xref: /illumos-gate/usr/src/uts/common/io/e1000api/e1000_i210.c (revision 08855964b9970604433f7b19dcd71cf5af5e5f14)
1 /******************************************************************************
2 
3   Copyright (c) 2001-2015, Intel Corporation
4   All rights reserved.
5 
6   Redistribution and use in source and binary forms, with or without
7   modification, are permitted provided that the following conditions are met:
8 
9    1. Redistributions of source code must retain the above copyright notice,
10       this list of conditions and the following disclaimer.
11 
12    2. Redistributions in binary form must reproduce the above copyright
13       notice, this list of conditions and the following disclaimer in the
14       documentation and/or other materials provided with the distribution.
15 
16    3. Neither the name of the Intel Corporation nor the names of its
17       contributors may be used to endorse or promote products derived from
18       this software without specific prior written permission.
19 
20   THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
21   AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
22   IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
23   ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
24   LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
25   CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
26   SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
27   INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
28   CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
29   ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
30   POSSIBILITY OF SUCH DAMAGE.
31 
32 ******************************************************************************/
33 /*$FreeBSD$*/
34 
35 #include "e1000_api.h"
36 
37 
38 static s32 e1000_acquire_nvm_i210(struct e1000_hw *hw);
39 static void e1000_release_nvm_i210(struct e1000_hw *hw);
40 static s32 e1000_get_hw_semaphore_i210(struct e1000_hw *hw);
41 static s32 e1000_write_nvm_srwr(struct e1000_hw *hw, u16 offset, u16 words,
42 				u16 *data);
43 static s32 e1000_pool_flash_update_done_i210(struct e1000_hw *hw);
44 static s32 e1000_valid_led_default_i210(struct e1000_hw *hw, u16 *data);
45 
46 /**
47  *  e1000_acquire_nvm_i210 - Request for access to EEPROM
48  *  @hw: pointer to the HW structure
49  *
50  *  Acquire the necessary semaphores for exclusive access to the EEPROM.
51  *  Set the EEPROM access request bit and wait for EEPROM access grant bit.
52  *  Return successful if access grant bit set, else clear the request for
53  *  EEPROM access and return -E1000_ERR_NVM (-1).
54  **/
55 static s32 e1000_acquire_nvm_i210(struct e1000_hw *hw)
56 {
57 	s32 ret_val;
58 
59 	DEBUGFUNC("e1000_acquire_nvm_i210");
60 
61 	ret_val = e1000_acquire_swfw_sync_i210(hw, E1000_SWFW_EEP_SM);
62 
63 	return ret_val;
64 }
65 
66 /**
67  *  e1000_release_nvm_i210 - Release exclusive access to EEPROM
68  *  @hw: pointer to the HW structure
69  *
70  *  Stop any current commands to the EEPROM and clear the EEPROM request bit,
71  *  then release the semaphores acquired.
72  **/
73 static void e1000_release_nvm_i210(struct e1000_hw *hw)
74 {
75 	DEBUGFUNC("e1000_release_nvm_i210");
76 
77 	e1000_release_swfw_sync_i210(hw, E1000_SWFW_EEP_SM);
78 }
79 
80 /**
81  *  e1000_acquire_swfw_sync_i210 - Acquire SW/FW semaphore
82  *  @hw: pointer to the HW structure
83  *  @mask: specifies which semaphore to acquire
84  *
85  *  Acquire the SW/FW semaphore to access the PHY or NVM.  The mask
86  *  will also specify which port we're acquiring the lock for.
87  **/
88 s32 e1000_acquire_swfw_sync_i210(struct e1000_hw *hw, u16 mask)
89 {
90 	u32 swfw_sync;
91 	u32 swmask = mask;
92 	u32 fwmask = mask << 16;
93 	s32 ret_val = E1000_SUCCESS;
94 	s32 i = 0, timeout = 200; /* FIXME: find real value to use here */
95 
96 	DEBUGFUNC("e1000_acquire_swfw_sync_i210");
97 
98 	while (i < timeout) {
99 		if (e1000_get_hw_semaphore_i210(hw)) {
100 			ret_val = -E1000_ERR_SWFW_SYNC;
101 			goto out;
102 		}
103 
104 		swfw_sync = E1000_READ_REG(hw, E1000_SW_FW_SYNC);
105 		if (!(swfw_sync & (fwmask | swmask)))
106 			break;
107 
108 		/*
109 		 * Firmware currently using resource (fwmask)
110 		 * or other software thread using resource (swmask)
111 		 */
112 		e1000_put_hw_semaphore_generic(hw);
113 		msec_delay_irq(5);
114 		i++;
115 	}
116 
117 	if (i == timeout) {
118 		DEBUGOUT("Driver can't access resource, SW_FW_SYNC timeout.\n");
119 		ret_val = -E1000_ERR_SWFW_SYNC;
120 		goto out;
121 	}
122 
123 	swfw_sync |= swmask;
124 	E1000_WRITE_REG(hw, E1000_SW_FW_SYNC, swfw_sync);
125 
126 	e1000_put_hw_semaphore_generic(hw);
127 
128 out:
129 	return ret_val;
130 }
131 
132 /**
133  *  e1000_release_swfw_sync_i210 - Release SW/FW semaphore
134  *  @hw: pointer to the HW structure
135  *  @mask: specifies which semaphore to acquire
136  *
137  *  Release the SW/FW semaphore used to access the PHY or NVM.  The mask
138  *  will also specify which port we're releasing the lock for.
