1 /****************************************************************************** 2 3 Copyright (c) 2001-2013, Intel Corporation 4 All rights reserved. 5 6 Redistribution and use in source and binary forms, with or without 7 modification, are permitted provided that the following conditions are met: 8 9 1. Redistributions of source code must retain the above copyright notice, 10 this list of conditions and the following disclaimer. 11 12 2. Redistributions in binary form must reproduce the above copyright 13 notice, this list of conditions and the following disclaimer in the 14 documentation and/or other materials provided with the distribution. 15 16 3. Neither the name of the Intel Corporation nor the names of its 17 contributors may be used to endorse or promote products derived from 18 this software without specific prior written permission. 19 20 THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" 21 AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 22 IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 23 ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE 24 LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR 25 CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF 26 SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS 27 INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN 28 CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) 29 ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE 30 POSSIBILITY OF SUCH DAMAGE. 31 32 ******************************************************************************/ 33 /*$FreeBSD$*/ 34 35 #include "e1000_api.h" 36 37 /** 38 * e1000_init_mac_params - Initialize MAC function pointers 39 * @hw: pointer to the HW structure 40 * 41 * This function initializes the function pointers for the MAC 42 * set of functions. Called by drivers or by e1000_setup_init_funcs. 43 **/ 44 s32 e1000_init_mac_params(struct e1000_hw *hw) 45 { 46 s32 ret_val = E1000_SUCCESS; 47 48 if (hw->mac.ops.init_params) { 49 ret_val = hw->mac.ops.init_params(hw); 50 if (ret_val) { 51 DEBUGOUT("MAC Initialization Error\n"); 52 goto out; 53 } 54 } else { 55 DEBUGOUT("mac.init_mac_params was NULL\n"); 56 ret_val = -E1000_ERR_CONFIG; 57 } 58 59 out: 60 return ret_val; 61 } 62 63 /** 64 * e1000_init_nvm_params - Initialize NVM function pointers 65 * @hw: pointer to the HW structure 66 * 67 * This function initializes the function pointers for the NVM 68 * set of functions. Called by drivers or by e1000_setup_init_funcs. 69 **/ 70 s32 e1000_init_nvm_params(struct e1000_hw *hw) 71 { 72 s32 ret_val = E1000_SUCCESS; 73 74 if (hw->nvm.ops.init_params) { 75 ret_val = hw->nvm.ops.init_params(hw); 76 if (ret_val) { 77 DEBUGOUT("NVM Initialization Error\n"); 78 goto out; 79 } 80 } else { 81 DEBUGOUT("nvm.init_nvm_params was NULL\n"); 82 ret_val = -E1000_ERR_CONFIG; 83 } 84 85 out: 86 return ret_val; 87 } 88 89 /** 90 * e1000_init_phy_params - Initialize PHY function pointers 91 * @hw: pointer to the HW structure 92 * 93 * This function initializes the function pointers for the PHY 94 * set of functions. Called by drivers or by e1000_setup_init_funcs. 95 **/ 96 s32 e1000_init_phy_params(struct e1000_hw *hw) 97 { 98 s32 ret_val = E1000_SUCCESS; 99 100 if (hw->phy.ops.init_params) { 101 ret_val = hw->phy.ops.init_params(hw); 102 if (ret_val) { 103 DEBUGOUT("PHY Initialization Error\n"); 104 goto out; 105 } 106 } else { 107 DEBUGOUT("phy.init_phy_params was NULL\n"); 108 ret_val = -E1000_ERR_CONFIG; 109 } 110 111 out: 112 return ret_val; 113 } 114 115 /** 116 * e1000_init_mbx_params - Initialize mailbox function pointers 117 * @hw: pointer to the HW structure 118 * 119 * This function initializes the function pointers for the PHY 120 * set of functions. Called by drivers or by e1000_setup_init_funcs. 121 **/ 122 s32 e1000_init_mbx_params(struct e1000_hw *hw) 123 { 124 s32 ret_val = E1000_SUCCESS; 125 126 if (hw->mbx.ops.init_params) { 127 ret_val = hw->mbx.ops.init_params(hw); 128 if (ret_val) { 129 DEBUGOUT("Mailbox Initialization Error\n"); 130 goto out; 131 } 132 } else { 133 DEBUGOUT("mbx.init_mbx_params was NULL\n"); 134 ret_val = -E1000_ERR_CONFIG; 135 } 136 137 out: 138 return ret_val; 139 } 140 141 /** 142 * e1000_set_mac_type - Sets MAC type 143 * @hw: pointer to the HW structure 144 * 145 * This function sets the mac type of the adapter based on the 146 * device ID stored in the hw structure. 147 * MUST BE FIRST FUNCTION CALLED (explicitly or through 148 * e1000_setup_init_funcs()). 