1 /****************************************************************************** 2 3 Copyright (c) 2001-2015, Intel Corporation 4 All rights reserved. 5 6 Redistribution and use in source and binary forms, with or without 7 modification, are permitted provided that the following conditions are met: 8 9 1. Redistributions of source code must retain the above copyright notice, 10 this list of conditions and the following disclaimer. 11 12 2. Redistributions in binary form must reproduce the above copyright 13 notice, this list of conditions and the following disclaimer in the 14 documentation and/or other materials provided with the distribution. 15 16 3. Neither the name of the Intel Corporation nor the names of its 17 contributors may be used to endorse or promote products derived from 18 this software without specific prior written permission. 19 20 THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" 21 AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 22 IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 23 ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE 24 LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR 25 CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF 26 SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS 27 INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN 28 CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) 29 ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE 30 POSSIBILITY OF SUCH DAMAGE. 31 32 ******************************************************************************/ 33 /*$FreeBSD$*/ 34 35 #include "e1000_api.h" 36 37 38 static s32 e1000_acquire_nvm_i210(struct e1000_hw *hw); 39 static void e1000_release_nvm_i210(struct e1000_hw *hw); 40 static s32 e1000_get_hw_semaphore_i210(struct e1000_hw *hw); 41 static s32 e1000_write_nvm_srwr(struct e1000_hw *hw, u16 offset, u16 words, 42 u16 *data); 43 static s32 e1000_pool_flash_update_done_i210(struct e1000_hw *hw); 44 static s32 e1000_valid_led_default_i210(struct e1000_hw *hw, u16 *data); 45 46 /** 47 * e1000_acquire_nvm_i210 - Request for access to EEPROM 48 * @hw: pointer to the HW structure 49 * 50 * Acquire the necessary semaphores for exclusive access to the EEPROM. 51 * Set the EEPROM access request bit and wait for EEPROM access grant bit. 52 * Return successful if access grant bit set, else clear the request for 53 * EEPROM access and return -E1000_ERR_NVM (-1). 54 **/ 55 static s32 e1000_acquire_nvm_i210(struct e1000_hw *hw) 56 { 57 s32 ret_val; 58 59 DEBUGFUNC("e1000_acquire_nvm_i210"); 60 61 ret_val = e1000_acquire_swfw_sync_i210(hw, E1000_SWFW_EEP_SM); 62 63 return ret_val; 64 } 65 66 /** 67 * e1000_release_nvm_i210 - Release exclusive access to EEPROM 68 * @hw: pointer to the HW structure 69 * 70 * Stop any current commands to the EEPROM and clear the EEPROM request bit, 71 * then release the semaphores acquired. 72 **/ 73 static void e1000_release_nvm_i210(struct e1000_hw *hw) 74 { 75 DEBUGFUNC("e1000_release_nvm_i210"); 76 77 e1000_release_swfw_sync_i210(hw, E1000_SWFW_EEP_SM); 78 } 79 80 /** 81 * e1000_acquire_swfw_sync_i210 - Acquire SW/FW semaphore 82 * @hw: pointer to the HW structure 83 * @mask: specifies which semaphore to acquire 84 * 85 * Acquire the SW/FW semaphore to access the PHY or NVM. The mask 86 * will also specify which port we're acquiring the lock for. 87 **/ 88 s32 e1000_acquire_swfw_sync_i210(struct e1000_hw *hw, u16 mask) 89 { 90 u32 swfw_sync; 91 u32 swmask = mask; 92 u32 fwmask = mask << 16; 93 s32 ret_val = E1000_SUCCESS; 94 s32 i = 0, timeout = 200; /* FIXME: find real value to use here */ 95 96 DEBUGFUNC("e1000_acquire_swfw_sync_i210"); 97 98 while (i < timeout) { 99 if (e1000_get_hw_semaphore_i210(hw)) { 100 ret_val = -E1000_ERR_SWFW_SYNC; 101 goto out; 102 } 103 104 swfw_sync = E1000_READ_REG(hw, E1000_SW_FW_SYNC); 105 if (!