139  **/
140 void e1000_release_swfw_sync_i210(struct e1000_hw *hw, u16 mask)
141 {
142 	u32 swfw_sync;
143 
144 	DEBUGFUNC("e1000_release_swfw_sync_i210");
145 
146 	while (e1000_get_hw_semaphore_i210(hw) != E1000_SUCCESS)
147 		; /* Empty */
148 
149 	swfw_sync = E1000_READ_REG(hw, E1000_SW_FW_SYNC);
150 	swfw_sync &= ~mask;
151 	E1000_WRITE_REG(hw, E1000_SW_FW_SYNC, swfw_sync);
152 
153 	e1000_put_hw_semaphore_generic(hw);
154 }
155 
156 /**
157  *  e1000_get_hw_semaphore_i210 - Acquire hardware semaphore
158  *  @hw: pointer to the HW structure
159  *
160  *  Acquire the HW semaphore to access the PHY or NVM
161  **/
162 static s32 e1000_get_hw_semaphore_i210(struct e1000_hw *hw)
163 {
164 	u32 swsm;
165 	s32 timeout = hw->nvm.word_size + 1;
166 	s32 i = 0;
167 
168 	DEBUGFUNC("e1000_get_hw_semaphore_i210");
169 
170 	/* Get the SW semaphore */
171 	while (i < timeout) {
172 		swsm = E1000_READ_REG(hw, E1000_SWSM);
173 		if (!(swsm & E1000_SWSM_SMBI))
174 			break;
175 
176 		usec_delay(50);
177 		i++;
178 	}
179 
180 	if (i == timeout) {
181 		/* In rare circumstances, the SW semaphore may already be held
182 		 * unintentionally. Clear the semaphore once before giving up.
183 		 */
184 		if (hw->dev_spec._82575.clear_semaphore_once) {
185 			hw->dev_spec._82575.clear_semaphore_once = FALSE;
186 			e1000_put_hw_semaphore_generic(hw);
187 			for (i = 0; i < timeout; i++) {
188 				swsm = E1000_READ_REG(hw, E1000_SWSM);
189 				if (!(swsm & E1000_SWSM_SMBI))
190 					break;
191 
192 				usec_delay(50);
193 			}
194 		}
195 
196 		/* If we do not have the semaphore here, we have to give up. */
197 		if (i == timeout) {
198 			DEBUGOUT("Driver can't access device - SMBI bit is set.\n");
199 			return -E1000_ERR_NVM;
200 		}
201 	}
202 
203 	/* Get the FW semaphore. */
204 	for (i = 0; i < timeout; i++) {
205 		swsm = E1000_READ_REG(hw, E1000_SWSM);
206 		E1000_WRITE_REG(hw, E1000_SWSM, swsm | E1000_SWSM_SWESMBI);
207 
208 		/* Semaphore acquired if bit latched */
209 		if (E1000_READ_REG(hw, E1000_SWSM) & E1000_SWSM_SWESMBI)
210 			break;
211 
212 		usec_delay(50);
213 	}
214 
215 	if (i == timeout) {
216 		/* Release semaphores */
217 		e1000_put_hw_semaphore_generic(hw);
218 		DEBUGOUT("Driver can't access the NVM\n");
219 		return -E1000_ERR_NVM;
220 	}
221 
222 	return E1000_SUCCESS;
223 }
224 
225 /**
226  *  e1000_read_nvm_srrd_i210 - Reads Shadow Ram using EERD register
227  *  @hw: pointer to the HW structure
228  *  @offset: offset of word in the Shadow Ram to read
229  *  @words: number of words to read
230  *  @data: word read from the Shadow Ram
231  *
232  *  Reads a 16 bit word from the Shadow Ram using the EERD register.
233  *  Uses necessary synchronization semaphores.
234  **/
235 s32 e1000_read_nvm_srrd_i210(struct e1000_hw *hw, u16 offset, u16 words,
236 			     u16 *data)
237 {
238 	s32 status = E1000_SUCCESS;
239 	u16 i, count;
240 
241 	DEBUGFUNC("e1000_read_nvm_srrd_i210");
242 
243 	/* We cannot hold synchronization semaphores for too long,
244 	 * because of forceful takeover procedure. However it is more efficient
245 	 * to read in bursts than synchronizing access for each word. */
246 	for (i = 0; i < words; i += E1000_EERD_EEWR_MAX_COUNT) {
247 		count = (words - i) / E1000_EERD_EEWR_MAX_COUNT > 0 ?