149 **/ 150 s32 e1000_set_mac_type(struct e1000_hw *hw) 151 { 152 struct e1000_mac_info *mac = &hw->mac; 153 s32 ret_val = E1000_SUCCESS; 154 155 DEBUGFUNC("e1000_set_mac_type"); 156 157 switch (hw->device_id) { 158 case E1000_DEV_ID_82542: 159 mac->type = e1000_82542; 160 break; 161 case E1000_DEV_ID_82543GC_FIBER: 162 case E1000_DEV_ID_82543GC_COPPER: 163 mac->type = e1000_82543; 164 break; 165 case E1000_DEV_ID_82544EI_COPPER: 166 case E1000_DEV_ID_82544EI_FIBER: 167 case E1000_DEV_ID_82544GC_COPPER: 168 case E1000_DEV_ID_82544GC_LOM: 169 mac->type = e1000_82544; 170 break; 171 case E1000_DEV_ID_82540EM: 172 case E1000_DEV_ID_82540EM_LOM: 173 case E1000_DEV_ID_82540EP: 174 case E1000_DEV_ID_82540EP_LOM: 175 case E1000_DEV_ID_82540EP_LP: 176 mac->type = e1000_82540; 177 break; 178 case E1000_DEV_ID_82545EM_COPPER: 179 case E1000_DEV_ID_82545EM_FIBER: 180 mac->type = e1000_82545; 181 break; 182 case E1000_DEV_ID_82545GM_COPPER: 183 case E1000_DEV_ID_82545GM_FIBER: 184 case E1000_DEV_ID_82545GM_SERDES: 185 mac->type = e1000_82545_rev_3; 186 break; 187 case E1000_DEV_ID_82546EB_COPPER: 188 case E1000_DEV_ID_82546EB_FIBER: 189 case E1000_DEV_ID_82546EB_QUAD_COPPER: 190 mac->type = e1000_82546; 191 break; 192 case E1000_DEV_ID_82546GB_COPPER: 193 case E1000_DEV_ID_82546GB_FIBER: 194 case E1000_DEV_ID_82546GB_SERDES: 195 case E1000_DEV_ID_82546GB_PCIE: 196 case E1000_DEV_ID_82546GB_QUAD_COPPER: 197 case E1000_DEV_ID_82546GB_QUAD_COPPER_KSP3: 198 mac->type = e1000_82546_rev_3; 199 break; 200 case E1000_DEV_ID_82541EI: 201 case E1000_DEV_ID_82541EI_MOBILE: 202 case E1000_DEV_ID_82541ER_LOM: 203 mac->type = e1000_82541; 204 break; 205 case E1000_DEV_ID_82541ER: 206 case E1000_DEV_ID_82541GI: 207 case E1000_DEV_ID_82541GI_LF: 208 case E1000_DEV_ID_82541GI_MOBILE: 209 mac->type = e1000_82541_rev_2; 210 break; 211 case E1000_DEV_ID_82547EI: 212 case E1000_DEV_ID_82547EI_MOBILE: 213 mac->type = e1000_82547; 214 break; 215 case E1000_DEV_ID_82547GI: 216 mac->type = e1000_82547_rev_2; 217 break; 218 case E1000_DEV_ID_82571EB_COPPER: 219 case E1000_DEV_ID_82571EB_FIBER: 220 case E1000_DEV_ID_82571EB_SERDES: 221 case E1000_DEV_ID_82571EB_SERDES_DUAL: 222 case E1000_DEV_ID_82571EB_SERDES_QUAD: 223 case E1000_DEV_ID_82571EB_QUAD_COPPER: 224 case E1000_DEV_ID_82571PT_QUAD_COPPER: 225 case E1000_DEV_ID_82571EB_QUAD_FIBER: 226 case E1000_DEV_ID_82571EB_QUAD_COPPER_LP: 227 mac->type = e1000_82571; 228 break; 229 case E1000_DEV_ID_82572EI: 230 case E1000_DEV_ID_82572EI_COPPER: 231 case E1000_DEV_ID_82572EI_FIBER: 232 case E1000_DEV_ID_82572EI_SERDES: 233 mac->type = e1000_82572; 234 break; 235 case E1000_DEV_ID_82573E: 236 case E1000_DEV_ID_82573E_IAMT: 237 case E1000_DEV_ID_82573L: 238 mac->type = e1000_82573; 239 break; 240 case E1000_DEV_ID_82574L: 241 case E1000_DEV_ID_82574LA: 242 mac->type = e1000_82574; 243 break; 244 case E1000_DEV_ID_82583V: 245 mac->type = e1000_82583; 246 break; 247 case E1000_DEV_ID_80003ES2LAN_COPPER_DPT: 248 case E1000_DEV_ID_80003ES2LAN_SERDES_DPT: 249 case E1000_DEV_ID_80003ES2LAN_COPPER_SPT: 250 case E1000_DEV_ID_80003ES2LAN_SERDES_SPT: 251 mac->type = e1000_80003es2lan; 252 break; 253 case E1000_DEV_ID_ICH8_IFE: 254 case E1000_DEV_ID_ICH8_IFE_GT: 255 case E1000_DEV_ID_ICH8_IFE_G: 256 case E1000_DEV_ID_ICH8_IGP_M: 257 case E1000_DEV_ID_ICH8_IGP_M_AMT: 258 case E1000_DEV_ID_ICH8_IGP_AMT: 259 case E1000_DEV_ID_ICH8_IGP_C: 260 case E1000_DEV_ID_ICH8_82567V_3: 261 mac->type = e1000_ich8lan; 262 break; 263 case E1000_DEV_ID_ICH9_IFE: 264 case E1000_DEV_ID_ICH9_IFE_GT: 265 case E1000_DEV_ID_ICH9_IFE_G: 266 case E1000_DEV_ID_ICH9_IGP_M: 267 case E1000_DEV_ID_ICH9_IGP_M_AMT: 268 case E1000_DEV_ID_ICH9_IGP_M_V: 269 case E1000_DEV_ID_ICH9_IGP_AMT: 270 case E1000_DEV_ID_ICH9_BM: 271 case E1000_DEV_ID_ICH9_IGP_C: 272 case E1000_DEV_ID_ICH10_R_BM_LM: 273 case E1000_DEV_ID_ICH10_R_BM_LF: 274 case E1000_DEV_ID_ICH10_R_BM_V: 275 mac->type = e1000_ich9lan; 276 break; 277 case E1000_DEV_ID_ICH10_D_BM_LM: 278 case E1000_DEV_ID_ICH10_D_BM_LF: 279 case E1000_DEV_ID_ICH10_D_BM_V: 280 mac->type = e1000_ich10lan; 281 break; 282 case E1000_DEV_ID_PCH_D_HV_DM: 283 case E1000_DEV_ID_PCH_D_HV_DC: 284 case E1000_DEV_ID_PCH_M_HV_LM: 285 case E1000_DEV_ID_PCH_M_HV_LC: 286 mac->type = e1000_pchlan; 287 break; 288 case E1000_DEV_ID_PCH2_LV_LM: 289 case E1000_DEV_ID_PCH2_LV_V: 290 mac->type = e1000_pch2lan; 291 break; 292 case E1000_DEV_ID_PCH_LPT_I217_LM: 293 case E1000_DEV_ID_PCH_LPT_I217_V: 294 case E1000_DEV_ID_PCH_LPTLP_I218_LM: 295 case E1000_DEV_ID_PCH_LPTLP_I218_V: 296 mac->type = e1000_pch_lpt; 297 break; 298 case E1000_DEV_ID_82575EB_COPPER: 299 case E1000_DEV_ID_82575EB_FIBER_SERDES: 300 case E1000_DEV_ID_82575GB_QUAD_COPPER: 301 mac->type = e1000_82575; 302 break; 303 case E1000_DEV_ID_82576: 304 case E1000_DEV_ID_82576_FIBER: 305 case E1000_DEV_ID_82576_SERDES: 306 case E1000_DEV_ID_82576_QUAD_COPPER: 307 case E1000_DEV_ID_82576_QUAD_COPPER_ET2: 308 case E1000_DEV_ID_82576_NS: 309 case E1000_DEV_ID_82576_NS_SERDES: 310 case E1000_DEV_ID_82576_SERDES_QUAD: 311 mac->type = e1000_82576; 312 break; 313 case E1000_DEV_ID_82580_COPPER: 314 case E1000_DEV_ID_82580_FIBER: 315 case E1000_DEV_ID_82580_SERDES: 316 case E1000_DEV_ID_82580_SGMII: 317 case E1000_DEV_ID_82580_COPPER_DUAL: 318 case E1000_DEV_ID_82580_QUAD_FIBER: 319 case E1000_DEV_ID_DH89XXCC_SGMII: 320 case E1000_DEV_ID_DH89XXCC_SERDES: 321 case E1000_DEV_ID_DH89XXCC_BACKPLANE: 322 case E1000_DEV_ID_DH89XXCC_SFP: 323 mac->type = e1000_82580; 324 break; 325 case E1000_DEV_ID_I350_COPPER: 326 case E1000_DEV_ID_I350_FIBER: 327 case E1000_DEV_ID_I350_SERDES: 328 case E1000_DEV_ID_I350_SGMII: 329 case E1000_DEV_ID_I350_DA4: 330 mac->type = e1000_i350; 331 break; 332 #if defined(QV_RELEASE) && defined(SPRINGVILLE_FLASHLESS_HW) 333 case E1000_DEV_ID_I210_NVMLESS: 334 #endif /* QV_RELEASE && SPRINGVILLE_FLASHLESS_HW */ 335 case E1000_DEV_ID_I210_COPPER: 