xref: /illumos-gate/usr/src/uts/common/io/e1000api/e1000_api.c (revision dcdeca0a948b9d3139743db085d193c9db8ff2a3)
1 /******************************************************************************
2 
3   Copyright (c) 2001-2015, Intel Corporation
4   All rights reserved.
5 
6   Redistribution and use in source and binary forms, with or without
7   modification, are permitted provided that the following conditions are met:
8 
9    1. Redistributions of source code must retain the above copyright notice,
10       this list of conditions and the following disclaimer.
11 
12    2. Redistributions in binary form must reproduce the above copyright
13       notice, this list of conditions and the following disclaimer in the
14       documentation and/or other materials provided with the distribution.
15 
16    3. Neither the name of the Intel Corporation nor the names of its
17       contributors may be used to endorse or promote products derived from
18       this software without specific prior written permission.
19 
20   THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
21   AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
22   IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
23   ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
24   LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
25   CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
26   SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
27   INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
28   CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
29   ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
30   POSSIBILITY OF SUCH DAMAGE.
31 
32 ******************************************************************************/
33 /*$FreeBSD$*/
34 
35 #include "e1000_api.h"
36 
37 /**
38  *  e1000_init_mac_params - Initialize MAC function pointers
39  *  @hw: pointer to the HW structure
40  *
41  *  This function initializes the function pointers for the MAC
42  *  set of functions.  Called by drivers or by e1000_setup_init_funcs.
43  **/
44 s32 e1000_init_mac_params(struct e1000_hw *hw)
45 {
46 	s32 ret_val = E1000_SUCCESS;
47 
48 	if (hw->mac.ops.init_params) {
49 		ret_val = hw->mac.ops.init_params(hw);
50 		if (ret_val) {
51 			DEBUGOUT("MAC Initialization Error\n");
52 			goto out;
53 		}
54 	} else {
55 		DEBUGOUT("mac.init_mac_params was NULL\n");
56 		ret_val = -E1000_ERR_CONFIG;
57 	}
58 
59 out:
60 	return ret_val;
61 }
62 
63 /**
64  *  e1000_init_nvm_params - Initialize NVM function pointers
65  *  @hw: pointer to the HW structure
66  *
67  *  This function initializes the function pointers for the NVM
68  *  set of functions.  Called by drivers or by e1000_setup_init_funcs.
69  **/
70 s32 e1000_init_nvm_params(struct e1000_hw *hw)
71 {
72 	s32 ret_val = E1000_SUCCESS;
73 
74 	if (hw->nvm.ops.init_params) {
75 		ret_val = hw->nvm.ops.init_params(hw);
76 		if (ret_val) {
77 			DEBUGOUT("NVM Initialization Error\n");
78 			goto out;
79 		}
80 	} else {
81 		DEBUGOUT("nvm.init_nvm_params was NULL\n");
82 		ret_val = -E1000_ERR_CONFIG;
83 	}
84 
85 out:
86 	return ret_val;
87 }
88 
89 /**
90  *  e1000_init_phy_params - Initialize PHY function pointers
91  *  @hw: pointer to the HW structure
92  *
93  *  This function initializes the function pointers for the PHY
94  *  set of functions.  Called by drivers or by e1000_setup_init_funcs.
95  **/
96 s32 e1000_init_phy_params(struct e1000_hw *hw)
97 {
98 	s32 ret_val = E1000_SUCCESS;
99 
100 	if (hw->phy.ops.init_params) {
101 		ret_val = hw->phy.ops.init_params(hw);
102 		if (ret_val) {
103 			DEBUGOUT("PHY Initialization Error\n");
104 			goto out;
105 		}
106 	} else {
107 		DEBUGOUT("phy.init_phy_params was NULL\n");
108 		ret_val =  -E1000_ERR_CONFIG;
109 	}
110 
111 out:
112 	return ret_val;
113 }
114 
115 /**
116  *  e1000_init_mbx_params - Initialize mailbox function pointers
117  *  @hw: pointer to the HW structure
118  *
119  *  This function initializes the function pointers for the PHY
120  *  set of functions.  Called by drivers or by e1000_setup_init_funcs.
121  **/
122 s32 e1000_init_mbx_params(struct e1000_hw *hw)
123 {
124 	s32 ret_val = E1000_SUCCESS;
125 
126 	if (hw->mbx.ops.init_params) {
127 		ret_val = hw->mbx.ops.init_params(hw);
128 		if (ret_val) {
129 			DEBUGOUT("Mailbox Initialization Error\n");
130 			goto out;
131 		}
132 	} else {
133 		DEBUGOUT("mbx.init_mbx_params was NULL\n");
134 		ret_val =  -E1000_ERR_CONFIG;
135 	}
136 
137 out:
138 	return ret_val;
139 }
140 
141 /**
142  *  e1000_set_mac_type - Sets MAC type
143  *  @hw: pointer to the HW structure
144  *
145  *  This function sets the mac type of the adapter based on the
146  *  device ID stored in the hw structure.
147  *  MUST BE FIRST FUNCTION CALLED (explicitly or through
148  *  e1000_setup_init_funcs()).
