CONFIG1_INBAND_EXIT |
1507 		     I218_ULP_CONFIG1_EN_ULP_LANPHYPC |
1508 		     I218_ULP_CONFIG1_DIS_CLR_STICKY_ON_PERST |
1509 		     I218_ULP_CONFIG1_DISABLE_SMB_PERST);
1510 	e1000_write_phy_reg_hv_locked(hw, I218_ULP_CONFIG1, phy_reg);
1511 
1512 	/* Commit ULP changes by starting auto ULP configuration */
1513 	phy_reg |= I218_ULP_CONFIG1_START;
1514 	e1000_write_phy_reg_hv_locked(hw, I218_ULP_CONFIG1, phy_reg);
1515 
1516 	/* Clear Disable SMBus Release on PERST# in MAC */
1517 	mac_reg = E1000_READ_REG(hw, E1000_FEXTNVM7);
1518 	mac_reg &= ~E1000_FEXTNVM7_DISABLE_SMB_PERST;
1519 	E1000_WRITE_REG(hw, E1000_FEXTNVM7, mac_reg);
1520 
1521 release:
1522 	hw->phy.ops.release(hw);
1523 	if (force) {
1524 		hw->phy.ops.reset(hw);
1525 		msec_delay(50);
1526 	}
1527 out:
1528 	if (ret_val)
1529 		DEBUGOUT1("Error in ULP disable flow: %d\n", ret_val);
1530 	else
1531 		hw->dev_spec.ich8lan.ulp_state = e1000_ulp_state_off;
1532 
1533 	return ret_val;
1534 }
1535 
1536 /**
1537  *  e1000_check_for_copper_link_ich8lan - Check for link (Copper)
1538  *  @hw: pointer to the HW structure
1539  *
1540  *  Checks to see of the link status of the hardware has changed.  If a
1541  *  change in link status has been detected, then we read the PHY registers
1542  *  to get the current speed/duplex if link exists.
1543  **/
1544 static s32 e1000_check_for_copper_link_ich8lan(struct e1000_hw *hw)
1545 {
1546 	struct e1000_mac_info *mac = &hw->mac;
1547 	s32 ret_val, tipg_reg = 0;
1548 	u16 emi_addr, emi_val = 0;
1549 	bool link;
1550 	u16 phy_reg;
1551 
1552 	DEBUGFUNC("e1000_check_for_copper_link_ich8lan");
1553 
1554 	/* We only want to go out to the PHY registers to see if Auto-Neg
1555 	 * has completed and/or if our link status has changed.  The
1556 	 * get_link_status flag is set upon receiving a Link Status
1557 	 * Change or Rx Sequence Error interrupt.
1558 	 */
1559 	if (!mac->get_link_status)
1560 		return E1000_SUCCESS;
1561 
1562 	/* First we want to see if the MII Status Register reports
1563 	 * link.  If so, then we want to get the current speed/duplex
1564 	 * of the PHY.
1565 	 */
1566 	ret_val = e1000_phy_has_link_generic(hw, 1, 0, &link);
1567 	if (ret_val)
1568 		return ret_val;
1569 
1570 	if (hw->mac.type == e1000_pchlan) {
1571 		ret_val = e1000_k1_gig_workaround_hv(hw, link);
1572 		if (ret_val)
1573 			return ret_val;
1574 	}
1575 
1576 	/* When connected at 10Mbps half-duplex, some parts are excessively
1577 	 * aggressive resulting in many collisions. To avoid this, increase
1578 	 * the IPG and reduce Rx latency in the PHY.
1579 	 */
1580 	if ((hw->mac.type >= e1000_pch2lan) && link) {
1581 		u16 speed, duplex;
1582 
1583 		e1000_get_speed_and_duplex_copper_generic(hw, &speed, &duplex);
1584 		tipg_reg = E1000_READ_REG(hw, E1000_TIPG);
1585 		tipg_reg &= ~E1000_TIPG_IPGT_MASK;
1586 
1587 		if (duplex == HALF_DUPLEX && speed == SPEED_10) {
1588 			tipg_reg |= 0xFF;
1589 			/* Reduce Rx latency in analog PHY */
1590 			emi_val = 0;
1591 		} else if (hw->mac.type >= e1000_pch_spt &&
1592 			   duplex == FULL_DUPLEX && speed != SPEED_1000) {
1593 			tipg_reg |= 0xC;
1594 			emi_val = 1;
1595 		} else {
1596 			/* Roll back the default values */
1597 			tipg_reg |= 0x08;
1598 			emi_val = 1;
1599 		}
1600 
1601 		E1000_WRITE_REG(hw, E1000_TIPG, tipg_reg);
1602 
1603 		ret_val = hw->phy.ops.acquire(hw);
1604 		if (ret_val)
1605 			return ret_val;
1606 
1607 		if (hw->mac.type == e1000_pch2lan)
1608 			emi_addr = I82579_RX_CONFIG;
1609 		else
1610 			emi_addr = I217_RX_CONFIG;
1611 		ret_val = e1000_write_emi_reg_locked(hw, emi_addr, emi_val);
1612 
1613 		if (hw->mac.type >= e1000_pch_lpt) {
1614 			u16 phy_reg;
1615 
1616 			hw->phy.ops.read_reg_locked(hw, I217_PLL_CLOCK_GATE_REG,
1617 						    &phy_reg);
1618 			phy_reg &= ~I217_PLL_CLOCK_GATE_MASK;
1619 			if (speed == SPEED_100 || speed == SPEED_10)
1620 				phy_reg |= 0x3E8;
1621 			else
1622 				phy_reg |= 0xFA;
1623 			hw->phy.ops.write_reg_locked(hw,
1624 						     I217_PLL_CLOCK_GATE_REG,
1625 						     phy_reg);
1626 
1627 			if (speed == SPEED_1000) {
1628 				hw->phy.ops.read_reg_locked(hw, HV_PM_CTRL,
1629 							    &phy_reg);
1630 
1631 				phy_reg |= HV_PM_CTRL_K1_CLK_REQ;
1632 
1633 				hw->phy.ops.write_reg_locked(hw, HV_PM_CTRL,
1634 							     phy_reg);
1635 				}
1636 		 }
1637 		hw->phy.ops.release(hw);
1638 
1639 		if (ret_val)
1640 			return ret_val;
1641 
1642 		if (hw->mac.type >= e1000_pch_spt) {
1643 			u16 data;
1644 			u16 ptr_gap;
1645 
1646 			if (speed == SPEED_1000) {
1647 				ret_val = hw->phy.ops.acquire(hw);
1648 				if (ret_val)
1649 					return ret_val;
1650 
1651 				ret_val = hw->phy.ops.read_reg_locked(hw,
1652 							      PHY_REG(776, 20),
1653 							      &data);
1654 				if (ret_val) {
1655 					hw->phy.ops.release(hw);
1656 					return ret_val;
1657 				}
1658 
1659 				ptr_gap = (data & (0x3FF << 2)) >> 2;
1660 				if (ptr_gap < 0x18) {
1661 					data &= ~(0x3FF << 2);
1662 					data |= (0x18 << 2);
1663 					ret_val =
1664 						hw->phy.ops.write_reg_locked(hw,
1665 							PHY_REG(776, 20), data);
1666 				}
1667 				hw->phy.ops.release(hw);
1668 				if (ret_val)
1669 					return ret_val;
1670 			} else {
1671 				ret_val = hw->phy.ops.acquire(hw);
1672 				if (ret_val)
1673 					return ret_val;
1674 
1675 				ret_val = hw->phy.ops.write_reg_locked(hw,
1676 							     PHY_REG(776, 20),
1677 							     0xC023);
1678 				hw->phy.ops.release(hw);
1679 				if (ret_val)
1680 					return ret_val;
1681 
1682 			}
1683 		}
1684 	}
1685 
1686 	/* I217 Packet Loss issue:
1687 	 * ensure that FEXTNVM4 Beacon Duration is set correctly
1688 	 * on power up.
1689 	 * Set the Beacon Duration for I217 to 8 usec
1690 	 */
1691 	if (hw->mac.type >= e1000_pch_lpt) {
1692 		u32 mac_reg;
1693 
1694 		mac_reg = E1000_READ_REG(hw, E1000_FEXTNVM4);
1695 		mac_reg &= ~E1000_FEXTNVM4_BEACON_DURATION_MASK;
1696 		mac_reg |= E1000_FEXTNVM4_BEACON_DURATION_8USEC;
1697 		E1000_WRITE_REG(hw, E1000_FEXTNVM4, mac_reg);
1698 	}
1699 
1700 	/* Work-around I218 hang issue */
1701 	if ((hw->device_id == E1000_DEV_ID_PCH_LPTLP_I218_LM) ||
1702 	    (hw->device_id == E1000_DEV_ID_PCH_LPTLP_I218_V) ||
1703 	    (hw->device_id == E1000_DEV_ID_PCH_I218_LM3) ||
1704 	    (hw->device_id == E1000_DEV_ID_PCH_I218_V3)) {
1705 		ret_val = e1000_k1_workaround_lpt_lp(hw, link);
1706 		if (ret_val)
1707 			return ret_val;
1708 	}
1709 	if (hw->mac.type >= e1000_pch_lpt) {
1710 		/* Set platform power management values for
1711 		 * Latency Tolerance Reporting (LTR)
1712 		 * Optimized Buffer Flush/Fill (OBFF)
1713 		 */
1714 		ret_val = e1000_platform_pm_pch_lpt(hw, link);
1715 		if (ret_val)
1716 			return ret_val;
1717 	}
1718 
1719 	/* Clear link partner's EEE ability */
1720 	hw->dev_spec.ich8lan.eee_lp_ability = 0;
1721 
1722 	/* FEXTNVM6 K1-off workaround - for SPT only */
1723 	if (hw->mac.type == e1000_pch_spt) {
1724 		u32 pcieanacfg = E1000_READ_REG(hw, E1000_PCIEANACFG);
1725 		u32 fextnvm6 = E1000_READ_REG(hw, E1000_FEXTNVM6);
1726 
1727 		if ((pcieanacfg & E1000_FEXTNVM6_K1_OFF_ENABLE) &&
1728 			(hw->dev_spec.ich8lan.disable_k1_off == FALSE))
1729 			fextnvm6 |= E1000_FEXTNVM6_K1_OFF_ENABLE;
1730 		else
1731 			fextnvm6 &= ~E1000_FEXTNVM6_K1_OFF_ENABLE;
1732 
1733 		E1000_WRITE_REG(hw, E1000_FEXTNVM6, fextnvm6);
1734 	}
1735 
1736 	if (!link)
1737 		return E1000_SUCCESS; /* No link detected */
1738 
1739 	mac->get_link_status = FALSE;
1740 
1741 	switch (hw->mac.type) {
1742 	case e1000_pch2lan:
1743 		ret_val = e1000_k1_workaround_lv(hw);
1744 		if (ret_val)
1745 			return ret_val;
1746 		/* fall-thru */
1747 	case e1000_pchlan:
1748 		if (hw->phy.type == e1000_phy_82578) {
1749 			ret_val = e1000_link_stall_workaround_hv(hw);
1750 			if (ret_val)
1751 				return ret_val;
1752 		}
1753 
1754 		/* Workaround for PCHx parts in half-duplex:
1755 		 * Set the number of preambles removed from the packet
1756 		 * when it is passed from the PHY to the MAC to prevent
1757 		 * the MAC from misinterpreting the packet type.
1758 		 */
1759 		hw->phy.ops.read_reg(hw, HV_KMRN_FIFO_CTRLSTA, &phy_reg);
1760 		phy_reg &= ~HV_KMRN_FIFO_CTRLSTA_PREAMBLE_MASK;
1761 
1762 		if ((E1000_READ_REG(hw, E1000_STATUS) & E1000_STATUS_FD) !=
1763 		    E1000_STATUS_FD)
1764 			phy_reg |= (1 << HV_KMRN_FIFO_CTRLSTA_PREAMBLE_SHIFT);
1765 
1766 		hw->phy.ops.write_reg(hw, HV_KMRN_FIFO_CTRLSTA, phy_reg);
1767 		break;
1768 	default:
1769 		break;
1770 	}
1771 
1772 	/* Check if there was DownShift, must be checked
1773 	 * immediately after link-up
1774 	 */
1775 	e1000_check_downshift_generic(hw);
1776 
1777 	/* Enable/Disable EEE after link up */
1778 	if (hw->phy.type > e1000_phy_82579) {
1779 		ret_val = e1000_set_eee_pchlan(hw);
1780 		if (ret_val)
1781 			return ret_val;
1782 	}
1783 
1784 	/* If we are forcing speed/duplex, then we simply return since
1785 	 * we have already determined whether we have link or not.
1786 	 */
1787 	if (!mac->autoneg)
1788 		return -E1000_ERR_CONFIG;
1789 
1790 	/* Auto-Neg is enabled.  Auto Speed Detection takes care
1791 	 * of MAC speed/duplex configuration.  So we only need to
1792 	 * configure Collision Distance in the MAC.
1793 	 */
1794 	mac->ops.config_collision_dist(hw);
1795 
1796 	/* Configure Flow Control now that Auto-Neg has completed.
1797 	 * First, we need to restore the desired flow control
1798 	 * settings because we may have had to re-autoneg with a
1799 	 * different link partner.
1800 	 */
1801 	ret_val = e1000_config_fc_after_link_up_generic(hw);
1802 	if (ret_val)
1803 		DEBUGOUT("Error configuring flow control\n");
1804 
1805 	return ret_val;
1806 }
1807 
1808 /**
1809  *  e1000_init_function_pointers_ich8lan - Initialize ICH8 function pointers
1810  *  @hw: pointer to the HW structure
1811  *
1812  *  Initialize family-specific function pointers for PHY, MAC, and NVM.
1813  **/
1814 void e1000_init_function_pointers_ich8lan(struct e1000_hw *hw)
1815 {
1816 	DEBUGFUNC("e1000_init_function_pointers_ich8lan");
1817 
1818 	hw->mac.ops.init_params = e1000_init_mac_params_ich8lan;
1819 	hw->nvm.ops.init_params = e1000_init_nvm_params_ich8lan;
1820 	switch (hw->mac.type) {
1821 	case e1000_ich8lan:
1822 	case e1000_ich9lan:
1823 	case e1000_ich10lan:
1824 		hw->phy.ops.init_params = e1000_init_phy_params_ich8lan;
1825 		break;
1826 	case e1000_pchlan:
1827 	case e1000_pch2lan:
1828 	case e1000_pch_lpt:
1829 	case e1000_pch_spt:
1830 	case e1000_pch_cnp:
1831 		hw->phy.ops.init_params = e1000_init_phy_params_pchlan;
1832 		break;
1833 	default:
1834 		break;
1835 	}
1836 }
1837 
1838 /**
1839  *  e1000_acquire_nvm_ich8lan - Acquire NVM mutex
1840  *  @hw: pointer to the HW structure
1841  *
1842  *  Acquires the mutex for performing NVM operations.
1843  **/
1844 static s32 e1000_acquire_nvm_ich8lan(struct e1000_hw *hw)
1845 {
1846 	DEBUGFUNC("e1000_acquire_nvm_ich8lan");
1847 
1848 	E1000_MUTEX_LOCK(&hw->dev_spec.ich8lan.nvm_mutex);
1849 
1850 	return E1000_SUCCESS;
1851 }
1852 
1853 /**
1854  *  e1000_release_nvm_ich8lan - Release NVM mutex
1855  *  @hw: pointer to the HW structure
1856  *
1857  *  Releases the mutex used while performing NVM operations.
1858  **/
1859 static void e1000_release_nvm_ich8lan(struct e1000_hw *hw)
1860 {
1861 	DEBUGFUNC("e1000_release_nvm_ich8lan");
1862 
1863 	E1000_MUTEX_UNLOCK(&hw->dev_spec.ich8lan.nvm_mutex);
1864 
1865 	return;
1866 }
1867 
1868 /**
1869  *  e1000_acquire_swflag_ich8lan - Acquire software control flag
1870  *  @hw: pointer to the HW structure
1871  *
1872  *  Acquires the software control flag for performing PHY and select
1873  *  MAC CSR accesses.
1874  **/
1875 static s32 e1000_acquire_swflag_ich8lan(struct e1000_hw *hw)
1876 {
1877 	u32 extcnf_ctrl, timeout = PHY_CFG_TIMEOUT;
1878 	s32 ret_val = E1000_SUCCESS;
1879 
1880 	DEBUGFUNC("e1000_acquire_swflag_ich8lan");
1881 
1882 	E1000_MUTEX_LOCK(&hw->dev_spec.ich8lan.swflag_mutex);
1883 
1884 	while (timeout) {
1885 		extcnf_ctrl = E1000_READ_REG(hw, E1000_EXTCNF_CTRL);
1886 		if (!(extcnf_ctrl & E1000_EXTCNF_CTRL_SWFLAG))
1887 			break;
1888 
1889 		msec_delay_irq(1);
1890 		timeout--;
1891 	}
1892 
1893 	if (!timeout) {
1894 		DEBUGOUT("SW has already locked the resource.\n");
1895 		ret_val = -E1000_ERR_CONFIG;
1896 		goto out;
1897 	}
1898 
1899 	timeout = SW_FLAG_TIMEOUT;
1900 
1901 	extcnf_ctrl |= E1000_EXTCNF_CTRL_SWFLAG;
1902 	E1000_WRITE_REG(hw, E1000_EXTCNF_CTRL, extcnf_ctrl);
1903 
1904 	while (timeout) {
1905 		extcnf_ctrl = E1000_READ_REG(hw, E1000_EXTCNF_CTRL);
1906 		if (extcnf_ctrl & E1000_EXTCNF_CTRL_SWFLAG)
1907 			break;
1908 
1909 		msec_delay_irq(1);
1910 		timeout--;
1911 	}
1912 
1913 	if (!timeout) {
1914 		DEBUGOUT2("Failed to acquire the semaphore, FW or HW has it: FWSM=0x%8.8x EXTCNF_CTRL=0x%8.8x)\n",
1915 			  E1000_READ_REG(hw, E1000_FWSM), extcnf_ctrl);
1916 		extcnf_ctrl &= ~E1000_EXTCNF_CTRL_SWFLAG;
1917 		E1000_WRITE_REG(hw, E1000_EXTCNF_CTRL, extcnf_ctrl);
1918 		ret_val = -E1000_ERR_CONFIG;
1919 		goto out;
1920 	}
1921 
1922 out:
1923 	if (ret_val)
1924 		E1000_MUTEX_UNLOCK(&hw->dev_spec.ich8lan.swflag_mutex);
1925 
1926 	return ret_val;
1927 }
1928 
1929 /**
1930  *  e1000_release_swflag_ich8lan - Release software control flag
1931  *  @hw: pointer to the HW structure
1932  *
1933  *  Releases the software control flag for performing PHY and select
1934  *  MAC CSR accesses.
1935  **/
1936 static void e1000_release_swflag_ich8lan(struct e1000_hw *hw)
1937 {
1938 	u32 extcnf_ctrl;
1939 
1940 	DEBUGFUNC("e1000_release_swflag_ich8lan");
1941 
1942 	extcnf_ctrl = E1000_READ_REG(hw, E1000_EXTCNF_CTRL);
1943 
1944 	if (extcnf_ctrl & E1000_EXTCNF_CTRL_SWFLAG) {
1945 		extcnf_ctrl &= ~E1000_EXTCNF_CTRL_SWFLAG;
1946 		E1000_WRITE_REG(hw, E1000_EXTCNF_CTRL, extcnf_ctrl);
1947 	} else {
1948 		DEBUGOUT("Semaphore unexpectedly released by sw/fw/hw\n");
1949 	}
1950 
1951 	E1000_MUTEX_UNLOCK(&hw->dev_spec.ich8lan.swflag_mutex);
1952 
1953 	return;
1954 }
1955 
1956 /**
1957  *  e1000_check_mng_mode_ich8lan - Checks management mode
1958  *  @hw: pointer to the HW structure
1959  *
1960  *  This checks if the adapter has any manageability enabled.
1961  *  This is a function pointer entry point only called by read/write
1962  *  routines for the PHY and NVM parts.
1963  **/
1964 static bool e1000_check_mng_mode_ich8lan(struct e1000_hw *hw)
1965 {
1966 	u32 fwsm;
1967 
1968 	DEBUGFUNC("e1000_check_mng_mode_ich8lan");
1969 
1970 	fwsm = E1000_READ_REG(hw, E1000_FWSM);
1971 
1972 	return (fwsm & E1000_ICH_FWSM_FW_VALID) &&
1973 	       ((fwsm & E1000_FWSM_MODE_MASK) ==
1974 		(E1000_ICH_MNG_IAMT_MODE << E1000_FWSM_MODE_SHIFT));
1975 }
1976 
1977 /**
1978  *  e1000_check_mng_mode_pchlan - Checks management mode
1979  *  @hw: pointer to the HW structure
1980  *
1981  *  This checks if the adapter has iAMT enabled.
1982  *  This is a function pointer entry point only called by read/write
1983  *  routines for the PHY and NVM parts.
1984  **/
1985 static bool e1000_check_mng_mode_pchlan(struct e1000_hw *hw)
1986 {
1987 	u32 fwsm;
1988 
1989 	DEBUGFUNC("e1000_check_mng_mode_pchlan");
1990 
1991 	fwsm = E1000_READ_REG(hw, E1000_FWSM);
1992 
1993 	return (fwsm & E1000_ICH_FWSM_FW_VALID) &&
1994 	       (fwsm & (E1000_ICH_MNG_IAMT_MODE << E1000_FWSM_MODE_SHIFT));
1995 }
1996 
1997 /**
1998  *  e1000_rar_set_pch2lan - Set receive address register
1999  *  @hw: pointer to the HW structure
2000  *  @addr: pointer to the receive address
2001  *  @index: receive address array register
2002  *
2003  *  Sets the receive address array register at index to the address passed
2004  *  in by addr.  For 82579, RAR[0] is the base address register that is to
2005  *  contain the MAC address but RAR[1-6] are reserved for manageability (ME).
2006  *  Use SHRA[0-3] in place of those reserved for ME.
2007  **/
2008 static int e1000_rar_set_pch2lan(struct e1000_hw *hw, u8 *addr, u32 index)
2009 {
2010 	u32 rar_low, rar_high;
2011 
2012 	DEBUGFUNC("e1000_rar_set_pch2lan");
2013 
2014 	/* HW expects these in little endian so we reverse the byte order
2015 	 * from network order (big endian) to little endian
2016 	 */
2017 	rar_low = ((u32) addr[0] |
2018 		   ((u32) addr[1] << 8) |
2019 		   ((u32) addr[2] << 16) | ((u32) addr[3] << 24));
2020 
2021 	rar_high = ((u32) addr[4] | ((u32) addr[5] << 8));
2022 
2023 	/* If MAC address zero, no need to set the AV bit */
2024 	if (rar_low || rar_high)
2025 		rar_high |= E1000_RAH_AV;
2026 
2027 	if (index == 0) {
2028 		E1000_WRITE_REG(hw, E1000_RAL(index), rar_low);
2029 		E1000_WRITE_FLUSH(hw);
2030 		E1000_WRITE_REG(hw, E1000_RAH(index), rar_high);
2031 		E1000_WRITE_FLUSH(hw);
2032 		return E1000_SUCCESS;
2033 	}
2034 
2035 	/* RAR[1-6] are owned by manageability.  Skip those and program the
2036 	 * next address into the SHRA register array.
2037 	 */
2038 	if (index < (u32) (hw->mac.rar_entry_count)) {
2039 		s32 ret_val;
2040 
2041 		ret_val = e1000_acquire_swflag_ich8lan(hw);
2042 		if (ret_val)
2043 			goto out;
2044 
2045 		E1000_WRITE_REG(hw, E1000_SHRAL(index - 1), rar_low);
2046 		E1000_WRITE_FLUSH(hw);
2047 		E1000_WRITE_REG(hw, E1000_SHRAH(index - 1), rar_high);
2048 		E1000_WRITE_FLUSH(hw);
2049 
2050 		e1000_release_swflag_ich8lan(hw);
2051 
2052 		/* verify the register updates */
2053 		if ((E1000_READ_REG(hw, E1000_SHRAL(index - 1)) == rar_low) &&
2054 		    (E1000_READ_REG(hw, E1000_SHRAH(index - 1)) == rar_high))
2055 			return E1000_SUCCESS;
2056 
2057 		DEBUGOUT2("SHRA[%d] might be locked by ME - FWSM=0x%8.8x\n",
2058 			 (index - 1), E1000_READ_REG(hw, E1000_FWSM));
2059 	}
2060 
2061 out:
2062 	DEBUGOUT1("Failed to write receive address at index %d\n", index);
2063 	return -E1000_ERR_CONFIG;
2064 }
2065 
2066 /**
2067  *  e1000_rar_set_pch_lpt - Set receive address registers
2068  *  @hw: pointer to the HW structure
2069  *  @addr: pointer to the receive address
2070  *  @index: receive address array register
2071  *
2072  *  Sets the receive address register array at index to the address passed
2073  *  in by addr. For LPT, RAR[0] is the base address register that is to
2074  *  contain the MAC address. SHRA[0-10] are the shared receive address
2075  *  registers that are shared between the Host and manageability engine (ME).
2076  **/
2077 static int e1000_rar_set_pch_lpt(struct e1000_hw *hw, u8 *addr, u32 index)
2078 {
2079 	u32 rar_low, rar_high;
2080 	u32 wlock_mac;
2081 
2082 	DEBUGFUNC("e1000_rar_set_pch_lpt");
2083 
2084 	/* HW expects these in little endian so we reverse the byte order
2085 	 * from network order (big endian) to little endian
2086 	 */
2087 	rar_low = ((u32) addr[0] | ((u32) addr[1] << 8) |
2088 		   ((u32) addr[2] << 16) | ((u32) addr[3] << 24));
2089 
2090 	rar_high = ((u32) addr[4] | ((u32) addr[5] << 8));
2091 
2092 	/* If MAC address zero, no need to set the AV bit */
2093 	if (rar_low || rar_high)
2094 		rar_high |= E1000_RAH_AV;
2095 
2096 	if (index == 0) {
2097 		E1000_WRITE_REG(hw, E1000_RAL(index), rar_low);
2098 		E1000_WRITE_FLUSH(hw);
2099 		E1000_WRITE_REG(hw, E1000_RAH(index), rar_high);
2100 		E1000_WRITE_FLUSH(hw);
2101 		return E1000_SUCCESS;
2102 	}
2103 
2104 	/* The manageability engine (ME) can lock certain SHRAR registers that
2105 	 * it is using - those registers are unavailable for use.
