1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 /* 22 * Copyright 2008 Sun Microsystems, Inc. All rights reserved. 23 * Use is subject to license terms. 24 */ 25 26 #pragma ident "%Z%%M% %I% %E% SMI" 27 28 /* 29 * driver for accessing kernel devinfo tree. 30 */ 31 #include <sys/types.h> 32 #include <sys/pathname.h> 33 #include <sys/debug.h> 34 #include <sys/autoconf.h> 35 #include <sys/conf.h> 36 #include <sys/file.h> 37 #include <sys/kmem.h> 38 #include <sys/modctl.h> 39 #include <sys/stat.h> 40 #include <sys/ddi.h> 41 #include <sys/sunddi.h> 42 #include <sys/sunldi_impl.h> 43 #include <sys/sunndi.h> 44 #include <sys/esunddi.h> 45 #include <sys/sunmdi.h> 46 #include <sys/ddi_impldefs.h> 47 #include <sys/ndi_impldefs.h> 48 #include <sys/mdi_impldefs.h> 49 #include <sys/devinfo_impl.h> 50 #include <sys/thread.h> 51 #include <sys/modhash.h> 52 #include <sys/bitmap.h> 53 #include <util/qsort.h> 54 #include <sys/disp.h> 55 #include <sys/kobj.h> 56 #include <sys/crc32.h> 57 58 59 #ifdef DEBUG 60 static int di_debug; 61 #define dcmn_err(args) if (di_debug >= 1) cmn_err args 62 #define dcmn_err2(args) if (di_debug >= 2) cmn_err args 63 #define dcmn_err3(args) if (di_debug >= 3) cmn_err args 64 #else 65 #define dcmn_err(args) /* nothing */ 66 #define dcmn_err2(args) /* nothing */ 67 #define dcmn_err3(args) /* nothing */ 68 #endif 69 70 /* 71 * We partition the space of devinfo minor nodes equally between the full and 72 * unprivileged versions of the driver. The even-numbered minor nodes are the 73 * full version, while the odd-numbered ones are the read-only version. 74 */ 75 static int di_max_opens = 32; 76 77 #define DI_FULL_PARENT 0 78 #define DI_READONLY_PARENT 1 79 #define DI_NODE_SPECIES 2 80 #define DI_UNPRIVILEGED_NODE(x) (((x) % 2) != 0) 81 82 #define IOC_IDLE 0 /* snapshot ioctl states */ 83 #define IOC_SNAP 1 /* snapshot in progress */ 84 #define IOC_DONE 2 /* snapshot done, but not copied out */ 85 #define IOC_COPY 3 /* copyout in progress */ 86 87 /* 88 * Keep max alignment so we can move snapshot to different platforms 89 */ 90 #define DI_ALIGN(addr) ((addr + 7l) & ~7l) 91 92 /* 93 * To avoid wasting memory, make a linked list of memory chunks. 94 * Size of each chunk is buf_size. 95 */ 96 struct di_mem { 97 struct di_mem *next; /* link to next chunk */ 98 char *buf; /* contiguous kernel memory */ 99 size_t buf_size; /* size of buf in bytes */ 100 devmap_cookie_t cook; /* cookie from ddi_umem_alloc */ 101 }; 102 103 /* 104 * This is a stack for walking the tree without using recursion. 105 * When the devinfo tree height is above some small size, one 106 * gets watchdog resets on sun4m. 107 */ 108 struct di_stack { 109 void *offset[MAX_TREE_DEPTH]; 110 struct dev_info *dip[MAX_TREE_DEPTH]; 111 int circ[MAX_TREE_DEPTH]; 112 int depth; /* depth of current node to be copied */ 113 }; 114 115 #define TOP_OFFSET(stack) \ 116 ((di_off_t *)(stack)->offset[(stack)->depth - 1]) 117 #define TOP_NODE(stack) \ 118 ((stack)->dip[(stack)->depth - 1]) 119 #define PARENT_OFFSET(stack) \ 120 ((di_off_t *)(stack)->offset[(stack)->depth - 2]) 121 #define EMPTY_STACK(stack) ((stack)->depth == 0) 122 #define POP_STACK(stack) { \ 123 ndi_devi_exit((dev_info_t *)TOP_NODE(stack), \ 124 (stack)->circ[(stack)->depth - 1]); \ 125 ((stack)->depth--); \ 126 } 127 #define PUSH_STACK(stack, node, offp) { \ 128 ASSERT(node != NULL); \ 129 ndi_devi_enter((dev_info_t *)node, &(stack)->circ[(stack)->depth]); \ 130 (stack)->dip[(stack)->depth] = (node); \ 131 (stack)->offset[(stack)->depth] = (void *)(offp); \ 132 ((stack)->depth)++; \ 133 } 134 135 #define DI_ALL_PTR(s) ((struct di_all *)(intptr_t)di_mem_addr((s), 0)) 136 137 /* 138 * With devfs, the device tree has no global locks. The device tree is 139 * dynamic and dips may come and go if they are not locked locally. Under 140 * these conditions, pointers are no longer reliable as unique IDs. 141 * Specifically, these pointers cannot be used as keys for hash tables 142 * as the same devinfo structure may be freed in one part of the tree only 143 * to be allocated as the structure for a different device in another 144 * part of the tree. This can happen if DR and the snapshot are 145 * happening concurrently. 146 * The following data structures act as keys for devinfo nodes and 147 * pathinfo nodes. 148 */ 149 150 enum di_ktype { 151 DI_DKEY = 1, 152 DI_PKEY = 2 153 }; 154 155 struct di_dkey { 156 dev_info_t *dk_dip; 157 major_t dk_major; 158 int dk_inst; 159 pnode_t dk_nodeid; 160 }; 161 162 struct di_pkey { 163 mdi_pathinfo_t *pk_pip; 164 char *pk_path_addr; 165 dev_info_t *pk_client; 166 dev_info_t *pk_phci; 167 }; 168 169 struct di_key { 170 enum di_ktype k_type; 171 union { 172 struct di_dkey dkey; 173 struct di_pkey pkey; 174 } k_u; 175 }; 176 177 178 struct i_lnode; 179 180 typedef struct i_link { 181 /* 182 * If a di_link struct representing this i_link struct makes it 183 * into the snapshot, then self will point to the offset of 184 * the di_link struct in the snapshot 185 */ 186 di_off_t self; 187 188 int spec_type; /* block or char access type */ 189 struct i_lnode *src_lnode; /* src i_lnode */ 190 struct i_lnode *tgt_lnode; /* tgt i_lnode */ 191 struct i_link *src_link_next; /* next src i_link /w same i_lnode */ 192 struct i_link *tgt_link_next; /* next tgt i_link /w same i_lnode */ 193 } i_link_t; 194 195 typedef struct i_lnode { 196 /* 197 * If a di_lnode struct representing this i_lnode struct makes it 198 * into the snapshot, then self will point to the offset of 199 * the di_lnode struct in the snapshot 200 */ 201 di_off_t self; 202 203 /* 204 * used for hashing and comparing i_lnodes 205 */ 206 int modid; 207 208 /* 209 * public information describing a link endpoint 210 */ 211 struct di_node *di_node; /* di_node in snapshot */ 212 dev_t devt; /* devt */ 213 214 /* 215 * i_link ptr to links coming into this i_lnode node 216 * (this i_lnode is the target of these i_links) 217 */ 218 i_link_t *link_in; 219 220 /* 221 * i_link ptr to links going out of this i_lnode node 222 * (this i_lnode is the source of these i_links) 223 */ 224 i_link_t *link_out; 225 } i_lnode_t; 226 227 /* 228 * Soft state associated with each instance of driver open. 229 */ 230 static struct di_state { 231 di_off_t mem_size; /* total # bytes in memlist */ 232 struct di_mem *memlist; /* head of memlist */ 233 uint_t command; /* command from ioctl */ 234 int di_iocstate; /* snapshot ioctl state */ 235 mod_hash_t *reg_dip_hash; 236 mod_hash_t *reg_pip_hash; 237 int lnode_count; 238 int link_count; 239 240 mod_hash_t *lnode_hash; 241 mod_hash_t *link_hash; 242 } **di_states; 243 244 static kmutex_t di_lock; /* serialize instance assignment */ 245 246 typedef enum { 247 DI_QUIET = 0, /* DI_QUIET must always be 0 */ 248 DI_ERR, 249 DI_INFO, 250 DI_TRACE, 251 DI_TRACE1, 252 DI_TRACE2 253 } di_cache_debug_t; 254 255 static uint_t di_chunk = 32; /* I/O chunk size in pages */ 256 257 #define DI_CACHE_LOCK(c) (mutex_enter(&(c).cache_lock)) 258 #define DI_CACHE_UNLOCK(c) (mutex_exit(&(c).cache_lock)) 259 #define DI_CACHE_LOCKED(c) (mutex_owned(&(c).cache_lock)) 260 261 /* 262 * Check that whole device tree is being configured as a pre-condition for 263 * cleaning up /etc/devices files. 264 */ 265 #define DEVICES_FILES_CLEANABLE(st) \ 266 (((st)->command & DINFOSUBTREE) && ((st)->command & DINFOFORCE) && \ 267 strcmp(DI_ALL_PTR(st)->root_path, "/") == 0) 268 269 #define CACHE_DEBUG(args) \ 270 { if (di_cache_debug != DI_QUIET) di_cache_print args; } 271 272 typedef struct phci_walk_arg { 273 di_off_t off; 274 struct di_state *st; 275 } phci_walk_arg_t; 276 277 static int di_open(dev_t *, int, int, cred_t *); 278 static int di_ioctl(dev_t, int, intptr_t, int, cred_t *, int *); 279 static int di_close(dev_t, int, int, cred_t *); 280 static int di_info(dev_info_t *, ddi_info_cmd_t, void *, void **); 281 static int di_attach(dev_info_t *, ddi_attach_cmd_t); 282 static int di_detach(dev_info_t *, ddi_detach_cmd_t); 283 284 static di_off_t di_copyformat(di_off_t, struct di_state *, intptr_t, int); 285 static di_off_t di_snapshot_and_clean(struct di_state *); 286 static di_off_t di_copydevnm(di_off_t *, struct di_state *); 287 static di_off_t di_copytree(struct dev_info *, di_off_t *, struct di_state *); 288 static di_off_t di_copynode(struct di_stack *, struct di_state *); 289 static di_off_t di_getmdata(struct ddi_minor_data *, di_off_t *, di_off_t, 290 struct di_state *); 291 static di_off_t di_getppdata(struct dev_info *, di_off_t *, struct di_state *); 292 static di_off_t di_getdpdata(struct dev_info *, di_off_t *, struct di_state *); 293 static di_off_t di_getprop(struct ddi_prop *, di_off_t *, 294 struct di_state *, struct dev_info *, int); 295 static void di_allocmem(struct di_state *, size_t); 296 static void di_freemem(struct di_state *); 297 static void di_copymem(struct di_state *st, caddr_t buf, size_t bufsiz); 298 static di_off_t di_checkmem(struct di_state *, di_off_t, size_t); 299 static caddr_t di_mem_addr(struct di_state *, di_off_t); 300 static int di_setstate(struct di_state *, int); 301 static void di_register_dip(struct di_state *, dev_info_t *, di_off_t); 302 static void di_register_pip(struct di_state *, mdi_pathinfo_t *, di_off_t); 303 static di_off_t di_getpath_data(dev_info_t *, di_off_t *, di_off_t, 304 struct di_state *, int); 305 static di_off_t di_getlink_data(di_off_t, struct di_state *); 306 static int di_dip_find(struct di_state *st, dev_info_t *node, di_off_t *off_p); 307 308 static int cache_args_valid(struct di_state *st, int *error); 309 static int snapshot_is_cacheable(struct di_state *st); 310 static int di_cache_lookup(struct di_state *st); 311 static int di_cache_update(struct di_state *st); 312 static void di_cache_print(di_cache_debug_t msglevel, char *fmt, ...); 313 int build_vhci_list(dev_info_t *vh_devinfo, void *arg); 314 int build_phci_list(dev_info_t *ph_devinfo, void *arg); 315 316 static struct cb_ops di_cb_ops = { 317 di_open, /* open */ 318 di_close, /* close */ 319 nodev, /* strategy */ 320 nodev, /* print */ 321 nodev, /* dump */ 322 nodev, /* read */ 323 nodev, /* write */ 324 di_ioctl, /* ioctl */ 325 nodev, /* devmap */ 326 nodev, /* mmap */ 327 nodev, /* segmap */ 328 nochpoll, /* poll */ 329 ddi_prop_op, /* prop_op */ 330 NULL, /* streamtab */ 331 D_NEW | D_MP /* Driver compatibility flag */ 332 }; 333 334 static struct dev_ops di_ops = { 335 DEVO_REV, /* devo_rev, */ 336 0, /* refcnt */ 337 di_info, /* info */ 338 nulldev, /* identify */ 339 nulldev, /* probe */ 340 di_attach, /* attach */ 341 di_detach, /* detach */ 342 nodev, /* reset */ 343 &di_cb_ops, /* driver operations */ 344 NULL /* bus operations */ 345 }; 346 347 /* 348 * Module linkage information for the kernel. 