248 			E1000_EERD_EEWR_MAX_COUNT : (words - i);
249 		if (hw->nvm.ops.acquire(hw) == E1000_SUCCESS) {
250 			status = e1000_read_nvm_eerd(hw, offset, count,
251 						     data + i);
252 			hw->nvm.ops.release(hw);
253 		} else {
254 			status = E1000_ERR_SWFW_SYNC;
255 		}
256 
257 		if (status != E1000_SUCCESS)
258 			break;
259 	}
260 
261 	return status;
262 }
263 
264 /**
265  *  e1000_write_nvm_srwr_i210 - Write to Shadow RAM using EEWR
266  *  @hw: pointer to the HW structure
267  *  @offset: offset within the Shadow RAM to be written to
268  *  @words: number of words to write
269  *  @data: 16 bit word(s) to be written to the Shadow RAM
270  *
271  *  Writes data to Shadow RAM at offset using EEWR register.
272  *
273  *  If e1000_update_nvm_checksum is not called after this function , the
274  *  data will not be committed to FLASH and also Shadow RAM will most likely
275  *  contain an invalid checksum.
276  *
277  *  If error code is returned, data and Shadow RAM may be inconsistent - buffer
278  *  partially written.
279  **/
280 s32 e1000_write_nvm_srwr_i210(struct e1000_hw *hw, u16 offset, u16 words,
281 			      u16 *data)
282 {
283 	s32 status = E1000_SUCCESS;
284 	u16 i, count;
285 
286 	DEBUGFUNC("e1000_write_nvm_srwr_i210");
287 
288 	/* We cannot hold synchronization semaphores for too long,
289 	 * because of forceful takeover procedure. However it is more efficient
290 	 * to write in bursts than synchronizing access for each word. */
291 	for (i = 0; i < words; i += E1000_EERD_EEWR_MAX_COUNT) {
292 		count = (words - i) / E1000_EERD_EEWR_MAX_COUNT > 0 ?
293 			E1000_EERD_EEWR_MAX_COUNT : (words - i);
294 		if (hw->nvm.ops.acquire(hw) == E1000_SUCCESS) {
295 			status = e1000_write_nvm_srwr(hw, offset, count,
296 						      data + i);
297 			hw->nvm.ops.release(hw);
298 		} else {
299 			status = E1000_ERR_SWFW_SYNC;
300 		}
301 
302 		if (status != E1000_SUCCESS)
303 			break;
304 	}
305 
306 	return status;
307 }
308 
309 /**
310  *  e1000_write_nvm_srwr - Write to Shadow Ram using EEWR
311  *  @hw: pointer to the HW structure
312  *  @offset: offset within the Shadow Ram to be written to
313  *  @words: number of words to write
314  *  @data: 16 bit word(s) to be written to the Shadow Ram
315  *
316  *  Writes data to Shadow Ram at offset using EEWR register.
317  *
318  *  If e1000_update_nvm_checksum is not called after this function , the
319  *  Shadow Ram will most likely contain an invalid checksum.
320  **/
321 static s32 e1000_write_nvm_srwr(struct e1000_hw *hw, u16 offset, u16 words,
322 				u16 *data)
323 {
324 	struct e1000_nvm_info *nvm = &hw->nvm;
325 	u32 i, k, eewr = 0;
326 	u32 attempts = 100000;
327 	s32 ret_val = E1000_SUCCESS;
328 
329 	DEBUGFUNC("e1000_write_nvm_srwr");
330 
331 	/*
332 	 * A check for invalid values:  offset too large, too many words,
333 	 * too many words for the offset, and not enough words.
334 	 */
335 	if ((offset >= nvm->word_size) || (words > (nvm->word_size - offset)) ||
336 	    (words == 0)) {
337 		DEBUGOUT("nvm parameter(s) out of bounds\n");
338 		ret_val = -E1000_ERR_NVM;
339 		goto out;
340 	}
341 
342 	for (i = 0; i < words; i++) {
343 		eewr = ((offset+i) << E1000_NVM_RW_ADDR_SHIFT) |
344 			(data[i] << E1000_NVM_RW_REG_DATA) |
345 			E1000_NVM_RW_REG_START;
346 
347 		E1000_WRITE_REG(hw, E1000_SRWR, eewr);
348 
349 		for (k = 0; k < attempts; k++) {
350 			if (E1000_NVM_RW_REG_DONE &
351 			    E1000_READ_REG(hw, E1000_SRWR)) {
352 				ret_val = E1000_SUCCESS;
353 				break;
354 			}
355 			usec_delay(5);
356 		}
357 
358 		if (ret_val != E1000_SUCCESS) {
359 			DEBUGOUT("Shadow RAM write EEWR timed out\n");
360 			break;
361 		}
362 	}
363 
364 out:
365 	return ret_val;
366 }
367 
368 /** e1000_read_invm_word_i210 - Reads OTP
369  *  @hw: pointer to the HW structure
370  *  @address: the word address (aka eeprom offset) to read
371  *  @data: pointer to the data read
372  *
373  *  Reads 16-bit words from the OTP. Return error when the word is not
374  *  stored in OTP.