2106 	 */
2107 	if (index < hw->mac.rar_entry_count) {
2108 		wlock_mac = E1000_READ_REG(hw, E1000_FWSM) &
2109 			    E1000_FWSM_WLOCK_MAC_MASK;
2110 		wlock_mac >>= E1000_FWSM_WLOCK_MAC_SHIFT;
2111 
2112 		/* Check if all SHRAR registers are locked */
2113 		if (wlock_mac == 1)
2114 			goto out;
2115 
2116 		if ((wlock_mac == 0) || (index <= wlock_mac)) {
2117 			s32 ret_val;
2118 
2119 			ret_val = e1000_acquire_swflag_ich8lan(hw);
2120 
2121 			if (ret_val)
2122 				goto out;
2123 
2124 			E1000_WRITE_REG(hw, E1000_SHRAL_PCH_LPT(index - 1),
2125 					rar_low);
2126 			E1000_WRITE_FLUSH(hw);
2127 			E1000_WRITE_REG(hw, E1000_SHRAH_PCH_LPT(index - 1),
2128 					rar_high);
2129 			E1000_WRITE_FLUSH(hw);
2130 
2131 			e1000_release_swflag_ich8lan(hw);
2132 
2133 			/* verify the register updates */
2134 			if ((E1000_READ_REG(hw, E1000_SHRAL_PCH_LPT(index - 1)) == rar_low) &&
2135 			    (E1000_READ_REG(hw, E1000_SHRAH_PCH_LPT(index - 1)) == rar_high))
2136 				return E1000_SUCCESS;
2137 		}
2138 	}
2139 
2140 out:
2141 	DEBUGOUT1("Failed to write receive address at index %d\n", index);
2142 	return -E1000_ERR_CONFIG;
2143 }
2144 
2145 /**
2146  *  e1000_update_mc_addr_list_pch2lan - Update Multicast addresses
2147  *  @hw: pointer to the HW structure
2148  *  @mc_addr_list: array of multicast addresses to program
2149  *  @mc_addr_count: number of multicast addresses to program
2150  *
2151  *  Updates entire Multicast Table Array of the PCH2 MAC and PHY.
2152  *  The caller must have a packed mc_addr_list of multicast addresses.
2153  **/
2154 static void e1000_update_mc_addr_list_pch2lan(struct e1000_hw *hw,
2155 					      u8 *mc_addr_list,
2156 					      u32 mc_addr_count)
2157 {
2158 	u16 phy_reg = 0;
2159 	int i;
2160 	s32 ret_val;
2161 
2162 	DEBUGFUNC("e1000_update_mc_addr_list_pch2lan");
2163 
2164 	e1000_update_mc_addr_list_generic(hw, mc_addr_list, mc_addr_count);
2165 
2166 	ret_val = hw->phy.ops.acquire(hw);
2167 	if (ret_val)
2168 		return;
2169 
2170 	ret_val = e1000_enable_phy_wakeup_reg_access_bm(hw, &phy_reg);
2171 	if (ret_val)
2172 		goto release;
2173 
2174 	for (i = 0; i < hw->mac.mta_reg_count; i++) {
2175 		hw->phy.ops.write_reg_page(hw, BM_MTA(i),
2176 					   (u16)(hw->mac.mta_shadow[i] &
2177 						 0xFFFF));
2178 		hw->phy.ops.write_reg_page(hw, (BM_MTA(i) + 1),
2179 					   (u16)((hw->mac.mta_shadow[i] >> 16) &
2180 						 0xFFFF));
2181 	}
2182 
2183 	e1000_disable_phy_wakeup_reg_access_bm(hw, &phy_reg);
2184 
2185 release:
2186 	hw->phy.ops.release(hw);
2187 }
2188 
2189 /**
2190  *  e1000_check_reset_block_ich8lan - Check if PHY reset is blocked
2191  *  @hw: pointer to the HW structure
2192  *
2193  *  Checks if firmware is blocking the reset of the PHY.
2194  *  This is a function pointer entry point only called by
2195  *  reset routines.
2196  **/
2197 static s32 e1000_check_reset_block_ich8lan(struct e1000_hw *hw)
2198 {
2199 	u32 fwsm;
2200 	bool blocked = FALSE;
2201 	int i = 0;
2202 
2203 	DEBUGFUNC("e1000_check_reset_block_ich8lan");
2204 
2205 	do {
2206 		fwsm = E1000_READ_REG(hw, E1000_FWSM);
2207 		if (!(fwsm & E1000_ICH_FWSM_RSPCIPHY)) {
2208 			blocked = TRUE;
2209 			msec_delay(10);
2210 			continue;
2211 		}
2212 		blocked = FALSE;
2213 	} while (blocked && (i++ < 30));
2214 	return blocked ? E1000_BLK_PHY_RESET : E1000_SUCCESS;
2215 }
2216 
2217 /**
2218  *  e1000_write_smbus_addr - Write SMBus address to PHY needed during Sx states
2219  *  @hw: pointer to the HW structure
2220  *
2221  *  Assumes semaphore already acquired.
2222  *
2223  **/
2224 static s32 e1000_write_smbus_addr(struct e1000_hw *hw)
2225 {
2226 	u16 phy_data;
2227 	u32 strap = E1000_READ_REG(hw, E1000_STRAP);
2228 	u32 freq = (strap & E1000_STRAP_SMT_FREQ_MASK) >>
2229 		E1000_STRAP_SMT_FREQ_SHIFT;
2230 	s32 ret_val;
2231 
2232 	strap &= E1000_STRAP_SMBUS_ADDRESS_MASK;
2233 
2234 	ret_val = e1000_read_phy_reg_hv_locked(hw, HV_SMB_ADDR, &phy_data);
2235 	if (ret_val)
2236 		return ret_val;
2237 
2238 	phy_data &= ~HV_SMB_ADDR_MASK;
2239 	phy_data |= (strap >> E1000_STRAP_SMBUS_ADDRESS_SHIFT);
2240 	phy_data |= HV_SMB_ADDR_PEC_EN | HV_SMB_ADDR_VALID;
2241 
2242 	if (hw->phy.type == e1000_phy_i217) {
2243 		/* Restore SMBus frequency */
2244 		if (freq--) {
2245 			phy_data &= ~HV_SMB_ADDR_FREQ_MASK;
2246 			phy_data |= (freq & (1 << 0)) <<
2247 				HV_SMB_ADDR_FREQ_LOW_SHIFT;
2248 			phy_data |= (freq & (1 << 1)) <<
2249 				(HV_SMB_ADDR_FREQ_HIGH_SHIFT - 1);
2250 		} else {
2251 			DEBUGOUT("Unsupported SMB frequency in PHY\n");
2252 		}
2253 	}
2254 
2255 	return e1000_write_phy_reg_hv_locked(hw, HV_SMB_ADDR, phy_data);
2256 }
2257 
2258 /**
2259  *  e1000_sw_lcd_config_ich8lan - SW-based LCD Configuration
2260  *  @hw:   pointer to the HW structure
2261  *
2262  *  SW should configure the LCD from the NVM extended configuration region
2263  *  as a workaround for certain parts.
2264  **/
2265 static s32 e1000_sw_lcd_config_ich8lan(struct e1000_hw *hw)
2266 {
2267 	struct e1000_phy_info *phy = &hw->phy;
2268 	u32 i, data, cnf_size, cnf_base_addr, sw_cfg_mask;
2269 	s32 ret_val = E1000_SUCCESS;
2270 	u16 word_addr, reg_data, reg_addr, phy_page = 0;
2271 
2272 	DEBUGFUNC("e1000_sw_lcd_config_ich8lan");
2273 
2274 	/* Initialize the PHY from the NVM on ICH platforms.  This
2275 	 * is needed due to an issue where the NVM configuration is
2276 	 * not properly autoloaded after power transitions.
2277 	 * Therefore, after each PHY reset, we will load the
2278 	 * configuration data out of the NVM manually.
2279 	 */
2280 	switch (hw->mac.type) {
2281 	case e1000_ich8lan:
2282 		if (phy->type != e1000_phy_igp_3)
2283 			return ret_val;
2284 
2285 		if ((hw->device_id == E1000_DEV_ID_ICH8_IGP_AMT) ||
2286 		    (hw->device_id == E1000_DEV_ID_ICH8_IGP_C)) {
2287 			sw_cfg_mask = E1000_FEXTNVM_SW_CONFIG;
2288 			break;
2289 		}
2290 		/* Fall-thru */
2291 	case e1000_pchlan:
2292 	case e1000_pch2lan:
2293 	case e1000_pch_lpt:
2294 	case e1000_pch_spt:
2295 	case e1000_pch_cnp:
2296 		sw_cfg_mask = E1000_FEXTNVM_SW_CONFIG_ICH8M;
2297 		break;
2298 	default:
2299 		return ret_val;
2300 	}
2301 
2302 	ret_val = hw->phy.ops.acquire(hw);
2303 	if (ret_val)
2304 		return ret_val;
2305 
2306 	data = E1000_READ_REG(hw, E1000_FEXTNVM);
2307 	if (!(data & sw_cfg_mask))
2308 		goto release;
2309 
2310 	/* Make sure HW does not configure LCD from PHY
2311 	 * extended configuration before SW configuration
2312 	 */
2313 	data = E1000_READ_REG(hw, E1000_EXTCNF_CTRL);
2314 	if ((hw->mac.type < e1000_pch2lan) &&
2315 	    (data & E1000_EXTCNF_CTRL_LCD_WRITE_ENABLE))
2316 			goto release;
2317 
2318 	cnf_size = E1000_READ_REG(hw, E1000_EXTCNF_SIZE);
2319 	cnf_size &= E1000_EXTCNF_SIZE_EXT_PCIE_LENGTH_MASK;
2320 	cnf_size >>= E1000_EXTCNF_SIZE_EXT_PCIE_LENGTH_SHIFT;
2321 	if (!cnf_size)
2322 		goto release;
2323 
2324 	cnf_base_addr = data & E1000_EXTCNF_CTRL_EXT_CNF_POINTER_MASK;
2325 	cnf_base_addr >>= E1000_EXTCNF_CTRL_EXT_CNF_POINTER_SHIFT;
2326 
2327 	if (((hw->mac.type == e1000_pchlan) &&
2328 	     !(data & E1000_EXTCNF_CTRL_OEM_WRITE_ENABLE)) ||
2329 	    (hw->mac.type > e1000_pchlan)) {
2330 		/* HW configures the SMBus address and LEDs when the
2331 		 * OEM and LCD Write Enable bits are set in the NVM.
2332 		 * When both NVM bits are cleared, SW will configure
2333 		 * them instead.
2334 		 */
2335 		ret_val = e1000_write_smbus_addr(hw);
2336 		if (ret_val)
2337 			goto release;
2338 
2339 		data = E1000_READ_REG(hw, E1000_LEDCTL);
2340 		ret_val = e1000_write_phy_reg_hv_locked(hw, HV_LED_CONFIG,
2341 							(u16)data);
2342 		if (ret_val)
2343 			goto release;
2344 	}
2345 
2346 	/* Configure LCD from extended configuration region. */
2347 
2348 	/* cnf_base_addr is in DWORD */
2349 	word_addr = (u16)(cnf_base_addr << 1);
2350 
2351 	for (i = 0; i < cnf_size; i++) {
2352 		ret_val = hw->nvm.ops.read(hw, (word_addr + i * 2), 1,
2353 					   &reg_data);
2354 		if (ret_val)
2355 			goto release;
2356 
2357 		ret_val = hw->nvm.ops.read(hw, (word_addr + i * 2 + 1),
2358 					   1, &reg_addr);
2359 		if (ret_val)
2360 			goto release;
2361 
2362 		/* Save off the PHY page for future writes. */
2363 		if (reg_addr == IGP01E1000_PHY_PAGE_SELECT) {
2364 			phy_page = reg_data;
2365 			continue;
2366 		}
2367 
2368 		reg_addr &= PHY_REG_MASK;
2369 		reg_addr |= phy_page;
2370 
2371 		ret_val = phy->ops.write_reg_locked(hw, (u32)reg_addr,
2372 						    reg_data);
2373 		if (ret_val)
2374 			goto release;
2375 	}
2376 
2377 release:
2378 	hw->phy.ops.release(hw);
2379 	return ret_val;
2380 }
2381 
2382 /**
2383  *  e1000_k1_gig_workaround_hv - K1 Si workaround
2384  *  @hw:   pointer to the HW structure
2385  *  @link: link up bool flag
2386  *
2387  *  If K1 is enabled for 1Gbps, the MAC might stall when transitioning
2388  *  from a lower speed.  This workaround disables K1 whenever link is at 1Gig
2389  *  If link is down, the function will restore the default K1 setting located
2390  *  in the NVM.
2391  **/
2392 static s32 e1000_k1_gig_workaround_hv(struct e1000_hw *hw, bool link)
2393 {
2394 	s32 ret_val = E1000_SUCCESS;
2395 	u16 status_reg = 0;
2396 	bool k1_enable = hw->dev_spec.ich8lan.nvm_k1_enabled;
2397 
2398 	DEBUGFUNC("e1000_k1_gig_workaround_hv");
2399 
2400 	if (hw->mac.type != e1000_pchlan)
2401 		return E1000_SUCCESS;
2402 
2403 	/* Wrap the whole flow with the sw flag */
2404 	ret_val = hw->phy.ops.acquire(hw);
2405 	if (ret_val)
2406 		return ret_val;
2407 
2408 	/* Disable K1 when link is 1Gbps, otherwise use the NVM setting */
2409 	if (link) {
2410 		if (hw->phy.type == e1000_phy_82578) {
2411 			ret_val = hw->phy.ops.read_reg_locked(hw, BM_CS_STATUS,
2412 							      &status_reg);
2413 			if (ret_val)
2414 				goto release;
2415 
2416 			status_reg &= (BM_CS_STATUS_LINK_UP |
2417 				       BM_CS_STATUS_RESOLVED |
2418 				       BM_CS_STATUS_SPEED_MASK);
2419 
2420 			if (status_reg == (BM_CS_STATUS_LINK_UP |
2421 					   BM_CS_STATUS_RESOLVED |
2422 					   BM_CS_STATUS_SPEED_1000))
2423 				k1_enable = FALSE;
2424 		}
2425 
2426 		if (hw->phy.type == e1000_phy_82577) {
2427 			ret_val = hw->phy.ops.read_reg_locked(hw, HV_M_STATUS,
2428 							      &status_reg);
2429 			if (ret_val)
2430 				goto release;
2431 
2432 			status_reg &= (HV_M_STATUS_LINK_UP |
2433 				       HV_M_STATUS_AUTONEG_COMPLETE |
2434 				       HV_M_STATUS_SPEED_MASK);
2435 
2436 			if (status_reg == (HV_M_STATUS_LINK_UP |
2437 					   HV_M_STATUS_AUTONEG_COMPLETE |
2438 					   HV_M_STATUS_SPEED_1000))
2439 				k1_enable = FALSE;
2440 		}
2441 
2442 		/* Link stall fix for link up */
2443 		ret_val = hw->phy.ops.write_reg_locked(hw, PHY_REG(770, 19),
2444 						       0x0100);
2445 		if (ret_val)
2446 			goto release;
2447 
2448 	} else {
2449 		/* Link stall fix for link down */
2450 		ret_val = hw->phy.ops.write_reg_locked(hw, PHY_REG(770, 19),
2451 						       0x4100);
2452 		if (ret_val)
2453 			goto release;
2454 	}
2455 
2456 	ret_val = e1000_configure_k1_ich8lan(hw, k1_enable);
2457 
2458 release:
2459 	hw->phy.ops.release(hw);
2460 
2461 	return ret_val;
2462 }
2463 
2464 /**
2465  *  e1000_configure_k1_ich8lan - Configure K1 power state
2466  *  @hw: pointer to the HW structure
2467  *  @enable: K1 state to configure
2468  *
2469  *  Configure the K1 power state based on the provided parameter.
2470  *  Assumes semaphore already acquired.
2471  *
2472  *  Success returns 0, Failure returns -E1000_ERR_PHY (-2)
2473  **/
2474 s32 e1000_configure_k1_ich8lan(struct e1000_hw *hw, bool k1_enable)
2475 {
2476 	s32 ret_val;
2477 	u32 ctrl_reg = 0;
2478 	u32 ctrl_ext = 0;
2479 	u32 reg = 0;
2480 	u16 kmrn_reg = 0;
2481 
2482 	DEBUGFUNC("e1000_configure_k1_ich8lan");
2483 
2484 	ret_val = e1000_read_kmrn_reg_locked(hw, E1000_KMRNCTRLSTA_K1_CONFIG,
2485 					     &kmrn_reg);
2486 	if (ret_val)
2487 		return ret_val;
2488 
2489 	if (k1_enable)
2490 		kmrn_reg |= E1000_KMRNCTRLSTA_K1_ENABLE;
2491 	else
2492 		kmrn_reg &= ~E1000_KMRNCTRLSTA_K1_ENABLE;
2493 
2494 	ret_val = e1000_write_kmrn_reg_locked(hw, E1000_KMRNCTRLSTA_K1_CONFIG,
2495 					      kmrn_reg);
2496 	if (ret_val)
2497 		return ret_val;
2498 
2499 	usec_delay(20);
2500 	ctrl_ext = E1000_READ_REG(hw, E1000_CTRL_EXT);
2501 	ctrl_reg = E1000_READ_REG(hw, E1000_CTRL);
2502 
2503 	reg = ctrl_reg & ~(E1000_CTRL_SPD_1000 | E1000_CTRL_SPD_100);
2504 	reg |= E1000_CTRL_FRCSPD;
2505 	E1000_WRITE_REG(hw, E1000_CTRL, reg);
2506 
2507 	E1000_WRITE_REG(hw, E1000_CTRL_EXT, ctrl_ext | E1000_CTRL_EXT_SPD_BYPS);
2508 	E1000_WRITE_FLUSH(hw);
2509 	usec_delay(20);
2510 	E1000_WRITE_REG(hw, E1000_CTRL, ctrl_reg);
2511 	E1000_WRITE_REG(hw, E1000_CTRL_EXT, ctrl_ext);
2512 	E1000_WRITE_FLUSH(hw);
2513 	usec_delay(20);
2514 
2515 	return E1000_SUCCESS;
2516 }
2517 
2518 /**
2519  *  e1000_oem_bits_config_ich8lan - SW-based LCD Configuration
2520  *  @hw:       pointer to the HW structure
2521  *  @d0_state: boolean if entering d0 or d3 device state
2522  *
2523  *  SW will configure Gbe Disable and LPLU based on the NVM. The four bits are
2524  *  collectively called OEM bits.  The OEM Write Enable bit and SW Config bit
2525  *  in NVM determines whether HW should configure LPLU and Gbe Disable.
2526  **/
2527 static s32 e1000_oem_bits_config_ich8lan(struct e1000_hw *hw, bool d0_state)
2528 {
2529 	s32 ret_val = 0;
2530 	u32 mac_reg;
2531 	u16 oem_reg;
2532 
2533 	DEBUGFUNC("e1000_oem_bits_config_ich8lan");
2534 
2535 	if (hw->mac.type < e1000_pchlan)
2536 		return ret_val;
2537 
2538 	ret_val = hw->phy.ops.acquire(hw);
2539 	if (ret_val)
2540 		return ret_val;
2541 
2542 	if (hw->mac.type == e1000_pchlan) {
2543 		mac_reg = E1000_READ_REG(hw, E1000_EXTCNF_CTRL);
2544 		if (mac_reg & E1000_EXTCNF_CTRL_OEM_WRITE_ENABLE)
2545 			goto release;
2546 	}
2547 
2548 	mac_reg = E1000_READ_REG(hw, E1000_FEXTNVM);
2549 	if (!(mac_reg & E1000_FEXTNVM_SW_CONFIG_ICH8M))
2550 		goto release;
2551 
2552 	mac_reg = E1000_READ_REG(hw, E1000_PHY_CTRL);
2553 
2554 	ret_val = hw->phy.ops.read_reg_locked(hw, HV_OEM_BITS, &oem_reg);
2555 	if (ret_val)
2556 		goto release;
2557 
2558 	oem_reg &= ~(HV_OEM_BITS_GBE_DIS | HV_OEM_BITS_LPLU);
2559 
2560 	if (d0_state) {
2561 		if (mac_reg & E1000_PHY_CTRL_GBE_DISABLE)
2562 			oem_reg |= HV_OEM_BITS_GBE_DIS;
2563 
2564 		if (mac_reg & E1000_PHY_CTRL_D0A_LPLU)
2565 			oem_reg |= HV_OEM_BITS_LPLU;
2566 	} else {
2567 		if (mac_reg & (E1000_PHY_CTRL_GBE_DISABLE |
2568 		    E1000_PHY_CTRL_NOND0A_GBE_DISABLE))
2569 			oem_reg |= HV_OEM_BITS_GBE_DIS;
2570 
2571 		if (mac_reg & (E1000_PHY_CTRL_D0A_LPLU |
2572 		    E1000_PHY_CTRL_NOND0A_LPLU))
2573 			oem_reg |= HV_OEM_BITS_LPLU;
2574 	}
2575 
2576 	/* Set Restart auto-neg to activate the bits */
2577 	if ((d0_state || (hw->mac.type != e1000_pchlan)) &&
2578 	    !hw->phy.ops.check_reset_block(hw))
2579 		oem_reg |= HV_OEM_BITS_RESTART_AN;
2580 
2581 	ret_val = hw->phy.ops.write_reg_locked(hw, HV_OEM_BITS, oem_reg);
2582 
2583 release:
2584 	hw->phy.ops.release(hw);
2585 
2586 	return ret_val;
2587 }
2588 
2589 
2590 /**
2591  *  e1000_set_mdio_slow_mode_hv - Set slow MDIO access mode
2592  *  @hw:   pointer to the HW structure
2593  **/
2594 static s32 e1000_set_mdio_slow_mode_hv(struct e1000_hw *hw)
2595 {
2596 	s32 ret_val;
2597 	u16 data;
2598 
2599 	DEBUGFUNC("e1000_set_mdio_slow_mode_hv");
2600 
2601 	ret_val = hw->phy.ops.read_reg(hw, HV_KMRN_MODE_CTRL, &data);
2602 	if (ret_val)
2603 		return ret_val;
2604 
2605 	data |= HV_KMRN_MDIO_SLOW;
2606 
2607 	ret_val = hw->phy.ops.write_reg(hw, HV_KMRN_MODE_CTRL, data);
2608 
2609 	return ret_val;
2610 }
2611 
2612 /**
2613  *  e1000_hv_phy_workarounds_ich8lan - A series of Phy workarounds to be
2614  *  done after every PHY reset.
2615  **/
2616 static s32 e1000_hv_phy_workarounds_ich8lan(struct e1000_hw *hw)
2617 {
2618 	s32 ret_val = E1000_SUCCESS;
2619 	u16 phy_data;
2620 
2621 	DEBUGFUNC("e1000_hv_phy_workarounds_ich8lan");
2622 
2623 	if (hw->mac.type != e1000_pchlan)
2624 		return E1000_SUCCESS;
2625 
2626 	/* Set MDIO slow mode before any other MDIO access */
2627 	if (hw->phy.type == e1000_phy_82577) {
2628 		ret_val = e1000_set_mdio_slow_mode_hv(hw);
2629 		if (ret_val)
2630 			return ret_val;
2631 	}
2632 
2633 	if (((hw->phy.type == e1000_phy_82577) &&
2634 	     ((hw->phy.revision == 1) || (hw->phy.revision == 2))) ||
2635 	    ((hw->phy.type == e1000_phy_82578) && (hw->phy.revision == 1))) {
2636 		/* Disable generation of early preamble */
2637 		ret_val = hw->phy.ops.write_reg(hw, PHY_REG(769, 25), 0x4431);
2638 		if (ret_val)
2639 			return ret_val;
2640 
2641 		/* Preamble tuning for SSC */
2642 		ret_val = hw->phy.ops.write_reg(hw, HV_KMRN_FIFO_CTRLSTA,
2643 						0xA204);
2644 		if (ret_val)
2645 			return ret_val;
2646 	}
2647 
2648 	if (hw->phy.type == e1000_phy_82578) {
2649 		/* Return registers to default by doing a soft reset then
2650 		 * writing 0x3140 to the control register.
2651 		 */
2652 		if (hw->phy.revision < 2) {
2653 			e1000_phy_sw_reset_generic(hw);
2654 			ret_val = hw->phy.ops.write_reg(hw, PHY_CONTROL,
2655 							0x3140);
2656 		}
2657 	}
2658 
2659 	/* Select page 0 */
2660 	ret_val = hw->phy.ops.acquire(hw);
2661 	if (ret_val)
2662 		return ret_val;
2663 
2664 	hw->phy.addr = 1;
2665 	ret_val = e1000_write_phy_reg_mdic(hw, IGP01E1000_PHY_PAGE_SELECT, 0);
2666 	hw->phy.ops.release(hw);
2667 	if (ret_val)
2668 		return ret_val;
2669 
2670 	/* Configure the K1 Si workaround during phy reset assuming there is
2671 	 * link so that it disables K1 if link is in 1Gbps.
