1 /****************************************************************************** 2 3 Copyright (c) 2001-2015, Intel Corporation 4 All rights reserved. 5 6 Redistribution and use in source and binary forms, with or without 7 modification, are permitted provided that the following conditions are met: 8 9 1. Redistributions of source code must retain the above copyright notice, 10 this list of conditions and the following disclaimer. 11 12 2. Redistributions in binary form must reproduce the above copyright 13 notice, this list of conditions and the following disclaimer in the 14 documentation and/or other materials provided with the distribution. 15 16 3. Neither the name of the Intel Corporation nor the names of its 17 contributors may be used to endorse or promote products derived from 18 this software without specific prior written permission. 19 20 THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" 21 AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 22 IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 23 ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE 24 LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR 25 CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF 26 SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS 27 INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN 28 CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) 29 ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE 30 POSSIBILITY OF SUCH DAMAGE. 31 32 ******************************************************************************/ 33 /*$FreeBSD$*/ 34 35 #include "e1000_api.h" 36 37 /** 38 * e1000_init_mac_params - Initialize MAC function pointers 39 * @hw: pointer to the HW structure 40 * 41 * This function initializes the function pointers for the MAC 42 * set of functions. Called by drivers or by e1000_setup_init_funcs. 43 **/ 44 s32 e1000_init_mac_params(struct e1000_hw *hw) 45 { 46 s32 ret_val = E1000_SUCCESS; 47 48 if (hw->mac.ops.init_params) { 49 ret_val = hw->mac.ops.init_params(hw); 50 if (ret_val) { 51 DEBUGOUT("MAC Initialization Error\n"); 52 goto out; 53 } 54 } else { 55 DEBUGOUT("mac.init_mac_params was NULL\n"); 56 ret_val = -E1000_ERR_CONFIG; 57 } 58 59 out: 60 return ret_val; 61 } 62 63 /** 64 * e1000_init_nvm_params - Initialize NVM function pointers 65 * @hw: pointer to the HW structure 66 * 67 * This function initializes the function pointers for the NVM 68 * set of functions. Called by drivers or by e1000_setup_init_funcs. 69 **/ 70 s32 e1000_init_nvm_params(struct e1000_hw *hw) 71 { 72 s32 ret_val = E1000_SUCCESS; 73 74 if (hw->nvm.ops.init_params) { 75 ret_val = hw->nvm.ops.init_params(hw); 76 if (ret_val) { 77 DEBUGOUT("NVM Initialization Error\n"); 78 goto out; 79 } 80 } else { 81 DEBUGOUT("nvm.init_nvm_params was NULL\n"); 82 ret_val = -E1000_ERR_CONFIG; 83 } 84 85 out: 86 return ret_val; 87 } 88 89 /** 90 * e1000_init_phy_params - Initialize PHY function pointers 91 * @hw: pointer to the HW structure 92 * 93 * This function initializes the function pointers for the PHY 94 * set of functions. Called by drivers or by e1000_setup_init_funcs. 95 **/ 96 s32 e1000_init_phy_params(struct e1000_hw *hw) 97 { 98 s32 ret_val = E1000_SUCCESS; 99 100 if (hw->phy.ops.init_params) { 101 ret_val = hw->phy.ops.init_params(hw); 102 if (ret_val) { 103 DEBUGOUT("PHY Initialization Error\n"); 104 goto out; 105 } 106 } else { 107 DEBUGOUT("phy.init_phy_params was NULL\n"); 108 ret_val = -E1000_ERR_CONFIG; 109 } 110 111 out: 112 return ret_val; 113 } 114 115 /** 116 * e1000_init_mbx_params - Initialize mailbox function pointers 117 * @hw: pointer to the HW structure 118 * 119 * This function initializes the function pointers for the PHY 120 * set of functions. Called by drivers or by e1000_setup_init_funcs. 121 **/ 122 s32 e1000_init_mbx_params(struct e1000_hw *hw) 123 { 124 s32 ret_val = E1000_SUCCESS; 125 126 if (hw->mbx.ops.init_params) { 127 ret_val = hw->mbx.ops.init_params(hw); 128 if (ret_val) { 129 DEBUGOUT("Mailbox Initialization Error\n"); 130 goto out; 131 } 132 } else { 133 DEBUGOUT("mbx.init_mbx_params was NULL\n"); 134 ret_val = -E1000_ERR_CONFIG; 135 } 136 137 out: 138 return ret_val; 139 } 140 141 /** 142 * e1000_set_mac_type - Sets MAC type 143 * @hw: pointer to the HW structure 144 * 145 * This function sets the mac type of the adapter based on the 146 * device ID stored in the hw structure. 147 * MUST BE FIRST FUNCTION CALLED (explicitly or through 148 * e1000_setup_init_funcs()). 149 **/ 150 s32 e1000_set_mac_type(struct e1000_hw *hw) 151 { 152 struct e1000_mac_info *mac = &hw->mac; 153 s32 ret_val = E1000_SUCCESS; 154 155 DEBUGFUNC("e1000_set_mac_type"); 156 157 switch (hw->device_id) { 158 case E1000_DEV_ID_82542: 159 mac->type = e1000_82542; 160 break; 161 case E1000_DEV_ID_82543GC_FIBER: 162 case E1000_DEV_ID_82543GC_COPPER: 163 mac->type = e1000_82543; 164 break; 165 case E1000_DEV_ID_82544EI_COPPER: 166 case E1000_DEV_ID_82544EI_FIBER: 167 case E1000_DEV_ID_82544GC_COPPER: 168 case E1000_DEV_ID_82544GC_LOM: 169 mac->type = e1000_82544; 170 break; 171 case E1000_DEV_ID_82540EM: 172 case E1000_DEV_ID_82540EM_LOM: 173 case E1000_DEV_ID_82540EP: 174 case E1000_DEV_ID_82540EP_LOM: 175 case E1000_DEV_ID_82540EP_LP: 176 mac->type = e1000_82540; 177 break; 178 case E1000_DEV_ID_82545EM_COPPER: 