349 */ 350 static struct modldrv modldrv = { 351 &mod_driverops, 352 "DEVINFO Driver %I%", 353 &di_ops 354 }; 355 356 static struct modlinkage modlinkage = { 357 MODREV_1, 358 &modldrv, 359 NULL 360 }; 361 362 int 363 _init(void) 364 { 365 int error; 366 367 mutex_init(&di_lock, NULL, MUTEX_DRIVER, NULL); 368 369 error = mod_install(&modlinkage); 370 if (error != 0) { 371 mutex_destroy(&di_lock); 372 return (error); 373 } 374 375 return (0); 376 } 377 378 int 379 _info(struct modinfo *modinfop) 380 { 381 return (mod_info(&modlinkage, modinfop)); 382 } 383 384 int 385 _fini(void) 386 { 387 int error; 388 389 error = mod_remove(&modlinkage); 390 if (error != 0) { 391 return (error); 392 } 393 394 mutex_destroy(&di_lock); 395 return (0); 396 } 397 398 static dev_info_t *di_dip; 399 400 /*ARGSUSED*/ 401 static int 402 di_info(dev_info_t *dip, ddi_info_cmd_t infocmd, void *arg, void **result) 403 { 404 int error = DDI_FAILURE; 405 406 switch (infocmd) { 407 case DDI_INFO_DEVT2DEVINFO: 408 *result = (void *)di_dip; 409 error = DDI_SUCCESS; 410 break; 411 case DDI_INFO_DEVT2INSTANCE: 412 /* 413 * All dev_t's map to the same, single instance. 414 */ 415 *result = (void *)0; 416 error = DDI_SUCCESS; 417 break; 418 default: 419 break; 420 } 421 422 return (error); 423 } 424 425 static int 426 di_attach(dev_info_t *dip, ddi_attach_cmd_t cmd) 427 { 428 int error = DDI_FAILURE; 429 430 switch (cmd) { 431 case DDI_ATTACH: 432 di_states = kmem_zalloc( 433 di_max_opens * sizeof (struct di_state *), KM_SLEEP); 434 435 if (ddi_create_minor_node(dip, "devinfo", S_IFCHR, 436 DI_FULL_PARENT, DDI_PSEUDO, NULL) == DDI_FAILURE || 437 ddi_create_minor_node(dip, "devinfo,ro", S_IFCHR, 438 DI_READONLY_PARENT, DDI_PSEUDO, NULL) == DDI_FAILURE) { 439 kmem_free(di_states, 440 di_max_opens * sizeof (struct di_state *)); 441 ddi_remove_minor_node(dip, NULL); 442 error = DDI_FAILURE; 443 } else { 444 di_dip = dip; 445 ddi_report_dev(dip); 446 447 error = DDI_SUCCESS; 448 } 449 break; 450 default: 451 error = DDI_FAILURE; 452 break; 453 } 454 455 return (error); 456 } 457 458 static int 459 di_detach(dev_info_t *dip, ddi_detach_cmd_t cmd) 460 { 461 int error = DDI_FAILURE; 462 463 switch (cmd) { 464 case DDI_DETACH: 465 ddi_remove_minor_node(dip, NULL); 466 di_dip = NULL; 467 kmem_free(di_states, di_max_opens * sizeof (struct di_state *)); 468 469 error = DDI_SUCCESS; 470 break; 471 default: 472 error = DDI_FAILURE; 473 break; 474 } 475 476 return (error); 477 } 478 479 /* 480 * Allow multiple opens by tweaking the dev_t such that it looks like each 481 * open is getting a different minor device. Each minor gets a separate 482 * entry in the di_states[] table. Based on the original minor number, we 483 * discriminate opens of the full and read-only nodes. If all of the instances 484 * of the selected minor node are currently open, we return EAGAIN. 485 */ 486 /*ARGSUSED*/ 487 static int 488 di_open(dev_t *devp, int flag, int otyp, cred_t *credp) 489 { 490 int m; 491 minor_t minor_parent = getminor(*devp); 492 493 if (minor_parent != DI_FULL_PARENT && 494 minor_parent != DI_READONLY_PARENT) 495 return (ENXIO); 496 497 mutex_enter(&di_lock); 498 499 for (m = minor_parent; m < di_max_opens; m += DI_NODE_SPECIES) { 500 if (di_states[m] != NULL) 501 continue; 502 503 di_states[m] = kmem_zalloc(sizeof (struct di_state), KM_SLEEP); 504 break; /* It's ours. */ 505 } 506 507 if (m >= di_max_opens) { 508 /* 509 * maximum open instance for device reached 510 */ 511 mutex_exit(&di_lock); 512 dcmn_err((CE_WARN, "devinfo: maximum devinfo open reached")); 513 return (EAGAIN); 514 } 515 mutex_exit(&di_lock); 516 517 ASSERT(m < di_max_opens); 518 *devp = makedevice(getmajor(*devp), (minor_t)(m + DI_NODE_SPECIES)); 519 520 dcmn_err((CE_CONT, "di_open: thread = %p, assigned minor = %d\n", 521 (void *)curthread, m + DI_NODE_SPECIES)); 522 523 return (0); 524 } 525 526 /*ARGSUSED*/ 527 static int 528 di_close(dev_t dev, int flag, int otype, cred_t *cred_p) 529 { 530 struct di_state *st; 531 int m = (int)getminor(dev) - DI_NODE_SPECIES; 532 533 if (m < 0) { 534 cmn_err(CE_WARN, "closing non-existent devinfo minor %d", 535 m + DI_NODE_SPECIES); 536 return (ENXIO); 537 } 538 539 st = di_states[m]; 540 ASSERT(m < di_max_opens && st != NULL); 541 542 di_freemem(st); 543 kmem_free(st, sizeof (struct di_state)); 544 545 /* 546 * empty slot in state table 547 */ 548 mutex_enter(&di_lock); 549 di_states[m] = NULL; 550 dcmn_err((CE_CONT, "di_close: thread = %p, assigned minor = %d\n", 551 (void *)curthread, m + DI_NODE_SPECIES)); 552 mutex_exit(&di_lock); 553 554 return (0); 555 } 556 557 558 /*ARGSUSED*/ 559 static int 560 di_ioctl(dev_t dev, int cmd, intptr_t arg, int mode, cred_t *credp, int *rvalp) 561 { 562 int rv, error; 563 di_off_t off; 564 struct di_all *all; 565 struct di_state *st; 566 int m = (int)getminor(dev) - DI_NODE_SPECIES; 567 568 major_t i; 569 char *drv_name; 570 size_t map_size, size; 571 struct di_mem *dcp; 572 int ndi_flags; 573 574 if (m < 0 || m >= di_max_opens) { 575 return (ENXIO); 576 } 577 578 st = di_states[m]; 579 ASSERT(st != NULL); 580 581 dcmn_err2((CE_CONT, "di_ioctl: mode = %x, cmd = %x\n", mode, cmd)); 582 583 switch (cmd) { 584 case DINFOIDENT: 585 /* 586 * This is called from di_init to verify that the driver 587 * opened is indeed devinfo. The purpose is to guard against 588 * sending ioctl to an unknown driver in case of an 589 * unresolved major number conflict during bfu. 590 */ 591 *rvalp = DI_MAGIC; 592 return (0); 593 594 case DINFOLODRV: 595 /* 596 * Hold an installed driver and return the result 597 */ 598 if (DI_UNPRIVILEGED_NODE(m)) { 599 /* 600 * Only the fully enabled instances may issue 601 * DINFOLDDRV. 602 */ 603 return (EACCES); 604 } 605 606 drv_name = kmem_alloc(MAXNAMELEN, KM_SLEEP); 607 if (ddi_copyin((void *)arg, drv_name, MAXNAMELEN, mode) != 0) { 608 kmem_free(drv_name, MAXNAMELEN); 609 return (EFAULT); 610 } 611 612 /* 613 * Some 3rd party driver's _init() walks the device tree, 614 * so we load the driver module before configuring driver. 615 */ 616 i = ddi_name_to_major(drv_name); 617 if (ddi_hold_driver(i) == NULL) { 618 kmem_free(drv_name, MAXNAMELEN); 619 return (ENXIO); 620 } 621 622 ndi_flags = NDI_DEVI_PERSIST | NDI_CONFIG | NDI_NO_EVENT; 623 624 /* 625 * i_ddi_load_drvconf() below will trigger a reprobe 626 * via reset_nexus_flags(). NDI_DRV_CONF_REPROBE isn't 627 * needed here. 628 */ 629 modunload_disable(); 630 (void) i_ddi_load_drvconf(i); 631 (void) ndi_devi_config_driver(ddi_root_node(), ndi_flags, i); 632 kmem_free(drv_name, MAXNAMELEN); 633 ddi_rele_driver(i); 634 rv = i_ddi_devs_attached(i); 635 modunload_enable(); 636 637 i_ddi_di_cache_invalidate(KM_SLEEP); 638 639 return ((rv == DDI_SUCCESS)? 0 : ENXIO); 640 641 case DINFOUSRLD: 642 /* 643 * The case for copying snapshot to userland 644 */ 645 if (di_setstate(st, IOC_COPY) == -1) 646 return (EBUSY); 647 648 map_size = ((struct di_all *) 649 (intptr_t)di_mem_addr(st, 0))->map_size; 650 if (map_size == 0) { 651 (void) di_setstate(st, IOC_DONE); 652 return (EFAULT); 653 } 654 655 /* 656 * copyout the snapshot 657 */ 658 map_size = (map_size + PAGEOFFSET) & PAGEMASK; 659 660 /* 661 * Return the map size, so caller may do a sanity 662 * check against the return value of snapshot ioctl() 663 */ 664 *rvalp = (int)map_size; 665 666 /* 667 * Copy one chunk at a time 668 */ 669 off = 0; 670 dcp = st->memlist; 671 while (map_size) { 672 size = dcp->buf_size; 673 if (map_size <= size) { 674 size = map_size; 675 } 676 677 if (ddi_copyout(di_mem_addr(st, off), 678 (void *)(arg + off), size, mode) != 0) { 679 (void) di_setstate(st, IOC_DONE); 680 return (EFAULT); 681 } 682 683 map_size -= size; 684 off += size; 685 dcp = dcp->next; 686 } 687 688 di_freemem(st); 689 (void) di_setstate(st, IOC_IDLE); 690 return (0); 691 692 default: 693 if ((cmd & ~DIIOC_MASK) != DIIOC) { 694 /* 695 * Invalid ioctl command 696 */ 697 return (ENOTTY); 698 } 699 /* 700 * take a snapshot 701 */ 702 st->command = cmd & DIIOC_MASK; 703 /*FALLTHROUGH*/ 704 } 705 706 /* 707 * Obtain enough memory to hold header + rootpath. We prevent kernel 708 * memory exhaustion by freeing any previously allocated snapshot and 709 * refusing the operation; otherwise we would be allowing ioctl(), 710 * ioctl(), ioctl(), ..., panic. 711 */ 712 if (di_setstate(st, IOC_SNAP) == -1) 713 return (EBUSY); 714 715 size = sizeof (struct di_all) + 716 sizeof (((struct dinfo_io *)(NULL))->root_path); 717 if (size < PAGESIZE) 718 size = PAGESIZE; 719 di_allocmem(st, size); 720 721 all = (struct di_all *)(intptr_t)di_mem_addr(st, 0); 722 all->devcnt = devcnt; 723 all->command = st->command; 724 all->version = DI_SNAPSHOT_VERSION; 725 all->top_vhci_devinfo = 0; /* filled up by build_vhci_list. */ 726 727 /* 728 * Note the endianness in case we need to transport snapshot 729 * over the network. 730 */ 731 #if defined(_LITTLE_ENDIAN) 732 all->endianness = DI_LITTLE_ENDIAN; 733 #else 734 all->endianness = DI_BIG_ENDIAN; 735 #endif 736 737 /* Copyin ioctl args, store in the snapshot. */ 738 if (copyinstr((void *)arg, all->root_path, 739 sizeof (((struct dinfo_io *)(NULL))->root_path), &size) != 0) { 740 di_freemem(st); 741 (void) di_setstate(st, IOC_IDLE); 742 return (EFAULT); 743 } 744 745 if ((st->command & DINFOCLEANUP) && !DEVICES_FILES_CLEANABLE(st)) { 746 di_freemem(st); 747 (void) di_setstate(st, IOC_IDLE); 748 return (EINVAL); 749 } 750 751 error = 0; 752 if ((st->command & DINFOCACHE) && !cache_args_valid(st, &error)) { 753 di_freemem(st); 754 (void) di_setstate(st, IOC_IDLE); 755 return (error); 756 } 757 758 off = DI_ALIGN(sizeof (struct di_all) + size); 759 760 /* 761 * Only the fully enabled version may force load drivers or read 762 * the parent private data from a driver. 763 */ 764 if ((st->command & (DINFOPRIVDATA | DINFOFORCE)) != 0 && 765 DI_UNPRIVILEGED_NODE(m)) { 766 di_freemem(st); 767 (void) di_setstate(st, IOC_IDLE); 768 return (EACCES); 769 } 770 771 /* Do we need private data? */ 772 if (st->command & DINFOPRIVDATA) { 773 arg += sizeof (((struct dinfo_io *)(NULL))->root_path); 774 775 #ifdef _MULTI_DATAMODEL 776 switch (ddi_model_convert_from(mode & FMODELS)) { 777 case DDI_MODEL_ILP32: { 778 /* 779 * Cannot copy private data from 64-bit kernel 780 * to 32-bit app 781 */ 782 di_freemem(st); 783 (void) di_setstate(st, IOC_IDLE); 784 return (EINVAL); 785 } 786 case DDI_MODEL_NONE: 787 if ((off = di_copyformat(off, st, arg, mode)) == 0) { 788 di_freemem(st); 789 (void) di_setstate(st, IOC_IDLE); 790 return (EFAULT); 791 } 792 break; 793 } 794 #else /* !