(swfw_sync & (fwmask | swmask))) 106 break; 107 108 /* 109 * Firmware currently using resource (fwmask) 110 * or other software thread using resource (swmask) 111 */ 112 e1000_put_hw_semaphore_generic(hw); 113 msec_delay_irq(5); 114 i++; 115 } 116 117 if (i == timeout) { 118 DEBUGOUT("Driver can't access resource, SW_FW_SYNC timeout.\n"); 119 ret_val = -E1000_ERR_SWFW_SYNC; 120 goto out; 121 } 122 123 swfw_sync |= swmask; 124 E1000_WRITE_REG(hw, E1000_SW_FW_SYNC, swfw_sync); 125 126 e1000_put_hw_semaphore_generic(hw); 127 128 out: 129 return ret_val; 130 } 131 132 /** 133 * e1000_release_swfw_sync_i210 - Release SW/FW semaphore 134 * @hw: pointer to the HW structure 135 * @mask: specifies which semaphore to acquire 136 * 137 * Release the SW/FW semaphore used to access the PHY or NVM. The mask 138 * will also specify which port we're releasing the lock for. 139 **/ 140 void e1000_release_swfw_sync_i210(struct e1000_hw *hw, u16 mask) 141 { 142 u32 swfw_sync; 143 144 DEBUGFUNC("e1000_release_swfw_sync_i210"); 145 146 while (e1000_get_hw_semaphore_i210(hw) != E1000_SUCCESS) 147 ; /* Empty */ 148 149 swfw_sync = E1000_READ_REG(hw, E1000_SW_FW_SYNC); 150 swfw_sync &= ~mask; 151 E1000_WRITE_REG(hw, E1000_SW_FW_SYNC, swfw_sync); 152 153 e1000_put_hw_semaphore_generic(hw); 154 } 155 156 /** 157 * e1000_get_hw_semaphore_i210 - Acquire hardware semaphore 158 * @hw: pointer to the HW structure 159 * 160 * Acquire the HW semaphore to access the PHY or NVM 161 **/ 162 static s32 e1000_get_hw_semaphore_i210(struct e1000_hw *hw) 163 { 164 u32 swsm; 165 s32 timeout = hw->nvm.word_size + 1; 166 s32 i = 0; 167 168 DEBUGFUNC("e1000_get_hw_semaphore_i210"); 169 170 /* Get the SW semaphore */ 171 while (i < timeout) { 172 swsm = E1000_READ_REG(hw, E1000_SWSM); 173 if (!(swsm & E1000_SWSM_SMBI)) 174 break; 175 176 usec_delay(50); 177 i++; 178 } 179 180 if (i == timeout) { 181 /* In rare circumstances, the SW semaphore may already be held 182 * unintentionally. Clear the semaphore once before giving up. 183 */ 184 if (hw->dev_spec._82575.clear_semaphore_once) { 185 hw->dev_spec._82575.clear_semaphore_once = FALSE; 186 e1000_put_hw_semaphore_generic(hw); 187 for (i = 0; i < timeout; i++) { 188 swsm = E1000_READ_REG(hw, E1000_SWSM); 189 if (!(swsm & E1000_SWSM_SMBI)) 190 break; 191 192 usec_delay(50); 193 } 194 } 195 196 /* If we do not have the semaphore here, we have to give up. */ 197 if (i == timeout) { 198 DEBUGOUT("Driver can't access device - SMBI bit is set.\n"); 199 return -E1000_ERR_NVM; 200 } 201 } 202 203 /* Get the FW semaphore. */ 204 for (i = 0; i < timeout; i++) { 205 swsm = E1000_READ_REG(hw, E1000_SWSM); 206 E1000_WRITE_REG(hw, E1000_SWSM, swsm | E1000_SWSM_SWESMBI); 207 208 /* Semaphore acquired if bit latched */ 209 if (E1000_READ_REG(hw, E1000_SWSM) & E1000_SWSM_SWESMBI) 210 break; 211 212 usec_delay(50); 213 } 214 215 if (i == timeout) { 216 /* Release semaphores */ 217 e1000_put_hw_semaphore_generic(hw); 218 DEBUGOUT("Driver can't access the NVM\n"); 219 return -E1000_ERR_NVM; 220 } 221 222 return E1000_SUCCESS; 223 } 224 225 /** 226 * e1000_read_nvm_srrd_i210 - Reads Shadow Ram using EERD register 227 * @hw: pointer to the HW structure 228 * @offset: offset of word in the Shadow Ram to read 229 * @words: number of words to read 230 * @data: word read from the Shadow Ram 231 * 232 * Reads a 16 bit word from the Shadow Ram using the EERD register. 