375  **/
376 static s32 e1000_read_invm_word_i210(struct e1000_hw *hw, u8 address, u16 *data)
377 {
378 	s32 status = -E1000_ERR_INVM_VALUE_NOT_FOUND;
379 	u32 invm_dword;
380 	u16 i;
381 	u8 record_type, word_address;
382 
383 	DEBUGFUNC("e1000_read_invm_word_i210");
384 
385 	for (i = 0; i < E1000_INVM_SIZE; i++) {
386 		invm_dword = E1000_READ_REG(hw, E1000_INVM_DATA_REG(i));
387 		/* Get record type */
388 		record_type = INVM_DWORD_TO_RECORD_TYPE(invm_dword);
389 		if (record_type == E1000_INVM_UNINITIALIZED_STRUCTURE)
390 			break;
391 		if (record_type == E1000_INVM_CSR_AUTOLOAD_STRUCTURE)
392 			i += E1000_INVM_CSR_AUTOLOAD_DATA_SIZE_IN_DWORDS;
393 		if (record_type == E1000_INVM_RSA_KEY_SHA256_STRUCTURE)
394 			i += E1000_INVM_RSA_KEY_SHA256_DATA_SIZE_IN_DWORDS;
395 		if (record_type == E1000_INVM_WORD_AUTOLOAD_STRUCTURE) {
396 			word_address = INVM_DWORD_TO_WORD_ADDRESS(invm_dword);
397 			if (word_address == address) {
398 				*data = INVM_DWORD_TO_WORD_DATA(invm_dword);
399 				DEBUGOUT2("Read INVM Word 0x%02x = %x",
400 					  address, *data);
401 				status = E1000_SUCCESS;
402 				break;
403 			}
404 		}
405 	}
406 	if (status != E1000_SUCCESS)
407 		DEBUGOUT1("Requested word 0x%02x not found in OTP\n", address);
408 	return status;
409 }
410 
411 /** e1000_read_invm_i210 - Read invm wrapper function for I210/I211
412  *  @hw: pointer to the HW structure
413  *  @address: the word address (aka eeprom offset) to read
414  *  @data: pointer to the data read
415  *
416  *  Wrapper function to return data formerly found in the NVM.
417  **/
418 static s32 e1000_read_invm_i210(struct e1000_hw *hw, u16 offset,
419 				u16 E1000_UNUSEDARG words, u16 *data)
420 {
421 	s32 ret_val = E1000_SUCCESS;
422 
423 	DEBUGFUNC("e1000_read_invm_i210");
424 
425 	/* Only the MAC addr is required to be present in the iNVM */
426 	switch (offset) {
427 	case NVM_MAC_ADDR:
428 		ret_val = e1000_read_invm_word_i210(hw, (u8)offset, &data[0]);
429 		ret_val |= e1000_read_invm_word_i210(hw, (u8)offset+1,
430 						     &data[1]);
431 		ret_val |= e1000_read_invm_word_i210(hw, (u8)offset+2,
432 						     &data[2]);
433 		if (ret_val != E1000_SUCCESS)
434 			DEBUGOUT("MAC Addr not found in iNVM\n");
435 		break;
436 	case NVM_INIT_CTRL_2:
437 		ret_val = e1000_read_invm_word_i210(hw, (u8)offset, data);
438 		if (ret_val != E1000_SUCCESS) {
439 			*data = NVM_INIT_CTRL_2_DEFAULT_I211;
440 			ret_val = E1000_SUCCESS;
441 		}
442 		break;
443 	case NVM_INIT_CTRL_4:
444 		ret_val = e1000_read_invm_word_i210(hw, (u8)offset, data);
445 		if (ret_val != E1000_SUCCESS) {
446 			*data = NVM_INIT_CTRL_4_DEFAULT_I211;
447 			ret_val = E1000_SUCCESS;
448 		}
449 		break;
450 	case NVM_LED_1_CFG:
451 		ret_val = e1000_read_invm_word_i210(hw, (u8)offset, data);
452 		if (ret_val != E1000_SUCCESS) {
453 			*data = NVM_LED_1_CFG_DEFAULT_I211;
454 			ret_val = E1000_SUCCESS;
455 		}
456 		break;
457 	case NVM_LED_0_2_CFG:
458 		ret_val = e1000_read_invm_word_i210(hw, (u8)offset, data);
459 		if (ret_val != E1000_SUCCESS) {
460 			*data = NVM_LED_0_2_CFG_DEFAULT_I211;
461 			ret_val = E1000_SUCCESS;
462 		}
463 		break;
464 	case NVM_ID_LED_SETTINGS:
465 		ret_val = e1000_read_invm_word_i210(hw, (u8)offset, data);
466 		if (ret_val != E1000_SUCCESS) {
467 			*data = ID_LED_RESERVED_FFFF;
468 			ret_val = E1000_SUCCESS;
469 		}
470 		break;
471 	case NVM_SUB_DEV_ID:
472 		*data = hw->subsystem_device_id;
473 		break;
474 	case NVM_SUB_VEN_ID:
475 		*data = hw->subsystem_vendor_id;
476 		break;
477 	case NVM_DEV_ID:
478 		*data = hw->device_id;
479 		break;
480 	case NVM_VEN_ID:
481 		*data = hw->vendor_id;
482 		break;
483 	default:
484 		DEBUGOUT1("NVM word 0x%02x is not mapped.\n", offset);
485 		*data = NVM_RESERVED_WORD;
486 		break;
487 	}
488 	return ret_val;
489 }
490 
491 /**
492  *  e1000_validate_nvm_checksum_i210 - Validate EEPROM checksum
493  *  @hw: pointer to the HW structure
494  *
495  *  Calculates the EEPROM checksum by reading/adding each word of the EEPROM
496  *  and then verifies that the sum of the EEPROM is equal to 0xBABA.
