1 /****************************************************************************** 2 3 Copyright (c) 2001-2015, Intel Corporation 4 All rights reserved. 5 6 Redistribution and use in source and binary forms, with or without 7 modification, are permitted provided that the following conditions are met: 8 9 1. Redistributions of source code must retain the above copyright notice, 10 this list of conditions and the following disclaimer. 11 12 2. Redistributions in binary form must reproduce the above copyright 13 notice, this list of conditions and the following disclaimer in the 14 documentation and/or other materials provided with the distribution. 15 16 3. Neither the name of the Intel Corporation nor the names of its 17 contributors may be used to endorse or promote products derived from 18 this software without specific prior written permission. 19 20 THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" 21 AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 22 IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 23 ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE 24 LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR 25 CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF 26 SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS 27 INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN 28 CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) 29 ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE 30 POSSIBILITY OF SUCH DAMAGE. 31 32 ******************************************************************************/ 33 /*$FreeBSD$*/ 34 35 #include "e1000_api.h" 36 37 /** 38 * e1000_init_mac_params - Initialize MAC function pointers 39 * @hw: pointer to the HW structure 40 * 41 * This function initializes the function pointers for the MAC 42 * set of functions. Called by drivers or by e1000_setup_init_funcs. 43 **/ 44 s32 e1000_init_mac_params(struct e1000_hw *hw) 45 { 46 s32 ret_val = E1000_SUCCESS; 47 48 if (hw->mac.ops.init_params) { 49 ret_val = hw->mac.ops.init_params(hw); 50 if (ret_val) { 51 DEBUGOUT("MAC Initialization Error\n"); 52 goto out; 53 } 54 } else { 55 DEBUGOUT("mac.init_mac_params was NULL\n"); 56 ret_val = -E1000_ERR_CONFIG; 57 } 58 59 out: 60 return ret_val; 61 } 62 63 /** 64 * e1000_init_nvm_params - Initialize NVM function pointers 65 * @hw: pointer to the HW structure 66 * 67 * This function initializes the function pointers for the NVM 68 * set of functions. Called by drivers or by e1000_setup_init_funcs. 69 **/ 70 s32 e1000_init_nvm_params(struct e1000_hw *hw) 71 { 72 s32 ret_val = E1000_SUCCESS; 73 74 if (hw->nvm.ops.init_params) { 75 ret_val = hw->nvm.ops.init_params(hw); 76 if (ret_val) { 77 DEBUGOUT("NVM Initialization Error\n"); 78 goto out; 79 } 80 } else { 81 DEBUGOUT("nvm.init_nvm_params was NULL\n"); 82 ret_val = -E1000_ERR_CONFIG; 83 } 84 85 out: 86 return ret_val; 87 } 88 89 /** 90 * e1000_init_phy_params - Initialize PHY function pointers 91 * @hw: pointer to the HW structure 92 * 93 * This function initializes the function pointers for the PHY 94 * set of functions. Called by drivers or by e1000_setup_init_funcs. 95 **/ 96 s32 e1000_init_phy_params(struct e1000_hw *hw) 97 { 98 s32 ret_val = E1000_SUCCESS; 99 100 if (hw->phy.ops.init_params) { 101 ret_val = hw->phy.ops.init_params(hw); 102 if (ret_val) { 103 DEBUGOUT("PHY Initialization Error\n"); 104 goto out; 105 } 106 } else { 107 DEBUGOUT("phy.init_phy_params was NULL\n"); 108 ret_val = -E1000_ERR_CONFIG; 109 } 110 111 out: 112 return ret_val; 113 } 114 115 /** 116 * e1000_init_mbx_params - Initialize mailbox function pointers 117 * @hw: pointer to the HW structure 118 * 119 * This function initializes the function pointers for the PHY 120 * set of functions. Called by drivers or by e1000_setup_init_funcs. 121 **/ 122 s32 e1000_init_mbx_params(struct e1000_hw *hw) 123 { 124 s32 ret_val = E1000_SUCCESS; 125 126 if (hw->mbx.ops.init_params) { 127 ret_val = hw->mbx.ops.init_params(hw); 128 if (ret_val) { 129 DEBUGOUT("Mailbox Initialization Error\n"); 130 goto out; 131 } 132 } else { 133 DEBUGOUT("mbx.init_mbx_params was NULL\n"); 134 ret_val = -E1000_ERR_CONFIG; 135 } 136 137 out: 138 return ret_val; 139 } 140 141 /** 142 * e1000_set_mac_type - Sets MAC type 143 * @hw: pointer to the HW structure 144 * 145 * This function sets the mac type of the adapter based on the 146 * device ID stored in the hw structure. 147 * MUST BE FIRST FUNCTION CALLED (explicitly or through 148 * e1000_setup_init_funcs()). 149 **/ 150 s32 e1000_set_mac_type(struct e1000_hw *hw) 151 { 152 struct e1000_mac_info *mac = &hw->mac; 153 s32 ret_val = E1000_SUCCESS; 154 155 DEBUGFUNC("e1000_set_mac_type"); 156 157 switch (hw->device_id) { 158 case E1000_DEV_ID_82542: 159 mac->type = e1000_82542; 160 break; 161 case E1000_DEV_ID_82543GC_FIBER: 162 case E1000_DEV_ID_82543GC_COPPER: 163 mac->type = e1000_82543; 164 break; 165 case E1000_DEV_ID_82544EI_COPPER: 166 case E1000_DEV_ID_82544EI_FIBER: 167 case E1000_DEV_ID_82544GC_COPPER: 168 case E1000_DEV_ID_82544GC_LOM: 169 mac->type = e1000_82544; 170 break; 171 case E1000_DEV_ID_82540EM: 172 case E1000_DEV_ID_82540EM_LOM: 173 case E1000_DEV_ID_82540EP: 174 case E1000_DEV_ID_82540EP_LOM: 175 case E1000_DEV_ID_82540EP_LP: 176 mac->type = e1000_82540; 177 break; 178 case E1000_DEV_ID_82545EM_COPPER: 179 case E1000_DEV_ID_82545EM_FIBER: 180 mac->type = e1000_82545; 181 break; 182 case E1000_DEV_ID_82545GM_COPPER: 183 case E1000_DEV_ID_82545GM_FIBER: 184 case