2672 	 */
2673 	ret_val = e1000_k1_gig_workaround_hv(hw, TRUE);
2674 	if (ret_val)
2675 		return ret_val;
2676 
2677 	/* Workaround for link disconnects on a busy hub in half duplex */
2678 	ret_val = hw->phy.ops.acquire(hw);
2679 	if (ret_val)
2680 		return ret_val;
2681 	ret_val = hw->phy.ops.read_reg_locked(hw, BM_PORT_GEN_CFG, &phy_data);
2682 	if (ret_val)
2683 		goto release;
2684 	ret_val = hw->phy.ops.write_reg_locked(hw, BM_PORT_GEN_CFG,
2685 					       phy_data & 0x00FF);
2686 	if (ret_val)
2687 		goto release;
2688 
2689 	/* set MSE higher to enable link to stay up when noise is high */
2690 	ret_val = e1000_write_emi_reg_locked(hw, I82577_MSE_THRESHOLD, 0x0034);
2691 release:
2692 	hw->phy.ops.release(hw);
2693 
2694 	return ret_val;
2695 }
2696 
2697 /**
2698  *  e1000_copy_rx_addrs_to_phy_ich8lan - Copy Rx addresses from MAC to PHY
2699  *  @hw:   pointer to the HW structure
2700  **/
2701 void e1000_copy_rx_addrs_to_phy_ich8lan(struct e1000_hw *hw)
2702 {
2703 	u32 mac_reg;
2704 	u16 i, phy_reg = 0;
2705 	s32 ret_val;
2706 
2707 	DEBUGFUNC("e1000_copy_rx_addrs_to_phy_ich8lan");
2708 
2709 	ret_val = hw->phy.ops.acquire(hw);
2710 	if (ret_val)
2711 		return;
2712 	ret_val = e1000_enable_phy_wakeup_reg_access_bm(hw, &phy_reg);
2713 	if (ret_val)
2714 		goto release;
2715 
2716 	/* Copy both RAL/H (rar_entry_count) and SHRAL/H to PHY */
2717 	for (i = 0; i < (hw->mac.rar_entry_count); i++) {
2718 		mac_reg = E1000_READ_REG(hw, E1000_RAL(i));
2719 		hw->phy.ops.write_reg_page(hw, BM_RAR_L(i),
2720 					   (u16)(mac_reg & 0xFFFF));
2721 		hw->phy.ops.write_reg_page(hw, BM_RAR_M(i),
2722 					   (u16)((mac_reg >> 16) & 0xFFFF));
2723 
2724 		mac_reg = E1000_READ_REG(hw, E1000_RAH(i));
2725 		hw->phy.ops.write_reg_page(hw, BM_RAR_H(i),
2726 					   (u16)(mac_reg & 0xFFFF));
2727 		hw->phy.ops.write_reg_page(hw, BM_RAR_CTRL(i),
2728 					   (u16)((mac_reg & E1000_RAH_AV)
2729 						 >> 16));
2730 	}
2731 
2732 	e1000_disable_phy_wakeup_reg_access_bm(hw, &phy_reg);
2733 
2734 release:
2735 	hw->phy.ops.release(hw);
2736 }
2737 
2738 static u32 e1000_calc_rx_da_crc(u8 mac[])
2739 {
2740 	u32 poly = 0xEDB88320;	/* Polynomial for 802.3 CRC calculation */
2741 	u32 i, j, mask, crc;
2742 
2743 	DEBUGFUNC("e1000_calc_rx_da_crc");
2744 
2745 	crc = 0xffffffff;
2746 	for (i = 0; i < 6; i++) {
2747 		crc = crc ^ mac[i];
2748 		for (j = 8; j > 0; j--) {
2749 			mask = (crc & 1) * (-1);
2750 			crc = (crc >> 1) ^ (poly & mask);
2751 		}
2752 	}
2753 	return ~crc;
2754 }
2755 
2756 /**
2757  *  e1000_lv_jumbo_workaround_ich8lan - required for jumbo frame operation
2758  *  with 82579 PHY
2759  *  @hw: pointer to the HW structure
2760  *  @enable: flag to enable/disable workaround when enabling/disabling jumbos
2761  **/
2762 s32 e1000_lv_jumbo_workaround_ich8lan(struct e1000_hw *hw, bool enable)
2763 {
2764 	s32 ret_val = E1000_SUCCESS;
2765 	u16 phy_reg, data;
2766 	u32 mac_reg;
2767 	u16 i;
2768 
2769 	DEBUGFUNC("e1000_lv_jumbo_workaround_ich8lan");
2770 
2771 	if (hw->mac.type < e1000_pch2lan)
2772 		return E1000_SUCCESS;
2773 
2774 	/* disable Rx path while enabling/disabling workaround */
2775 	hw->phy.ops.read_reg(hw, PHY_REG(769, 20), &phy_reg);
2776 	ret_val = hw->phy.ops.write_reg(hw, PHY_REG(769, 20),
2777 					phy_reg | (1 << 14));
2778 	if (ret_val)
2779 		return ret_val;
2780 
2781 	if (enable) {
2782 		/* Write Rx addresses (rar_entry_count for RAL/H, and
2783 		 * SHRAL/H) and initial CRC values to the MAC
2784 		 */
2785 		for (i = 0; i < hw->mac.rar_entry_count; i++) {
2786 			u8 mac_addr[ETH_ADDR_LEN] = {0};
2787 			u32 addr_high, addr_low;
2788 
2789 			addr_high = E1000_READ_REG(hw, E1000_RAH(i));
2790 			if (!(addr_high & E1000_RAH_AV))
2791 				continue;
2792 			addr_low = E1000_READ_REG(hw, E1000_RAL(i));
2793 			mac_addr[0] = (addr_low & 0xFF);
2794 			mac_addr[1] = ((addr_low >> 8) & 0xFF);
2795 			mac_addr[2] = ((addr_low >> 16) & 0xFF);
2796 			mac_addr[3] = ((addr_low >> 24) & 0xFF);
2797 			mac_addr[4] = (addr_high & 0xFF);
2798 			mac_addr[5] = ((addr_high >> 8) & 0xFF);
2799 
2800 			E1000_WRITE_REG(hw, E1000_PCH_RAICC(i),
2801 					e1000_calc_rx_da_crc(mac_addr));
2802 		}
2803 
2804 		/* Write Rx addresses to the PHY */
2805 		e1000_copy_rx_addrs_to_phy_ich8lan(hw);
2806 
2807 		/* Enable jumbo frame workaround in the MAC */
2808 		mac_reg = E1000_READ_REG(hw, E1000_FFLT_DBG);
2809 		mac_reg &= ~(1 << 14);
2810 		mac_reg |= (7 << 15);
2811 		E1000_WRITE_REG(hw, E1000_FFLT_DBG, mac_reg);
2812 
2813 		mac_reg = E1000_READ_REG(hw, E1000_RCTL);
2814 		mac_reg |= E1000_RCTL_SECRC;
2815 		E1000_WRITE_REG(hw, E1000_RCTL, mac_reg);
2816 
2817 		ret_val = e1000_read_kmrn_reg_generic(hw,
2818 						E1000_KMRNCTRLSTA_CTRL_OFFSET,
2819 						&data);
2820 		if (ret_val)
2821 			return ret_val;
2822 		ret_val = e1000_write_kmrn_reg_generic(hw,
2823 						E1000_KMRNCTRLSTA_CTRL_OFFSET,
2824 						data | (1 << 0));
2825 		if (ret_val)
2826 			return ret_val;
2827 		ret_val = e1000_read_kmrn_reg_generic(hw,
2828 						E1000_KMRNCTRLSTA_HD_CTRL,
2829 						&data);
2830 		if (ret_val)
2831 			return ret_val;
2832 		data &= ~(0xF << 8);
2833 		data |= (0xB << 8);
2834 		ret_val = e1000_write_kmrn_reg_generic(hw,
2835 						E1000_KMRNCTRLSTA_HD_CTRL,
2836 						data);
2837 		if (ret_val)
2838 			return ret_val;
2839 
2840 		/* Enable jumbo frame workaround in the PHY */
2841 		hw->phy.ops.read_reg(hw, PHY_REG(769, 23), &data);
2842 		data &= ~(0x7F << 5);
2843 		data |= (0x37 << 5);
2844 		ret_val = hw->phy.ops.write_reg(hw, PHY_REG(769, 23), data);
2845 		if (ret_val)
2846 			return ret_val;
2847 		hw->phy.ops.read_reg(hw, PHY_REG(769, 16), &data);
2848 		data &= ~(1 << 13);
2849 		ret_val = hw->phy.ops.write_reg(hw, PHY_REG(769, 16), data);
2850 		if (ret_val)
2851 			return ret_val;
2852 		hw->phy.ops.read_reg(hw, PHY_REG(776, 20), &data);
2853 		data &= ~(0x3FF << 2);
2854 		data |= (E1000_TX_PTR_GAP << 2);
2855 		ret_val = hw->phy.ops.write_reg(hw, PHY_REG(776, 20), data);
2856 		if (ret_val)
2857 			return ret_val;
2858 		ret_val = hw->phy.ops.write_reg(hw, PHY_REG(776, 23), 0xF100);
2859 		if (ret_val)
2860 			return ret_val;
2861 		hw->phy.ops.read_reg(hw, HV_PM_CTRL, &data);
2862 		ret_val = hw->phy.ops.write_reg(hw, HV_PM_CTRL, data |
2863 						(1 << 10));
2864 		if (ret_val)
2865 			return ret_val;
2866 	} else {
2867 		/* Write MAC register values back to h/w defaults */
2868 		mac_reg = E1000_READ_REG(hw, E1000_FFLT_DBG);
2869 		mac_reg &= ~(0xF << 14);
2870 		E1000_WRITE_REG(hw, E1000_FFLT_DBG, mac_reg);
2871 
2872 		mac_reg = E1000_READ_REG(hw, E1000_RCTL);
2873 		mac_reg &= ~E1000_RCTL_SECRC;
2874 		E1000_WRITE_REG(hw, E1000_RCTL, mac_reg);
2875 
2876 		ret_val = e1000_read_kmrn_reg_generic(hw,
2877 						E1000_KMRNCTRLSTA_CTRL_OFFSET,
2878 						&data);
2879 		if (ret_val)
2880 			return ret_val;
2881 		ret_val = e1000_write_kmrn_reg_generic(hw,
2882 						E1000_KMRNCTRLSTA_CTRL_OFFSET,
2883 						data & ~(1 << 0));
2884 		if (ret_val)
2885 			return ret_val;
2886 		ret_val = e1000_read_kmrn_reg_generic(hw,
2887 						E1000_KMRNCTRLSTA_HD_CTRL,
2888 						&data);
2889 		if (ret_val)
2890 			return ret_val;
2891 		data &= ~(0xF << 8);
2892 		data |= (0xB << 8);
2893 		ret_val = e1000_write_kmrn_reg_generic(hw,
2894 						E1000_KMRNCTRLSTA_HD_CTRL,
2895 						data);
2896 		if (ret_val)
2897 			return ret_val;
2898 
2899 		/* Write PHY register values back to h/w defaults */
2900 		hw->phy.ops.read_reg(hw, PHY_REG(769, 23), &data);
2901 		data &= ~(0x7F << 5);
2902 		ret_val = hw->phy.ops.write_reg(hw, PHY_REG(769, 23), data);
2903 		if (ret_val)
2904 			return ret_val;
2905 		hw->phy.ops.read_reg(hw, PHY_REG(769, 16), &data);
2906 		data |= (1 << 13);
2907 		ret_val = hw->phy.ops.write_reg(hw, PHY_REG(769, 16), data);
2908 		if (ret_val)
2909 			return ret_val;
2910 		hw->phy.ops.read_reg(hw, PHY_REG(776, 20), &data);
2911 		data &= ~(0x3FF << 2);
2912 		data |= (0x8 << 2);
2913 		ret_val = hw->phy.ops.write_reg(hw, PHY_REG(776, 20), data);
2914 		if (ret_val)
2915 			return ret_val;
2916 		ret_val = hw->phy.ops.write_reg(hw, PHY_REG(776, 23), 0x7E00);
2917 		if (ret_val)
2918 			return ret_val;
2919 		hw->phy.ops.read_reg(hw, HV_PM_CTRL, &data);
2920 		ret_val = hw->phy.ops.write_reg(hw, HV_PM_CTRL, data &
2921 						~(1 << 10));
2922 		if (ret_val)
2923 			return ret_val;
2924 	}
2925 
2926 	/* re-enable Rx path after enabling/disabling workaround */
2927 	return hw->phy.ops.write_reg(hw, PHY_REG(769, 20), phy_reg &
2928 				     ~(1 << 14));
2929 }
2930 
2931 /**
2932  *  e1000_lv_phy_workarounds_ich8lan - A series of Phy workarounds to be
2933  *  done after every PHY reset.
2934  **/
2935 static s32 e1000_lv_phy_workarounds_ich8lan(struct e1000_hw *hw)
2936 {
2937 	s32 ret_val = E1000_SUCCESS;
2938 
2939 	DEBUGFUNC("e1000_lv_phy_workarounds_ich8lan");
2940 
2941 	if (hw->mac.type != e1000_pch2lan)
2942 		return E1000_SUCCESS;
2943 
2944 	/* Set MDIO slow mode before any other MDIO access */
2945 	ret_val = e1000_set_mdio_slow_mode_hv(hw);
2946 	if (ret_val)
2947 		return ret_val;
2948 
2949 	ret_val = hw->phy.ops.acquire(hw);
2950 	if (ret_val)
2951 		return ret_val;
2952 	/* set MSE higher to enable link to stay up when noise is high */
2953 	ret_val = e1000_write_emi_reg_locked(hw, I82579_MSE_THRESHOLD, 0x0034);
2954 	if (ret_val)
2955 		goto release;
2956 	/* drop link after 5 times MSE threshold was reached */
2957 	ret_val = e1000_write_emi_reg_locked(hw, I82579_MSE_LINK_DOWN, 0x0005);
2958 release:
2959 	hw->phy.ops.release(hw);
2960 
2961 	return ret_val;
2962 }
2963 
2964 /**
2965  *  e1000_k1_gig_workaround_lv - K1 Si workaround
2966  *  @hw:   pointer to the HW structure
2967  *
2968  *  Workaround to set the K1 beacon duration for 82579 parts in 10Mbps
2969  *  Disable K1 for 1000 and 100 speeds
2970  **/
2971 static s32 e1000_k1_workaround_lv(struct e1000_hw *hw)
2972 {
2973 	s32 ret_val = E1000_SUCCESS;
2974 	u16 status_reg = 0;
2975 
2976 	DEBUGFUNC("e1000_k1_workaround_lv");
2977 
2978 	if (hw->mac.type != e1000_pch2lan)
2979 		return E1000_SUCCESS;
2980 
2981 	/* Set K1 beacon duration based on 10Mbs speed */
2982 	ret_val = hw->phy.ops.read_reg(hw, HV_M_STATUS, &status_reg);
2983 	if (ret_val)
2984 		return ret_val;
2985 
2986 	if ((status_reg & (HV_M_STATUS_LINK_UP | HV_M_STATUS_AUTONEG_COMPLETE))
2987 	    == (HV_M_STATUS_LINK_UP | HV_M_STATUS_AUTONEG_COMPLETE)) {
2988 		if (status_reg &
2989 		    (HV_M_STATUS_SPEED_1000 | HV_M_STATUS_SPEED_100)) {
2990 			u16 pm_phy_reg;
2991 
2992 			/* LV 1G/100 Packet drop issue wa  */
2993 			ret_val = hw->phy.ops.read_reg(hw, HV_PM_CTRL,
2994 						       &pm_phy_reg);
2995 			if (ret_val)
2996 				return ret_val;
2997 			pm_phy_reg &= ~HV_PM_CTRL_K1_ENABLE;
2998 			ret_val = hw->phy.ops.write_reg(hw, HV_PM_CTRL,
2999 							pm_phy_reg);
3000 			if (ret_val)
3001 				return ret_val;
3002 		} else {
3003 			u32 mac_reg;
3004 			mac_reg = E1000_READ_REG(hw, E1000_FEXTNVM4);
3005 			mac_reg &= ~E1000_FEXTNVM4_BEACON_DURATION_MASK;
3006 			mac_reg |= E1000_FEXTNVM4_BEACON_DURATION_16USEC;
3007 			E1000_WRITE_REG(hw, E1000_FEXTNVM4, mac_reg);
3008 		}
3009 	}
3010 
3011 	return ret_val;
3012 }
3013 
3014 /**
3015  *  e1000_gate_hw_phy_config_ich8lan - disable PHY config via hardware
3016  *  @hw:   pointer to the HW structure
3017  *  @gate: boolean set to TRUE to gate, FALSE to ungate
3018  *
3019  *  Gate/ungate the automatic PHY configuration via hardware; perform
3020  *  the configuration via software instead.
3021  **/
3022 static void e1000_gate_hw_phy_config_ich8lan(struct e1000_hw *hw, bool gate)
3023 {
3024 	u32 extcnf_ctrl;
3025 
3026 	DEBUGFUNC("e1000_gate_hw_phy_config_ich8lan");
3027 
3028 	if (hw->mac.type < e1000_pch2lan)
3029 		return;
3030 
3031 	extcnf_ctrl = E1000_READ_REG(hw, E1000_EXTCNF_CTRL);
3032 
3033 	if (gate)
3034 		extcnf_ctrl |= E1000_EXTCNF_CTRL_GATE_PHY_CFG;
3035 	else
3036 		extcnf_ctrl &= ~E1000_EXTCNF_CTRL_GATE_PHY_CFG;
3037 
3038 	E1000_WRITE_REG(hw, E1000_EXTCNF_CTRL, extcnf_ctrl);
3039 }
3040 
3041 /**
3042  *  e1000_lan_init_done_ich8lan - Check for PHY config completion
3043  *  @hw: pointer to the HW structure
3044  *
3045  *  Check the appropriate indication the MAC has finished configuring the
3046  *  PHY after a software reset.
3047  **/
3048 static void e1000_lan_init_done_ich8lan(struct e1000_hw *hw)
3049 {
3050 	u32 data, loop = E1000_ICH8_LAN_INIT_TIMEOUT;
3051 
3052 	DEBUGFUNC("e1000_lan_init_done_ich8lan");
3053 
3054 	/* Wait for basic configuration completes before proceeding */
3055 	do {
3056 		data = E1000_READ_REG(hw, E1000_STATUS);
3057 		data &= E1000_STATUS_LAN_INIT_DONE;
3058 		usec_delay(100);
3059 	} while ((!data) && --loop);
3060 
3061 	/* If basic configuration is incomplete before the above loop
3062 	 * count reaches 0, loading the configuration from NVM will
3063 	 * leave the PHY in a bad state possibly resulting in no link.
3064 	 */
3065 	if (loop == 0)
3066 		DEBUGOUT("LAN_INIT_DONE not set, increase timeout\n");
3067 
3068 	/* Clear the Init Done bit for the next init event */
3069 	data = E1000_READ_REG(hw, E1000_STATUS);
3070 	data &= ~E1000_STATUS_LAN_INIT_DONE;
3071 	E1000_WRITE_REG(hw, E1000_STATUS, data);
3072 }
3073 
3074 /**
3075  *  e1000_post_phy_reset_ich8lan - Perform steps required after a PHY reset
3076  *  @hw: pointer to the HW structure
3077  **/
3078 static s32 e1000_post_phy_reset_ich8lan(struct e1000_hw *hw)
3079 {
3080 	s32 ret_val = E1000_SUCCESS;
3081 	u16 reg;
3082 
3083 	DEBUGFUNC("e1000_post_phy_reset_ich8lan");
3084 
3085 	if (hw->phy.ops.check_reset_block(hw))
3086 		return E1000_SUCCESS;
3087 
3088 	/* Allow time for h/w to get to quiescent state after reset */
3089 	msec_delay(10);
3090 
3091 	/* Perform any necessary post-reset workarounds */
3092 	switch (hw->mac.type) {
3093 	case e1000_pchlan:
3094 		ret_val = e1000_hv_phy_workarounds_ich8lan(hw);
3095 		if (ret_val)
3096 			return ret_val;
3097 		break;
3098 	case e1000_pch2lan:
3099 		ret_val = e1000_lv_phy_workarounds_ich8lan(hw);
3100 		if (ret_val)
3101 			return ret_val;
3102 		break;
3103 	default:
3104 		break;
3105 	}
3106 
3107 	/* Clear the host wakeup bit after lcd reset */
3108 	if (hw->mac.type >= e1000_pchlan) {
3109 		hw->phy.ops.read_reg(hw, BM_PORT_GEN_CFG, &reg);
3110 		reg &= ~BM_WUC_HOST_WU_BIT;
3111 		hw->phy.ops.write_reg(hw, BM_PORT_GEN_CFG, reg);
3112 	}
3113 
3114 	/* Configure the LCD with the extended configuration region in NVM */
3115 	ret_val = e1000_sw_lcd_config_ich8lan(hw);
3116 	if (ret_val)
3117 		return ret_val;
3118 
3119 	/* Configure the LCD with the OEM bits in NVM */
3120 	ret_val = e1000_oem_bits_config_ich8lan(hw, TRUE);
3121 
3122 	if (hw->mac.type == e1000_pch2lan) {
3123 		/* Ungate automatic PHY configuration on non-managed 82579 */
3124 		if (!(E1000_READ_REG(hw, E1000_FWSM) &
3125 		    E1000_ICH_FWSM_FW_VALID)) {
3126 			msec_delay(10);
3127 			e1000_gate_hw_phy_config_ich8lan(hw, FALSE);
3128 		}
3129 
3130 		/* Set EEE LPI Update Timer to 200usec */
3131 		ret_val = hw->phy.ops.acquire(hw);
3132 		if (ret_val)
3133 			return ret_val;
3134 		ret_val = e1000_write_emi_reg_locked(hw,
3135 						     I82579_LPI_UPDATE_TIMER,
3136 						     0x1387);
3137 		hw->phy.ops.release(hw);
3138 	}
3139 
3140 	return ret_val;
3141 }
3142 
3143 /**
3144  *  e1000_phy_hw_reset_ich8lan - Performs a PHY reset
3145  *  @hw: pointer to the HW structure
3146  *
3147  *  Resets the PHY
3148  *  This is a function pointer entry point called by drivers
3149  *  or other shared routines.
3150  **/
3151 static s32 e1000_phy_hw_reset_ich8lan(struct e1000_hw *hw)
3152 {
3153 	s32 ret_val = E1000_SUCCESS;
3154 
3155 	DEBUGFUNC("e1000_phy_hw_reset_ich8lan");
3156 
3157 	/* Gate automatic PHY configuration by hardware on non-managed 82579 */
3158 	if ((hw->mac.type == e1000_pch2lan) &&
3159 	    !(E1000_READ_REG(hw, E1000_FWSM) & E1000_ICH_FWSM_FW_VALID))
3160 		e1000_gate_hw_phy_config_ich8lan(hw, TRUE);
3161 
3162 	ret_val = e1000_phy_hw_reset_generic(hw);
3163 	if (ret_val)
3164 		return ret_val;
3165 
3166 	return e1000_post_phy_reset_ich8lan(hw);
3167 }
3168 
3169 /**
3170  *  e1000_set_lplu_state_pchlan - Set Low Power Link Up state
3171  *  @hw: pointer to the HW structure
3172  *  @active: TRUE to enable LPLU, FALSE to disable
3173  *
3174  *  Sets the LPLU state according to the active flag.  For PCH, if OEM write
3175  *  bit are disabled in the NVM, writing the LPLU bits in the MAC will not set
3176  *  the phy speed. This function will manually set the LPLU bit and restart
3177  *  auto-neg as hw would do. D3 and D0 LPLU will call the same function
3178  *  since it configures the same bit.
3179  **/
3180 static s32 e1000_set_lplu_state_pchlan(struct e1000_hw *hw, bool active)
3181 {
3182 	s32 ret_val;
3183 	u16 oem_reg;
3184 
3185 	DEBUGFUNC("e1000_set_lplu_state_pchlan");
3186 	ret_val = hw->phy.ops.read_reg(hw, HV_OEM_BITS, &oem_reg);
3187 	if (ret_val)
3188 		return ret_val;
3189 
3190 	if (active)
3191 		oem_reg |= HV_OEM_BITS_LPLU;
3192 	else
3193 		oem_reg &= ~HV_OEM_BITS_LPLU;
3194 
3195 	if (!hw->phy.ops.check_reset_block(hw))
3196 		oem_reg |= HV_OEM_BITS_RESTART_AN;
3197 
3198 	return hw->phy.ops.write_reg(hw, HV_OEM_BITS, oem_reg);
3199 }
3200 
3201 /**
3202  *  e1000_set_d0_lplu_state_ich8lan - Set Low Power Linkup D0 state
3203  *  @hw: pointer to the HW structure
3204  *  @active: TRUE to enable LPLU, FALSE to disable
3205  *
3206  *  Sets the LPLU D0 state according to the active flag.  When
3207  *  activating LPLU this function also disables smart speed
3208  *  and vice versa.  LPLU will not be activated unless the
3209  *  device autonegotiation advertisement meets standards of
3210  *  either 10 or 10/100 or 10/100/1000 at all duplexes.
3211  *  This is a function pointer entry point only called by
3212  *  PHY setup routines.