497  **/
498 s32 e1000_validate_nvm_checksum_i210(struct e1000_hw *hw)
499 {
500 	s32 status = E1000_SUCCESS;
501 	s32 (*read_op_ptr)(struct e1000_hw *, u16, u16, u16 *);
502 
503 	DEBUGFUNC("e1000_validate_nvm_checksum_i210");
504 
505 	if (hw->nvm.ops.acquire(hw) == E1000_SUCCESS) {
506 
507 		/*
508 		 * Replace the read function with semaphore grabbing with
509 		 * the one that skips this for a while.
510 		 * We have semaphore taken already here.
511 		 */
512 		read_op_ptr = hw->nvm.ops.read;
513 		hw->nvm.ops.read = e1000_read_nvm_eerd;
514 
515 		status = e1000_validate_nvm_checksum_generic(hw);
516 
517 		/* Revert original read operation. */
518 		hw->nvm.ops.read = read_op_ptr;
519 
520 		hw->nvm.ops.release(hw);
521 	} else {
522 		status = E1000_ERR_SWFW_SYNC;
523 	}
524 
525 	return status;
526 }
527 
528 
529 /**
530  *  e1000_update_nvm_checksum_i210 - Update EEPROM checksum
531  *  @hw: pointer to the HW structure
532  *
533  *  Updates the EEPROM checksum by reading/adding each word of the EEPROM
534  *  up to the checksum.  Then calculates the EEPROM checksum and writes the
535  *  value to the EEPROM. Next commit EEPROM data onto the Flash.
536  **/
537 s32 e1000_update_nvm_checksum_i210(struct e1000_hw *hw)
538 {
539 	s32 ret_val;
540 	u16 checksum = 0;
541 	u16 i, nvm_data;
542 
543 	DEBUGFUNC("e1000_update_nvm_checksum_i210");
544 
545 	/*
546 	 * Read the first word from the EEPROM. If this times out or fails, do
547 	 * not continue or we could be in for a very long wait while every
548 	 * EEPROM read fails
549 	 */
550 	ret_val = e1000_read_nvm_eerd(hw, 0, 1, &nvm_data);
551 	if (ret_val != E1000_SUCCESS) {
552 		DEBUGOUT("EEPROM read failed\n");
553 		goto out;
554 	}
555 
556 	if (hw->nvm.ops.acquire(hw) == E1000_SUCCESS) {
557 		/*
558 		 * Do not use hw->nvm.ops.write, hw->nvm.ops.read
559 		 * because we do not want to take the synchronization
560 		 * semaphores twice here.
561 		 */
562 
563 		for (i = 0; i < NVM_CHECKSUM_REG; i++) {
564 			ret_val = e1000_read_nvm_eerd(hw, i, 1, &nvm_data);
565 			if (ret_val) {
566 				hw->nvm.ops.release(hw);
567 				DEBUGOUT("NVM Read Error while updating checksum.\n");
568 				goto out;
569 			}
570 			checksum += nvm_data;
571 		}
572 		checksum = (u16) NVM_SUM - checksum;
573 		ret_val = e1000_write_nvm_srwr(hw, NVM_CHECKSUM_REG, 1,
574 						&checksum);
575 		if (ret_val != E1000_SUCCESS) {
576 			hw->nvm.ops.release(hw);
577 			DEBUGOUT("NVM Write Error while updating checksum.\n");
578 			goto out;
579 		}
580 
581 		hw->nvm.ops.release(hw);
582 
583 		ret_val = e1000_update_flash_i210(hw);
584 	} else {
585 		ret_val = E1000_ERR_SWFW_SYNC;
586 	}
587 out:
588 	return ret_val;
589 }
590 
591 /**
592  *  e1000_get_flash_presence_i210 - Check if flash device is detected.