179 case E1000_DEV_ID_82545EM_FIBER: 180 mac->type = e1000_82545; 181 break; 182 case E1000_DEV_ID_82545GM_COPPER: 183 case E1000_DEV_ID_82545GM_FIBER: 184 case E1000_DEV_ID_82545GM_SERDES: 185 mac->type = e1000_82545_rev_3; 186 break; 187 case E1000_DEV_ID_82546EB_COPPER: 188 case E1000_DEV_ID_82546EB_FIBER: 189 case E1000_DEV_ID_82546EB_QUAD_COPPER: 190 mac->type = e1000_82546; 191 break; 192 case E1000_DEV_ID_82546GB_COPPER: 193 case E1000_DEV_ID_82546GB_FIBER: 194 case E1000_DEV_ID_82546GB_SERDES: 195 case E1000_DEV_ID_82546GB_PCIE: 196 case E1000_DEV_ID_82546GB_QUAD_COPPER: 197 case E1000_DEV_ID_82546GB_QUAD_COPPER_KSP3: 198 mac->type = e1000_82546_rev_3; 199 break; 200 case E1000_DEV_ID_82541EI: 201 case E1000_DEV_ID_82541EI_MOBILE: 202 case E1000_DEV_ID_82541ER_LOM: 203 mac->type = e1000_82541; 204 break; 205 case E1000_DEV_ID_82541ER: 206 case E1000_DEV_ID_82541GI: 207 case E1000_DEV_ID_82541GI_LF: 208 case E1000_DEV_ID_82541GI_MOBILE: 209 mac->type = e1000_82541_rev_2; 210 break; 211 case E1000_DEV_ID_82547EI: 212 case E1000_DEV_ID_82547EI_MOBILE: 213 mac->type = e1000_82547; 214 break; 215 case E1000_DEV_ID_82547GI: 216 mac->type = e1000_82547_rev_2; 217 break; 218 case E1000_DEV_ID_82571EB_COPPER: 219 case E1000_DEV_ID_82571EB_FIBER: 220 case E1000_DEV_ID_82571EB_SERDES: 221 case E1000_DEV_ID_82571EB_SERDES_DUAL: 222 case E1000_DEV_ID_82571EB_SERDES_QUAD: 223 case E1000_DEV_ID_82571EB_QUAD_COPPER: 224 case E1000_DEV_ID_82571PT_QUAD_COPPER: 225 case E1000_DEV_ID_82571EB_QUAD_FIBER: 226 case E1000_DEV_ID_82571EB_QUAD_COPPER_LP: 227 mac->type = e1000_82571; 228 break; 229 case E1000_DEV_ID_82572EI: 230 case E1000_DEV_ID_82572EI_COPPER: 231 case E1000_DEV_ID_82572EI_FIBER: 232 case E1000_DEV_ID_82572EI_SERDES: 233 mac->type = e1000_82572; 234 break; 235 case E1000_DEV_ID_82573E: 236 case E1000_DEV_ID_82573E_IAMT: 237 case E1000_DEV_ID_82573L: 238 mac->type = e1000_82573; 239 break; 240 case E1000_DEV_ID_82574L: 241 case E1000_DEV_ID_82574LA: 242 mac->type = e1000_82574; 243 break; 244 case E1000_DEV_ID_82583V: 245 mac->type = e1000_82583; 246 break; 247 case E1000_DEV_ID_80003ES2LAN_COPPER_DPT: 248 case E1000_DEV_ID_80003ES2LAN_SERDES_DPT: 249 case E1000_DEV_ID_80003ES2LAN_COPPER_SPT: 250 case E1000_DEV_ID_80003ES2LAN_SERDES_SPT: 251 mac->type = e1000_80003es2lan; 252 break; 253 case E1000_DEV_ID_ICH8_IFE: 254 case E1000_DEV_ID_ICH8_IFE_GT: 255 case E1000_DEV_ID_ICH8_IFE_G: 256 case E1000_DEV_ID_ICH8_IGP_M: 257 case E1000_DEV_ID_ICH8_IGP_M_AMT: 258 case E1000_DEV_ID_ICH8_IGP_AMT: 259 case E1000_DEV_ID_ICH8_IGP_C: 260 case E1000_DEV_ID_ICH8_82567V_3: 261 mac->type = e1000_ich8lan; 262 break; 263 case E1000_DEV_ID_ICH9_IFE: 264 case E1000_DEV_ID_ICH9_IFE_GT: 265 case E1000_DEV_ID_ICH9_IFE_G: 266 case E1000_DEV_ID_ICH9_IGP_M: 267 case E1000_DEV_ID_ICH9_IGP_M_AMT: 268 case E1000_DEV_ID_ICH9_IGP_M_V: 269 case E1000_DEV_ID_ICH9_IGP_AMT: 270 case E1000_DEV_ID_ICH9_BM: 271 case E1000_DEV_ID_ICH9_IGP_C: 272 case E1000_DEV_ID_ICH10_R_BM_LM: 273 case E1000_DEV_ID_ICH10_R_BM_LF: 274 case E1000_DEV_ID_ICH10_R_BM_V: 275 mac->type = e1000_ich9lan; 276 break; 277 case E1000_DEV_ID_ICH10_D_BM_LM: 278 case E1000_DEV_ID_ICH10_D_BM_LF: 279 case E1000_DEV_ID_ICH10_D_BM_V: 280 mac->type = e1000_ich10lan; 281 break; 282 case E1000_DEV_ID_PCH_D_HV_DM: 283 case E1000_DEV_ID_PCH_D_HV_DC: 284 case E1000_DEV_ID_PCH_M_HV_LM: 285 case E1000_DEV_ID_PCH_M_HV_LC: 286 mac->type = e1000_pchlan; 287 break; 288 case E1000_DEV_ID_PCH2_LV_LM: 289 case E1000_DEV_ID_PCH2_LV_V: 290 mac->type = e1000_pch2lan; 291 break; 292 case E1000_DEV_ID_PCH_LPT_I217_LM: 293 case E1000_DEV_ID_PCH_LPT_I217_V: 294 case E1000_DEV_ID_PCH_LPTLP_I218_LM: 295 case E1000_DEV_ID_PCH_LPTLP_I218_V: 296 case E1000_DEV_ID_PCH_I218_LM2: 297 case E1000_DEV_ID_PCH_I218_V2: 298 case E1000_DEV_ID_PCH_I218_LM3: 299 case E1000_DEV_ID_PCH_I218_V3: 300 mac->type = e1000_pch_lpt; 301 break; 302 case E1000_DEV_ID_PCH_SPT_I219_LM: 303 case E1000_DEV_ID_PCH_SPT_I219_V: 304 case E1000_DEV_ID_PCH_SPT_I219_LM2: 305 case E1000_DEV_ID_PCH_SPT_I219_V2: 306 case E1000_DEV_ID_PCH_LBG_I219_LM3: 307 case E1000_DEV_ID_PCH_SPT_I219_LM4: 308 case E1000_DEV_ID_PCH_SPT_I219_V4: 309 case E1000_DEV_ID_PCH_SPT_I219_LM5: 310 case E1000_DEV_ID_PCH_SPT_I219_V5: 311 mac->type = e1000_pch_spt; 312 break; 313 case E1000_DEV_ID_PCH_CNP_I219_LM6: 314 case E1000_DEV_ID_PCH_CNP_I219_V6: 315 case E1000_DEV_ID_PCH_CNP_I219_LM7: 316 case E1000_DEV_ID_PCH_CNP_I219_V7: 317 case E1000_DEV_ID_PCH_ICP_I219_LM8: 318 case E1000_DEV_ID_PCH_ICP_I219_V8: 319 case E1000_DEV_ID_PCH_ICP_I219_LM9: 320 case E1000_DEV_ID_PCH_ICP_I219_V9: 321 mac->type = e1000_pch_cnp; 322 break; 323 case E1000_DEV_ID_82575EB_COPPER: 324 case E1000_DEV_ID_82575EB_FIBER_SERDES: 325 case E1000_DEV_ID_82575GB_QUAD_COPPER: 326 mac->type = e1000_82575; 327 break; 328 case E1000_DEV_ID_82576: 329 case E1000_DEV_ID_82576_FIBER: 330 case E1000_DEV_ID_82576_SERDES: 331 case E1000_DEV_ID_82576_QUAD_COPPER: 332 case E1000_DEV_ID_82576_QUAD_COPPER_ET2: 333 case E1000_DEV_ID_82576_NS: 334 case E1000_DEV_ID_82576_NS_SERDES: 335 case E1000_DEV_ID_82576_SERDES_QUAD: 336 mac->type = e1000_82576; 337 break; 338 case E1000_DEV_ID_82580_COPPER: 339 case E1000_DEV_ID_82580_FIBER: 340 case E1000_DEV_ID_82580_SERDES: 341 case E1000_DEV_ID_82580_SGMII: 342 case