336 case E1000_DEV_ID_I210_COPPER_OEM1: 337 case E1000_DEV_ID_I210_COPPER_IT: 338 case E1000_DEV_ID_I210_FIBER: 339 case E1000_DEV_ID_I210_SERDES: 340 case E1000_DEV_ID_I210_SGMII: 341 mac->type = e1000_i210; 342 break; 343 case E1000_DEV_ID_I211_COPPER: 344 mac->type = e1000_i211; 345 break; 346 case E1000_DEV_ID_82576_VF: 347 case E1000_DEV_ID_82576_VF_HV: 348 mac->type = e1000_vfadapt; 349 break; 350 case E1000_DEV_ID_I350_VF: 351 case E1000_DEV_ID_I350_VF_HV: 352 mac->type = e1000_vfadapt_i350; 353 break; 354 case E1000_DEV_ID_I354_BACKPLANE_1GBPS: 355 case E1000_DEV_ID_I354_SGMII: 356 case E1000_DEV_ID_I354_BACKPLANE_2_5GBPS: 357 mac->type = e1000_i354; 358 break; 359 360 default: 361 /* Should never have loaded on this device */ 362 ret_val = -E1000_ERR_MAC_INIT; 363 break; 364 } 365 366 return ret_val; 367 } 368 369 /** 370 * e1000_setup_init_funcs - Initializes function pointers 371 * @hw: pointer to the HW structure 372 * @init_device: TRUE will initialize the rest of the function pointers 373 * getting the device ready for use. FALSE will only set 374 * MAC type and the function pointers for the other init 375 * functions. Passing FALSE will not generate any hardware 376 * reads or writes. 377 * 378 * This function must be called by a driver in order to use the rest 379 * of the 'shared' code files. Called by drivers only. 380 **/ 381 s32 e1000_setup_init_funcs(struct e1000_hw *hw, bool init_device) 382 { 383 s32 ret_val; 384 385 /* Can't do much good without knowing the MAC type. */ 386 ret_val = e1000_set_mac_type(hw); 387 if (ret_val) { 388 DEBUGOUT("ERROR: MAC type could not be set properly.\n"); 389 goto out; 390 } 391 392 if (!hw->hw_addr) { 393 DEBUGOUT("ERROR: Registers not mapped\n"); 394 ret_val = -E1000_ERR_CONFIG; 395 goto out; 396 } 397 398 /* 399 * Init function pointers to generic implementations. We do this first 400 * allowing a driver module to override it afterward. 401 */ 402 e1000_init_mac_ops_generic(hw); 403 e1000_init_phy_ops_generic(hw); 404 e1000_init_nvm_ops_generic(hw); 405 e1000_init_mbx_ops_generic(hw); 406 407 /* 408 * Set up the init function pointers. These are functions within the 409 * adapter family file that sets up function pointers for the rest of 410 * the functions in that family. 411 */ 412 switch (hw->mac.type) { 413 case e1000_82542: 414 e1000_init_function_pointers_82542(hw); 415 break; 416 case e1000_82543: 417 case e1000_82544: 418 e1000_init_function_pointers_82543(hw); 419 break; 420 case e1000_82540: 421 case e1000_82545: 422 case e1000_82545_rev_3: 423 case e1000_82546: 424 case e1000_82546_rev_3: 425 e1000_init_function_pointers_82540(hw); 426 break; 427 case e1000_82541: 428 case e1000_82541_rev_2: 429 case e1000_82547: 430 case e1000_82547_rev_2: 431 e1000_init_function_pointers_82541(hw); 432 break; 433 case e1000_82571: 434 case e1000_82572: 435 case e1000_82573: 436 case e1000_82574: 437 case e1000_82583: 438 e1000_init_function_pointers_82571(hw); 439 break; 440 case e1000_80003es2lan: 441 e1000_init_function_pointers_80003es2lan(hw); 442 break; 443 case e1000_ich8lan: 444 case e1000_ich9lan: 445 case e1000_ich10lan: 446 case e1000_pchlan: 447 case e1000_pch2lan: 448 case e1000_pch_lpt: 449 e1000_init_function_pointers_ich8lan(hw); 450 break; 451 case e1000_82575: 452 case e1000_82576: 453 case e1000_82580: 454 case e1000_i350: 455 case e1000_i354: 456 e1000_init_function_pointers_82575(hw); 457 break; 458 case e1000_i210: 459 case e1000_i211: 460 e1000_init_function_pointers_i210(hw); 461 break; 462 case e1000_vfadapt: 463 e1000_init_function_pointers_vf(hw); 464 break; 465 case e1000_vfadapt_i350: 466 e1000_init_function_pointers_vf(hw); 467 break; 468 default: 469 DEBUGOUT("Hardware not supported\n"); 470 ret_val = -E1000_ERR_CONFIG; 471 break; 472 } 473 474 /* 475 * Initialize the rest of the function pointers. These require some 476 * register reads/writes in some cases. 477 */ 478 if (!(ret_val) && init_device) { 479 ret_val = e1000_init_mac_params(hw); 480 if (ret_val) 481 goto out; 482 483 ret_val = e1000_init_nvm_params(hw); 484 if (ret_val) 485 goto out; 486 487 ret_val = e1000_init_phy_params(hw); 488 if (ret_val) 489 goto out; 490 491 ret_val = e1000_init_mbx_params(hw); 492 if (ret_val) 493 goto out; 494 } 495 496 out: 497 return ret_val; 498 } 499 500 /** 501 * e1000_get_bus_info - Obtain bus information for adapter 502 * @hw: pointer to the HW structure 503 * 504 * This will obtain information about the HW bus for which the 505 * adapter is attached and stores it in the hw structure. This is a 506 * function pointer entry point called by drivers. 507 **/ 508 s32 e1000_get_bus_info(struct e1000_hw *hw) 509 { 510 if (hw->mac.ops.get_bus_info) 511 return hw->mac.ops.get_bus_info(hw); 512 513 return E1000_SUCCESS; 514 } 515 516 /** 517 * e1000_clear_vfta - Clear VLAN filter table 518 * @hw: pointer to the HW structure 519 * 520 * This clears the VLAN filter table on the adapter. This is a function 521 * pointer entry point called by drivers. 522 **/ 523 void e1000_clear_vfta(struct e1000_hw *hw) 524 { 525 if (hw->mac.ops.clear_vfta) 526 hw->mac.ops.clear_vfta(hw); 527 } 528 529 /** 530 * e1000_write_vfta - Write value to VLAN filter table 531 * @hw: pointer to the HW structure 532 * @offset: the 32-bit offset in which to write the value to. 533 * @value: the 32-bit value to write at location offset. 