1 /****************************************************************************** 2 3 Copyright (c) 2001-2015, Intel Corporation 4 All rights reserved. 5 6 Redistribution and use in source and binary forms, with or without 7 modification, are permitted provided that the following conditions are met: 8 9 1. Redistributions of source code must retain the above copyright notice, 10 this list of conditions and the following disclaimer. 11 12 2. Redistributions in binary form must reproduce the above copyright 13 notice, this list of conditions and the following disclaimer in the 14 documentation and/or other materials provided with the distribution. 15 16 3. Neither the name of the Intel Corporation nor the names of its 17 contributors may be used to endorse or promote products derived from 18 this software without specific prior written permission. 19 20 THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" 21 AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 22 IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 23 ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE 24 LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR 25 CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF 26 SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS 27 INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN 28 CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) 29 ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE 30 POSSIBILITY OF SUCH DAMAGE. 31 32 ******************************************************************************/ 33 /*$FreeBSD$*/ 34 35 #include "e1000_api.h" 36 37 /** 38 * e1000_init_mac_params - Initialize MAC function pointers 39 * @hw: pointer to the HW structure 40 * 41 * This function initializes the function pointers for the MAC 42 * set of functions. Called by drivers or by e1000_setup_init_funcs. 43 **/ 44 s32 e1000_init_mac_params(struct e1000_hw *hw) 45 { 46 s32 ret_val = E1000_SUCCESS; 47 48 if (hw->mac.ops.init_params) { 49 ret_val = hw->mac.ops.init_params(hw); 50 if (ret_val) { 51 DEBUGOUT("MAC Initialization Error\n"); 52 goto out; 53 } 54 } else { 55 DEBUGOUT("mac.init_mac_params was NULL\n"); 56 ret_val = -E1000_ERR_CONFIG; 57 } 58 59 out: 60 return ret_val; 61 } 62 63 /** 64 * e1000_init_nvm_params - Initialize NVM function pointers 65 * @hw: pointer to the HW structure 66 * 67 * This function initializes the function pointers for the NVM 68 * set of functions. Called by drivers or by e1000_setup_init_funcs. 69 **/ 70 s32 e1000_init_nvm_params(struct e1000_hw *hw) 71 { 72 s32 ret_val = E1000_SUCCESS; 73 74 if (hw->nvm.ops.init_params) { 75 ret_val = hw->nvm.ops.init_params(hw); 76 if (ret_val) { 77 DEBUGOUT("NVM Initialization Error\n"); 78 goto out; 79 } 80 } else { 81 DEBUGOUT("nvm.init_nvm_params was NULL\n"); 82 ret_val = -E1000_ERR_CONFIG; 83 } 84 85 out: 86 return ret_val; 87 } 88 89 /** 90 * e1000_init_phy_params - Initialize PHY function pointers 91 * @hw: pointer to the HW structure 92 * 93 * This function initializes the function pointers for the PHY 94 * set of functions. Called by drivers or by e1000_setup_init_funcs. 95 **/ 96 s32 e1000_init_phy_params(struct e1000_hw *hw) 97 { 98 s32 ret_val = E1000_SUCCESS; 99 100 if (hw->phy.ops.init_params) { 101 ret_val = hw->phy.ops.init_params(hw); 102 if (ret_val) { 103 DEBUGOUT("PHY Initialization Error\n"); 104 goto out; 105 } 106 } else { 107 DEBUGOUT("phy.init_phy_params was NULL\n"); 108 ret_val = -E1000_ERR_CONFIG; 109 } 110 111 out: 112 return ret_val; 113 } 114 115 /** 116 * e1000_init_mbx_params - Initialize mailbox function pointers 117 * @hw: pointer to the HW structure 118 * 119 * This function initializes the function pointers for the PHY 120 * set of functions. Called by drivers or by e1000_setup_init_funcs. 121 **/ 122 s32 e1000_init_mbx_params(struct e1000_hw *hw) 123 { 124 s32 ret_val = E1000_SUCCESS; 125 126 if (hw->mbx.ops.init_params) { 127 ret_val = hw->mbx.ops.init_params(hw); 128 if (ret_val) { 129 DEBUGOUT("Mailbox Initialization Error\n"); 130 goto out; 131 } 132 } else { 133 DEBUGOUT("mbx.init_mbx_params was NULL\n"); 134 ret_val = -E1000_ERR_CONFIG; 135 } 136 137 out: 138 return ret_val; 139 } 140 141 /** 142 * e1000_set_mac_type - Sets MAC type 143 * @hw: pointer to the HW structure 144 * 145 * This function sets the mac type of the adapter based on the 146 * device ID stored in the hw structure. 147 * MUST BE FIRST FUNCTION CALLED (explicitly or through 148 * e1000_setup_init_funcs()). 149 **/ 150 s32 e1000_set_mac_type(struct e1000_hw *hw) 151 { 152 struct e1000_mac_info *mac = &hw->mac; 153 s32 ret_val = E1000_SUCCESS; 154 155 DEBUGFUNC("e1000_set_mac_type"); 156 157 switch (hw->device_id) { 158 case E1000_DEV_ID_82542: 159 mac->type = e1000_82542; 160 break; 161 case E1000_DEV_ID_82543GC_FIBER: 162 case E1000_DEV_ID_82543GC_COPPER: 163 mac->type = e1000_82543; 164 break; 165 case E1000_DEV_ID_82544EI_COPPER: 166 case E1000_DEV_ID_82544EI_FIBER: 167 case E1000_DEV_ID_82544GC_COPPER: 168 case E1000_DEV_ID_82544GC_LOM: 169 mac->type = e1000_82544; 170 break; 171 case E1000_DEV_ID_82540EM: 172 case E1000_DEV_ID_82540EM_LOM: 173 case E1000_DEV_ID_82540EP: 174 case E1000_DEV_ID_82540EP_LOM: 175 case E1000_DEV_ID_82540EP_LP: 176 mac->type = e1000_82540; 177 break; 178 case E1000_DEV_ID_82545EM_COPPER: 179 case E1000_DEV_ID_82545EM_FIBER: 180 mac->type = e1000_82545; 181 break; 182 case E1000_DEV_ID_82545GM_COPPER: 183 case E1000_DEV_ID_82545GM_FIBER: 184 case E1000_DEV_ID_82545GM_SERDES: 185 mac->type = e1000_82545_rev_3; 186 break; 187 case