E1000_DEV_ID_82580_COPPER_DUAL: 343 case E1000_DEV_ID_82580_QUAD_FIBER: 344 case E1000_DEV_ID_DH89XXCC_SGMII: 345 case E1000_DEV_ID_DH89XXCC_SERDES: 346 case E1000_DEV_ID_DH89XXCC_BACKPLANE: 347 case E1000_DEV_ID_DH89XXCC_SFP: 348 mac->type = e1000_82580; 349 break; 350 case E1000_DEV_ID_I350_COPPER: 351 case E1000_DEV_ID_I350_FIBER: 352 case E1000_DEV_ID_I350_SERDES: 353 case E1000_DEV_ID_I350_SGMII: 354 case E1000_DEV_ID_I350_DA4: 355 mac->type = e1000_i350; 356 break; 357 case E1000_DEV_ID_I210_COPPER_FLASHLESS: 358 case E1000_DEV_ID_I210_SERDES_FLASHLESS: 359 case E1000_DEV_ID_I210_COPPER: 360 case E1000_DEV_ID_I210_COPPER_OEM1: 361 case E1000_DEV_ID_I210_COPPER_IT: 362 case E1000_DEV_ID_I210_FIBER: 363 case E1000_DEV_ID_I210_SERDES: 364 case E1000_DEV_ID_I210_SGMII: 365 mac->type = e1000_i210; 366 break; 367 case E1000_DEV_ID_I211_COPPER: 368 mac->type = e1000_i211; 369 break; 370 case E1000_DEV_ID_82576_VF: 371 case E1000_DEV_ID_82576_VF_HV: 372 mac->type = e1000_vfadapt; 373 break; 374 case E1000_DEV_ID_I350_VF: 375 case E1000_DEV_ID_I350_VF_HV: 376 mac->type = e1000_vfadapt_i350; 377 break; 378 379 case E1000_DEV_ID_I354_BACKPLANE_1GBPS: 380 case E1000_DEV_ID_I354_SGMII: 381 case E1000_DEV_ID_I354_BACKPLANE_2_5GBPS: 382 mac->type = e1000_i354; 383 break; 384 default: 385 /* Should never have loaded on this device */ 386 ret_val = -E1000_ERR_MAC_INIT; 387 break; 388 } 389 390 return ret_val; 391 } 392 393 /** 394 * e1000_setup_init_funcs - Initializes function pointers 395 * @hw: pointer to the HW structure 396 * @init_device: TRUE will initialize the rest of the function pointers 397 * getting the device ready for use. FALSE will only set 398 * MAC type and the function pointers for the other init 399 * functions. Passing FALSE will not generate any hardware 400 * reads or writes. 401 * 402 * This function must be called by a driver in order to use the rest 403 * of the 'shared' code files. Called by drivers only. 404 **/ 405 s32 e1000_setup_init_funcs(struct e1000_hw *hw, bool init_device) 406 { 407 s32 ret_val; 408 409 /* Can't do much good without knowing the MAC type. */ 410 ret_val = e1000_set_mac_type(hw); 411 if (ret_val) { 412 DEBUGOUT("ERROR: MAC type could not be set properly.\n"); 413 goto out; 414 } 415 416 if (!hw->hw_addr) { 417 DEBUGOUT("ERROR: Registers not mapped\n"); 418 ret_val = -E1000_ERR_CONFIG; 419 goto out; 420 } 421 422 /* 423 * Init function pointers to generic implementations. We do this first 424 * allowing a driver module to override it afterward. 425 */ 426 e1000_init_mac_ops_generic(hw); 427 e1000_init_phy_ops_generic(hw); 428 e1000_init_nvm_ops_generic(hw); 429 e1000_init_mbx_ops_generic(hw); 430 431 /* 432 * Set up the init function pointers. These are functions within the 433 * adapter family file that sets up function pointers for the rest of 434 * the functions in that family. 435 */ 436 switch (hw->mac.type) { 437 case e1000_82542: 438 e1000_init_function_pointers_82542(hw); 439 break; 440 case e1000_82543: 441 case e1000_82544: 442 e1000_init_function_pointers_82543(hw); 443 break; 444 case e1000_82540: 445 case e1000_82545: 446 case e1000_82545_rev_3: 447 case e1000_82546: 448 case e1000_82546_rev_3: 449 e1000_init_function_pointers_82540(hw); 450 break; 451 case e1000_82541: 452 case e1000_82541_rev_2: 453 case e1000_82547: 454 case e1000_82547_rev_2: 455 e1000_init_function_pointers_82541(hw); 456 break; 457 case e1000_82571: 458 case e1000_82572: 459 case e1000_82573: 460 case e1000_82574: 461 case e1000_82583: 462 e1000_init_function_pointers_82571(hw); 463 break; 464 case e1000_80003es2lan: 465 e1000_init_function_pointers_80003es2lan(hw); 466 break; 467 case e1000_ich8lan: 468 case e1000_ich9lan: 469 case e1000_ich10lan: 470 case e1000_pchlan: 471 case e1000_pch2lan: 472 case e1000_pch_lpt: 473 case e1000_pch_spt: 474 case e1000_pch_cnp: 475 e1000_init_function_pointers_ich8lan(hw); 476 break; 477 case e1000_82575: 478 case e1000_82576: 479 case e1000_82580: 480 case e1000_i350: 481 case e1000_i354: 482 e1000_init_function_pointers_82575(hw); 483 break; 484 case e1000_i210: 485 case e1000_i211: 486 e1000_init_function_pointers_i210(hw); 487 break; 488 case e1000_vfadapt: 489 e1000_init_function_pointers_vf(hw); 490 break; 491 case e1000_vfadapt_i350: 492 e1000_init_function_pointers_vf(hw); 493 break; 494 default: 495 DEBUGOUT("Hardware not supported\n"); 496 ret_val = -E1000_ERR_CONFIG; 497 break; 498 } 499 500 /* 501 * Initialize the rest of the function pointers. These require some 502 * register reads/writes in some cases. 503 */ 504 if (!(ret_val) && init_device) { 505 ret_val = e1000_init_mac_params(hw); 506 if (ret_val) 507 goto out; 508 509 ret_val = e1000_init_nvm_params(hw); 510 if (ret_val) 511 goto out; 512 513 ret_val = e1000_init_phy_params(hw); 514 if (ret_val) 515 goto out; 516 517 ret_val = e1000_init_mbx_params(hw); 518 if (ret_val) 519 goto out; 520 } 521 522 out: 523 return ret_val; 524 } 525 526 /** 527 * e1000_get_bus_info - Obtain bus information for adapter 528 * @hw: pointer to the HW structure 529 * 530 * This will obtain information about the HW bus for which the 531 * adapter is attached and stores it in the hw structure. This is a 532 * function pointer entry point called by drivers. 