534 * 535 * This writes a 32-bit value to a 32-bit offset in the VLAN filter 536 * table. This is a function pointer entry point called by drivers. 537 **/ 538 void e1000_write_vfta(struct e1000_hw *hw, u32 offset, u32 value) 539 { 540 if (hw->mac.ops.write_vfta) 541 hw->mac.ops.write_vfta(hw, offset, value); 542 } 543 544 /** 545 * e1000_update_mc_addr_list - Update Multicast addresses 546 * @hw: pointer to the HW structure 547 * @mc_addr_list: array of multicast addresses to program 548 * @mc_addr_count: number of multicast addresses to program 549 * 550 * Updates the Multicast Table Array. 551 * The caller must have a packed mc_addr_list of multicast addresses. 552 **/ 553 void e1000_update_mc_addr_list(struct e1000_hw *hw, u8 *mc_addr_list, 554 u32 mc_addr_count) 555 { 556 if (hw->mac.ops.update_mc_addr_list) 557 hw->mac.ops.update_mc_addr_list(hw, mc_addr_list, 558 mc_addr_count); 559 } 560 561 /** 562 * e1000_force_mac_fc - Force MAC flow control 563 * @hw: pointer to the HW structure 564 * 565 * Force the MAC's flow control settings. Currently no func pointer exists 566 * and all implementations are handled in the generic version of this 567 * function. 568 **/ 569 s32 e1000_force_mac_fc(struct e1000_hw *hw) 570 { 571 return e1000_force_mac_fc_generic(hw); 572 } 573 574 /** 575 * e1000_check_for_link - Check/Store link connection 576 * @hw: pointer to the HW structure 577 * 578 * This checks the link condition of the adapter and stores the 579 * results in the hw->mac structure. This is a function pointer entry 580 * point called by drivers. 581 **/ 582 s32 e1000_check_for_link(struct e1000_hw *hw) 583 { 584 if (hw->mac.ops.check_for_link) 585 return hw->mac.ops.check_for_link(hw); 586 587 return -E1000_ERR_CONFIG; 588 } 589 590 /** 591 * e1000_check_mng_mode - Check management mode 592 * @hw: pointer to the HW structure 593 * 594 * This checks if the adapter has manageability enabled. 595 * This is a function pointer entry point called by drivers. 596 **/ 597 bool e1000_check_mng_mode(struct e1000_hw *hw) 598 { 599 if (hw->mac.ops.check_mng_mode) 600 return hw->mac.ops.check_mng_mode(hw); 601 602 return FALSE; 603 } 604 605 /** 606 * e1000_mng_write_dhcp_info - Writes DHCP info to host interface 607 * @hw: pointer to the HW structure 608 * @buffer: pointer to the host interface 609 * @length: size of the buffer 610 * 611 * Writes the DHCP information to the host interface. 612 **/ 613 s32 e1000_mng_write_dhcp_info(struct e1000_hw *hw, u8 *buffer, u16 length) 614 { 615 return e1000_mng_write_dhcp_info_generic(hw, buffer, length); 616 } 617 618 /** 619 * e1000_reset_hw - Reset hardware 620 * @hw: pointer to the HW structure 621 * 622 * This resets the hardware into a known state. This is a function pointer 623 * entry point called by drivers. 624 **/ 625 s32 e1000_reset_hw(struct e1000_hw *hw) 626 { 627 if (hw->mac.ops.reset_hw) 628 return hw->mac.ops.reset_hw(hw); 629 630 return -E1000_ERR_CONFIG; 631 } 632 633 /** 634 * e1000_init_hw - Initialize hardware 635 * @hw: pointer to the HW structure 636 * 637 * This inits the hardware readying it for operation. This is a function 638 * pointer entry point called by drivers. 639 **/ 640 s32 e1000_init_hw(struct e1000_hw *hw) 641 { 642 if (hw->mac.ops.init_hw) 643 return hw->mac.ops.init_hw(hw); 644 645 return -E1000_ERR_CONFIG; 646 } 647 648 /** 649 * e1000_setup_link - Configures link and flow control 650 * @hw: pointer to the HW structure 651 * 652 * This configures link and flow control settings for the adapter. This 653 * is a function pointer entry point called by drivers. While modules can 654 * also call this, they probably call their own version of this function. 655 **/ 656 s32 e1000_setup_link(struct e1000_hw *hw) 657 { 658 if (hw->mac.ops.setup_link) 659 return hw->mac.ops.setup_link(hw); 660 661 return -E1000_ERR_CONFIG; 662 } 663 664 /** 665 * e1000_get_speed_and_duplex - Returns current speed and duplex 666 * @hw: pointer to the HW structure 667 * @speed: pointer to a 16-bit value to store the speed 668 * @duplex: pointer to a 16-bit value to store the duplex. 669 * 670 * This returns the speed and duplex of the adapter in the two 'out' 671 * variables passed in. This is a function pointer entry point called 672 * by drivers. 673 **/ 674 s32 e1000_get_speed_and_duplex(struct e1000_hw *hw, u16 *speed, u16 *duplex) 675 { 676 if (hw->mac.ops.get_link_up_info) 677 return hw->mac.ops.get_link_up_info(hw, speed, duplex); 678 679 return -E1000_ERR_CONFIG; 680 } 681 682 /** 683 * e1000_setup_led - Configures SW controllable LED 684 * @hw: pointer to the HW structure 685 * 686 * This prepares the SW controllable LED for use and saves the current state 687 * of the LED so it can be later restored. This is a function pointer entry 688 * point called by drivers. 