593  *  @hw: pointer to the HW structure
594  *
595  **/
596 bool e1000_get_flash_presence_i210(struct e1000_hw *hw)
597 {
598 	u32 eec = 0;
599 	bool ret_val = FALSE;
600 
601 	DEBUGFUNC("e1000_get_flash_presence_i210");
602 
603 	eec = E1000_READ_REG(hw, E1000_EECD);
604 
605 	if (eec & E1000_EECD_FLASH_DETECTED_I210)
606 		ret_val = TRUE;
607 
608 	return ret_val;
609 }
610 
611 /**
612  *  e1000_update_flash_i210 - Commit EEPROM to the flash
613  *  @hw: pointer to the HW structure
614  *
615  **/
616 s32 e1000_update_flash_i210(struct e1000_hw *hw)
617 {
618 	s32 ret_val;
619 	u32 flup;
620 
621 	DEBUGFUNC("e1000_update_flash_i210");
622 
623 	ret_val = e1000_pool_flash_update_done_i210(hw);
624 	if (ret_val == -E1000_ERR_NVM) {
625 		DEBUGOUT("Flash update time out\n");
626 		goto out;
627 	}
628 
629 	flup = E1000_READ_REG(hw, E1000_EECD) | E1000_EECD_FLUPD_I210;
630 	E1000_WRITE_REG(hw, E1000_EECD, flup);
631 
632 	ret_val = e1000_pool_flash_update_done_i210(hw);
633 	if (ret_val == E1000_SUCCESS)
634 		DEBUGOUT("Flash update complete\n");
635 	else
636 		DEBUGOUT("Flash update time out\n");
637 
638 out:
639 	return ret_val;
640 }
641 
642 /**
643  *  e1000_pool_flash_update_done_i210 - Pool FLUDONE status.
644  *  @hw: pointer to the HW structure
645  *
646  **/
647 s32 e1000_pool_flash_update_done_i210(struct e1000_hw *hw)
648 {
649 	s32 ret_val = -E1000_ERR_NVM;
650 	u32 i, reg;
651 
652 	DEBUGFUNC("e1000_pool_flash_update_done_i210");
653 
654 	for (i = 0; i < E1000_FLUDONE_ATTEMPTS; i++) {
655 		reg = E1000_READ_REG(hw, E1000_EECD);
656 		if (reg & E1000_EECD_FLUDONE_I210) {
657 			ret_val = E1000_SUCCESS;
658 			break;
659 		}
660 		usec_delay(5);
661 	}
662 
663 	return ret_val;
664 }
665 
666 /**
667  *  e1000_init_nvm_params_i210 - Initialize i210 NVM function pointers
668  *  @hw: pointer to the HW structure
669  *
670  *  Initialize the i210/i211 NVM parameters and function pointers.
671  **/
672 static s32 e1000_init_nvm_params_i210(struct e1000_hw *hw)
673 {
674 	s32 ret_val;
675 	struct e1000_nvm_info *nvm = &hw->nvm;
676 
677 	DEBUGFUNC("e1000_init_nvm_params_i210");
678 
679 	ret_val = e1000_init_nvm_params_82575(hw);
680 	nvm->ops.acquire = e1000_acquire_nvm_i210;
681 	nvm->ops.release = e1000_release_nvm_i210;
682 	nvm->ops.valid_led_default = e1000_valid_led_default_i210;
683 	if (e1000_get_flash_presence_i210(hw)) {
684 		hw->nvm.type = e1000_nvm_flash_hw;
685 		nvm->ops.read    = e1000_read_nvm_srrd_i210;
686 		nvm->ops.write   = e1000_write_nvm_srwr_i210;
687 		nvm->ops.validate = e1000_validate_nvm_checksum_i210;
688 		nvm->ops.update   = e1000_update_nvm_checksum_i210;
689 	} else {
690 		hw->nvm.type = e1000_nvm_invm;
691 		nvm->ops.read     = e1000_read_invm_i210;
692 		nvm->ops.write    = e1000_null_write_nvm;
693 		nvm->ops.validate = e1000_null_ops_generic;
694 		nvm->ops.update   = e1000_null_ops_generic;
695 	}
696 	return ret_val;
697 }
698 
699 /**
700  *  e1000_init_function_pointers_i210 - Init func ptrs.
701  *  @hw: pointer to the HW structure
702  *
703  *  Called to initialize all function pointers and parameters.
704  **/
705 void e1000_init_function_pointers_i210(struct e1000_hw *hw)
706 {
707 	e1000_init_function_pointers_82575(hw);
708 	hw->nvm.ops.init_params = e1000_init_nvm_params_i210;
709 
710 	return;
711 }
712 
713 /**
714  *  e1000_valid_led_default_i210 - Verify a valid default LED config
715  *  @hw: pointer to the HW structure
716  *  @data: pointer to the NVM (EEPROM)
717  *
718  *  Read the EEPROM for the current default LED configuration.  If the
719  *  LED configuration is not valid, set to a valid LED configuration.