233 * Uses necessary synchronization semaphores. 234 **/ 235 s32 e1000_read_nvm_srrd_i210(struct e1000_hw *hw, u16 offset, u16 words, 236 u16 *data) 237 { 238 s32 status = E1000_SUCCESS; 239 u16 i, count; 240 241 DEBUGFUNC("e1000_read_nvm_srrd_i210"); 242 243 /* We cannot hold synchronization semaphores for too long, 244 * because of forceful takeover procedure. However it is more efficient 245 * to read in bursts than synchronizing access for each word. */ 246 for (i = 0; i < words; i += E1000_EERD_EEWR_MAX_COUNT) { 247 count = (words - i) / E1000_EERD_EEWR_MAX_COUNT > 0 ? 248 E1000_EERD_EEWR_MAX_COUNT : (words - i); 249 if (hw->nvm.ops.acquire(hw) == E1000_SUCCESS) { 250 status = e1000_read_nvm_eerd(hw, offset, count, 251 data + i); 252 hw->nvm.ops.release(hw); 253 } else { 254 status = E1000_ERR_SWFW_SYNC; 255 } 256 257 if (status != E1000_SUCCESS) 258 break; 259 } 260 261 return status; 262 } 263 264 /** 265 * e1000_write_nvm_srwr_i210 - Write to Shadow RAM using EEWR 266 * @hw: pointer to the HW structure 267 * @offset: offset within the Shadow RAM to be written to 268 * @words: number of words to write 269 * @data: 16 bit word(s) to be written to the Shadow RAM 270 * 271 * Writes data to Shadow RAM at offset using EEWR register. 272 * 273 * If e1000_update_nvm_checksum is not called after this function , the 274 * data will not be committed to FLASH and also Shadow RAM will most likely 275 * contain an invalid checksum. 276 * 277 * If error code is returned, data and Shadow RAM may be inconsistent - buffer 278 * partially written. 279 **/ 280 s32 e1000_write_nvm_srwr_i210(struct e1000_hw *hw, u16 offset, u16 words, 281 u16 *data) 282 { 283 s32 status = E1000_SUCCESS; 284 u16 i, count; 285 286 DEBUGFUNC("e1000_write_nvm_srwr_i210"); 287 288 /* We cannot hold synchronization semaphores for too long, 289 * because of forceful takeover procedure. However it is more efficient 290 * to write in bursts than synchronizing access for each word. */ 291 for (i = 0; i < words; i += E1000_EERD_EEWR_MAX_COUNT) { 292 count = (words - i) / E1000_EERD_EEWR_MAX_COUNT > 0 ? 293 E1000_EERD_EEWR_MAX_COUNT : (words - i); 294 if (hw->nvm.ops.acquire(hw) == E1000_SUCCESS) { 295 status = e1000_write_nvm_srwr(hw, offset, count, 296 data + i); 297 hw->nvm.ops.release(hw); 298 } else { 299 status = E1000_ERR_SWFW_SYNC; 300 } 301 302 if (status != E1000_SUCCESS) 303 break; 304 } 305 306 return status; 307 } 308 309 /** 310 * e1000_write_nvm_srwr - Write to Shadow Ram using EEWR 311 * @hw: pointer to the HW structure 312 * @offset: offset within the Shadow Ram to be written to 313 * @words: number of words to write 314 * @data: 16 bit word(s) to be written to the Shadow Ram 315 * 316 * Writes data to Shadow Ram at offset using EEWR register. 317 * 318 * If e1000_update_nvm_checksum is not called after this function , the 319 * Shadow Ram will most likely contain an invalid checksum. 320 **/ 321 static s32 e1000_write_nvm_srwr(struct e1000_hw *hw, u16 offset, u16 words, 322 u16 *data) 323 { 324 struct e1000_nvm_info *nvm = &hw->nvm; 325 u32 i, k, eewr = 0; 326 u32 attempts = 100000; 327 s32 ret_val = E1000_SUCCESS; 328 329 DEBUGFUNC("e1000_write_nvm_srwr"); 330 331 /* 332 * A check for invalid values: offset too large, too many words, 333 * too many words for the offset, and not enough words. 