689 **/ 690 s32 e1000_setup_led(struct e1000_hw *hw) 691 { 692 if (hw->mac.ops.setup_led) 693 return hw->mac.ops.setup_led(hw); 694 695 return E1000_SUCCESS; 696 } 697 698 /** 699 * e1000_cleanup_led - Restores SW controllable LED 700 * @hw: pointer to the HW structure 701 * 702 * This restores the SW controllable LED to the value saved off by 703 * e1000_setup_led. This is a function pointer entry point called by drivers. 704 **/ 705 s32 e1000_cleanup_led(struct e1000_hw *hw) 706 { 707 if (hw->mac.ops.cleanup_led) 708 return hw->mac.ops.cleanup_led(hw); 709 710 return E1000_SUCCESS; 711 } 712 713 /** 714 * e1000_blink_led - Blink SW controllable LED 715 * @hw: pointer to the HW structure 716 * 717 * This starts the adapter LED blinking. Request the LED to be setup first 718 * and cleaned up after. This is a function pointer entry point called by 719 * drivers. 720 **/ 721 s32 e1000_blink_led(struct e1000_hw *hw) 722 { 723 if (hw->mac.ops.blink_led) 724 return hw->mac.ops.blink_led(hw); 725 726 return E1000_SUCCESS; 727 } 728 729 /** 730 * e1000_id_led_init - store LED configurations in SW 731 * @hw: pointer to the HW structure 732 * 733 * Initializes the LED config in SW. This is a function pointer entry point 734 * called by drivers. 735 **/ 736 s32 e1000_id_led_init(struct e1000_hw *hw) 737 { 738 if (hw->mac.ops.id_led_init) 739 return hw->mac.ops.id_led_init(hw); 740 741 return E1000_SUCCESS; 742 } 743 744 /** 745 * e1000_led_on - Turn on SW controllable LED 746 * @hw: pointer to the HW structure 747 * 748 * Turns the SW defined LED on. This is a function pointer entry point 749 * called by drivers. 750 **/ 751 s32 e1000_led_on(struct e1000_hw *hw) 752 { 753 if (hw->mac.ops.led_on) 754 return hw->mac.ops.led_on(hw); 755 756 return E1000_SUCCESS; 757 } 758 759 /** 760 * e1000_led_off - Turn off SW controllable LED 761 * @hw: pointer to the HW structure 762 * 763 * Turns the SW defined LED off. This is a function pointer entry point 764 * called by drivers. 765 **/ 766 s32 e1000_led_off(struct e1000_hw *hw) 767 { 768 if (hw->mac.ops.led_off) 769 return hw->mac.ops.led_off(hw); 770 771 return E1000_SUCCESS; 772 } 773 774 /** 775 * e1000_reset_adaptive - Reset adaptive IFS 776 * @hw: pointer to the HW structure 777 * 778 * Resets the adaptive IFS. Currently no func pointer exists and all 779 * implementations are handled in the generic version of this function. 780 **/ 781 void e1000_reset_adaptive(struct e1000_hw *hw) 782 { 783 e1000_reset_adaptive_generic(hw); 784 } 785 786 /** 787 * e1000_update_adaptive - Update adaptive IFS 788 * @hw: pointer to the HW structure 789 * 790 * Updates adapter IFS. Currently no func pointer exists and all 791 * implementations are handled in the generic version of this function. 792 **/ 793 void e1000_update_adaptive(struct e1000_hw *hw) 794 { 795 e1000_update_adaptive_generic(hw); 796 } 797 798 /** 799 * e1000_disable_pcie_master - Disable PCI-Express master access 800 * @hw: pointer to the HW structure 801 * 802 * Disables PCI-Express master access and verifies there are no pending 803 * requests. Currently no func pointer exists and all implementations are 804 * handled in the generic version of this function. 805 **/ 806 s32 e1000_disable_pcie_master(struct e1000_hw *hw) 807 { 808 return e1000_disable_pcie_master_generic(hw); 809 } 810 811 /** 812 * e1000_config_collision_dist - Configure collision distance 813 * @hw: pointer to the HW structure 814 * 815 * Configures the collision distance to the default value and is used 816 * during link setup. 817 **/ 818 void e1000_config_collision_dist(struct e1000_hw *hw) 819 { 820 if (hw->mac.ops.config_collision_dist) 821 hw->mac.ops.config_collision_dist(hw); 822 } 823 824 /** 825 * e1000_rar_set - Sets a receive address register 826 * @hw: pointer to the HW structure 827 * @addr: address to set the RAR to 828 * @index: the RAR to set 829 * 830 * Sets a Receive Address Register (RAR) to the specified address. 831 **/ 832 void e1000_rar_set(struct e1000_hw *hw, u8 *addr, u32 index) 833 { 834 if (hw->mac.ops.rar_set) 835 hw->mac.ops.rar_set(hw, addr, index); 836 } 837 838 /** 839 * e1000_validate_mdi_setting - Ensures valid MDI/MDIX SW state 840 * @hw: pointer to the HW structure 841 * 842 * Ensures that the MDI/MDIX SW state is valid. 843 **/ 844 s32 e1000_validate_mdi_setting(struct e1000_hw *hw) 845 { 846 if (hw->mac.ops.validate_mdi_setting) 847 return hw->mac.ops.validate_mdi_setting(hw); 848 849 return E1000_SUCCESS; 850 } 851 852 /** 853 * e1000_hash_mc_addr - Determines address location in multicast table 854 * @hw: pointer to the HW structure 855 * @mc_addr: Multicast address to hash. 856 * 857 * This hashes an address to determine its location in the multicast 858 * table. Currently no func pointer exists and all implementations 859 * are handled in the generic version of this function. 860 **/ 861 u32 e1000_hash_mc_addr(struct e1000_hw *hw, u8 *mc_addr) 862 { 863 return e1000_hash_mc_addr_generic(hw, mc_addr); 864 } 865 866 /** 867 * e1000_enable_tx_pkt_filtering - Enable packet filtering on TX 868 * @hw: pointer to the HW structure 869 * 870 * Enables packet filtering on transmit packets if manageability is enabled 871 * and host interface is enabled. 872 * Currently no func pointer exists and all implementations are handled in the 873 * generic version of this function. 