533 **/ 534 s32 e1000_get_bus_info(struct e1000_hw *hw) 535 { 536 if (hw->mac.ops.get_bus_info) 537 return hw->mac.ops.get_bus_info(hw); 538 539 return E1000_SUCCESS; 540 } 541 542 /** 543 * e1000_clear_vfta - Clear VLAN filter table 544 * @hw: pointer to the HW structure 545 * 546 * This clears the VLAN filter table on the adapter. This is a function 547 * pointer entry point called by drivers. 548 **/ 549 void e1000_clear_vfta(struct e1000_hw *hw) 550 { 551 if (hw->mac.ops.clear_vfta) 552 hw->mac.ops.clear_vfta(hw); 553 } 554 555 /** 556 * e1000_write_vfta - Write value to VLAN filter table 557 * @hw: pointer to the HW structure 558 * @offset: the 32-bit offset in which to write the value to. 559 * @value: the 32-bit value to write at location offset. 560 * 561 * This writes a 32-bit value to a 32-bit offset in the VLAN filter 562 * table. This is a function pointer entry point called by drivers. 563 **/ 564 void e1000_write_vfta(struct e1000_hw *hw, u32 offset, u32 value) 565 { 566 if (hw->mac.ops.write_vfta) 567 hw->mac.ops.write_vfta(hw, offset, value); 568 } 569 570 /** 571 * e1000_update_mc_addr_list - Update Multicast addresses 572 * @hw: pointer to the HW structure 573 * @mc_addr_list: array of multicast addresses to program 574 * @mc_addr_count: number of multicast addresses to program 575 * 576 * Updates the Multicast Table Array. 577 * The caller must have a packed mc_addr_list of multicast addresses. 578 **/ 579 void e1000_update_mc_addr_list(struct e1000_hw *hw, u8 *mc_addr_list, 580 u32 mc_addr_count) 581 { 582 if (hw->mac.ops.update_mc_addr_list) 583 hw->mac.ops.update_mc_addr_list(hw, mc_addr_list, 584 mc_addr_count); 585 } 586 587 /** 588 * e1000_force_mac_fc - Force MAC flow control 589 * @hw: pointer to the HW structure 590 * 591 * Force the MAC's flow control settings. Currently no func pointer exists 592 * and all implementations are handled in the generic version of this 593 * function. 594 **/ 595 s32 e1000_force_mac_fc(struct e1000_hw *hw) 596 { 597 return e1000_force_mac_fc_generic(hw); 598 } 599 600 /** 601 * e1000_check_for_link - Check/Store link connection 602 * @hw: pointer to the HW structure 603 * 604 * This checks the link condition of the adapter and stores the 605 * results in the hw->mac structure. This is a function pointer entry 606 * point called by drivers. 607 **/ 608 s32 e1000_check_for_link(struct e1000_hw *hw) 609 { 610 if (hw->mac.ops.check_for_link) 611 return hw->mac.ops.check_for_link(hw); 612 613 return -E1000_ERR_CONFIG; 614 } 615 616 /** 617 * e1000_check_mng_mode - Check management mode 618 * @hw: pointer to the HW structure 619 * 620 * This checks if the adapter has manageability enabled. 621 * This is a function pointer entry point called by drivers. 622 **/ 623 bool e1000_check_mng_mode(struct e1000_hw *hw) 624 { 625 if (hw->mac.ops.check_mng_mode) 626 return hw->mac.ops.check_mng_mode(hw); 627 628 return FALSE; 629 } 630 631 /** 632 * e1000_mng_write_dhcp_info - Writes DHCP info to host interface 633 * @hw: pointer to the HW structure 634 * @buffer: pointer to the host interface 635 * @length: size of the buffer 636 * 637 * Writes the DHCP information to the host interface. 638 **/ 639 s32 e1000_mng_write_dhcp_info(struct e1000_hw *hw, u8 *buffer, u16 length) 640 { 641 return e1000_mng_write_dhcp_info_generic(hw, buffer, length); 642 } 643 644 /** 645 * e1000_reset_hw - Reset hardware 646 * @hw: pointer to the HW structure 647 * 648 * This resets the hardware into a known state. This is a function pointer 649 * entry point called by drivers. 650 **/ 651 s32 e1000_reset_hw(struct e1000_hw *hw) 652 { 653 if (hw->mac.ops.reset_hw) 654 return hw->mac.ops.reset_hw(hw); 655 656 return -E1000_ERR_CONFIG; 657 } 658 659 /** 660 * e1000_init_hw - Initialize hardware 661 * @hw: pointer to the HW structure 662 * 663 * This inits the hardware readying it for operation. This is a function 664 * pointer entry point called by drivers. 665 **/ 666 s32 e1000_init_hw(struct e1000_hw *hw) 667 { 668 if (hw->mac.ops.init_hw) 669 return hw->mac.ops.init_hw(hw); 670 671 return -E1000_ERR_CONFIG; 672 } 673 674 /** 675 * e1000_setup_link - Configures link and flow control 676 * @hw: pointer to the HW structure 677 * 678 * This configures link and flow control settings for the adapter. This 679 * is a function pointer entry point called by drivers. While modules can 680 * also call this, they probably call their own version of this function. 681 **/ 682 s32 e1000_setup_link(struct e1000_hw *hw) 683 { 684 if (hw->mac.ops.setup_link) 685 return hw->mac.ops.setup_link(hw); 686 687 return -E1000_ERR_CONFIG; 688 } 689 690 /** 691 * e1000_get_speed_and_duplex - Returns current speed and duplex 692 * @hw: pointer to the HW structure 693 * @speed: pointer to a 16-bit value to store the speed 694 * @duplex: pointer to a 16-bit value to store the duplex. 695 * 696 * This returns the speed and duplex of the adapter in the two 'out' 697 * variables passed in. This is a function pointer entry point called 698 * by drivers. 699 **/ 700 s32 e1000_get_speed_and_duplex(struct e1000_hw *hw, u16 *speed, u16 *duplex) 701 { 702 if (hw->mac.ops.get_link_up_info) 703 return hw->mac.ops.get_link_up_info(hw, speed, duplex); 704 705 return -E1000_ERR_CONFIG; 706 } 707 708 /** 709 * e1000_setup_led - Configures SW controllable LED 710 * @hw: pointer to the HW structure 711 * 712 * This prepares the SW controllable LED for use and saves the current state 713 * of the LED so it can be later restored. This is a function pointer entry 714 * point called by drivers. 