1 /****************************************************************************** 2 3 Copyright (c) 2001-2015, Intel Corporation 4 All rights reserved. 5 6 Redistribution and use in source and binary forms, with or without 7 modification, are permitted provided that the following conditions are met: 8 9 1. Redistributions of source code must retain the above copyright notice, 10 this list of conditions and the following disclaimer. 11 12 2. Redistributions in binary form must reproduce the above copyright 13 notice, this list of conditions and the following disclaimer in the 14 documentation and/or other materials provided with the distribution. 15 16 3. Neither the name of the Intel Corporation nor the names of its 17 contributors may be used to endorse or promote products derived from 18 this software without specific prior written permission. 19 20 THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" 21 AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 22 IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 23 ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE 24 LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR 25 CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF 26 SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS 27 INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN 28 CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) 29 ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE 30 POSSIBILITY OF SUCH DAMAGE. 31 32 ******************************************************************************/ 33 /*$FreeBSD$*/ 34 35 #include "e1000_api.h" 36 37 /** 38 * e1000_init_mac_params - Initialize MAC function pointers 39 * @hw: pointer to the HW structure 40 * 41 * This function initializes the function pointers for the MAC 42 * set of functions. Called by drivers or by e1000_setup_init_funcs. 43 **/ 44 s32 e1000_init_mac_params(struct e1000_hw *hw) 45 { 46 s32 ret_val = E1000_SUCCESS; 47 48 if (hw->mac.ops.init_params) { 49 ret_val = hw->mac.ops.init_params(hw); 50 if (ret_val) { 51 DEBUGOUT("MAC Initialization Error\n"); 52 goto out; 53 } 54 } else { 55 DEBUGOUT("mac.init_mac_params was NULL\n"); 56 ret_val = -E1000_ERR_CONFIG; 57 } 58 59 out: 60 return ret_val; 61 } 62 63 /** 64 * e1000_init_nvm_params - Initialize NVM function pointers 65 * @hw: pointer to the HW structure 66 * 67 * This function initializes the function pointers for the NVM 68 * set of functions. Called by drivers or by e1000_setup_init_funcs. 69 **/ 70 s32 e1000_init_nvm_params(struct e1000_hw *hw) 71 { 72 s32 ret_val = E1000_SUCCESS; 73 74 if (hw->nvm.ops.init_params) { 75 ret_val = hw->nvm.ops.init_params(hw); 76 if (ret_val) { 77 DEBUGOUT("NVM Initialization Error\n"); 78 goto out; 79 } 80 } else { 81 DEBUGOUT("nvm.init_nvm_params was NULL\n"); 82 ret_val = -E1000_ERR_CONFIG; 83 } 84 85 out: 86 return ret_val; 87 } 88 89 /** 90 * e1000_init_phy_params - Initialize PHY function pointers 91 * @hw: pointer to the HW structure 92 * 93 * This function initializes the function pointers for the PHY 94 * set of functions. Called by drivers or by e1000_setup_init_funcs. 95 **/ 96 s32 e1000_init_phy_params(struct e1000_hw *hw) 97 { 98 s32 ret_val = E1000_SUCCESS; 99 100 if (hw->phy.ops.init_params) { 101 ret_val = hw->phy.ops.init_params(hw); 102 if (ret_val) { 103 DEBUGOUT("PHY Initialization Error\n"); 104 goto out; 105 } 106 } else { 107 DEBUGOUT("phy.init_phy_params was NULL\n"); 108 ret_val = -E1000_ERR_CONFIG; 109 } 110 111 out: 112 return ret_val; 113 } 114 115 /** 116 * e1000_init_mbx_params - Initialize mailbox function pointers 117 * @hw: pointer to the HW structure 118 * 119 * This function initializes the function pointers for the PHY 120 * set of functions. Called by drivers or by e1000_setup_init_funcs. 121 **/ 122 s32 e1000_init_mbx_params(struct e1000_hw *hw) 123 { 124 s32 ret_val = E1000_SUCCESS; 125 126 if (hw->mbx.ops.init_params) { 127 ret_val = hw->mbx.ops.init_params(hw); 128 if (ret_val) { 129 DEBUGOUT("Mailbox Initialization Error\n"); 130 goto out; 131 } 132 } else { 133 DEBUGOUT("mbx.init_mbx_params was NULL\n"); 134 ret_val = -E1000_ERR_CONFIG; 135 } 136 137 out: 138 return ret_val; 139 } 140 141 /** 142 * e1000_set_mac_type - Sets MAC type 143 * @hw: pointer to the HW structure 144 * 145 * This function sets the mac type of the adapter based on the 146 * device ID stored in the hw structure. 147 * MUST BE FIRST FUNCTION CALLED (explicitly or through 148 * e1000_setup_init_funcs()). 149 **/ 150 s32 e1000_set_mac_type(struct e1000_hw *hw) 151 { 152 struct e1000_mac_info *mac = &hw->mac; 153 s32 ret_val = E1000_SUCCESS; 154 155 DEBUGFUNC("e1000_set_mac_type"); 156 157 switch (hw->device_id) { 158 case E1000_DEV_ID_82542: 159 mac->type = e1000_82542; 160 break; 161 case E1000_DEV_ID_82543GC_FIBER: 162 case E1000_DEV_ID_82543GC_COPPER: 163 mac->type = e1000_82543; 164 break; 165 case E1000_DEV_ID_82544EI_COPPER: 166 case E1000_DEV_ID_82544EI_FIBER: 167 case E1000_DEV_ID_82544GC_COPPER: 168 case E1000_DEV_ID_82544GC_LOM: 169 mac->type = e1000_82544; 170 break; 171 case E1000_DEV_ID_82540EM: 172 case E1000_DEV_ID_82540EM_LOM: 173 case E1000_DEV_ID_82540EP: 174 case E1000_DEV_ID_82540EP_LOM: 175 case E1000_DEV_ID_82540EP_LP: 176 mac->type = e1000_82540; 177 break; 178 case E1000_DEV_ID_82545EM_COPPER: 179 case E1000_DEV_ID_82545EM_FIBER: 180 mac->type = e1000_82545; 181 break; 182 case E1000_DEV_ID_82545GM_COPPER: 183 case E1000_DEV_ID_82545GM_FIBER: 184 case E1000_DEV_ID_82545GM_SERDES: 185 mac->type = e1000_82545_rev_3; 186 break; 187 case E1000_DEV_ID_82546EB_COPPER: 188 case E1000_DEV_ID_82546EB_FIBER: 189 case E1000_DEV_ID_82546EB_QUAD_COPPER: 190 mac->type = e1000_82546; 191 break; 192 case E1000_DEV_ID_82546GB_COPPER: 193 case E1000_DEV_ID_82546GB_FIBER: 194 case E1000_DEV_ID_82546GB_SERDES: 195 case E1000_DEV_ID_82546GB_PCIE: 196 case E1000_DEV_ID_82546GB_QUAD_COPPER: 197 case E1000_DEV_ID_82546GB_QUAD_COPPER_KSP3: 198 mac->type = e1000_82546_rev_3; 199 break; 200 case E1000_DEV_ID_82541EI: 201 case E1000_DEV_ID_82541EI_MOBILE: 202 case E1000_DEV_ID_82541ER_LOM: 203 mac->type = e1000_82541; 204 break; 205 case E1000_DEV_ID_82541ER: 206 case E1000_DEV_ID_82541GI: 207 case E1000_DEV_ID_82541GI_LF: 208 case E1000_DEV_ID_82541GI_MOBILE: 209 mac->type = e1000_82541_rev_2; 210 break; 211 case E1000_DEV_ID_82547EI: 212 case E1000_DEV_ID_82547EI_MOBILE: 213 mac->type = e1000_82547; 214 break; 215 case E1000_DEV_ID_82547GI: 216 mac->type = e1000_82547_rev_2; 217 break; 218 case E1000_DEV_ID_82571EB_COPPER: 219 case E1000_DEV_ID_82571EB_FIBER: 220 case E1000_DEV_ID_82571EB_SERDES: 221 case E1000_DEV_ID_82571EB_SERDES_DUAL: 222 case E1000_DEV_ID_82571EB_SERDES_QUAD: 223 case E1000_DEV_ID_82571EB_QUAD_COPPER: 224 case E1000_DEV_ID_82571PT_QUAD_COPPER: 225 case E1000_DEV_ID_82571EB_QUAD_FIBER: 226 case E1000_DEV_ID_82571EB_QUAD_COPPER_LP: 227 mac->type = e1000_82571; 228 break; 229 case E1000_DEV_ID_82572EI: 230 case E1000_DEV_ID_82572EI_COPPER: 231 case E1000_DEV_ID_82572EI_FIBER: 232 case E1000_DEV_ID_82572EI_SERDES: 233 mac->type = e1000_82572; 234 break; 235 case E1000_DEV_ID_82573E: 236 case E1000_DEV_ID_82573E_IAMT: 237 case E1000_DEV_ID_82573L: 238 mac->type = e1000_82573; 239 break; 240 case E1000_DEV_ID_82574L: 241 case E1000_DEV_ID_82574LA: 242 mac->type = e1000_82574; 243 break; 244 case E1000_DEV_ID_82583V: 245 mac->type = e1000_82583; 246 break; 247 case E1000_DEV_ID_80003ES2LAN_COPPER_DPT: 248 case E1000_DEV_ID_80003ES2LAN_SERDES_DPT: 249 case E1000_DEV_ID_80003ES2LAN_COPPER_SPT: 250 case E1000_DEV_ID_80003ES2LAN_SERDES_SPT: 251 mac->type = e1000_80003es2lan; 252 break; 253 case E1000_DEV_ID_ICH8_IFE: 254 case E1000_DEV_ID_ICH8_IFE_GT: 255 case E1000_DEV_ID_ICH8_IFE_G: 256 case E1000_DEV_ID_ICH8_IGP_M: 257 case E1000_DEV_ID_ICH8_IGP_M_AMT: 258 case E1000_DEV_ID_ICH8_IGP_AMT: 259 case E1000_DEV_ID_ICH8_IGP_C: 260 case E1000_DEV_ID_ICH8_82567V_3: 261 mac->type = e1000_ich8lan; 262 break; 263 case E1000_DEV_ID_ICH9_IFE: 264 case E1000_DEV_ID_ICH9_IFE_GT: 265 case E1000_DEV_ID_ICH9_IFE_G: 266 case E1000_DEV_ID_ICH9_IGP_M: 267 case E1000_DEV_ID_ICH9_IGP_M_AMT: 268 case E1000_DEV_ID_ICH9_IGP_M_V: 269 case E1000_DEV_ID_ICH9_IGP_AMT: 270 case E1000_DEV_ID_ICH9_BM: 271 case E1000_DEV_ID_ICH9_IGP_C: 272 case E1000_DEV_ID_ICH10_R_BM_LM: 273 case E1000_DEV_ID_ICH10_R_BM_LF: 274 case E1000_DEV_ID_ICH10_R_BM_V: 275 mac->type = e1000_ich9lan; 276 break; 277 case E1000_DEV_ID_ICH10_D_BM_LM: 278 case E1000_DEV_ID_ICH10_D_BM_LF: 279 case E1000_DEV_ID_ICH10_D_BM_V: 280 mac->type = e1000_ich10lan; 281 break; 282 case E1000_DEV_ID_PCH_D_HV_DM: 283 case E1000_DEV_ID_PCH_D_HV_DC: 284 case E1000_DEV_ID_PCH_M_HV_LM: 285 case E1000_DEV_ID_PCH_M_HV_LC: 286 mac->type = e1000_pchlan; 287 break; 288 case E1000_DEV_ID_PCH2_LV_LM: 289 case E1000_DEV_ID_PCH2_LV_V: 290 mac->type = e1000_pch2lan; 291 break; 292 case E1000_DEV_ID_PCH_LPT_I217_LM: 293 case E1000_DEV_ID_PCH_LPT_I217_V: 294 case E1000_DEV_ID_PCH_LPTLP_I218_LM: 295 case E1000_DEV_ID_PCH_LPTLP_I218_V: 296 case E1000_DEV_ID_PCH_I218_LM2: 297 case E1000_DEV_ID_PCH_I218_V2: 298 case E1000_DEV_ID_PCH_I218_LM3: 299 case E1000_DEV_ID_PCH_I218_V3: 300 mac->type = e1000_pch_lpt; 301 break; 302 case E1000_DEV_ID_PCH_SPT_I219_LM: 303 case E1000_DEV_ID_PCH_SPT_I219_V: 304 case E1000_DEV_ID_PCH_SPT_I219_LM2: 305 case E1000_DEV_ID_PCH_SPT_I219_V2: 306 case E1000_DEV_ID_PCH_LBG_I219_LM3: 307 case E1000_DEV_ID_PCH_SPT_I219_LM4: 308 case E1000_DEV_ID_PCH_SPT_I219_V4: 309 case E1000_DEV_ID_PCH_SPT_I219_LM5: 310 case E1000_DEV_ID_PCH_SPT_I219_V5: 311 mac->type = e1000_pch_spt; 312 break; 313 case E1000_DEV_ID_PCH_CNP_I219_LM6: 314 case E1000_DEV_ID_PCH_CNP_I219_V6: 315 case E1000_DEV_ID_PCH_CNP_I219_LM7: 316 case E1000_DEV_ID_PCH_CNP_I219_V7: 317 case E1000_DEV_ID_PCH_ICP_I219_LM8: 318 case E1000_DEV_ID_PCH_ICP_I219_V8: 319 case E1000_DEV_ID_PCH_ICP_I219_LM9: 320 case E1000_DEV_ID_PCH_ICP_I219_V9: 321 case E1000_DEV_ID_PCH_CMP_I219_LM10: 322 case E1000_DEV_ID_PCH_CMP_I219_V10: 323 case E1000_DEV_ID_PCH_CMP_I219_LM11: 324 case E1000_DEV_ID_PCH_CMP_I219_V11: 325 case E1000_DEV_ID_PCH_CMP_I219_LM12: 326 case E1000_DEV_ID_PCH_CMP_I219_V12: 327 mac->type = e1000_pch_cnp; 328 break; 329 case E1000_DEV_ID_PCH_TGP_I219_LM13: 330 case E1000_DEV_ID_PCH_TGP_I219_V13: 331 case E1000_DEV_ID_PCH_TGP_I219_LM14: 332 case E1000_DEV_ID_PCH_TGP_I219_V14: 333 case E1000_DEV_ID_PCH_TGP_I219_LM15: 334 mac->type = e1000_pch_tgp; 335 break; 336 case E1000_DEV_ID_82575EB_COPPER: 337 case E1000_DEV_ID_82575EB_FIBER_SERDES: 338 case E1000_DEV_ID_82575GB_QUAD_COPPER: 339 mac->type = e1000_82575; 340 break; 341 case E1000_DEV_ID_82576: 342 case E1000_DEV_ID_82576_FIBER: 343 case E1000_DEV_ID_82576_SERDES: 344 case E1000_DEV_ID_82576_QUAD_COPPER: 