149  **/
150 s32 e1000_set_mac_type(struct e1000_hw *hw)
151 {
152 	struct e1000_mac_info *mac = &hw->mac;
153 	s32 ret_val = E1000_SUCCESS;
154 
155 	DEBUGFUNC("e1000_set_mac_type");
156 
157 	switch (hw->device_id) {
158 	case E1000_DEV_ID_82542:
159 		mac->type = e1000_82542;
160 		break;
161 	case E1000_DEV_ID_82543GC_FIBER:
162 	case E1000_DEV_ID_82543GC_COPPER:
163 		mac->type = e1000_82543;
164 		break;
165 	case E1000_DEV_ID_82544EI_COPPER:
166 	case E1000_DEV_ID_82544EI_FIBER:
167 	case E1000_DEV_ID_82544GC_COPPER:
168 	case E1000_DEV_ID_82544GC_LOM:
169 		mac->type = e1000_82544;
170 		break;
171 	case E1000_DEV_ID_82540EM:
172 	case E1000_DEV_ID_82540EM_LOM:
173 	case E1000_DEV_ID_82540EP:
174 	case E1000_DEV_ID_82540EP_LOM:
175 	case E1000_DEV_ID_82540EP_LP:
176 		mac->type = e1000_82540;
177 		break;
178 	case E1000_DEV_ID_82545EM_COPPER:
179 	case E1000_DEV_ID_82545EM_FIBER:
180 		mac->type = e1000_82545;
181 		break;
182 	case E1000_DEV_ID_82545GM_COPPER:
183 	case E1000_DEV_ID_82545GM_FIBER:
184 	case E1000_DEV_ID_82545GM_SERDES:
185 		mac->type = e1000_82545_rev_3;
186 		break;
187 	case E1000_DEV_ID_82546EB_COPPER:
188 	case E1000_DEV_ID_82546EB_FIBER:
189 	case E1000_DEV_ID_82546EB_QUAD_COPPER:
190 		mac->type = e1000_82546;
191 		break;
192 	case E1000_DEV_ID_82546GB_COPPER:
193 	case E1000_DEV_ID_82546GB_FIBER:
194 	case E1000_DEV_ID_82546GB_SERDES:
195 	case E1000_DEV_ID_82546GB_PCIE:
196 	case E1000_DEV_ID_82546GB_QUAD_COPPER:
197 	case E1000_DEV_ID_82546GB_QUAD_COPPER_KSP3:
198 		mac->type = e1000_82546_rev_3;
199 		break;
200 	case E1000_DEV_ID_82541EI:
201 	case E1000_DEV_ID_82541EI_MOBILE:
202 	case E1000_DEV_ID_82541ER_LOM:
203 		mac->type = e1000_82541;
204 		break;
205 	case E1000_DEV_ID_82541ER:
206 	case E1000_DEV_ID_82541GI:
207 	case E1000_DEV_ID_82541GI_LF:
208 	case E1000_DEV_ID_82541GI_MOBILE:
209 		mac->type = e1000_82541_rev_2;
210 		break;
211 	case E1000_DEV_ID_82547EI:
212 	case E1000_DEV_ID_82547EI_MOBILE:
213 		mac->type = e1000_82547;
214 		break;
215 	case E1000_DEV_ID_82547GI:
216 		mac->type = e1000_82547_rev_2;
217 		break;
218 	case E1000_DEV_ID_82571EB_COPPER:
219 	case E1000_DEV_ID_82571EB_FIBER:
220 	case E1000_DEV_ID_82571EB_SERDES:
221 	case E1000_DEV_ID_82571EB_SERDES_DUAL:
222 	case E1000_DEV_ID_82571EB_SERDES_QUAD:
223 	case E1000_DEV_ID_82571EB_QUAD_COPPER:
224 	case E1000_DEV_ID_82571PT_QUAD_COPPER:
225 	case E1000_DEV_ID_82571EB_QUAD_FIBER:
226 	case E1000_DEV_ID_82571EB_QUAD_COPPER_LP:
227 		mac->type = e1000_82571;
228 		break;
229 	case E1000_DEV_ID_82572EI:
230 	case E1000_DEV_ID_82572EI_COPPER:
231 	case E1000_DEV_ID_82572EI_FIBER:
232 	case E1000_DEV_ID_82572EI_SERDES:
233 		mac->type = e1000_82572;
234 		break;
235 	case E1000_DEV_ID_82573E:
236 	case E1000_DEV_ID_82573E_IAMT:
237 	case E1000_DEV_ID_82573L:
238 		mac->type = e1000_82573;
239 		break;
240 	case E1000_DEV_ID_82574L:
241 	case E1000_DEV_ID_82574LA:
242 		mac->type = e1000_82574;
243 		break;
244 	case E1000_DEV_ID_82583V:
245 		mac->type = e1000_82583;
246 		break;
247 	case E1000_DEV_ID_80003ES2LAN_COPPER_DPT:
248 	case E1000_DEV_ID_80003ES2LAN_SERDES_DPT:
249 	case E1000_DEV_ID_80003ES2LAN_COPPER_SPT:
250 	case E1000_DEV_ID_80003ES2LAN_SERDES_SPT:
251 		mac->type = e1000_80003es2lan;
252 		break;
253 	case E1000_DEV_ID_ICH8_IFE:
254 	case E1000_DEV_ID_ICH8_IFE_GT:
255 	case E1000_DEV_ID_ICH8_IFE_G:
256 	case E1000_DEV_ID_ICH8_IGP_M:
257 	case E1000_DEV_ID_ICH8_IGP_M_AMT:
258 	case E1000_DEV_ID_ICH8_IGP_AMT:
259 	case E1000_DEV_ID_ICH8_IGP_C:
260 	case E1000_DEV_ID_ICH8_82567V_3:
261 		mac->type = e1000_ich8lan;
262 		break;
263 	case E1000_DEV_ID_ICH9_IFE:
264 	case E1000_DEV_ID_ICH9_IFE_GT:
265 	case E1000_DEV_ID_ICH9_IFE_G:
266 	case E1000_DEV_ID_ICH9_IGP_M:
267 	case E1000_DEV_ID_ICH9_IGP_M_AMT:
268 	case E1000_DEV_ID_ICH9_IGP_M_V:
269 	case E1000_DEV_ID_ICH9_IGP_AMT:
270 	case E1000_DEV_ID_ICH9_BM:
271 	case E1000_DEV_ID_ICH9_IGP_C:
272 	case E1000_DEV_ID_ICH10_R_BM_LM:
273 	case E1000_DEV_ID_ICH10_R_BM_LF:
274 	case E1000_DEV_ID_ICH10_R_BM_V:
275 		mac->type = e1000_ich9lan;
276 		break;
277 	case E1000_DEV_ID_ICH10_D_BM_LM:
278 	case E1000_DEV_ID_ICH10_D_BM_LF:
279 	case E1000_DEV_ID_ICH10_D_BM_V:
280 		mac->type = e1000_ich10lan;
281 		break;
282 	case E1000_DEV_ID_PCH_D_HV_DM:
283 	case E1000_DEV_ID_PCH_D_HV_DC:
284 	case E1000_DEV_ID_PCH_M_HV_LM:
285 	case E1000_DEV_ID_PCH_M_HV_LC:
286 		mac->type = e1000_pchlan;
287 		break;
288 	case E1000_DEV_ID_PCH2_LV_LM:
289 	case E1000_DEV_ID_PCH2_LV_V:
290 		mac->type = e1000_pch2lan;
291 		break;
292 	case E1000_DEV_ID_PCH_LPT_I217_LM:
293 	case E1000_DEV_ID_PCH_LPT_I217_V:
294 	case E1000_DEV_ID_PCH_LPTLP_I218_LM:
295 	case E1000_DEV_ID_PCH_LPTLP_I218_V:
296 	case E1000_DEV_ID_PCH_I218_LM2:
297 	case E1000_DEV_ID_PCH_I218_V2:
298 	case E1000_DEV_ID_PCH_I218_LM3:
299 	case E1000_DEV_ID_PCH_I218_V3:
300 		mac->type = e1000_pch_lpt;
301 		break;
302 	case E1000_DEV_ID_PCH_SPT_I219_LM:
303 	case E1000_DEV_ID_PCH_SPT_I219_V:
304 	case E1000_DEV_ID_PCH_SPT_I219_LM2:
305 	case E1000_DEV_ID_PCH_SPT_I219_V2:
306 	case E1000_DEV_ID_PCH_LBG_I219_LM3:
307 	case E1000_DEV_ID_PCH_SPT_I219_LM4:
308 	case E1000_DEV_ID_PCH_SPT_I219_V4:
309 	case E1000_DEV_ID_PCH_SPT_I219_LM5:
310 	case E1000_DEV_ID_PCH_SPT_I219_V5:
311 		mac->type = e1000_pch_spt;
312 		break;
313 	case E1000_DEV_ID_PCH_CNP_I219_LM6:
314 	case E1000_DEV_ID_PCH_CNP_I219_V6:
315 	case E1000_DEV_ID_PCH_CNP_I219_LM7:
316 	case E1000_DEV_ID_PCH_CNP_I219_V7:
317 	case E1000_DEV_ID_PCH_ICP_I219_LM8:
318 	case E1000_DEV_ID_PCH_ICP_I219_V8:
319 	case E1000_DEV_ID_PCH_ICP_I219_LM9:
320 	case E1000_DEV_ID_PCH_ICP_I219_V9:
321 		mac->type = e1000_pch_cnp;
322 		break;
323 	case E1000_DEV_ID_82575EB_COPPER:
324 	case E1000_DEV_ID_82575EB_FIBER_SERDES:
325 	case E1000_DEV_ID_82575GB_QUAD_COPPER:
326 		mac->type = e1000_82575;
327 		break;
328 	case E1000_DEV_ID_82576:
329 	case E1000_DEV_ID_82576_FIBER:
330 	case E1000_DEV_ID_82576_SERDES:
331 	case E1000_DEV_ID_82576_QUAD_COPPER:
332 	case E1000_DEV_ID_82576_QUAD_COPPER_ET2:
333 	case E1000_DEV_ID_82576_NS:
334 	case E1000_DEV_ID_82576_NS_SERDES:
335 	case E1000_DEV_ID_82576_SERDES_QUAD:
336 		mac->type = e1000_82576;
337 		break;
338 	case E1000_DEV_ID_82580_COPPER:
339 	case E1000_DEV_ID_82580_FIBER:
340 	case E1000_DEV_ID_82580_SERDES:
341 	case E1000_DEV_ID_82580_SGMII:
342 	case E1000_DEV_ID_82580_COPPER_DUAL:
343 	case E1000_DEV_ID_82580_QUAD_FIBER:
344 	case E1000_DEV_ID_DH89XXCC_SGMII:
345 	case E1000_DEV_ID_DH89XXCC_SERDES:
346 	case E1000_DEV_ID_DH89XXCC_BACKPLANE:
347 	case E1000_DEV_ID_DH89XXCC_SFP:
348 		mac->type = e1000_82580;
349 		break;
350 	case E1000_DEV_ID_I350_COPPER:
351 	case E1000_DEV_ID_I350_FIBER:
352 	case E1000_DEV_ID_I350_SERDES:
353 	case E1000_DEV_ID_I350_SGMII:
354 	case E1000_DEV_ID_I350_DA4:
355 		mac->type = e1000_i350;
356 		break;
357 	case E1000_DEV_ID_I210_COPPER_FLASHLESS:
358 	case E1000_DEV_ID_I210_SERDES_FLASHLESS:
359 	case E1000_DEV_ID_I210_COPPER:
360 	case E1000_DEV_ID_I210_COPPER_OEM1:
361 	case E1000_DEV_ID_I210_COPPER_IT:
362 	case E1000_DEV_ID_I210_FIBER:
363 	case E1000_DEV_ID_I210_SERDES:
364 	case E1000_DEV_ID_I210_SGMII:
365 		mac->type = e1000_i210;
366 		break;
367 	case E1000_DEV_ID_I211_COPPER:
368 		mac->type = e1000_i211;
369 		break;
370 	case E1000_DEV_ID_82576_VF:
371 	case E1000_DEV_ID_82576_VF_HV:
372 		mac->type = e1000_vfadapt;
373 		break;
374 	case E1000_DEV_ID_I350_VF:
375 	case E1000_DEV_ID_I350_VF_HV:
376 		mac->type = e1000_vfadapt_i350;
377 		break;
378 
379 	case E1000_DEV_ID_I354_BACKPLANE_1GBPS:
380 	case E1000_DEV_ID_I354_SGMII:
381 	case E1000_DEV_ID_I354_BACKPLANE_2_5GBPS:
382 		mac->type = e1000_i354;
383 		break;
384 	default:
385 		/* Should never have loaded on this device */
386 		ret_val = -E1000_ERR_MAC_INIT;
387 		break;
388 	}
389 
390 	return ret_val;
391 }
392 
393 /**
394  *  e1000_setup_init_funcs - Initializes function pointers
395  *  @hw: pointer to the HW structure
396  *  @init_device: TRUE will initialize the rest of the function pointers
397  *		  getting the device ready for use.  FALSE will only set
398  *		  MAC type and the function pointers for the other init
399  *		  functions.  Passing FALSE will not generate any hardware
400  *		  reads or writes.
401  *
402  *  This function must be called by a driver in order to use the rest
403  *  of the 'shared' code files. Called by drivers only.
404  **/
405 s32 e1000_setup_init_funcs(struct e1000_hw *hw, bool init_device)
406 {
407 	s32 ret_val;
408 
409 	/* Can't do much good without knowing the MAC type. */
410 	ret_val = e1000_set_mac_type(hw);
411 	if (ret_val) {
412 		DEBUGOUT("ERROR: MAC type could not be set properly.\n");
413 		goto out;
414 	}
415 
416 	if (!hw->hw_addr) {
417 		DEBUGOUT("ERROR: Registers not mapped\n");
418 		ret_val = -E1000_ERR_CONFIG;
419 		goto out;
420 	}
421 
422 	/*
423 	 * Init function pointers to generic implementations. We do this first
424 	 * allowing a driver module to override it afterward.
425 	 */
426 	e1000_init_mac_ops_generic(hw);
427 	e1000_init_phy_ops_generic(hw);
428 	e1000_init_nvm_ops_generic(hw);
429 	e1000_init_mbx_ops_generic(hw);
430 
431 	/*
432 	 * Set up the init function pointers. These are functions within the
433 	 * adapter family file that sets up function pointers for the rest of
434 	 * the functions in that family.