715 **/ 716 s32 e1000_setup_led(struct e1000_hw *hw) 717 { 718 if (hw->mac.ops.setup_led) 719 return hw->mac.ops.setup_led(hw); 720 721 return E1000_SUCCESS; 722 } 723 724 /** 725 * e1000_cleanup_led - Restores SW controllable LED 726 * @hw: pointer to the HW structure 727 * 728 * This restores the SW controllable LED to the value saved off by 729 * e1000_setup_led. This is a function pointer entry point called by drivers. 730 **/ 731 s32 e1000_cleanup_led(struct e1000_hw *hw) 732 { 733 if (hw->mac.ops.cleanup_led) 734 return hw->mac.ops.cleanup_led(hw); 735 736 return E1000_SUCCESS; 737 } 738 739 /** 740 * e1000_blink_led - Blink SW controllable LED 741 * @hw: pointer to the HW structure 742 * 743 * This starts the adapter LED blinking. Request the LED to be setup first 744 * and cleaned up after. This is a function pointer entry point called by 745 * drivers. 746 **/ 747 s32 e1000_blink_led(struct e1000_hw *hw) 748 { 749 if (hw->mac.ops.blink_led) 750 return hw->mac.ops.blink_led(hw); 751 752 return E1000_SUCCESS; 753 } 754 755 /** 756 * e1000_id_led_init - store LED configurations in SW 757 * @hw: pointer to the HW structure 758 * 759 * Initializes the LED config in SW. This is a function pointer entry point 760 * called by drivers. 761 **/ 762 s32 e1000_id_led_init(struct e1000_hw *hw) 763 { 764 if (hw->mac.ops.id_led_init) 765 return hw->mac.ops.id_led_init(hw); 766 767 return E1000_SUCCESS; 768 } 769 770 /** 771 * e1000_led_on - Turn on SW controllable LED 772 * @hw: pointer to the HW structure 773 * 774 * Turns the SW defined LED on. This is a function pointer entry point 775 * called by drivers. 776 **/ 777 s32 e1000_led_on(struct e1000_hw *hw) 778 { 779 if (hw->mac.ops.led_on) 780 return hw->mac.ops.led_on(hw); 781 782 return E1000_SUCCESS; 783 } 784 785 /** 786 * e1000_led_off - Turn off SW controllable LED 787 * @hw: pointer to the HW structure 788 * 789 * Turns the SW defined LED off. This is a function pointer entry point 790 * called by drivers. 791 **/ 792 s32 e1000_led_off(struct e1000_hw *hw) 793 { 794 if (hw->mac.ops.led_off) 795 return hw->mac.ops.led_off(hw); 796 797 return E1000_SUCCESS; 798 } 799 800 /** 801 * e1000_reset_adaptive - Reset adaptive IFS 802 * @hw: pointer to the HW structure 803 * 804 * Resets the adaptive IFS. Currently no func pointer exists and all 805 * implementations are handled in the generic version of this function. 806 **/ 807 void e1000_reset_adaptive(struct e1000_hw *hw) 808 { 809 e1000_reset_adaptive_generic(hw); 810 } 811 812 /** 813 * e1000_update_adaptive - Update adaptive IFS 814 * @hw: pointer to the HW structure 815 * 816 * Updates adapter IFS. Currently no func pointer exists and all 817 * implementations are handled in the generic version of this function. 818 **/ 819 void e1000_update_adaptive(struct e1000_hw *hw) 820 { 821 e1000_update_adaptive_generic(hw); 822 } 823 824 /** 825 * e1000_disable_pcie_master - Disable PCI-Express master access 826 * @hw: pointer to the HW structure 827 * 828 * Disables PCI-Express master access and verifies there are no pending 829 * requests. Currently no func pointer exists and all implementations are 830 * handled in the generic version of this function. 831 **/ 832 s32 e1000_disable_pcie_master(struct e1000_hw *hw) 833 { 834 return e1000_disable_pcie_master_generic(hw); 835 } 836 837 /** 838 * e1000_config_collision_dist - Configure collision distance 839 * @hw: pointer to the HW structure 840 * 841 * Configures the collision distance to the default value and is used 842 * during link setup. 843 **/ 844 void e1000_config_collision_dist(struct e1000_hw *hw) 845 { 846 if (hw->mac.ops.config_collision_dist) 847 hw->mac.ops.config_collision_dist(hw); 848 } 849 850 /** 851 * e1000_rar_set - Sets a receive address register 852 * @hw: pointer to the HW structure 853 * @addr: address to set the RAR to 854 * @index: the RAR to set 855 * 856 * Sets a Receive Address Register (RAR) to the specified address. 857 **/ 858 int e1000_rar_set(struct e1000_hw *hw, u8 *addr, u32 index) 859 { 860 if (hw->mac.ops.rar_set) 861 return hw->mac.ops.rar_set(hw, addr, index); 862 863 return E1000_SUCCESS; 864 } 865 866 /** 867 * e1000_validate_mdi_setting - Ensures valid MDI/MDIX SW state 868 * @hw: pointer to the HW structure 869 * 870 * Ensures that the MDI/MDIX SW state is valid. 871 **/ 872 s32 e1000_validate_mdi_setting(struct e1000_hw *hw) 873 { 874 if (hw->mac.ops.validate_mdi_setting) 875 return hw->mac.ops.validate_mdi_setting(hw); 876 877 return E1000_SUCCESS; 878 } 879 880 /** 881 * e1000_hash_mc_addr - Determines address location in multicast table 882 * @hw: pointer to the HW structure 883 * @mc_addr: Multicast address to hash. 884 * 885 * This hashes an address to determine its location in the multicast 886 * table. Currently no func pointer exists and all implementations 887 * are handled in the generic version of this function. 888 **/ 889 u32 e1000_hash_mc_addr(struct e1000_hw *hw, u8 *mc_addr) 890 { 891 return e1000_hash_mc_addr_generic(hw, mc_addr); 892 } 893 894 /** 895 * e1000_enable_tx_pkt_filtering - Enable packet filtering on TX 896 * @hw: pointer to the HW structure 897 * 898 * Enables packet filtering on transmit packets if manageability is enabled 899 * and host interface is enabled. 