E1000_DEV_ID_82545GM_SERDES: 185 mac->type = e1000_82545_rev_3; 186 break; 187 case E1000_DEV_ID_82546EB_COPPER: 188 case E1000_DEV_ID_82546EB_FIBER: 189 case E1000_DEV_ID_82546EB_QUAD_COPPER: 190 mac->type = e1000_82546; 191 break; 192 case E1000_DEV_ID_82546GB_COPPER: 193 case E1000_DEV_ID_82546GB_FIBER: 194 case E1000_DEV_ID_82546GB_SERDES: 195 case E1000_DEV_ID_82546GB_PCIE: 196 case E1000_DEV_ID_82546GB_QUAD_COPPER: 197 case E1000_DEV_ID_82546GB_QUAD_COPPER_KSP3: 198 mac->type = e1000_82546_rev_3; 199 break; 200 case E1000_DEV_ID_82541EI: 201 case E1000_DEV_ID_82541EI_MOBILE: 202 case E1000_DEV_ID_82541ER_LOM: 203 mac->type = e1000_82541; 204 break; 205 case E1000_DEV_ID_82541ER: 206 case E1000_DEV_ID_82541GI: 207 case E1000_DEV_ID_82541GI_LF: 208 case E1000_DEV_ID_82541GI_MOBILE: 209 mac->type = e1000_82541_rev_2; 210 break; 211 case E1000_DEV_ID_82547EI: 212 case E1000_DEV_ID_82547EI_MOBILE: 213 mac->type = e1000_82547; 214 break; 215 case E1000_DEV_ID_82547GI: 216 mac->type = e1000_82547_rev_2; 217 break; 218 case E1000_DEV_ID_82571EB_COPPER: 219 case E1000_DEV_ID_82571EB_FIBER: 220 case E1000_DEV_ID_82571EB_SERDES: 221 case E1000_DEV_ID_82571EB_SERDES_DUAL: 222 case E1000_DEV_ID_82571EB_SERDES_QUAD: 223 case E1000_DEV_ID_82571EB_QUAD_COPPER: 224 case E1000_DEV_ID_82571PT_QUAD_COPPER: 225 case E1000_DEV_ID_82571EB_QUAD_FIBER: 226 case E1000_DEV_ID_82571EB_QUAD_COPPER_LP: 227 mac->type = e1000_82571; 228 break; 229 case E1000_DEV_ID_82572EI: 230 case E1000_DEV_ID_82572EI_COPPER: 231 case E1000_DEV_ID_82572EI_FIBER: 232 case E1000_DEV_ID_82572EI_SERDES: 233 mac->type = e1000_82572; 234 break; 235 case E1000_DEV_ID_82573E: 236 case E1000_DEV_ID_82573E_IAMT: 237 case E1000_DEV_ID_82573L: 238 mac->type = e1000_82573; 239 break; 240 case E1000_DEV_ID_82574L: 241 case E1000_DEV_ID_82574LA: 242 mac->type = e1000_82574; 243 break; 244 case E1000_DEV_ID_82583V: 245 mac->type = e1000_82583; 246 break; 247 case E1000_DEV_ID_80003ES2LAN_COPPER_DPT: 248 case E1000_DEV_ID_80003ES2LAN_SERDES_DPT: 249 case E1000_DEV_ID_80003ES2LAN_COPPER_SPT: 250 case E1000_DEV_ID_80003ES2LAN_SERDES_SPT: 251 mac->type = e1000_80003es2lan; 252 break; 253 case E1000_DEV_ID_ICH8_IFE: 254 case E1000_DEV_ID_ICH8_IFE_GT: 255 case E1000_DEV_ID_ICH8_IFE_G: 256 case E1000_DEV_ID_ICH8_IGP_M: 257 case E1000_DEV_ID_ICH8_IGP_M_AMT: 258 case E1000_DEV_ID_ICH8_IGP_AMT: 259 case E1000_DEV_ID_ICH8_IGP_C: 260 case E1000_DEV_ID_ICH8_82567V_3: 261 mac->type = e1000_ich8lan; 262 break; 263 case E1000_DEV_ID_ICH9_IFE: 264 case E1000_DEV_ID_ICH9_IFE_GT: 265 case E1000_DEV_ID_ICH9_IFE_G: 266 case E1000_DEV_ID_ICH9_IGP_M: 267 case E1000_DEV_ID_ICH9_IGP_M_AMT: 268 case E1000_DEV_ID_ICH9_IGP_M_V: 269 case E1000_DEV_ID_ICH9_IGP_AMT: 270 case E1000_DEV_ID_ICH9_BM: 271 case E1000_DEV_ID_ICH9_IGP_C: 272 case E1000_DEV_ID_ICH10_R_BM_LM: 273 case E1000_DEV_ID_ICH10_R_BM_LF: 274 case E1000_DEV_ID_ICH10_R_BM_V: 275 mac->type = e1000_ich9lan; 276 break; 277 case E1000_DEV_ID_ICH10_D_BM_LM: 278 case E1000_DEV_ID_ICH10_D_BM_LF: 279 case E1000_DEV_ID_ICH10_D_BM_V: 280 mac->type = e1000_ich10lan; 281 break; 282 case E1000_DEV_ID_PCH_D_HV_DM: 283 case E1000_DEV_ID_PCH_D_HV_DC: 284 case E1000_DEV_ID_PCH_M_HV_LM: 285 case E1000_DEV_ID_PCH_M_HV_LC: 286 mac->type = e1000_pchlan; 287 break; 288 case E1000_DEV_ID_PCH2_LV_LM: 289 case E1000_DEV_ID_PCH2_LV_V: 290 mac->type = e1000_pch2lan; 291 break; 292 case E1000_DEV_ID_PCH_LPT_I217_LM: 293 case E1000_DEV_ID_PCH_LPT_I217_V: 294 case E1000_DEV_ID_PCH_LPTLP_I218_LM: 295 case E1000_DEV_ID_PCH_LPTLP_I218_V: 296 case E1000_DEV_ID_PCH_I218_LM2: 297 case E1000_DEV_ID_PCH_I218_V2: 298 case E1000_DEV_ID_PCH_I218_LM3: 299 case E1000_DEV_ID_PCH_I218_V3: 300 mac->type = e1000_pch_lpt; 301 break; 302 case E1000_DEV_ID_PCH_SPT_I219_LM: 303 case E1000_DEV_ID_PCH_SPT_I219_V: 304 case E1000_DEV_ID_PCH_SPT_I219_LM2: 305 case E1000_DEV_ID_PCH_SPT_I219_V2: 306 case E1000_DEV_ID_PCH_LBG_I219_LM3: 307 case E1000_DEV_ID_PCH_SPT_I219_LM4: 308 case E1000_DEV_ID_PCH_SPT_I219_V4: 309 case E1000_DEV_ID_PCH_SPT_I219_LM5: 310 case E1000_DEV_ID_PCH_SPT_I219_V5: 311 mac->type = e1000_pch_spt; 312 break; 313 case E1000_DEV_ID_PCH_CNP_I219_LM6: 314 case E1000_DEV_ID_PCH_CNP_I219_V6: 315 case E1000_DEV_ID_PCH_CNP_I219_LM7: 316 case E1000_DEV_ID_PCH_CNP_I219_V7: 317 case E1000_DEV_ID_PCH_ICP_I219_LM8: 318 case E1000_DEV_ID_PCH_ICP_I219_V8: 319 case E1000_DEV_ID_PCH_ICP_I219_LM9: 320 case E1000_DEV_ID_PCH_ICP_I219_V9: 321 case E1000_DEV_ID_PCH_CMP_I219_LM10: 322 case E1000_DEV_ID_PCH_CMP_I219_V10: 323 case E1000_DEV_ID_PCH_CMP_I219_LM11: 324 case E1000_DEV_ID_PCH_CMP_I219_V11: 325 case E1000_DEV_ID_PCH_CMP_I219_LM12: 326 case E1000_DEV_ID_PCH_CMP_I219_V12: 327 mac->type = e1000_pch_cnp; 328 break; 329 case E1000_DEV_ID_PCH_TGP_I219_LM13: 330 case E1000_DEV_ID_PCH_TGP_I219_V13: 331 case E1000_DEV_ID_PCH_TGP_I219_LM14: 332 case E1000_DEV_ID_PCH_TGP_I219_V14: 333 case E1000_DEV_ID_PCH_TGP_I219_LM15: 334 case E1000_DEV_ID_PCH_TGP_I219_V15: 335 mac->type = e1000_pch_tgp; 336 break; 337 case E1000_DEV_ID_PCH_ADP_I219_LM16: 338 case E1000_DEV_ID_PCH_ADP_I219_V16: 339 case E1000_DEV_ID_PCH_ADP_I219_LM17: 340 case E1000_DEV_ID_PCH_ADP_I219_V17: 341 mac->type = e1000_pch_adp; 342 break; 343 case E1000_DEV_ID_PCH_MTP_I219_LM18: 344 case E1000_DEV_ID_PCH_MTP_I219_V18: 345 case E1000_DEV_ID_PCH_MTP_I219_LM19: 346 case E1000_DEV_ID_PCH_MTP_I219_V19: 347 mac->type = e1000_pch_mtp; 348 break; 349 case E1000_DEV_ID_PCH_LNP_I219_LM20: 350 case E1000_DEV_ID_PCH_LNP_I219_V20: 