874 **/ 875 bool e1000_enable_tx_pkt_filtering(struct e1000_hw *hw) 876 { 877 return e1000_enable_tx_pkt_filtering_generic(hw); 878 } 879 880 /** 881 * e1000_mng_host_if_write - Writes to the manageability host interface 882 * @hw: pointer to the HW structure 883 * @buffer: pointer to the host interface buffer 884 * @length: size of the buffer 885 * @offset: location in the buffer to write to 886 * @sum: sum of the data (not checksum) 887 * 888 * This function writes the buffer content at the offset given on the host if. 889 * It also does alignment considerations to do the writes in most efficient 890 * way. Also fills up the sum of the buffer in *buffer parameter. 891 **/ 892 s32 e1000_mng_host_if_write(struct e1000_hw *hw, u8 *buffer, u16 length, 893 u16 offset, u8 *sum) 894 { 895 return e1000_mng_host_if_write_generic(hw, buffer, length, offset, sum); 896 } 897 898 /** 899 * e1000_mng_write_cmd_header - Writes manageability command header 900 * @hw: pointer to the HW structure 901 * @hdr: pointer to the host interface command header 902 * 903 * Writes the command header after does the checksum calculation. 904 **/ 905 s32 e1000_mng_write_cmd_header(struct e1000_hw *hw, 906 struct e1000_host_mng_command_header *hdr) 907 { 908 return e1000_mng_write_cmd_header_generic(hw, hdr); 909 } 910 911 /** 912 * e1000_mng_enable_host_if - Checks host interface is enabled 913 * @hw: pointer to the HW structure 914 * 915 * Returns E1000_success upon success, else E1000_ERR_HOST_INTERFACE_COMMAND 916 * 917 * This function checks whether the HOST IF is enabled for command operation 918 * and also checks whether the previous command is completed. It busy waits 919 * in case of previous command is not completed. 920 **/ 921 s32 e1000_mng_enable_host_if(struct e1000_hw *hw) 922 { 923 return e1000_mng_enable_host_if_generic(hw); 924 } 925 926 /** 927 * e1000_set_obff_timer - Set Optimized Buffer Flush/Fill timer 928 * @hw: pointer to the HW structure 929 * @itr: u32 indicating itr value 930 * 931 * Set the OBFF timer based on the given interrupt rate. 932 **/ 933 s32 e1000_set_obff_timer(struct e1000_hw *hw, u32 itr) 934 { 935 if (hw->mac.ops.set_obff_timer) 936 return hw->mac.ops.set_obff_timer(hw, itr); 937 938 return E1000_SUCCESS; 939 } 940 941 /** 942 * e1000_check_reset_block - Verifies PHY can be reset 943 * @hw: pointer to the HW structure 944 * 945 * Checks if the PHY is in a state that can be reset or if manageability 946 * has it tied up. This is a function pointer entry point called by drivers. 947 **/ 948 s32 e1000_check_reset_block(struct e1000_hw *hw) 949 { 950 if (hw->phy.ops.check_reset_block) 951 return hw->phy.ops.check_reset_block(hw); 952 953 return E1000_SUCCESS; 954 } 955 956 /** 957 * e1000_read_phy_reg - Reads PHY register 958 * @hw: pointer to the HW structure 959 * @offset: the register to read 960 * @data: the buffer to store the 16-bit read. 961 * 962 * Reads the PHY register and returns the value in data. 963 * This is a function pointer entry point called by drivers. 964 **/ 965 s32 e1000_read_phy_reg(struct e1000_hw *hw, u32 offset, u16 *data) 966 { 967 if (hw->phy.ops.read_reg) 968 return hw->phy.ops.read_reg(hw, offset, data); 969 970 return E1000_SUCCESS; 971 } 972 973 /** 974 * e1000_write_phy_reg - Writes PHY register 975 * @hw: pointer to the HW structure 976 * @offset: the register to write 977 * @data: the value to write. 978 * 979 * Writes the PHY register at offset with the value in data. 980 * This is a function pointer entry point called by drivers. 981 **/ 982 s32 e1000_write_phy_reg(struct e1000_hw *hw, u32 offset, u16 data) 983 { 984 if (hw->phy.ops.write_reg) 985 return hw->phy.ops.write_reg(hw, offset, data); 986 987 return E1000_SUCCESS; 988 } 989 990 /** 991 * e1000_release_phy - Generic release PHY 992 * @hw: pointer to the HW structure 993 * 994 * Return if silicon family does not require a semaphore when accessing the 995 * PHY. 996 **/ 997 void e1000_release_phy(struct e1000_hw *hw) 998 { 999 if (hw->phy.ops.release) 1000 hw->phy.ops.release(hw); 1001 } 1002 1003 /** 1004 * e1000_acquire_phy - Generic acquire PHY 1005 * @hw: pointer to the HW structure 1006 * 1007 * Return success if silicon family does not require a semaphore when 1008 * accessing the PHY. 1009 **/ 1010 s32 e1000_acquire_phy(struct e1000_hw *hw) 1011 { 1012 if (hw->phy.ops.acquire) 1013 return hw->phy.ops.acquire(hw); 1014 1015 return E1000_SUCCESS; 1016 } 1017 1018 /** 1019 * e1000_cfg_on_link_up - Configure PHY upon link up 1020 * @hw: pointer to the HW structure 1021 **/ 1022 s32 e1000_cfg_on_link_up(struct e1000_hw *hw) 1023 { 1024 if (hw->phy.ops.cfg_on_link_up) 1025 return hw->phy.ops.cfg_on_link_up(hw); 1026 1027 return E1000_SUCCESS; 1028 } 1029 1030 /** 1031 * e1000_read_kmrn_reg - Reads register using Kumeran interface 1032 * @hw: pointer to the HW structure 1033 * @offset: the register to read 1034 * @data: the location to store the 16-bit value read. 1035 * 1036 * Reads a register out of the Kumeran interface. Currently no func pointer 1037 * exists and all implementations are handled in the generic version of 1038 * this function. 