345 case E1000_DEV_ID_82576_QUAD_COPPER_ET2: 346 case E1000_DEV_ID_82576_NS: 347 case E1000_DEV_ID_82576_NS_SERDES: 348 case E1000_DEV_ID_82576_SERDES_QUAD: 349 mac->type = e1000_82576; 350 break; 351 case E1000_DEV_ID_82580_COPPER: 352 case E1000_DEV_ID_82580_FIBER: 353 case E1000_DEV_ID_82580_SERDES: 354 case E1000_DEV_ID_82580_SGMII: 355 case E1000_DEV_ID_82580_COPPER_DUAL: 356 case E1000_DEV_ID_82580_QUAD_FIBER: 357 case E1000_DEV_ID_DH89XXCC_SGMII: 358 case E1000_DEV_ID_DH89XXCC_SERDES: 359 case E1000_DEV_ID_DH89XXCC_BACKPLANE: 360 case E1000_DEV_ID_DH89XXCC_SFP: 361 mac->type = e1000_82580; 362 break; 363 case E1000_DEV_ID_I350_COPPER: 364 case E1000_DEV_ID_I350_FIBER: 365 case E1000_DEV_ID_I350_SERDES: 366 case E1000_DEV_ID_I350_SGMII: 367 case E1000_DEV_ID_I350_DA4: 368 mac->type = e1000_i350; 369 break; 370 case E1000_DEV_ID_I210_COPPER_FLASHLESS: 371 case E1000_DEV_ID_I210_SERDES_FLASHLESS: 372 case E1000_DEV_ID_I210_COPPER: 373 case E1000_DEV_ID_I210_COPPER_OEM1: 374 case E1000_DEV_ID_I210_COPPER_IT: 375 case E1000_DEV_ID_I210_FIBER: 376 case E1000_DEV_ID_I210_SERDES: 377 case E1000_DEV_ID_I210_SGMII: 378 mac->type = e1000_i210; 379 break; 380 case E1000_DEV_ID_I211_COPPER: 381 mac->type = e1000_i211; 382 break; 383 case E1000_DEV_ID_82576_VF: 384 case E1000_DEV_ID_82576_VF_HV: 385 mac->type = e1000_vfadapt; 386 break; 387 case E1000_DEV_ID_I350_VF: 388 case E1000_DEV_ID_I350_VF_HV: 389 mac->type = e1000_vfadapt_i350; 390 break; 391 392 case E1000_DEV_ID_I354_BACKPLANE_1GBPS: 393 case E1000_DEV_ID_I354_SGMII: 394 case E1000_DEV_ID_I354_BACKPLANE_2_5GBPS: 395 mac->type = e1000_i354; 396 break; 397 default: 398 /* Should never have loaded on this device */ 399 ret_val = -E1000_ERR_MAC_INIT; 400 break; 401 } 402 403 return ret_val; 404 } 405 406 /** 407 * e1000_setup_init_funcs - Initializes function pointers 408 * @hw: pointer to the HW structure 409 * @init_device: TRUE will initialize the rest of the function pointers 410 * getting the device ready for use. FALSE will only set 411 * MAC type and the function pointers for the other init 412 * functions. Passing FALSE will not generate any hardware 413 * reads or writes. 414 * 415 * This function must be called by a driver in order to use the rest 416 * of the 'shared' code files. Called by drivers only. 417 **/ 418 s32 e1000_setup_init_funcs(struct e1000_hw *hw, bool init_device) 419 { 420 s32 ret_val; 421 422 /* Can't do much good without knowing the MAC type. */ 423 ret_val = e1000_set_mac_type(hw); 424 if (ret_val) { 425 DEBUGOUT("ERROR: MAC type could not be set properly.\n"); 426 goto out; 427 } 428 429 if (!hw->hw_addr) { 430 DEBUGOUT("ERROR: Registers not mapped\n"); 431 ret_val = -E1000_ERR_CONFIG; 432 goto out; 433 } 434 435 /* 436 * Init function pointers to generic implementations. We do this first 437 * allowing a driver module to override it afterward. 438 */ 439 e1000_init_mac_ops_generic(hw); 440 e1000_init_phy_ops_generic(hw); 441 e1000_init_nvm_ops_generic(hw); 442 e1000_init_mbx_ops_generic(hw); 443 444 /* 445 * Set up the init function pointers. These are functions within the 446 * adapter family file that sets up function pointers for the rest of 447 * the functions in that family. 448 */ 449 switch (hw->mac.type) { 450 case e1000_82542: 451 e1000_init_function_pointers_82542(hw); 452 break; 453 case e1000_82543: 454 case e1000_82544: 455 e1000_init_function_pointers_82543(hw); 456 break; 457 case e1000_82540: 458 case e1000_82545: 459 case e1000_82545_rev_3: 460 case e1000_82546: 461 case e1000_82546_rev_3: 462 e1000_init_function_pointers_82540(hw); 463 break; 464 case e1000_82541: 465 case e1000_82541_rev_2: 466 case e1000_82547: 467 case e1000_82547_rev_2: 468 e1000_init_function_pointers_82541(hw); 469 break; 470 case e1000_82571: 471 case e1000_82572: 472 case e1000_82573: 473 case e1000_82574: 474 case e1000_82583: 475 e1000_init_function_pointers_82571(hw); 476 break; 477 case e1000_80003es2lan: 478 e1000_init_function_pointers_80003es2lan(hw); 479 break; 480 case e1000_ich8lan: 481 case e1000_ich9lan: 482 case e1000_ich10lan: 483 case e1000_pchlan: 484 case e1000_pch2lan: 485 case e1000_pch_lpt: 486 case e1000_pch_spt: 487 case e1000_pch_cnp: 488 case e1000_pch_tgp: 489 e1000_init_function_pointers_ich8lan(hw); 490 break; 491 case e1000_82575: 492 case e1000_82576: 493 case e1000_82580: 494 case e1000_i350: 495 case e1000_i354: 496 e1000_init_function_pointers_82575(hw); 497 break; 498 case e1000_i210: 499 case e1000_i211: 500 e1000_init_function_pointers_i210(hw); 501 break; 502 case e1000_vfadapt: 503 e1000_init_function_pointers_vf(hw); 504 break; 505 case e1000_vfadapt_i350: 506 e1000_init_function_pointers_vf(hw); 507 break; 508 default: 509 DEBUGOUT("Hardware not supported\n"); 510 ret_val = -E1000_ERR_CONFIG; 511 break; 512 } 513 514 /* 515 * Initialize the rest of the function pointers. These require some 516 * register reads/writes in some cases. 517 */ 518 if (!(ret_val) && init_device) { 519 ret_val = e1000_init_mac_params(hw); 520 if (ret_val) 521 goto out; 522 523 ret_val = e1000_init_nvm_params(hw); 524 if (ret_val) 525 goto out; 526 527 ret_val = e1000_init_phy_params(hw); 528 if (ret_val) 529 goto out; 530 531 ret_val = e1000_init_mbx_params(hw); 532 if (ret_val) 533 goto out; 534 } 535 536 out: 537 return ret_val; 538 } 539 540 /** 541 * e1000_get_bus_info - Obtain bus information for adapter 542 * @hw: pointer to the HW structure 543 * 544 * This will obtain information about the HW bus for which the 545 * adapter is attached and stores it in the hw structure. This is a 546 * function pointer entry point called by drivers. 