E1000_DEV_ID_82546EB_COPPER: 188 case E1000_DEV_ID_82546EB_FIBER: 189 case E1000_DEV_ID_82546EB_QUAD_COPPER: 190 mac->type = e1000_82546; 191 break; 192 case E1000_DEV_ID_82546GB_COPPER: 193 case E1000_DEV_ID_82546GB_FIBER: 194 case E1000_DEV_ID_82546GB_SERDES: 195 case E1000_DEV_ID_82546GB_PCIE: 196 case E1000_DEV_ID_82546GB_QUAD_COPPER: 197 case E1000_DEV_ID_82546GB_QUAD_COPPER_KSP3: 198 mac->type = e1000_82546_rev_3; 199 break; 200 case E1000_DEV_ID_82541EI: 201 case E1000_DEV_ID_82541EI_MOBILE: 202 case E1000_DEV_ID_82541ER_LOM: 203 mac->type = e1000_82541; 204 break; 205 case E1000_DEV_ID_82541ER: 206 case E1000_DEV_ID_82541GI: 207 case E1000_DEV_ID_82541GI_LF: 208 case E1000_DEV_ID_82541GI_MOBILE: 209 mac->type = e1000_82541_rev_2; 210 break; 211 case E1000_DEV_ID_82547EI: 212 case E1000_DEV_ID_82547EI_MOBILE: 213 mac->type = e1000_82547; 214 break; 215 case E1000_DEV_ID_82547GI: 216 mac->type = e1000_82547_rev_2; 217 break; 218 case E1000_DEV_ID_82571EB_COPPER: 219 case E1000_DEV_ID_82571EB_FIBER: 220 case E1000_DEV_ID_82571EB_SERDES: 221 case E1000_DEV_ID_82571EB_SERDES_DUAL: 222 case E1000_DEV_ID_82571EB_SERDES_QUAD: 223 case E1000_DEV_ID_82571EB_QUAD_COPPER: 224 case E1000_DEV_ID_82571PT_QUAD_COPPER: 225 case E1000_DEV_ID_82571EB_QUAD_FIBER: 226 case E1000_DEV_ID_82571EB_QUAD_COPPER_LP: 227 mac->type = e1000_82571; 228 break; 229 case E1000_DEV_ID_82572EI: 230 case E1000_DEV_ID_82572EI_COPPER: 231 case E1000_DEV_ID_82572EI_FIBER: 232 case E1000_DEV_ID_82572EI_SERDES: 233 mac->type = e1000_82572; 234 break; 235 case E1000_DEV_ID_82573E: 236 case E1000_DEV_ID_82573E_IAMT: 237 case E1000_DEV_ID_82573L: 238 mac->type = e1000_82573; 239 break; 240 case E1000_DEV_ID_82574L: 241 case E1000_DEV_ID_82574LA: 242 mac->type = e1000_82574; 243 break; 244 case E1000_DEV_ID_82583V: 245 mac->type = e1000_82583; 246 break; 247 case E1000_DEV_ID_80003ES2LAN_COPPER_DPT: 248 case E1000_DEV_ID_80003ES2LAN_SERDES_DPT: 249 case E1000_DEV_ID_80003ES2LAN_COPPER_SPT: 250 case E1000_DEV_ID_80003ES2LAN_SERDES_SPT: 251 mac->type = e1000_80003es2lan; 252 break; 253 case E1000_DEV_ID_ICH8_IFE: 254 case E1000_DEV_ID_ICH8_IFE_GT: 255 case E1000_DEV_ID_ICH8_IFE_G: 256 case E1000_DEV_ID_ICH8_IGP_M: 257 case E1000_DEV_ID_ICH8_IGP_M_AMT: 258 case E1000_DEV_ID_ICH8_IGP_AMT: 259 case E1000_DEV_ID_ICH8_IGP_C: 260 case E1000_DEV_ID_ICH8_82567V_3: 261 mac->type = e1000_ich8lan; 262 break; 263 case E1000_DEV_ID_ICH9_IFE: 264 case E1000_DEV_ID_ICH9_IFE_GT: 265 case E1000_DEV_ID_ICH9_IFE_G: 266 case E1000_DEV_ID_ICH9_IGP_M: 267 case E1000_DEV_ID_ICH9_IGP_M_AMT: 268 case E1000_DEV_ID_ICH9_IGP_M_V: 269 case E1000_DEV_ID_ICH9_IGP_AMT: 270 case E1000_DEV_ID_ICH9_BM: 271 case E1000_DEV_ID_ICH9_IGP_C: 272 case E1000_DEV_ID_ICH10_R_BM_LM: 273 case E1000_DEV_ID_ICH10_R_BM_LF: 274 case E1000_DEV_ID_ICH10_R_BM_V: 275 mac->type = e1000_ich9lan; 276 break; 277 case E1000_DEV_ID_ICH10_D_BM_LM: 278 case E1000_DEV_ID_ICH10_D_BM_LF: 279 case E1000_DEV_ID_ICH10_D_BM_V: 280 mac->type = e1000_ich10lan; 281 break; 282 case E1000_DEV_ID_PCH_D_HV_DM: 283 case E1000_DEV_ID_PCH_D_HV_DC: 284 case E1000_DEV_ID_PCH_M_HV_LM: 285 case E1000_DEV_ID_PCH_M_HV_LC: 286 mac->type = e1000_pchlan; 287 break; 288 case E1000_DEV_ID_PCH2_LV_LM: 289 case E1000_DEV_ID_PCH2_LV_V: 290 mac->type = e1000_pch2lan; 291 break; 292 case E1000_DEV_ID_PCH_LPT_I217_LM: 293 case E1000_DEV_ID_PCH_LPT_I217_V: 294 case E1000_DEV_ID_PCH_LPTLP_I218_LM: 295 case E1000_DEV_ID_PCH_LPTLP_I218_V: 296 case E1000_DEV_ID_PCH_I218_LM2: 297 case E1000_DEV_ID_PCH_I218_V2: 298 case E1000_DEV_ID_PCH_I218_LM3: 299 case E1000_DEV_ID_PCH_I218_V3: 300 mac->type = e1000_pch_lpt; 301 break; 302 case E1000_DEV_ID_PCH_SPT_I219_LM: 303 case E1000_DEV_ID_PCH_SPT_I219_V: 304 case E1000_DEV_ID_PCH_SPT_I219_LM2: 305 case E1000_DEV_ID_PCH_SPT_I219_V2: 306 case E1000_DEV_ID_PCH_LBG_I219_LM3: 307 case E1000_DEV_ID_PCH_SPT_I219_LM4: 308 case E1000_DEV_ID_PCH_SPT_I219_V4: 309 case E1000_DEV_ID_PCH_SPT_I219_LM5: 310 case E1000_DEV_ID_PCH_SPT_I219_V5: 311 mac->type = e1000_pch_spt; 312 break; 313 case E1000_DEV_ID_PCH_CNP_I219_LM6: 314 case E1000_DEV_ID_PCH_CNP_I219_V6: 315 case E1000_DEV_ID_PCH_CNP_I219_LM7: 316 case E1000_DEV_ID_PCH_CNP_I219_V7: 317 case E1000_DEV_ID_PCH_ICP_I219_LM8: 318 case E1000_DEV_ID_PCH_ICP_I219_V8: 319 case E1000_DEV_ID_PCH_ICP_I219_LM9: 320 case E1000_DEV_ID_PCH_ICP_I219_V9: 321 case E1000_DEV_ID_PCH_CMP_I219_LM10: 322 case E1000_DEV_ID_PCH_CMP_I219_V10: 323 case E1000_DEV_ID_PCH_CMP_I219_LM11: 324 case E1000_DEV_ID_PCH_CMP_I219_V11: 325 case E1000_DEV_ID_PCH_CMP_I219_LM12: 326 case E1000_DEV_ID_PCH_CMP_I219_V12: 327 mac->type = e1000_pch_cnp; 328 break; 329 case E1000_DEV_ID_PCH_TGP_I219_LM13: 330 case E1000_DEV_ID_PCH_TGP_I219_V13: 331 case E1000_DEV_ID_PCH_TGP_I219_LM14: 332 case E1000_DEV_ID_PCH_TGP_I219_V14: 333 case E1000_DEV_ID_PCH_TGP_I219_LM15: 334 case E1000_DEV_ID_PCH_TGP_I219_V15: 335 mac->type = e1000_pch_tgp; 336 break; 337 case E1000_DEV_ID_PCH_ADP_I219_LM16: 338 case E1000_DEV_ID_PCH_ADP_I219_V16: 339 case E1000_DEV_ID_PCH_ADP_I219_LM17: 340 case E1000_DEV_ID_PCH_ADP_I219_V17: 341 mac->type = e1000_pch_adp; 342 break; 343 case E1000_DEV_ID_PCH_MTP_I219_LM18: 344 case E1000_DEV_ID_PCH_MTP_I219_V18: 345 case E1000_DEV_ID_PCH_MTP_I219_LM19: 346 case E1000_DEV_ID_PCH_MTP_I219_V19: 347 mac->type = e1000_pch_mtp; 348 break; 349 case E1000_DEV_ID_PCH_LNP_I219_LM20: 350 case E1000_DEV_ID_PCH_LNP_I219_V20: 351 case E1000_DEV_ID_PCH_LNP_I219_LM21: 352 case E1000_DEV_ID_PCH_LNP_I219_V21: 353 mac->type = e1000_pch_lnp; 354 break; 355 case E1000_DEV_ID_PCH_RPL_I219_LM22: 356 case