435 	 */
436 	switch (hw->mac.type) {
437 	case e1000_82542:
438 		e1000_init_function_pointers_82542(hw);
439 		break;
440 	case e1000_82543:
441 	case e1000_82544:
442 		e1000_init_function_pointers_82543(hw);
443 		break;
444 	case e1000_82540:
445 	case e1000_82545:
446 	case e1000_82545_rev_3:
447 	case e1000_82546:
448 	case e1000_82546_rev_3:
449 		e1000_init_function_pointers_82540(hw);
450 		break;
451 	case e1000_82541:
452 	case e1000_82541_rev_2:
453 	case e1000_82547:
454 	case e1000_82547_rev_2:
455 		e1000_init_function_pointers_82541(hw);
456 		break;
457 	case e1000_82571:
458 	case e1000_82572:
459 	case e1000_82573:
460 	case e1000_82574:
461 	case e1000_82583:
462 		e1000_init_function_pointers_82571(hw);
463 		break;
464 	case e1000_80003es2lan:
465 		e1000_init_function_pointers_80003es2lan(hw);
466 		break;
467 	case e1000_ich8lan:
468 	case e1000_ich9lan:
469 	case e1000_ich10lan:
470 	case e1000_pchlan:
471 	case e1000_pch2lan:
472 	case e1000_pch_lpt:
473 	case e1000_pch_spt:
474 	case e1000_pch_cnp:
475 		e1000_init_function_pointers_ich8lan(hw);
476 		break;
477 	case e1000_82575:
478 	case e1000_82576:
479 	case e1000_82580:
480 	case e1000_i350:
481 	case e1000_i354:
482 		e1000_init_function_pointers_82575(hw);
483 		break;
484 	case e1000_i210:
485 	case e1000_i211:
486 		e1000_init_function_pointers_i210(hw);
487 		break;
488 	case e1000_vfadapt:
489 		e1000_init_function_pointers_vf(hw);
490 		break;
491 	case e1000_vfadapt_i350:
492 		e1000_init_function_pointers_vf(hw);
493 		break;
494 	default:
495 		DEBUGOUT("Hardware not supported\n");
496 		ret_val = -E1000_ERR_CONFIG;
497 		break;
498 	}
499 
500 	/*
501 	 * Initialize the rest of the function pointers. These require some
502 	 * register reads/writes in some cases.
503 	 */
504 	if (!(ret_val) && init_device) {
505 		ret_val = e1000_init_mac_params(hw);
506 		if (ret_val)
507 			goto out;
508 
509 		ret_val = e1000_init_nvm_params(hw);
510 		if (ret_val)
511 			goto out;
512 
513 		ret_val = e1000_init_phy_params(hw);
514 		if (ret_val)
515 			goto out;
516 
517 		ret_val = e1000_init_mbx_params(hw);
518 		if (ret_val)
519 			goto out;
520 	}
521 
522 out:
523 	return ret_val;
524 }
525 
526 /**
527  *  e1000_get_bus_info - Obtain bus information for adapter
528  *  @hw: pointer to the HW structure
529  *
530  *  This will obtain information about the HW bus for which the
531  *  adapter is attached and stores it in the hw structure. This is a
532  *  function pointer entry point called by drivers.
533  **/
534 s32 e1000_get_bus_info(struct e1000_hw *hw)
535 {
536 	if (hw->mac.ops.get_bus_info)
537 		return hw->mac.ops.get_bus_info(hw);
538 
539 	return E1000_SUCCESS;
540 }
541 
542 /**
543  *  e1000_clear_vfta - Clear VLAN filter table
544  *  @hw: pointer to the HW structure
545  *
546  *  This clears the VLAN filter table on the adapter. This is a function
547  *  pointer entry point called by drivers.
548  **/
549 void e1000_clear_vfta(struct e1000_hw *hw)
550 {
551 	if (hw->mac.ops.clear_vfta)
552 		hw->mac.ops.clear_vfta(hw);
553 }
554 
555 /**
556  *  e1000_write_vfta - Write value to VLAN filter table
557  *  @hw: pointer to the HW structure
558  *  @offset: the 32-bit offset in which to write the value to.
559  *  @value: the 32-bit value to write at location offset.
560  *
561  *  This writes a 32-bit value to a 32-bit offset in the VLAN filter
562  *  table. This is a function pointer entry point called by drivers.
563  **/
564 void e1000_write_vfta(struct e1000_hw *hw, u32 offset, u32 value)
565 {
566 	if (hw->mac.ops.write_vfta)
567 		hw->mac.ops.write_vfta(hw, offset, value);
568 }
569 
570 /**
571  *  e1000_update_mc_addr_list - Update Multicast addresses
572  *  @hw: pointer to the HW structure
573  *  @mc_addr_list: array of multicast addresses to program
574  *  @mc_addr_count: number of multicast addresses to program
575  *
576  *  Updates the Multicast Table Array.
577  *  The caller must have a packed mc_addr_list of multicast addresses.
578  **/
579 void e1000_update_mc_addr_list(struct e1000_hw *hw, u8 *mc_addr_list,
580 			       u32 mc_addr_count)
581 {
582 	if (hw->mac.ops.update_mc_addr_list)
583 		hw->mac.ops.update_mc_addr_list(hw, mc_addr_list,
584 						mc_addr_count);
585 }
586 
587 /**
588  *  e1000_force_mac_fc - Force MAC flow control
589  *  @hw: pointer to the HW structure
590  *
591  *  Force the MAC's flow control settings. Currently no func pointer exists
592  *  and all implementations are handled in the generic version of this
593  *  function.
594  **/
595 s32 e1000_force_mac_fc(struct e1000_hw *hw)
596 {
597 	return e1000_force_mac_fc_generic(hw);
598 }
599 
600 /**
601  *  e1000_check_for_link - Check/Store link connection
602  *  @hw: pointer to the HW structure
603  *
604  *  This checks the link condition of the adapter and stores the
605  *  results in the hw->mac structure. This is a function pointer entry
606  *  point called by drivers.
607  **/
608 s32 e1000_check_for_link(struct e1000_hw *hw)
609 {
610 	if (hw->mac.ops.check_for_link)
611 		return hw->mac.ops.check_for_link(hw);
612 
613 	return -E1000_ERR_CONFIG;
614 }
615 
616 /**
617  *  e1000_check_mng_mode - Check management mode
618  *  @hw: pointer to the HW structure
619  *
620  *  This checks if the adapter has manageability enabled.
621  *  This is a function pointer entry point called by drivers.
622  **/
623 bool e1000_check_mng_mode(struct e1000_hw *hw)
624 {
625 	if (hw->mac.ops.check_mng_mode)
626 		return hw->mac.ops.check_mng_mode(hw);
627 
628 	return FALSE;
629 }
630 
631 /**
632  *  e1000_mng_write_dhcp_info - Writes DHCP info to host interface
633  *  @hw: pointer to the HW structure
634  *  @buffer: pointer to the host interface
635  *  @length: size of the buffer
636  *
637  *  Writes the DHCP information to the host interface.
638  **/
639 s32 e1000_mng_write_dhcp_info(struct e1000_hw *hw, u8 *buffer, u16 length)
640 {
641 	return e1000_mng_write_dhcp_info_generic(hw, buffer, length);
642 }
643 
644 /**
645  *  e1000_reset_hw - Reset hardware
646  *  @hw: pointer to the HW structure
647  *
648  *  This resets the hardware into a known state. This is a function pointer
649  *  entry point called by drivers.
650  **/
651 s32 e1000_reset_hw(struct e1000_hw *hw)
652 {
653 	if (hw->mac.ops.reset_hw)
654 		return hw->mac.ops.reset_hw(hw);
655 
656 	return -E1000_ERR_CONFIG;
657 }
658 
659 /**
660  *  e1000_init_hw - Initialize hardware
661  *  @hw: pointer to the HW structure
662  *
663  *  This inits the hardware readying it for operation. This is a function
664  *  pointer entry point called by drivers.