547 **/ 548 s32 e1000_get_bus_info(struct e1000_hw *hw) 549 { 550 if (hw->mac.ops.get_bus_info) 551 return hw->mac.ops.get_bus_info(hw); 552 553 return E1000_SUCCESS; 554 } 555 556 /** 557 * e1000_clear_vfta - Clear VLAN filter table 558 * @hw: pointer to the HW structure 559 * 560 * This clears the VLAN filter table on the adapter. This is a function 561 * pointer entry point called by drivers. 562 **/ 563 void e1000_clear_vfta(struct e1000_hw *hw) 564 { 565 if (hw->mac.ops.clear_vfta) 566 hw->mac.ops.clear_vfta(hw); 567 } 568 569 /** 570 * e1000_write_vfta - Write value to VLAN filter table 571 * @hw: pointer to the HW structure 572 * @offset: the 32-bit offset in which to write the value to. 573 * @value: the 32-bit value to write at location offset. 574 * 575 * This writes a 32-bit value to a 32-bit offset in the VLAN filter 576 * table. This is a function pointer entry point called by drivers. 577 **/ 578 void e1000_write_vfta(struct e1000_hw *hw, u32 offset, u32 value) 579 { 580 if (hw->mac.ops.write_vfta) 581 hw->mac.ops.write_vfta(hw, offset, value); 582 } 583 584 /** 585 * e1000_update_mc_addr_list - Update Multicast addresses 586 * @hw: pointer to the HW structure 587 * @mc_addr_list: array of multicast addresses to program 588 * @mc_addr_count: number of multicast addresses to program 589 * 590 * Updates the Multicast Table Array. 591 * The caller must have a packed mc_addr_list of multicast addresses. 592 **/ 593 void e1000_update_mc_addr_list(struct e1000_hw *hw, u8 *mc_addr_list, 594 u32 mc_addr_count) 595 { 596 if (hw->mac.ops.update_mc_addr_list) 597 hw->mac.ops.update_mc_addr_list(hw, mc_addr_list, 598 mc_addr_count); 599 } 600 601 /** 602 * e1000_force_mac_fc - Force MAC flow control 603 * @hw: pointer to the HW structure 604 * 605 * Force the MAC's flow control settings. Currently no func pointer exists 606 * and all implementations are handled in the generic version of this 607 * function. 608 **/ 609 s32 e1000_force_mac_fc(struct e1000_hw *hw) 610 { 611 return e1000_force_mac_fc_generic(hw); 612 } 613 614 /** 615 * e1000_check_for_link - Check/Store link connection 616 * @hw: pointer to the HW structure 617 * 618 * This checks the link condition of the adapter and stores the 619 * results in the hw->mac structure. This is a function pointer entry 620 * point called by drivers. 621 **/ 622 s32 e1000_check_for_link(struct e1000_hw *hw) 623 { 624 if (hw->mac.ops.check_for_link) 625 return hw->mac.ops.check_for_link(hw); 626 627 return -E1000_ERR_CONFIG; 628 } 629 630 /** 631 * e1000_check_mng_mode - Check management mode 632 * @hw: pointer to the HW structure 633 * 634 * This checks if the adapter has manageability enabled. 635 * This is a function pointer entry point called by drivers. 636 **/ 637 bool e1000_check_mng_mode(struct e1000_hw *hw) 638 { 639 if (hw->mac.ops.check_mng_mode) 640 return hw->mac.ops.check_mng_mode(hw); 641 642 return FALSE; 643 } 644 645 /** 646 * e1000_mng_write_dhcp_info - Writes DHCP info to host interface 647 * @hw: pointer to the HW structure 648 * @buffer: pointer to the host interface 649 * @length: size of the buffer 650 * 651 * Writes the DHCP information to the host interface. 652 **/ 653 s32 e1000_mng_write_dhcp_info(struct e1000_hw *hw, u8 *buffer, u16 length) 654 { 655 return e1000_mng_write_dhcp_info_generic(hw, buffer, length); 656 } 657 658 /** 659 * e1000_reset_hw - Reset hardware 660 * @hw: pointer to the HW structure 661 * 662 * This resets the hardware into a known state. This is a function pointer 663 * entry point called by drivers. 664 **/ 665 s32 e1000_reset_hw(struct e1000_hw *hw) 666 { 667 if (hw->mac.ops.reset_hw) 668 return hw->mac.ops.reset_hw(hw); 669 670 return -E1000_ERR_CONFIG; 671 } 672 673 /** 674 * e1000_init_hw - Initialize hardware 675 * @hw: pointer to the HW structure 676 * 677 * This inits the hardware readying it for operation. This is a function 678 * pointer entry point called by drivers. 679 **/ 680 s32 e1000_init_hw(struct e1000_hw *hw) 681 { 682 if (hw->mac.ops.init_hw) 683 return hw->mac.ops.init_hw(hw); 684 685 return -E1000_ERR_CONFIG; 686 } 687 688 /** 689 * e1000_setup_link - Configures link and flow control 690 * @hw: pointer to the HW structure 691 * 692 * This configures link and flow control settings for the adapter. This 693 * is a function pointer entry point called by drivers. While modules can 694 * also call this, they probably call their own version of this function. 695 **/ 696 s32 e1000_setup_link(struct e1000_hw *hw) 697 { 698 if (hw->mac.ops.setup_link) 699 return hw->mac.ops.setup_link(hw); 700 701 return -E1000_ERR_CONFIG; 702 } 703 704 /** 705 * e1000_get_speed_and_duplex - Returns current speed and duplex 706 * @hw: pointer to the HW structure 707 * @speed: pointer to a 16-bit value to store the speed 708 * @duplex: pointer to a 16-bit value to store the duplex. 709 * 710 * This returns the speed and duplex of the adapter in the two 'out' 711 * variables passed in. This is a function pointer entry point called 712 * by drivers. 