_MULTI_DATAMODEL */ 795 if ((off = di_copyformat(off, st, arg, mode)) == 0) { 796 di_freemem(st); 797 (void) di_setstate(st, IOC_IDLE); 798 return (EFAULT); 799 } 800 #endif /* _MULTI_DATAMODEL */ 801 } 802 803 all->top_devinfo = DI_ALIGN(off); 804 805 /* 806 * For cache lookups we reallocate memory from scratch, 807 * so the value of "all" is no longer valid. 808 */ 809 all = NULL; 810 811 if (st->command & DINFOCACHE) { 812 *rvalp = di_cache_lookup(st); 813 } else if (snapshot_is_cacheable(st)) { 814 DI_CACHE_LOCK(di_cache); 815 *rvalp = di_cache_update(st); 816 DI_CACHE_UNLOCK(di_cache); 817 } else 818 *rvalp = di_snapshot_and_clean(st); 819 820 if (*rvalp) { 821 DI_ALL_PTR(st)->map_size = *rvalp; 822 (void) di_setstate(st, IOC_DONE); 823 } else { 824 di_freemem(st); 825 (void) di_setstate(st, IOC_IDLE); 826 } 827 828 return (0); 829 } 830 831 /* 832 * Get a chunk of memory >= size, for the snapshot 833 */ 834 static void 835 di_allocmem(struct di_state *st, size_t size) 836 { 837 struct di_mem *mem = kmem_zalloc(sizeof (struct di_mem), 838 KM_SLEEP); 839 /* 840 * Round up size to nearest power of 2. If it is less 841 * than st->mem_size, set it to st->mem_size (i.e., 842 * the mem_size is doubled every time) to reduce the 843 * number of memory allocations. 844 */ 845 size_t tmp = 1; 846 while (tmp < size) { 847 tmp <<= 1; 848 } 849 size = (tmp > st->mem_size) ? tmp : st->mem_size; 850 851 mem->buf = ddi_umem_alloc(size, DDI_UMEM_SLEEP, &mem->cook); 852 mem->buf_size = size; 853 854 dcmn_err2((CE_CONT, "di_allocmem: mem_size=%x\n", st->mem_size)); 855 856 if (st->mem_size == 0) { /* first chunk */ 857 st->memlist = mem; 858 } else { 859 /* 860 * locate end of linked list and add a chunk at the end 861 */ 862 struct di_mem *dcp = st->memlist; 863 while (dcp->next != NULL) { 864 dcp = dcp->next; 865 } 866 867 dcp->next = mem; 868 } 869 870 st->mem_size += size; 871 } 872 873 /* 874 * Copy upto bufsiz bytes of the memlist to buf 875 */ 876 static void 877 di_copymem(struct di_state *st, caddr_t buf, size_t bufsiz) 878 { 879 struct di_mem *dcp; 880 size_t copysz; 881 882 if (st->mem_size == 0) { 883 ASSERT(st->memlist == NULL); 884 return; 885 } 886 887 copysz = 0; 888 for (dcp = st->memlist; dcp; dcp = dcp->next) { 889 890 ASSERT(bufsiz > 0); 891 892 if (bufsiz <= dcp->buf_size) 893 copysz = bufsiz; 894 else 895 copysz = dcp->buf_size; 896 897 bcopy(dcp->buf, buf, copysz); 898 899 buf += copysz; 900 bufsiz -= copysz; 901 902 if (bufsiz == 0) 903 break; 904 } 905 } 906 907 /* 908 * Free all memory for the snapshot 909 */ 910 static void 911 di_freemem(struct di_state *st) 912 { 913 struct di_mem *dcp, *tmp; 914 915 dcmn_err2((CE_CONT, "di_freemem\n")); 916 917 if (st->mem_size) { 918 dcp = st->memlist; 919 while (dcp) { /* traverse the linked list */ 920 tmp = dcp; 921 dcp = dcp->next; 922 ddi_umem_free(tmp->cook); 923 kmem_free(tmp, sizeof (struct di_mem)); 924 } 925 st->mem_size = 0; 926 st->memlist = NULL; 927 } 928 929 ASSERT(st->mem_size == 0); 930 ASSERT(st->memlist == NULL); 931 } 932 933 /* 934 * Copies cached data to the di_state structure. 935 * Returns: 936 * - size of data copied, on SUCCESS 937 * - 0 on failure 938 */ 939 static int 940 di_cache2mem(struct di_cache *cache, struct di_state *st) 941 { 942 caddr_t pa; 943 944 ASSERT(st->mem_size == 0); 945 ASSERT(st->memlist == NULL); 946 ASSERT(!servicing_interrupt()); 947 ASSERT(DI_CACHE_LOCKED(*cache)); 948 949 if (cache->cache_size == 0) { 950 ASSERT(cache->cache_data == NULL); 951 CACHE_DEBUG((DI_ERR, "Empty cache. Skipping copy")); 952 return (0); 953 } 954 955 ASSERT(cache->cache_data); 956 957 di_allocmem(st, cache->cache_size); 958 959 pa = di_mem_addr(st, 0); 960 961 ASSERT(pa); 962 963 /* 964 * Verify that di_allocmem() allocates contiguous memory, 965 * so that it is safe to do straight bcopy() 966 */ 967 ASSERT(st->memlist != NULL); 968 ASSERT(st->memlist->next == NULL); 969 bcopy(cache->cache_data, pa, cache->cache_size); 970 971 return (cache->cache_size); 972 } 973 974 /* 975 * Copies a snapshot from di_state to the cache 976 * Returns: 977 * - 0 on failure 978 * - size of copied data on success 979 */ 980 static size_t 981 di_mem2cache(struct di_state *st, struct di_cache *cache) 982 { 983 size_t map_size; 984 985 ASSERT(cache->cache_size == 0); 986 ASSERT(cache->cache_data == NULL); 987 ASSERT(!servicing_interrupt()); 988 ASSERT(DI_CACHE_LOCKED(*cache)); 989 990 if (st->mem_size == 0) { 991 ASSERT(st->memlist == NULL); 992 CACHE_DEBUG((DI_ERR, "Empty memlist. Skipping copy")); 993 return (0); 994 } 995 996 ASSERT(st->memlist); 997 998 /* 999 * The size of the memory list may be much larger than the 1000 * size of valid data (map_size). Cache only the valid data 1001 */ 1002 map_size = DI_ALL_PTR(st)->map_size; 1003 if (map_size == 0 || map_size < sizeof (struct di_all) || 1004 map_size > st->mem_size) { 1005 CACHE_DEBUG((DI_ERR, "cannot cache: bad size: 0x%x", map_size)); 1006 return (0); 1007 } 1008 1009 cache->cache_data = kmem_alloc(map_size, KM_SLEEP); 1010 cache->cache_size = map_size; 1011 di_copymem(st, cache->cache_data, cache->cache_size); 1012 1013 return (map_size); 1014 } 1015 1016 /* 1017 * Make sure there is at least "size" bytes memory left before 1018 * going on. Otherwise, start on a new chunk. 1019 */ 1020 static di_off_t 1021 di_checkmem(struct di_state *st, di_off_t off, size_t size) 1022 { 1023 dcmn_err3((CE_CONT, "di_checkmem: off=%x size=%x\n", 1024 off, (int)size)); 1025 1026 /* 1027 * di_checkmem() shouldn't be called with a size of zero. 1028 * But in case it is, we want to make sure we return a valid 1029 * offset within the memlist and not an offset that points us 1030 * at the end of the memlist. 1031 */ 1032 if (size == 0) { 1033 dcmn_err((CE_WARN, "di_checkmem: invalid zero size used")); 1034 size = 1; 1035 } 1036 1037 off = DI_ALIGN(off); 1038 if ((st->mem_size - off) < size) { 1039 off = st->mem_size; 1040 di_allocmem(st, size); 1041 } 1042 1043 return (off); 1044 } 1045 1046 /* 1047 * Copy the private data format from ioctl arg. 1048 * On success, the ending offset is returned. On error 0 is returned. 1049 */ 1050 static di_off_t 1051 di_copyformat(di_off_t off, struct di_state *st, intptr_t arg, int mode) 1052 { 1053 di_off_t size; 1054 struct di_priv_data *priv; 1055 struct di_all *all = (struct di_all *)(intptr_t)di_mem_addr(st, 0); 1056 1057 dcmn_err2((CE_CONT, "di_copyformat: off=%x, arg=%p mode=%x\n", 1058 off, (void *)arg, mode)); 1059 1060 /* 1061 * Copyin data and check version. 1062 * We only handle private data version 0. 1063 */ 1064 priv = kmem_alloc(sizeof (struct di_priv_data), KM_SLEEP); 1065 if ((ddi_copyin((void *)arg, priv, sizeof (struct di_priv_data), 1066 mode) != 0) || (priv->version != DI_PRIVDATA_VERSION_0)) { 1067 kmem_free(priv, sizeof (struct di_priv_data)); 1068 return (0); 1069 } 1070 1071 /* 1072 * Save di_priv_data copied from userland in snapshot. 1073 */ 1074 all->pd_version = priv->version; 1075 all->n_ppdata = priv->n_parent; 1076 all->n_dpdata = priv->n_driver; 1077 1078 /* 1079 * copyin private data format, modify offset accordingly 1080 */ 1081 if (all->n_ppdata) { /* parent private data format */ 1082 /* 1083 * check memory 1084 */ 1085 size = all->n_ppdata * sizeof (struct di_priv_format); 1086 off = di_checkmem(st, off, size); 1087 all->ppdata_format = off; 1088 if (ddi_copyin(priv->parent, di_mem_addr(st, off), size, 1089 mode) != 0) { 1090 kmem_free(priv, sizeof (struct di_priv_data)); 1091 return (0); 1092 } 1093 1094 off += size; 1095 } 1096 1097 if (all->n_dpdata) { /* driver private data format */ 1098 /* 1099 * check memory 1100 */ 1101 size = all->n_dpdata * sizeof (struct di_priv_format); 1102 off = di_checkmem(st, off, size); 1103 all->dpdata_format = off; 1104 if (ddi_copyin(priv->driver, di_mem_addr(st, off), size, 1105 mode) != 0) { 1106 kmem_free(priv, sizeof (struct di_priv_data)); 1107 return (0); 1108 } 1109 1110 off += size; 1111 } 1112 1113 kmem_free(priv, sizeof (struct di_priv_data)); 1114 return (off); 1115 } 1116 1117 /* 1118 * Return the real address based on the offset (off) within snapshot 1119 */ 1120 static caddr_t 1121 di_mem_addr(struct di_state *st, di_off_t off) 1122 { 1123 struct di_mem *dcp = st->memlist; 1124 1125 dcmn_err3((CE_CONT, "di_mem_addr: dcp=%p off=%x\n", 1126 (void *)dcp, off)); 1127 1128 ASSERT(off < st->mem_size); 1129 1130 while (off >= dcp->buf_size) { 1131 off -= dcp->buf_size; 1132 dcp = dcp->next; 1133 } 1134 1135 dcmn_err3((CE_CONT, "di_mem_addr: new off=%x, return = %p\n", 1136 off, (void *)(dcp->buf + off))); 1137 1138 return (dcp->buf + off); 1139 } 1140 1141 /* 1142 * Ideally we would use the whole key to derive the hash 1143 * value. However, the probability that two keys will 1144 * have the same dip (or pip) is very low, so 1145 * hashing by dip (or pip) pointer should suffice. 1146 */ 1147 static uint_t 1148 di_hash_byptr(void *arg, mod_hash_key_t key) 1149 { 1150 struct di_key *dik = key; 1151 size_t rshift; 1152 void *ptr; 1153 1154 ASSERT(arg == NULL); 1155 1156 switch (dik->k_type) { 1157 case DI_DKEY: 1158 ptr = dik->k_u.dkey.dk_dip; 1159 rshift = highbit(sizeof (struct dev_info)); 1160 break; 1161 case DI_PKEY: 1162 ptr = dik->k_u.pkey.pk_pip; 1163 rshift = highbit(sizeof (struct mdi_pathinfo)); 1164 break; 1165 default: 1166 panic("devinfo: unknown key type"); 1167 /*NOTREACHED*/ 1168 } 1169 return (mod_hash_byptr((void *)rshift, ptr)); 1170 } 1171 1172 static void 1173 di_key_dtor(mod_hash_key_t key) 1174 { 1175 char *path_addr; 1176 struct di_key *dik = key; 1177 1178 switch (dik->k_type) { 1179 case DI_DKEY: 1180 break; 1181 case DI_PKEY: 1182 path_addr = dik->k_u.pkey.pk_path_addr; 1183 if (path_addr) 1184 kmem_free(path_addr, strlen(path_addr) + 1); 1185 break; 1186 default: 1187 panic("devinfo: unknown key type"); 1188 /*NOTREACHED*/ 1189 } 1190 1191 kmem_free(dik, sizeof (struct di_key)); 1192 } 1193 1194 static int 1195 di_dkey_cmp(struct di_dkey *dk1, struct di_dkey *dk2) 1196 { 1197 if (dk1->dk_dip != dk2->dk_dip) 1198 return (dk1->dk_dip > dk2->dk_dip ? 1 : -1); 1199 1200 if (dk1->dk_major != (major_t)-1 && dk2->dk_major != (major_t)-1) { 1201 if (dk1->dk_major != dk2->dk_major) 1202 return (dk1->dk_major > dk2->dk_major ? 