E1000_DEV_ID_PCH_RPL_I219_V22: 357 case E1000_DEV_ID_PCH_RPL_I219_LM23: 358 case E1000_DEV_ID_PCH_RPL_I219_V23: 359 mac->type = e1000_pch_rpl; 360 break; 361 case E1000_DEV_ID_PCH_ARL_I219_LM24: 362 case E1000_DEV_ID_PCH_ARL_I219_V24: 363 mac->type = e1000_pch_arl; 364 break; 365 case E1000_DEV_ID_PCH_PTP_I219_LM25: 366 case E1000_DEV_ID_PCH_PTP_I219_V25: 367 case E1000_DEV_ID_PCH_PTP_I219_LM26: 368 case E1000_DEV_ID_PCH_PTP_I219_V26: 369 case E1000_DEV_ID_PCH_PTP_I219_LM27: 370 case E1000_DEV_ID_PCH_PTP_I219_V27: 371 mac->type = e1000_pch_ptp; 372 break; 373 case E1000_DEV_ID_PCH_NVL_I219_LM29: 374 case E1000_DEV_ID_PCH_NVL_I219_V29: 375 mac->type = e1000_pch_nvl; 376 break; 377 case E1000_DEV_ID_82575EB_COPPER: 378 case E1000_DEV_ID_82575EB_FIBER_SERDES: 379 case E1000_DEV_ID_82575GB_QUAD_COPPER: 380 mac->type = e1000_82575; 381 break; 382 case E1000_DEV_ID_82576: 383 case E1000_DEV_ID_82576_FIBER: 384 case E1000_DEV_ID_82576_SERDES: 385 case E1000_DEV_ID_82576_QUAD_COPPER: 386 case E1000_DEV_ID_82576_QUAD_COPPER_ET2: 387 case E1000_DEV_ID_82576_NS: 388 case E1000_DEV_ID_82576_NS_SERDES: 389 case E1000_DEV_ID_82576_SERDES_QUAD: 390 mac->type = e1000_82576; 391 break; 392 case E1000_DEV_ID_82580_COPPER: 393 case E1000_DEV_ID_82580_FIBER: 394 case E1000_DEV_ID_82580_SERDES: 395 case E1000_DEV_ID_82580_SGMII: 396 case E1000_DEV_ID_82580_COPPER_DUAL: 397 case E1000_DEV_ID_82580_QUAD_FIBER: 398 case E1000_DEV_ID_DH89XXCC_SGMII: 399 case E1000_DEV_ID_DH89XXCC_SERDES: 400 case E1000_DEV_ID_DH89XXCC_BACKPLANE: 401 case E1000_DEV_ID_DH89XXCC_SFP: 402 mac->type = e1000_82580; 403 break; 404 case E1000_DEV_ID_I350_COPPER: 405 case E1000_DEV_ID_I350_FIBER: 406 case E1000_DEV_ID_I350_SERDES: 407 case E1000_DEV_ID_I350_SGMII: 408 case E1000_DEV_ID_I350_DA4: 409 mac->type = e1000_i350; 410 break; 411 case E1000_DEV_ID_I210_COPPER_FLASHLESS: 412 case E1000_DEV_ID_I210_SERDES_FLASHLESS: 413 case E1000_DEV_ID_I210_COPPER: 414 case E1000_DEV_ID_I210_COPPER_OEM1: 415 case E1000_DEV_ID_I210_COPPER_IT: 416 case E1000_DEV_ID_I210_FIBER: 417 case E1000_DEV_ID_I210_SERDES: 418 case E1000_DEV_ID_I210_SGMII: 419 mac->type = e1000_i210; 420 break; 421 case E1000_DEV_ID_I211_COPPER: 422 mac->type = e1000_i211; 423 break; 424 case E1000_DEV_ID_82576_VF: 425 case E1000_DEV_ID_82576_VF_HV: 426 mac->type = e1000_vfadapt; 427 break; 428 case E1000_DEV_ID_I350_VF: 429 case E1000_DEV_ID_I350_VF_HV: 430 mac->type = e1000_vfadapt_i350; 431 break; 432 433 case E1000_DEV_ID_I354_BACKPLANE_1GBPS: 434 case E1000_DEV_ID_I354_SGMII: 435 case E1000_DEV_ID_I354_BACKPLANE_2_5GBPS: 436 mac->type = e1000_i354; 437 break; 438 default: 439 /* Should never have loaded on this device */ 440 ret_val = -E1000_ERR_MAC_INIT; 441 break; 442 } 443 444 return ret_val; 445 } 446 447 /** 448 * e1000_setup_init_funcs - Initializes function pointers 449 * @hw: pointer to the HW structure 450 * @init_device: TRUE will initialize the rest of the function pointers 451 * getting the device ready for use. FALSE will only set 452 * MAC type and the function pointers for the other init 453 * functions. Passing FALSE will not generate any hardware 454 * reads or writes. 455 * 456 * This function must be called by a driver in order to use the rest 457 * of the 'shared' code files. Called by drivers only. 458 **/ 459 s32 e1000_setup_init_funcs(struct e1000_hw *hw, bool init_device) 460 { 461 s32 ret_val; 462 463 /* Can't do much good without knowing the MAC type. */ 464 ret_val = e1000_set_mac_type(hw); 465 if (ret_val) { 466 DEBUGOUT("ERROR: MAC type could not be set properly.\n"); 467 goto out; 468 } 469 470 if (!hw->hw_addr) { 471 DEBUGOUT("ERROR: Registers not mapped\n"); 472 ret_val = -E1000_ERR_CONFIG; 473 goto out; 474 } 475 476 /* 477 * Init function pointers to generic implementations. We do this first 478 * allowing a driver module to override it afterward. 479 */ 480 e1000_init_mac_ops_generic(hw); 481 e1000_init_phy_ops_generic(hw); 482 e1000_init_nvm_ops_generic(hw); 483 e1000_init_mbx_ops_generic(hw); 484 485 /* 486 * Set up the init function pointers. These are functions within the 487 * adapter family file that sets up function pointers for the rest of 488 * the functions in that family. 489 */ 490 switch (hw->mac.type) { 491 case e1000_82542: 492 e1000_init_function_pointers_82542(hw); 493 break; 494 case e1000_82543: 495 case e1000_82544: 496 e1000_init_function_pointers_82543(hw); 497 break; 498 case e1000_82540: 499 case e1000_82545: 500 case e1000_82545_rev_3: 501 case e1000_82546: 502 case e1000_82546_rev_3: 503 e1000_init_function_pointers_82540(hw); 504 break; 505 case e1000_82541: 506 case e1000_82541_rev_2: 507 case e1000_82547: 508 case e1000_82547_rev_2: 509 e1000_init_function_pointers_82541(hw); 510 break; 511 case e1000_82571: 512 case e1000_82572: 513 case e1000_82573: 514 case e1000_82574: 515 case e1000_82583: 516 e1000_init_function_pointers_82571(hw); 517 break; 518 case e1000_80003es2lan: 519 e1000_init_function_pointers_80003es2lan(hw); 520 break; 521 case e1000_ich8lan: 522 case e1000_ich9lan: 523 case e1000_ich10lan: 524 case e1000_pchlan: 525 case e1000_pch2lan: 526 case e1000_pch_lpt: 527 case e1000_pch_spt: 528 case e1000_pch_cnp: 529 case e1000_pch_tgp: 530 case e1000_pch_adp: 531 case e1000_pch_mtp: 532 case e1000_pch_lnp: 533 case e1000_pch_rpl: 534 case e1000_pch_arl: 535 case e1000_pch_ptp: 536 case e1000_pch_nvl: 537 e1000_init_function_pointers_ich8lan(hw); 538 break; 539 case e1000_82575: 540 case e1000_82576: 541 case e1000_82580: 542 case e1000_i350: 543 case e1000_i354: 544 e1000_init_function_pointers_82575(hw); 545 break; 546 case e1000_i210: 547 case e1000_i211: 548 e1000_init_function_pointers_i210(hw); 549 break; 550 case e1000_vfadapt: 551 e1000_init_function_pointers_vf(hw); 552 break; 553 case e1000_vfadapt_i350: 554 e1000_init_function_pointers_vf(hw); 555 break; 556 default: 557 DEBUGOUT("Hardware not supported\n"); 558 ret_val = -E1000_ERR_CONFIG; 559 break; 560 } 561 562 /* 563 * Initialize the rest of the function pointers. These require some 564 * register reads/writes in some cases. 