3213  **/
3214 static s32 e1000_set_d0_lplu_state_ich8lan(struct e1000_hw *hw, bool active)
3215 {
3216 	struct e1000_phy_info *phy = &hw->phy;
3217 	u32 phy_ctrl;
3218 	s32 ret_val = E1000_SUCCESS;
3219 	u16 data;
3220 
3221 	DEBUGFUNC("e1000_set_d0_lplu_state_ich8lan");
3222 
3223 	if (phy->type == e1000_phy_ife)
3224 		return E1000_SUCCESS;
3225 
3226 	phy_ctrl = E1000_READ_REG(hw, E1000_PHY_CTRL);
3227 
3228 	if (active) {
3229 		phy_ctrl |= E1000_PHY_CTRL_D0A_LPLU;
3230 		E1000_WRITE_REG(hw, E1000_PHY_CTRL, phy_ctrl);
3231 
3232 		if (phy->type != e1000_phy_igp_3)
3233 			return E1000_SUCCESS;
3234 
3235 		/* Call gig speed drop workaround on LPLU before accessing
3236 		 * any PHY registers
3237 		 */
3238 		if (hw->mac.type == e1000_ich8lan)
3239 			e1000_gig_downshift_workaround_ich8lan(hw);
3240 
3241 		/* When LPLU is enabled, we should disable SmartSpeed */
3242 		ret_val = phy->ops.read_reg(hw,
3243 					    IGP01E1000_PHY_PORT_CONFIG,
3244 					    &data);
3245 		if (ret_val)
3246 			return ret_val;
3247 		data &= ~IGP01E1000_PSCFR_SMART_SPEED;
3248 		ret_val = phy->ops.write_reg(hw,
3249 					     IGP01E1000_PHY_PORT_CONFIG,
3250 					     data);
3251 		if (ret_val)
3252 			return ret_val;
3253 	} else {
3254 		phy_ctrl &= ~E1000_PHY_CTRL_D0A_LPLU;
3255 		E1000_WRITE_REG(hw, E1000_PHY_CTRL, phy_ctrl);
3256 
3257 		if (phy->type != e1000_phy_igp_3)
3258 			return E1000_SUCCESS;
3259 
3260 		/* LPLU and SmartSpeed are mutually exclusive.  LPLU is used
3261 		 * during Dx states where the power conservation is most
3262 		 * important.  During driver activity we should enable
3263 		 * SmartSpeed, so performance is maintained.
3264 		 */
3265 		if (phy->smart_speed == e1000_smart_speed_on) {
3266 			ret_val = phy->ops.read_reg(hw,
3267 						    IGP01E1000_PHY_PORT_CONFIG,
3268 						    &data);
3269 			if (ret_val)
3270 				return ret_val;
3271 
3272 			data |= IGP01E1000_PSCFR_SMART_SPEED;
3273 			ret_val = phy->ops.write_reg(hw,
3274 						     IGP01E1000_PHY_PORT_CONFIG,
3275 						     data);
3276 			if (ret_val)
3277 				return ret_val;
3278 		} else if (phy->smart_speed == e1000_smart_speed_off) {
3279 			ret_val = phy->ops.read_reg(hw,
3280 						    IGP01E1000_PHY_PORT_CONFIG,
3281 						    &data);
3282 			if (ret_val)
3283 				return ret_val;
3284 
3285 			data &= ~IGP01E1000_PSCFR_SMART_SPEED;
3286 			ret_val = phy->ops.write_reg(hw,
3287 						     IGP01E1000_PHY_PORT_CONFIG,
3288 						     data);
3289 			if (ret_val)
3290 				return ret_val;
3291 		}
3292 	}
3293 
3294 	return E1000_SUCCESS;
3295 }
3296 
3297 /**
3298  *  e1000_set_d3_lplu_state_ich8lan - Set Low Power Linkup D3 state
3299  *  @hw: pointer to the HW structure
3300  *  @active: TRUE to enable LPLU, FALSE to disable
3301  *
3302  *  Sets the LPLU D3 state according to the active flag.  When
3303  *  activating LPLU this function also disables smart speed
3304  *  and vice versa.  LPLU will not be activated unless the
3305  *  device autonegotiation advertisement meets standards of
3306  *  either 10 or 10/100 or 10/100/1000 at all duplexes.
3307  *  This is a function pointer entry point only called by
3308  *  PHY setup routines.
3309  **/
3310 static s32 e1000_set_d3_lplu_state_ich8lan(struct e1000_hw *hw, bool active)
3311 {
3312 	struct e1000_phy_info *phy = &hw->phy;
3313 	u32 phy_ctrl;
3314 	s32 ret_val = E1000_SUCCESS;
3315 	u16 data;
3316 
3317 	DEBUGFUNC("e1000_set_d3_lplu_state_ich8lan");
3318 
3319 	phy_ctrl = E1000_READ_REG(hw, E1000_PHY_CTRL);
3320 
3321 	if (!active) {
3322 		phy_ctrl &= ~E1000_PHY_CTRL_NOND0A_LPLU;
3323 		E1000_WRITE_REG(hw, E1000_PHY_CTRL, phy_ctrl);
3324 
3325 		if (phy->type != e1000_phy_igp_3)
3326 			return E1000_SUCCESS;
3327 
3328 		/* LPLU and SmartSpeed are mutually exclusive.  LPLU is used
3329 		 * during Dx states where the power conservation is most
3330 		 * important.  During driver activity we should enable
3331 		 * SmartSpeed, so performance is maintained.
3332 		 */
3333 		if (phy->smart_speed == e1000_smart_speed_on) {
3334 			ret_val = phy->ops.read_reg(hw,
3335 						    IGP01E1000_PHY_PORT_CONFIG,
3336 						    &data);
3337 			if (ret_val)
3338 				return ret_val;
3339 
3340 			data |= IGP01E1000_PSCFR_SMART_SPEED;
3341 			ret_val = phy->ops.write_reg(hw,
3342 						     IGP01E1000_PHY_PORT_CONFIG,
3343 						     data);
3344 			if (ret_val)
3345 				return ret_val;
3346 		} else if (phy->smart_speed == e1000_smart_speed_off) {
3347 			ret_val = phy->ops.read_reg(hw,
3348 						    IGP01E1000_PHY_PORT_CONFIG,
3349 						    &data);
3350 			if (ret_val)
3351 				return ret_val;
3352 
3353 			data &= ~IGP01E1000_PSCFR_SMART_SPEED;
3354 			ret_val = phy->ops.write_reg(hw,
3355 						     IGP01E1000_PHY_PORT_CONFIG,
3356 						     data);
3357 			if (ret_val)
3358 				return ret_val;
3359 		}
3360 	} else if ((phy->autoneg_advertised == E1000_ALL_SPEED_DUPLEX) ||
3361 		   (phy->autoneg_advertised == E1000_ALL_NOT_GIG) ||
3362 		   (phy->autoneg_advertised == E1000_ALL_10_SPEED)) {
3363 		phy_ctrl |= E1000_PHY_CTRL_NOND0A_LPLU;
3364 		E1000_WRITE_REG(hw, E1000_PHY_CTRL, phy_ctrl);
3365 
3366 		if (phy->type != e1000_phy_igp_3)
3367 			return E1000_SUCCESS;
3368 
3369 		/* Call gig speed drop workaround on LPLU before accessing
3370 		 * any PHY registers
3371 		 */
3372 		if (hw->mac.type == e1000_ich8lan)
3373 			e1000_gig_downshift_workaround_ich8lan(hw);
3374 
3375 		/* When LPLU is enabled, we should disable SmartSpeed */
3376 		ret_val = phy->ops.read_reg(hw,
3377 					    IGP01E1000_PHY_PORT_CONFIG,
3378 					    &data);
3379 		if (ret_val)
3380 			return ret_val;
3381 
3382 		data &= ~IGP01E1000_PSCFR_SMART_SPEED;
3383 		ret_val = phy->ops.write_reg(hw,
3384 					     IGP01E1000_PHY_PORT_CONFIG,
3385 					     data);
3386 	}
3387 
3388 	return ret_val;
3389 }
3390 
3391 /**
3392  *  e1000_valid_nvm_bank_detect_ich8lan - finds out the valid bank 0 or 1
3393  *  @hw: pointer to the HW structure
3394  *  @bank:  pointer to the variable that returns the active bank
3395  *
3396  *  Reads signature byte from the NVM using the flash access registers.
3397  *  Word 0x13 bits 15:14 = 10b indicate a valid signature for that bank.
3398  **/
3399 static s32 e1000_valid_nvm_bank_detect_ich8lan(struct e1000_hw *hw, u32 *bank)
3400 {
3401 	u32 eecd;
3402 	struct e1000_nvm_info *nvm = &hw->nvm;
3403 	u32 bank1_offset = nvm->flash_bank_size * sizeof(u16);
3404 	u32 act_offset = E1000_ICH_NVM_SIG_WORD * 2 + 1;
3405 	u32 nvm_dword = 0;
3406 	u8 sig_byte = 0;
3407 	s32 ret_val;
3408 
3409 	DEBUGFUNC("e1000_valid_nvm_bank_detect_ich8lan");
3410 
3411 	switch (hw->mac.type) {
3412 	case e1000_pch_spt:
3413 	case e1000_pch_cnp:
3414 		bank1_offset = nvm->flash_bank_size;
3415 		act_offset = E1000_ICH_NVM_SIG_WORD;
3416 
3417 		/* set bank to 0 in case flash read fails */
3418 		*bank = 0;
3419 
3420 		/* Check bank 0 */
3421 		ret_val = e1000_read_flash_dword_ich8lan(hw, act_offset,
3422 							 &nvm_dword);
3423 		if (ret_val)
3424 			return ret_val;
3425 		sig_byte = (u8)((nvm_dword & 0xFF00) >> 8);
3426 		if ((sig_byte & E1000_ICH_NVM_VALID_SIG_MASK) ==
3427 		    E1000_ICH_NVM_SIG_VALUE) {
3428 			*bank = 0;
3429 			return E1000_SUCCESS;
3430 		}
3431 
3432 		/* Check bank 1 */
3433 		ret_val = e1000_read_flash_dword_ich8lan(hw, act_offset +
3434 							 bank1_offset,
3435 							 &nvm_dword);
3436 		if (ret_val)
3437 			return ret_val;
3438 		sig_byte = (u8)((nvm_dword & 0xFF00) >> 8);
3439 		if ((sig_byte & E1000_ICH_NVM_VALID_SIG_MASK) ==
3440 		    E1000_ICH_NVM_SIG_VALUE) {
3441 			*bank = 1;
3442 			return E1000_SUCCESS;
3443 		}
3444 
3445 		DEBUGOUT("ERROR: No valid NVM bank present\n");
3446 		return -E1000_ERR_NVM;
3447 	case e1000_ich8lan:
3448 	case e1000_ich9lan:
3449 		eecd = E1000_READ_REG(hw, E1000_EECD);
3450 		if ((eecd & E1000_EECD_SEC1VAL_VALID_MASK) ==
3451 		    E1000_EECD_SEC1VAL_VALID_MASK) {
3452 			if (eecd & E1000_EECD_SEC1VAL)
3453 				*bank = 1;
3454 			else
3455 				*bank = 0;
3456 
3457 			return E1000_SUCCESS;
3458 		}
3459 		DEBUGOUT("Unable to determine valid NVM bank via EEC - reading flash signature\n");
3460 		/* fall-thru */
3461 	default:
3462 		/* set bank to 0 in case flash read fails */
3463 		*bank = 0;
3464 
3465 		/* Check bank 0 */
3466 		ret_val = e1000_read_flash_byte_ich8lan(hw, act_offset,
3467 							&sig_byte);
3468 		if (ret_val)
3469 			return ret_val;
3470 		if ((sig_byte & E1000_ICH_NVM_VALID_SIG_MASK) ==
3471 		    E1000_ICH_NVM_SIG_VALUE) {
3472 			*bank = 0;
3473 			return E1000_SUCCESS;
3474 		}
3475 
3476 		/* Check bank 1 */
3477 		ret_val = e1000_read_flash_byte_ich8lan(hw, act_offset +
3478 							bank1_offset,
3479 							&sig_byte);
3480 		if (ret_val)
3481 			return ret_val;
3482 		if ((sig_byte & E1000_ICH_NVM_VALID_SIG_MASK) ==
3483 		    E1000_ICH_NVM_SIG_VALUE) {
3484 			*bank = 1;
3485 			return E1000_SUCCESS;
3486 		}
3487 
3488 		DEBUGOUT("ERROR: No valid NVM bank present\n");
3489 		return -E1000_ERR_NVM;
3490 	}
3491 }
3492 
3493 /**
3494  *  e1000_read_nvm_spt - NVM access for SPT
3495  *  @hw: pointer to the HW structure
3496  *  @offset: The offset (in bytes) of the word(s) to read.
3497  *  @words: Size of data to read in words.
3498  *  @data: pointer to the word(s) to read at offset.
3499  *
3500  *  Reads a word(s) from the NVM
3501  **/
3502 static s32 e1000_read_nvm_spt(struct e1000_hw *hw, u16 offset, u16 words,
3503 			      u16 *data)
3504 {
3505 	struct e1000_nvm_info *nvm = &hw->nvm;
3506 	struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
3507 	u32 act_offset;
3508 	s32 ret_val = E1000_SUCCESS;
3509 	u32 bank = 0;
3510 	u32 dword = 0;
3511 	u16 offset_to_read;
3512 	u16 i;
3513 
3514 	DEBUGFUNC("e1000_read_nvm_spt");
3515 
3516 	if ((offset >= nvm->word_size) || (words > nvm->word_size - offset) ||
3517 	    (words == 0)) {
3518 		DEBUGOUT("nvm parameter(s) out of bounds\n");
3519 		ret_val = -E1000_ERR_NVM;
3520 		goto out;
3521 	}
3522 
3523 	nvm->ops.acquire(hw);
3524 
3525 	ret_val = e1000_valid_nvm_bank_detect_ich8lan(hw, &bank);
3526 	if (ret_val != E1000_SUCCESS) {
3527 		DEBUGOUT("Could not detect valid bank, assuming bank 0\n");
3528 		bank = 0;
3529 	}
3530 
3531 	act_offset = (bank) ? nvm->flash_bank_size : 0;
3532 	act_offset += offset;
3533 
3534 	ret_val = E1000_SUCCESS;
3535 
3536 	for (i = 0; i < words; i += 2) {
3537 		if (words - i == 1) {
3538 			if (dev_spec->shadow_ram[offset+i].modified) {
3539 				data[i] = dev_spec->shadow_ram[offset+i].value;
3540 			} else {
3541 				offset_to_read = act_offset + i -
3542 						 ((act_offset + i) % 2);
3543 				ret_val =
3544 				   e1000_read_flash_dword_ich8lan(hw,
3545 								 offset_to_read,
3546 								 &dword);
3547 				if (ret_val)
3548 					break;
3549 				if ((act_offset + i) % 2 == 0)
3550 					data[i] = (u16)(dword & 0xFFFF);
3551 				else
3552 					data[i] = (u16)((dword >> 16) & 0xFFFF);
3553 			}
3554 		} else {
3555 			offset_to_read = act_offset + i;
3556 			if (!(dev_spec->shadow_ram[offset+i].modified) ||
3557 			    !(dev_spec->shadow_ram[offset+i+1].modified)) {
3558 				ret_val =
3559 				   e1000_read_flash_dword_ich8lan(hw,
3560 								 offset_to_read,
3561 								 &dword);
3562 				if (ret_val)
3563 					break;
3564 			}
3565 			if (dev_spec->shadow_ram[offset+i].modified)
3566 				data[i] = dev_spec->shadow_ram[offset+i].value;
3567 			else
3568 				data[i] = (u16) (dword & 0xFFFF);
3569 			if (dev_spec->shadow_ram[offset+i].modified)
3570 				data[i+1] =
3571 				   dev_spec->shadow_ram[offset+i+1].value;
3572 			else
3573 				data[i+1] = (u16) (dword >> 16 & 0xFFFF);
3574 		}
3575 	}
3576 
3577 	nvm->ops.release(hw);
3578 
3579 out:
3580 	if (ret_val)
3581 		DEBUGOUT1("NVM read error: %d\n", ret_val);
3582 
3583 	return ret_val;
3584 }
3585 
3586 /**
3587  *  e1000_read_nvm_ich8lan - Read word(s) from the NVM
3588  *  @hw: pointer to the HW structure
3589  *  @offset: The offset (in bytes) of the word(s) to read.
3590  *  @words: Size of data to read in words
3591  *  @data: Pointer to the word(s) to read at offset.
3592  *
3593  *  Reads a word(s) from the NVM using the flash access registers.
3594  **/
3595 static s32 e1000_read_nvm_ich8lan(struct e1000_hw *hw, u16 offset, u16 words,
3596 				  u16 *data)
3597 {
3598 	struct e1000_nvm_info *nvm = &hw->nvm;
3599 	struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
3600 	u32 act_offset;
3601 	s32 ret_val = E1000_SUCCESS;
3602 	u32 bank = 0;
3603 	u16 i, word;
3604 
3605 	DEBUGFUNC("e1000_read_nvm_ich8lan");
3606 
3607 	if ((offset >= nvm->word_size) || (words > nvm->word_size - offset) ||
3608 	    (words == 0)) {
3609 		DEBUGOUT("nvm parameter(s) out of bounds\n");
3610 		ret_val = -E1000_ERR_NVM;
3611 		goto out;
3612 	}
3613 
3614 	nvm->ops.acquire(hw);
3615 
3616 	ret_val = e1000_valid_nvm_bank_detect_ich8lan(hw, &bank);
3617 	if (ret_val != E1000_SUCCESS) {
3618 		DEBUGOUT("Could not detect valid bank, assuming bank 0\n");
3619 		bank = 0;
3620 	}
3621 
3622 	act_offset = (bank) ? nvm->flash_bank_size : 0;
3623 	act_offset += offset;
3624 
3625 	ret_val = E1000_SUCCESS;
3626 	for (i = 0; i < words; i++) {
3627 		if (dev_spec->shadow_ram[offset+i].modified) {
3628 			data[i] = dev_spec->shadow_ram[offset+i].value;
3629 		} else {
3630 			ret_val = e1000_read_flash_word_ich8lan(hw,
3631 								act_offset + i,
3632 								&word);
3633 			if (ret_val)
3634 				break;
3635 			data[i] = word;
3636 		}
3637 	}
3638 
3639 	nvm->ops.release(hw);
3640 
3641 out:
3642 	if (ret_val)
3643 		DEBUGOUT1("NVM read error: %d\n", ret_val);
3644 
3645 	return ret_val;
3646 }
3647 
3648 /**
3649  *  e1000_flash_cycle_init_ich8lan - Initialize flash
3650  *  @hw: pointer to the HW structure
3651  *
3652  *  This function does initial flash setup so that a new read/write/erase cycle
3653  *  can be started.
3654  **/
3655 static s32 e1000_flash_cycle_init_ich8lan(struct e1000_hw *hw)
3656 {
3657 	union ich8_hws_flash_status hsfsts;
3658 	s32 ret_val = -E1000_ERR_NVM;
3659 
3660 	DEBUGFUNC("e1000_flash_cycle_init_ich8lan");
3661 
3662 	hsfsts.regval = E1000_READ_FLASH_REG16(hw, ICH_FLASH_HSFSTS);
3663 
3664 	/* Check if the flash descriptor is valid */
3665 	if (!hsfsts.hsf_status.fldesvalid) {
3666 		DEBUGOUT("Flash descriptor invalid.  SW Sequencing must be used.\n");
3667 		return -E1000_ERR_NVM;
3668 	}
3669 
3670 	/* Clear FCERR and DAEL in hw status by writing 1 */
3671 	hsfsts.hsf_status.flcerr = 1;
3672 	hsfsts.hsf_status.dael = 1;
3673 	if (hw->mac.type >= e1000_pch_spt)
3674 		E1000_WRITE_FLASH_REG(hw, ICH_FLASH_HSFSTS,
3675 				      hsfsts.regval & 0xFFFF);
3676 	else
3677 		E1000_WRITE_FLASH_REG16(hw, ICH_FLASH_HSFSTS, hsfsts.regval);
3678 
3679 	/* Either we should have a hardware SPI cycle in progress
3680 	 * bit to check against, in order to start a new cycle or
3681 	 * FDONE bit should be changed in the hardware so that it
3682 	 * is 1 after hardware reset, which can then be used as an
3683 	 * indication whether a cycle is in progress or has been
3684 	 * completed.
3685 	 */
3686 
3687 	if (!hsfsts.hsf_status.flcinprog) {
3688 		/* There is no cycle running at present,
3689 		 * so we can start a cycle.
3690 		 * Begin by setting Flash Cycle Done.
3691 		 */
3692 		hsfsts.hsf_status.flcdone = 1;
3693 		if (hw->mac.type >= e1000_pch_spt)
3694 			E1000_WRITE_FLASH_REG(hw, ICH_FLASH_HSFSTS,
3695 					      hsfsts.regval & 0xFFFF);
3696 		else
3697 			E1000_WRITE_FLASH_REG16(hw, ICH_FLASH_HSFSTS,
3698 						hsfsts.regval);
3699 		ret_val = E1000_SUCCESS;
3700 	} else {
3701 		s32 i;
3702 
3703 		/* Otherwise poll for sometime so the current
3704 		 * cycle has a chance to end before giving up.
3705 		 */
3706 		for (i = 0; i < ICH_FLASH_READ_COMMAND_TIMEOUT; i++) {
3707 			hsfsts.regval = E1000_READ_FLASH_REG16(hw,
3708 							      ICH_FLASH_HSFSTS);
3709 			if (!hsfsts.hsf_status.flcinprog) {
3710 				ret_val = E1000_SUCCESS;
3711 				break;
3712 			}
3713 			usec_delay(1);
3714 		}
3715 		if (ret_val == E1000_SUCCESS) {
3716 			/* Successful in waiting for previous cycle to timeout,
3717 			 * now set the Flash Cycle Done.
3718 			 */
3719 			hsfsts.hsf_status.flcdone = 1;
3720 			if (hw->mac.type >= e1000_pch_spt)
3721 				E1000_WRITE_FLASH_REG(hw, ICH_FLASH_HSFSTS,
3722 						      hsfsts.regval & 0xFFFF);
3723 			else
3724 				E1000_WRITE_FLASH_REG16(hw, ICH_FLASH_HSFSTS,
3725 							hsfsts.regval);
3726 		} else {
3727 			DEBUGOUT("Flash controller busy, cannot get access\n");
3728 		}
3729 	}
3730 
3731 	return ret_val;
3732 }
3733 
3734 /**
3735  *  e1000_flash_cycle_ich8lan - Starts flash cycle (read/write/erase)
3736  *  @hw: pointer to the HW structure
3737  *  @timeout: maximum time to wait for completion
3738  *
3739  *  This function starts a flash cycle and waits for its completion.
3740  **/
3741 static s32 e1000_flash_cycle_ich8lan(struct e1000_hw *hw, u32 timeout)
3742 {
3743 	union ich8_hws_flash_ctrl hsflctl;
3744 	union ich8_hws_flash_status hsfsts;
3745 	u32 i = 0;
3746 
3747 	DEBUGFUNC("e1000_flash_cycle_ich8lan");
3748 
3749 	/* Start a cycle by writing 1 in Flash Cycle Go in Hw Flash Control */
3750 	if (hw->mac.type >= e1000_pch_spt)
3751 		hsflctl.regval = E1000_READ_FLASH_REG(hw, ICH_FLASH_HSFSTS)>>16;
3752 	else
3753 		hsflctl.regval = E1000_READ_FLASH_REG16(hw, ICH_FLASH_HSFCTL);
3754 	hsflctl.hsf_ctrl.flcgo = 1;
3755 
3756 	if (hw->mac.type >= e1000_pch_spt)
3757 		E1000_WRITE_FLASH_REG(hw, ICH_FLASH_HSFSTS,
3758 				      hsflctl.regval << 16);
3759 	else
3760 		E1000_WRITE_FLASH_REG16(hw, ICH_FLASH_HSFCTL, hsflctl.regval);
3761 
3762 	/* wait till FDONE bit is set to 1 */
3763 	do {
3764 		hsfsts.regval = E1000_READ_FLASH_REG16(hw, ICH_FLASH_HSFSTS);
3765 		if (hsfsts.hsf_status.flcdone)
3766 			break;
3767 		usec_delay(1);
3768 	} while (i++ < timeout);
3769 
3770 	if (hsfsts.hsf_status.flcdone && !hsfsts.hsf_status.flcerr)
3771 		return E1000_SUCCESS;
3772 
3773 	return -E1000_ERR_NVM;
3774 }
3775 
3776 /**
3777  *  e1000_read_flash_dword_ich8lan - Read dword from flash
3778  *  @hw: pointer to the HW structure
3779  *  @offset: offset to data location
3780  *  @data: pointer to the location for storing the data
3781  *
3782  *  Reads the flash dword at offset into data.  Offset is converted
3783  *  to bytes before read.
3784  **/
3785 static s32 e1000_read_flash_dword_ich8lan(struct e1000_hw *hw, u32 offset,
3786 					  u32 *data)
3787 {
3788 	DEBUGFUNC("e1000_read_flash_dword_ich8lan");
3789 
3790 	if (!data)
3791 		return -E1000_ERR_NVM;
3792 
3793 	/* Must convert word offset into bytes. */
3794 	offset <<= 1;
3795 
3796 	return e1000_read_flash_data32_ich8lan(hw, offset, data);
3797 }
3798 
3799 /**
3800  *  e1000_read_flash_word_ich8lan - Read word from flash
3801  *  @hw: pointer to the HW structure
3802  *  @offset: offset to data location
3803  *  @data: pointer to the location for storing the data
3804  *
3805  *  Reads the flash word at offset into data.  Offset is converted
3806  *  to bytes before read.
3807  **/
3808 static s32 e1000_read_flash_word_ich8lan(struct e1000_hw *hw, u32 offset,
3809 					 u16 *data)
3810 {
3811 	DEBUGFUNC("e1000_read_flash_word_ich8lan");
3812 
3813 	if (!data)
3814 		return -E1000_ERR_NVM;
3815 
3816 	/* Must convert offset into bytes. */
3817 	offset <<= 1;
3818 
3819 	return e1000_read_flash_data_ich8lan(hw, offset, 2, data);
3820 }
3821 
3822 /**
3823  *  e1000_read_flash_byte_ich8lan - Read byte from flash
3824  *  @hw: pointer to the HW structure
3825  *  @offset: The offset of the byte to read.
3826  *  @data: Pointer to a byte to store the value read.
3827  *
3828  *  Reads a single byte from the NVM using the flash access registers.
3829  **/
3830 static s32 e1000_read_flash_byte_ich8lan(struct e1000_hw *hw, u32 offset,
3831 					 u8 *data)
3832 {
3833 	s32 ret_val;
3834 	u16 word = 0;
3835 
3836 	/* In SPT, only 32 bits access is supported,
3837 	 * so this function should not be called.