351 case E1000_DEV_ID_PCH_LNP_I219_LM21: 352 case E1000_DEV_ID_PCH_LNP_I219_V21: 353 mac->type = e1000_pch_lnp; 354 break; 355 case E1000_DEV_ID_PCH_RPL_I219_LM22: 356 case E1000_DEV_ID_PCH_RPL_I219_V22: 357 case E1000_DEV_ID_PCH_RPL_I219_LM23: 358 case E1000_DEV_ID_PCH_RPL_I219_V23: 359 mac->type = e1000_pch_rpl; 360 break; 361 case E1000_DEV_ID_82575EB_COPPER: 362 case E1000_DEV_ID_82575EB_FIBER_SERDES: 363 case E1000_DEV_ID_82575GB_QUAD_COPPER: 364 mac->type = e1000_82575; 365 break; 366 case E1000_DEV_ID_82576: 367 case E1000_DEV_ID_82576_FIBER: 368 case E1000_DEV_ID_82576_SERDES: 369 case E1000_DEV_ID_82576_QUAD_COPPER: 370 case E1000_DEV_ID_82576_QUAD_COPPER_ET2: 371 case E1000_DEV_ID_82576_NS: 372 case E1000_DEV_ID_82576_NS_SERDES: 373 case E1000_DEV_ID_82576_SERDES_QUAD: 374 mac->type = e1000_82576; 375 break; 376 case E1000_DEV_ID_82580_COPPER: 377 case E1000_DEV_ID_82580_FIBER: 378 case E1000_DEV_ID_82580_SERDES: 379 case E1000_DEV_ID_82580_SGMII: 380 case E1000_DEV_ID_82580_COPPER_DUAL: 381 case E1000_DEV_ID_82580_QUAD_FIBER: 382 case E1000_DEV_ID_DH89XXCC_SGMII: 383 case E1000_DEV_ID_DH89XXCC_SERDES: 384 case E1000_DEV_ID_DH89XXCC_BACKPLANE: 385 case E1000_DEV_ID_DH89XXCC_SFP: 386 mac->type = e1000_82580; 387 break; 388 case E1000_DEV_ID_I350_COPPER: 389 case E1000_DEV_ID_I350_FIBER: 390 case E1000_DEV_ID_I350_SERDES: 391 case E1000_DEV_ID_I350_SGMII: 392 case E1000_DEV_ID_I350_DA4: 393 mac->type = e1000_i350; 394 break; 395 case E1000_DEV_ID_I210_COPPER_FLASHLESS: 396 case E1000_DEV_ID_I210_SERDES_FLASHLESS: 397 case E1000_DEV_ID_I210_COPPER: 398 case E1000_DEV_ID_I210_COPPER_OEM1: 399 case E1000_DEV_ID_I210_COPPER_IT: 400 case E1000_DEV_ID_I210_FIBER: 401 case E1000_DEV_ID_I210_SERDES: 402 case E1000_DEV_ID_I210_SGMII: 403 mac->type = e1000_i210; 404 break; 405 case E1000_DEV_ID_I211_COPPER: 406 mac->type = e1000_i211; 407 break; 408 case E1000_DEV_ID_82576_VF: 409 case E1000_DEV_ID_82576_VF_HV: 410 mac->type = e1000_vfadapt; 411 break; 412 case E1000_DEV_ID_I350_VF: 413 case E1000_DEV_ID_I350_VF_HV: 414 mac->type = e1000_vfadapt_i350; 415 break; 416 417 case E1000_DEV_ID_I354_BACKPLANE_1GBPS: 418 case E1000_DEV_ID_I354_SGMII: 419 case E1000_DEV_ID_I354_BACKPLANE_2_5GBPS: 420 mac->type = e1000_i354; 421 break; 422 default: 423 /* Should never have loaded on this device */ 424 ret_val = -E1000_ERR_MAC_INIT; 425 break; 426 } 427 428 return ret_val; 429 } 430 431 /** 432 * e1000_setup_init_funcs - Initializes function pointers 433 * @hw: pointer to the HW structure 434 * @init_device: TRUE will initialize the rest of the function pointers 435 * getting the device ready for use. FALSE will only set 436 * MAC type and the function pointers for the other init 437 * functions. Passing FALSE will not generate any hardware 438 * reads or writes. 439 * 440 * This function must be called by a driver in order to use the rest 441 * of the 'shared' code files. Called by drivers only. 442 **/ 443 s32 e1000_setup_init_funcs(struct e1000_hw *hw, bool init_device) 444 { 445 s32 ret_val; 446 447 /* Can't do much good without knowing the MAC type. */ 448 ret_val = e1000_set_mac_type(hw); 449 if (ret_val) { 450 DEBUGOUT("ERROR: MAC type could not be set properly.\n"); 451 goto out; 452 } 453 454 if (!hw->hw_addr) { 455 DEBUGOUT("ERROR: Registers not mapped\n"); 456 ret_val = -E1000_ERR_CONFIG; 457 goto out; 458 } 459 460 /* 461 * Init function pointers to generic implementations. We do this first 462 * allowing a driver module to override it afterward. 463 */ 464 e1000_init_mac_ops_generic(hw); 465 e1000_init_phy_ops_generic(hw); 466 e1000_init_nvm_ops_generic(hw); 467 e1000_init_mbx_ops_generic(hw); 468 469 /* 470 * Set up the init function pointers. These are functions within the 471 * adapter family file that sets up function pointers for the rest of 472 * the functions in that family. 473 */ 474 switch (hw->mac.type) { 475 case e1000_82542: 476 e1000_init_function_pointers_82542(hw); 477 break; 478 case e1000_82543: 479 case e1000_82544: 480 e1000_init_function_pointers_82543(hw); 481 break; 482 case e1000_82540: 483 case e1000_82545: 484 case e1000_82545_rev_3: 485 case e1000_82546: 486 case e1000_82546_rev_3: 487 e1000_init_function_pointers_82540(hw); 488 break; 489 case e1000_82541: 490 case e1000_82541_rev_2: 491 case e1000_82547: 492 case e1000_82547_rev_2: 493 e1000_init_function_pointers_82541(hw); 494 break; 495 case e1000_82571: 496 case e1000_82572: 497 case e1000_82573: 498 case e1000_82574: 499 case e1000_82583: 500 e1000_init_function_pointers_82571(hw); 501 break; 502 case e1000_80003es2lan: 503 e1000_init_function_pointers_80003es2lan(hw); 504 break; 505 case e1000_ich8lan: 506 case e1000_ich9lan: 507 case e1000_ich10lan: 508 case e1000_pchlan: 509 case e1000_pch2lan: 510 case e1000_pch_lpt: 511 case e1000_pch_spt: 512 case e1000_pch_cnp: 513 case e1000_pch_tgp: 514 e1000_init_function_pointers_ich8lan(hw); 515 break; 516 case e1000_82575: 517 case e1000_82576: 518 case e1000_82580: 519 case e1000_i350: 520 case e1000_i354: 521 e1000_init_function_pointers_82575(hw); 522 break; 523 case e1000_i210: 524 case e1000_i211: 525 e1000_init_function_pointers_i210(hw); 526 break; 527 case e1000_vfadapt: 528 e1000_init_function_pointers_vf(hw); 529 break; 530 case e1000_vfadapt_i350: 531 e1000_init_function_pointers_vf(hw); 532 break; 533 default: 534 DEBUGOUT("Hardware not supported\n"); 535 ret_val = -E1000_ERR_CONFIG; 536 break; 537 } 538 539 /* 540 * Initialize the rest of the function pointers. These require some 541 * register reads/writes in some cases. 