665  **/
666 s32 e1000_init_hw(struct e1000_hw *hw)
667 {
668 	if (hw->mac.ops.init_hw)
669 		return hw->mac.ops.init_hw(hw);
670 
671 	return -E1000_ERR_CONFIG;
672 }
673 
674 /**
675  *  e1000_setup_link - Configures link and flow control
676  *  @hw: pointer to the HW structure
677  *
678  *  This configures link and flow control settings for the adapter. This
679  *  is a function pointer entry point called by drivers. While modules can
680  *  also call this, they probably call their own version of this function.
681  **/
682 s32 e1000_setup_link(struct e1000_hw *hw)
683 {
684 	if (hw->mac.ops.setup_link)
685 		return hw->mac.ops.setup_link(hw);
686 
687 	return -E1000_ERR_CONFIG;
688 }
689 
690 /**
691  *  e1000_get_speed_and_duplex - Returns current speed and duplex
692  *  @hw: pointer to the HW structure
693  *  @speed: pointer to a 16-bit value to store the speed
694  *  @duplex: pointer to a 16-bit value to store the duplex.
695  *
696  *  This returns the speed and duplex of the adapter in the two 'out'
697  *  variables passed in. This is a function pointer entry point called
698  *  by drivers.
699  **/
700 s32 e1000_get_speed_and_duplex(struct e1000_hw *hw, u16 *speed, u16 *duplex)
701 {
702 	if (hw->mac.ops.get_link_up_info)
703 		return hw->mac.ops.get_link_up_info(hw, speed, duplex);
704 
705 	return -E1000_ERR_CONFIG;
706 }
707 
708 /**
709  *  e1000_setup_led - Configures SW controllable LED
710  *  @hw: pointer to the HW structure
711  *
712  *  This prepares the SW controllable LED for use and saves the current state
713  *  of the LED so it can be later restored. This is a function pointer entry
714  *  point called by drivers.
715  **/
716 s32 e1000_setup_led(struct e1000_hw *hw)
717 {
718 	if (hw->mac.ops.setup_led)
719 		return hw->mac.ops.setup_led(hw);
720 
721 	return E1000_SUCCESS;
722 }
723 
724 /**
725  *  e1000_cleanup_led - Restores SW controllable LED
726  *  @hw: pointer to the HW structure
727  *
728  *  This restores the SW controllable LED to the value saved off by
729  *  e1000_setup_led. This is a function pointer entry point called by drivers.
730  **/
731 s32 e1000_cleanup_led(struct e1000_hw *hw)
732 {
733 	if (hw->mac.ops.cleanup_led)
734 		return hw->mac.ops.cleanup_led(hw);
735 
736 	return E1000_SUCCESS;
737 }
738 
739 /**
740  *  e1000_blink_led - Blink SW controllable LED
741  *  @hw: pointer to the HW structure
742  *
743  *  This starts the adapter LED blinking. Request the LED to be setup first
744  *  and cleaned up after. This is a function pointer entry point called by
745  *  drivers.
746  **/
747 s32 e1000_blink_led(struct e1000_hw *hw)
748 {
749 	if (hw->mac.ops.blink_led)
750 		return hw->mac.ops.blink_led(hw);
751 
752 	return E1000_SUCCESS;
753 }
754 
755 /**
756  *  e1000_id_led_init - store LED configurations in SW
757  *  @hw: pointer to the HW structure
758  *
759  *  Initializes the LED config in SW. This is a function pointer entry point
760  *  called by drivers.
761  **/
762 s32 e1000_id_led_init(struct e1000_hw *hw)
763 {
764 	if (hw->mac.ops.id_led_init)
765 		return hw->mac.ops.id_led_init(hw);
766 
767 	return E1000_SUCCESS;
768 }
769 
770 /**
771  *  e1000_led_on - Turn on SW controllable LED
772  *  @hw: pointer to the HW structure
773  *
774  *  Turns the SW defined LED on. This is a function pointer entry point
775  *  called by drivers.
776  **/
777 s32 e1000_led_on(struct e1000_hw *hw)
778 {
779 	if (hw->mac.ops.led_on)
780 		return hw->mac.ops.led_on(hw);
781 
782 	return E1000_SUCCESS;
783 }
784 
785 /**
786  *  e1000_led_off - Turn off SW controllable LED
787  *  @hw: pointer to the HW structure
788  *
789  *  Turns the SW defined LED off. This is a function pointer entry point
790  *  called by drivers.
791  **/
792 s32 e1000_led_off(struct e1000_hw *hw)
793 {
794 	if (hw->mac.ops.led_off)
795 		return hw->mac.ops.led_off(hw);
796 
797 	return E1000_SUCCESS;
798 }
799 
800 /**
801  *  e1000_reset_adaptive - Reset adaptive IFS
802  *  @hw: pointer to the HW structure
803  *
804  *  Resets the adaptive IFS. Currently no func pointer exists and all
805  *  implementations are handled in the generic version of this function.
806  **/
807 void e1000_reset_adaptive(struct e1000_hw *hw)
808 {
809 	e1000_reset_adaptive_generic(hw);
810 }
811 
812 /**
813  *  e1000_update_adaptive - Update adaptive IFS
814  *  @hw: pointer to the HW structure
815  *
816  *  Updates adapter IFS. Currently no func pointer exists and all
817  *  implementations are handled in the generic version of this function.
818  **/
819 void e1000_update_adaptive(struct e1000_hw *hw)
820 {
821 	e1000_update_adaptive_generic(hw);
822 }
823 
824 /**
825  *  e1000_disable_pcie_master - Disable PCI-Express master access
826  *  @hw: pointer to the HW structure
827  *
828  *  Disables PCI-Express master access and verifies there are no pending
829  *  requests. Currently no func pointer exists and all implementations are
830  *  handled in the generic version of this function.
831  **/
832 s32 e1000_disable_pcie_master(struct e1000_hw *hw)
833 {
834 	return e1000_disable_pcie_master_generic(hw);
835 }
836 
837 /**
838  *  e1000_config_collision_dist - Configure collision distance
839  *  @hw: pointer to the HW structure
840  *
841  *  Configures the collision distance to the default value and is used
842  *  during link setup.
843  **/
844 void e1000_config_collision_dist(struct e1000_hw *hw)
845 {
846 	if (hw->mac.ops.config_collision_dist)
847 		hw->mac.ops.config_collision_dist(hw);
848 }
849 
850 /**
851  *  e1000_rar_set - Sets a receive address register
852  *  @hw: pointer to the HW structure
853  *  @addr: address to set the RAR to
854  *  @index: the RAR to set
855  *
856  *  Sets a Receive Address Register (RAR) to the specified address.