565 */ 566 if (!(ret_val) && init_device) { 567 ret_val = e1000_init_mac_params(hw); 568 if (ret_val) 569 goto out; 570 571 ret_val = e1000_init_nvm_params(hw); 572 if (ret_val) 573 goto out; 574 575 ret_val = e1000_init_phy_params(hw); 576 if (ret_val) 577 goto out; 578 579 ret_val = e1000_init_mbx_params(hw); 580 if (ret_val) 581 goto out; 582 } 583 584 out: 585 return ret_val; 586 } 587 588 /** 589 * e1000_get_bus_info - Obtain bus information for adapter 590 * @hw: pointer to the HW structure 591 * 592 * This will obtain information about the HW bus for which the 593 * adapter is attached and stores it in the hw structure. This is a 594 * function pointer entry point called by drivers. 595 **/ 596 s32 e1000_get_bus_info(struct e1000_hw *hw) 597 { 598 if (hw->mac.ops.get_bus_info) 599 return hw->mac.ops.get_bus_info(hw); 600 601 return E1000_SUCCESS; 602 } 603 604 /** 605 * e1000_clear_vfta - Clear VLAN filter table 606 * @hw: pointer to the HW structure 607 * 608 * This clears the VLAN filter table on the adapter. This is a function 609 * pointer entry point called by drivers. 610 **/ 611 void e1000_clear_vfta(struct e1000_hw *hw) 612 { 613 if (hw->mac.ops.clear_vfta) 614 hw->mac.ops.clear_vfta(hw); 615 } 616 617 /** 618 * e1000_write_vfta - Write value to VLAN filter table 619 * @hw: pointer to the HW structure 620 * @offset: the 32-bit offset in which to write the value to. 621 * @value: the 32-bit value to write at location offset. 622 * 623 * This writes a 32-bit value to a 32-bit offset in the VLAN filter 624 * table. This is a function pointer entry point called by drivers. 625 **/ 626 void e1000_write_vfta(struct e1000_hw *hw, u32 offset, u32 value) 627 { 628 if (hw->mac.ops.write_vfta) 629 hw->mac.ops.write_vfta(hw, offset, value); 630 } 631 632 /** 633 * e1000_update_mc_addr_list - Update Multicast addresses 634 * @hw: pointer to the HW structure 635 * @mc_addr_list: array of multicast addresses to program 636 * @mc_addr_count: number of multicast addresses to program 637 * 638 * Updates the Multicast Table Array. 639 * The caller must have a packed mc_addr_list of multicast addresses. 640 **/ 641 void e1000_update_mc_addr_list(struct e1000_hw *hw, u8 *mc_addr_list, 642 u32 mc_addr_count) 643 { 644 if (hw->mac.ops.update_mc_addr_list) 645 hw->mac.ops.update_mc_addr_list(hw, mc_addr_list, 646 mc_addr_count); 647 } 648 649 /** 650 * e1000_force_mac_fc - Force MAC flow control 651 * @hw: pointer to the HW structure 652 * 653 * Force the MAC's flow control settings. Currently no func pointer exists 654 * and all implementations are handled in the generic version of this 655 * function. 656 **/ 657 s32 e1000_force_mac_fc(struct e1000_hw *hw) 658 { 659 return e1000_force_mac_fc_generic(hw); 660 } 661 662 /** 663 * e1000_check_for_link - Check/Store link connection 664 * @hw: pointer to the HW structure 665 * 666 * This checks the link condition of the adapter and stores the 667 * results in the hw->mac structure. This is a function pointer entry 668 * point called by drivers. 669 **/ 670 s32 e1000_check_for_link(struct e1000_hw *hw) 671 { 672 if (hw->mac.ops.check_for_link) 673 return hw->mac.ops.check_for_link(hw); 674 675 return -E1000_ERR_CONFIG; 676 } 677 678 /** 679 * e1000_check_mng_mode - Check management mode 680 * @hw: pointer to the HW structure 681 * 682 * This checks if the adapter has manageability enabled. 683 * This is a function pointer entry point called by drivers. 684 **/ 685 bool e1000_check_mng_mode(struct e1000_hw *hw) 686 { 687 if (hw->mac.ops.check_mng_mode) 688 return hw->mac.ops.check_mng_mode(hw); 689 690 return FALSE; 691 } 692 693 /** 694 * e1000_mng_write_dhcp_info - Writes DHCP info to host interface 695 * @hw: pointer to the HW structure 696 * @buffer: pointer to the host interface 697 * @length: size of the buffer 698 * 699 * Writes the DHCP information to the host interface. 700 **/ 701 s32 e1000_mng_write_dhcp_info(struct e1000_hw *hw, u8 *buffer, u16 length) 702 { 703 return e1000_mng_write_dhcp_info_generic(hw, buffer, length); 704 } 705 706 /** 707 * e1000_reset_hw - Reset hardware 708 * @hw: pointer to the HW structure 709 * 710 * This resets the hardware into a known state. This is a function pointer 711 * entry point called by drivers. 712 **/ 713 s32 e1000_reset_hw(struct e1000_hw *hw) 714 { 715 if (hw->mac.ops.reset_hw) 716 return hw->mac.ops.reset_hw(hw); 717 718 return -E1000_ERR_CONFIG; 719 } 720 721 /** 722 * e1000_init_hw - Initialize hardware 723 * @hw: pointer to the HW structure 724 * 725 * This inits the hardware readying it for operation. This is a function 726 * pointer entry point called by drivers. 727 **/ 728 s32 e1000_init_hw(struct e1000_hw *hw) 729 { 730 if (hw->mac.ops.init_hw) 731 return hw->mac.ops.init_hw(hw); 732 733 return -E1000_ERR_CONFIG; 734 } 735 736 /** 737 * e1000_setup_link - Configures link and flow control 738 * @hw: pointer to the HW structure 739 * 740 * This configures link and flow control settings for the adapter. This 741 * is a function pointer entry point called by drivers. While modules can 742 * also call this, they probably call their own version of this function. 