542 */ 543 if (!(ret_val) && init_device) { 544 ret_val = e1000_init_mac_params(hw); 545 if (ret_val) 546 goto out; 547 548 ret_val = e1000_init_nvm_params(hw); 549 if (ret_val) 550 goto out; 551 552 ret_val = e1000_init_phy_params(hw); 553 if (ret_val) 554 goto out; 555 556 ret_val = e1000_init_mbx_params(hw); 557 if (ret_val) 558 goto out; 559 } 560 561 out: 562 return ret_val; 563 } 564 565 /** 566 * e1000_get_bus_info - Obtain bus information for adapter 567 * @hw: pointer to the HW structure 568 * 569 * This will obtain information about the HW bus for which the 570 * adapter is attached and stores it in the hw structure. This is a 571 * function pointer entry point called by drivers. 572 **/ 573 s32 e1000_get_bus_info(struct e1000_hw *hw) 574 { 575 if (hw->mac.ops.get_bus_info) 576 return hw->mac.ops.get_bus_info(hw); 577 578 return E1000_SUCCESS; 579 } 580 581 /** 582 * e1000_clear_vfta - Clear VLAN filter table 583 * @hw: pointer to the HW structure 584 * 585 * This clears the VLAN filter table on the adapter. This is a function 586 * pointer entry point called by drivers. 587 **/ 588 void e1000_clear_vfta(struct e1000_hw *hw) 589 { 590 if (hw->mac.ops.clear_vfta) 591 hw->mac.ops.clear_vfta(hw); 592 } 593 594 /** 595 * e1000_write_vfta - Write value to VLAN filter table 596 * @hw: pointer to the HW structure 597 * @offset: the 32-bit offset in which to write the value to. 598 * @value: the 32-bit value to write at location offset. 599 * 600 * This writes a 32-bit value to a 32-bit offset in the VLAN filter 601 * table. This is a function pointer entry point called by drivers. 602 **/ 603 void e1000_write_vfta(struct e1000_hw *hw, u32 offset, u32 value) 604 { 605 if (hw->mac.ops.write_vfta) 606 hw->mac.ops.write_vfta(hw, offset, value); 607 } 608 609 /** 610 * e1000_update_mc_addr_list - Update Multicast addresses 611 * @hw: pointer to the HW structure 612 * @mc_addr_list: array of multicast addresses to program 613 * @mc_addr_count: number of multicast addresses to program 614 * 615 * Updates the Multicast Table Array. 616 * The caller must have a packed mc_addr_list of multicast addresses. 617 **/ 618 void e1000_update_mc_addr_list(struct e1000_hw *hw, u8 *mc_addr_list, 619 u32 mc_addr_count) 620 { 621 if (hw->mac.ops.update_mc_addr_list) 622 hw->mac.ops.update_mc_addr_list(hw, mc_addr_list, 623 mc_addr_count); 624 } 625 626 /** 627 * e1000_force_mac_fc - Force MAC flow control 628 * @hw: pointer to the HW structure 629 * 630 * Force the MAC's flow control settings. Currently no func pointer exists 631 * and all implementations are handled in the generic version of this 632 * function. 633 **/ 634 s32 e1000_force_mac_fc(struct e1000_hw *hw) 635 { 636 return e1000_force_mac_fc_generic(hw); 637 } 638 639 /** 640 * e1000_check_for_link - Check/Store link connection 641 * @hw: pointer to the HW structure 642 * 643 * This checks the link condition of the adapter and stores the 644 * results in the hw->mac structure. This is a function pointer entry 645 * point called by drivers. 646 **/ 647 s32 e1000_check_for_link(struct e1000_hw *hw) 648 { 649 if (hw->mac.ops.check_for_link) 650 return hw->mac.ops.check_for_link(hw); 651 652 return -E1000_ERR_CONFIG; 653 } 654 655 /** 656 * e1000_check_mng_mode - Check management mode 657 * @hw: pointer to the HW structure 658 * 659 * This checks if the adapter has manageability enabled. 660 * This is a function pointer entry point called by drivers. 661 **/ 662 bool e1000_check_mng_mode(struct e1000_hw *hw) 663 { 664 if (hw->mac.ops.check_mng_mode) 665 return hw->mac.ops.check_mng_mode(hw); 666 667 return FALSE; 668 } 669 670 /** 671 * e1000_mng_write_dhcp_info - Writes DHCP info to host interface 672 * @hw: pointer to the HW structure 673 * @buffer: pointer to the host interface 674 * @length: size of the buffer 675 * 676 * Writes the DHCP information to the host interface. 677 **/ 678 s32 e1000_mng_write_dhcp_info(struct e1000_hw *hw, u8 *buffer, u16 length) 679 { 680 return e1000_mng_write_dhcp_info_generic(hw, buffer, length); 681 } 682 683 /** 684 * e1000_reset_hw - Reset hardware 685 * @hw: pointer to the HW structure 686 * 687 * This resets the hardware into a known state. This is a function pointer 688 * entry point called by drivers. 689 **/ 690 s32 e1000_reset_hw(struct e1000_hw *hw) 691 { 692 if (hw->mac.ops.reset_hw) 693 return hw->mac.ops.reset_hw(hw); 694 695 return -E1000_ERR_CONFIG; 696 } 697 698 /** 699 * e1000_init_hw - Initialize hardware 700 * @hw: pointer to the HW structure 701 * 702 * This inits the hardware readying it for operation. This is a function 703 * pointer entry point called by drivers. 704 **/ 705 s32 e1000_init_hw(struct e1000_hw *hw) 706 { 707 if (hw->mac.ops.init_hw) 708 return hw->mac.ops.init_hw(hw); 709 710 return -E1000_ERR_CONFIG; 711 } 712 713 /** 714 * e1000_setup_link - Configures link and flow control 715 * @hw: pointer to the HW structure 716 * 717 * This configures link and flow control settings for the adapter. This 718 * is a function pointer entry point called by drivers. While modules can 719 * also call this, they probably call their own version of this function. 720 **/ 721 s32 e1000_setup_link(struct e1000_hw *hw) 722 { 723 if (hw->mac.ops.setup_link) 724 return hw->mac.ops.setup_link(hw); 725 726 return -E1000_ERR_CONFIG; 727 } 728 729 /** 730 * e1000_get_speed_and_duplex - Returns current speed and duplex 731 * @hw: pointer to the HW structure 732 * @speed: pointer to a 16-bit value to store the speed 733 * @duplex: pointer to a 16-bit value to store the duplex. 