3838 	 */
3839 	if (hw->mac.type >= e1000_pch_spt)
3840 		return -E1000_ERR_NVM;
3841 	else
3842 		ret_val = e1000_read_flash_data_ich8lan(hw, offset, 1, &word);
3843 
3844 	if (ret_val)
3845 		return ret_val;
3846 
3847 	*data = (u8)word;
3848 
3849 	return E1000_SUCCESS;
3850 }
3851 
3852 /**
3853  *  e1000_read_flash_data_ich8lan - Read byte or word from NVM
3854  *  @hw: pointer to the HW structure
3855  *  @offset: The offset (in bytes) of the byte or word to read.
3856  *  @size: Size of data to read, 1=byte 2=word
3857  *  @data: Pointer to the word to store the value read.
3858  *
3859  *  Reads a byte or word from the NVM using the flash access registers.
3860  **/
3861 static s32 e1000_read_flash_data_ich8lan(struct e1000_hw *hw, u32 offset,
3862 					 u8 size, u16 *data)
3863 {
3864 	union ich8_hws_flash_status hsfsts;
3865 	union ich8_hws_flash_ctrl hsflctl;
3866 	u32 flash_linear_addr;
3867 	u32 flash_data = 0;
3868 	s32 ret_val = -E1000_ERR_NVM;
3869 	u8 count = 0;
3870 
3871 	DEBUGFUNC("e1000_read_flash_data_ich8lan");
3872 
3873 	if (size < 1 || size > 2 || offset > ICH_FLASH_LINEAR_ADDR_MASK)
3874 		return -E1000_ERR_NVM;
3875 	flash_linear_addr = ((ICH_FLASH_LINEAR_ADDR_MASK & offset) +
3876 			     hw->nvm.flash_base_addr);
3877 
3878 	do {
3879 		usec_delay(1);
3880 		/* Steps */
3881 		ret_val = e1000_flash_cycle_init_ich8lan(hw);
3882 		if (ret_val != E1000_SUCCESS)
3883 			break;
3884 		hsflctl.regval = E1000_READ_FLASH_REG16(hw, ICH_FLASH_HSFCTL);
3885 
3886 		/* 0b/1b corresponds to 1 or 2 byte size, respectively. */
3887 		hsflctl.hsf_ctrl.fldbcount = size - 1;
3888 		hsflctl.hsf_ctrl.flcycle = ICH_CYCLE_READ;
3889 		E1000_WRITE_FLASH_REG16(hw, ICH_FLASH_HSFCTL, hsflctl.regval);
3890 		E1000_WRITE_FLASH_REG(hw, ICH_FLASH_FADDR, flash_linear_addr);
3891 
3892 		ret_val = e1000_flash_cycle_ich8lan(hw,
3893 						ICH_FLASH_READ_COMMAND_TIMEOUT);
3894 
3895 		/* Check if FCERR is set to 1, if set to 1, clear it
3896 		 * and try the whole sequence a few more times, else
3897 		 * read in (shift in) the Flash Data0, the order is
3898 		 * least significant byte first msb to lsb
3899 		 */
3900 		if (ret_val == E1000_SUCCESS) {
3901 			flash_data = E1000_READ_FLASH_REG(hw, ICH_FLASH_FDATA0);
3902 			if (size == 1)
3903 				*data = (u8)(flash_data & 0x000000FF);
3904 			else if (size == 2)
3905 				*data = (u16)(flash_data & 0x0000FFFF);
3906 			break;
3907 		} else {
3908 			/* If we've gotten here, then things are probably
3909 			 * completely hosed, but if the error condition is
3910 			 * detected, it won't hurt to give it another try...
3911 			 * ICH_FLASH_CYCLE_REPEAT_COUNT times.
3912 			 */
3913 			hsfsts.regval = E1000_READ_FLASH_REG16(hw,
3914 							      ICH_FLASH_HSFSTS);
3915 			if (hsfsts.hsf_status.flcerr) {
3916 				/* Repeat for some time before giving up. */
3917 				continue;
3918 			} else if (!hsfsts.hsf_status.flcdone) {
3919 				DEBUGOUT("Timeout error - flash cycle did not complete.\n");
3920 				break;
3921 			}
3922 		}
3923 	} while (count++ < ICH_FLASH_CYCLE_REPEAT_COUNT);
3924 
3925 	return ret_val;
3926 }
3927 
3928 /**
3929  *  e1000_read_flash_data32_ich8lan - Read dword from NVM
3930  *  @hw: pointer to the HW structure
3931  *  @offset: The offset (in bytes) of the dword to read.
3932  *  @data: Pointer to the dword to store the value read.
3933  *
3934  *  Reads a byte or word from the NVM using the flash access registers.
3935  **/
3936 static s32 e1000_read_flash_data32_ich8lan(struct e1000_hw *hw, u32 offset,
3937 					   u32 *data)
3938 {
3939 	union ich8_hws_flash_status hsfsts;
3940 	union ich8_hws_flash_ctrl hsflctl;
3941 	u32 flash_linear_addr;
3942 	s32 ret_val = -E1000_ERR_NVM;
3943 	u8 count = 0;
3944 
3945 	DEBUGFUNC("e1000_read_flash_data_ich8lan");
3946 
3947 	if (offset > ICH_FLASH_LINEAR_ADDR_MASK && hw->mac.type < e1000_pch_spt)
3948 		return -E1000_ERR_NVM;
3949 	flash_linear_addr = ((ICH_FLASH_LINEAR_ADDR_MASK & offset) +
3950 			     hw->nvm.flash_base_addr);
3951 
3952 	do {
3953 		usec_delay(1);
3954 		/* Steps */
3955 		ret_val = e1000_flash_cycle_init_ich8lan(hw);
3956 		if (ret_val != E1000_SUCCESS)
3957 			break;
3958 		/* In SPT, This register is in Lan memory space, not flash.
3959 		 * Therefore, only 32 bit access is supported
3960 		 */
3961 		hsflctl.regval = E1000_READ_FLASH_REG(hw, ICH_FLASH_HSFSTS)>>16;
3962 
3963 		/* 0b/1b corresponds to 1 or 2 byte size, respectively. */
3964 		hsflctl.hsf_ctrl.fldbcount = sizeof(u32) - 1;
3965 		hsflctl.hsf_ctrl.flcycle = ICH_CYCLE_READ;
3966 		/* In SPT, This register is in Lan memory space, not flash.
3967 		 * Therefore, only 32 bit access is supported
3968 		 */
3969 		E1000_WRITE_FLASH_REG(hw, ICH_FLASH_HSFSTS,
3970 				      (u32)hsflctl.regval << 16);
3971 		E1000_WRITE_FLASH_REG(hw, ICH_FLASH_FADDR, flash_linear_addr);
3972 
3973 		ret_val = e1000_flash_cycle_ich8lan(hw,
3974 						ICH_FLASH_READ_COMMAND_TIMEOUT);
3975 
3976 		/* Check if FCERR is set to 1, if set to 1, clear it
3977 		 * and try the whole sequence a few more times, else
3978 		 * read in (shift in) the Flash Data0, the order is
3979 		 * least significant byte first msb to lsb
3980 		 */
3981 		if (ret_val == E1000_SUCCESS) {
3982 			*data = E1000_READ_FLASH_REG(hw, ICH_FLASH_FDATA0);
3983 			break;
3984 		} else {
3985 			/* If we've gotten here, then things are probably
3986 			 * completely hosed, but if the error condition is
3987 			 * detected, it won't hurt to give it another try...
3988 			 * ICH_FLASH_CYCLE_REPEAT_COUNT times.
3989 			 */
3990 			hsfsts.regval = E1000_READ_FLASH_REG16(hw,
3991 							      ICH_FLASH_HSFSTS);
3992 			if (hsfsts.hsf_status.flcerr) {
3993 				/* Repeat for some time before giving up. */
3994 				continue;
3995 			} else if (!hsfsts.hsf_status.flcdone) {
3996 				DEBUGOUT("Timeout error - flash cycle did not complete.\n");
3997 				break;
3998 			}
3999 		}
4000 	} while (count++ < ICH_FLASH_CYCLE_REPEAT_COUNT);
4001 
4002 	return ret_val;
4003 }
4004 
4005 /**
4006  *  e1000_write_nvm_ich8lan - Write word(s) to the NVM
4007  *  @hw: pointer to the HW structure
4008  *  @offset: The offset (in bytes) of the word(s) to write.
4009  *  @words: Size of data to write in words
4010  *  @data: Pointer to the word(s) to write at offset.
4011  *
4012  *  Writes a byte or word to the NVM using the flash access registers.
4013  **/
4014 static s32 e1000_write_nvm_ich8lan(struct e1000_hw *hw, u16 offset, u16 words,
4015 				   u16 *data)
4016 {
4017 	struct e1000_nvm_info *nvm = &hw->nvm;
4018 	struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
4019 	u16 i;
4020 
4021 	DEBUGFUNC("e1000_write_nvm_ich8lan");
4022 
4023 	if ((offset >= nvm->word_size) || (words > nvm->word_size - offset) ||
4024 	    (words == 0)) {
4025 		DEBUGOUT("nvm parameter(s) out of bounds\n");
4026 		return -E1000_ERR_NVM;
4027 	}
4028 
4029 	nvm->ops.acquire(hw);
4030 
4031 	for (i = 0; i < words; i++) {
4032 		dev_spec->shadow_ram[offset+i].modified = TRUE;
4033 		dev_spec->shadow_ram[offset+i].value = data[i];
4034 	}
4035 
4036 	nvm->ops.release(hw);
4037 
4038 	return E1000_SUCCESS;
4039 }
4040 
4041 /**
4042  *  e1000_update_nvm_checksum_spt - Update the checksum for NVM
4043  *  @hw: pointer to the HW structure
4044  *
4045  *  The NVM checksum is updated by calling the generic update_nvm_checksum,
4046  *  which writes the checksum to the shadow ram.  The changes in the shadow
4047  *  ram are then committed to the EEPROM by processing each bank at a time
4048  *  checking for the modified bit and writing only the pending changes.
4049  *  After a successful commit, the shadow ram is cleared and is ready for
4050  *  future writes.
4051  **/
4052 static s32 e1000_update_nvm_checksum_spt(struct e1000_hw *hw)
4053 {
4054 	struct e1000_nvm_info *nvm = &hw->nvm;
4055 	struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
4056 	u32 i, act_offset, new_bank_offset, old_bank_offset, bank;
4057 	s32 ret_val;
4058 	u32 dword = 0;
4059 
4060 	DEBUGFUNC("e1000_update_nvm_checksum_spt");
4061 
4062 	ret_val = e1000_update_nvm_checksum_generic(hw);
4063 	if (ret_val)
4064 		goto out;
4065 
4066 	if (nvm->type != e1000_nvm_flash_sw)
4067 		goto out;
4068 
4069 	nvm->ops.acquire(hw);
4070 
4071 	/* We're writing to the opposite bank so if we're on bank 1,
4072 	 * write to bank 0 etc.  We also need to erase the segment that
4073 	 * is going to be written
4074 	 */
4075 	ret_val =  e1000_valid_nvm_bank_detect_ich8lan(hw, &bank);
4076 	if (ret_val != E1000_SUCCESS) {
4077 		DEBUGOUT("Could not detect valid bank, assuming bank 0\n");
4078 		bank = 0;
4079 	}
4080 
4081 	if (bank == 0) {
4082 		new_bank_offset = nvm->flash_bank_size;
4083 		old_bank_offset = 0;
4084 		ret_val = e1000_erase_flash_bank_ich8lan(hw, 1);
4085 		if (ret_val)
4086 			goto release;
4087 	} else {
4088 		old_bank_offset = nvm->flash_bank_size;
4089 		new_bank_offset = 0;
4090 		ret_val = e1000_erase_flash_bank_ich8lan(hw, 0);
4091 		if (ret_val)
4092 			goto release;
4093 	}
4094 	for (i = 0; i < E1000_SHADOW_RAM_WORDS; i += 2) {
4095 		/* Determine whether to write the value stored
4096 		 * in the other NVM bank or a modified value stored
4097 		 * in the shadow RAM
4098 		 */
4099 		ret_val = e1000_read_flash_dword_ich8lan(hw,
4100 							 i + old_bank_offset,
4101 							 &dword);
4102 
4103 		if (dev_spec->shadow_ram[i].modified) {
4104 			dword &= 0xffff0000;
4105 			dword |= (dev_spec->shadow_ram[i].value & 0xffff);
4106 		}
4107 		if (dev_spec->shadow_ram[i + 1].modified) {
4108 			dword &= 0x0000ffff;
4109 			dword |= ((dev_spec->shadow_ram[i + 1].value & 0xffff)
4110 				  << 16);
4111 		}
4112 		if (ret_val)
4113 			break;
4114 
4115 		/* If the word is 0x13, then make sure the signature bits
4116 		 * (15:14) are 11b until the commit has completed.
4117 		 * This will allow us to write 10b which indicates the
4118 		 * signature is valid.  We want to do this after the write
4119 		 * has completed so that we don't mark the segment valid
4120 		 * while the write is still in progress
4121 		 */
4122 		if (i == E1000_ICH_NVM_SIG_WORD - 1)
4123 			dword |= E1000_ICH_NVM_SIG_MASK << 16;
4124 
4125 		/* Convert offset to bytes. */
4126 		act_offset = (i + new_bank_offset) << 1;
4127 
4128 		usec_delay(100);
4129 
4130 		/* Write the data to the new bank. Offset in words*/
4131 		act_offset = i + new_bank_offset;
4132 		ret_val = e1000_retry_write_flash_dword_ich8lan(hw, act_offset,
4133 								dword);
4134 		if (ret_val)
4135 			break;
4136 	 }
4137 
4138 	/* Don't bother writing the segment valid bits if sector
4139 	 * programming failed.
4140 	 */
4141 	if (ret_val) {
4142 		DEBUGOUT("Flash commit failed.\n");
4143 		goto release;
4144 	}
4145 
4146 	/* Finally validate the new segment by setting bit 15:14
4147 	 * to 10b in word 0x13 , this can be done without an
4148 	 * erase as well since these bits are 11 to start with
4149 	 * and we need to change bit 14 to 0b
4150 	 */
4151 	act_offset = new_bank_offset + E1000_ICH_NVM_SIG_WORD;
4152 
4153 	/*offset in words but we read dword*/
4154 	--act_offset;
4155 	ret_val = e1000_read_flash_dword_ich8lan(hw, act_offset, &dword);
4156 
4157 	if (ret_val)
4158 		goto release;
4159 
4160 	dword &= 0xBFFFFFFF;
4161 	ret_val = e1000_retry_write_flash_dword_ich8lan(hw, act_offset, dword);
4162 
4163 	if (ret_val)
4164 		goto release;
4165 
4166 	/* And invalidate the previously valid segment by setting
4167 	 * its signature word (0x13) high_byte to 0b. This can be
4168 	 * done without an erase because flash erase sets all bits
4169 	 * to 1's. We can write 1's to 0's without an erase
4170 	 */
4171 	act_offset = (old_bank_offset + E1000_ICH_NVM_SIG_WORD) * 2 + 1;
4172 
4173 	/* offset in words but we read dword*/
4174 	act_offset = old_bank_offset + E1000_ICH_NVM_SIG_WORD - 1;
4175 	ret_val = e1000_read_flash_dword_ich8lan(hw, act_offset, &dword);
4176 
4177 	if (ret_val)
4178 		goto release;
4179 
4180 	dword &= 0x00FFFFFF;
4181 	ret_val = e1000_retry_write_flash_dword_ich8lan(hw, act_offset, dword);
4182 
4183 	if (ret_val)
4184 		goto release;
4185 
4186 	/* Great!  Everything worked, we can now clear the cached entries. */
4187 	for (i = 0; i < E1000_SHADOW_RAM_WORDS; i++) {
4188 		dev_spec->shadow_ram[i].modified = FALSE;
4189 		dev_spec->shadow_ram[i].value = 0xFFFF;
4190 	}
4191 
4192 release:
4193 	nvm->ops.release(hw);
4194 
4195 	/* Reload the EEPROM, or else modifications will not appear
4196 	 * until after the next adapter reset.
4197 	 */
4198 	if (!ret_val) {
4199 		nvm->ops.reload(hw);
4200 		msec_delay(10);
4201 	}
4202 
4203 out:
4204 	if (ret_val)
4205 		DEBUGOUT1("NVM update error: %d\n", ret_val);
4206 
4207 	return ret_val;
4208 }
4209 
4210 /**
4211  *  e1000_update_nvm_checksum_ich8lan - Update the checksum for NVM
4212  *  @hw: pointer to the HW structure
4213  *
4214  *  The NVM checksum is updated by calling the generic update_nvm_checksum,
4215  *  which writes the checksum to the shadow ram.  The changes in the shadow
4216  *  ram are then committed to the EEPROM by processing each bank at a time
4217  *  checking for the modified bit and writing only the pending changes.
4218  *  After a successful commit, the shadow ram is cleared and is ready for
4219  *  future writes.
4220  **/
4221 static s32 e1000_update_nvm_checksum_ich8lan(struct e1000_hw *hw)
4222 {
4223 	struct e1000_nvm_info *nvm = &hw->nvm;
4224 	struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
4225 	u32 i, act_offset, new_bank_offset, old_bank_offset, bank;
4226 	s32 ret_val;
4227 	u16 data = 0;
4228 
4229 	DEBUGFUNC("e1000_update_nvm_checksum_ich8lan");
4230 
4231 	ret_val = e1000_update_nvm_checksum_generic(hw);
4232 	if (ret_val)
4233 		goto out;
4234 
4235 	if (nvm->type != e1000_nvm_flash_sw)
4236 		goto out;
4237 
4238 	nvm->ops.acquire(hw);
4239 
4240 	/* We're writing to the opposite bank so if we're on bank 1,
4241 	 * write to bank 0 etc.  We also need to erase the segment that
4242 	 * is going to be written
4243 	 */
4244 	ret_val =  e1000_valid_nvm_bank_detect_ich8lan(hw, &bank);
4245 	if (ret_val != E1000_SUCCESS) {
4246 		DEBUGOUT("Could not detect valid bank, assuming bank 0\n");
4247 		bank = 0;
4248 	}
4249 
4250 	if (bank == 0) {
4251 		new_bank_offset = nvm->flash_bank_size;
4252 		old_bank_offset = 0;
4253 		ret_val = e1000_erase_flash_bank_ich8lan(hw, 1);
4254 		if (ret_val)
4255 			goto release;
4256 	} else {
4257 		old_bank_offset = nvm->flash_bank_size;
4258 		new_bank_offset = 0;
4259 		ret_val = e1000_erase_flash_bank_ich8lan(hw, 0);
4260 		if (ret_val)
4261 			goto release;
4262 	}
4263 	for (i = 0; i < E1000_SHADOW_RAM_WORDS; i++) {
4264 		if (dev_spec->shadow_ram[i].modified) {
4265 			data = dev_spec->shadow_ram[i].value;
4266 		} else {
4267 			ret_val = e1000_read_flash_word_ich8lan(hw, i +
4268 								old_bank_offset,
4269 								&data);
4270 			if (ret_val)
4271 				break;
4272 		}
4273 		/* If the word is 0x13, then make sure the signature bits
4274 		 * (15:14) are 11b until the commit has completed.
4275 		 * This will allow us to write 10b which indicates the
4276 		 * signature is valid.  We want to do this after the write
4277 		 * has completed so that we don't mark the segment valid
4278 		 * while the write is still in progress
4279 		 */
4280 		if (i == E1000_ICH_NVM_SIG_WORD)
4281 			data |= E1000_ICH_NVM_SIG_MASK;
4282 
4283 		/* Convert offset to bytes. */
4284 		act_offset = (i + new_bank_offset) << 1;
4285 
4286 		usec_delay(100);
4287 
4288 		/* Write the bytes to the new bank. */
4289 		ret_val = e1000_retry_write_flash_byte_ich8lan(hw,
4290 							       act_offset,
4291 							       (u8)data);
4292 		if (ret_val)
4293 			break;
4294 
4295 		usec_delay(100);
4296 		ret_val = e1000_retry_write_flash_byte_ich8lan(hw,
4297 							  act_offset + 1,
4298 							  (u8)(data >> 8));
4299 		if (ret_val)
4300 			break;
4301 	 }
4302 
4303 	/* Don't bother writing the segment valid bits if sector
4304 	 * programming failed.
4305 	 */
4306 	if (ret_val) {
4307 		DEBUGOUT("Flash commit failed.\n");
4308 		goto release;
4309 	}
4310 
4311 	/* Finally validate the new segment by setting bit 15:14
4312 	 * to 10b in word 0x13 , this can be done without an
4313 	 * erase as well since these bits are 11 to start with
4314 	 * and we need to change bit 14 to 0b
4315 	 */
4316 	act_offset = new_bank_offset + E1000_ICH_NVM_SIG_WORD;
4317 	ret_val = e1000_read_flash_word_ich8lan(hw, act_offset, &data);
4318 	if (ret_val)
4319 		goto release;
4320 
4321 	data &= 0xBFFF;
4322 	ret_val = e1000_retry_write_flash_byte_ich8lan(hw, act_offset * 2 + 1,
4323 						       (u8)(data >> 8));
4324 	if (ret_val)
4325 		goto release;
4326 
4327 	/* And invalidate the previously valid segment by setting
4328 	 * its signature word (0x13) high_byte to 0b. This can be
4329 	 * done without an erase because flash erase sets all bits
4330 	 * to 1's. We can write 1's to 0's without an erase
4331 	 */
4332 	act_offset = (old_bank_offset + E1000_ICH_NVM_SIG_WORD) * 2 + 1;
4333 
4334 	ret_val = e1000_retry_write_flash_byte_ich8lan(hw, act_offset, 0);
4335 
4336 	if (ret_val)
4337 		goto release;
4338 
4339 	/* Great!  Everything worked, we can now clear the cached entries. */
4340 	for (i = 0; i < E1000_SHADOW_RAM_WORDS; i++) {
4341 		dev_spec->shadow_ram[i].modified = FALSE;
4342 		dev_spec->shadow_ram[i].value = 0xFFFF;
4343 	}
4344 
4345 release:
4346 	nvm->ops.release(hw);
4347 
4348 	/* Reload the EEPROM, or else modifications will not appear
4349 	 * until after the next adapter reset.
4350 	 */
4351 	if (!ret_val) {
4352 		nvm->ops.reload(hw);
4353 		msec_delay(10);
4354 	}
4355 
4356 out:
4357 	if (ret_val)
4358 		DEBUGOUT1("NVM update error: %d\n", ret_val);
4359 
4360 	return ret_val;
4361 }
4362 
4363 /**
4364  *  e1000_validate_nvm_checksum_ich8lan - Validate EEPROM checksum
4365  *  @hw: pointer to the HW structure
4366  *
4367  *  Check to see if checksum needs to be fixed by reading bit 6 in word 0x19.
4368  *  If the bit is 0, that the EEPROM had been modified, but the checksum was not
4369  *  calculated, in which case we need to calculate the checksum and set bit 6.
4370  **/
4371 static s32 e1000_validate_nvm_checksum_ich8lan(struct e1000_hw *hw)
4372 {
4373 	s32 ret_val;
4374 	u16 data;
4375 	u16 word;
4376 	u16 valid_csum_mask;
4377 
4378 	DEBUGFUNC("e1000_validate_nvm_checksum_ich8lan");
4379 
4380 	/* Read NVM and check Invalid Image CSUM bit.  If this bit is 0,
4381 	 * the checksum needs to be fixed.  This bit is an indication that
4382 	 * the NVM was prepared by OEM software and did not calculate
4383 	 * the checksum...a likely scenario.
4384 	 */
4385 	switch (hw->mac.type) {
4386 	case e1000_pch_lpt:
4387 	case e1000_pch_spt:
4388 	case e1000_pch_cnp:
4389 		word = NVM_COMPAT;
4390 		valid_csum_mask = NVM_COMPAT_VALID_CSUM;
4391 		break;
4392 	default:
4393 		word = NVM_FUTURE_INIT_WORD1;
4394 		valid_csum_mask = NVM_FUTURE_INIT_WORD1_VALID_CSUM;
4395 		break;
4396 	}
4397 
4398 	ret_val = hw->nvm.ops.read(hw, word, 1, &data);
4399 	if (ret_val)
4400 		return ret_val;
4401 
4402 	if (!(data & valid_csum_mask)) {
4403 		data |= valid_csum_mask;
4404 		ret_val = hw->nvm.ops.write(hw, word, 1, &data);
4405 		if (ret_val)
4406 			return ret_val;
4407 		ret_val = hw->nvm.ops.update(hw);
4408 		if (ret_val)
4409 			return ret_val;
4410 	}
4411 
4412 	return e1000_validate_nvm_checksum_generic(hw);
4413 }
4414 
4415 /**
4416  *  e1000_write_flash_data_ich8lan - Writes bytes to the NVM
4417  *  @hw: pointer to the HW structure
4418  *  @offset: The offset (in bytes) of the byte/word to read.
4419  *  @size: Size of data to read, 1=byte 2=word
4420  *  @data: The byte(s) to write to the NVM.
4421  *
4422  *  Writes one/two bytes to the NVM using the flash access registers.