743 **/ 744 s32 e1000_setup_link(struct e1000_hw *hw) 745 { 746 if (hw->mac.ops.setup_link) 747 return hw->mac.ops.setup_link(hw); 748 749 return -E1000_ERR_CONFIG; 750 } 751 752 /** 753 * e1000_get_speed_and_duplex - Returns current speed and duplex 754 * @hw: pointer to the HW structure 755 * @speed: pointer to a 16-bit value to store the speed 756 * @duplex: pointer to a 16-bit value to store the duplex. 757 * 758 * This returns the speed and duplex of the adapter in the two 'out' 759 * variables passed in. This is a function pointer entry point called 760 * by drivers. 761 **/ 762 s32 e1000_get_speed_and_duplex(struct e1000_hw *hw, u16 *speed, u16 *duplex) 763 { 764 if (hw->mac.ops.get_link_up_info) 765 return hw->mac.ops.get_link_up_info(hw, speed, duplex); 766 767 return -E1000_ERR_CONFIG; 768 } 769 770 /** 771 * e1000_setup_led - Configures SW controllable LED 772 * @hw: pointer to the HW structure 773 * 774 * This prepares the SW controllable LED for use and saves the current state 775 * of the LED so it can be later restored. This is a function pointer entry 776 * point called by drivers. 777 **/ 778 s32 e1000_setup_led(struct e1000_hw *hw) 779 { 780 if (hw->mac.ops.setup_led) 781 return hw->mac.ops.setup_led(hw); 782 783 return E1000_SUCCESS; 784 } 785 786 /** 787 * e1000_cleanup_led - Restores SW controllable LED 788 * @hw: pointer to the HW structure 789 * 790 * This restores the SW controllable LED to the value saved off by 791 * e1000_setup_led. This is a function pointer entry point called by drivers. 792 **/ 793 s32 e1000_cleanup_led(struct e1000_hw *hw) 794 { 795 if (hw->mac.ops.cleanup_led) 796 return hw->mac.ops.cleanup_led(hw); 797 798 return E1000_SUCCESS; 799 } 800 801 /** 802 * e1000_blink_led - Blink SW controllable LED 803 * @hw: pointer to the HW structure 804 * 805 * This starts the adapter LED blinking. Request the LED to be setup first 806 * and cleaned up after. This is a function pointer entry point called by 807 * drivers. 808 **/ 809 s32 e1000_blink_led(struct e1000_hw *hw) 810 { 811 if (hw->mac.ops.blink_led) 812 return hw->mac.ops.blink_led(hw); 813 814 return E1000_SUCCESS; 815 } 816 817 /** 818 * e1000_id_led_init - store LED configurations in SW 819 * @hw: pointer to the HW structure 820 * 821 * Initializes the LED config in SW. This is a function pointer entry point 822 * called by drivers. 823 **/ 824 s32 e1000_id_led_init(struct e1000_hw *hw) 825 { 826 if (hw->mac.ops.id_led_init) 827 return hw->mac.ops.id_led_init(hw); 828 829 return E1000_SUCCESS; 830 } 831 832 /** 833 * e1000_led_on - Turn on SW controllable LED 834 * @hw: pointer to the HW structure 835 * 836 * Turns the SW defined LED on. This is a function pointer entry point 837 * called by drivers. 838 **/ 839 s32 e1000_led_on(struct e1000_hw *hw) 840 { 841 if (hw->mac.ops.led_on) 842 return hw->mac.ops.led_on(hw); 843 844 return E1000_SUCCESS; 845 } 846 847 /** 848 * e1000_led_off - Turn off SW controllable LED 849 * @hw: pointer to the HW structure 850 * 851 * Turns the SW defined LED off. This is a function pointer entry point 852 * called by drivers. 853 **/ 854 s32 e1000_led_off(struct e1000_hw *hw) 855 { 856 if (hw->mac.ops.led_off) 857 return hw->mac.ops.led_off(hw); 858 859 return E1000_SUCCESS; 860 } 861 862 /** 863 * e1000_reset_adaptive - Reset adaptive IFS 864 * @hw: pointer to the HW structure 865 * 866 * Resets the adaptive IFS. Currently no func pointer exists and all 867 * implementations are handled in the generic version of this function. 868 **/ 869 void e1000_reset_adaptive(struct e1000_hw *hw) 870 { 871 e1000_reset_adaptive_generic(hw); 872 } 873 874 /** 875 * e1000_update_adaptive - Update adaptive IFS 876 * @hw: pointer to the HW structure 877 * 878 * Updates adapter IFS. Currently no func pointer exists and all 879 * implementations are handled in the generic version of this function. 880 **/ 881 void e1000_update_adaptive(struct e1000_hw *hw) 882 { 883 e1000_update_adaptive_generic(hw); 884 } 885 886 /** 887 * e1000_disable_pcie_master - Disable PCI-Express master access 888 * @hw: pointer to the HW structure 889 * 890 * Disables PCI-Express master access and verifies there are no pending 891 * requests. Currently no func pointer exists and all implementations are 892 * handled in the generic version of this function. 893 **/ 894 s32 e1000_disable_pcie_master(struct e1000_hw *hw) 895 { 896 return e1000_disable_pcie_master_generic(hw); 897 } 898 899 /** 900 * e1000_config_collision_dist - Configure collision distance 901 * @hw: pointer to the HW structure 902 * 903 * Configures the collision distance to the default value and is used 904 * during link setup. 905 **/ 906 void e1000_config_collision_dist(struct e1000_hw *hw) 907 { 908 if (hw->mac.ops.config_collision_dist) 909 hw->mac.ops.config_collision_dist(hw); 910 } 911 912 /** 913 * e1000_rar_set - Sets a receive address register 914 * @hw: pointer to the HW structure 915 * @addr: address to set the RAR to 916 * @index: the RAR to set 917 * 918 * Sets a Receive Address Register (RAR) to the specified address. 919 **/ 920 int e1000_rar_set(struct e1000_hw *hw, u8 *addr, u32 index) 921 { 922 if (hw->mac.ops.rar_set) 923 return hw->mac.ops.rar_set(hw, addr, index); 924 925 return E1000_SUCCESS; 926 } 927 928 /** 929 * e1000_validate_mdi_setting - Ensures valid MDI/MDIX SW state 930 * @hw: pointer to the HW structure 931 * 932 * Ensures that the MDI/MDIX SW state is valid. 