713 **/ 714 s32 e1000_get_speed_and_duplex(struct e1000_hw *hw, u16 *speed, u16 *duplex) 715 { 716 if (hw->mac.ops.get_link_up_info) 717 return hw->mac.ops.get_link_up_info(hw, speed, duplex); 718 719 return -E1000_ERR_CONFIG; 720 } 721 722 /** 723 * e1000_setup_led - Configures SW controllable LED 724 * @hw: pointer to the HW structure 725 * 726 * This prepares the SW controllable LED for use and saves the current state 727 * of the LED so it can be later restored. This is a function pointer entry 728 * point called by drivers. 729 **/ 730 s32 e1000_setup_led(struct e1000_hw *hw) 731 { 732 if (hw->mac.ops.setup_led) 733 return hw->mac.ops.setup_led(hw); 734 735 return E1000_SUCCESS; 736 } 737 738 /** 739 * e1000_cleanup_led - Restores SW controllable LED 740 * @hw: pointer to the HW structure 741 * 742 * This restores the SW controllable LED to the value saved off by 743 * e1000_setup_led. This is a function pointer entry point called by drivers. 744 **/ 745 s32 e1000_cleanup_led(struct e1000_hw *hw) 746 { 747 if (hw->mac.ops.cleanup_led) 748 return hw->mac.ops.cleanup_led(hw); 749 750 return E1000_SUCCESS; 751 } 752 753 /** 754 * e1000_blink_led - Blink SW controllable LED 755 * @hw: pointer to the HW structure 756 * 757 * This starts the adapter LED blinking. Request the LED to be setup first 758 * and cleaned up after. This is a function pointer entry point called by 759 * drivers. 760 **/ 761 s32 e1000_blink_led(struct e1000_hw *hw) 762 { 763 if (hw->mac.ops.blink_led) 764 return hw->mac.ops.blink_led(hw); 765 766 return E1000_SUCCESS; 767 } 768 769 /** 770 * e1000_id_led_init - store LED configurations in SW 771 * @hw: pointer to the HW structure 772 * 773 * Initializes the LED config in SW. This is a function pointer entry point 774 * called by drivers. 775 **/ 776 s32 e1000_id_led_init(struct e1000_hw *hw) 777 { 778 if (hw->mac.ops.id_led_init) 779 return hw->mac.ops.id_led_init(hw); 780 781 return E1000_SUCCESS; 782 } 783 784 /** 785 * e1000_led_on - Turn on SW controllable LED 786 * @hw: pointer to the HW structure 787 * 788 * Turns the SW defined LED on. This is a function pointer entry point 789 * called by drivers. 790 **/ 791 s32 e1000_led_on(struct e1000_hw *hw) 792 { 793 if (hw->mac.ops.led_on) 794 return hw->mac.ops.led_on(hw); 795 796 return E1000_SUCCESS; 797 } 798 799 /** 800 * e1000_led_off - Turn off SW controllable LED 801 * @hw: pointer to the HW structure 802 * 803 * Turns the SW defined LED off. This is a function pointer entry point 804 * called by drivers. 805 **/ 806 s32 e1000_led_off(struct e1000_hw *hw) 807 { 808 if (hw->mac.ops.led_off) 809 return hw->mac.ops.led_off(hw); 810 811 return E1000_SUCCESS; 812 } 813 814 /** 815 * e1000_reset_adaptive - Reset adaptive IFS 816 * @hw: pointer to the HW structure 817 * 818 * Resets the adaptive IFS. Currently no func pointer exists and all 819 * implementations are handled in the generic version of this function. 820 **/ 821 void e1000_reset_adaptive(struct e1000_hw *hw) 822 { 823 e1000_reset_adaptive_generic(hw); 824 } 825 826 /** 827 * e1000_update_adaptive - Update adaptive IFS 828 * @hw: pointer to the HW structure 829 * 830 * Updates adapter IFS. Currently no func pointer exists and all 831 * implementations are handled in the generic version of this function. 832 **/ 833 void e1000_update_adaptive(struct e1000_hw *hw) 834 { 835 e1000_update_adaptive_generic(hw); 836 } 837 838 /** 839 * e1000_disable_pcie_master - Disable PCI-Express master access 840 * @hw: pointer to the HW structure 841 * 842 * Disables PCI-Express master access and verifies there are no pending 843 * requests. Currently no func pointer exists and all implementations are 844 * handled in the generic version of this function. 845 **/ 846 s32 e1000_disable_pcie_master(struct e1000_hw *hw) 847 { 848 return e1000_disable_pcie_master_generic(hw); 849 } 850 851 /** 852 * e1000_config_collision_dist - Configure collision distance 853 * @hw: pointer to the HW structure 854 * 855 * Configures the collision distance to the default value and is used 856 * during link setup. 857 **/ 858 void e1000_config_collision_dist(struct e1000_hw *hw) 859 { 860 if (hw->mac.ops.config_collision_dist) 861 hw->mac.ops.config_collision_dist(hw); 862 } 863 864 /** 865 * e1000_rar_set - Sets a receive address register 866 * @hw: pointer to the HW structure 867 * @addr: address to set the RAR to 868 * @index: the RAR to set 869 * 870 * Sets a Receive Address Register (RAR) to the specified address. 871 **/ 872 int e1000_rar_set(struct e1000_hw *hw, u8 *addr, u32 index) 873 { 874 if (hw->mac.ops.rar_set) 875 return hw->mac.ops.rar_set(hw, addr, index); 876 877 return E1000_SUCCESS; 878 } 879 880 /** 881 * e1000_validate_mdi_setting - Ensures valid MDI/MDIX SW state 882 * @hw: pointer to the HW structure 883 * 884 * Ensures that the MDI/MDIX SW state is valid. 885 **/ 886 s32 e1000_validate_mdi_setting(struct e1000_hw *hw) 887 { 888 if (hw->mac.ops.validate_mdi_setting) 889 return hw->mac.ops.validate_mdi_setting(hw); 890 891 return E1000_SUCCESS; 892 } 893 894 /** 895 * e1000_hash_mc_addr - Determines address location in multicast table 896 * @hw: pointer to the HW structure 897 * @mc_addr: Multicast address to hash. 898 * 899 * This hashes an address to determine its location in the multicast 900 * table. Currently no func pointer exists and all implementations 901 * are handled in the generic version of this function. 