1039 **/ 1040 s32 e1000_read_kmrn_reg(struct e1000_hw *hw, u32 offset, u16 *data) 1041 { 1042 return e1000_read_kmrn_reg_generic(hw, offset, data); 1043 } 1044 1045 /** 1046 * e1000_write_kmrn_reg - Writes register using Kumeran interface 1047 * @hw: pointer to the HW structure 1048 * @offset: the register to write 1049 * @data: the value to write. 1050 * 1051 * Writes a register to the Kumeran interface. Currently no func pointer 1052 * exists and all implementations are handled in the generic version of 1053 * this function. 1054 **/ 1055 s32 e1000_write_kmrn_reg(struct e1000_hw *hw, u32 offset, u16 data) 1056 { 1057 return e1000_write_kmrn_reg_generic(hw, offset, data); 1058 } 1059 1060 /** 1061 * e1000_get_cable_length - Retrieves cable length estimation 1062 * @hw: pointer to the HW structure 1063 * 1064 * This function estimates the cable length and stores them in 1065 * hw->phy.min_length and hw->phy.max_length. This is a function pointer 1066 * entry point called by drivers. 1067 **/ 1068 s32 e1000_get_cable_length(struct e1000_hw *hw) 1069 { 1070 if (hw->phy.ops.get_cable_length) 1071 return hw->phy.ops.get_cable_length(hw); 1072 1073 return E1000_SUCCESS; 1074 } 1075 1076 /** 1077 * e1000_get_phy_info - Retrieves PHY information from registers 1078 * @hw: pointer to the HW structure 1079 * 1080 * This function gets some information from various PHY registers and 1081 * populates hw->phy values with it. This is a function pointer entry 1082 * point called by drivers. 1083 **/ 1084 s32 e1000_get_phy_info(struct e1000_hw *hw) 1085 { 1086 if (hw->phy.ops.get_info) 1087 return hw->phy.ops.get_info(hw); 1088 1089 return E1000_SUCCESS; 1090 } 1091 1092 /** 1093 * e1000_phy_hw_reset - Hard PHY reset 1094 * @hw: pointer to the HW structure 1095 * 1096 * Performs a hard PHY reset. This is a function pointer entry point called 1097 * by drivers. 1098 **/ 1099 s32 e1000_phy_hw_reset(struct e1000_hw *hw) 1100 { 1101 if (hw->phy.ops.reset) 1102 return hw->phy.ops.reset(hw); 1103 1104 return E1000_SUCCESS; 1105 } 1106 1107 /** 1108 * e1000_phy_commit - Soft PHY reset 1109 * @hw: pointer to the HW structure 1110 * 1111 * Performs a soft PHY reset on those that apply. This is a function pointer 1112 * entry point called by drivers. 1113 **/ 1114 s32 e1000_phy_commit(struct e1000_hw *hw) 1115 { 1116 if (hw->phy.ops.commit) 1117 return hw->phy.ops.commit(hw); 1118 1119 return E1000_SUCCESS; 1120 } 1121 1122 /** 1123 * e1000_set_d0_lplu_state - Sets low power link up state for D0 1124 * @hw: pointer to the HW structure 1125 * @active: boolean used to enable/disable lplu 1126 * 1127 * Success returns 0, Failure returns 1 1128 * 1129 * The low power link up (lplu) state is set to the power management level D0 1130 * and SmartSpeed is disabled when active is TRUE, else clear lplu for D0 1131 * and enable Smartspeed. LPLU and Smartspeed are mutually exclusive. LPLU 1132 * is used during Dx states where the power conservation is most important. 1133 * During driver activity, SmartSpeed should be enabled so performance is 1134 * maintained. This is a function pointer entry point called by drivers. 1135 **/ 1136 s32 e1000_set_d0_lplu_state(struct e1000_hw *hw, bool active) 1137 { 1138 if (hw->phy.ops.set_d0_lplu_state) 1139 return hw->phy.ops.set_d0_lplu_state(hw, active); 1140 1141 return E1000_SUCCESS; 1142 } 1143 1144 /** 1145 * e1000_set_d3_lplu_state - Sets low power link up state for D3 1146 * @hw: pointer to the HW structure 1147 * @active: boolean used to enable/disable lplu 1148 * 1149 * Success returns 0, Failure returns 1 1150 * 1151 * The low power link up (lplu) state is set to the power management level D3 1152 * and SmartSpeed is disabled when active is TRUE, else clear lplu for D3 1153 * and enable Smartspeed. LPLU and Smartspeed are mutually exclusive. LPLU 1154 * is used during Dx states where the power conservation is most important. 1155 * During driver activity, SmartSpeed should be enabled so performance is 1156 * maintained. This is a function pointer entry point called by drivers. 1157 **/ 1158 s32 e1000_set_d3_lplu_state(struct e1000_hw *hw, bool active) 1159 { 1160 if (hw->phy.ops.set_d3_lplu_state) 1161 return hw->phy.ops.set_d3_lplu_state(hw, active); 1162 1163 return E1000_SUCCESS; 1164 } 1165 1166 /** 1167 * e1000_read_mac_addr - Reads MAC address 1168 * @hw: pointer to the HW structure 1169 * 1170 * Reads the MAC address out of the adapter and stores it in the HW structure. 1171 * Currently no func pointer exists and all implementations are handled in the 1172 * generic version of this function. 1173 **/ 1174 s32 e1000_read_mac_addr(struct e1000_hw *hw) 1175 { 1176 if (hw->mac.ops.read_mac_addr) 1177 return hw->mac.ops.read_mac_addr(hw); 1178 1179 return e1000_read_mac_addr_generic(hw); 1180 } 1181 1182 /** 1183 * e1000_read_pba_string - Read device part number string 1184 * @hw: pointer to the HW structure 1185 * @pba_num: pointer to device part number 1186 * @pba_num_size: size of part number buffer 1187 * 1188 * Reads the product board assembly (PBA) number from the EEPROM and stores 1189 * the value in pba_num. 1190 * Currently no func pointer exists and all implementations are handled in the 1191 * generic version of this function. 