1 : -1); 1203 1204 if (dk1->dk_inst != dk2->dk_inst) 1205 return (dk1->dk_inst > dk2->dk_inst ? 1 : -1); 1206 } 1207 1208 if (dk1->dk_nodeid != dk2->dk_nodeid) 1209 return (dk1->dk_nodeid > dk2->dk_nodeid ? 1 : -1); 1210 1211 return (0); 1212 } 1213 1214 static int 1215 di_pkey_cmp(struct di_pkey *pk1, struct di_pkey *pk2) 1216 { 1217 char *p1, *p2; 1218 int rv; 1219 1220 if (pk1->pk_pip != pk2->pk_pip) 1221 return (pk1->pk_pip > pk2->pk_pip ? 1 : -1); 1222 1223 p1 = pk1->pk_path_addr; 1224 p2 = pk2->pk_path_addr; 1225 1226 p1 = p1 ? p1 : ""; 1227 p2 = p2 ? p2 : ""; 1228 1229 rv = strcmp(p1, p2); 1230 if (rv) 1231 return (rv > 0 ? 1 : -1); 1232 1233 if (pk1->pk_client != pk2->pk_client) 1234 return (pk1->pk_client > pk2->pk_client ? 1 : -1); 1235 1236 if (pk1->pk_phci != pk2->pk_phci) 1237 return (pk1->pk_phci > pk2->pk_phci ? 1 : -1); 1238 1239 return (0); 1240 } 1241 1242 static int 1243 di_key_cmp(mod_hash_key_t key1, mod_hash_key_t key2) 1244 { 1245 struct di_key *dik1, *dik2; 1246 1247 dik1 = key1; 1248 dik2 = key2; 1249 1250 if (dik1->k_type != dik2->k_type) { 1251 panic("devinfo: mismatched keys"); 1252 /*NOTREACHED*/ 1253 } 1254 1255 switch (dik1->k_type) { 1256 case DI_DKEY: 1257 return (di_dkey_cmp(&(dik1->k_u.dkey), &(dik2->k_u.dkey))); 1258 case DI_PKEY: 1259 return (di_pkey_cmp(&(dik1->k_u.pkey), &(dik2->k_u.pkey))); 1260 default: 1261 panic("devinfo: unknown key type"); 1262 /*NOTREACHED*/ 1263 } 1264 } 1265 1266 /* 1267 * This is the main function that takes a snapshot 1268 */ 1269 static di_off_t 1270 di_snapshot(struct di_state *st) 1271 { 1272 di_off_t off; 1273 struct di_all *all; 1274 dev_info_t *rootnode; 1275 char buf[80]; 1276 int plen; 1277 char *path; 1278 vnode_t *vp; 1279 1280 all = (struct di_all *)(intptr_t)di_mem_addr(st, 0); 1281 dcmn_err((CE_CONT, "Taking a snapshot of devinfo tree...\n")); 1282 1283 /* 1284 * Verify path before entrusting it to e_ddi_hold_devi_by_path because 1285 * some platforms have OBP bugs where executing the NDI_PROMNAME code 1286 * path against an invalid path results in panic. The lookupnameat 1287 * is done relative to rootdir without a leading '/' on "devices/" 1288 * to force the lookup to occur in the global zone. 1289 */ 1290 plen = strlen("devices/") + strlen(all->root_path) + 1; 1291 path = kmem_alloc(plen, KM_SLEEP); 1292 (void) snprintf(path, plen, "devices/%s", all->root_path); 1293 if (lookupnameat(path, UIO_SYSSPACE, FOLLOW, NULLVPP, &vp, rootdir)) { 1294 dcmn_err((CE_CONT, "Devinfo node %s not found\n", 1295 all->root_path)); 1296 kmem_free(path, plen); 1297 return (0); 1298 } 1299 kmem_free(path, plen); 1300 VN_RELE(vp); 1301 1302 /* 1303 * Hold the devinfo node referred by the path. 1304 */ 1305 rootnode = e_ddi_hold_devi_by_path(all->root_path, 0); 1306 if (rootnode == NULL) { 1307 dcmn_err((CE_CONT, "Devinfo node %s not found\n", 1308 all->root_path)); 1309 return (0); 1310 } 1311 1312 (void) snprintf(buf, sizeof (buf), 1313 "devinfo registered dips (statep=%p)", (void *)st); 1314 1315 st->reg_dip_hash = mod_hash_create_extended(buf, 64, 1316 di_key_dtor, mod_hash_null_valdtor, di_hash_byptr, 1317 NULL, di_key_cmp, KM_SLEEP); 1318 1319 1320 (void) snprintf(buf, sizeof (buf), 1321 "devinfo registered pips (statep=%p)", (void *)st); 1322 1323 st->reg_pip_hash = mod_hash_create_extended(buf, 64, 1324 di_key_dtor, mod_hash_null_valdtor, di_hash_byptr, 1325 NULL, di_key_cmp, KM_SLEEP); 1326 1327 /* 1328 * copy the device tree 1329 */ 1330 off = di_copytree(DEVI(rootnode), &all->top_devinfo, st); 1331 1332 if (DINFOPATH & st->command) { 1333 mdi_walk_vhcis(build_vhci_list, st); 1334 } 1335 1336 ddi_release_devi(rootnode); 1337 1338 /* 1339 * copy the devnames array 1340 */ 1341 all->devnames = off; 1342 off = di_copydevnm(&all->devnames, st); 1343 1344 1345 /* initialize the hash tables */ 1346 st->lnode_count = 0; 1347 st->link_count = 0; 1348 1349 if (DINFOLYR & st->command) { 1350 off = di_getlink_data(off, st); 1351 } 1352 1353 /* 1354 * Free up hash tables 1355 */ 1356 mod_hash_destroy_hash(st->reg_dip_hash); 1357 mod_hash_destroy_hash(st->reg_pip_hash); 1358 1359 /* 1360 * Record the timestamp now that we are done with snapshot. 1361 * 1362 * We compute the checksum later and then only if we cache 1363 * the snapshot, since checksumming adds some overhead. 1364 * The checksum is checked later if we read the cache file. 1365 * from disk. 1366 * 1367 * Set checksum field to 0 as CRC is calculated with that 1368 * field set to 0. 1369 */ 1370 all->snapshot_time = ddi_get_time(); 1371 all->cache_checksum = 0; 1372 1373 ASSERT(all->snapshot_time != 0); 1374 1375 return (off); 1376 } 1377 1378 /* 1379 * Take a snapshot and clean /etc/devices files if DINFOCLEANUP is set 1380 */ 1381 static di_off_t 1382 di_snapshot_and_clean(struct di_state *st) 1383 { 1384 di_off_t off; 1385 1386 modunload_disable(); 1387 off = di_snapshot(st); 1388 if (off != 0 && (st->command & DINFOCLEANUP)) { 1389 ASSERT(DEVICES_FILES_CLEANABLE(st)); 1390 /* 1391 * Cleanup /etc/devices files: 1392 * In order to accurately account for the system configuration 1393 * in /etc/devices files, the appropriate drivers must be 1394 * fully configured before the cleanup starts. 1395 * So enable modunload only after the cleanup. 1396 */ 1397 i_ddi_clean_devices_files(); 1398 /* 1399 * Remove backing store nodes for unused devices, 1400 * which retain past permissions customizations 1401 * and may be undesired for newly configured devices. 1402 */ 1403 dev_devices_cleanup(); 1404 } 1405 modunload_enable(); 1406 1407 return (off); 1408 } 1409 1410 /* 1411 * construct vhci linkage in the snapshot. 1412 */ 1413 int 1414 build_vhci_list(dev_info_t *vh_devinfo, void *arg) 1415 { 1416 struct di_all *all; 1417 struct di_node *me; 1418 struct di_state *st; 1419 di_off_t off; 1420 phci_walk_arg_t pwa; 1421 1422 dcmn_err3((CE_CONT, "build_vhci list\n")); 1423 1424 dcmn_err3((CE_CONT, "vhci node %s, instance #%d\n", 1425 DEVI(vh_devinfo)->devi_node_name, 1426 DEVI(vh_devinfo)->devi_instance)); 1427 1428 st = (struct di_state *)arg; 1429 if (di_dip_find(st, vh_devinfo, &off) != 0) { 1430 dcmn_err((CE_WARN, "di_dip_find error for the given node\n")); 1431 return (DDI_WALK_TERMINATE); 1432 } 1433 1434 dcmn_err3((CE_CONT, "st->mem_size: %d vh_devinfo off: 0x%x\n", 1435 st->mem_size, off)); 1436 1437 all = (struct di_all *)(intptr_t)di_mem_addr(st, 0); 1438 if (all->top_vhci_devinfo == 0) { 1439 all->top_vhci_devinfo = off; 1440 } else { 1441 me = (struct di_node *) 1442 (intptr_t)di_mem_addr(st, all->top_vhci_devinfo); 1443 1444 while (me->next_vhci != 0) { 1445 me = (struct di_node *) 1446 (intptr_t)di_mem_addr(st, me->next_vhci); 1447 } 1448 1449 me->next_vhci = off; 1450 } 1451 1452 pwa.off = off; 1453 pwa.st = st; 1454 mdi_vhci_walk_phcis(vh_devinfo, build_phci_list, &pwa); 1455 1456 return (DDI_WALK_CONTINUE); 1457 } 1458 1459 /* 1460 * construct phci linkage for the given vhci in the snapshot. 1461 */ 1462 int 1463 build_phci_list(dev_info_t *ph_devinfo, void *arg) 1464 { 1465 struct di_node *vh_di_node; 1466 struct di_node *me; 1467 phci_walk_arg_t *pwa; 1468 di_off_t off; 1469 1470 pwa = (phci_walk_arg_t *)arg; 1471 1472 dcmn_err3((CE_CONT, "build_phci list for vhci at offset: 0x%x\n", 1473 pwa->off)); 1474 1475 vh_di_node = (struct di_node *)(intptr_t)di_mem_addr(pwa->st, pwa->off); 1476 1477 if (di_dip_find(pwa->st, ph_devinfo, &off) != 0) { 1478 dcmn_err((CE_WARN, "di_dip_find error for the given node\n")); 1479 return (DDI_WALK_TERMINATE); 1480 } 1481 1482 dcmn_err3((CE_CONT, "phci node %s, instance #%d, at offset 0x%x\n", 1483 DEVI(ph_devinfo)->devi_node_name, 1484 DEVI(ph_devinfo)->devi_instance, off)); 1485 1486 if (vh_di_node->top_phci == 0) { 1487 vh_di_node->top_phci = off; 1488 return (DDI_WALK_CONTINUE); 1489 } 1490 1491 me = (struct di_node *) 1492 (intptr_t)di_mem_addr(pwa->st, vh_di_node->top_phci); 1493 1494 while (me->next_phci != 0) { 1495 me = (struct di_node *) 1496 (intptr_t)di_mem_addr(pwa->st, me->next_phci); 1497 } 1498 me->next_phci = off; 1499 1500 return (DDI_WALK_CONTINUE); 1501 } 1502 1503 /* 1504 * Assumes all devinfo nodes in device tree have been snapshotted 1505 */ 1506 static void 1507 snap_driver_list(struct di_state *st, struct devnames *dnp, di_off_t *poff_p) 1508 { 1509 struct dev_info *node; 1510 struct di_node *me; 1511 di_off_t off; 1512 1513 ASSERT(mutex_owned(&dnp->dn_lock)); 1514 1515 node = DEVI(dnp->dn_head); 1516 for (; node; node = node->devi_next) { 1517 if (di_dip_find(st, (dev_info_t *)node, &off) != 0) 1518 continue; 1519 1520 ASSERT(off > 0); 1521 me = (struct di_node *)(intptr_t)di_mem_addr(st, off); 1522 ASSERT(me->next == 0 || me->next == -1); 1523 /* 1524 * Only nodes which were BOUND when they were 1525 * snapshotted will be added to per-driver list. 1526 */ 1527 if (me->next != -1) 1528 continue; 1529 1530 *poff_p = off; 1531 poff_p = &me->next; 1532 } 1533 1534 *poff_p = 0; 1535 } 1536 1537 /* 1538 * Copy the devnames array, so we have a list of drivers in the snapshot. 1539 * Also makes it possible to locate the per-driver devinfo nodes. 1540 */ 1541 static di_off_t 1542 di_copydevnm(di_off_t *off_p, struct di_state *st) 1543 { 1544 int i; 1545 di_off_t off; 1546 size_t size; 1547 struct di_devnm *dnp; 1548 1549 dcmn_err2((CE_CONT, "di_copydevnm: *off_p = %p\n", (void *)off_p)); 1550 1551 /* 1552 * make sure there is some allocated memory 1553 */ 1554 size = devcnt * sizeof (struct di_devnm); 1555 off = di_checkmem(st, *off_p, size); 1556 *off_p = off; 1557 1558 dcmn_err((CE_CONT, "Start copying devnamesp[%d] at offset 0x%x\n", 1559 devcnt, off)); 1560 1561 dnp = (struct di_devnm *)(intptr_t)di_mem_addr(st, off); 1562 off += size; 1563 1564 for (i = 0; i < devcnt; i++) { 1565 if (devnamesp[i].dn_name == NULL) { 1566 continue; 1567 } 1568 1569 /* 1570 * dn_name is not freed during driver unload or removal. 1571 * 1572 * There is a race condition when make_devname() changes 1573 * dn_name during our strcpy. This should be rare since 1574 * only add_drv does this. At any rate, we never had a 1575 * problem with ddi_name_to_major(), which should have 1576 * the same problem. 