734 * 735 * This returns the speed and duplex of the adapter in the two 'out' 736 * variables passed in. This is a function pointer entry point called 737 * by drivers. 738 **/ 739 s32 e1000_get_speed_and_duplex(struct e1000_hw *hw, u16 *speed, u16 *duplex) 740 { 741 if (hw->mac.ops.get_link_up_info) 742 return hw->mac.ops.get_link_up_info(hw, speed, duplex); 743 744 return -E1000_ERR_CONFIG; 745 } 746 747 /** 748 * e1000_setup_led - Configures SW controllable LED 749 * @hw: pointer to the HW structure 750 * 751 * This prepares the SW controllable LED for use and saves the current state 752 * of the LED so it can be later restored. This is a function pointer entry 753 * point called by drivers. 754 **/ 755 s32 e1000_setup_led(struct e1000_hw *hw) 756 { 757 if (hw->mac.ops.setup_led) 758 return hw->mac.ops.setup_led(hw); 759 760 return E1000_SUCCESS; 761 } 762 763 /** 764 * e1000_cleanup_led - Restores SW controllable LED 765 * @hw: pointer to the HW structure 766 * 767 * This restores the SW controllable LED to the value saved off by 768 * e1000_setup_led. This is a function pointer entry point called by drivers. 769 **/ 770 s32 e1000_cleanup_led(struct e1000_hw *hw) 771 { 772 if (hw->mac.ops.cleanup_led) 773 return hw->mac.ops.cleanup_led(hw); 774 775 return E1000_SUCCESS; 776 } 777 778 /** 779 * e1000_blink_led - Blink SW controllable LED 780 * @hw: pointer to the HW structure 781 * 782 * This starts the adapter LED blinking. Request the LED to be setup first 783 * and cleaned up after. This is a function pointer entry point called by 784 * drivers. 785 **/ 786 s32 e1000_blink_led(struct e1000_hw *hw) 787 { 788 if (hw->mac.ops.blink_led) 789 return hw->mac.ops.blink_led(hw); 790 791 return E1000_SUCCESS; 792 } 793 794 /** 795 * e1000_id_led_init - store LED configurations in SW 796 * @hw: pointer to the HW structure 797 * 798 * Initializes the LED config in SW. This is a function pointer entry point 799 * called by drivers. 800 **/ 801 s32 e1000_id_led_init(struct e1000_hw *hw) 802 { 803 if (hw->mac.ops.id_led_init) 804 return hw->mac.ops.id_led_init(hw); 805 806 return E1000_SUCCESS; 807 } 808 809 /** 810 * e1000_led_on - Turn on SW controllable LED 811 * @hw: pointer to the HW structure 812 * 813 * Turns the SW defined LED on. This is a function pointer entry point 814 * called by drivers. 815 **/ 816 s32 e1000_led_on(struct e1000_hw *hw) 817 { 818 if (hw->mac.ops.led_on) 819 return hw->mac.ops.led_on(hw); 820 821 return E1000_SUCCESS; 822 } 823 824 /** 825 * e1000_led_off - Turn off SW controllable LED 826 * @hw: pointer to the HW structure 827 * 828 * Turns the SW defined LED off. This is a function pointer entry point 829 * called by drivers. 830 **/ 831 s32 e1000_led_off(struct e1000_hw *hw) 832 { 833 if (hw->mac.ops.led_off) 834 return hw->mac.ops.led_off(hw); 835 836 return E1000_SUCCESS; 837 } 838 839 /** 840 * e1000_reset_adaptive - Reset adaptive IFS 841 * @hw: pointer to the HW structure 842 * 843 * Resets the adaptive IFS. Currently no func pointer exists and all 844 * implementations are handled in the generic version of this function. 845 **/ 846 void e1000_reset_adaptive(struct e1000_hw *hw) 847 { 848 e1000_reset_adaptive_generic(hw); 849 } 850 851 /** 852 * e1000_update_adaptive - Update adaptive IFS 853 * @hw: pointer to the HW structure 854 * 855 * Updates adapter IFS. Currently no func pointer exists and all 856 * implementations are handled in the generic version of this function. 857 **/ 858 void e1000_update_adaptive(struct e1000_hw *hw) 859 { 860 e1000_update_adaptive_generic(hw); 861 } 862 863 /** 864 * e1000_disable_pcie_master - Disable PCI-Express master access 865 * @hw: pointer to the HW structure 866 * 867 * Disables PCI-Express master access and verifies there are no pending 868 * requests. Currently no func pointer exists and all implementations are 869 * handled in the generic version of this function. 870 **/ 871 s32 e1000_disable_pcie_master(struct e1000_hw *hw) 872 { 873 return e1000_disable_pcie_master_generic(hw); 874 } 875 876 /** 877 * e1000_config_collision_dist - Configure collision distance 878 * @hw: pointer to the HW structure 879 * 880 * Configures the collision distance to the default value and is used 881 * during link setup. 882 **/ 883 void e1000_config_collision_dist(struct e1000_hw *hw) 884 { 885 if (hw->mac.ops.config_collision_dist) 886 hw->mac.ops.config_collision_dist(hw); 887 } 888 889 /** 890 * e1000_rar_set - Sets a receive address register 891 * @hw: pointer to the HW structure 892 * @addr: address to set the RAR to 893 * @index: the RAR to set 894 * 895 * Sets a Receive Address Register (RAR) to the specified address. 896 **/ 897 int e1000_rar_set(struct e1000_hw *hw, u8 *addr, u32 index) 898 { 899 if (hw->mac.ops.rar_set) 900 return hw->mac.ops.rar_set(hw, addr, index); 901 902 return E1000_SUCCESS; 903 } 904 905 /** 906 * e1000_validate_mdi_setting - Ensures valid MDI/MDIX SW state 907 * @hw: pointer to the HW structure 908 * 909 * Ensures that the MDI/MDIX SW state is valid. 910 **/ 911 s32 e1000_validate_mdi_setting(struct e1000_hw *hw) 912 { 913 if (hw->mac.ops.validate_mdi_setting) 914 return hw->mac.ops.validate_mdi_setting(hw); 915 916 return E1000_SUCCESS; 917 } 918 919 /** 920 * e1000_hash_mc_addr - Determines address location in multicast table 921 * @hw: pointer to the HW structure 922 * @mc_addr: Multicast address to hash. 923 * 924 * This hashes an address to determine its location in the multicast 925 * table. Currently no func pointer exists and all implementations 926 * are handled in the generic version of this function. 