933 **/ 934 s32 e1000_validate_mdi_setting(struct e1000_hw *hw) 935 { 936 if (hw->mac.ops.validate_mdi_setting) 937 return hw->mac.ops.validate_mdi_setting(hw); 938 939 return E1000_SUCCESS; 940 } 941 942 /** 943 * e1000_hash_mc_addr - Determines address location in multicast table 944 * @hw: pointer to the HW structure 945 * @mc_addr: Multicast address to hash. 946 * 947 * This hashes an address to determine its location in the multicast 948 * table. Currently no func pointer exists and all implementations 949 * are handled in the generic version of this function. 950 **/ 951 u32 e1000_hash_mc_addr(struct e1000_hw *hw, u8 *mc_addr) 952 { 953 return e1000_hash_mc_addr_generic(hw, mc_addr); 954 } 955 956 /** 957 * e1000_enable_tx_pkt_filtering - Enable packet filtering on TX 958 * @hw: pointer to the HW structure 959 * 960 * Enables packet filtering on transmit packets if manageability is enabled 961 * and host interface is enabled. 962 * Currently no func pointer exists and all implementations are handled in the 963 * generic version of this function. 964 **/ 965 bool e1000_enable_tx_pkt_filtering(struct e1000_hw *hw) 966 { 967 return e1000_enable_tx_pkt_filtering_generic(hw); 968 } 969 970 /** 971 * e1000_mng_host_if_write - Writes to the manageability host interface 972 * @hw: pointer to the HW structure 973 * @buffer: pointer to the host interface buffer 974 * @length: size of the buffer 975 * @offset: location in the buffer to write to 976 * @sum: sum of the data (not checksum) 977 * 978 * This function writes the buffer content at the offset given on the host if. 979 * It also does alignment considerations to do the writes in most efficient 980 * way. Also fills up the sum of the buffer in *buffer parameter. 981 **/ 982 s32 e1000_mng_host_if_write(struct e1000_hw *hw, u8 *buffer, u16 length, 983 u16 offset, u8 *sum) 984 { 985 return e1000_mng_host_if_write_generic(hw, buffer, length, offset, sum); 986 } 987 988 /** 989 * e1000_mng_write_cmd_header - Writes manageability command header 990 * @hw: pointer to the HW structure 991 * @hdr: pointer to the host interface command header 992 * 993 * Writes the command header after does the checksum calculation. 994 **/ 995 s32 e1000_mng_write_cmd_header(struct e1000_hw *hw, 996 struct e1000_host_mng_command_header *hdr) 997 { 998 return e1000_mng_write_cmd_header_generic(hw, hdr); 999 } 1000 1001 /** 1002 * e1000_mng_enable_host_if - Checks host interface is enabled 1003 * @hw: pointer to the HW structure 1004 * 1005 * Returns E1000_success upon success, else E1000_ERR_HOST_INTERFACE_COMMAND 1006 * 1007 * This function checks whether the HOST IF is enabled for command operation 1008 * and also checks whether the previous command is completed. It busy waits 1009 * in case of previous command is not completed. 1010 **/ 1011 s32 e1000_mng_enable_host_if(struct e1000_hw *hw) 1012 { 1013 return e1000_mng_enable_host_if_generic(hw); 1014 } 1015 1016 /** 1017 * e1000_set_obff_timer - Set Optimized Buffer Flush/Fill timer 1018 * @hw: pointer to the HW structure 1019 * @itr: u32 indicating itr value 1020 * 1021 * Set the OBFF timer based on the given interrupt rate. 1022 **/ 1023 s32 e1000_set_obff_timer(struct e1000_hw *hw, u32 itr) 1024 { 1025 if (hw->mac.ops.set_obff_timer) 1026 return hw->mac.ops.set_obff_timer(hw, itr); 1027 1028 return E1000_SUCCESS; 1029 } 1030 1031 /** 1032 * e1000_check_reset_block - Verifies PHY can be reset 1033 * @hw: pointer to the HW structure 1034 * 1035 * Checks if the PHY is in a state that can be reset or if manageability 1036 * has it tied up. This is a function pointer entry point called by drivers. 1037 **/ 1038 s32 e1000_check_reset_block(struct e1000_hw *hw) 1039 { 1040 if (hw->phy.ops.check_reset_block) 1041 return hw->phy.ops.check_reset_block(hw); 1042 1043 return E1000_SUCCESS; 1044 } 1045 1046 /** 1047 * e1000_read_phy_reg - Reads PHY register 1048 * @hw: pointer to the HW structure 1049 * @offset: the register to read 1050 * @data: the buffer to store the 16-bit read. 1051 * 1052 * Reads the PHY register and returns the value in data. 1053 * This is a function pointer entry point called by drivers. 1054 **/ 1055 s32 e1000_read_phy_reg(struct e1000_hw *hw, u32 offset, u16 *data) 1056 { 1057 if (hw->phy.ops.read_reg) 1058 return hw->phy.ops.read_reg(hw, offset, data); 1059 1060 return E1000_SUCCESS; 1061 } 1062 1063 /** 1064 * e1000_write_phy_reg - Writes PHY register 1065 * @hw: pointer to the HW structure 1066 * @offset: the register to write 1067 * @data: the value to write. 1068 * 1069 * Writes the PHY register at offset with the value in data. 1070 * This is a function pointer entry point called by drivers. 1071 **/ 1072 s32 e1000_write_phy_reg(struct e1000_hw *hw, u32 offset, u16 data) 1073 { 1074 if (hw->phy.ops.write_reg) 1075 return hw->phy.ops.write_reg(hw, offset, data); 1076 1077 return E1000_SUCCESS; 1078 } 1079 1080 /** 1081 * e1000_release_phy - Generic release PHY 1082 * @hw: pointer to the HW structure 1083 * 1084 * Return if silicon family does not require a semaphore when accessing the 1085 * PHY. 1086 **/ 1087 void e1000_release_phy(struct e1000_hw *hw) 1088 { 1089 if (hw->phy.ops.release) 1090 hw->phy.ops.release(hw); 1091 } 1092 1093 /** 1094 * e1000_acquire_phy - Generic acquire PHY 1095 * @hw: pointer to the HW structure 1096 * 1097 * Return success if silicon family does not require a semaphore when 1098 * accessing the PHY. 1099 **/ 1100 s32 e1000_acquire_phy(struct e1000_hw *hw) 1101 { 1102 if (hw->phy.ops.acquire) 1103 return hw->phy.ops.acquire(hw); 1104 1105 return E1000_SUCCESS; 1106 } 1107 1108 /** 1109 * e1000_cfg_on_link_up - Configure PHY upon link up 1110 * @hw: pointer to the HW structure 1111 **/ 1112 s32 e1000_cfg_on_link_up(struct e1000_hw *hw) 1113 { 1114 if (hw->phy.ops.cfg_on_link_up) 1115 return hw->phy.ops.cfg_on_link_up(hw); 1116 1117 return E1000_SUCCESS; 1118 } 1119 1120 /** 1121 * e1000_read_kmrn_reg - Reads register using Kumeran interface 1122 * @hw: pointer to the HW structure 1123 * @offset: the register to read 1124 * @data: the location to store the 16-bit value read. 1125 * 1126 * Reads a register out of the Kumeran interface. Currently no func pointer 1127 * exists and all implementations are handled in the generic version of 1128 * this function. 