1577 */ 1578 dcmn_err2((CE_CONT, "di_copydevnm: %s%d, off=%x\n", 1579 devnamesp[i].dn_name, devnamesp[i].dn_instance, 1580 off)); 1581 1582 off = di_checkmem(st, off, strlen(devnamesp[i].dn_name) + 1); 1583 dnp[i].name = off; 1584 (void) strcpy((char *)di_mem_addr(st, off), 1585 devnamesp[i].dn_name); 1586 off += DI_ALIGN(strlen(devnamesp[i].dn_name) + 1); 1587 1588 mutex_enter(&devnamesp[i].dn_lock); 1589 1590 /* 1591 * Snapshot per-driver node list 1592 */ 1593 snap_driver_list(st, &devnamesp[i], &dnp[i].head); 1594 1595 /* 1596 * This is not used by libdevinfo, leave it for now 1597 */ 1598 dnp[i].flags = devnamesp[i].dn_flags; 1599 dnp[i].instance = devnamesp[i].dn_instance; 1600 1601 /* 1602 * get global properties 1603 */ 1604 if ((DINFOPROP & st->command) && 1605 devnamesp[i].dn_global_prop_ptr) { 1606 dnp[i].global_prop = off; 1607 off = di_getprop( 1608 devnamesp[i].dn_global_prop_ptr->prop_list, 1609 &dnp[i].global_prop, st, NULL, DI_PROP_GLB_LIST); 1610 } 1611 1612 /* 1613 * Bit encode driver ops: & bus_ops, cb_ops, & cb_ops->cb_str 1614 */ 1615 if (CB_DRV_INSTALLED(devopsp[i])) { 1616 if (devopsp[i]->devo_cb_ops) { 1617 dnp[i].ops |= DI_CB_OPS; 1618 if (devopsp[i]->devo_cb_ops->cb_str) 1619 dnp[i].ops |= DI_STREAM_OPS; 1620 } 1621 if (NEXUS_DRV(devopsp[i])) { 1622 dnp[i].ops |= DI_BUS_OPS; 1623 } 1624 } 1625 1626 mutex_exit(&devnamesp[i].dn_lock); 1627 } 1628 1629 dcmn_err((CE_CONT, "End copying devnamesp at offset 0x%x\n", off)); 1630 1631 return (off); 1632 } 1633 1634 /* 1635 * Copy the kernel devinfo tree. The tree and the devnames array forms 1636 * the entire snapshot (see also di_copydevnm). 1637 */ 1638 static di_off_t 1639 di_copytree(struct dev_info *root, di_off_t *off_p, struct di_state *st) 1640 { 1641 di_off_t off; 1642 struct di_stack *dsp = kmem_zalloc(sizeof (struct di_stack), KM_SLEEP); 1643 1644 dcmn_err((CE_CONT, "di_copytree: root = %p, *off_p = %x\n", 1645 (void *)root, *off_p)); 1646 1647 /* force attach drivers */ 1648 if (i_ddi_devi_attached((dev_info_t *)root) && 1649 (st->command & DINFOSUBTREE) && (st->command & DINFOFORCE)) { 1650 (void) ndi_devi_config((dev_info_t *)root, 1651 NDI_CONFIG | NDI_DEVI_PERSIST | NDI_NO_EVENT | 1652 NDI_DRV_CONF_REPROBE); 1653 } 1654 1655 /* 1656 * Push top_devinfo onto a stack 1657 * 1658 * The stack is necessary to avoid recursion, which can overrun 1659 * the kernel stack. 1660 */ 1661 PUSH_STACK(dsp, root, off_p); 1662 1663 /* 1664 * As long as there is a node on the stack, copy the node. 1665 * di_copynode() is responsible for pushing and popping 1666 * child and sibling nodes on the stack. 1667 */ 1668 while (!EMPTY_STACK(dsp)) { 1669 off = di_copynode(dsp, st); 1670 } 1671 1672 /* 1673 * Free the stack structure 1674 */ 1675 kmem_free(dsp, sizeof (struct di_stack)); 1676 1677 return (off); 1678 } 1679 1680 /* 1681 * This is the core function, which copies all data associated with a single 1682 * node into the snapshot. The amount of information is determined by the 1683 * ioctl command. 1684 */ 1685 static di_off_t 1686 di_copynode(struct di_stack *dsp, struct di_state *st) 1687 { 1688 di_off_t off; 1689 struct di_node *me; 1690 struct dev_info *node; 1691 1692 dcmn_err2((CE_CONT, "di_copynode: depth = %x\n", dsp->depth)); 1693 1694 node = TOP_NODE(dsp); 1695 1696 ASSERT(node != NULL); 1697 1698 /* 1699 * check memory usage, and fix offsets accordingly. 1700 */ 1701 off = di_checkmem(st, *(TOP_OFFSET(dsp)), sizeof (struct di_node)); 1702 *(TOP_OFFSET(dsp)) = off; 1703 me = DI_NODE(di_mem_addr(st, off)); 1704 1705 dcmn_err((CE_CONT, "copy node %s, instance #%d, at offset 0x%x\n", 1706 node->devi_node_name, node->devi_instance, off)); 1707 1708 /* 1709 * Node parameters: 1710 * self -- offset of current node within snapshot 1711 * nodeid -- pointer to PROM node (tri-valued) 1712 * state -- hot plugging device state 1713 * node_state -- devinfo node state (CF1, CF2, etc.) 1714 */ 1715 me->self = off; 1716 me->instance = node->devi_instance; 1717 me->nodeid = node->devi_nodeid; 1718 me->node_class = node->devi_node_class; 1719 me->attributes = node->devi_node_attributes; 1720 me->state = node->devi_state; 1721 me->flags = node->devi_flags; 1722 me->node_state = node->devi_node_state; 1723 me->next_vhci = 0; /* Filled up by build_vhci_list. */ 1724 me->top_phci = 0; /* Filled up by build_phci_list. */ 1725 me->next_phci = 0; /* Filled up by build_phci_list. */ 1726 me->multipath_component = MULTIPATH_COMPONENT_NONE; /* set default. */ 1727 me->user_private_data = NULL; 1728 1729 /* 1730 * Get parent's offset in snapshot from the stack 1731 * and store it in the current node 1732 */ 1733 if (dsp->depth > 1) { 1734 me->parent = *(PARENT_OFFSET(dsp)); 1735 } 1736 1737 /* 1738 * Save the offset of this di_node in a hash table. 1739 * This is used later to resolve references to this 1740 * dip from other parts of the tree (per-driver list, 1741 * multipathing linkages, layered usage linkages). 1742 * The key used for the hash table is derived from 1743 * information in the dip. 1744 */ 1745 di_register_dip(st, (dev_info_t *)node, me->self); 1746 1747 /* 1748 * increment offset 1749 */ 1750 off += sizeof (struct di_node); 1751 1752 #ifdef DEVID_COMPATIBILITY 1753 /* check for devid as property marker */ 1754 if (node->devi_devid_str) { 1755 ddi_devid_t devid; 1756 int devid_size; 1757 1758 /* 1759 * The devid is now represented as a property. For 1760 * compatibility with di_devid() interface in libdevinfo we 1761 * must return it as a binary structure in the snapshot. When 1762 * (if) di_devid() is removed from libdevinfo then the code 1763 * related to DEVID_COMPATIBILITY can be removed. 1764 */ 1765 if (ddi_devid_str_decode(node->devi_devid_str, &devid, NULL) == 1766 DDI_SUCCESS) { 1767 devid_size = ddi_devid_sizeof(devid); 1768 off = di_checkmem(st, off, devid_size); 1769 me->devid = off; 1770 bcopy(devid, di_mem_addr(st, off), devid_size); 1771 off += devid_size; 1772 ddi_devid_free(devid); 1773 } 1774 } 1775 #endif /* DEVID_COMPATIBILITY */ 1776 1777 if (node->devi_node_name) { 1778 off = di_checkmem(st, off, strlen(node->devi_node_name) + 1); 1779 me->node_name = off; 1780 (void) strcpy(di_mem_addr(st, off), node->devi_node_name); 1781 off += strlen(node->devi_node_name) + 1; 1782 } 1783 1784 if (node->devi_compat_names && (node->devi_compat_length > 1)) { 1785 off = di_checkmem(st, off, node->devi_compat_length); 1786 me->compat_names = off; 1787 me->compat_length = node->devi_compat_length; 1788 bcopy(node->devi_compat_names, di_mem_addr(st, off), 1789 node->devi_compat_length); 1790 off += node->devi_compat_length; 1791 } 1792 1793 if (node->devi_addr) { 1794 off = di_checkmem(st, off, strlen(node->devi_addr) + 1); 1795 me->address = off; 1796 (void) strcpy(di_mem_addr(st, off), node->devi_addr); 1797 off += strlen(node->devi_addr) + 1; 1798 } 1799 1800 if (node->devi_binding_name) { 1801 off = di_checkmem(st, off, strlen(node->devi_binding_name) + 1); 1802 me->bind_name = off; 1803 (void) strcpy(di_mem_addr(st, off), node->devi_binding_name); 1804 off += strlen(node->devi_binding_name) + 1; 1805 } 1806 1807 me->drv_major = node->devi_major; 1808 1809 /* 1810 * If the dip is BOUND, set the next pointer of the 1811 * per-instance list to -1, indicating that it is yet to be resolved. 1812 * This will be resolved later in snap_driver_list(). 1813 */ 1814 if (me->drv_major != -1) { 1815 me->next = -1; 1816 } else { 1817 me->next = 0; 1818 } 1819 1820 /* 1821 * An optimization to skip mutex_enter when not needed. 1822 */ 1823 if (!((DINFOMINOR | DINFOPROP | DINFOPATH) & st->command)) { 1824 goto priv_data; 1825 } 1826 1827 /* 1828 * Grab current per dev_info node lock to 1829 * get minor data and properties. 1830 */ 1831 mutex_enter(&(node->devi_lock)); 1832 1833 if (!(DINFOMINOR & st->command)) { 1834 goto path; 1835 } 1836 1837 if (node->devi_minor) { /* minor data */ 1838 me->minor_data = DI_ALIGN(off); 1839 off = di_getmdata(node->devi_minor, &me->minor_data, 1840 me->self, st); 1841 } 1842 1843 path: 1844 if (!(DINFOPATH & st->command)) { 1845 goto property; 1846 } 1847 1848 if (MDI_VHCI(node)) { 1849 me->multipath_component = MULTIPATH_COMPONENT_VHCI; 1850 } 1851 1852 if (MDI_CLIENT(node)) { 1853 me->multipath_component = MULTIPATH_COMPONENT_CLIENT; 1854 me->multipath_client = DI_ALIGN(off); 1855 off = di_getpath_data((dev_info_t *)node, &me->multipath_client, 1856 me->self, st, 1); 1857 dcmn_err((CE_WARN, "me->multipath_client = %x for node %p " 1858 "component type = %d. off=%d", 1859 me->multipath_client, 1860 (void *)node, node->devi_mdi_component, off)); 1861 } 1862 1863 if (MDI_PHCI(node)) { 1864 me->multipath_component = MULTIPATH_COMPONENT_PHCI; 1865 me->multipath_phci = DI_ALIGN(off); 1866 off = di_getpath_data((dev_info_t *)node, &me->multipath_phci, 1867 me->self, st, 0); 1868 dcmn_err((CE_WARN, "me->multipath_phci = %x for node %p " 1869 "component type = %d. off=%d", 1870 me->multipath_phci, 1871 (void *)node, node->devi_mdi_component, off)); 1872 } 1873 1874 property: 1875 if (!(DINFOPROP & st->command)) { 1876 goto unlock; 1877 } 1878 1879 if (node->devi_drv_prop_ptr) { /* driver property list */ 1880 me->drv_prop = DI_ALIGN(off); 1881 off = di_getprop(node->devi_drv_prop_ptr, &me->drv_prop, st, 1882 node, DI_PROP_DRV_LIST); 1883 } 1884 1885 if (node->devi_sys_prop_ptr) { /* system property list */ 1886 me->sys_prop = DI_ALIGN(off); 1887 off = di_getprop(node->devi_sys_prop_ptr, &me->sys_prop, st, 1888 node, DI_PROP_SYS_LIST); 1889 } 1890 1891 if (node->devi_hw_prop_ptr) { /* hardware property list */ 1892 me->hw_prop = DI_ALIGN(off); 1893 off = di_getprop(node->devi_hw_prop_ptr, &me->hw_prop, st, 1894 node, DI_PROP_HW_LIST); 1895 } 1896 1897 if (node->devi_global_prop_list == NULL) { 1898 me->glob_prop = (di_off_t)-1; /* not global property */ 1899 } else { 1900 /* 1901 * Make copy of global property list if this devinfo refers 1902 * global properties different from what's on the devnames 1903 * array. It can happen if there has been a forced 1904 * driver.conf update. See mod_drv(1M). 1905 */ 1906 ASSERT(me->drv_major != -1); 1907 if (node->devi_global_prop_list != 1908 devnamesp[me->drv_major].dn_global_prop_ptr) { 1909 me->glob_prop = DI_ALIGN(off); 1910 off = di_getprop(node->devi_global_prop_list->prop_list, 1911 &me->glob_prop, st, node, DI_PROP_GLB_LIST); 1912 } 1913 } 1914 1915 unlock: 1916 /* 1917 * release current per dev_info node lock 1918 */ 1919 mutex_exit(&(node->devi_lock)); 1920 1921 priv_data: 1922 if (!(DINFOPRIVDATA & st->command)) { 1923 goto pm_info; 1924 } 1925 1926 if (ddi_get_parent_data((dev_info_t *)node) != NULL) { 1927 me->parent_data = DI_ALIGN(off); 1928 off = di_getppdata(node, &me->parent_data, st); 1929 } 1930 1931 if (ddi_get_driver_private((dev_info_t *)node) != NULL) { 1932 me->driver_data = DI_ALIGN(off); 1933 off = di_getdpdata(node, &me->driver_data, st); 1934 } 1935 1936 pm_info: /* NOT implemented */ 1937 1938 subtree: 1939 if (!