927 **/ 928 u32 e1000_hash_mc_addr(struct e1000_hw *hw, u8 *mc_addr) 929 { 930 return e1000_hash_mc_addr_generic(hw, mc_addr); 931 } 932 933 /** 934 * e1000_enable_tx_pkt_filtering - Enable packet filtering on TX 935 * @hw: pointer to the HW structure 936 * 937 * Enables packet filtering on transmit packets if manageability is enabled 938 * and host interface is enabled. 939 * Currently no func pointer exists and all implementations are handled in the 940 * generic version of this function. 941 **/ 942 bool e1000_enable_tx_pkt_filtering(struct e1000_hw *hw) 943 { 944 return e1000_enable_tx_pkt_filtering_generic(hw); 945 } 946 947 /** 948 * e1000_mng_host_if_write - Writes to the manageability host interface 949 * @hw: pointer to the HW structure 950 * @buffer: pointer to the host interface buffer 951 * @length: size of the buffer 952 * @offset: location in the buffer to write to 953 * @sum: sum of the data (not checksum) 954 * 955 * This function writes the buffer content at the offset given on the host if. 956 * It also does alignment considerations to do the writes in most efficient 957 * way. Also fills up the sum of the buffer in *buffer parameter. 958 **/ 959 s32 e1000_mng_host_if_write(struct e1000_hw *hw, u8 *buffer, u16 length, 960 u16 offset, u8 *sum) 961 { 962 return e1000_mng_host_if_write_generic(hw, buffer, length, offset, sum); 963 } 964 965 /** 966 * e1000_mng_write_cmd_header - Writes manageability command header 967 * @hw: pointer to the HW structure 968 * @hdr: pointer to the host interface command header 969 * 970 * Writes the command header after does the checksum calculation. 971 **/ 972 s32 e1000_mng_write_cmd_header(struct e1000_hw *hw, 973 struct e1000_host_mng_command_header *hdr) 974 { 975 return e1000_mng_write_cmd_header_generic(hw, hdr); 976 } 977 978 /** 979 * e1000_mng_enable_host_if - Checks host interface is enabled 980 * @hw: pointer to the HW structure 981 * 982 * Returns E1000_success upon success, else E1000_ERR_HOST_INTERFACE_COMMAND 983 * 984 * This function checks whether the HOST IF is enabled for command operation 985 * and also checks whether the previous command is completed. It busy waits 986 * in case of previous command is not completed. 987 **/ 988 s32 e1000_mng_enable_host_if(struct e1000_hw *hw) 989 { 990 return e1000_mng_enable_host_if_generic(hw); 991 } 992 993 /** 994 * e1000_set_obff_timer - Set Optimized Buffer Flush/Fill timer 995 * @hw: pointer to the HW structure 996 * @itr: u32 indicating itr value 997 * 998 * Set the OBFF timer based on the given interrupt rate. 999 **/ 1000 s32 e1000_set_obff_timer(struct e1000_hw *hw, u32 itr) 1001 { 1002 if (hw->mac.ops.set_obff_timer) 1003 return hw->mac.ops.set_obff_timer(hw, itr); 1004 1005 return E1000_SUCCESS; 1006 } 1007 1008 /** 1009 * e1000_check_reset_block - Verifies PHY can be reset 1010 * @hw: pointer to the HW structure 1011 * 1012 * Checks if the PHY is in a state that can be reset or if manageability 1013 * has it tied up. This is a function pointer entry point called by drivers. 1014 **/ 1015 s32 e1000_check_reset_block(struct e1000_hw *hw) 1016 { 1017 if (hw->phy.ops.check_reset_block) 1018 return hw->phy.ops.check_reset_block(hw); 1019 1020 return E1000_SUCCESS; 1021 } 1022 1023 /** 1024 * e1000_read_phy_reg - Reads PHY register 1025 * @hw: pointer to the HW structure 1026 * @offset: the register to read 1027 * @data: the buffer to store the 16-bit read. 1028 * 1029 * Reads the PHY register and returns the value in data. 1030 * This is a function pointer entry point called by drivers. 1031 **/ 1032 s32 e1000_read_phy_reg(struct e1000_hw *hw, u32 offset, u16 *data) 1033 { 1034 if (hw->phy.ops.read_reg) 1035 return hw->phy.ops.read_reg(hw, offset, data); 1036 1037 return E1000_SUCCESS; 1038 } 1039 1040 /** 1041 * e1000_write_phy_reg - Writes PHY register 1042 * @hw: pointer to the HW structure 1043 * @offset: the register to write 1044 * @data: the value to write. 1045 * 1046 * Writes the PHY register at offset with the value in data. 1047 * This is a function pointer entry point called by drivers. 1048 **/ 1049 s32 e1000_write_phy_reg(struct e1000_hw *hw, u32 offset, u16 data) 1050 { 1051 if (hw->phy.ops.write_reg) 1052 return hw->phy.ops.write_reg(hw, offset, data); 1053 1054 return E1000_SUCCESS; 1055 } 1056 1057 /** 1058 * e1000_release_phy - Generic release PHY 1059 * @hw: pointer to the HW structure 1060 * 1061 * Return if silicon family does not require a semaphore when accessing the 1062 * PHY. 1063 **/ 1064 void e1000_release_phy(struct e1000_hw *hw) 1065 { 1066 if (hw->phy.ops.release) 1067 hw->phy.ops.release(hw); 1068 } 1069 1070 /** 1071 * e1000_acquire_phy - Generic acquire PHY 1072 * @hw: pointer to the HW structure 1073 * 1074 * Return success if silicon family does not require a semaphore when 1075 * accessing the PHY. 1076 **/ 1077 s32 e1000_acquire_phy(struct e1000_hw *hw) 1078 { 1079 if (hw->phy.ops.acquire) 1080 return hw->phy.ops.acquire(hw); 1081 1082 return E1000_SUCCESS; 1083 } 1084 1085 /** 1086 * e1000_cfg_on_link_up - Configure PHY upon link up 1087 * @hw: pointer to the HW structure 1088 **/ 1089 s32 e1000_cfg_on_link_up(struct e1000_hw *hw) 1090 { 1091 if (hw->phy.ops.cfg_on_link_up) 1092 return hw->phy.ops.cfg_on_link_up(hw); 1093 1094 return E1000_SUCCESS; 1095 } 1096 1097 /** 1098 * e1000_read_kmrn_reg - Reads register using Kumeran interface 1099 * @hw: pointer to the HW structure 1100 * @offset: the register to read 1101 * @data: the location to store the 16-bit value read. 1102 * 1103 * Reads a register out of the Kumeran interface. Currently no func pointer 1104 * exists and all implementations are handled in the generic version of 1105 * this function. 