334 */ 335 if ((offset >= nvm->word_size) || (words > (nvm->word_size - offset)) || 336 (words == 0)) { 337 DEBUGOUT("nvm parameter(s) out of bounds\n"); 338 ret_val = -E1000_ERR_NVM; 339 goto out; 340 } 341 342 for (i = 0; i < words; i++) { 343 eewr = ((offset+i) << E1000_NVM_RW_ADDR_SHIFT) | 344 (data[i] << E1000_NVM_RW_REG_DATA) | 345 E1000_NVM_RW_REG_START; 346 347 E1000_WRITE_REG(hw, E1000_SRWR, eewr); 348 349 for (k = 0; k < attempts; k++) { 350 if (E1000_NVM_RW_REG_DONE & 351 E1000_READ_REG(hw, E1000_SRWR)) { 352 ret_val = E1000_SUCCESS; 353 break; 354 } 355 usec_delay(5); 356 } 357 358 if (ret_val != E1000_SUCCESS) { 359 DEBUGOUT("Shadow RAM write EEWR timed out\n"); 360 break; 361 } 362 } 363 364 out: 365 return ret_val; 366 } 367 368 /** e1000_read_invm_word_i210 - Reads OTP 369 * @hw: pointer to the HW structure 370 * @address: the word address (aka eeprom offset) to read 371 * @data: pointer to the data read 372 * 373 * Reads 16-bit words from the OTP. Return error when the word is not 374 * stored in OTP. 375 **/ 376 static s32 e1000_read_invm_word_i210(struct e1000_hw *hw, u8 address, u16 *data) 377 { 378 s32 status = -E1000_ERR_INVM_VALUE_NOT_FOUND; 379 u32 invm_dword; 380 u16 i; 381 u8 record_type, word_address; 382 383 DEBUGFUNC("e1000_read_invm_word_i210"); 384 385 for (i = 0; i < E1000_INVM_SIZE; i++) { 386 invm_dword = E1000_READ_REG(hw, E1000_INVM_DATA_REG(i)); 387 /* Get record type */ 388 record_type = INVM_DWORD_TO_RECORD_TYPE(invm_dword); 389 if (record_type == E1000_INVM_UNINITIALIZED_STRUCTURE) 390 break; 391 if (record_type == E1000_INVM_CSR_AUTOLOAD_STRUCTURE) 392 i += E1000_INVM_CSR_AUTOLOAD_DATA_SIZE_IN_DWORDS; 393 if (record_type == E1000_INVM_RSA_KEY_SHA256_STRUCTURE) 394 i += E1000_INVM_RSA_KEY_SHA256_DATA_SIZE_IN_DWORDS; 395 if (record_type == E1000_INVM_WORD_AUTOLOAD_STRUCTURE) { 396 word_address = INVM_DWORD_TO_WORD_ADDRESS(invm_dword); 397 if (word_address == address) { 398 *data = INVM_DWORD_TO_WORD_DATA(invm_dword); 399 DEBUGOUT2("Read INVM Word 0x%02x = %x", 400 address, *data); 401 status = E1000_SUCCESS; 402 break; 403 } 404 } 405 } 406 if (status != E1000_SUCCESS) 407 DEBUGOUT1("Requested word 0x%02x not found in OTP\n", address); 408 return status; 409 } 410 411 /** e1000_read_invm_i210 - Read invm wrapper function for I210/I211 412 * @hw: pointer to the HW structure 413 * @address: the word address (aka eeprom offset) to read 414 * @data: pointer to the data read 415 * 416 * Wrapper function to return data formerly found in the NVM. 417 **/ 418 static s32 e1000_read_invm_i210(struct e1000_hw *hw, u16 offset, 419 u16 E1000_UNUSEDARG words, u16 *data) 420 { 421 s32 ret_val = E1000_SUCCESS; 422 423 DEBUGFUNC("e1000_read_invm_i210"); 424 425 /* Only the MAC addr is required to be present in the iNVM */ 426 switch (offset) { 427 case NVM_MAC_ADDR: 428 ret_val = e1000_read_invm_word_i210(hw, (u8)offset, &data[0]); 429 ret_val |= e1000_read_invm_word_i210(hw, (u8)offset+1, 430 &data[1]); 431 ret_val |= e1000_read_invm_word_i210(hw, (u8)offset+2, 432 &data[2]); 433 if (ret_val != E1000_SUCCESS) 434 DEBUGOUT("MAC Addr not found in iNVM\n"); 435 break; 436 case NVM_INIT_CTRL_2: 437 ret_val = e1000_read_invm_word_i210(hw, (u8)offset, data); 438 if (ret_val != E1000_SUCCESS) { 439 *data = NVM_INIT_CTRL_2_DEFAULT_I211; 440 ret_val = E1000_SUCCESS; 441 } 442 break; 443 case NVM_INIT_CTRL_4: 444 ret_val = e1000_read_invm_word_i210(hw, (u8)offset, data); 445 if (ret_val != E1000_SUCCESS) { 446 *data = NVM_INIT_CTRL_4_DEFAULT_I211; 447 ret_val = E1000_SUCCESS; 448 } 449 break; 450 case NVM_LED_1_CFG: 451 ret_val = e1000_read_invm_word_i210(hw, (u8)offset, data); 452 if (ret_val != E1000_SUCCESS) { 453 *data = NVM_LED_1_CFG_DEFAULT_I211; 454 ret_val = E1000_SUCCESS; 455 } 456 break; 457 case NVM_LED_0_2_CFG: 458 ret_val = e1000_read_invm_word_i210(hw, (u8)offset, data); 459 if (ret_val != E1000_SUCCESS) { 460 *data = NVM_LED_0_2_CFG_DEFAULT_I211; 461 ret_val = E1000_SUCCESS; 462 } 463 break; 464 case NVM_ID_LED_SETTINGS: 465 ret_val = e1000_read_invm_word_i210(hw, (u8)offset, data); 466 if (ret_val != E1000_SUCCESS) { 467 *data = ID_LED_RESERVED_FFFF; 468 ret_val = E1000_SUCCESS; 469 } 470 break; 471 case NVM_SUB_DEV_ID: 472 *data = hw->subsystem_device_id; 473 break; 474 case NVM_SUB_VEN_ID: 475 *data = hw->subsystem_vendor_id; 476 break; 477 case NVM_DEV_ID: 478 *data = hw->device_id; 479 break; 480 case NVM_VEN_ID: 481 *data = hw->vendor_id; 482 break; 483 default: 484 DEBUGOUT1("NVM word 0x%02x is not mapped.\n", offset); 485 *data = NVM_RESERVED_WORD; 486 break; 487 } 488 return ret_val; 489 } 490 491 /** 492 * e1000_validate_nvm_checksum_i210 - Validate EEPROM checksum 493 * @hw: pointer to the HW structure 494 * 495 * Calculates the EEPROM checksum by reading/adding each word of the EEPROM 496 * and then verifies that the sum of the EEPROM is equal to 0xBABA. 497 **/ 498 s32 e1000_validate_nvm_checksum_i210(struct e1000_hw *hw) 499 { 500 s32 status = E1000_SUCCESS; 501 s32 (*read_op_ptr)(struct e1000_hw *, u16, u16, u16 *); 502 503 DEBUGFUNC("e1000_validate_nvm_checksum_i210"); 504 505 if (hw->nvm.ops.acquire(hw) == E1000_SUCCESS) { 506 507 /* 508 * Replace the read function with semaphore grabbing with 509 * the one that skips this for a while. 510 * We have semaphore taken already here. 511 */ 512 read_op_ptr = hw->nvm.ops.read; 513 hw->nvm.ops.read = e1000_read_nvm_eerd; 514 515 status = e1000_validate_nvm_checksum_generic(hw); 516 517 /* Revert original read operation. */ 518 hw->nvm.ops.read = read_op_ptr; 519 520 hw->nvm.ops.release(hw); 521 } else { 522 status = E1000_ERR_SWFW_SYNC; 523 } 524 525 return status; 526 } 527 528 529 /** 530 * e1000_update_nvm_checksum_i210 - Update EEPROM checksum 531 * @hw: pointer to the HW structure 532 * 533 * Updates the EEPROM checksum by reading/adding each word of the EEPROM 534 * up to the checksum. Then calculates the EEPROM checksum and writes the 535 * value to the EEPROM. Next commit EEPROM data onto the Flash. 536 **/ 537 s32 e1000_update_nvm_checksum_i210(struct e1000_hw *hw) 538 { 539 s32 ret_val; 540 u16 checksum = 0; 541 u16 i, nvm_data; 542 543 DEBUGFUNC("e1000_update_nvm_checksum_i210"); 544 545 /* 546 * Read the first word from the EEPROM. If this times out or fails, do 547 * not continue or we could be in for a very long wait while every 548 * EEPROM read fails 549 */ 550 ret_val = e1000_read_nvm_eerd(hw, 0, 1, &nvm_data); 551 if (ret_val != E1000_SUCCESS) { 552 DEBUGOUT("EEPROM read failed\n"); 553 goto out; 554 } 555 556 if (hw->nvm.ops.acquire(hw) == E1000_SUCCESS) { 557 /* 558 * Do not use hw->nvm.ops.write, hw->nvm.ops.read 559 * because we do not want to take the synchronization 560 * semaphores twice here. 561 */ 562 563 for (i = 0; i < NVM_CHECKSUM_REG; i++) { 564 ret_val = e1000_read_nvm_eerd(hw, i, 1, &nvm_data); 565 if (ret_val) { 566 hw->nvm.ops.release(hw); 567 DEBUGOUT("NVM Read Error while updating checksum.