(DINFOSUBTREE & st->command)) { 1940 POP_STACK(dsp); 1941 return (DI_ALIGN(off)); 1942 } 1943 1944 child: 1945 /* 1946 * If there is a child--push child onto stack. 1947 * Hold the parent busy while doing so. 1948 */ 1949 if (node->devi_child) { 1950 me->child = DI_ALIGN(off); 1951 PUSH_STACK(dsp, node->devi_child, &me->child); 1952 return (me->child); 1953 } 1954 1955 sibling: 1956 /* 1957 * no child node, unroll the stack till a sibling of 1958 * a parent node is found or root node is reached 1959 */ 1960 POP_STACK(dsp); 1961 while (!EMPTY_STACK(dsp) && (node->devi_sibling == NULL)) { 1962 node = TOP_NODE(dsp); 1963 me = DI_NODE(di_mem_addr(st, *(TOP_OFFSET(dsp)))); 1964 POP_STACK(dsp); 1965 } 1966 1967 if (!EMPTY_STACK(dsp)) { 1968 /* 1969 * a sibling is found, replace top of stack by its sibling 1970 */ 1971 me->sibling = DI_ALIGN(off); 1972 PUSH_STACK(dsp, node->devi_sibling, &me->sibling); 1973 return (me->sibling); 1974 } 1975 1976 /* 1977 * DONE with all nodes 1978 */ 1979 return (DI_ALIGN(off)); 1980 } 1981 1982 static i_lnode_t * 1983 i_lnode_alloc(int modid) 1984 { 1985 i_lnode_t *i_lnode; 1986 1987 i_lnode = kmem_zalloc(sizeof (i_lnode_t), KM_SLEEP); 1988 1989 ASSERT(modid != -1); 1990 i_lnode->modid = modid; 1991 1992 return (i_lnode); 1993 } 1994 1995 static void 1996 i_lnode_free(i_lnode_t *i_lnode) 1997 { 1998 kmem_free(i_lnode, sizeof (i_lnode_t)); 1999 } 2000 2001 static void 2002 i_lnode_check_free(i_lnode_t *i_lnode) 2003 { 2004 /* This lnode and its dip must have been snapshotted */ 2005 ASSERT(i_lnode->self > 0); 2006 ASSERT(i_lnode->di_node->self > 0); 2007 2008 /* at least 1 link (in or out) must exist for this lnode */ 2009 ASSERT(i_lnode->link_in || i_lnode->link_out); 2010 2011 i_lnode_free(i_lnode); 2012 } 2013 2014 static i_link_t * 2015 i_link_alloc(int spec_type) 2016 { 2017 i_link_t *i_link; 2018 2019 i_link = kmem_zalloc(sizeof (i_link_t), KM_SLEEP); 2020 i_link->spec_type = spec_type; 2021 2022 return (i_link); 2023 } 2024 2025 static void 2026 i_link_check_free(i_link_t *i_link) 2027 { 2028 /* This link must have been snapshotted */ 2029 ASSERT(i_link->self > 0); 2030 2031 /* Both endpoint lnodes must exist for this link */ 2032 ASSERT(i_link->src_lnode); 2033 ASSERT(i_link->tgt_lnode); 2034 2035 kmem_free(i_link, sizeof (i_link_t)); 2036 } 2037 2038 /*ARGSUSED*/ 2039 static uint_t 2040 i_lnode_hashfunc(void *arg, mod_hash_key_t key) 2041 { 2042 i_lnode_t *i_lnode = (i_lnode_t *)key; 2043 struct di_node *ptr; 2044 dev_t dev; 2045 2046 dev = i_lnode->devt; 2047 if (dev != DDI_DEV_T_NONE) 2048 return (i_lnode->modid + getminor(dev) + getmajor(dev)); 2049 2050 ptr = i_lnode->di_node; 2051 ASSERT(ptr->self > 0); 2052 if (ptr) { 2053 uintptr_t k = (uintptr_t)ptr; 2054 k >>= (int)highbit(sizeof (struct di_node)); 2055 return ((uint_t)k); 2056 } 2057 2058 return (i_lnode->modid); 2059 } 2060 2061 static int 2062 i_lnode_cmp(void *arg1, void *arg2) 2063 { 2064 i_lnode_t *i_lnode1 = (i_lnode_t *)arg1; 2065 i_lnode_t *i_lnode2 = (i_lnode_t *)arg2; 2066 2067 if (i_lnode1->modid != i_lnode2->modid) { 2068 return ((i_lnode1->modid < i_lnode2->modid) ? -1 : 1); 2069 } 2070 2071 if (i_lnode1->di_node != i_lnode2->di_node) 2072 return ((i_lnode1->di_node < i_lnode2->di_node) ? -1 : 1); 2073 2074 if (i_lnode1->devt != i_lnode2->devt) 2075 return ((i_lnode1->devt < i_lnode2->devt) ? -1 : 1); 2076 2077 return (0); 2078 } 2079 2080 /* 2081 * An lnode represents a {dip, dev_t} tuple. A link represents a 2082 * {src_lnode, tgt_lnode, spec_type} tuple. 2083 * The following callback assumes that LDI framework ref-counts the 2084 * src_dip and tgt_dip while invoking this callback. 2085 */ 2086 static int 2087 di_ldi_callback(const ldi_usage_t *ldi_usage, void *arg) 2088 { 2089 struct di_state *st = (struct di_state *)arg; 2090 i_lnode_t *src_lnode, *tgt_lnode, *i_lnode; 2091 i_link_t **i_link_next, *i_link; 2092 di_off_t soff, toff; 2093 mod_hash_val_t nodep = NULL; 2094 int res; 2095 2096 /* 2097 * if the source or target of this device usage information doesn't 2098 * corrospond to a device node then we don't report it via 2099 * libdevinfo so return. 2100 */ 2101 if ((ldi_usage->src_dip == NULL) || (ldi_usage->tgt_dip == NULL)) 2102 return (LDI_USAGE_CONTINUE); 2103 2104 ASSERT(e_ddi_devi_holdcnt(ldi_usage->src_dip)); 2105 ASSERT(e_ddi_devi_holdcnt(ldi_usage->tgt_dip)); 2106 2107 /* 2108 * Skip the ldi_usage if either src or tgt dip is not in the 2109 * snapshot. This saves us from pruning bad lnodes/links later. 2110 */ 2111 if (di_dip_find(st, ldi_usage->src_dip, &soff) != 0) 2112 return (LDI_USAGE_CONTINUE); 2113 if (di_dip_find(st, ldi_usage->tgt_dip, &toff) != 0) 2114 return (LDI_USAGE_CONTINUE); 2115 2116 ASSERT(soff > 0); 2117 ASSERT(toff > 0); 2118 2119 /* 2120 * allocate an i_lnode and add it to the lnode hash 2121 * if it is not already present. For this particular 2122 * link the lnode is a source, but it may 2123 * participate as tgt or src in any number of layered 2124 * operations - so it may already be in the hash. 2125 */ 2126 i_lnode = i_lnode_alloc(ldi_usage->src_modid); 2127 i_lnode->di_node = (struct di_node *)(intptr_t)di_mem_addr(st, soff); 2128 i_lnode->devt = ldi_usage->src_devt; 2129 2130 res = mod_hash_find(st->lnode_hash, i_lnode, &nodep); 2131 if (res == MH_ERR_NOTFOUND) { 2132 /* 2133 * new i_lnode 2134 * add it to the hash and increment the lnode count 2135 */ 2136 res = mod_hash_insert(st->lnode_hash, i_lnode, i_lnode); 2137 ASSERT(res == 0); 2138 st->lnode_count++; 2139 src_lnode = i_lnode; 2140 } else { 2141 /* this i_lnode already exists in the lnode_hash */ 2142 i_lnode_free(i_lnode); 2143 src_lnode = (i_lnode_t *)nodep; 2144 } 2145 2146 /* 2147 * allocate a tgt i_lnode and add it to the lnode hash 2148 */ 2149 i_lnode = i_lnode_alloc(ldi_usage->tgt_modid); 2150 i_lnode->di_node = (struct di_node *)(intptr_t)di_mem_addr(st, toff); 2151 i_lnode->devt = ldi_usage->tgt_devt; 2152 2153 res = mod_hash_find(st->lnode_hash, i_lnode, &nodep); 2154 if (res == MH_ERR_NOTFOUND) { 2155 /* 2156 * new i_lnode 2157 * add it to the hash and increment the lnode count 2158 */ 2159 res = mod_hash_insert(st->lnode_hash, i_lnode, i_lnode); 2160 ASSERT(res == 0); 2161 st->lnode_count++; 2162 tgt_lnode = i_lnode; 2163 } else { 2164 /* this i_lnode already exists in the lnode_hash */ 2165 i_lnode_free(i_lnode); 2166 tgt_lnode = (i_lnode_t *)nodep; 2167 } 2168 2169 /* 2170 * allocate a i_link 2171 */ 2172 i_link = i_link_alloc(ldi_usage->tgt_spec_type); 2173 i_link->src_lnode = src_lnode; 2174 i_link->tgt_lnode = tgt_lnode; 2175 2176 /* 2177 * add this link onto the src i_lnodes outbound i_link list 2178 */ 2179 i_link_next = &(src_lnode->link_out); 2180 while (*i_link_next != NULL) { 2181 if ((i_lnode_cmp(tgt_lnode, (*i_link_next)->tgt_lnode) == 0) && 2182 (i_link->spec_type == (*i_link_next)->spec_type)) { 2183 /* this link already exists */ 2184 kmem_free(i_link, sizeof (i_link_t)); 2185 return (LDI_USAGE_CONTINUE); 2186 } 2187 i_link_next = &((*i_link_next)->src_link_next); 2188 } 2189 *i_link_next = i_link; 2190 2191 /* 2192 * add this link onto the tgt i_lnodes inbound i_link list 2193 */ 2194 i_link_next = &(tgt_lnode->link_in); 2195 while (*i_link_next != NULL) { 2196 ASSERT(i_lnode_cmp(src_lnode, (*i_link_next)->src_lnode) != 0); 2197 i_link_next = &((*i_link_next)->tgt_link_next); 2198 } 2199 *i_link_next = i_link; 2200 2201 /* 2202 * add this i_link to the link hash 2203 */ 2204 res = mod_hash_insert(st->link_hash, i_link, i_link); 2205 ASSERT(res == 0); 2206 st->link_count++; 2207 2208 return (LDI_USAGE_CONTINUE); 2209 } 2210 2211 struct i_layer_data { 2212 struct di_state *st; 2213 int lnode_count; 2214 int link_count; 2215 di_off_t lnode_off; 2216 di_off_t link_off; 2217 }; 2218 2219 /*ARGSUSED*/ 2220 static uint_t 2221 i_link_walker(mod_hash_key_t key, mod_hash_val_t *val, void *arg) 2222 { 2223 i_link_t *i_link = (i_link_t *)key; 2224 struct i_layer_data *data = arg; 2225 struct di_link *me; 2226 struct di_lnode *melnode; 2227 struct di_node *medinode; 2228 2229 ASSERT(i_link->self == 0); 2230 2231 i_link->self = data->link_off + 2232 (data->link_count * sizeof (struct di_link)); 2233 data->link_count++; 2234 2235 ASSERT(data->link_off > 0 && data->link_count > 0); 2236 ASSERT(data->lnode_count == data->st->lnode_count); /* lnodes done */ 2237 ASSERT(data->link_count <= data->st->link_count); 2238 2239 /* fill in fields for the di_link snapshot */ 2240 me = (struct di_link *)(intptr_t)di_mem_addr(data->st, i_link->self); 2241 me->self = i_link->self; 2242 me->spec_type = i_link->spec_type; 2243 2244 /* 2245 * The src_lnode and tgt_lnode i_lnode_t for this i_link_t 2246 * are created during the LDI table walk. Since we are 2247 * walking the link hash, the lnode hash has already been 2248 * walked and the lnodes have been snapshotted. Save lnode 2249 * offsets. 