1106 **/ 1107 s32 e1000_read_kmrn_reg(struct e1000_hw *hw, u32 offset, u16 *data) 1108 { 1109 return e1000_read_kmrn_reg_generic(hw, offset, data); 1110 } 1111 1112 /** 1113 * e1000_write_kmrn_reg - Writes register using Kumeran interface 1114 * @hw: pointer to the HW structure 1115 * @offset: the register to write 1116 * @data: the value to write. 1117 * 1118 * Writes a register to the Kumeran interface. Currently no func pointer 1119 * exists and all implementations are handled in the generic version of 1120 * this function. 1121 **/ 1122 s32 e1000_write_kmrn_reg(struct e1000_hw *hw, u32 offset, u16 data) 1123 { 1124 return e1000_write_kmrn_reg_generic(hw, offset, data); 1125 } 1126 1127 /** 1128 * e1000_get_cable_length - Retrieves cable length estimation 1129 * @hw: pointer to the HW structure 1130 * 1131 * This function estimates the cable length and stores them in 1132 * hw->phy.min_length and hw->phy.max_length. This is a function pointer 1133 * entry point called by drivers. 1134 **/ 1135 s32 e1000_get_cable_length(struct e1000_hw *hw) 1136 { 1137 if (hw->phy.ops.get_cable_length) 1138 return hw->phy.ops.get_cable_length(hw); 1139 1140 return E1000_SUCCESS; 1141 } 1142 1143 /** 1144 * e1000_get_phy_info - Retrieves PHY information from registers 1145 * @hw: pointer to the HW structure 1146 * 1147 * This function gets some information from various PHY registers and 1148 * populates hw->phy values with it. This is a function pointer entry 1149 * point called by drivers. 1150 **/ 1151 s32 e1000_get_phy_info(struct e1000_hw *hw) 1152 { 1153 if (hw->phy.ops.get_info) 1154 return hw->phy.ops.get_info(hw); 1155 1156 return E1000_SUCCESS; 1157 } 1158 1159 /** 1160 * e1000_phy_hw_reset - Hard PHY reset 1161 * @hw: pointer to the HW structure 1162 * 1163 * Performs a hard PHY reset. This is a function pointer entry point called 1164 * by drivers. 1165 **/ 1166 s32 e1000_phy_hw_reset(struct e1000_hw *hw) 1167 { 1168 if (hw->phy.ops.reset) 1169 return hw->phy.ops.reset(hw); 1170 1171 return E1000_SUCCESS; 1172 } 1173 1174 /** 1175 * e1000_phy_commit - Soft PHY reset 1176 * @hw: pointer to the HW structure 1177 * 1178 * Performs a soft PHY reset on those that apply. This is a function pointer 1179 * entry point called by drivers. 1180 **/ 1181 s32 e1000_phy_commit(struct e1000_hw *hw) 1182 { 1183 if (hw->phy.ops.commit) 1184 return hw->phy.ops.commit(hw); 1185 1186 return E1000_SUCCESS; 1187 } 1188 1189 /** 1190 * e1000_set_d0_lplu_state - Sets low power link up state for D0 1191 * @hw: pointer to the HW structure 1192 * @active: boolean used to enable/disable lplu 1193 * 1194 * Success returns 0, Failure returns 1 1195 * 1196 * The low power link up (lplu) state is set to the power management level D0 1197 * and SmartSpeed is disabled when active is TRUE, else clear lplu for D0 1198 * and enable Smartspeed. LPLU and Smartspeed are mutually exclusive. LPLU 1199 * is used during Dx states where the power conservation is most important. 1200 * During driver activity, SmartSpeed should be enabled so performance is 1201 * maintained. This is a function pointer entry point called by drivers. 1202 **/ 1203 s32 e1000_set_d0_lplu_state(struct e1000_hw *hw, bool active) 1204 { 1205 if (hw->phy.ops.set_d0_lplu_state) 1206 return hw->phy.ops.set_d0_lplu_state(hw, active); 1207 1208 return E1000_SUCCESS; 1209 } 1210 1211 /** 1212 * e1000_set_d3_lplu_state - Sets low power link up state for D3 1213 * @hw: pointer to the HW structure 1214 * @active: boolean used to enable/disable lplu 1215 * 1216 * Success returns 0, Failure returns 1 1217 * 1218 * The low power link up (lplu) state is set to the power management level D3 1219 * and SmartSpeed is disabled when active is TRUE, else clear lplu for D3 1220 * and enable Smartspeed. LPLU and Smartspeed are mutually exclusive. LPLU 1221 * is used during Dx states where the power conservation is most important. 1222 * During driver activity, SmartSpeed should be enabled so performance is 1223 * maintained. This is a function pointer entry point called by drivers. 1224 **/ 1225 s32 e1000_set_d3_lplu_state(struct e1000_hw *hw, bool active) 1226 { 1227 if (hw->phy.ops.set_d3_lplu_state) 1228 return hw->phy.ops.set_d3_lplu_state(hw, active); 1229 1230 return E1000_SUCCESS; 1231 } 1232 1233 /** 1234 * e1000_read_mac_addr - Reads MAC address 1235 * @hw: pointer to the HW structure 1236 * 1237 * Reads the MAC address out of the adapter and stores it in the HW structure. 1238 * Currently no func pointer exists and all implementations are handled in the 1239 * generic version of this function. 1240 **/ 1241 s32 e1000_read_mac_addr(struct e1000_hw *hw) 1242 { 1243 if (hw->mac.ops.read_mac_addr) 1244 return hw->mac.ops.read_mac_addr(hw); 1245 1246 return e1000_read_mac_addr_generic(hw); 1247 } 1248 1249 /** 1250 * e1000_read_pba_string - Read device part number string 1251 * @hw: pointer to the HW structure 1252 * @pba_num: pointer to device part number 1253 * @pba_num_size: size of part number buffer 1254 * 1255 * Reads the product board assembly (PBA) number from the EEPROM and stores 1256 * the value in pba_num. 1257 * Currently no func pointer exists and all implementations are handled in the 1258 * generic version of this function. 