720  **/
721 static s32 e1000_valid_led_default_i210(struct e1000_hw *hw, u16 *data)
722 {
723 	s32 ret_val;
724 
725 	DEBUGFUNC("e1000_valid_led_default_i210");
726 
727 	ret_val = hw->nvm.ops.read(hw, NVM_ID_LED_SETTINGS, 1, data);
728 	if (ret_val) {
729 		DEBUGOUT("NVM Read Error\n");
730 		goto out;
731 	}
732 
733 	if (*data == ID_LED_RESERVED_0000 || *data == ID_LED_RESERVED_FFFF) {
734 		switch (hw->phy.media_type) {
735 		case e1000_media_type_internal_serdes:
736 			*data = ID_LED_DEFAULT_I210_SERDES;
737 			break;
738 		case e1000_media_type_copper:
739 		default:
740 			*data = ID_LED_DEFAULT_I210;
741 			break;
742 		}
743 	}
744 out:
745 	return ret_val;
746 }
747 
748 /**
749  *  __e1000_access_xmdio_reg - Read/write XMDIO register
750  *  @hw: pointer to the HW structure
751  *  @address: XMDIO address to program
752  *  @dev_addr: device address to program
753  *  @data: pointer to value to read/write from/to the XMDIO address
754  *  @read: boolean flag to indicate read or write
755  **/
756 static s32 __e1000_access_xmdio_reg(struct e1000_hw *hw, u16 address,
757 				    u8 dev_addr, u16 *data, bool read)
758 {
759 	s32 ret_val;
760 
761 	DEBUGFUNC("__e1000_access_xmdio_reg");
762 
763 	ret_val = hw->phy.ops.write_reg(hw, E1000_MMDAC, dev_addr);
764 	if (ret_val)
765 		return ret_val;
766 
767 	ret_val = hw->phy.ops.write_reg(hw, E1000_MMDAAD, address);
768 	if (ret_val)
769 		return ret_val;
770 
771 	ret_val = hw->phy.ops.write_reg(hw, E1000_MMDAC, E1000_MMDAC_FUNC_DATA |
772 							 dev_addr);
773 	if (ret_val)
774 		return ret_val;
775 
776 	if (read)
777 		ret_val = hw->phy.ops.read_reg(hw, E1000_MMDAAD, data);
778 	else
779 		ret_val = hw->phy.ops.write_reg(hw, E1000_MMDAAD, *data);
780 	if (ret_val)
781 		return ret_val;
782 
783 	/* Recalibrate the device back to 0 */
784 	ret_val = hw->phy.ops.write_reg(hw, E1000_MMDAC, 0);
785 	if (ret_val)
786 		return ret_val;
787 
788 	return ret_val;
789 }
790 
791 /**
792  *  e1000_read_xmdio_reg - Read XMDIO register
793  *  @hw: pointer to the HW structure
794  *  @addr: XMDIO address to program
795  *  @dev_addr: device address to program
796  *  @data: value to be read from the EMI address
797  **/
798 s32 e1000_read_xmdio_reg(struct e1000_hw *hw, u16 addr, u8 dev_addr, u16 *data)
799 {
800 	DEBUGFUNC("e1000_read_xmdio_reg");
801 
802 	return __e1000_access_xmdio_reg(hw, addr, dev_addr, data, TRUE);
803 }
804 
805 /**
806  *  e1000_write_xmdio_reg - Write XMDIO register
807  *  @hw: pointer to the HW structure
808  *  @addr: XMDIO address to program
809  *  @dev_addr: device address to program
810  *  @data: value to be written to the XMDIO address
811  **/
812 s32 e1000_write_xmdio_reg(struct e1000_hw *hw, u16 addr, u8 dev_addr, u16 data)
813 {
814 	DEBUGFUNC("e1000_read_xmdio_reg");
815 
816 	return __e1000_access_xmdio_reg(hw, addr, dev_addr, &data, FALSE);
817 }
818 
819 /**
820  * e1000_pll_workaround_i210
821  * @hw: pointer to the HW structure
822  *
823  * Works around an errata in the PLL circuit where it occasionally
824  * provides the wrong clock frequency after power up.