2250 */ 2251 me->src_lnode = i_link->src_lnode->self; 2252 me->tgt_lnode = i_link->tgt_lnode->self; 2253 2254 /* 2255 * Save this link's offset in the src_lnode snapshot's link_out 2256 * field 2257 */ 2258 melnode = (struct di_lnode *) 2259 (intptr_t)di_mem_addr(data->st, me->src_lnode); 2260 me->src_link_next = melnode->link_out; 2261 melnode->link_out = me->self; 2262 2263 /* 2264 * Put this link on the tgt_lnode's link_in field 2265 */ 2266 melnode = (struct di_lnode *) 2267 (intptr_t)di_mem_addr(data->st, me->tgt_lnode); 2268 me->tgt_link_next = melnode->link_in; 2269 melnode->link_in = me->self; 2270 2271 /* 2272 * An i_lnode_t is only created if the corresponding dip exists 2273 * in the snapshot. A pointer to the di_node is saved in the 2274 * i_lnode_t when it is allocated. For this link, get the di_node 2275 * for the source lnode. Then put the link on the di_node's list 2276 * of src links 2277 */ 2278 medinode = i_link->src_lnode->di_node; 2279 me->src_node_next = medinode->src_links; 2280 medinode->src_links = me->self; 2281 2282 /* 2283 * Put this link on the tgt_links list of the target 2284 * dip. 2285 */ 2286 medinode = i_link->tgt_lnode->di_node; 2287 me->tgt_node_next = medinode->tgt_links; 2288 medinode->tgt_links = me->self; 2289 2290 return (MH_WALK_CONTINUE); 2291 } 2292 2293 /*ARGSUSED*/ 2294 static uint_t 2295 i_lnode_walker(mod_hash_key_t key, mod_hash_val_t *val, void *arg) 2296 { 2297 i_lnode_t *i_lnode = (i_lnode_t *)key; 2298 struct i_layer_data *data = arg; 2299 struct di_lnode *me; 2300 struct di_node *medinode; 2301 2302 ASSERT(i_lnode->self == 0); 2303 2304 i_lnode->self = data->lnode_off + 2305 (data->lnode_count * sizeof (struct di_lnode)); 2306 data->lnode_count++; 2307 2308 ASSERT(data->lnode_off > 0 && data->lnode_count > 0); 2309 ASSERT(data->link_count == 0); /* links not done yet */ 2310 ASSERT(data->lnode_count <= data->st->lnode_count); 2311 2312 /* fill in fields for the di_lnode snapshot */ 2313 me = (struct di_lnode *)(intptr_t)di_mem_addr(data->st, i_lnode->self); 2314 me->self = i_lnode->self; 2315 2316 if (i_lnode->devt == DDI_DEV_T_NONE) { 2317 me->dev_major = (major_t)-1; 2318 me->dev_minor = (minor_t)-1; 2319 } else { 2320 me->dev_major = getmajor(i_lnode->devt); 2321 me->dev_minor = getminor(i_lnode->devt); 2322 } 2323 2324 /* 2325 * The dip corresponding to this lnode must exist in 2326 * the snapshot or we wouldn't have created the i_lnode_t 2327 * during LDI walk. Save the offset of the dip. 2328 */ 2329 ASSERT(i_lnode->di_node && i_lnode->di_node->self > 0); 2330 me->node = i_lnode->di_node->self; 2331 2332 /* 2333 * There must be at least one link in or out of this lnode 2334 * or we wouldn't have created it. These fields will be set 2335 * during the link hash walk. 2336 */ 2337 ASSERT((i_lnode->link_in != NULL) || (i_lnode->link_out != NULL)); 2338 2339 /* 2340 * set the offset of the devinfo node associated with this 2341 * lnode. Also update the node_next next pointer. this pointer 2342 * is set if there are multiple lnodes associated with the same 2343 * devinfo node. (could occure when multiple minor nodes 2344 * are open for one device, etc.) 2345 */ 2346 medinode = i_lnode->di_node; 2347 me->node_next = medinode->lnodes; 2348 medinode->lnodes = me->self; 2349 2350 return (MH_WALK_CONTINUE); 2351 } 2352 2353 static di_off_t 2354 di_getlink_data(di_off_t off, struct di_state *st) 2355 { 2356 struct i_layer_data data = {0}; 2357 size_t size; 2358 2359 dcmn_err2((CE_CONT, "di_copylyr: off = %x\n", off)); 2360 2361 st->lnode_hash = mod_hash_create_extended("di_lnode_hash", 32, 2362 mod_hash_null_keydtor, (void (*)(mod_hash_val_t))i_lnode_check_free, 2363 i_lnode_hashfunc, NULL, i_lnode_cmp, KM_SLEEP); 2364 2365 st->link_hash = mod_hash_create_ptrhash("di_link_hash", 32, 2366 (void (*)(mod_hash_val_t))i_link_check_free, sizeof (i_link_t)); 2367 2368 /* get driver layering information */ 2369 (void) ldi_usage_walker(st, di_ldi_callback); 2370 2371 /* check if there is any link data to include in the snapshot */ 2372 if (st->lnode_count == 0) { 2373 ASSERT(st->link_count == 0); 2374 goto out; 2375 } 2376 2377 ASSERT(st->link_count != 0); 2378 2379 /* get a pointer to snapshot memory for all the di_lnodes */ 2380 size = sizeof (struct di_lnode) * st->lnode_count; 2381 data.lnode_off = off = di_checkmem(st, off, size); 2382 off += DI_ALIGN(size); 2383 2384 /* get a pointer to snapshot memory for all the di_links */ 2385 size = sizeof (struct di_link) * st->link_count; 2386 data.link_off = off = di_checkmem(st, off, size); 2387 off += DI_ALIGN(size); 2388 2389 data.lnode_count = data.link_count = 0; 2390 data.st = st; 2391 2392 /* 2393 * We have lnodes and links that will go into the 2394 * snapshot, so let's walk the respective hashes 2395 * and snapshot them. The various linkages are 2396 * also set up during the walk. 2397 */ 2398 mod_hash_walk(st->lnode_hash, i_lnode_walker, (void *)&data); 2399 ASSERT(data.lnode_count == st->lnode_count); 2400 2401 mod_hash_walk(st->link_hash, i_link_walker, (void *)&data); 2402 ASSERT(data.link_count == st->link_count); 2403 2404 out: 2405 /* free up the i_lnodes and i_links used to create the snapshot */ 2406 mod_hash_destroy_hash(st->lnode_hash); 2407 mod_hash_destroy_hash(st->link_hash); 2408 st->lnode_count = 0; 2409 st->link_count = 0; 2410 2411 return (off); 2412 } 2413 2414 2415 /* 2416 * Copy all minor data nodes attached to a devinfo node into the snapshot. 2417 * It is called from di_copynode with devi_lock held. 2418 */ 2419 static di_off_t 2420 di_getmdata(struct ddi_minor_data *mnode, di_off_t *off_p, di_off_t node, 2421 struct di_state *st) 2422 { 2423 di_off_t off; 2424 struct di_minor *me; 2425 2426 dcmn_err2((CE_CONT, "di_getmdata:\n")); 2427 2428 /* 2429 * check memory first 2430 */ 2431 off = di_checkmem(st, *off_p, sizeof (struct di_minor)); 2432 *off_p = off; 2433 2434 do { 2435 me = (struct di_minor *)(intptr_t)di_mem_addr(st, off); 2436 me->self = off; 2437 me->type = mnode->type; 2438 me->node = node; 2439 me->user_private_data = NULL; 2440 2441 off += DI_ALIGN(sizeof (struct di_minor)); 2442 2443 /* 2444 * Split dev_t to major/minor, so it works for 2445 * both ILP32 and LP64 model 2446 */ 2447 me->dev_major = getmajor(mnode->ddm_dev); 2448 me->dev_minor = getminor(mnode->ddm_dev); 2449 me->spec_type = mnode->ddm_spec_type; 2450 2451 if (mnode->ddm_name) { 2452 off = di_checkmem(st, off, 2453 strlen(mnode->ddm_name) + 1); 2454 me->name = off; 2455 (void) strcpy(di_mem_addr(st, off), mnode->ddm_name); 2456 off += DI_ALIGN(strlen(mnode->ddm_name) + 1); 2457 } 2458 2459 if (mnode->ddm_node_type) { 2460 off = di_checkmem(st, off, 2461 strlen(mnode->ddm_node_type) + 1); 2462 me->node_type = off; 2463 (void) strcpy(di_mem_addr(st, off), 2464 mnode->ddm_node_type); 2465 off += DI_ALIGN(strlen(mnode->ddm_node_type) + 1); 2466 } 2467 2468 off = di_checkmem(st, off, sizeof (struct di_minor)); 2469 me->next = off; 2470 mnode = mnode->next; 2471 } while (mnode); 2472 2473 me->next = 0; 2474 2475 return (off); 2476 } 2477 2478 /* 2479 * di_register_dip(), di_find_dip(): The dip must be protected 2480 * from deallocation when using these routines - this can either 2481 * be a reference count, a busy hold or a per-driver lock. 2482 */ 2483 2484 static void 2485 di_register_dip(struct di_state *st, dev_info_t *dip, di_off_t off) 2486 { 2487 struct dev_info *node = DEVI(dip); 2488 struct di_key *key = kmem_zalloc(sizeof (*key), KM_SLEEP); 2489 struct di_dkey *dk; 2490 2491 ASSERT(dip); 2492 ASSERT(off > 0); 2493 2494 key->k_type = DI_DKEY; 2495 dk = &(key->k_u.dkey); 2496 2497 dk->dk_dip = dip; 2498 dk->dk_major = node->devi_major; 2499 dk->dk_inst = node->devi_instance; 2500 dk->dk_nodeid = node->devi_nodeid; 2501 2502 if (mod_hash_insert(st->reg_dip_hash, (mod_hash_key_t)key, 2503 (mod_hash_val_t)(uintptr_t)off) != 0) { 2504 panic( 2505 "duplicate devinfo (%p) registered during device " 2506 "tree walk", (void *)dip); 2507 } 2508 } 2509 2510 2511 static int 2512 di_dip_find(struct di_state *st, dev_info_t *dip, di_off_t *off_p) 2513 { 2514 /* 2515 * uintptr_t must be used because it matches the size of void *; 2516 * mod_hash expects clients to place results into pointer-size 2517 * containers; since di_off_t is always a 32-bit offset, alignment 2518 * would otherwise be broken on 64-bit kernels. 2519 */ 2520 uintptr_t offset; 2521 struct di_key key = {0}; 2522 struct di_dkey *dk; 2523 2524 ASSERT(st->reg_dip_hash); 2525 ASSERT(dip); 2526 ASSERT(off_p); 2527 2528 2529 key.k_type = DI_DKEY; 2530 dk = &(key.k_u.dkey); 2531 2532 dk->dk_dip = dip; 2533 dk->dk_major = DEVI(dip)->devi_major; 2534 dk->dk_inst = DEVI(dip)->devi_instance; 2535 dk->dk_nodeid = DEVI(dip)->devi_nodeid; 2536 2537 if (mod_hash_find(st->reg_dip_hash, (mod_hash_key_t)&key, 2538 (mod_hash_val_t *)&offset) == 0) { 2539 *off_p = (di_off_t)offset; 2540 return (0); 2541 } else { 2542 return (-1); 2543 } 2544 } 2545 2546 /* 2547 * di_register_pip(), di_find_pip(): The pip must be protected from deallocation 2548 * when using these routines. The caller must do this by protecting the 2549 * client(or phci)<->pip linkage while traversing the list and then holding the 2550 * pip when it is found in the list. 2551 */ 2552 2553 static void 2554 di_register_pip(struct di_state *st, mdi_pathinfo_t *pip, di_off_t off) 2555 { 2556 struct di_key *key = kmem_zalloc(sizeof (*key), KM_SLEEP); 2557 char *path_addr; 2558 struct di_pkey *pk; 2559 2560 ASSERT(pip); 2561 ASSERT(off > 0); 2562 2563 key->k_type = DI_PKEY; 2564 pk = &(key->k_u.pkey); 2565 2566 pk->pk_pip = pip; 2567 path_addr = mdi_pi_get_addr(pip); 2568 if (path_addr) 2569 pk->pk_path_addr = i_ddi_strdup(path_addr, KM_SLEEP); 2570 pk->pk_client = mdi_pi_get_client(pip); 2571 pk->pk_phci = mdi_pi_get_phci(pip); 2572 2573 if (mod_hash_insert(st->reg_pip_hash, (mod_hash_key_t)key, 2574 (mod_hash_val_t)(uintptr_t)off) != 0) { 2575 panic( 2576 "duplicate pathinfo (%p) registered during device " 2577 "tree walk", (void *)pip); 2578 } 2579 } 2580 2581 /* 2582 * As with di_register_pip, the caller must hold or lock the pip 2583 */ 2584 static int 2585 di_pip_find(struct di_state *st, mdi_pathinfo_t *pip, di_off_t *off_p) 2586 { 2587 /* 2588 * uintptr_t must be used because it matches the size of void *; 2589 * mod_hash expects clients to place results into pointer-size 2590 * containers; since di_off_t is always a 32-bit offset, alignment 2591 * would otherwise be broken on 64-bit kernels. 