900 * Currently no func pointer exists and all implementations are handled in the 901 * generic version of this function. 902 **/ 903 bool e1000_enable_tx_pkt_filtering(struct e1000_hw *hw) 904 { 905 return e1000_enable_tx_pkt_filtering_generic(hw); 906 } 907 908 /** 909 * e1000_mng_host_if_write - Writes to the manageability host interface 910 * @hw: pointer to the HW structure 911 * @buffer: pointer to the host interface buffer 912 * @length: size of the buffer 913 * @offset: location in the buffer to write to 914 * @sum: sum of the data (not checksum) 915 * 916 * This function writes the buffer content at the offset given on the host if. 917 * It also does alignment considerations to do the writes in most efficient 918 * way. Also fills up the sum of the buffer in *buffer parameter. 919 **/ 920 s32 e1000_mng_host_if_write(struct e1000_hw *hw, u8 *buffer, u16 length, 921 u16 offset, u8 *sum) 922 { 923 return e1000_mng_host_if_write_generic(hw, buffer, length, offset, sum); 924 } 925 926 /** 927 * e1000_mng_write_cmd_header - Writes manageability command header 928 * @hw: pointer to the HW structure 929 * @hdr: pointer to the host interface command header 930 * 931 * Writes the command header after does the checksum calculation. 932 **/ 933 s32 e1000_mng_write_cmd_header(struct e1000_hw *hw, 934 struct e1000_host_mng_command_header *hdr) 935 { 936 return e1000_mng_write_cmd_header_generic(hw, hdr); 937 } 938 939 /** 940 * e1000_mng_enable_host_if - Checks host interface is enabled 941 * @hw: pointer to the HW structure 942 * 943 * Returns E1000_success upon success, else E1000_ERR_HOST_INTERFACE_COMMAND 944 * 945 * This function checks whether the HOST IF is enabled for command operation 946 * and also checks whether the previous command is completed. It busy waits 947 * in case of previous command is not completed. 948 **/ 949 s32 e1000_mng_enable_host_if(struct e1000_hw *hw) 950 { 951 return e1000_mng_enable_host_if_generic(hw); 952 } 953 954 /** 955 * e1000_set_obff_timer - Set Optimized Buffer Flush/Fill timer 956 * @hw: pointer to the HW structure 957 * @itr: u32 indicating itr value 958 * 959 * Set the OBFF timer based on the given interrupt rate. 960 **/ 961 s32 e1000_set_obff_timer(struct e1000_hw *hw, u32 itr) 962 { 963 if (hw->mac.ops.set_obff_timer) 964 return hw->mac.ops.set_obff_timer(hw, itr); 965 966 return E1000_SUCCESS; 967 } 968 969 /** 970 * e1000_check_reset_block - Verifies PHY can be reset 971 * @hw: pointer to the HW structure 972 * 973 * Checks if the PHY is in a state that can be reset or if manageability 974 * has it tied up. This is a function pointer entry point called by drivers. 975 **/ 976 s32 e1000_check_reset_block(struct e1000_hw *hw) 977 { 978 if (hw->phy.ops.check_reset_block) 979 return hw->phy.ops.check_reset_block(hw); 980 981 return E1000_SUCCESS; 982 } 983 984 /** 985 * e1000_read_phy_reg - Reads PHY register 986 * @hw: pointer to the HW structure 987 * @offset: the register to read 988 * @data: the buffer to store the 16-bit read. 989 * 990 * Reads the PHY register and returns the value in data. 991 * This is a function pointer entry point called by drivers. 992 **/ 993 s32 e1000_read_phy_reg(struct e1000_hw *hw, u32 offset, u16 *data) 994 { 995 if (hw->phy.ops.read_reg) 996 return hw->phy.ops.read_reg(hw, offset, data); 997 998 return E1000_SUCCESS; 999 } 1000 1001 /** 1002 * e1000_write_phy_reg - Writes PHY register 1003 * @hw: pointer to the HW structure 1004 * @offset: the register to write 1005 * @data: the value to write. 1006 * 1007 * Writes the PHY register at offset with the value in data. 1008 * This is a function pointer entry point called by drivers. 1009 **/ 1010 s32 e1000_write_phy_reg(struct e1000_hw *hw, u32 offset, u16 data) 1011 { 1012 if (hw->phy.ops.write_reg) 1013 return hw->phy.ops.write_reg(hw, offset, data); 1014 1015 return E1000_SUCCESS; 1016 } 1017 1018 /** 1019 * e1000_release_phy - Generic release PHY 1020 * @hw: pointer to the HW structure 1021 * 1022 * Return if silicon family does not require a semaphore when accessing the 1023 * PHY. 1024 **/ 1025 void e1000_release_phy(struct e1000_hw *hw) 1026 { 1027 if (hw->phy.ops.release) 1028 hw->phy.ops.release(hw); 1029 } 1030 1031 /** 1032 * e1000_acquire_phy - Generic acquire PHY 1033 * @hw: pointer to the HW structure 1034 * 1035 * Return success if silicon family does not require a semaphore when 1036 * accessing the PHY. 1037 **/ 1038 s32 e1000_acquire_phy(struct e1000_hw *hw) 1039 { 1040 if (hw->phy.ops.acquire) 1041 return hw->phy.ops.acquire(hw); 1042 1043 return E1000_SUCCESS; 1044 } 1045 1046 /** 1047 * e1000_cfg_on_link_up - Configure PHY upon link up 1048 * @hw: pointer to the HW structure 1049 **/ 1050 s32 e1000_cfg_on_link_up(struct e1000_hw *hw) 1051 { 1052 if (hw->phy.ops.cfg_on_link_up) 1053 return hw->phy.ops.cfg_on_link_up(hw); 1054 1055 return E1000_SUCCESS; 1056 } 1057 1058 /** 1059 * e1000_read_kmrn_reg - Reads register using Kumeran interface 1060 * @hw: pointer to the HW structure 1061 * @offset: the register to read 1062 * @data: the location to store the 16-bit value read. 1063 * 1064 * Reads a register out of the Kumeran interface. Currently no func pointer 1065 * exists and all implementations are handled in the generic version of 1066 * this function. 