1129 **/ 1130 s32 e1000_read_kmrn_reg(struct e1000_hw *hw, u32 offset, u16 *data) 1131 { 1132 return e1000_read_kmrn_reg_generic(hw, offset, data); 1133 } 1134 1135 /** 1136 * e1000_write_kmrn_reg - Writes register using Kumeran interface 1137 * @hw: pointer to the HW structure 1138 * @offset: the register to write 1139 * @data: the value to write. 1140 * 1141 * Writes a register to the Kumeran interface. Currently no func pointer 1142 * exists and all implementations are handled in the generic version of 1143 * this function. 1144 **/ 1145 s32 e1000_write_kmrn_reg(struct e1000_hw *hw, u32 offset, u16 data) 1146 { 1147 return e1000_write_kmrn_reg_generic(hw, offset, data); 1148 } 1149 1150 /** 1151 * e1000_get_cable_length - Retrieves cable length estimation 1152 * @hw: pointer to the HW structure 1153 * 1154 * This function estimates the cable length and stores them in 1155 * hw->phy.min_length and hw->phy.max_length. This is a function pointer 1156 * entry point called by drivers. 1157 **/ 1158 s32 e1000_get_cable_length(struct e1000_hw *hw) 1159 { 1160 if (hw->phy.ops.get_cable_length) 1161 return hw->phy.ops.get_cable_length(hw); 1162 1163 return E1000_SUCCESS; 1164 } 1165 1166 /** 1167 * e1000_get_phy_info - Retrieves PHY information from registers 1168 * @hw: pointer to the HW structure 1169 * 1170 * This function gets some information from various PHY registers and 1171 * populates hw->phy values with it. This is a function pointer entry 1172 * point called by drivers. 1173 **/ 1174 s32 e1000_get_phy_info(struct e1000_hw *hw) 1175 { 1176 if (hw->phy.ops.get_info) 1177 return hw->phy.ops.get_info(hw); 1178 1179 return E1000_SUCCESS; 1180 } 1181 1182 /** 1183 * e1000_phy_hw_reset - Hard PHY reset 1184 * @hw: pointer to the HW structure 1185 * 1186 * Performs a hard PHY reset. This is a function pointer entry point called 1187 * by drivers. 1188 **/ 1189 s32 e1000_phy_hw_reset(struct e1000_hw *hw) 1190 { 1191 if (hw->phy.ops.reset) 1192 return hw->phy.ops.reset(hw); 1193 1194 return E1000_SUCCESS; 1195 } 1196 1197 /** 1198 * e1000_phy_commit - Soft PHY reset 1199 * @hw: pointer to the HW structure 1200 * 1201 * Performs a soft PHY reset on those that apply. This is a function pointer 1202 * entry point called by drivers. 1203 **/ 1204 s32 e1000_phy_commit(struct e1000_hw *hw) 1205 { 1206 if (hw->phy.ops.commit) 1207 return hw->phy.ops.commit(hw); 1208 1209 return E1000_SUCCESS; 1210 } 1211 1212 /** 1213 * e1000_set_d0_lplu_state - Sets low power link up state for D0 1214 * @hw: pointer to the HW structure 1215 * @active: boolean used to enable/disable lplu 1216 * 1217 * Success returns 0, Failure returns 1 1218 * 1219 * The low power link up (lplu) state is set to the power management level D0 1220 * and SmartSpeed is disabled when active is TRUE, else clear lplu for D0 1221 * and enable Smartspeed. LPLU and Smartspeed are mutually exclusive. LPLU 1222 * is used during Dx states where the power conservation is most important. 1223 * During driver activity, SmartSpeed should be enabled so performance is 1224 * maintained. This is a function pointer entry point called by drivers. 1225 **/ 1226 s32 e1000_set_d0_lplu_state(struct e1000_hw *hw, bool active) 1227 { 1228 if (hw->phy.ops.set_d0_lplu_state) 1229 return hw->phy.ops.set_d0_lplu_state(hw, active); 1230 1231 return E1000_SUCCESS; 1232 } 1233 1234 /** 1235 * e1000_set_d3_lplu_state - Sets low power link up state for D3 1236 * @hw: pointer to the HW structure 1237 * @active: boolean used to enable/disable lplu 1238 * 1239 * Success returns 0, Failure returns 1 1240 * 1241 * The low power link up (lplu) state is set to the power management level D3 1242 * and SmartSpeed is disabled when active is TRUE, else clear lplu for D3 1243 * and enable Smartspeed. LPLU and Smartspeed are mutually exclusive. LPLU 1244 * is used during Dx states where the power conservation is most important. 1245 * During driver activity, SmartSpeed should be enabled so performance is 1246 * maintained. This is a function pointer entry point called by drivers. 1247 **/ 1248 s32 e1000_set_d3_lplu_state(struct e1000_hw *hw, bool active) 1249 { 1250 if (hw->phy.ops.set_d3_lplu_state) 1251 return hw->phy.ops.set_d3_lplu_state(hw, active); 1252 1253 return E1000_SUCCESS; 1254 } 1255 1256 /** 1257 * e1000_read_mac_addr - Reads MAC address 1258 * @hw: pointer to the HW structure 1259 * 1260 * Reads the MAC address out of the adapter and stores it in the HW structure. 1261 * Currently no func pointer exists and all implementations are handled in the 1262 * generic version of this function. 