1259 **/ 1260 s32 e1000_read_pba_string(struct e1000_hw *hw, u8 *pba_num, u32 pba_num_size) 1261 { 1262 return e1000_read_pba_string_generic(hw, pba_num, pba_num_size); 1263 } 1264 1265 /** 1266 * e1000_read_pba_length - Read device part number string length 1267 * @hw: pointer to the HW structure 1268 * @pba_num_size: size of part number buffer 1269 * 1270 * Reads the product board assembly (PBA) number length from the EEPROM and 1271 * stores the value in pba_num. 1272 * Currently no func pointer exists and all implementations are handled in the 1273 * generic version of this function. 1274 **/ 1275 s32 e1000_read_pba_length(struct e1000_hw *hw, u32 *pba_num_size) 1276 { 1277 return e1000_read_pba_length_generic(hw, pba_num_size); 1278 } 1279 1280 /** 1281 * e1000_validate_nvm_checksum - Verifies NVM (EEPROM) checksum 1282 * @hw: pointer to the HW structure 1283 * 1284 * Validates the NVM checksum is correct. This is a function pointer entry 1285 * point called by drivers. 1286 **/ 1287 s32 e1000_validate_nvm_checksum(struct e1000_hw *hw) 1288 { 1289 if (hw->nvm.ops.validate) 1290 return hw->nvm.ops.validate(hw); 1291 1292 return -E1000_ERR_CONFIG; 1293 } 1294 1295 /** 1296 * e1000_update_nvm_checksum - Updates NVM (EEPROM) checksum 1297 * @hw: pointer to the HW structure 1298 * 1299 * Updates the NVM checksum. Currently no func pointer exists and all 1300 * implementations are handled in the generic version of this function. 1301 **/ 1302 s32 e1000_update_nvm_checksum(struct e1000_hw *hw) 1303 { 1304 if (hw->nvm.ops.update) 1305 return hw->nvm.ops.update(hw); 1306 1307 return -E1000_ERR_CONFIG; 1308 } 1309 1310 /** 1311 * e1000_reload_nvm - Reloads EEPROM 1312 * @hw: pointer to the HW structure 1313 * 1314 * Reloads the EEPROM by setting the "Reinitialize from EEPROM" bit in the 1315 * extended control register. 1316 **/ 1317 void e1000_reload_nvm(struct e1000_hw *hw) 1318 { 1319 if (hw->nvm.ops.reload) 1320 hw->nvm.ops.reload(hw); 1321 } 1322 1323 /** 1324 * e1000_read_nvm - Reads NVM (EEPROM) 1325 * @hw: pointer to the HW structure 1326 * @offset: the word offset to read 1327 * @words: number of 16-bit words to read 1328 * @data: pointer to the properly sized buffer for the data. 1329 * 1330 * Reads 16-bit chunks of data from the NVM (EEPROM). This is a function 1331 * pointer entry point called by drivers. 1332 **/ 1333 s32 e1000_read_nvm(struct e1000_hw *hw, u16 offset, u16 words, u16 *data) 1334 { 1335 if (hw->nvm.ops.read) 1336 return hw->nvm.ops.read(hw, offset, words, data); 1337 1338 return -E1000_ERR_CONFIG; 1339 } 1340 1341 /** 1342 * e1000_write_nvm - Writes to NVM (EEPROM) 1343 * @hw: pointer to the HW structure 1344 * @offset: the word offset to read 1345 * @words: number of 16-bit words to write 1346 * @data: pointer to the properly sized buffer for the data. 1347 * 1348 * Writes 16-bit chunks of data to the NVM (EEPROM). This is a function 1349 * pointer entry point called by drivers. 1350 **/ 1351 s32 e1000_write_nvm(struct e1000_hw *hw, u16 offset, u16 words, u16 *data) 1352 { 1353 if (hw->nvm.ops.write) 1354 return hw->nvm.ops.write(hw, offset, words, data); 1355 1356 return E1000_SUCCESS; 1357 } 1358 1359 /** 1360 * e1000_write_8bit_ctrl_reg - Writes 8bit Control register 1361 * @hw: pointer to the HW structure 1362 * @reg: 32bit register offset 1363 * @offset: the register to write 1364 * @data: the value to write. 1365 * 1366 * Writes the PHY register at offset with the value in data. 1367 * This is a function pointer entry point called by drivers. 1368 **/ 1369 s32 e1000_write_8bit_ctrl_reg(struct e1000_hw *hw, u32 reg, u32 offset, 1370 u8 data) 1371 { 1372 return e1000_write_8bit_ctrl_reg_generic(hw, reg, offset, data); 1373 } 1374 1375 /** 1376 * e1000_power_up_phy - Restores link in case of PHY power down 1377 * @hw: pointer to the HW structure 1378 * 1379 * The phy may be powered down to save power, to turn off link when the 1380 * driver is unloaded, or wake on lan is not enabled (among others). 1381 **/ 1382 void e1000_power_up_phy(struct e1000_hw *hw) 1383 { 1384 if (hw->phy.ops.power_up) 1385 hw->phy.ops.power_up(hw); 1386 1387 e1000_setup_link(hw); 1388 } 1389 1390 /** 1391 * e1000_power_down_phy - Power down PHY 1392 * @hw: pointer to the HW structure 1393 * 1394 * The phy may be powered down to save power, to turn off link when the 1395 * driver is unloaded, or wake on lan is not enabled (among others). 1396 **/ 1397 void e1000_power_down_phy(struct e1000_hw *hw) 1398 { 1399 if (hw->phy.ops.power_down) 1400 hw->phy.ops.power_down(hw); 1401 } 1402 1403 /** 1404 * e1000_power_up_fiber_serdes_link - Power up serdes link 1405 * @hw: pointer to the HW structure 1406 * 1407 * Power on the optics and PCS. 1408 **/ 1409 void e1000_power_up_fiber_serdes_link(struct e1000_hw *hw) 1410 { 1411 if (hw->mac.ops.power_up_serdes) 1412 hw->mac.ops.power_up_serdes(hw); 1413 } 1414 1415 /** 1416 * e1000_shutdown_fiber_serdes_link - Remove link during power down 1417 * @hw: pointer to the HW structure 1418 * 1419 * Shutdown the optics and PCS on driver unload. 1420 **/ 1421 void e1000_shutdown_fiber_serdes_link(struct e1000_hw *hw) 1422 { 1423 if (hw->mac.ops.shutdown_serdes) 1424 hw->mac.ops.shutdown_serdes(hw); 1425 } 1426 1427