1192 **/ 1193 s32 e1000_read_pba_string(struct e1000_hw *hw, u8 *pba_num, u32 pba_num_size) 1194 { 1195 return e1000_read_pba_string_generic(hw, pba_num, pba_num_size); 1196 } 1197 1198 /** 1199 * e1000_read_pba_length - Read device part number string length 1200 * @hw: pointer to the HW structure 1201 * @pba_num_size: size of part number buffer 1202 * 1203 * Reads the product board assembly (PBA) number length from the EEPROM and 1204 * stores the value in pba_num. 1205 * Currently no func pointer exists and all implementations are handled in the 1206 * generic version of this function. 1207 **/ 1208 s32 e1000_read_pba_length(struct e1000_hw *hw, u32 *pba_num_size) 1209 { 1210 return e1000_read_pba_length_generic(hw, pba_num_size); 1211 } 1212 1213 /** 1214 * e1000_validate_nvm_checksum - Verifies NVM (EEPROM) checksum 1215 * @hw: pointer to the HW structure 1216 * 1217 * Validates the NVM checksum is correct. This is a function pointer entry 1218 * point called by drivers. 1219 **/ 1220 s32 e1000_validate_nvm_checksum(struct e1000_hw *hw) 1221 { 1222 if (hw->nvm.ops.validate) 1223 return hw->nvm.ops.validate(hw); 1224 1225 return -E1000_ERR_CONFIG; 1226 } 1227 1228 /** 1229 * e1000_update_nvm_checksum - Updates NVM (EEPROM) checksum 1230 * @hw: pointer to the HW structure 1231 * 1232 * Updates the NVM checksum. Currently no func pointer exists and all 1233 * implementations are handled in the generic version of this function. 1234 **/ 1235 s32 e1000_update_nvm_checksum(struct e1000_hw *hw) 1236 { 1237 if (hw->nvm.ops.update) 1238 return hw->nvm.ops.update(hw); 1239 1240 return -E1000_ERR_CONFIG; 1241 } 1242 1243 /** 1244 * e1000_reload_nvm - Reloads EEPROM 1245 * @hw: pointer to the HW structure 1246 * 1247 * Reloads the EEPROM by setting the "Reinitialize from EEPROM" bit in the 1248 * extended control register. 1249 **/ 1250 void e1000_reload_nvm(struct e1000_hw *hw) 1251 { 1252 if (hw->nvm.ops.reload) 1253 hw->nvm.ops.reload(hw); 1254 } 1255 1256 /** 1257 * e1000_read_nvm - Reads NVM (EEPROM) 1258 * @hw: pointer to the HW structure 1259 * @offset: the word offset to read 1260 * @words: number of 16-bit words to read 1261 * @data: pointer to the properly sized buffer for the data. 1262 * 1263 * Reads 16-bit chunks of data from the NVM (EEPROM). This is a function 1264 * pointer entry point called by drivers. 1265 **/ 1266 s32 e1000_read_nvm(struct e1000_hw *hw, u16 offset, u16 words, u16 *data) 1267 { 1268 if (hw->nvm.ops.read) 1269 return hw->nvm.ops.read(hw, offset, words, data); 1270 1271 return -E1000_ERR_CONFIG; 1272 } 1273 1274 /** 1275 * e1000_write_nvm - Writes to NVM (EEPROM) 1276 * @hw: pointer to the HW structure 1277 * @offset: the word offset to read 1278 * @words: number of 16-bit words to write 1279 * @data: pointer to the properly sized buffer for the data. 1280 * 1281 * Writes 16-bit chunks of data to the NVM (EEPROM). This is a function 1282 * pointer entry point called by drivers. 1283 **/ 1284 s32 e1000_write_nvm(struct e1000_hw *hw, u16 offset, u16 words, u16 *data) 1285 { 1286 if (hw->nvm.ops.write) 1287 return hw->nvm.ops.write(hw, offset, words, data); 1288 1289 return E1000_SUCCESS; 1290 } 1291 1292 /** 1293 * e1000_write_8bit_ctrl_reg - Writes 8bit Control register 1294 * @hw: pointer to the HW structure 1295 * @reg: 32bit register offset 1296 * @offset: the register to write 1297 * @data: the value to write. 1298 * 1299 * Writes the PHY register at offset with the value in data. 1300 * This is a function pointer entry point called by drivers. 1301 **/ 1302 s32 e1000_write_8bit_ctrl_reg(struct e1000_hw *hw, u32 reg, u32 offset, 1303 u8 data) 1304 { 1305 return e1000_write_8bit_ctrl_reg_generic(hw, reg, offset, data); 1306 } 1307 1308 /** 1309 * e1000_power_up_phy - Restores link in case of PHY power down 1310 * @hw: pointer to the HW structure 1311 * 1312 * The phy may be powered down to save power, to turn off link when the 1313 * driver is unloaded, or wake on lan is not enabled (among others). 1314 **/ 1315 void e1000_power_up_phy(struct e1000_hw *hw) 1316 { 1317 if (hw->phy.ops.power_up) 1318 hw->phy.ops.power_up(hw); 1319 1320 e1000_setup_link(hw); 1321 } 1322 1323 /** 1324 * e1000_power_down_phy - Power down PHY 1325 * @hw: pointer to the HW structure 1326 * 1327 * The phy may be powered down to save power, to turn off link when the 1328 * driver is unloaded, or wake on lan is not enabled (among others). 1329 **/ 1330 void e1000_power_down_phy(struct e1000_hw *hw) 1331 { 1332 if (hw->phy.ops.power_down) 1333 hw->phy.ops.power_down(hw); 1334 } 1335 1336 /** 1337 * e1000_power_up_fiber_serdes_link - Power up serdes link 1338 * @hw: pointer to the HW structure 1339 * 1340 * Power on the optics and PCS. 1341 **/ 1342 void e1000_power_up_fiber_serdes_link(struct e1000_hw *hw) 1343 { 1344 if (hw->mac.ops.power_up_serdes) 1345 hw->mac.ops.power_up_serdes(hw); 1346 } 1347 1348 /** 1349 * e1000_shutdown_fiber_serdes_link - Remove link during power down 1350 * @hw: pointer to the HW structure 1351 * 1352 * Shutdown the optics and PCS on driver unload. 1353 **/ 1354 void e1000_shutdown_fiber_serdes_link(struct e1000_hw *hw) 1355 { 1356 if (hw->mac.ops.shutdown_serdes) 1357 hw->mac.ops.shutdown_serdes(hw); 1358 } 1359 1360