857  **/
858 int e1000_rar_set(struct e1000_hw *hw, u8 *addr, u32 index)
859 {
860 	if (hw->mac.ops.rar_set)
861 		return hw->mac.ops.rar_set(hw, addr, index);
862 
863 	return E1000_SUCCESS;
864 }
865 
866 /**
867  *  e1000_validate_mdi_setting - Ensures valid MDI/MDIX SW state
868  *  @hw: pointer to the HW structure
869  *
870  *  Ensures that the MDI/MDIX SW state is valid.
871  **/
872 s32 e1000_validate_mdi_setting(struct e1000_hw *hw)
873 {
874 	if (hw->mac.ops.validate_mdi_setting)
875 		return hw->mac.ops.validate_mdi_setting(hw);
876 
877 	return E1000_SUCCESS;
878 }
879 
880 /**
881  *  e1000_hash_mc_addr - Determines address location in multicast table
882  *  @hw: pointer to the HW structure
883  *  @mc_addr: Multicast address to hash.
884  *
885  *  This hashes an address to determine its location in the multicast
886  *  table. Currently no func pointer exists and all implementations
887  *  are handled in the generic version of this function.
888  **/
889 u32 e1000_hash_mc_addr(struct e1000_hw *hw, u8 *mc_addr)
890 {
891 	return e1000_hash_mc_addr_generic(hw, mc_addr);
892 }
893 
894 /**
895  *  e1000_enable_tx_pkt_filtering - Enable packet filtering on TX
896  *  @hw: pointer to the HW structure
897  *
898  *  Enables packet filtering on transmit packets if manageability is enabled
899  *  and host interface is enabled.
900  *  Currently no func pointer exists and all implementations are handled in the
901  *  generic version of this function.
902  **/
903 bool e1000_enable_tx_pkt_filtering(struct e1000_hw *hw)
904 {
905 	return e1000_enable_tx_pkt_filtering_generic(hw);
906 }
907 
908 /**
909  *  e1000_mng_host_if_write - Writes to the manageability host interface
910  *  @hw: pointer to the HW structure
911  *  @buffer: pointer to the host interface buffer
912  *  @length: size of the buffer
913  *  @offset: location in the buffer to write to
914  *  @sum: sum of the data (not checksum)
915  *
916  *  This function writes the buffer content at the offset given on the host if.
917  *  It also does alignment considerations to do the writes in most efficient
918  *  way.  Also fills up the sum of the buffer in *buffer parameter.
919  **/
920 s32 e1000_mng_host_if_write(struct e1000_hw *hw, u8 *buffer, u16 length,
921 			    u16 offset, u8 *sum)
922 {
923 	return e1000_mng_host_if_write_generic(hw, buffer, length, offset, sum);
924 }
925 
926 /**
927  *  e1000_mng_write_cmd_header - Writes manageability command header
928  *  @hw: pointer to the HW structure
929  *  @hdr: pointer to the host interface command header
930  *
931  *  Writes the command header after does the checksum calculation.
932  **/
933 s32 e1000_mng_write_cmd_header(struct e1000_hw *hw,
934 			       struct e1000_host_mng_command_header *hdr)
935 {
936 	return e1000_mng_write_cmd_header_generic(hw, hdr);
937 }
938 
939 /**
940  *  e1000_mng_enable_host_if - Checks host interface is enabled
941  *  @hw: pointer to the HW structure
942  *
943  *  Returns E1000_success upon success, else E1000_ERR_HOST_INTERFACE_COMMAND
944  *
945  *  This function checks whether the HOST IF is enabled for command operation
946  *  and also checks whether the previous command is completed.  It busy waits
947  *  in case of previous command is not completed.
948  **/
949 s32 e1000_mng_enable_host_if(struct e1000_hw *hw)
950 {
951 	return e1000_mng_enable_host_if_generic(hw);
952 }
953 
954 /**
955  *  e1000_set_obff_timer - Set Optimized Buffer Flush/Fill timer
956  *  @hw: pointer to the HW structure
957  *  @itr: u32 indicating itr value
958  *
959  *  Set the OBFF timer based on the given interrupt rate.
960  **/
961 s32 e1000_set_obff_timer(struct e1000_hw *hw, u32 itr)
962 {
963 	if (hw->mac.ops.set_obff_timer)
964 		return hw->mac.ops.set_obff_timer(hw, itr);
965 
966 	return E1000_SUCCESS;
967 }
968 
969 /**
970  *  e1000_check_reset_block - Verifies PHY can be reset
971  *  @hw: pointer to the HW structure
972  *
973  *  Checks if the PHY is in a state that can be reset or if manageability
974  *  has it tied up. This is a function pointer entry point called by drivers.
975  **/
976 s32 e1000_check_reset_block(struct e1000_hw *hw)
977 {
978 	if (hw->phy.ops.check_reset_block)
979 		return hw->phy.ops.check_reset_block(hw);
980 
981 	return E1000_SUCCESS;
982 }
983 
984 /**
985  *  e1000_read_phy_reg - Reads PHY register
986  *  @hw: pointer to the HW structure
987  *  @offset: the register to read
988  *  @data: the buffer to store the 16-bit read.
989  *
990  *  Reads the PHY register and returns the value in data.
991  *  This is a function pointer entry point called by drivers.
992  **/
993 s32 e1000_read_phy_reg(struct e1000_hw *hw, u32 offset, u16 *data)
994 {
995 	if (hw->phy.ops.read_reg)
996 		return hw->phy.ops.read_reg(hw, offset, data);
997 
998 	return E1000_SUCCESS;
999 }
1000 
1001 /**
1002  *  e1000_write_phy_reg - Writes PHY register
1003  *  @hw: pointer to the HW structure
1004  *  @offset: the register to write
1005  *  @data: the value to write.
1006  *
1007  *  Writes the PHY register at offset with the value in data.
1008  *  This is a function pointer entry point called by drivers.
1009  **/
1010 s32 e1000_write_phy_reg(struct e1000_hw *hw, u32 offset, u16 data)
1011 {
1012 	if (hw->phy.ops.write_reg)
1013 		return hw->phy.ops.write_reg(hw, offset, data);
1014 
1015 	return E1000_SUCCESS;
1016 }
1017 
1018 /**
1019  *  e1000_release_phy - Generic release PHY
1020  *  @hw: pointer to the HW structure
1021  *
1022  *  Return if silicon family does not require a semaphore when accessing the
1023  *  PHY.
1024  **/
1025 void e1000_release_phy(struct e1000_hw *hw)
1026 {
1027 	if (hw->phy.ops.release)
1028 		hw->phy.ops.release(hw);
1029 }
1030 
1031 /**
1032  *  e1000_acquire_phy - Generic acquire PHY
1033  *  @hw: pointer to the HW structure
1034  *
1035  *  Return success if silicon family does not require a semaphore when
1036  *  accessing the PHY.