4423  **/
4424 static s32 e1000_write_flash_data_ich8lan(struct e1000_hw *hw, u32 offset,
4425 					  u8 size, u16 data)
4426 {
4427 	union ich8_hws_flash_status hsfsts;
4428 	union ich8_hws_flash_ctrl hsflctl;
4429 	u32 flash_linear_addr;
4430 	u32 flash_data = 0;
4431 	s32 ret_val;
4432 	u8 count = 0;
4433 
4434 	DEBUGFUNC("e1000_write_ich8_data");
4435 
4436 	if (hw->mac.type >= e1000_pch_spt) {
4437 		if (size != 4 || offset > ICH_FLASH_LINEAR_ADDR_MASK)
4438 			return -E1000_ERR_NVM;
4439 	} else {
4440 		if (size < 1 || size > 2 || offset > ICH_FLASH_LINEAR_ADDR_MASK)
4441 			return -E1000_ERR_NVM;
4442 	}
4443 
4444 	flash_linear_addr = ((ICH_FLASH_LINEAR_ADDR_MASK & offset) +
4445 			     hw->nvm.flash_base_addr);
4446 
4447 	do {
4448 		usec_delay(1);
4449 		/* Steps */
4450 		ret_val = e1000_flash_cycle_init_ich8lan(hw);
4451 		if (ret_val != E1000_SUCCESS)
4452 			break;
4453 		/* In SPT, This register is in Lan memory space, not
4454 		 * flash.  Therefore, only 32 bit access is supported
4455 		 */
4456 		if (hw->mac.type >= e1000_pch_spt)
4457 			hsflctl.regval =
4458 			    E1000_READ_FLASH_REG(hw, ICH_FLASH_HSFSTS) >> 16;
4459 		else
4460 			hsflctl.regval =
4461 			    E1000_READ_FLASH_REG16(hw, ICH_FLASH_HSFCTL);
4462 
4463 		/* 0b/1b corresponds to 1 or 2 byte size, respectively. */
4464 		hsflctl.hsf_ctrl.fldbcount = size - 1;
4465 		hsflctl.hsf_ctrl.flcycle = ICH_CYCLE_WRITE;
4466 		/* In SPT, This register is in Lan memory space,
4467 		 * not flash.  Therefore, only 32 bit access is
4468 		 * supported
4469 		 */
4470 		if (hw->mac.type >= e1000_pch_spt)
4471 			E1000_WRITE_FLASH_REG(hw, ICH_FLASH_HSFSTS,
4472 					      hsflctl.regval << 16);
4473 		else
4474 			E1000_WRITE_FLASH_REG16(hw, ICH_FLASH_HSFCTL,
4475 						hsflctl.regval);
4476 
4477 		E1000_WRITE_FLASH_REG(hw, ICH_FLASH_FADDR, flash_linear_addr);
4478 
4479 		if (size == 1)
4480 			flash_data = (u32)data & 0x00FF;
4481 		else
4482 			flash_data = (u32)data;
4483 
4484 		E1000_WRITE_FLASH_REG(hw, ICH_FLASH_FDATA0, flash_data);
4485 
4486 		/* check if FCERR is set to 1 , if set to 1, clear it
4487 		 * and try the whole sequence a few more times else done
4488 		 */
4489 		ret_val =
4490 		    e1000_flash_cycle_ich8lan(hw,
4491 					      ICH_FLASH_WRITE_COMMAND_TIMEOUT);
4492 		if (ret_val == E1000_SUCCESS)
4493 			break;
4494 
4495 		/* If we're here, then things are most likely
4496 		 * completely hosed, but if the error condition
4497 		 * is detected, it won't hurt to give it another
4498 		 * try...ICH_FLASH_CYCLE_REPEAT_COUNT times.
4499 		 */
4500 		hsfsts.regval = E1000_READ_FLASH_REG16(hw, ICH_FLASH_HSFSTS);
4501 		if (hsfsts.hsf_status.flcerr)
4502 			/* Repeat for some time before giving up. */
4503 			continue;
4504 		if (!hsfsts.hsf_status.flcdone) {
4505 			DEBUGOUT("Timeout error - flash cycle did not complete.\n");
4506 			break;
4507 		}
4508 	} while (count++ < ICH_FLASH_CYCLE_REPEAT_COUNT);
4509 
4510 	return ret_val;
4511 }
4512 
4513 /**
4514 *  e1000_write_flash_data32_ich8lan - Writes 4 bytes to the NVM
4515 *  @hw: pointer to the HW structure
4516 *  @offset: The offset (in bytes) of the dwords to read.
4517 *  @data: The 4 bytes to write to the NVM.
4518 *
4519 *  Writes one/two/four bytes to the NVM using the flash access registers.
4520 **/
4521 static s32 e1000_write_flash_data32_ich8lan(struct e1000_hw *hw, u32 offset,
4522 					    u32 data)
4523 {
4524 	union ich8_hws_flash_status hsfsts;
4525 	union ich8_hws_flash_ctrl hsflctl;
4526 	u32 flash_linear_addr;
4527 	s32 ret_val;
4528 	u8 count = 0;
4529 
4530 	DEBUGFUNC("e1000_write_flash_data32_ich8lan");
4531 
4532 	if (hw->mac.type >= e1000_pch_spt) {
4533 		if (offset > ICH_FLASH_LINEAR_ADDR_MASK)
4534 			return -E1000_ERR_NVM;
4535 	}
4536 	flash_linear_addr = ((ICH_FLASH_LINEAR_ADDR_MASK & offset) +
4537 			     hw->nvm.flash_base_addr);
4538 	do {
4539 		usec_delay(1);
4540 		/* Steps */
4541 		ret_val = e1000_flash_cycle_init_ich8lan(hw);
4542 		if (ret_val != E1000_SUCCESS)
4543 			break;
4544 
4545 		/* In SPT, This register is in Lan memory space, not
4546 		 * flash.  Therefore, only 32 bit access is supported
4547 		 */
4548 		if (hw->mac.type >= e1000_pch_spt)
4549 			hsflctl.regval = E1000_READ_FLASH_REG(hw,
4550 							      ICH_FLASH_HSFSTS)
4551 					 >> 16;
4552 		else
4553 			hsflctl.regval = E1000_READ_FLASH_REG16(hw,
4554 							      ICH_FLASH_HSFCTL);
4555 
4556 		hsflctl.hsf_ctrl.fldbcount = sizeof(u32) - 1;
4557 		hsflctl.hsf_ctrl.flcycle = ICH_CYCLE_WRITE;
4558 
4559 		/* In SPT, This register is in Lan memory space,
4560 		 * not flash.  Therefore, only 32 bit access is
4561 		 * supported
4562 		 */
4563 		if (hw->mac.type >= e1000_pch_spt)
4564 			E1000_WRITE_FLASH_REG(hw, ICH_FLASH_HSFSTS,
4565 					      hsflctl.regval << 16);
4566 		else
4567 			E1000_WRITE_FLASH_REG16(hw, ICH_FLASH_HSFCTL,
4568 						hsflctl.regval);
4569 
4570 		E1000_WRITE_FLASH_REG(hw, ICH_FLASH_FADDR, flash_linear_addr);
4571 
4572 		E1000_WRITE_FLASH_REG(hw, ICH_FLASH_FDATA0, data);
4573 
4574 		/* check if FCERR is set to 1 , if set to 1, clear it
4575 		 * and try the whole sequence a few more times else done
4576 		 */
4577 		ret_val = e1000_flash_cycle_ich8lan(hw,
4578 					       ICH_FLASH_WRITE_COMMAND_TIMEOUT);
4579 
4580 		if (ret_val == E1000_SUCCESS)
4581 			break;
4582 
4583 		/* If we're here, then things are most likely
4584 		 * completely hosed, but if the error condition
4585 		 * is detected, it won't hurt to give it another
4586 		 * try...ICH_FLASH_CYCLE_REPEAT_COUNT times.
4587 		 */
4588 		hsfsts.regval = E1000_READ_FLASH_REG16(hw, ICH_FLASH_HSFSTS);
4589 
4590 		if (hsfsts.hsf_status.flcerr)
4591 			/* Repeat for some time before giving up. */
4592 			continue;
4593 		if (!hsfsts.hsf_status.flcdone) {
4594 			DEBUGOUT("Timeout error - flash cycle did not complete.\n");
4595 			break;
4596 		}
4597 	} while (count++ < ICH_FLASH_CYCLE_REPEAT_COUNT);
4598 
4599 	return ret_val;
4600 }
4601 
4602 /**
4603  *  e1000_write_flash_byte_ich8lan - Write a single byte to NVM
4604  *  @hw: pointer to the HW structure
4605  *  @offset: The index of the byte to read.
4606  *  @data: The byte to write to the NVM.
4607  *
4608  *  Writes a single byte to the NVM using the flash access registers.
4609  **/
4610 static s32 e1000_write_flash_byte_ich8lan(struct e1000_hw *hw, u32 offset,
4611 					  u8 data)
4612 {
4613 	u16 word = (u16)data;
4614 
4615 	DEBUGFUNC("e1000_write_flash_byte_ich8lan");
4616 
4617 	return e1000_write_flash_data_ich8lan(hw, offset, 1, word);
4618 }
4619 
4620 /**
4621 *  e1000_retry_write_flash_dword_ich8lan - Writes a dword to NVM
4622 *  @hw: pointer to the HW structure
4623 *  @offset: The offset of the word to write.
4624 *  @dword: The dword to write to the NVM.
4625 *
4626 *  Writes a single dword to the NVM using the flash access registers.
4627 *  Goes through a retry algorithm before giving up.
4628 **/
4629 static s32 e1000_retry_write_flash_dword_ich8lan(struct e1000_hw *hw,
4630 						 u32 offset, u32 dword)
4631 {
4632 	s32 ret_val;
4633 	u16 program_retries;
4634 
4635 	DEBUGFUNC("e1000_retry_write_flash_dword_ich8lan");
4636 
4637 	/* Must convert word offset into bytes. */
4638 	offset <<= 1;
4639 
4640 	ret_val = e1000_write_flash_data32_ich8lan(hw, offset, dword);
4641 
4642 	if (!ret_val)
4643 		return ret_val;
4644 	for (program_retries = 0; program_retries < 100; program_retries++) {
4645 		DEBUGOUT2("Retrying Byte %8.8X at offset %u\n", dword, offset);
4646 		usec_delay(100);
4647 		ret_val = e1000_write_flash_data32_ich8lan(hw, offset, dword);
4648 		if (ret_val == E1000_SUCCESS)
4649 			break;
4650 	}
4651 	if (program_retries == 100)
4652 		return -E1000_ERR_NVM;
4653 
4654 	return E1000_SUCCESS;
4655 }
4656 
4657 /**
4658  *  e1000_retry_write_flash_byte_ich8lan - Writes a single byte to NVM
4659  *  @hw: pointer to the HW structure
4660  *  @offset: The offset of the byte to write.
4661  *  @byte: The byte to write to the NVM.
4662  *
4663  *  Writes a single byte to the NVM using the flash access registers.
4664  *  Goes through a retry algorithm before giving up.
4665  **/
4666 static s32 e1000_retry_write_flash_byte_ich8lan(struct e1000_hw *hw,
4667 						u32 offset, u8 byte)
4668 {
4669 	s32 ret_val;
4670 	u16 program_retries;
4671 
4672 	DEBUGFUNC("e1000_retry_write_flash_byte_ich8lan");
4673 
4674 	ret_val = e1000_write_flash_byte_ich8lan(hw, offset, byte);
4675 	if (!ret_val)
4676 		return ret_val;
4677 
4678 	for (program_retries = 0; program_retries < 100; program_retries++) {
4679 		DEBUGOUT2("Retrying Byte %2.2X at offset %u\n", byte, offset);
4680 		usec_delay(100);
4681 		ret_val = e1000_write_flash_byte_ich8lan(hw, offset, byte);
4682 		if (ret_val == E1000_SUCCESS)
4683 			break;
4684 	}
4685 	if (program_retries == 100)
4686 		return -E1000_ERR_NVM;
4687 
4688 	return E1000_SUCCESS;
4689 }
4690 
4691 /**
4692  *  e1000_erase_flash_bank_ich8lan - Erase a bank (4k) from NVM
4693  *  @hw: pointer to the HW structure
4694  *  @bank: 0 for first bank, 1 for second bank, etc.
4695  *
4696  *  Erases the bank specified. Each bank is a 4k block. Banks are 0 based.
4697  *  bank N is 4096 * N + flash_reg_addr.
4698  **/
4699 static s32 e1000_erase_flash_bank_ich8lan(struct e1000_hw *hw, u32 bank)
4700 {
4701 	struct e1000_nvm_info *nvm = &hw->nvm;
4702 	union ich8_hws_flash_status hsfsts;
4703 	union ich8_hws_flash_ctrl hsflctl;
4704 	u32 flash_linear_addr;
4705 	/* bank size is in 16bit words - adjust to bytes */
4706 	u32 flash_bank_size = nvm->flash_bank_size * 2;
4707 	s32 ret_val;
4708 	s32 count = 0;
4709 	s32 j, iteration, sector_size;
4710 
4711 	DEBUGFUNC("e1000_erase_flash_bank_ich8lan");
4712 
4713 	hsfsts.regval = E1000_READ_FLASH_REG16(hw, ICH_FLASH_HSFSTS);
4714 
4715 	/* Determine HW Sector size: Read BERASE bits of hw flash status
4716 	 * register
4717 	 * 00: The Hw sector is 256 bytes, hence we need to erase 16
4718 	 *     consecutive sectors.  The start index for the nth Hw sector
4719 	 *     can be calculated as = bank * 4096 + n * 256
4720 	 * 01: The Hw sector is 4K bytes, hence we need to erase 1 sector.
4721 	 *     The start index for the nth Hw sector can be calculated
4722 	 *     as = bank * 4096
4723 	 * 10: The Hw sector is 8K bytes, nth sector = bank * 8192
4724 	 *     (ich9 only, otherwise error condition)
4725 	 * 11: The Hw sector is 64K bytes, nth sector = bank * 65536
4726 	 */
4727 	switch (hsfsts.hsf_status.berasesz) {
4728 	case 0:
4729 		/* Hw sector size 256 */
4730 		sector_size = ICH_FLASH_SEG_SIZE_256;
4731 		iteration = flash_bank_size / ICH_FLASH_SEG_SIZE_256;
4732 		break;
4733 	case 1:
4734 		sector_size = ICH_FLASH_SEG_SIZE_4K;
4735 		iteration = 1;
4736 		break;
4737 	case 2:
4738 		sector_size = ICH_FLASH_SEG_SIZE_8K;
4739 		iteration = 1;
4740 		break;
4741 	case 3:
4742 		sector_size = ICH_FLASH_SEG_SIZE_64K;
4743 		iteration = 1;
4744 		break;
4745 	default:
4746 		return -E1000_ERR_NVM;
4747 	}
4748 
4749 	/* Start with the base address, then add the sector offset. */
4750 	flash_linear_addr = hw->nvm.flash_base_addr;
4751 	flash_linear_addr += (bank) ? flash_bank_size : 0;
4752 
4753 	for (j = 0; j < iteration; j++) {
4754 		do {
4755 			u32 timeout = ICH_FLASH_ERASE_COMMAND_TIMEOUT;
4756 
4757 			/* Steps */
4758 			ret_val = e1000_flash_cycle_init_ich8lan(hw);
4759 			if (ret_val)
4760 				return ret_val;
4761 
4762 			/* Write a value 11 (block Erase) in Flash
4763 			 * Cycle field in hw flash control
4764 			 */
4765 			if (hw->mac.type >= e1000_pch_spt)
4766 				hsflctl.regval =
4767 				    E1000_READ_FLASH_REG(hw,
4768 							 ICH_FLASH_HSFSTS)>>16;
4769 			else
4770 				hsflctl.regval =
4771 				    E1000_READ_FLASH_REG16(hw,
4772 							   ICH_FLASH_HSFCTL);
4773 
4774 			hsflctl.hsf_ctrl.flcycle = ICH_CYCLE_ERASE;
4775 			if (hw->mac.type >= e1000_pch_spt)
4776 				E1000_WRITE_FLASH_REG(hw, ICH_FLASH_HSFSTS,
4777 						      hsflctl.regval << 16);
4778 			else
4779 				E1000_WRITE_FLASH_REG16(hw, ICH_FLASH_HSFCTL,
4780 							hsflctl.regval);
4781 
4782 			/* Write the last 24 bits of an index within the
4783 			 * block into Flash Linear address field in Flash
4784 			 * Address.
4785 			 */
4786 			flash_linear_addr += (j * sector_size);
4787 			E1000_WRITE_FLASH_REG(hw, ICH_FLASH_FADDR,
4788 					      flash_linear_addr);
4789 
4790 			ret_val = e1000_flash_cycle_ich8lan(hw, timeout);
4791 			if (ret_val == E1000_SUCCESS)
4792 				break;
4793 
4794 			/* Check if FCERR is set to 1.  If 1,
4795 			 * clear it and try the whole sequence
4796 			 * a few more times else Done
4797 			 */
4798 			hsfsts.regval = E1000_READ_FLASH_REG16(hw,
4799 						      ICH_FLASH_HSFSTS);
4800 			if (hsfsts.hsf_status.flcerr)
4801 				/* repeat for some time before giving up */
4802 				continue;
4803 			else if (!hsfsts.hsf_status.flcdone)
4804 				return ret_val;
4805 		} while (++count < ICH_FLASH_CYCLE_REPEAT_COUNT);
4806 	}
4807 
4808 	return E1000_SUCCESS;
4809 }
4810 
4811 /**
4812  *  e1000_valid_led_default_ich8lan - Set the default LED settings
4813  *  @hw: pointer to the HW structure
4814  *  @data: Pointer to the LED settings
4815  *
4816  *  Reads the LED default settings from the NVM to data.  If the NVM LED
4817  *  settings is all 0's or F's, set the LED default to a valid LED default
4818  *  setting.
4819  **/
4820 static s32 e1000_valid_led_default_ich8lan(struct e1000_hw *hw, u16 *data)
4821 {
4822 	s32 ret_val;
4823 
4824 	DEBUGFUNC("e1000_valid_led_default_ich8lan");
4825 
4826 	ret_val = hw->nvm.ops.read(hw, NVM_ID_LED_SETTINGS, 1, data);
4827 	if (ret_val) {
4828 		DEBUGOUT("NVM Read Error\n");
4829 		return ret_val;
4830 	}
4831 
4832 	if (*data == ID_LED_RESERVED_0000 || *data == ID_LED_RESERVED_FFFF)
4833 		*data = ID_LED_DEFAULT_ICH8LAN;
4834 
4835 	return E1000_SUCCESS;
4836 }
4837 
4838 /**
4839  *  e1000_id_led_init_pchlan - store LED configurations
4840  *  @hw: pointer to the HW structure
4841  *
4842  *  PCH does not control LEDs via the LEDCTL register, rather it uses
4843  *  the PHY LED configuration register.
4844  *
4845  *  PCH also does not have an "always on" or "always off" mode which
4846  *  complicates the ID feature.  Instead of using the "on" mode to indicate
4847  *  in ledctl_mode2 the LEDs to use for ID (see e1000_id_led_init_generic()),
4848  *  use "link_up" mode.  The LEDs will still ID on request if there is no
4849  *  link based on logic in e1000_led_[on|off]_pchlan().
4850  **/
4851 static s32 e1000_id_led_init_pchlan(struct e1000_hw *hw)
4852 {
4853 	struct e1000_mac_info *mac = &hw->mac;
4854 	s32 ret_val;
4855 	const u32 ledctl_on = E1000_LEDCTL_MODE_LINK_UP;
4856 	const u32 ledctl_off = E1000_LEDCTL_MODE_LINK_UP | E1000_PHY_LED0_IVRT;
4857 	u16 data, i, temp, shift;
4858 
4859 	DEBUGFUNC("e1000_id_led_init_pchlan");
4860 
4861 	/* Get default ID LED modes */
4862 	ret_val = hw->nvm.ops.valid_led_default(hw, &data);
4863 	if (ret_val)
4864 		return ret_val;
4865 
4866 	mac->ledctl_default = E1000_READ_REG(hw, E1000_LEDCTL);
4867 	mac->ledctl_mode1 = mac->ledctl_default;
4868 	mac->ledctl_mode2 = mac->ledctl_default;
4869 
4870 	for (i = 0; i < 4; i++) {
4871 		temp = (data >> (i << 2)) & E1000_LEDCTL_LED0_MODE_MASK;
4872 		shift = (i * 5);
4873 		switch (temp) {
4874 		case ID_LED_ON1_DEF2:
4875 		case ID_LED_ON1_ON2:
4876 		case ID_LED_ON1_OFF2:
4877 			mac->ledctl_mode1 &= ~(E1000_PHY_LED0_MASK << shift);
4878 			mac->ledctl_mode1 |= (ledctl_on << shift);
4879 			break;
4880 		case ID_LED_OFF1_DEF2:
4881 		case ID_LED_OFF1_ON2:
4882 		case ID_LED_OFF1_OFF2:
4883 			mac->ledctl_mode1 &= ~(E1000_PHY_LED0_MASK << shift);
4884 			mac->ledctl_mode1 |= (ledctl_off << shift);
4885 			break;
4886 		default:
4887 			/* Do nothing */
4888 			break;
4889 		}
4890 		switch (temp) {
4891 		case ID_LED_DEF1_ON2:
4892 		case ID_LED_ON1_ON2:
4893 		case ID_LED_OFF1_ON2:
4894 			mac->ledctl_mode2 &= ~(E1000_PHY_LED0_MASK << shift);
4895 			mac->ledctl_mode2 |= (ledctl_on << shift);
4896 			break;
4897 		case ID_LED_DEF1_OFF2:
4898 		case ID_LED_ON1_OFF2:
4899 		case ID_LED_OFF1_OFF2:
4900 			mac->ledctl_mode2 &= ~(E1000_PHY_LED0_MASK << shift);
4901 			mac->ledctl_mode2 |= (ledctl_off << shift);
4902 			break;
4903 		default:
4904 			/* Do nothing */
4905 			break;
4906 		}
4907 	}
4908 
4909 	return E1000_SUCCESS;
4910 }
4911 
4912 /**
4913  *  e1000_get_bus_info_ich8lan - Get/Set the bus type and width
4914  *  @hw: pointer to the HW structure
4915  *
4916  *  ICH8 use the PCI Express bus, but does not contain a PCI Express Capability
4917  *  register, so the bus width is hard coded.
4918  **/
4919 static s32 e1000_get_bus_info_ich8lan(struct e1000_hw *hw)
4920 {
4921 	struct e1000_bus_info *bus = &hw->bus;
4922 	s32 ret_val;
4923 
4924 	DEBUGFUNC("e1000_get_bus_info_ich8lan");
4925 
4926 	ret_val = e1000_get_bus_info_pcie_generic(hw);
4927 
4928 	/* ICH devices are "PCI Express"-ish.  They have
4929 	 * a configuration space, but do not contain
4930 	 * PCI Express Capability registers, so bus width
4931 	 * must be hardcoded.
4932 	 */
4933 	if (bus->width == e1000_bus_width_unknown)
4934 		bus->width = e1000_bus_width_pcie_x1;
4935 
4936 	return ret_val;
4937 }
4938 
4939 /**
4940  *  e1000_reset_hw_ich8lan - Reset the hardware
4941  *  @hw: pointer to the HW structure
4942  *
4943  *  Does a full reset of the hardware which includes a reset of the PHY and
4944  *  MAC.
4945  **/
4946 static s32 e1000_reset_hw_ich8lan(struct e1000_hw *hw)
4947 {
4948 	struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
4949 	u16 kum_cfg;
4950 	u32 ctrl, reg;
4951 	s32 ret_val;
4952 
4953 	DEBUGFUNC("e1000_reset_hw_ich8lan");
4954 
4955 	/* Prevent the PCI-E bus from sticking if there is no TLP connection
4956 	 * on the last TLP read/write transaction when MAC is reset.
4957 	 */
4958 	ret_val = e1000_disable_pcie_master_generic(hw);
4959 	if (ret_val)
4960 		DEBUGOUT("PCI-E Master disable polling has failed.\n");
4961 
4962 	DEBUGOUT("Masking off all interrupts\n");
4963 	E1000_WRITE_REG(hw, E1000_IMC, 0xffffffff);
4964 
4965 	/* Disable the Transmit and Receive units.  Then delay to allow
4966 	 * any pending transactions to complete before we hit the MAC
4967 	 * with the global reset.
4968 	 */
4969 	E1000_WRITE_REG(hw, E1000_RCTL, 0);
4970 	E1000_WRITE_REG(hw, E1000_TCTL, E1000_TCTL_PSP);
4971 	E1000_WRITE_FLUSH(hw);
4972 
4973 	msec_delay(10);
4974 
4975 	/* Workaround for ICH8 bit corruption issue in FIFO memory */
4976 	if (hw->mac.type == e1000_ich8lan) {
4977 		/* Set Tx and Rx buffer allocation to 8k apiece. */
4978 		E1000_WRITE_REG(hw, E1000_PBA, E1000_PBA_8K);
4979 		/* Set Packet Buffer Size to 16k. */
4980 		E1000_WRITE_REG(hw, E1000_PBS, E1000_PBS_16K);
4981 	}
4982 
4983 	if (hw->mac.type == e1000_pchlan) {
4984 		/* Save the NVM K1 bit setting*/
4985 		ret_val = e1000_read_nvm(hw, E1000_NVM_K1_CONFIG, 1, &kum_cfg);
4986 		if (ret_val)
4987 			return ret_val;
4988 
4989 		if (kum_cfg & E1000_NVM_K1_ENABLE)
4990 			dev_spec->nvm_k1_enabled = TRUE;
4991 		else
4992 			dev_spec->nvm_k1_enabled = FALSE;
4993 	}
4994 
4995 	ctrl = E1000_READ_REG(hw, E1000_CTRL);
4996 
4997 	if (!hw->phy.ops.check_reset_block(hw)) {
4998 		/* Full-chip reset requires MAC and PHY reset at the same
4999 		 * time to make sure the interface between MAC and the
5000 		 * external PHY is reset.