1263 **/ 1264 s32 e1000_read_mac_addr(struct e1000_hw *hw) 1265 { 1266 if (hw->mac.ops.read_mac_addr) 1267 return hw->mac.ops.read_mac_addr(hw); 1268 1269 return e1000_read_mac_addr_generic(hw); 1270 } 1271 1272 /** 1273 * e1000_read_pba_string - Read device part number string 1274 * @hw: pointer to the HW structure 1275 * @pba_num: pointer to device part number 1276 * @pba_num_size: size of part number buffer 1277 * 1278 * Reads the product board assembly (PBA) number from the EEPROM and stores 1279 * the value in pba_num. 1280 * Currently no func pointer exists and all implementations are handled in the 1281 * generic version of this function. 1282 **/ 1283 s32 e1000_read_pba_string(struct e1000_hw *hw, u8 *pba_num, u32 pba_num_size) 1284 { 1285 return e1000_read_pba_string_generic(hw, pba_num, pba_num_size); 1286 } 1287 1288 /** 1289 * e1000_read_pba_length - Read device part number string length 1290 * @hw: pointer to the HW structure 1291 * @pba_num_size: size of part number buffer 1292 * 1293 * Reads the product board assembly (PBA) number length from the EEPROM and 1294 * stores the value in pba_num. 1295 * Currently no func pointer exists and all implementations are handled in the 1296 * generic version of this function. 1297 **/ 1298 s32 e1000_read_pba_length(struct e1000_hw *hw, u32 *pba_num_size) 1299 { 1300 return e1000_read_pba_length_generic(hw, pba_num_size); 1301 } 1302 1303 /** 1304 * e1000_validate_nvm_checksum - Verifies NVM (EEPROM) checksum 1305 * @hw: pointer to the HW structure 1306 * 1307 * Validates the NVM checksum is correct. This is a function pointer entry 1308 * point called by drivers. 1309 **/ 1310 s32 e1000_validate_nvm_checksum(struct e1000_hw *hw) 1311 { 1312 if (hw->nvm.ops.validate) 1313 return hw->nvm.ops.validate(hw); 1314 1315 return -E1000_ERR_CONFIG; 1316 } 1317 1318 /** 1319 * e1000_update_nvm_checksum - Updates NVM (EEPROM) checksum 1320 * @hw: pointer to the HW structure 1321 * 1322 * Updates the NVM checksum. Currently no func pointer exists and all 1323 * implementations are handled in the generic version of this function. 1324 **/ 1325 s32 e1000_update_nvm_checksum(struct e1000_hw *hw) 1326 { 1327 if (hw->nvm.ops.update) 1328 return hw->nvm.ops.update(hw); 1329 1330 return -E1000_ERR_CONFIG; 1331 } 1332 1333 /** 1334 * e1000_reload_nvm - Reloads EEPROM 1335 * @hw: pointer to the HW structure 1336 * 1337 * Reloads the EEPROM by setting the "Reinitialize from EEPROM" bit in the 1338 * extended control register. 1339 **/ 1340 void e1000_reload_nvm(struct e1000_hw *hw) 1341 { 1342 if (hw->nvm.ops.reload) 1343 hw->nvm.ops.reload(hw); 1344 } 1345 1346 /** 1347 * e1000_read_nvm - Reads NVM (EEPROM) 1348 * @hw: pointer to the HW structure 1349 * @offset: the word offset to read 1350 * @words: number of 16-bit words to read 1351 * @data: pointer to the properly sized buffer for the data. 1352 * 1353 * Reads 16-bit chunks of data from the NVM (EEPROM). This is a function 1354 * pointer entry point called by drivers. 1355 **/ 1356 s32 e1000_read_nvm(struct e1000_hw *hw, u16 offset, u16 words, u16 *data) 1357 { 1358 if (hw->nvm.ops.read) 1359 return hw->nvm.ops.read(hw, offset, words, data); 1360 1361 return -E1000_ERR_CONFIG; 1362 } 1363 1364 /** 1365 * e1000_write_nvm - Writes to NVM (EEPROM) 1366 * @hw: pointer to the HW structure 1367 * @offset: the word offset to read 1368 * @words: number of 16-bit words to write 1369 * @data: pointer to the properly sized buffer for the data. 1370 * 1371 * Writes 16-bit chunks of data to the NVM (EEPROM). This is a function 1372 * pointer entry point called by drivers. 1373 **/ 1374 s32 e1000_write_nvm(struct e1000_hw *hw, u16 offset, u16 words, u16 *data) 1375 { 1376 if (hw->nvm.ops.write) 1377 return hw->nvm.ops.write(hw, offset, words, data); 1378 1379 return E1000_SUCCESS; 1380 } 1381 1382 /** 1383 * e1000_write_8bit_ctrl_reg - Writes 8bit Control register 1384 * @hw: pointer to the HW structure 1385 * @reg: 32bit register offset 1386 * @offset: the register to write 1387 * @data: the value to write. 1388 * 1389 * Writes the PHY register at offset with the value in data. 1390 * This is a function pointer entry point called by drivers. 1391 **/ 1392 s32 e1000_write_8bit_ctrl_reg(struct e1000_hw *hw, u32 reg, u32 offset, 1393 u8 data) 1394 { 1395 return e1000_write_8bit_ctrl_reg_generic(hw, reg, offset, data); 1396 } 1397 1398 /** 1399 * e1000_power_up_phy - Restores link in case of PHY power down 1400 * @hw: pointer to the HW structure 1401 * 1402 * The phy may be powered down to save power, to turn off link when the 1403 * driver is unloaded, or wake on lan is not enabled (among others). 1404 **/ 1405 void e1000_power_up_phy(struct e1000_hw *hw) 1406 { 1407 if (hw->phy.ops.power_up) 1408 hw->phy.ops.power_up(hw); 1409 1410 e1000_setup_link(hw); 1411 } 1412 1413 /** 1414 * e1000_power_down_phy - Power down PHY 1415 * @hw: pointer to the HW structure 1416 * 1417 * The phy may be powered down to save power, to turn off link when the 1418 * driver is unloaded, or wake on lan is not enabled (among others). 1419 **/ 1420 void e1000_power_down_phy(struct e1000_hw *hw) 1421 { 1422 if (hw->phy.ops.power_down) 1423 hw->phy.ops.power_down(hw); 1424 } 1425 1426 /** 1427 * e1000_power_up_fiber_serdes_link - Power up serdes link 1428 * @hw: pointer to the HW structure 1429 * 1430 * Power on the optics and PCS. 1431 **/ 1432 void e1000_power_up_fiber_serdes_link(struct e1000_hw *hw) 1433 { 1434 if (hw->mac.ops.power_up_serdes) 1435 hw->mac.ops.power_up_serdes(hw); 1436 } 1437 1438 /** 1439 * e1000_shutdown_fiber_serdes_link - Remove link during power down 1440 * @hw: pointer to the HW structure 1441 * 1442 * Shutdown the optics and PCS on driver unload. 1443 **/ 1444 void e1000_shutdown_fiber_serdes_link(struct e1000_hw *hw) 1445 { 1446 if (hw->mac.ops.shutdown_serdes) 1447 hw->mac.ops.shutdown_serdes(hw); 1448 } 1449 1450