1037  **/
1038 s32 e1000_acquire_phy(struct e1000_hw *hw)
1039 {
1040 	if (hw->phy.ops.acquire)
1041 		return hw->phy.ops.acquire(hw);
1042 
1043 	return E1000_SUCCESS;
1044 }
1045 
1046 /**
1047  *  e1000_cfg_on_link_up - Configure PHY upon link up
1048  *  @hw: pointer to the HW structure
1049  **/
1050 s32 e1000_cfg_on_link_up(struct e1000_hw *hw)
1051 {
1052 	if (hw->phy.ops.cfg_on_link_up)
1053 		return hw->phy.ops.cfg_on_link_up(hw);
1054 
1055 	return E1000_SUCCESS;
1056 }
1057 
1058 /**
1059  *  e1000_read_kmrn_reg - Reads register using Kumeran interface
1060  *  @hw: pointer to the HW structure
1061  *  @offset: the register to read
1062  *  @data: the location to store the 16-bit value read.
1063  *
1064  *  Reads a register out of the Kumeran interface. Currently no func pointer
1065  *  exists and all implementations are handled in the generic version of
1066  *  this function.
1067  **/
1068 s32 e1000_read_kmrn_reg(struct e1000_hw *hw, u32 offset, u16 *data)
1069 {
1070 	return e1000_read_kmrn_reg_generic(hw, offset, data);
1071 }
1072 
1073 /**
1074  *  e1000_write_kmrn_reg - Writes register using Kumeran interface
1075  *  @hw: pointer to the HW structure
1076  *  @offset: the register to write
1077  *  @data: the value to write.
1078  *
1079  *  Writes a register to the Kumeran interface. Currently no func pointer
1080  *  exists and all implementations are handled in the generic version of
1081  *  this function.
1082  **/
1083 s32 e1000_write_kmrn_reg(struct e1000_hw *hw, u32 offset, u16 data)
1084 {
1085 	return e1000_write_kmrn_reg_generic(hw, offset, data);
1086 }
1087 
1088 /**
1089  *  e1000_get_cable_length - Retrieves cable length estimation
1090  *  @hw: pointer to the HW structure
1091  *
1092  *  This function estimates the cable length and stores them in
1093  *  hw->phy.min_length and hw->phy.max_length. This is a function pointer
1094  *  entry point called by drivers.
1095  **/
1096 s32 e1000_get_cable_length(struct e1000_hw *hw)
1097 {
1098 	if (hw->phy.ops.get_cable_length)
1099 		return hw->phy.ops.get_cable_length(hw);
1100 
1101 	return E1000_SUCCESS;
1102 }
1103 
1104 /**
1105  *  e1000_get_phy_info - Retrieves PHY information from registers
1106  *  @hw: pointer to the HW structure
1107  *
1108  *  This function gets some information from various PHY registers and
1109  *  populates hw->phy values with it. This is a function pointer entry
1110  *  point called by drivers.
1111  **/
1112 s32 e1000_get_phy_info(struct e1000_hw *hw)
1113 {
1114 	if (hw->phy.ops.get_info)
1115 		return hw->phy.ops.get_info(hw);
1116 
1117 	return E1000_SUCCESS;
1118 }
1119 
1120 /**
1121  *  e1000_phy_hw_reset - Hard PHY reset
1122  *  @hw: pointer to the HW structure
1123  *
1124  *  Performs a hard PHY reset. This is a function pointer entry point called
1125  *  by drivers.
1126  **/
1127 s32 e1000_phy_hw_reset(struct e1000_hw *hw)
1128 {
1129 	if (hw->phy.ops.reset)
1130 		return hw->phy.ops.reset(hw);
1131 
1132 	return E1000_SUCCESS;
1133 }
1134 
1135 /**
1136  *  e1000_phy_commit - Soft PHY reset
1137  *  @hw: pointer to the HW structure
1138  *
1139  *  Performs a soft PHY reset on those that apply. This is a function pointer
1140  *  entry point called by drivers.
1141  **/
1142 s32 e1000_phy_commit(struct e1000_hw *hw)
1143 {
1144 	if (hw->phy.ops.commit)
1145 		return hw->phy.ops.commit(hw);
1146 
1147 	return E1000_SUCCESS;
1148 }
1149 
1150 /**
1151  *  e1000_set_d0_lplu_state - Sets low power link up state for D0
1152  *  @hw: pointer to the HW structure
1153  *  @active: boolean used to enable/disable lplu
1154  *
1155  *  Success returns 0, Failure returns 1
1156  *
1157  *  The low power link up (lplu) state is set to the power management level D0
1158  *  and SmartSpeed is disabled when active is TRUE, else clear lplu for D0
1159  *  and enable Smartspeed.  LPLU and Smartspeed are mutually exclusive.  LPLU
1160  *  is used during Dx states where the power conservation is most important.
1161  *  During driver activity, SmartSpeed should be enabled so performance is
1162  *  maintained.  This is a function pointer entry point called by drivers.
1163  **/
1164 s32 e1000_set_d0_lplu_state(struct e1000_hw *hw, bool active)
1165 {
1166 	if (hw->phy.ops.set_d0_lplu_state)
1167 		return hw->phy.ops.set_d0_lplu_state(hw, active);
1168 
1169 	return E1000_SUCCESS;
1170 }
1171 
1172 /**
1173  *  e1000_set_d3_lplu_state - Sets low power link up state for D3
1174  *  @hw: pointer to the HW structure
1175  *  @active: boolean used to enable/disable lplu
1176  *
1177  *  Success returns 0, Failure returns 1
1178  *
1179  *  The low power link up (lplu) state is set to the power management level D3
1180  *  and SmartSpeed is disabled when active is TRUE, else clear lplu for D3
1181  *  and enable Smartspeed.  LPLU and Smartspeed are mutually exclusive.  LPLU
1182  *  is used during Dx states where the power conservation is most important.
1183  *  During driver activity, SmartSpeed should be enabled so performance is
1184  *  maintained.  This is a function pointer entry point called by drivers.
1185  **/
1186 s32 e1000_set_d3_lplu_state(struct e1000_hw *hw, bool active)
1187 {
1188 	if (hw->phy.ops.set_d3_lplu_state)
1189 		return hw->phy.ops.set_d3_lplu_state(hw, active);
1190 
1191 	return E1000_SUCCESS;
1192 }
1193 
1194 /**
1195  *  e1000_read_mac_addr - Reads MAC address
1196  *  @hw: pointer to the HW structure
1197  *
1198  *  Reads the MAC address out of the adapter and stores it in the HW structure.
1199  *  Currently no func pointer exists and all implementations are handled in the
1200  *  generic version of this function.
1201  **/
1202 s32 e1000_read_mac_addr(struct e1000_hw *hw)
1203 {
1204 	if (hw->mac.ops.read_mac_addr)
1205 		return hw->mac.ops.read_mac_addr(hw);
1206 
1207 	return e1000_read_mac_addr_generic(hw);
1208 }
1209 
1210 /**
1211  *  e1000_read_pba_string - Read device part number string
1212  *  @hw: pointer to the HW structure
1213  *  @pba_num: pointer to device part number
1214  *  @pba_num_size: size of part number buffer
1215  *
1216  *  Reads the product board assembly (PBA) number from the EEPROM and stores
1217  *  the value in pba_num.