\n"); 568 goto out; 569 } 570 checksum += nvm_data; 571 } 572 checksum = (u16) NVM_SUM - checksum; 573 ret_val = e1000_write_nvm_srwr(hw, NVM_CHECKSUM_REG, 1, 574 &checksum); 575 if (ret_val != E1000_SUCCESS) { 576 hw->nvm.ops.release(hw); 577 DEBUGOUT("NVM Write Error while updating checksum.\n"); 578 goto out; 579 } 580 581 hw->nvm.ops.release(hw); 582 583 ret_val = e1000_update_flash_i210(hw); 584 } else { 585 ret_val = E1000_ERR_SWFW_SYNC; 586 } 587 out: 588 return ret_val; 589 } 590 591 /** 592 * e1000_get_flash_presence_i210 - Check if flash device is detected. 593 * @hw: pointer to the HW structure 594 * 595 **/ 596 bool e1000_get_flash_presence_i210(struct e1000_hw *hw) 597 { 598 u32 eec = 0; 599 bool ret_val = FALSE; 600 601 DEBUGFUNC("e1000_get_flash_presence_i210"); 602 603 eec = E1000_READ_REG(hw, E1000_EECD); 604 605 if (eec & E1000_EECD_FLASH_DETECTED_I210) 606 ret_val = TRUE; 607 608 return ret_val; 609 } 610 611 /** 612 * e1000_update_flash_i210 - Commit EEPROM to the flash 613 * @hw: pointer to the HW structure 614 * 615 **/ 616 s32 e1000_update_flash_i210(struct e1000_hw *hw) 617 { 618 s32 ret_val; 619 u32 flup; 620 621 DEBUGFUNC("e1000_update_flash_i210"); 622 623 ret_val = e1000_pool_flash_update_done_i210(hw); 624 if (ret_val == -E1000_ERR_NVM) { 625 DEBUGOUT("Flash update time out\n"); 626 goto out; 627 } 628 629 flup = E1000_READ_REG(hw, E1000_EECD) | E1000_EECD_FLUPD_I210; 630 E1000_WRITE_REG(hw, E1000_EECD, flup); 631 632 ret_val = e1000_pool_flash_update_done_i210(hw); 633 if (ret_val == E1000_SUCCESS) 634 DEBUGOUT("Flash update complete\n"); 635 else 636 DEBUGOUT("Flash update time out\n"); 637 638 out: 639 return ret_val; 640 } 641 642 /** 643 * e1000_pool_flash_update_done_i210 - Pool FLUDONE status. 644 * @hw: pointer to the HW structure 645 * 646 **/ 647 s32 e1000_pool_flash_update_done_i210(struct e1000_hw *hw) 648 { 649 s32 ret_val = -E1000_ERR_NVM; 650 u32 i, reg; 651 652 DEBUGFUNC("e1000_pool_flash_update_done_i210"); 653 654 for (i = 0; i < E1000_FLUDONE_ATTEMPTS; i++) { 655 reg = E1000_READ_REG(hw, E1000_EECD); 656 if (reg & E1000_EECD_FLUDONE_I210) { 657 ret_val = E1000_SUCCESS; 658 break; 659 } 660 usec_delay(5); 661 } 662 663 return ret_val; 664 } 665 666 /** 667 * e1000_init_nvm_params_i210 - Initialize i210 NVM function pointers 668 * @hw: pointer to the HW structure 669 * 670 * Initialize the i210/i211 NVM parameters and function pointers. 671 **/ 672 static s32 e1000_init_nvm_params_i210(struct e1000_hw *hw) 673 { 674 s32 ret_val; 675 struct e1000_nvm_info *nvm = &hw->nvm; 676 677 DEBUGFUNC("e1000_init_nvm_params_i210"); 678 679 ret_val = e1000_init_nvm_params_82575(hw); 680 nvm->ops.acquire = e1000_acquire_nvm_i210; 681 nvm->ops.release = e1000_release_nvm_i210; 682 nvm->ops.valid_led_default = e1000_valid_led_default_i210; 683 if (e1000_get_flash_presence_i210(hw)) { 684 hw->nvm.type = e1000_nvm_flash_hw; 685 nvm->ops.read = e1000_read_nvm_srrd_i210; 686 nvm->ops.write = e1000_write_nvm_srwr_i210; 687 nvm->ops.validate = e1000_validate_nvm_checksum_i210; 688 nvm->ops.update = e1000_update_nvm_checksum_i210; 689 } else { 690 hw->nvm.type = e1000_nvm_invm; 691 nvm->ops.read = e1000_read_invm_i210; 692 nvm->ops.write = e1000_null_write_nvm; 693 nvm->ops.validate = e1000_null_ops_generic; 694 nvm->ops.update = e1000_null_ops_generic; 695 } 696 return ret_val; 697 } 698 699 /** 700 * e1000_init_function_pointers_i210 - Init func ptrs. 701 * @hw: pointer to the HW structure 702 * 703 * Called to initialize all function pointers and parameters. 