825  **/
826 static s32 e1000_pll_workaround_i210(struct e1000_hw *hw)
827 {
828 	s32 ret_val;
829 	u32 wuc, mdicnfg, ctrl, ctrl_ext, reg_val;
830 	u16 nvm_word, phy_word, pci_word, tmp_nvm;
831 	int i;
832 
833 	/* Get and set needed register values */
834 	wuc = E1000_READ_REG(hw, E1000_WUC);
835 	mdicnfg = E1000_READ_REG(hw, E1000_MDICNFG);
836 	reg_val = mdicnfg & ~E1000_MDICNFG_EXT_MDIO;
837 	E1000_WRITE_REG(hw, E1000_MDICNFG, reg_val);
838 
839 	/* Get data from NVM, or set default */
840 	ret_val = e1000_read_invm_word_i210(hw, E1000_INVM_AUTOLOAD,
841 					    &nvm_word);
842 	if (ret_val != E1000_SUCCESS)
843 		nvm_word = E1000_INVM_DEFAULT_AL;
844 	tmp_nvm = nvm_word | E1000_INVM_PLL_WO_VAL;
845 	for (i = 0; i < E1000_MAX_PLL_TRIES; i++) {
846 		/* check current state directly from internal PHY */
847 		e1000_read_phy_reg_gs40g(hw, (E1000_PHY_PLL_FREQ_PAGE |
848 					 E1000_PHY_PLL_FREQ_REG), &phy_word);
849 		if ((phy_word & E1000_PHY_PLL_UNCONF)
850 		    != E1000_PHY_PLL_UNCONF) {
851 			ret_val = E1000_SUCCESS;
852 			break;
853 		} else {
854 			ret_val = -E1000_ERR_PHY;
855 		}
856 		/* directly reset the internal PHY */
857 		ctrl = E1000_READ_REG(hw, E1000_CTRL);
858 		E1000_WRITE_REG(hw, E1000_CTRL, ctrl|E1000_CTRL_PHY_RST);
859 
860 		ctrl_ext = E1000_READ_REG(hw, E1000_CTRL_EXT);
861 		ctrl_ext |= (E1000_CTRL_EXT_PHYPDEN | E1000_CTRL_EXT_SDLPE);
862 		E1000_WRITE_REG(hw, E1000_CTRL_EXT, ctrl_ext);
863 
864 		E1000_WRITE_REG(hw, E1000_WUC, 0);
865 		reg_val = (E1000_INVM_AUTOLOAD << 4) | (tmp_nvm << 16);
866 		E1000_WRITE_REG(hw, E1000_EEARBC_I210, reg_val);
867 
868 		e1000_read_pci_cfg(hw, E1000_PCI_PMCSR, &pci_word);
869 		pci_word |= E1000_PCI_PMCSR_D3;
870 		e1000_write_pci_cfg(hw, E1000_PCI_PMCSR, &pci_word);
871 		msec_delay(1);
872 		pci_word &= ~E1000_PCI_PMCSR_D3;
873 		e1000_write_pci_cfg(hw, E1000_PCI_PMCSR, &pci_word);
874 		reg_val = (E1000_INVM_AUTOLOAD << 4) | (nvm_word << 16);
875 		E1000_WRITE_REG(hw, E1000_EEARBC_I210, reg_val);
876 
877 		/* restore WUC register */
878 		E1000_WRITE_REG(hw, E1000_WUC, wuc);
879 	}
880 	/* restore MDICNFG setting */
881 	E1000_WRITE_REG(hw, E1000_MDICNFG, mdicnfg);
882 	return ret_val;
883 }
884 
885 /**
886  *  e1000_get_cfg_done_i210 - Read config done bit
887  *  @hw: pointer to the HW structure
888  *
889  *  Read the management control register for the config done bit for
890  *  completion status.  NOTE: silicon which is EEPROM-less will fail trying
891  *  to read the config done bit, so an error is *ONLY* logged and returns
892  *  E1000_SUCCESS.  If we were to return with error, EEPROM-less silicon
893  *  would not be able to be reset or change link.
894  **/
895 static s32 e1000_get_cfg_done_i210(struct e1000_hw *hw)
896 {
897 	s32 timeout = PHY_CFG_TIMEOUT;
898 	u32 mask = E1000_NVM_CFG_DONE_PORT_0;
899 
900 	DEBUGFUNC("e1000_get_cfg_done_i210");
901 
902 	while (timeout) {
903 		if (E1000_READ_REG(hw, E1000_EEMNGCTL_I210) & mask)
904 			break;
905 		msec_delay(1);
906 		timeout--;
907 	}
908 	if (!timeout)
909 		DEBUGOUT("MNG configuration cycle has not completed.\n");
910 
911 	return E1000_SUCCESS;
912 }
913 
914 /**
915  *  e1000_init_hw_i210 - Init hw for I210/I211
916  *  @hw: pointer to the HW structure
917  *
918  *  Called to initialize hw for i210 hw family.
919  **/
920 s32 e1000_init_hw_i210(struct e1000_hw *hw)
921 {
922 	s32 ret_val;
923 
924 	DEBUGFUNC("e1000_init_hw_i210");
925 	if ((hw->mac.type >= e1000_i210) &&
926 	    !(e1000_get_flash_presence_i210(hw))) {
927 		ret_val = e1000_pll_workaround_i210(hw);
928 		if (ret_val != E1000_SUCCESS)
929 			return ret_val;
930 	}
931 	hw->phy.ops.get_cfg_done = e1000_get_cfg_done_i210;
932 	ret_val = e1000_init_hw_82575(hw);
933 	return ret_val;
934 }
935