902 **/ 903 u32 e1000_hash_mc_addr(struct e1000_hw *hw, u8 *mc_addr) 904 { 905 return e1000_hash_mc_addr_generic(hw, mc_addr); 906 } 907 908 /** 909 * e1000_enable_tx_pkt_filtering - Enable packet filtering on TX 910 * @hw: pointer to the HW structure 911 * 912 * Enables packet filtering on transmit packets if manageability is enabled 913 * and host interface is enabled. 914 * Currently no func pointer exists and all implementations are handled in the 915 * generic version of this function. 916 **/ 917 bool e1000_enable_tx_pkt_filtering(struct e1000_hw *hw) 918 { 919 return e1000_enable_tx_pkt_filtering_generic(hw); 920 } 921 922 /** 923 * e1000_mng_host_if_write - Writes to the manageability host interface 924 * @hw: pointer to the HW structure 925 * @buffer: pointer to the host interface buffer 926 * @length: size of the buffer 927 * @offset: location in the buffer to write to 928 * @sum: sum of the data (not checksum) 929 * 930 * This function writes the buffer content at the offset given on the host if. 931 * It also does alignment considerations to do the writes in most efficient 932 * way. Also fills up the sum of the buffer in *buffer parameter. 933 **/ 934 s32 e1000_mng_host_if_write(struct e1000_hw *hw, u8 *buffer, u16 length, 935 u16 offset, u8 *sum) 936 { 937 return e1000_mng_host_if_write_generic(hw, buffer, length, offset, sum); 938 } 939 940 /** 941 * e1000_mng_write_cmd_header - Writes manageability command header 942 * @hw: pointer to the HW structure 943 * @hdr: pointer to the host interface command header 944 * 945 * Writes the command header after does the checksum calculation. 946 **/ 947 s32 e1000_mng_write_cmd_header(struct e1000_hw *hw, 948 struct e1000_host_mng_command_header *hdr) 949 { 950 return e1000_mng_write_cmd_header_generic(hw, hdr); 951 } 952 953 /** 954 * e1000_mng_enable_host_if - Checks host interface is enabled 955 * @hw: pointer to the HW structure 956 * 957 * Returns E1000_success upon success, else E1000_ERR_HOST_INTERFACE_COMMAND 958 * 959 * This function checks whether the HOST IF is enabled for command operation 960 * and also checks whether the previous command is completed. It busy waits 961 * in case of previous command is not completed. 962 **/ 963 s32 e1000_mng_enable_host_if(struct e1000_hw *hw) 964 { 965 return e1000_mng_enable_host_if_generic(hw); 966 } 967 968 /** 969 * e1000_set_obff_timer - Set Optimized Buffer Flush/Fill timer 970 * @hw: pointer to the HW structure 971 * @itr: u32 indicating itr value 972 * 973 * Set the OBFF timer based on the given interrupt rate. 974 **/ 975 s32 e1000_set_obff_timer(struct e1000_hw *hw, u32 itr) 976 { 977 if (hw->mac.ops.set_obff_timer) 978 return hw->mac.ops.set_obff_timer(hw, itr); 979 980 return E1000_SUCCESS; 981 } 982 983 /** 984 * e1000_check_reset_block - Verifies PHY can be reset 985 * @hw: pointer to the HW structure 986 * 987 * Checks if the PHY is in a state that can be reset or if manageability 988 * has it tied up. This is a function pointer entry point called by drivers. 989 **/ 990 s32 e1000_check_reset_block(struct e1000_hw *hw) 991 { 992 if (hw->phy.ops.check_reset_block) 993 return hw->phy.ops.check_reset_block(hw); 994 995 return E1000_SUCCESS; 996 } 997 998 /** 999 * e1000_read_phy_reg - Reads PHY register 1000 * @hw: pointer to the HW structure 1001 * @offset: the register to read 1002 * @data: the buffer to store the 16-bit read. 1003 * 1004 * Reads the PHY register and returns the value in data. 1005 * This is a function pointer entry point called by drivers. 1006 **/ 1007 s32 e1000_read_phy_reg(struct e1000_hw *hw, u32 offset, u16 *data) 1008 { 1009 if (hw->phy.ops.read_reg) 1010 return hw->phy.ops.read_reg(hw, offset, data); 1011 1012 return E1000_SUCCESS; 1013 } 1014 1015 /** 1016 * e1000_write_phy_reg - Writes PHY register 1017 * @hw: pointer to the HW structure 1018 * @offset: the register to write 1019 * @data: the value to write. 1020 * 1021 * Writes the PHY register at offset with the value in data. 1022 * This is a function pointer entry point called by drivers. 1023 **/ 1024 s32 e1000_write_phy_reg(struct e1000_hw *hw, u32 offset, u16 data) 1025 { 1026 if (hw->phy.ops.write_reg) 1027 return hw->phy.ops.write_reg(hw, offset, data); 1028 1029 return E1000_SUCCESS; 1030 } 1031 1032 /** 1033 * e1000_release_phy - Generic release PHY 1034 * @hw: pointer to the HW structure 1035 * 1036 * Return if silicon family does not require a semaphore when accessing the 1037 * PHY. 1038 **/ 1039 void e1000_release_phy(struct e1000_hw *hw) 1040 { 1041 if (hw->phy.ops.release) 1042 hw->phy.ops.release(hw); 1043 } 1044 1045 /** 1046 * e1000_acquire_phy - Generic acquire PHY 1047 * @hw: pointer to the HW structure 1048 * 1049 * Return success if silicon family does not require a semaphore when 1050 * accessing the PHY. 1051 **/ 1052 s32 e1000_acquire_phy(struct e1000_hw *hw) 1053 { 1054 if (hw->phy.ops.acquire) 1055 return hw->phy.ops.acquire(hw); 1056 1057 return E1000_SUCCESS; 1058 } 1059 1060 /** 1061 * e1000_cfg_on_link_up - Configure PHY upon link up 1062 * @hw: pointer to the HW structure 1063 **/ 1064 s32 e1000_cfg_on_link_up(struct e1000_hw *hw) 1065 { 1066 if (hw->phy.ops.cfg_on_link_up) 1067 return hw->phy.ops.cfg_on_link_up(hw); 1068 1069 return E1000_SUCCESS; 1070 } 1071 1072 /** 1073 * e1000_read_kmrn_reg - Reads register using Kumeran interface 1074 * @hw: pointer to the HW structure 1075 * @offset: the register to read 1076 * @data: the location to store the 16-bit value read. 1077 * 1078 * Reads a register out of the Kumeran interface. Currently no func pointer 1079 * exists and all implementations are handled in the generic version of 1080 * this function. 