1218  *  Currently no func pointer exists and all implementations are handled in the
1219  *  generic version of this function.
1220  **/
1221 s32 e1000_read_pba_string(struct e1000_hw *hw, u8 *pba_num, u32 pba_num_size)
1222 {
1223 	return e1000_read_pba_string_generic(hw, pba_num, pba_num_size);
1224 }
1225 
1226 /**
1227  *  e1000_read_pba_length - Read device part number string length
1228  *  @hw: pointer to the HW structure
1229  *  @pba_num_size: size of part number buffer
1230  *
1231  *  Reads the product board assembly (PBA) number length from the EEPROM and
1232  *  stores the value in pba_num.
1233  *  Currently no func pointer exists and all implementations are handled in the
1234  *  generic version of this function.
1235  **/
1236 s32 e1000_read_pba_length(struct e1000_hw *hw, u32 *pba_num_size)
1237 {
1238 	return e1000_read_pba_length_generic(hw, pba_num_size);
1239 }
1240 
1241 /**
1242  *  e1000_validate_nvm_checksum - Verifies NVM (EEPROM) checksum
1243  *  @hw: pointer to the HW structure
1244  *
1245  *  Validates the NVM checksum is correct. This is a function pointer entry
1246  *  point called by drivers.
1247  **/
1248 s32 e1000_validate_nvm_checksum(struct e1000_hw *hw)
1249 {
1250 	if (hw->nvm.ops.validate)
1251 		return hw->nvm.ops.validate(hw);
1252 
1253 	return -E1000_ERR_CONFIG;
1254 }
1255 
1256 /**
1257  *  e1000_update_nvm_checksum - Updates NVM (EEPROM) checksum
1258  *  @hw: pointer to the HW structure
1259  *
1260  *  Updates the NVM checksum. Currently no func pointer exists and all
1261  *  implementations are handled in the generic version of this function.
1262  **/
1263 s32 e1000_update_nvm_checksum(struct e1000_hw *hw)
1264 {
1265 	if (hw->nvm.ops.update)
1266 		return hw->nvm.ops.update(hw);
1267 
1268 	return -E1000_ERR_CONFIG;
1269 }
1270 
1271 /**
1272  *  e1000_reload_nvm - Reloads EEPROM
1273  *  @hw: pointer to the HW structure
1274  *
1275  *  Reloads the EEPROM by setting the "Reinitialize from EEPROM" bit in the
1276  *  extended control register.
1277  **/
1278 void e1000_reload_nvm(struct e1000_hw *hw)
1279 {
1280 	if (hw->nvm.ops.reload)
1281 		hw->nvm.ops.reload(hw);
1282 }
1283 
1284 /**
1285  *  e1000_read_nvm - Reads NVM (EEPROM)
1286  *  @hw: pointer to the HW structure
1287  *  @offset: the word offset to read
1288  *  @words: number of 16-bit words to read
1289  *  @data: pointer to the properly sized buffer for the data.
1290  *
1291  *  Reads 16-bit chunks of data from the NVM (EEPROM). This is a function
1292  *  pointer entry point called by drivers.
1293  **/
1294 s32 e1000_read_nvm(struct e1000_hw *hw, u16 offset, u16 words, u16 *data)
1295 {
1296 	if (hw->nvm.ops.read)
1297 		return hw->nvm.ops.read(hw, offset, words, data);
1298 
1299 	return -E1000_ERR_CONFIG;
1300 }
1301 
1302 /**
1303  *  e1000_write_nvm - Writes to NVM (EEPROM)
1304  *  @hw: pointer to the HW structure
1305  *  @offset: the word offset to read
1306  *  @words: number of 16-bit words to write
1307  *  @data: pointer to the properly sized buffer for the data.
1308  *
1309  *  Writes 16-bit chunks of data to the NVM (EEPROM). This is a function
1310  *  pointer entry point called by drivers.
1311  **/
1312 s32 e1000_write_nvm(struct e1000_hw *hw, u16 offset, u16 words, u16 *data)
1313 {
1314 	if (hw->nvm.ops.write)
1315 		return hw->nvm.ops.write(hw, offset, words, data);
1316 
1317 	return E1000_SUCCESS;
1318 }
1319 
1320 /**
1321  *  e1000_write_8bit_ctrl_reg - Writes 8bit Control register
1322  *  @hw: pointer to the HW structure
1323  *  @reg: 32bit register offset
1324  *  @offset: the register to write
1325  *  @data: the value to write.
1326  *
1327  *  Writes the PHY register at offset with the value in data.
1328  *  This is a function pointer entry point called by drivers.
1329  **/
1330 s32 e1000_write_8bit_ctrl_reg(struct e1000_hw *hw, u32 reg, u32 offset,
1331 			      u8 data)
1332 {
1333 	return e1000_write_8bit_ctrl_reg_generic(hw, reg, offset, data);
1334 }
1335 
1336 /**
1337  * e1000_power_up_phy - Restores link in case of PHY power down
1338  * @hw: pointer to the HW structure
1339  *
1340  * The phy may be powered down to save power, to turn off link when the
1341  * driver is unloaded, or wake on lan is not enabled (among others).
1342  **/
1343 void e1000_power_up_phy(struct e1000_hw *hw)
1344 {
1345 	if (hw->phy.ops.power_up)
1346 		hw->phy.ops.power_up(hw);
1347 
1348 	e1000_setup_link(hw);
1349 }
1350 
1351 /**
1352  * e1000_power_down_phy - Power down PHY
1353  * @hw: pointer to the HW structure
1354  *
1355  * The phy may be powered down to save power, to turn off link when the
1356  * driver is unloaded, or wake on lan is not enabled (among others).
1357  **/
1358 void e1000_power_down_phy(struct e1000_hw *hw)
1359 {
1360 	if (hw->phy.ops.power_down)
1361 		hw->phy.ops.power_down(hw);
1362 }
1363 
1364 /**
1365  *  e1000_power_up_fiber_serdes_link - Power up serdes link
1366  *  @hw: pointer to the HW structure
1367  *
1368  *  Power on the optics and PCS.
1369  **/
1370 void e1000_power_up_fiber_serdes_link(struct e1000_hw *hw)
1371 {
1372 	if (hw->mac.ops.power_up_serdes)
1373 		hw->mac.ops.power_up_serdes(hw);
1374 }
1375 
1376 /**
1377  *  e1000_shutdown_fiber_serdes_link - Remove link during power down
1378  *  @hw: pointer to the HW structure
1379  *
1380  *  Shutdown the optics and PCS on driver unload.
1381  **/
1382 void e1000_shutdown_fiber_serdes_link(struct e1000_hw *hw)
1383 {
1384 	if (hw->mac.ops.shutdown_serdes)
1385 		hw->mac.ops.shutdown_serdes(hw);
1386 }
1387 
1388