5001 		 */
5002 		ctrl |= E1000_CTRL_PHY_RST;
5003 
5004 		/* Gate automatic PHY configuration by hardware on
5005 		 * non-managed 82579
5006 		 */
5007 		if ((hw->mac.type == e1000_pch2lan) &&
5008 		    !(E1000_READ_REG(hw, E1000_FWSM) & E1000_ICH_FWSM_FW_VALID))
5009 			e1000_gate_hw_phy_config_ich8lan(hw, TRUE);
5010 	}
5011 	ret_val = e1000_acquire_swflag_ich8lan(hw);
5012 	DEBUGOUT("Issuing a global reset to ich8lan\n");
5013 	E1000_WRITE_REG(hw, E1000_CTRL, (ctrl | E1000_CTRL_RST));
5014 	/* cannot issue a flush here because it hangs the hardware */
5015 	msec_delay(20);
5016 
5017 	/* Set Phy Config Counter to 50msec */
5018 	if (hw->mac.type == e1000_pch2lan) {
5019 		reg = E1000_READ_REG(hw, E1000_FEXTNVM3);
5020 		reg &= ~E1000_FEXTNVM3_PHY_CFG_COUNTER_MASK;
5021 		reg |= E1000_FEXTNVM3_PHY_CFG_COUNTER_50MSEC;
5022 		E1000_WRITE_REG(hw, E1000_FEXTNVM3, reg);
5023 	}
5024 
5025 	if (!ret_val)
5026 		E1000_MUTEX_UNLOCK(&hw->dev_spec.ich8lan.swflag_mutex);
5027 
5028 	if (ctrl & E1000_CTRL_PHY_RST) {
5029 		ret_val = hw->phy.ops.get_cfg_done(hw);
5030 		if (ret_val)
5031 			return ret_val;
5032 
5033 		ret_val = e1000_post_phy_reset_ich8lan(hw);
5034 		if (ret_val)
5035 			return ret_val;
5036 	}
5037 
5038 	/* For PCH, this write will make sure that any noise
5039 	 * will be detected as a CRC error and be dropped rather than show up
5040 	 * as a bad packet to the DMA engine.
5041 	 */
5042 	if (hw->mac.type == e1000_pchlan)
5043 		E1000_WRITE_REG(hw, E1000_CRC_OFFSET, 0x65656565);
5044 
5045 	E1000_WRITE_REG(hw, E1000_IMC, 0xffffffff);
5046 	E1000_READ_REG(hw, E1000_ICR);
5047 
5048 	reg = E1000_READ_REG(hw, E1000_KABGTXD);
5049 	reg |= E1000_KABGTXD_BGSQLBIAS;
5050 	E1000_WRITE_REG(hw, E1000_KABGTXD, reg);
5051 
5052 	return E1000_SUCCESS;
5053 }
5054 
5055 /**
5056  *  e1000_init_hw_ich8lan - Initialize the hardware
5057  *  @hw: pointer to the HW structure
5058  *
5059  *  Prepares the hardware for transmit and receive by doing the following:
5060  *   - initialize hardware bits
5061  *   - initialize LED identification
5062  *   - setup receive address registers
5063  *   - setup flow control
5064  *   - setup transmit descriptors
5065  *   - clear statistics
5066  **/
5067 static s32 e1000_init_hw_ich8lan(struct e1000_hw *hw)
5068 {
5069 	struct e1000_mac_info *mac = &hw->mac;
5070 	u32 ctrl_ext, txdctl, snoop;
5071 	s32 ret_val;
5072 	u16 i;
5073 
5074 	DEBUGFUNC("e1000_init_hw_ich8lan");
5075 
5076 	e1000_initialize_hw_bits_ich8lan(hw);
5077 
5078 	/* Initialize identification LED */
5079 	ret_val = mac->ops.id_led_init(hw);
5080 	/* An error is not fatal and we should not stop init due to this */
5081 	if (ret_val)
5082 		DEBUGOUT("Error initializing identification LED\n");
5083 
5084 	/* Setup the receive address. */
5085 	e1000_init_rx_addrs_generic(hw, mac->rar_entry_count);
5086 
5087 	/* Zero out the Multicast HASH table */
5088 	DEBUGOUT("Zeroing the MTA\n");
5089 	for (i = 0; i < mac->mta_reg_count; i++)
5090 		E1000_WRITE_REG_ARRAY(hw, E1000_MTA, i, 0);
5091 
5092 	/* The 82578 Rx buffer will stall if wakeup is enabled in host and
5093 	 * the ME.  Disable wakeup by clearing the host wakeup bit.
5094 	 * Reset the phy after disabling host wakeup to reset the Rx buffer.
5095 	 */
5096 	if (hw->phy.type == e1000_phy_82578) {
5097 		hw->phy.ops.read_reg(hw, BM_PORT_GEN_CFG, &i);
5098 		i &= ~BM_WUC_HOST_WU_BIT;
5099 		hw->phy.ops.write_reg(hw, BM_PORT_GEN_CFG, i);
5100 		ret_val = e1000_phy_hw_reset_ich8lan(hw);
5101 		if (ret_val)
5102 			return ret_val;
5103 	}
5104 
5105 	/* Setup link and flow control */
5106 	ret_val = mac->ops.setup_link(hw);
5107 
5108 	/* Set the transmit descriptor write-back policy for both queues */
5109 	txdctl = E1000_READ_REG(hw, E1000_TXDCTL(0));
5110 	txdctl = ((txdctl & ~E1000_TXDCTL_WTHRESH) |
5111 		  E1000_TXDCTL_FULL_TX_DESC_WB);
5112 	txdctl = ((txdctl & ~E1000_TXDCTL_PTHRESH) |
5113 		  E1000_TXDCTL_MAX_TX_DESC_PREFETCH);
5114 	E1000_WRITE_REG(hw, E1000_TXDCTL(0), txdctl);
5115 	txdctl = E1000_READ_REG(hw, E1000_TXDCTL(1));
5116 	txdctl = ((txdctl & ~E1000_TXDCTL_WTHRESH) |
5117 		  E1000_TXDCTL_FULL_TX_DESC_WB);
5118 	txdctl = ((txdctl & ~E1000_TXDCTL_PTHRESH) |
5119 		  E1000_TXDCTL_MAX_TX_DESC_PREFETCH);
5120 	E1000_WRITE_REG(hw, E1000_TXDCTL(1), txdctl);
5121 
5122 	/* ICH8 has opposite polarity of no_snoop bits.
5123 	 * By default, we should use snoop behavior.
5124 	 */
5125 	if (mac->type == e1000_ich8lan)
5126 		snoop = PCIE_ICH8_SNOOP_ALL;
5127 	else
5128 		snoop = (u32) ~(PCIE_NO_SNOOP_ALL);
5129 	e1000_set_pcie_no_snoop_generic(hw, snoop);
5130 
5131 	ctrl_ext = E1000_READ_REG(hw, E1000_CTRL_EXT);
5132 	ctrl_ext |= E1000_CTRL_EXT_RO_DIS;
5133 	E1000_WRITE_REG(hw, E1000_CTRL_EXT, ctrl_ext);
5134 
5135 	/* Clear all of the statistics registers (clear on read).  It is
5136 	 * important that we do this after we have tried to establish link
5137 	 * because the symbol error count will increment wildly if there
5138 	 * is no link.
5139 	 */
5140 	e1000_clear_hw_cntrs_ich8lan(hw);
5141 
5142 	return ret_val;
5143 }
5144 
5145 /**
5146  *  e1000_initialize_hw_bits_ich8lan - Initialize required hardware bits
5147  *  @hw: pointer to the HW structure
5148  *
5149  *  Sets/Clears required hardware bits necessary for correctly setting up the
5150  *  hardware for transmit and receive.
5151  **/
5152 static void e1000_initialize_hw_bits_ich8lan(struct e1000_hw *hw)
5153 {
5154 	u32 reg;
5155 
5156 	DEBUGFUNC("e1000_initialize_hw_bits_ich8lan");
5157 
5158 	/* Extended Device Control */
5159 	reg = E1000_READ_REG(hw, E1000_CTRL_EXT);
5160 	reg |= (1 << 22);
5161 	/* Enable PHY low-power state when MAC is at D3 w/o WoL */
5162 	if (hw->mac.type >= e1000_pchlan)
5163 		reg |= E1000_CTRL_EXT_PHYPDEN;
5164 	E1000_WRITE_REG(hw, E1000_CTRL_EXT, reg);
5165 
5166 	/* Transmit Descriptor Control 0 */
5167 	reg = E1000_READ_REG(hw, E1000_TXDCTL(0));
5168 	reg |= (1 << 22);
5169 	E1000_WRITE_REG(hw, E1000_TXDCTL(0), reg);
5170 
5171 	/* Transmit Descriptor Control 1 */
5172 	reg = E1000_READ_REG(hw, E1000_TXDCTL(1));
5173 	reg |= (1 << 22);
5174 	E1000_WRITE_REG(hw, E1000_TXDCTL(1), reg);
5175 
5176 	/* Transmit Arbitration Control 0 */
5177 	reg = E1000_READ_REG(hw, E1000_TARC(0));
5178 	if (hw->mac.type == e1000_ich8lan)
5179 		reg |= (1 << 28) | (1 << 29);
5180 	reg |= (1 << 23) | (1 << 24) | (1 << 26) | (1 << 27);
5181 	E1000_WRITE_REG(hw, E1000_TARC(0), reg);
5182 
5183 	/* Transmit Arbitration Control 1 */
5184 	reg = E1000_READ_REG(hw, E1000_TARC(1));
5185 	if (E1000_READ_REG(hw, E1000_TCTL) & E1000_TCTL_MULR)
5186 		reg &= ~(1 << 28);
5187 	else
5188 		reg |= (1 << 28);
5189 	reg |= (1 << 24) | (1 << 26) | (1 << 30);
5190 	E1000_WRITE_REG(hw, E1000_TARC(1), reg);
5191 
5192 	/* Device Status */
5193 	if (hw->mac.type == e1000_ich8lan) {
5194 		reg = E1000_READ_REG(hw, E1000_STATUS);
5195 		reg &= ~(1UL << 31);
5196 		E1000_WRITE_REG(hw, E1000_STATUS, reg);
5197 	}
5198 
5199 	/* work-around descriptor data corruption issue during nfs v2 udp
5200 	 * traffic, just disable the nfs filtering capability
5201 	 */
5202 	reg = E1000_READ_REG(hw, E1000_RFCTL);
5203 	reg |= (E1000_RFCTL_NFSW_DIS | E1000_RFCTL_NFSR_DIS);
5204 
5205 	/* Disable IPv6 extension header parsing because some malformed
5206 	 * IPv6 headers can hang the Rx.
5207 	 */
5208 	if (hw->mac.type == e1000_ich8lan)
5209 		reg |= (E1000_RFCTL_IPV6_EX_DIS | E1000_RFCTL_NEW_IPV6_EXT_DIS);
5210 	E1000_WRITE_REG(hw, E1000_RFCTL, reg);
5211 
5212 	/* Enable ECC on Lynxpoint */
5213 	if (hw->mac.type >= e1000_pch_lpt) {
5214 		reg = E1000_READ_REG(hw, E1000_PBECCSTS);
5215 		reg |= E1000_PBECCSTS_ECC_ENABLE;
5216 		E1000_WRITE_REG(hw, E1000_PBECCSTS, reg);
5217 
5218 		reg = E1000_READ_REG(hw, E1000_CTRL);
5219 		reg |= E1000_CTRL_MEHE;
5220 		E1000_WRITE_REG(hw, E1000_CTRL, reg);
5221 	}
5222 
5223 	return;
5224 }
5225 
5226 /**
5227  *  e1000_setup_link_ich8lan - Setup flow control and link settings
5228  *  @hw: pointer to the HW structure
5229  *
5230  *  Determines which flow control settings to use, then configures flow
5231  *  control.  Calls the appropriate media-specific link configuration
5232  *  function.  Assuming the adapter has a valid link partner, a valid link
5233  *  should be established.  Assumes the hardware has previously been reset
5234  *  and the transmitter and receiver are not enabled.
5235  **/
5236 static s32 e1000_setup_link_ich8lan(struct e1000_hw *hw)
5237 {
5238 	s32 ret_val;
5239 
5240 	DEBUGFUNC("e1000_setup_link_ich8lan");
5241 
5242 	if (hw->phy.ops.check_reset_block(hw))
5243 		return E1000_SUCCESS;
5244 
5245 	/* ICH parts do not have a word in the NVM to determine
5246 	 * the default flow control setting, so we explicitly
5247 	 * set it to full.
5248 	 */
5249 	if (hw->fc.requested_mode == e1000_fc_default)
5250 		hw->fc.requested_mode = e1000_fc_full;
5251 
5252 	/* Save off the requested flow control mode for use later.  Depending
5253 	 * on the link partner's capabilities, we may or may not use this mode.
5254 	 */
5255 	hw->fc.current_mode = hw->fc.requested_mode;
5256 
5257 	DEBUGOUT1("After fix-ups FlowControl is now = %x\n",
5258 		hw->fc.current_mode);
5259 
5260 	/* Continue to configure the copper link. */
5261 	ret_val = hw->mac.ops.setup_physical_interface(hw);
5262 	if (ret_val)
5263 		return ret_val;
5264 
5265 	E1000_WRITE_REG(hw, E1000_FCTTV, hw->fc.pause_time);
5266 	if ((hw->phy.type == e1000_phy_82578) ||
5267 	    (hw->phy.type == e1000_phy_82579) ||
5268 	    (hw->phy.type == e1000_phy_i217) ||
5269 	    (hw->phy.type == e1000_phy_82577)) {
5270 		E1000_WRITE_REG(hw, E1000_FCRTV_PCH, hw->fc.refresh_time);
5271 
5272 		ret_val = hw->phy.ops.write_reg(hw,
5273 					     PHY_REG(BM_PORT_CTRL_PAGE, 27),
5274 					     hw->fc.pause_time);
5275 		if (ret_val)
5276 			return ret_val;
5277 	}
5278 
5279 	return e1000_set_fc_watermarks_generic(hw);
5280 }
5281 
5282 /**
5283  *  e1000_setup_copper_link_ich8lan - Configure MAC/PHY interface
5284  *  @hw: pointer to the HW structure
5285  *
5286  *  Configures the kumeran interface to the PHY to wait the appropriate time
5287  *  when polling the PHY, then call the generic setup_copper_link to finish
5288  *  configuring the copper link.
5289  **/
5290 static s32 e1000_setup_copper_link_ich8lan(struct e1000_hw *hw)
5291 {
5292 	u32 ctrl;
5293 	s32 ret_val;
5294 	u16 reg_data;
5295 
5296 	DEBUGFUNC("e1000_setup_copper_link_ich8lan");
5297 
5298 	ctrl = E1000_READ_REG(hw, E1000_CTRL);
5299 	ctrl |= E1000_CTRL_SLU;
5300 	ctrl &= ~(E1000_CTRL_FRCSPD | E1000_CTRL_FRCDPX);
5301 	E1000_WRITE_REG(hw, E1000_CTRL, ctrl);
5302 
5303 	/* Set the mac to wait the maximum time between each iteration
5304 	 * and increase the max iterations when polling the phy;
5305 	 * this fixes erroneous timeouts at 10Mbps.
5306 	 */
5307 	ret_val = e1000_write_kmrn_reg_generic(hw, E1000_KMRNCTRLSTA_TIMEOUTS,
5308 					       0xFFFF);
5309 	if (ret_val)
5310 		return ret_val;
5311 	ret_val = e1000_read_kmrn_reg_generic(hw,
5312 					      E1000_KMRNCTRLSTA_INBAND_PARAM,
5313 					      &reg_data);
5314 	if (ret_val)
5315 		return ret_val;
5316 	reg_data |= 0x3F;
5317 	ret_val = e1000_write_kmrn_reg_generic(hw,
5318 					       E1000_KMRNCTRLSTA_INBAND_PARAM,
5319 					       reg_data);
5320 	if (ret_val)
5321 		return ret_val;
5322 
5323 	switch (hw->phy.type) {
5324 	case e1000_phy_igp_3:
5325 		ret_val = e1000_copper_link_setup_igp(hw);
5326 		if (ret_val)
5327 			return ret_val;
5328 		break;
5329 	case e1000_phy_bm:
5330 	case e1000_phy_82578:
5331 		ret_val = e1000_copper_link_setup_m88(hw);
5332 		if (ret_val)
5333 			return ret_val;
5334 		break;
5335 	case e1000_phy_82577:
5336 	case e1000_phy_82579:
5337 		ret_val = e1000_copper_link_setup_82577(hw);
5338 		if (ret_val)
5339 			return ret_val;
5340 		break;
5341 	case e1000_phy_ife:
5342 		ret_val = hw->phy.ops.read_reg(hw, IFE_PHY_MDIX_CONTROL,
5343 					       &reg_data);
5344 		if (ret_val)
5345 			return ret_val;
5346 
5347 		reg_data &= ~IFE_PMC_AUTO_MDIX;
5348 
5349 		switch (hw->phy.mdix) {
5350 		case 1:
5351 			reg_data &= ~IFE_PMC_FORCE_MDIX;
5352 			break;
5353 		case 2:
5354 			reg_data |= IFE_PMC_FORCE_MDIX;
5355 			break;
5356 		case 0:
5357 		default:
5358 			reg_data |= IFE_PMC_AUTO_MDIX;
5359 			break;
5360 		}
5361 		ret_val = hw->phy.ops.write_reg(hw, IFE_PHY_MDIX_CONTROL,
5362 						reg_data);
5363 		if (ret_val)
5364 			return ret_val;
5365 		break;
5366 	default:
5367 		break;
5368 	}
5369 
5370 	return e1000_setup_copper_link_generic(hw);
5371 }
5372 
5373 /**
5374  *  e1000_setup_copper_link_pch_lpt - Configure MAC/PHY interface
5375  *  @hw: pointer to the HW structure
5376  *
5377  *  Calls the PHY specific link setup function and then calls the
5378  *  generic setup_copper_link to finish configuring the link for
5379  *  Lynxpoint PCH devices
5380  **/
5381 static s32 e1000_setup_copper_link_pch_lpt(struct e1000_hw *hw)
5382 {
5383 	u32 ctrl;
5384 	s32 ret_val;
5385 
5386 	DEBUGFUNC("e1000_setup_copper_link_pch_lpt");
5387 
5388 	ctrl = E1000_READ_REG(hw, E1000_CTRL);
5389 	ctrl |= E1000_CTRL_SLU;
5390 	ctrl &= ~(E1000_CTRL_FRCSPD | E1000_CTRL_FRCDPX);
5391 	E1000_WRITE_REG(hw, E1000_CTRL, ctrl);
5392 
5393 	ret_val = e1000_copper_link_setup_82577(hw);
5394 	if (ret_val)
5395 		return ret_val;
5396 
5397 	return e1000_setup_copper_link_generic(hw);
5398 }
5399 
5400 /**
5401  *  e1000_get_link_up_info_ich8lan - Get current link speed and duplex
5402  *  @hw: pointer to the HW structure
5403  *  @speed: pointer to store current link speed
5404  *  @duplex: pointer to store the current link duplex
5405  *
5406  *  Calls the generic get_speed_and_duplex to retrieve the current link
5407  *  information and then calls the Kumeran lock loss workaround for links at
5408  *  gigabit speeds.
5409  **/
5410 static s32 e1000_get_link_up_info_ich8lan(struct e1000_hw *hw, u16 *speed,
5411 					  u16 *duplex)
5412 {
5413 	s32 ret_val;
5414 
5415 	DEBUGFUNC("e1000_get_link_up_info_ich8lan");
5416 
5417 	ret_val = e1000_get_speed_and_duplex_copper_generic(hw, speed, duplex);
5418 	if (ret_val)
5419 		return ret_val;
5420 
5421 	if ((hw->mac.type == e1000_ich8lan) &&
5422 	    (hw->phy.type == e1000_phy_igp_3) &&
5423 	    (*speed == SPEED_1000)) {
5424 		ret_val = e1000_kmrn_lock_loss_workaround_ich8lan(hw);
5425 	}
5426 
5427 	return ret_val;
5428 }
5429 
5430 /**
5431  *  e1000_kmrn_lock_loss_workaround_ich8lan - Kumeran workaround
5432  *  @hw: pointer to the HW structure
5433  *
5434  *  Work-around for 82566 Kumeran PCS lock loss:
5435  *  On link status change (i.e. PCI reset, speed change) and link is up and
5436  *  speed is gigabit-
5437  *    0) if workaround is optionally disabled do nothing
5438  *    1) wait 1ms for Kumeran link to come up
5439  *    2) check Kumeran Diagnostic register PCS lock loss bit
5440  *    3) if not set the link is locked (all is good), otherwise...
5441  *    4) reset the PHY
5442  *    5) repeat up to 10 times
5443  *  Note: this is only called for IGP3 copper when speed is 1gb.
5444  **/
5445 static s32 e1000_kmrn_lock_loss_workaround_ich8lan(struct e1000_hw *hw)
5446 {
5447 	struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
5448 	u32 phy_ctrl;
5449 	s32 ret_val;
5450 	u16 i, data;
5451 	bool link;
5452 
5453 	DEBUGFUNC("e1000_kmrn_lock_loss_workaround_ich8lan");
5454 
5455 	if (!dev_spec->kmrn_lock_loss_workaround_enabled)
5456 		return E1000_SUCCESS;
5457 
5458 	/* Make sure link is up before proceeding.  If not just return.
5459 	 * Attempting this while link is negotiating fouled up link
5460 	 * stability
5461 	 */
5462 	ret_val = e1000_phy_has_link_generic(hw, 1, 0, &link);
5463 	if (!link)
5464 		return E1000_SUCCESS;
5465 
5466 	for (i = 0; i < 10; i++) {
5467 		/* read once to clear */
5468 		ret_val = hw->phy.ops.read_reg(hw, IGP3_KMRN_DIAG, &data);
5469 		if (ret_val)
5470 			return ret_val;
5471 		/* and again to get new status */
5472 		ret_val = hw->phy.ops.read_reg(hw, IGP3_KMRN_DIAG, &data);
5473 		if (ret_val)
5474 			return ret_val;
5475 
5476 		/* check for PCS lock */
5477 		if (!(data & IGP3_KMRN_DIAG_PCS_LOCK_LOSS))
5478 			return E1000_SUCCESS;
5479 
5480 		/* Issue PHY reset */
5481 		hw->phy.ops.reset(hw);
5482 		msec_delay_irq(5);
5483 	}
5484 	/* Disable GigE link negotiation */
5485 	phy_ctrl = E1000_READ_REG(hw, E1000_PHY_CTRL);
5486 	phy_ctrl |= (E1000_PHY_CTRL_GBE_DISABLE |
5487 		     E1000_PHY_CTRL_NOND0A_GBE_DISABLE);
5488 	E1000_WRITE_REG(hw, E1000_PHY_CTRL, phy_ctrl);
5489 
5490 	/* Call gig speed drop workaround on Gig disable before accessing
5491 	 * any PHY registers
5492 	 */
5493 	e1000_gig_downshift_workaround_ich8lan(hw);
5494 
5495 	/* unable to acquire PCS lock */
5496 	return -E1000_ERR_PHY;
5497 }
5498 
5499 /**
5500  *  e1000_set_kmrn_lock_loss_workaround_ich8lan - Set Kumeran workaround state
5501  *  @hw: pointer to the HW structure
5502  *  @state: boolean value used to set the current Kumeran workaround state
5503  *
5504  *  If ICH8, set the current Kumeran workaround state (enabled - TRUE
5505  *  /disabled - FALSE).
5506  **/
5507 void e1000_set_kmrn_lock_loss_workaround_ich8lan(struct e1000_hw *hw,
5508 						 bool state)
5509 {
5510 	struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
5511 
5512 	DEBUGFUNC("e1000_set_kmrn_lock_loss_workaround_ich8lan");
5513 
5514 	if (hw->mac.type != e1000_ich8lan) {
5515 		DEBUGOUT("Workaround applies to ICH8 only.\n");
5516 		return;
5517 	}
5518 
5519 	dev_spec->kmrn_lock_loss_workaround_enabled = state;
5520 
5521 	return;
5522 }
5523 
5524 /**
5525  *  e1000_ipg3_phy_powerdown_workaround_ich8lan - Power down workaround on D3
5526  *  @hw: pointer to the HW structure
5527  *
5528  *  Workaround for 82566 power-down on D3 entry:
5529  *    1) disable gigabit link
5530  *    2) write VR power-down enable
5531  *    3) read it back
5532  *  Continue if successful, else issue LCD reset and repeat
5533  **/
5534 void e1000_igp3_phy_powerdown_workaround_ich8lan(struct e1000_hw *hw)
5535 {
5536 	u32 reg;
5537 	u16 data;
5538 	u8  retry = 0;
5539 
5540 	DEBUGFUNC("e1000_igp3_phy_powerdown_workaround_ich8lan");
5541 
5542 	if (hw->phy.type != e1000_phy_igp_3)
5543 		return;
5544 
5545 	/* Try the workaround twice (if needed) */
5546 	do {
5547 		/* Disable link */
5548 		reg = E1000_READ_REG(hw, E1000_PHY_CTRL);
5549 		reg |= (E1000_PHY_CTRL_GBE_DISABLE |
5550 			E1000_PHY_CTRL_NOND0A_GBE_DISABLE);
5551 		E1000_WRITE_REG(hw, E1000_PHY_CTRL, reg);
5552 
5553 		/* Call gig speed drop workaround on Gig disable before
5554 		 * accessing any PHY registers
5555 		 */
5556 		if (hw->mac.type == e1000_ich8lan)
5557 			e1000_gig_downshift_workaround_ich8lan(hw);
5558 
5559 		/* Write VR power-down enable */
5560 		hw->phy.ops.read_reg(hw, IGP3_VR_CTRL, &data);
5561 		data &= ~IGP3_VR_CTRL_DEV_POWERDOWN_MODE_MASK;
5562 		hw->phy.ops.write_reg(hw, IGP3_VR_CTRL,
5563 				      data | IGP3_VR_CTRL_MODE_SHUTDOWN);
5564 
5565 		/* Read it back and test */
5566 		hw->phy.ops.read_reg(hw, IGP3_VR_CTRL, &data);
5567 		data &= IGP3_VR_CTRL_DEV_POWERDOWN_MODE_MASK;
5568 		if ((data == IGP3_VR_CTRL_MODE_SHUTDOWN) || retry)
5569 			break;
5570 
5571 		/* Issue PHY reset and repeat at most one more time */
5572 		reg = E1000_READ_REG(hw, E1000_CTRL);
5573 		E1000_WRITE_REG(hw, E1000_CTRL, reg | E1000_CTRL_PHY_RST);
5574 		retry++;
5575 	} while (retry);
5576 }
5577 
5578 /**
5579  *  e1000_gig_downshift_workaround_ich8lan - WoL from S5 stops working
5580  *  @hw: pointer to the HW structure
5581  *
5582  *  Steps to take when dropping from 1Gb/s (eg. link cable removal (LSC),
5583  *  LPLU, Gig disable, MDIC PHY reset):
5584  *    1) Set Kumeran Near-end loopback
5585  *    2) Clear Kumeran Near-end loopback
5586  *  Should only be called for ICH8[m] devices with any 1G Phy.