1081 **/ 1082 s32 e1000_read_kmrn_reg(struct e1000_hw *hw, u32 offset, u16 *data) 1083 { 1084 return e1000_read_kmrn_reg_generic(hw, offset, data); 1085 } 1086 1087 /** 1088 * e1000_write_kmrn_reg - Writes register using Kumeran interface 1089 * @hw: pointer to the HW structure 1090 * @offset: the register to write 1091 * @data: the value to write. 1092 * 1093 * Writes a register to the Kumeran interface. Currently no func pointer 1094 * exists and all implementations are handled in the generic version of 1095 * this function. 1096 **/ 1097 s32 e1000_write_kmrn_reg(struct e1000_hw *hw, u32 offset, u16 data) 1098 { 1099 return e1000_write_kmrn_reg_generic(hw, offset, data); 1100 } 1101 1102 /** 1103 * e1000_get_cable_length - Retrieves cable length estimation 1104 * @hw: pointer to the HW structure 1105 * 1106 * This function estimates the cable length and stores them in 1107 * hw->phy.min_length and hw->phy.max_length. This is a function pointer 1108 * entry point called by drivers. 1109 **/ 1110 s32 e1000_get_cable_length(struct e1000_hw *hw) 1111 { 1112 if (hw->phy.ops.get_cable_length) 1113 return hw->phy.ops.get_cable_length(hw); 1114 1115 return E1000_SUCCESS; 1116 } 1117 1118 /** 1119 * e1000_get_phy_info - Retrieves PHY information from registers 1120 * @hw: pointer to the HW structure 1121 * 1122 * This function gets some information from various PHY registers and 1123 * populates hw->phy values with it. This is a function pointer entry 1124 * point called by drivers. 1125 **/ 1126 s32 e1000_get_phy_info(struct e1000_hw *hw) 1127 { 1128 if (hw->phy.ops.get_info) 1129 return hw->phy.ops.get_info(hw); 1130 1131 return E1000_SUCCESS; 1132 } 1133 1134 /** 1135 * e1000_phy_hw_reset - Hard PHY reset 1136 * @hw: pointer to the HW structure 1137 * 1138 * Performs a hard PHY reset. This is a function pointer entry point called 1139 * by drivers. 1140 **/ 1141 s32 e1000_phy_hw_reset(struct e1000_hw *hw) 1142 { 1143 if (hw->phy.ops.reset) 1144 return hw->phy.ops.reset(hw); 1145 1146 return E1000_SUCCESS; 1147 } 1148 1149 /** 1150 * e1000_phy_commit - Soft PHY reset 1151 * @hw: pointer to the HW structure 1152 * 1153 * Performs a soft PHY reset on those that apply. This is a function pointer 1154 * entry point called by drivers. 1155 **/ 1156 s32 e1000_phy_commit(struct e1000_hw *hw) 1157 { 1158 if (hw->phy.ops.commit) 1159 return hw->phy.ops.commit(hw); 1160 1161 return E1000_SUCCESS; 1162 } 1163 1164 /** 1165 * e1000_set_d0_lplu_state - Sets low power link up state for D0 1166 * @hw: pointer to the HW structure 1167 * @active: boolean used to enable/disable lplu 1168 * 1169 * Success returns 0, Failure returns 1 1170 * 1171 * The low power link up (lplu) state is set to the power management level D0 1172 * and SmartSpeed is disabled when active is TRUE, else clear lplu for D0 1173 * and enable Smartspeed. LPLU and Smartspeed are mutually exclusive. LPLU 1174 * is used during Dx states where the power conservation is most important. 1175 * During driver activity, SmartSpeed should be enabled so performance is 1176 * maintained. This is a function pointer entry point called by drivers. 1177 **/ 1178 s32 e1000_set_d0_lplu_state(struct e1000_hw *hw, bool active) 1179 { 1180 if (hw->phy.ops.set_d0_lplu_state) 1181 return hw->phy.ops.set_d0_lplu_state(hw, active); 1182 1183 return E1000_SUCCESS; 1184 } 1185 1186 /** 1187 * e1000_set_d3_lplu_state - Sets low power link up state for D3 1188 * @hw: pointer to the HW structure 1189 * @active: boolean used to enable/disable lplu 1190 * 1191 * Success returns 0, Failure returns 1 1192 * 1193 * The low power link up (lplu) state is set to the power management level D3 1194 * and SmartSpeed is disabled when active is TRUE, else clear lplu for D3 1195 * and enable Smartspeed. LPLU and Smartspeed are mutually exclusive. LPLU 1196 * is used during Dx states where the power conservation is most important. 1197 * During driver activity, SmartSpeed should be enabled so performance is 1198 * maintained. This is a function pointer entry point called by drivers. 1199 **/ 1200 s32 e1000_set_d3_lplu_state(struct e1000_hw *hw, bool active) 1201 { 1202 if (hw->phy.ops.set_d3_lplu_state) 1203 return hw->phy.ops.set_d3_lplu_state(hw, active); 1204 1205 return E1000_SUCCESS; 1206 } 1207 1208 /** 1209 * e1000_read_mac_addr - Reads MAC address 1210 * @hw: pointer to the HW structure 1211 * 1212 * Reads the MAC address out of the adapter and stores it in the HW structure. 1213 * Currently no func pointer exists and all implementations are handled in the 1214 * generic version of this function. 1215 **/ 1216 s32 e1000_read_mac_addr(struct e1000_hw *hw) 1217 { 1218 if (hw->mac.ops.read_mac_addr) 1219 return hw->mac.ops.read_mac_addr(hw); 1220 1221 return e1000_read_mac_addr_generic(hw); 1222 } 1223 1224 /** 1225 * e1000_read_pba_string - Read device part number string 1226 * @hw: pointer to the HW structure 1227 * @pba_num: pointer to device part number 1228 * @pba_num_size: size of part number buffer 1229 * 1230 * Reads the product board assembly (PBA) number from the EEPROM and stores 1231 * the value in pba_num. 1232 * Currently no func pointer exists and all implementations are handled in the 1233 * generic version of this function. 