1067 **/ 1068 s32 e1000_read_kmrn_reg(struct e1000_hw *hw, u32 offset, u16 *data) 1069 { 1070 return e1000_read_kmrn_reg_generic(hw, offset, data); 1071 } 1072 1073 /** 1074 * e1000_write_kmrn_reg - Writes register using Kumeran interface 1075 * @hw: pointer to the HW structure 1076 * @offset: the register to write 1077 * @data: the value to write. 1078 * 1079 * Writes a register to the Kumeran interface. Currently no func pointer 1080 * exists and all implementations are handled in the generic version of 1081 * this function. 1082 **/ 1083 s32 e1000_write_kmrn_reg(struct e1000_hw *hw, u32 offset, u16 data) 1084 { 1085 return e1000_write_kmrn_reg_generic(hw, offset, data); 1086 } 1087 1088 /** 1089 * e1000_get_cable_length - Retrieves cable length estimation 1090 * @hw: pointer to the HW structure 1091 * 1092 * This function estimates the cable length and stores them in 1093 * hw->phy.min_length and hw->phy.max_length. This is a function pointer 1094 * entry point called by drivers. 1095 **/ 1096 s32 e1000_get_cable_length(struct e1000_hw *hw) 1097 { 1098 if (hw->phy.ops.get_cable_length) 1099 return hw->phy.ops.get_cable_length(hw); 1100 1101 return E1000_SUCCESS; 1102 } 1103 1104 /** 1105 * e1000_get_phy_info - Retrieves PHY information from registers 1106 * @hw: pointer to the HW structure 1107 * 1108 * This function gets some information from various PHY registers and 1109 * populates hw->phy values with it. This is a function pointer entry 1110 * point called by drivers. 1111 **/ 1112 s32 e1000_get_phy_info(struct e1000_hw *hw) 1113 { 1114 if (hw->phy.ops.get_info) 1115 return hw->phy.ops.get_info(hw); 1116 1117 return E1000_SUCCESS; 1118 } 1119 1120 /** 1121 * e1000_phy_hw_reset - Hard PHY reset 1122 * @hw: pointer to the HW structure 1123 * 1124 * Performs a hard PHY reset. This is a function pointer entry point called 1125 * by drivers. 1126 **/ 1127 s32 e1000_phy_hw_reset(struct e1000_hw *hw) 1128 { 1129 if (hw->phy.ops.reset) 1130 return hw->phy.ops.reset(hw); 1131 1132 return E1000_SUCCESS; 1133 } 1134 1135 /** 1136 * e1000_phy_commit - Soft PHY reset 1137 * @hw: pointer to the HW structure 1138 * 1139 * Performs a soft PHY reset on those that apply. This is a function pointer 1140 * entry point called by drivers. 1141 **/ 1142 s32 e1000_phy_commit(struct e1000_hw *hw) 1143 { 1144 if (hw->phy.ops.commit) 1145 return hw->phy.ops.commit(hw); 1146 1147 return E1000_SUCCESS; 1148 } 1149 1150 /** 1151 * e1000_set_d0_lplu_state - Sets low power link up state for D0 1152 * @hw: pointer to the HW structure 1153 * @active: boolean used to enable/disable lplu 1154 * 1155 * Success returns 0, Failure returns 1 1156 * 1157 * The low power link up (lplu) state is set to the power management level D0 1158 * and SmartSpeed is disabled when active is TRUE, else clear lplu for D0 1159 * and enable Smartspeed. LPLU and Smartspeed are mutually exclusive. LPLU 1160 * is used during Dx states where the power conservation is most important. 1161 * During driver activity, SmartSpeed should be enabled so performance is 1162 * maintained. This is a function pointer entry point called by drivers. 1163 **/ 1164 s32 e1000_set_d0_lplu_state(struct e1000_hw *hw, bool active) 1165 { 1166 if (hw->phy.ops.set_d0_lplu_state) 1167 return hw->phy.ops.set_d0_lplu_state(hw, active); 1168 1169 return E1000_SUCCESS; 1170 } 1171 1172 /** 1173 * e1000_set_d3_lplu_state - Sets low power link up state for D3 1174 * @hw: pointer to the HW structure 1175 * @active: boolean used to enable/disable lplu 1176 * 1177 * Success returns 0, Failure returns 1 1178 * 1179 * The low power link up (lplu) state is set to the power management level D3 1180 * and SmartSpeed is disabled when active is TRUE, else clear lplu for D3 1181 * and enable Smartspeed. LPLU and Smartspeed are mutually exclusive. LPLU 1182 * is used during Dx states where the power conservation is most important. 1183 * During driver activity, SmartSpeed should be enabled so performance is 1184 * maintained. This is a function pointer entry point called by drivers. 1185 **/ 1186 s32 e1000_set_d3_lplu_state(struct e1000_hw *hw, bool active) 1187 { 1188 if (hw->phy.ops.set_d3_lplu_state) 1189 return hw->phy.ops.set_d3_lplu_state(hw, active); 1190 1191 return E1000_SUCCESS; 1192 } 1193 1194 /** 1195 * e1000_read_mac_addr - Reads MAC address 1196 * @hw: pointer to the HW structure 1197 * 1198 * Reads the MAC address out of the adapter and stores it in the HW structure. 1199 * Currently no func pointer exists and all implementations are handled in the 1200 * generic version of this function. 1201 **/ 1202 s32 e1000_read_mac_addr(struct e1000_hw *hw) 1203 { 1204 if (hw->mac.ops.read_mac_addr) 1205 return hw->mac.ops.read_mac_addr(hw); 1206 1207 return e1000_read_mac_addr_generic(hw); 1208 } 1209 1210 /** 1211 * e1000_read_pba_string - Read device part number string 1212 * @hw: pointer to the HW structure 1213 * @pba_num: pointer to device part number 1214 * @pba_num_size: size of part number buffer 1215 * 1216 * Reads the product board assembly (PBA) number from the EEPROM and stores 1217 * the value in pba_num. 1218 * Currently no func pointer exists and all implementations are handled in the 1219 * generic version of this function. 