5587  **/
5588 void e1000_gig_downshift_workaround_ich8lan(struct e1000_hw *hw)
5589 {
5590 	s32 ret_val;
5591 	u16 reg_data;
5592 
5593 	DEBUGFUNC("e1000_gig_downshift_workaround_ich8lan");
5594 
5595 	if ((hw->mac.type != e1000_ich8lan) ||
5596 	    (hw->phy.type == e1000_phy_ife))
5597 		return;
5598 
5599 	ret_val = e1000_read_kmrn_reg_generic(hw, E1000_KMRNCTRLSTA_DIAG_OFFSET,
5600 					      &reg_data);
5601 	if (ret_val)
5602 		return;
5603 	reg_data |= E1000_KMRNCTRLSTA_DIAG_NELPBK;
5604 	ret_val = e1000_write_kmrn_reg_generic(hw,
5605 					       E1000_KMRNCTRLSTA_DIAG_OFFSET,
5606 					       reg_data);
5607 	if (ret_val)
5608 		return;
5609 	reg_data &= ~E1000_KMRNCTRLSTA_DIAG_NELPBK;
5610 	e1000_write_kmrn_reg_generic(hw, E1000_KMRNCTRLSTA_DIAG_OFFSET,
5611 				     reg_data);
5612 }
5613 
5614 /**
5615  *  e1000_suspend_workarounds_ich8lan - workarounds needed during S0->Sx
5616  *  @hw: pointer to the HW structure
5617  *
5618  *  During S0 to Sx transition, it is possible the link remains at gig
5619  *  instead of negotiating to a lower speed.  Before going to Sx, set
5620  *  'Gig Disable' to force link speed negotiation to a lower speed based on
5621  *  the LPLU setting in the NVM or custom setting.  For PCH and newer parts,
5622  *  the OEM bits PHY register (LED, GbE disable and LPLU configurations) also
5623  *  needs to be written.
5624  *  Parts that support (and are linked to a partner which support) EEE in
5625  *  100Mbps should disable LPLU since 100Mbps w/ EEE requires less power
5626  *  than 10Mbps w/o EEE.
5627  **/
5628 void e1000_suspend_workarounds_ich8lan(struct e1000_hw *hw)
5629 {
5630 	struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
5631 	u32 phy_ctrl;
5632 	s32 ret_val;
5633 
5634 	DEBUGFUNC("e1000_suspend_workarounds_ich8lan");
5635 
5636 	phy_ctrl = E1000_READ_REG(hw, E1000_PHY_CTRL);
5637 	phy_ctrl |= E1000_PHY_CTRL_GBE_DISABLE;
5638 
5639 	if (hw->phy.type == e1000_phy_i217) {
5640 		u16 phy_reg, device_id = hw->device_id;
5641 
5642 		if ((device_id == E1000_DEV_ID_PCH_LPTLP_I218_LM) ||
5643 		    (device_id == E1000_DEV_ID_PCH_LPTLP_I218_V) ||
5644 		    (device_id == E1000_DEV_ID_PCH_I218_LM3) ||
5645 		    (device_id == E1000_DEV_ID_PCH_I218_V3) ||
5646 		    (hw->mac.type >= e1000_pch_spt)) {
5647 			u32 fextnvm6 = E1000_READ_REG(hw, E1000_FEXTNVM6);
5648 
5649 			E1000_WRITE_REG(hw, E1000_FEXTNVM6,
5650 					fextnvm6 & ~E1000_FEXTNVM6_REQ_PLL_CLK);
5651 		}
5652 
5653 		ret_val = hw->phy.ops.acquire(hw);
5654 		if (ret_val)
5655 			goto out;
5656 
5657 		if (!dev_spec->eee_disable) {
5658 			u16 eee_advert;
5659 
5660 			ret_val =
5661 			    e1000_read_emi_reg_locked(hw,
5662 						      I217_EEE_ADVERTISEMENT,
5663 						      &eee_advert);
5664 			if (ret_val)
5665 				goto release;
5666 
5667 			/* Disable LPLU if both link partners support 100BaseT
5668 			 * EEE and 100Full is advertised on both ends of the
5669 			 * link, and enable Auto Enable LPI since there will
5670 			 * be no driver to enable LPI while in Sx.
5671 			 */
5672 			if ((eee_advert & I82579_EEE_100_SUPPORTED) &&
5673 			    (dev_spec->eee_lp_ability &
5674 			     I82579_EEE_100_SUPPORTED) &&
5675 			    (hw->phy.autoneg_advertised & ADVERTISE_100_FULL)) {
5676 				phy_ctrl &= ~(E1000_PHY_CTRL_D0A_LPLU |
5677 					      E1000_PHY_CTRL_NOND0A_LPLU);
5678 
5679 				/* Set Auto Enable LPI after link up */
5680 				hw->phy.ops.read_reg_locked(hw,
5681 							    I217_LPI_GPIO_CTRL,
5682 							    &phy_reg);
5683 				phy_reg |= I217_LPI_GPIO_CTRL_AUTO_EN_LPI;
5684 				hw->phy.ops.write_reg_locked(hw,
5685 							     I217_LPI_GPIO_CTRL,
5686 							     phy_reg);
5687 			}
5688 		}
5689 
5690 		/* For i217 Intel Rapid Start Technology support,
5691 		 * when the system is going into Sx and no manageability engine
5692 		 * is present, the driver must configure proxy to reset only on
5693 		 * power good.  LPI (Low Power Idle) state must also reset only
5694 		 * on power good, as well as the MTA (Multicast table array).
5695 		 * The SMBus release must also be disabled on LCD reset.
5696 		 */
5697 		if (!(E1000_READ_REG(hw, E1000_FWSM) &
5698 		      E1000_ICH_FWSM_FW_VALID)) {
5699 			/* Enable proxy to reset only on power good. */
5700 			hw->phy.ops.read_reg_locked(hw, I217_PROXY_CTRL,
5701 						    &phy_reg);
5702 			phy_reg |= I217_PROXY_CTRL_AUTO_DISABLE;
5703 			hw->phy.ops.write_reg_locked(hw, I217_PROXY_CTRL,
5704 						     phy_reg);
5705 
5706 			/* Set bit enable LPI (EEE) to reset only on
5707 			 * power good.
5708 			*/
5709 			hw->phy.ops.read_reg_locked(hw, I217_SxCTRL, &phy_reg);
5710 			phy_reg |= I217_SxCTRL_ENABLE_LPI_RESET;
5711 			hw->phy.ops.write_reg_locked(hw, I217_SxCTRL, phy_reg);
5712 
5713 			/* Disable the SMB release on LCD reset. */
5714 			hw->phy.ops.read_reg_locked(hw, I217_MEMPWR, &phy_reg);
5715 			phy_reg &= ~I217_MEMPWR_DISABLE_SMB_RELEASE;
5716 			hw->phy.ops.write_reg_locked(hw, I217_MEMPWR, phy_reg);
5717 		}
5718 
5719 		/* Enable MTA to reset for Intel Rapid Start Technology
5720 		 * Support
5721 		 */
5722 		hw->phy.ops.read_reg_locked(hw, I217_CGFREG, &phy_reg);
5723 		phy_reg |= I217_CGFREG_ENABLE_MTA_RESET;
5724 		hw->phy.ops.write_reg_locked(hw, I217_CGFREG, phy_reg);
5725 
5726 release:
5727 		hw->phy.ops.release(hw);
5728 	}
5729 out:
5730 	E1000_WRITE_REG(hw, E1000_PHY_CTRL, phy_ctrl);
5731 
5732 	if (hw->mac.type == e1000_ich8lan)
5733 		e1000_gig_downshift_workaround_ich8lan(hw);
5734 
5735 	if (hw->mac.type >= e1000_pchlan) {
5736 		e1000_oem_bits_config_ich8lan(hw, FALSE);
5737 
5738 		/* Reset PHY to activate OEM bits on 82577/8 */
5739 		if (hw->mac.type == e1000_pchlan)
5740 			e1000_phy_hw_reset_generic(hw);
5741 
5742 		ret_val = hw->phy.ops.acquire(hw);
5743 		if (ret_val)
5744 			return;
5745 		e1000_write_smbus_addr(hw);
5746 		hw->phy.ops.release(hw);
5747 	}
5748 
5749 	return;
5750 }
5751 
5752 /**
5753  *  e1000_resume_workarounds_pchlan - workarounds needed during Sx->S0
5754  *  @hw: pointer to the HW structure
5755  *
5756  *  During Sx to S0 transitions on non-managed devices or managed devices
5757  *  on which PHY resets are not blocked, if the PHY registers cannot be
5758  *  accessed properly by the s/w toggle the LANPHYPC value to power cycle
5759  *  the PHY.
5760  *  On i217, setup Intel Rapid Start Technology.
5761  **/
5762 u32 e1000_resume_workarounds_pchlan(struct e1000_hw *hw)
5763 {
5764 	s32 ret_val;
5765 
5766 	DEBUGFUNC("e1000_resume_workarounds_pchlan");
5767 	if (hw->mac.type < e1000_pch2lan)
5768 		return E1000_SUCCESS;
5769 
5770 	ret_val = e1000_init_phy_workarounds_pchlan(hw);
5771 	if (ret_val) {
5772 		DEBUGOUT1("Failed to init PHY flow ret_val=%d\n", ret_val);
5773 		return ret_val;
5774 	}
5775 
5776 	/* For i217 Intel Rapid Start Technology support when the system
5777 	 * is transitioning from Sx and no manageability engine is present
5778 	 * configure SMBus to restore on reset, disable proxy, and enable
5779 	 * the reset on MTA (Multicast table array).
5780 	 */
5781 	if (hw->phy.type == e1000_phy_i217) {
5782 		u16 phy_reg;
5783 
5784 		ret_val = hw->phy.ops.acquire(hw);
5785 		if (ret_val) {
5786 			DEBUGOUT("Failed to setup iRST\n");
5787 			return ret_val;
5788 		}
5789 
5790 		/* Clear Auto Enable LPI after link up */
5791 		hw->phy.ops.read_reg_locked(hw, I217_LPI_GPIO_CTRL, &phy_reg);
5792 		phy_reg &= ~I217_LPI_GPIO_CTRL_AUTO_EN_LPI;
5793 		hw->phy.ops.write_reg_locked(hw, I217_LPI_GPIO_CTRL, phy_reg);
5794 
5795 		if (!(E1000_READ_REG(hw, E1000_FWSM) &
5796 		    E1000_ICH_FWSM_FW_VALID)) {
5797 			/* Restore clear on SMB if no manageability engine
5798 			 * is present
5799 			 */
5800 			ret_val = hw->phy.ops.read_reg_locked(hw, I217_MEMPWR,
5801 							      &phy_reg);
5802 			if (ret_val)
5803 				goto release;
5804 			phy_reg |= I217_MEMPWR_DISABLE_SMB_RELEASE;
5805 			hw->phy.ops.write_reg_locked(hw, I217_MEMPWR, phy_reg);
5806 
5807 			/* Disable Proxy */
5808 			hw->phy.ops.write_reg_locked(hw, I217_PROXY_CTRL, 0);
5809 		}
5810 		/* Enable reset on MTA */
5811 		ret_val = hw->phy.ops.read_reg_locked(hw, I217_CGFREG,
5812 						      &phy_reg);
5813 		if (ret_val)
5814 			goto release;
5815 		phy_reg &= ~I217_CGFREG_ENABLE_MTA_RESET;
5816 		hw->phy.ops.write_reg_locked(hw, I217_CGFREG, phy_reg);
5817 release:
5818 		if (ret_val)
5819 			DEBUGOUT1("Error %d in resume workarounds\n", ret_val);
5820 		hw->phy.ops.release(hw);
5821 		return ret_val;
5822 	}
5823 	return E1000_SUCCESS;
5824 }
5825 
5826 /**
5827  *  e1000_cleanup_led_ich8lan - Restore the default LED operation
5828  *  @hw: pointer to the HW structure
5829  *
5830  *  Return the LED back to the default configuration.
5831  **/
5832 static s32 e1000_cleanup_led_ich8lan(struct e1000_hw *hw)
5833 {
5834 	DEBUGFUNC("e1000_cleanup_led_ich8lan");
5835 
5836 	if (hw->phy.type == e1000_phy_ife)
5837 		return hw->phy.ops.write_reg(hw, IFE_PHY_SPECIAL_CONTROL_LED,
5838 					     0);
5839 
5840 	E1000_WRITE_REG(hw, E1000_LEDCTL, hw->mac.ledctl_default);
5841 	return E1000_SUCCESS;
5842 }
5843 
5844 /**
5845  *  e1000_led_on_ich8lan - Turn LEDs on
5846  *  @hw: pointer to the HW structure
5847  *
5848  *  Turn on the LEDs.
5849  **/
5850 static s32 e1000_led_on_ich8lan(struct e1000_hw *hw)
5851 {
5852 	DEBUGFUNC("e1000_led_on_ich8lan");
5853 
5854 	if (hw->phy.type == e1000_phy_ife)
5855 		return hw->phy.ops.write_reg(hw, IFE_PHY_SPECIAL_CONTROL_LED,
5856 				(IFE_PSCL_PROBE_MODE | IFE_PSCL_PROBE_LEDS_ON));
5857 
5858 	E1000_WRITE_REG(hw, E1000_LEDCTL, hw->mac.ledctl_mode2);
5859 	return E1000_SUCCESS;
5860 }
5861 
5862 /**
5863  *  e1000_led_off_ich8lan - Turn LEDs off
5864  *  @hw: pointer to the HW structure
5865  *
5866  *  Turn off the LEDs.
5867  **/
5868 static s32 e1000_led_off_ich8lan(struct e1000_hw *hw)
5869 {
5870 	DEBUGFUNC("e1000_led_off_ich8lan");
5871 
5872 	if (hw->phy.type == e1000_phy_ife)
5873 		return hw->phy.ops.write_reg(hw, IFE_PHY_SPECIAL_CONTROL_LED,
5874 			       (IFE_PSCL_PROBE_MODE | IFE_PSCL_PROBE_LEDS_OFF));
5875 
5876 	E1000_WRITE_REG(hw, E1000_LEDCTL, hw->mac.ledctl_mode1);
5877 	return E1000_SUCCESS;
5878 }
5879 
5880 /**
5881  *  e1000_setup_led_pchlan - Configures SW controllable LED
5882  *  @hw: pointer to the HW structure
5883  *
5884  *  This prepares the SW controllable LED for use.
5885  **/
5886 static s32 e1000_setup_led_pchlan(struct e1000_hw *hw)
5887 {
5888 	DEBUGFUNC("e1000_setup_led_pchlan");
5889 
5890 	return hw->phy.ops.write_reg(hw, HV_LED_CONFIG,
5891 				     (u16)hw->mac.ledctl_mode1);
5892 }
5893 
5894 /**
5895  *  e1000_cleanup_led_pchlan - Restore the default LED operation
5896  *  @hw: pointer to the HW structure
5897  *
5898  *  Return the LED back to the default configuration.
5899  **/
5900 static s32 e1000_cleanup_led_pchlan(struct e1000_hw *hw)
5901 {
5902 	DEBUGFUNC("e1000_cleanup_led_pchlan");
5903 
5904 	return hw->phy.ops.write_reg(hw, HV_LED_CONFIG,
5905 				     (u16)hw->mac.ledctl_default);
5906 }
5907 
5908 /**
5909  *  e1000_led_on_pchlan - Turn LEDs on
5910  *  @hw: pointer to the HW structure
5911  *
5912  *  Turn on the LEDs.
5913  **/
5914 static s32 e1000_led_on_pchlan(struct e1000_hw *hw)
5915 {
5916 	u16 data = (u16)hw->mac.ledctl_mode2;
5917 	u32 i, led;
5918 
5919 	DEBUGFUNC("e1000_led_on_pchlan");
5920 
5921 	/* If no link, then turn LED on by setting the invert bit
5922 	 * for each LED that's mode is "link_up" in ledctl_mode2.
5923 	 */
5924 	if (!(E1000_READ_REG(hw, E1000_STATUS) & E1000_STATUS_LU)) {
5925 		for (i = 0; i < 3; i++) {
5926 			led = (data >> (i * 5)) & E1000_PHY_LED0_MASK;
5927 			if ((led & E1000_PHY_LED0_MODE_MASK) !=
5928 			    E1000_LEDCTL_MODE_LINK_UP)
5929 				continue;
5930 			if (led & E1000_PHY_LED0_IVRT)
5931 				data &= ~(E1000_PHY_LED0_IVRT << (i * 5));
5932 			else
5933 				data |= (E1000_PHY_LED0_IVRT << (i * 5));
5934 		}
5935 	}
5936 
5937 	return hw->phy.ops.write_reg(hw, HV_LED_CONFIG, data);
5938 }
5939 
5940 /**
5941  *  e1000_led_off_pchlan - Turn LEDs off
5942  *  @hw: pointer to the HW structure
5943  *
5944  *  Turn off the LEDs.
5945  **/
5946 static s32 e1000_led_off_pchlan(struct e1000_hw *hw)
5947 {
5948 	u16 data = (u16)hw->mac.ledctl_mode1;
5949 	u32 i, led;
5950 
5951 	DEBUGFUNC("e1000_led_off_pchlan");
5952 
5953 	/* If no link, then turn LED off by clearing the invert bit
5954 	 * for each LED that's mode is "link_up" in ledctl_mode1.
5955 	 */
5956 	if (!(E1000_READ_REG(hw, E1000_STATUS) & E1000_STATUS_LU)) {
5957 		for (i = 0; i < 3; i++) {
5958 			led = (data >> (i * 5)) & E1000_PHY_LED0_MASK;
5959 			if ((led & E1000_PHY_LED0_MODE_MASK) !=
5960 			    E1000_LEDCTL_MODE_LINK_UP)
5961 				continue;
5962 			if (led & E1000_PHY_LED0_IVRT)
5963 				data &= ~(E1000_PHY_LED0_IVRT << (i * 5));
5964 			else
5965 				data |= (E1000_PHY_LED0_IVRT << (i * 5));
5966 		}
5967 	}
5968 
5969 	return hw->phy.ops.write_reg(hw, HV_LED_CONFIG, data);
5970 }
5971 
5972 /**
5973  *  e1000_get_cfg_done_ich8lan - Read config done bit after Full or PHY reset
5974  *  @hw: pointer to the HW structure
5975  *
5976  *  Read appropriate register for the config done bit for completion status
5977  *  and configure the PHY through s/w for EEPROM-less parts.
5978  *
5979  *  NOTE: some silicon which is EEPROM-less will fail trying to read the
5980  *  config done bit, so only an error is logged and continues.  If we were
5981  *  to return with error, EEPROM-less silicon would not be able to be reset
5982  *  or change link.
5983  **/
5984 static s32 e1000_get_cfg_done_ich8lan(struct e1000_hw *hw)
5985 {
5986 	s32 ret_val = E1000_SUCCESS;
5987 	u32 bank = 0;
5988 	u32 status;
5989 
5990 	DEBUGFUNC("e1000_get_cfg_done_ich8lan");
5991 
5992 	e1000_get_cfg_done_generic(hw);
5993 
5994 	/* Wait for indication from h/w that it has completed basic config */
5995 	if (hw->mac.type >= e1000_ich10lan) {
5996 		e1000_lan_init_done_ich8lan(hw);
5997 	} else {
5998 		ret_val = e1000_get_auto_rd_done_generic(hw);
5999 		if (ret_val) {
6000 			/* When auto config read does not complete, do not
6001 			 * return with an error. This can happen in situations
6002 			 * where there is no eeprom and prevents getting link.
6003 			 */
6004 			DEBUGOUT("Auto Read Done did not complete\n");
6005 			ret_val = E1000_SUCCESS;
6006 		}
6007 	}
6008 
6009 	/* Clear PHY Reset Asserted bit */
6010 	status = E1000_READ_REG(hw, E1000_STATUS);
6011 	if (status & E1000_STATUS_PHYRA)
6012 		E1000_WRITE_REG(hw, E1000_STATUS, status & ~E1000_STATUS_PHYRA);
6013 	else
6014 		DEBUGOUT("PHY Reset Asserted not set - needs delay\n");
6015 
6016 	/* If EEPROM is not marked present, init the IGP 3 PHY manually */
6017 	if (hw->mac.type <= e1000_ich9lan) {
6018 		if (!(E1000_READ_REG(hw, E1000_EECD) & E1000_EECD_PRES) &&
6019 		    (hw->phy.type == e1000_phy_igp_3)) {
6020 			e1000_phy_init_script_igp3(hw);
6021 		}
6022 	} else {
6023 		if (e1000_valid_nvm_bank_detect_ich8lan(hw, &bank)) {
6024 			/* Maybe we should do a basic PHY config */
6025 			DEBUGOUT("EEPROM not present\n");
6026 			ret_val = -E1000_ERR_CONFIG;
6027 		}
6028 	}
6029 
6030 	return ret_val;
6031 }
6032 
6033 /**
6034  * e1000_power_down_phy_copper_ich8lan - Remove link during PHY power down
6035  * @hw: pointer to the HW structure
6036  *
6037  * In the case of a PHY power down to save power, or to turn off link during a
6038  * driver unload, or wake on lan is not enabled, remove the link.
6039  **/
6040 static void e1000_power_down_phy_copper_ich8lan(struct e1000_hw *hw)
6041 {
6042 	/* If the management interface is not enabled, then power down */
6043 	if (!(hw->mac.ops.check_mng_mode(hw) ||
6044 	      hw->phy.ops.check_reset_block(hw)))
6045 		e1000_power_down_phy_copper(hw);
6046 
6047 	return;
6048 }
6049 
6050 /**
6051  *  e1000_clear_hw_cntrs_ich8lan - Clear statistical counters
6052  *  @hw: pointer to the HW structure
6053  *
6054  *  Clears hardware counters specific to the silicon family and calls
6055  *  clear_hw_cntrs_generic to clear all general purpose counters.
6056  **/
6057 static void e1000_clear_hw_cntrs_ich8lan(struct e1000_hw *hw)
6058 {
6059 	u16 phy_data;
6060 	s32 ret_val;
6061 
6062 	DEBUGFUNC("e1000_clear_hw_cntrs_ich8lan");
6063 
6064 	e1000_clear_hw_cntrs_base_generic(hw);
6065 
6066 	E1000_READ_REG(hw, E1000_ALGNERRC);
6067 	E1000_READ_REG(hw, E1000_RXERRC);
6068 	E1000_READ_REG(hw, E1000_TNCRS);
6069 	E1000_READ_REG(hw, E1000_CEXTERR);
6070 	E1000_READ_REG(hw, E1000_TSCTC);
6071 	E1000_READ_REG(hw, E1000_TSCTFC);
6072 
6073 	E1000_READ_REG(hw, E1000_MGTPRC);
6074 	E1000_READ_REG(hw, E1000_MGTPDC);
6075 	E1000_READ_REG(hw, E1000_MGTPTC);
6076 
6077 	E1000_READ_REG(hw, E1000_IAC);
6078 	E1000_READ_REG(hw, E1000_ICRXOC);
6079 
6080 	/* Clear PHY statistics registers */
6081 	if ((hw->phy.type == e1000_phy_82578) ||
6082 	    (hw->phy.type == e1000_phy_82579) ||
6083 	    (hw->phy.type == e1000_phy_i217) ||
6084 	    (hw->phy.type == e1000_phy_82577)) {
6085 		ret_val = hw->phy.ops.acquire(hw);
6086 		if (ret_val)
6087 			return;
6088 		ret_val = hw->phy.ops.set_page(hw,
6089 					       HV_STATS_PAGE << IGP_PAGE_SHIFT);
6090 		if (ret_val)
6091 			goto release;
6092 		hw->phy.ops.read_reg_page(hw, HV_SCC_UPPER, &phy_data);
6093 		hw->phy.ops.read_reg_page(hw, HV_SCC_LOWER, &phy_data);
6094 		hw->phy.ops.read_reg_page(hw, HV_ECOL_UPPER, &phy_data);
6095 		hw->phy.ops.read_reg_page(hw, HV_ECOL_LOWER, &phy_data);
6096 		hw->phy.ops.read_reg_page(hw, HV_MCC_UPPER, &phy_data);
6097 		hw->phy.ops.read_reg_page(hw, HV_MCC_LOWER, &phy_data);
6098 		hw->phy.ops.read_reg_page(hw, HV_LATECOL_UPPER, &phy_data);
6099 		hw->phy.ops.read_reg_page(hw, HV_LATECOL_LOWER, &phy_data);
6100 		hw->phy.ops.read_reg_page(hw, HV_COLC_UPPER, &phy_data);
6101 		hw->phy.ops.read_reg_page(hw, HV_COLC_LOWER, &phy_data);
6102 		hw->phy.ops.read_reg_page(hw, HV_DC_UPPER, &phy_data);
6103 		hw->phy.ops.read_reg_page(hw, HV_DC_LOWER, &phy_data);
6104 		hw->phy.ops.read_reg_page(hw, HV_TNCRS_UPPER, &phy_data);
6105 		hw->phy.ops.read_reg_page(hw, HV_TNCRS_LOWER, &phy_data);
6106 release:
6107 		hw->phy.ops.release(hw);
6108 	}
6109 }
6110 
6111