704 **/ 705 void e1000_init_function_pointers_i210(struct e1000_hw *hw) 706 { 707 e1000_init_function_pointers_82575(hw); 708 hw->nvm.ops.init_params = e1000_init_nvm_params_i210; 709 710 return; 711 } 712 713 /** 714 * e1000_valid_led_default_i210 - Verify a valid default LED config 715 * @hw: pointer to the HW structure 716 * @data: pointer to the NVM (EEPROM) 717 * 718 * Read the EEPROM for the current default LED configuration. If the 719 * LED configuration is not valid, set to a valid LED configuration. 720 **/ 721 static s32 e1000_valid_led_default_i210(struct e1000_hw *hw, u16 *data) 722 { 723 s32 ret_val; 724 725 DEBUGFUNC("e1000_valid_led_default_i210"); 726 727 ret_val = hw->nvm.ops.read(hw, NVM_ID_LED_SETTINGS, 1, data); 728 if (ret_val) { 729 DEBUGOUT("NVM Read Error\n"); 730 goto out; 731 } 732 733 if (*data == ID_LED_RESERVED_0000 || *data == ID_LED_RESERVED_FFFF) { 734 switch (hw->phy.media_type) { 735 case e1000_media_type_internal_serdes: 736 *data = ID_LED_DEFAULT_I210_SERDES; 737 break; 738 case e1000_media_type_copper: 739 default: 740 *data = ID_LED_DEFAULT_I210; 741 break; 742 } 743 } 744 out: 745 return ret_val; 746 } 747 748 /** 749 * __e1000_access_xmdio_reg - Read/write XMDIO register 750 * @hw: pointer to the HW structure 751 * @address: XMDIO address to program 752 * @dev_addr: device address to program 753 * @data: pointer to value to read/write from/to the XMDIO address 754 * @read: boolean flag to indicate read or write 755 **/ 756 static s32 __e1000_access_xmdio_reg(struct e1000_hw *hw, u16 address, 757 u8 dev_addr, u16 *data, bool read) 758 { 759 s32 ret_val; 760 761 DEBUGFUNC("__e1000_access_xmdio_reg"); 762 763 ret_val = hw->phy.ops.write_reg(hw, E1000_MMDAC, dev_addr); 764 if (ret_val) 765 return ret_val; 766 767 ret_val = hw->phy.ops.write_reg(hw, E1000_MMDAAD, address); 768 if (ret_val) 769 return ret_val; 770 771 ret_val = hw->phy.ops.write_reg(hw, E1000_MMDAC, E1000_MMDAC_FUNC_DATA | 772 dev_addr); 773 if (ret_val) 774 return ret_val; 775 776 if (read) 777 ret_val = hw->phy.ops.read_reg(hw, E1000_MMDAAD, data); 778 else 779 ret_val = hw->phy.ops.write_reg(hw, E1000_MMDAAD, *data); 780 if (ret_val) 781 return ret_val; 782 783 /* Recalibrate the device back to 0 */ 784 ret_val = hw->phy.ops.write_reg(hw, E1000_MMDAC, 0); 785 if (ret_val) 786 return ret_val; 787 788 return ret_val; 789 } 790 791 /** 792 * e1000_read_xmdio_reg - Read XMDIO register 793 * @hw: pointer to the HW structure 794 * @addr: XMDIO address to program 795 * @dev_addr: device address to program 796 * @data: value to be read from the EMI address 797 **/ 798 s32 e1000_read_xmdio_reg(struct e1000_hw *hw, u16 addr, u8 dev_addr, u16 *data) 799 { 800 DEBUGFUNC("e1000_read_xmdio_reg"); 801 802 return __e1000_access_xmdio_reg(hw, addr, dev_addr, data, TRUE); 803 } 804 805 /** 806 * e1000_write_xmdio_reg - Write XMDIO register 807 * @hw: pointer to the HW structure 808 * @addr: XMDIO address to program 809 * @dev_addr: device address to program 810 * @data: value to be written to the XMDIO address 811 **/ 812 s32 e1000_write_xmdio_reg(struct e1000_hw *hw, u16 addr, u8 dev_addr, u16 data) 813 { 814 DEBUGFUNC("e1000_read_xmdio_reg"); 815 816 return __e1000_access_xmdio_reg(hw, addr, dev_addr, &data, FALSE); 817 } 818 819 /** 820 * e1000_pll_workaround_i210 821 * @hw: pointer to the HW structure 822 * 823 * Works around an errata in the PLL circuit where it occasionally 824 * provides the wrong clock frequency after power up. 825 **/ 826 static s32 e1000_pll_workaround_i210(struct e1000_hw *hw) 