1220 **/ 1221 s32 e1000_read_pba_string(struct e1000_hw *hw, u8 *pba_num, u32 pba_num_size) 1222 { 1223 return e1000_read_pba_string_generic(hw, pba_num, pba_num_size); 1224 } 1225 1226 /** 1227 * e1000_read_pba_length - Read device part number string length 1228 * @hw: pointer to the HW structure 1229 * @pba_num_size: size of part number buffer 1230 * 1231 * Reads the product board assembly (PBA) number length from the EEPROM and 1232 * stores the value in pba_num. 1233 * Currently no func pointer exists and all implementations are handled in the 1234 * generic version of this function. 1235 **/ 1236 s32 e1000_read_pba_length(struct e1000_hw *hw, u32 *pba_num_size) 1237 { 1238 return e1000_read_pba_length_generic(hw, pba_num_size); 1239 } 1240 1241 /** 1242 * e1000_validate_nvm_checksum - Verifies NVM (EEPROM) checksum 1243 * @hw: pointer to the HW structure 1244 * 1245 * Validates the NVM checksum is correct. This is a function pointer entry 1246 * point called by drivers. 1247 **/ 1248 s32 e1000_validate_nvm_checksum(struct e1000_hw *hw) 1249 { 1250 if (hw->nvm.ops.validate) 1251 return hw->nvm.ops.validate(hw); 1252 1253 return -E1000_ERR_CONFIG; 1254 } 1255 1256 /** 1257 * e1000_update_nvm_checksum - Updates NVM (EEPROM) checksum 1258 * @hw: pointer to the HW structure 1259 * 1260 * Updates the NVM checksum. Currently no func pointer exists and all 1261 * implementations are handled in the generic version of this function. 1262 **/ 1263 s32 e1000_update_nvm_checksum(struct e1000_hw *hw) 1264 { 1265 if (hw->nvm.ops.update) 1266 return hw->nvm.ops.update(hw); 1267 1268 return -E1000_ERR_CONFIG; 1269 } 1270 1271 /** 1272 * e1000_reload_nvm - Reloads EEPROM 1273 * @hw: pointer to the HW structure 1274 * 1275 * Reloads the EEPROM by setting the "Reinitialize from EEPROM" bit in the 1276 * extended control register. 1277 **/ 1278 void e1000_reload_nvm(struct e1000_hw *hw) 1279 { 1280 if (hw->nvm.ops.reload) 1281 hw->nvm.ops.reload(hw); 1282 } 1283 1284 /** 1285 * e1000_read_nvm - Reads NVM (EEPROM) 1286 * @hw: pointer to the HW structure 1287 * @offset: the word offset to read 1288 * @words: number of 16-bit words to read 1289 * @data: pointer to the properly sized buffer for the data. 1290 * 1291 * Reads 16-bit chunks of data from the NVM (EEPROM). This is a function 1292 * pointer entry point called by drivers. 1293 **/ 1294 s32 e1000_read_nvm(struct e1000_hw *hw, u16 offset, u16 words, u16 *data) 1295 { 1296 if (hw->nvm.ops.read) 1297 return hw->nvm.ops.read(hw, offset, words, data); 1298 1299 return -E1000_ERR_CONFIG; 1300 } 1301 1302 /** 1303 * e1000_write_nvm - Writes to NVM (EEPROM) 1304 * @hw: pointer to the HW structure 1305 * @offset: the word offset to read 1306 * @words: number of 16-bit words to write 1307 * @data: pointer to the properly sized buffer for the data. 1308 * 1309 * Writes 16-bit chunks of data to the NVM (EEPROM). This is a function 1310 * pointer entry point called by drivers. 1311 **/ 1312 s32 e1000_write_nvm(struct e1000_hw *hw, u16 offset, u16 words, u16 *data) 1313 { 1314 if (hw->nvm.ops.write) 1315 return hw->nvm.ops.write(hw, offset, words, data); 1316 1317 return E1000_SUCCESS; 1318 } 1319 1320 /** 1321 * e1000_write_8bit_ctrl_reg - Writes 8bit Control register 1322 * @hw: pointer to the HW structure 1323 * @reg: 32bit register offset 1324 * @offset: the register to write 1325 * @data: the value to write. 1326 * 1327 * Writes the PHY register at offset with the value in data. 1328 * This is a function pointer entry point called by drivers. 1329 **/ 1330 s32 e1000_write_8bit_ctrl_reg(struct e1000_hw *hw, u32 reg, u32 offset, 1331 u8 data) 1332 { 1333 return e1000_write_8bit_ctrl_reg_generic(hw, reg, offset, data); 1334 } 1335 1336 /** 1337 * e1000_power_up_phy - Restores link in case of PHY power down 1338 * @hw: pointer to the HW structure 1339 * 1340 * The phy may be powered down to save power, to turn off link when the 1341 * driver is unloaded, or wake on lan is not enabled (among others). 1342 **/ 1343 void e1000_power_up_phy(struct e1000_hw *hw) 1344 { 1345 if (hw->phy.ops.power_up) 1346 hw->phy.ops.power_up(hw); 1347 1348 e1000_setup_link(hw); 1349 } 1350 1351 /** 1352 * e1000_power_down_phy - Power down PHY 1353 * @hw: pointer to the HW structure 1354 * 1355 * The phy may be powered down to save power, to turn off link when the 1356 * driver is unloaded, or wake on lan is not enabled (among others). 1357 **/ 1358 void e1000_power_down_phy(struct e1000_hw *hw) 1359 { 1360 if (hw->phy.ops.power_down) 1361 hw->phy.ops.power_down(hw); 1362 } 1363 1364 /** 1365 * e1000_power_up_fiber_serdes_link - Power up serdes link 1366 * @hw: pointer to the HW structure 1367 * 1368 * Power on the optics and PCS. 1369 **/ 1370 void e1000_power_up_fiber_serdes_link(struct e1000_hw *hw) 1371 { 1372 if (hw->mac.ops.power_up_serdes) 1373 hw->mac.ops.power_up_serdes(hw); 1374 } 1375 1376 /** 1377 * e1000_shutdown_fiber_serdes_link - Remove link during power down 1378 * @hw: pointer to the HW structure 1379 * 1380 * Shutdown the optics and PCS on driver unload. 1381 **/ 1382 void e1000_shutdown_fiber_serdes_link(struct e1000_hw *hw) 1383 { 1384 if (hw->mac.ops.shutdown_serdes) 1385 hw->mac.ops.shutdown_serdes(hw); 1386 } 1387 1388