1234 **/ 1235 s32 e1000_read_pba_string(struct e1000_hw *hw, u8 *pba_num, u32 pba_num_size) 1236 { 1237 return e1000_read_pba_string_generic(hw, pba_num, pba_num_size); 1238 } 1239 1240 /** 1241 * e1000_read_pba_length - Read device part number string length 1242 * @hw: pointer to the HW structure 1243 * @pba_num_size: size of part number buffer 1244 * 1245 * Reads the product board assembly (PBA) number length from the EEPROM and 1246 * stores the value in pba_num. 1247 * Currently no func pointer exists and all implementations are handled in the 1248 * generic version of this function. 1249 **/ 1250 s32 e1000_read_pba_length(struct e1000_hw *hw, u32 *pba_num_size) 1251 { 1252 return e1000_read_pba_length_generic(hw, pba_num_size); 1253 } 1254 1255 /** 1256 * e1000_validate_nvm_checksum - Verifies NVM (EEPROM) checksum 1257 * @hw: pointer to the HW structure 1258 * 1259 * Validates the NVM checksum is correct. This is a function pointer entry 1260 * point called by drivers. 1261 **/ 1262 s32 e1000_validate_nvm_checksum(struct e1000_hw *hw) 1263 { 1264 if (hw->nvm.ops.validate) 1265 return hw->nvm.ops.validate(hw); 1266 1267 return -E1000_ERR_CONFIG; 1268 } 1269 1270 /** 1271 * e1000_update_nvm_checksum - Updates NVM (EEPROM) checksum 1272 * @hw: pointer to the HW structure 1273 * 1274 * Updates the NVM checksum. Currently no func pointer exists and all 1275 * implementations are handled in the generic version of this function. 1276 **/ 1277 s32 e1000_update_nvm_checksum(struct e1000_hw *hw) 1278 { 1279 if (hw->nvm.ops.update) 1280 return hw->nvm.ops.update(hw); 1281 1282 return -E1000_ERR_CONFIG; 1283 } 1284 1285 /** 1286 * e1000_reload_nvm - Reloads EEPROM 1287 * @hw: pointer to the HW structure 1288 * 1289 * Reloads the EEPROM by setting the "Reinitialize from EEPROM" bit in the 1290 * extended control register. 1291 **/ 1292 void e1000_reload_nvm(struct e1000_hw *hw) 1293 { 1294 if (hw->nvm.ops.reload) 1295 hw->nvm.ops.reload(hw); 1296 } 1297 1298 /** 1299 * e1000_read_nvm - Reads NVM (EEPROM) 1300 * @hw: pointer to the HW structure 1301 * @offset: the word offset to read 1302 * @words: number of 16-bit words to read 1303 * @data: pointer to the properly sized buffer for the data. 1304 * 1305 * Reads 16-bit chunks of data from the NVM (EEPROM). This is a function 1306 * pointer entry point called by drivers. 1307 **/ 1308 s32 e1000_read_nvm(struct e1000_hw *hw, u16 offset, u16 words, u16 *data) 1309 { 1310 if (hw->nvm.ops.read) 1311 return hw->nvm.ops.read(hw, offset, words, data); 1312 1313 return -E1000_ERR_CONFIG; 1314 } 1315 1316 /** 1317 * e1000_write_nvm - Writes to NVM (EEPROM) 1318 * @hw: pointer to the HW structure 1319 * @offset: the word offset to read 1320 * @words: number of 16-bit words to write 1321 * @data: pointer to the properly sized buffer for the data. 1322 * 1323 * Writes 16-bit chunks of data to the NVM (EEPROM). This is a function 1324 * pointer entry point called by drivers. 1325 **/ 1326 s32 e1000_write_nvm(struct e1000_hw *hw, u16 offset, u16 words, u16 *data) 1327 { 1328 if (hw->nvm.ops.write) 1329 return hw->nvm.ops.write(hw, offset, words, data); 1330 1331 return E1000_SUCCESS; 1332 } 1333 1334 /** 1335 * e1000_write_8bit_ctrl_reg - Writes 8bit Control register 1336 * @hw: pointer to the HW structure 1337 * @reg: 32bit register offset 1338 * @offset: the register to write 1339 * @data: the value to write. 1340 * 1341 * Writes the PHY register at offset with the value in data. 1342 * This is a function pointer entry point called by drivers. 1343 **/ 1344 s32 e1000_write_8bit_ctrl_reg(struct e1000_hw *hw, u32 reg, u32 offset, 1345 u8 data) 1346 { 1347 return e1000_write_8bit_ctrl_reg_generic(hw, reg, offset, data); 1348 } 1349 1350 /** 1351 * e1000_power_up_phy - Restores link in case of PHY power down 1352 * @hw: pointer to the HW structure 1353 * 1354 * The phy may be powered down to save power, to turn off link when the 1355 * driver is unloaded, or wake on lan is not enabled (among others). 1356 **/ 1357 void e1000_power_up_phy(struct e1000_hw *hw) 1358 { 1359 if (hw->phy.ops.power_up) 1360 hw->phy.ops.power_up(hw); 1361 1362 e1000_setup_link(hw); 1363 } 1364 1365 /** 1366 * e1000_power_down_phy - Power down PHY 1367 * @hw: pointer to the HW structure 1368 * 1369 * The phy may be powered down to save power, to turn off link when the 1370 * driver is unloaded, or wake on lan is not enabled (among others). 1371 **/ 1372 void e1000_power_down_phy(struct e1000_hw *hw) 1373 { 1374 if (hw->phy.ops.power_down) 1375 hw->phy.ops.power_down(hw); 1376 } 1377 1378 /** 1379 * e1000_power_up_fiber_serdes_link - Power up serdes link 1380 * @hw: pointer to the HW structure 1381 * 1382 * Power on the optics and PCS. 1383 **/ 1384 void e1000_power_up_fiber_serdes_link(struct e1000_hw *hw) 1385 { 1386 if (hw->mac.ops.power_up_serdes) 1387 hw->mac.ops.power_up_serdes(hw); 1388 } 1389 1390 /** 1391 * e1000_shutdown_fiber_serdes_link - Remove link during power down 1392 * @hw: pointer to the HW structure 1393 * 1394 * Shutdown the optics and PCS on driver unload. 1395 **/ 1396 void e1000_shutdown_fiber_serdes_link(struct e1000_hw *hw) 1397 { 1398 if (hw->mac.ops.shutdown_serdes) 1399 hw->mac.ops.shutdown_serdes(hw); 1400 } 1401 1402