827 { 828 s32 ret_val; 829 u32 wuc, mdicnfg, ctrl, ctrl_ext, reg_val; 830 u16 nvm_word, phy_word, pci_word, tmp_nvm; 831 int i; 832 833 /* Get and set needed register values */ 834 wuc = E1000_READ_REG(hw, E1000_WUC); 835 mdicnfg = E1000_READ_REG(hw, E1000_MDICNFG); 836 reg_val = mdicnfg & ~E1000_MDICNFG_EXT_MDIO; 837 E1000_WRITE_REG(hw, E1000_MDICNFG, reg_val); 838 839 /* Get data from NVM, or set default */ 840 ret_val = e1000_read_invm_word_i210(hw, E1000_INVM_AUTOLOAD, 841 &nvm_word); 842 if (ret_val != E1000_SUCCESS) 843 nvm_word = E1000_INVM_DEFAULT_AL; 844 tmp_nvm = nvm_word | E1000_INVM_PLL_WO_VAL; 845 for (i = 0; i < E1000_MAX_PLL_TRIES; i++) { 846 /* check current state directly from internal PHY */ 847 e1000_read_phy_reg_gs40g(hw, (E1000_PHY_PLL_FREQ_PAGE | 848 E1000_PHY_PLL_FREQ_REG), &phy_word); 849 if ((phy_word & E1000_PHY_PLL_UNCONF) 850 != E1000_PHY_PLL_UNCONF) { 851 ret_val = E1000_SUCCESS; 852 break; 853 } else { 854 ret_val = -E1000_ERR_PHY; 855 } 856 /* directly reset the internal PHY */ 857 ctrl = E1000_READ_REG(hw, E1000_CTRL); 858 E1000_WRITE_REG(hw, E1000_CTRL, ctrl|E1000_CTRL_PHY_RST); 859 860 ctrl_ext = E1000_READ_REG(hw, E1000_CTRL_EXT); 861 ctrl_ext |= (E1000_CTRL_EXT_PHYPDEN | E1000_CTRL_EXT_SDLPE); 862 E1000_WRITE_REG(hw, E1000_CTRL_EXT, ctrl_ext); 863 864 E1000_WRITE_REG(hw, E1000_WUC, 0); 865 reg_val = (E1000_INVM_AUTOLOAD << 4) | (tmp_nvm << 16); 866 E1000_WRITE_REG(hw, E1000_EEARBC_I210, reg_val); 867 868 e1000_read_pci_cfg(hw, E1000_PCI_PMCSR, &pci_word); 869 pci_word |= E1000_PCI_PMCSR_D3; 870 e1000_write_pci_cfg(hw, E1000_PCI_PMCSR, &pci_word); 871 msec_delay(1); 872 pci_word &= ~E1000_PCI_PMCSR_D3; 873 e1000_write_pci_cfg(hw, E1000_PCI_PMCSR, &pci_word); 874 reg_val = (E1000_INVM_AUTOLOAD << 4) | (nvm_word << 16); 875 E1000_WRITE_REG(hw, E1000_EEARBC_I210, reg_val); 876 877 /* restore WUC register */ 878 E1000_WRITE_REG(hw, E1000_WUC, wuc); 879 } 880 /* restore MDICNFG setting */ 881 E1000_WRITE_REG(hw, E1000_MDICNFG, mdicnfg); 882 return ret_val; 883 } 884 885 /** 886 * e1000_get_cfg_done_i210 - Read config done bit 887 * @hw: pointer to the HW structure 888 * 889 * Read the management control register for the config done bit for 890 * completion status. NOTE: silicon which is EEPROM-less will fail trying 891 * to read the config done bit, so an error is *ONLY* logged and returns 892 * E1000_SUCCESS. If we were to return with error, EEPROM-less silicon 893 * would not be able to be reset or change link. 894 **/ 895 static s32 e1000_get_cfg_done_i210(struct e1000_hw *hw) 896 { 897 s32 timeout = PHY_CFG_TIMEOUT; 898 u32 mask = E1000_NVM_CFG_DONE_PORT_0; 899 900 DEBUGFUNC("e1000_get_cfg_done_i210"); 901 902 while (timeout) { 903 if (E1000_READ_REG(hw, E1000_EEMNGCTL_I210) & mask) 904 break; 905 msec_delay(1); 906 timeout--; 907 } 908 if (!timeout) 909 DEBUGOUT("MNG configuration cycle has not completed.\n"); 910 911 return E1000_SUCCESS; 912 } 913 914 /** 915 * e1000_init_hw_i210 - Init hw for I210/I211 916 * @hw: pointer to the HW structure 917 * 918 * Called to initialize hw for i210 hw family. 919 **/ 920 s32 e1000_init_hw_i210(struct e1000_hw *hw) 921 { 922 s32 ret_val; 923 924 DEBUGFUNC("e1000_init_hw_i210"); 925 if ((hw->mac.type >= e1000_i210) && 926 !(e1000_get_flash_presence_i210(hw))) { 927 ret_val = e1000_pll_workaround_i210(hw); 928 if (ret_val != E1000_SUCCESS) 929 return ret_val; 930 } 931 hw->phy.ops.get_cfg_done = e1000_get_cfg_done_i210; 932 ret_val = e1000_init_hw_82575(hw); 933 return ret_val; 934 } 935