2592 */ 2593 uintptr_t offset; 2594 struct di_key key = {0}; 2595 struct di_pkey *pk; 2596 2597 ASSERT(st->reg_pip_hash); 2598 ASSERT(off_p); 2599 2600 if (pip == NULL) { 2601 *off_p = 0; 2602 return (0); 2603 } 2604 2605 key.k_type = DI_PKEY; 2606 pk = &(key.k_u.pkey); 2607 2608 pk->pk_pip = pip; 2609 pk->pk_path_addr = mdi_pi_get_addr(pip); 2610 pk->pk_client = mdi_pi_get_client(pip); 2611 pk->pk_phci = mdi_pi_get_phci(pip); 2612 2613 if (mod_hash_find(st->reg_pip_hash, (mod_hash_key_t)&key, 2614 (mod_hash_val_t *)&offset) == 0) { 2615 *off_p = (di_off_t)offset; 2616 return (0); 2617 } else { 2618 return (-1); 2619 } 2620 } 2621 2622 static di_path_state_t 2623 path_state_convert(mdi_pathinfo_state_t st) 2624 { 2625 switch (st) { 2626 case MDI_PATHINFO_STATE_ONLINE: 2627 return (DI_PATH_STATE_ONLINE); 2628 case MDI_PATHINFO_STATE_STANDBY: 2629 return (DI_PATH_STATE_STANDBY); 2630 case MDI_PATHINFO_STATE_OFFLINE: 2631 return (DI_PATH_STATE_OFFLINE); 2632 case MDI_PATHINFO_STATE_FAULT: 2633 return (DI_PATH_STATE_FAULT); 2634 default: 2635 return (DI_PATH_STATE_UNKNOWN); 2636 } 2637 } 2638 2639 2640 static di_off_t 2641 di_path_getprop(mdi_pathinfo_t *pip, di_off_t off, di_off_t *off_p, 2642 struct di_state *st) 2643 { 2644 nvpair_t *prop = NULL; 2645 struct di_path_prop *me; 2646 2647 if (mdi_pi_get_next_prop(pip, NULL) == NULL) { 2648 *off_p = 0; 2649 return (off); 2650 } 2651 2652 off = di_checkmem(st, off, sizeof (struct di_path_prop)); 2653 *off_p = off; 2654 2655 while (prop = mdi_pi_get_next_prop(pip, prop)) { 2656 int delta = 0; 2657 2658 me = (struct di_path_prop *)(intptr_t)di_mem_addr(st, off); 2659 me->self = off; 2660 off += sizeof (struct di_path_prop); 2661 2662 /* 2663 * property name 2664 */ 2665 off = di_checkmem(st, off, strlen(nvpair_name(prop)) + 1); 2666 me->prop_name = off; 2667 (void) strcpy(di_mem_addr(st, off), nvpair_name(prop)); 2668 off += strlen(nvpair_name(prop)) + 1; 2669 2670 switch (nvpair_type(prop)) { 2671 case DATA_TYPE_BYTE: 2672 case DATA_TYPE_INT16: 2673 case DATA_TYPE_UINT16: 2674 case DATA_TYPE_INT32: 2675 case DATA_TYPE_UINT32: 2676 delta = sizeof (int32_t); 2677 me->prop_type = DDI_PROP_TYPE_INT; 2678 off = di_checkmem(st, off, delta); 2679 (void) nvpair_value_int32(prop, 2680 (int32_t *)(intptr_t)di_mem_addr(st, off)); 2681 break; 2682 2683 case DATA_TYPE_INT64: 2684 case DATA_TYPE_UINT64: 2685 delta = sizeof (int64_t); 2686 me->prop_type = DDI_PROP_TYPE_INT64; 2687 off = di_checkmem(st, off, delta); 2688 (void) nvpair_value_int64(prop, 2689 (int64_t *)(intptr_t)di_mem_addr(st, off)); 2690 break; 2691 2692 case DATA_TYPE_STRING: 2693 { 2694 char *str; 2695 (void) nvpair_value_string(prop, &str); 2696 delta = strlen(str) + 1; 2697 me->prop_type = DDI_PROP_TYPE_STRING; 2698 off = di_checkmem(st, off, delta); 2699 (void) strcpy(di_mem_addr(st, off), str); 2700 break; 2701 } 2702 case DATA_TYPE_BYTE_ARRAY: 2703 case DATA_TYPE_INT16_ARRAY: 2704 case DATA_TYPE_UINT16_ARRAY: 2705 case DATA_TYPE_INT32_ARRAY: 2706 case DATA_TYPE_UINT32_ARRAY: 2707 case DATA_TYPE_INT64_ARRAY: 2708 case DATA_TYPE_UINT64_ARRAY: 2709 { 2710 uchar_t *buf; 2711 uint_t nelems; 2712 (void) nvpair_value_byte_array(prop, &buf, &nelems); 2713 delta = nelems; 2714 me->prop_type = DDI_PROP_TYPE_BYTE; 2715 if (nelems != 0) { 2716 off = di_checkmem(st, off, delta); 2717 bcopy(buf, di_mem_addr(st, off), nelems); 2718 } 2719 break; 2720 } 2721 2722 default: /* Unknown or unhandled type; skip it */ 2723 delta = 0; 2724 break; 2725 } 2726 2727 if (delta > 0) { 2728 me->prop_data = off; 2729 } 2730 2731 me->prop_len = delta; 2732 off += delta; 2733 2734 off = di_checkmem(st, off, sizeof (struct di_path_prop)); 2735 me->prop_next = off; 2736 } 2737 2738 me->prop_next = 0; 2739 return (off); 2740 } 2741 2742 2743 static void 2744 di_path_one_endpoint(struct di_path *me, di_off_t noff, di_off_t **off_pp, 2745 int get_client) 2746 { 2747 if (get_client) { 2748 ASSERT(me->path_client == 0); 2749 me->path_client = noff; 2750 ASSERT(me->path_c_link == 0); 2751 *off_pp = &me->path_c_link; 2752 me->path_snap_state &= 2753 ~(DI_PATH_SNAP_NOCLIENT | DI_PATH_SNAP_NOCLINK); 2754 } else { 2755 ASSERT(me->path_phci == 0); 2756 me->path_phci = noff; 2757 ASSERT(me->path_p_link == 0); 2758 *off_pp = &me->path_p_link; 2759 me->path_snap_state &= 2760 ~(DI_PATH_SNAP_NOPHCI | DI_PATH_SNAP_NOPLINK); 2761 } 2762 } 2763 2764 /* 2765 * poff_p: pointer to the linkage field. This links pips along the client|phci 2766 * linkage list. 2767 * noff : Offset for the endpoint dip snapshot. 2768 */ 2769 static di_off_t 2770 di_getpath_data(dev_info_t *dip, di_off_t *poff_p, di_off_t noff, 2771 struct di_state *st, int get_client) 2772 { 2773 di_off_t off; 2774 mdi_pathinfo_t *pip; 2775 struct di_path *me; 2776 mdi_pathinfo_t *(*next_pip)(dev_info_t *, mdi_pathinfo_t *); 2777 2778 dcmn_err2((CE_WARN, "di_getpath_data: client = %d", get_client)); 2779 2780 /* 2781 * The naming of the following mdi_xyz() is unfortunately 2782 * non-intuitive. mdi_get_next_phci_path() follows the 2783 * client_link i.e. the list of pip's belonging to the 2784 * given client dip. 2785 */ 2786 if (get_client) 2787 next_pip = &mdi_get_next_phci_path; 2788 else 2789 next_pip = &mdi_get_next_client_path; 2790 2791 off = *poff_p; 2792 2793 pip = NULL; 2794 while (pip = (*next_pip)(dip, pip)) { 2795 mdi_pathinfo_state_t state; 2796 di_off_t stored_offset; 2797 2798 dcmn_err((CE_WARN, "marshalling pip = %p", (void *)pip)); 2799 2800 mdi_pi_lock(pip); 2801 2802 if (di_pip_find(st, pip, &stored_offset) != -1) { 2803 /* 2804 * We've already seen this pathinfo node so we need to 2805 * take care not to snap it again; However, one endpoint 2806 * and linkage will be set here. The other endpoint 2807 * and linkage has already been set when the pip was 2808 * first snapshotted i.e. when the other endpoint dip 2809 * was snapshotted. 2810 */ 2811 me = (struct di_path *)(intptr_t) 2812 di_mem_addr(st, stored_offset); 2813 2814 *poff_p = stored_offset; 2815 2816 di_path_one_endpoint(me, noff, &poff_p, get_client); 2817 2818 /* 2819 * The other endpoint and linkage were set when this 2820 * pip was snapshotted. So we are done with both 2821 * endpoints and linkages. 2822 */ 2823 ASSERT(!(me->path_snap_state & 2824 (DI_PATH_SNAP_NOCLIENT|DI_PATH_SNAP_NOPHCI))); 2825 ASSERT(!(me->path_snap_state & 2826 (DI_PATH_SNAP_NOCLINK|DI_PATH_SNAP_NOPLINK))); 2827 2828 mdi_pi_unlock(pip); 2829 continue; 2830 } 2831 2832 /* 2833 * Now that we need to snapshot this pip, check memory 2834 */ 2835 off = di_checkmem(st, off, sizeof (struct di_path)); 2836 me = (struct di_path *)(intptr_t)di_mem_addr(st, off); 2837 me->self = off; 2838 *poff_p = off; 2839 off += sizeof (struct di_path); 2840 2841 me->path_snap_state = 2842 DI_PATH_SNAP_NOCLINK | DI_PATH_SNAP_NOPLINK; 2843 me->path_snap_state |= 2844 DI_PATH_SNAP_NOCLIENT | DI_PATH_SNAP_NOPHCI; 2845 2846 /* 2847 * Zero out fields as di_checkmem() doesn't guarantee 2848 * zero-filled memory 2849 */ 2850 me->path_client = me->path_phci = 0; 2851 me->path_c_link = me->path_p_link = 0; 2852 2853 di_path_one_endpoint(me, noff, &poff_p, get_client); 2854 2855 /* 2856 * Note the existence of this pathinfo 2857 */ 2858 di_register_pip(st, pip, me->self); 2859 2860 state = mdi_pi_get_state(pip); 2861 me->path_state = path_state_convert(state); 2862 2863 me->path_instance = mdi_pi_get_path_instance(pip); 2864 2865 /* 2866 * Get intermediate addressing info. 2867 */ 2868 off = di_checkmem(st, off, strlen(mdi_pi_get_addr(pip)) + 1); 2869 me->path_addr = off; 2870 (void) strcpy(di_mem_addr(st, off), mdi_pi_get_addr(pip)); 2871 off += strlen(mdi_pi_get_addr(pip)) + 1; 2872 2873 /* 2874 * Get path properties if props are to be included in the 2875 * snapshot 2876 */ 2877 if (DINFOPROP & st->command) { 2878 off = di_path_getprop(pip, off, &me->path_prop, st); 2879 } else { 2880 me->path_prop = 0; 2881 } 2882 2883 mdi_pi_unlock(pip); 2884 } 2885 2886 *poff_p = 0; 2887 2888 return (off); 2889 } 2890 2891 /* 2892 * Copy a list of properties attached to a devinfo node. Called from 2893 * di_copynode with devi_lock held. The major number is passed in case 2894 * we need to call driver's prop_op entry. The value of list indicates 2895 * which list we are copying. Possible values are: 2896 * DI_PROP_DRV_LIST, DI_PROP_SYS_LIST, DI_PROP_GLB_LIST, DI_PROP_HW_LIST 2897 */ 2898 static di_off_t 2899 di_getprop(struct ddi_prop *prop, di_off_t *off_p, struct di_state *st, 2900 struct dev_info *dip, int list) 2901 { 2902 dev_t dev; 2903 int (*prop_op)(); 2904 int off, need_prop_op = 0; 2905 int prop_op_fail = 0; 2906 ddi_prop_t *propp = NULL; 2907 struct di_prop *pp; 2908 struct dev_ops *ops = NULL; 2909 int prop_len; 2910 caddr_t prop_val; 2911 2912 2913 dcmn_err2((CE_CONT, "di_getprop:\n")); 2914 2915 ASSERT(st != NULL); 2916 2917 dcmn_err((CE_CONT, "copy property list at addr %p\n", (void *)prop)); 2918 2919 /* 2920 * Figure out if we need to call driver's prop_op entry point. 2921 * The conditions are: 2922 * -- driver property list 2923 * -- driver must be attached and held 2924 * -- driver's cb_prop_op != ddi_prop_op 2925 * or parent's bus_prop_op != ddi_bus_prop_op 2926 */ 2927 2928 if (list != DI_PROP_DRV_LIST) { 2929 goto getprop; 2930 } 2931 2932 /* 2933 * If driver is not attached or if major is -1, we ignore 2934 * the driver property list. No one should rely on such 2935 * properties. 2936 */ 2937 if (!i_ddi_devi_attached((dev_info_t *)dip)) { 2938 off = *off_p; 2939 *off_p = 0; 2940 return (off); 2941 } 2942 2943 /* 2944 * Now we have a driver which is held. We can examine entry points 2945 * and check the condition listed above. 2946 */ 2947 ops = dip->devi_ops; 2948 2949 /* 2950 * Some nexus drivers incorrectly set cb_prop_op to nodev, 2951 * nulldev or even NULL. 2952 */ 2953 if (ops && ops->devo_cb_ops && 2954 (ops->devo_cb_ops->cb_prop_op != ddi_prop_op) && 2955 (ops->devo_cb_ops->cb_prop_op != nodev) && 2956 (ops->devo_cb_ops->cb_prop_op != nulldev) && 2957 (ops->devo_cb_ops->cb_prop_op != NULL)) { 2958 need_prop_op = 1; 2959 } 2960 2961 getprop: 2962 /* 2963 * check memory availability 2964 */ 2965 off = di_checkmem(st, *off_p, sizeof (struct di_prop)); 2966 *off_p = off; 2967 /* 2968 * Now copy properties 2969 */ 2970 do { 2971 pp = (struct di_prop *)(intptr_t)di_mem_addr(st, off); 2972 pp->self = off; 2973 /* 2974 * Split dev_t to major/minor, so it works for 2975 * both ILP32 and LP64 model 2976 */ 2977 pp->dev_major = getmajor(prop->prop_dev); 2978 pp->dev_minor = getminor(prop->prop_dev); 2979 pp->prop_flags = prop->prop_flags; 2980 pp->prop_list = list; 2981 2982 /* 2983 * property name 2984 */ 2985 off += sizeof (struct di_prop); 2986 if (prop->prop_name) { 2987 off = di_checkmem(st, off, strlen(prop->prop_name) 2988 + 1); 2989 pp->prop_name = off; 2990 (void) strcpy(di_mem_addr(st, off), prop->prop_name); 2991 off += strlen(prop->prop_name) + 1; 2992 } 2993 2994 /* 2995 * Set prop_len here. This may change later 2996 * if cb_prop_op returns a different length. 2997 */ 2998 pp->prop_len = prop->prop_len; 2999 if (!need_prop_op) { 3000 if (prop->prop_val == NULL) { 3001 dcmn_err((CE_WARN, 3002 "devinfo: property fault at %p", 3003 (void *)prop)); 3004 pp->prop_data = -1; 3005 } else if (prop->prop_len != 0) { 3006 off = di_checkmem(st, off, prop->prop_len); 3007 pp->prop_data = off; 3008 bcopy(prop->prop_val, di_mem_addr(st, off), 3009 prop->prop_len); 3010 off += DI_ALIGN(pp->prop_len); 3011 } 3012 } 3013 3014 off = di_checkmem(st, off, sizeof (struct di_prop)); 3015 pp->next = off; 3016 prop = prop->prop_next; 3017 } while (prop); 3018 3019 pp->next = 0; 3020 3021 if (!need_prop_op) { 3022 dcmn_err((CE_CONT, "finished property " 3023 "list at offset 0x%x\n", off)); 3024 return (off); 3025 } 3026 3027 /* 3028 * If there is a need to call driver's prop_op entry, 3029 * we must release driver's devi_lock, because the 3030 * cb_prop_op entry point will grab it. 3031 * 3032 * The snapshot memory has already been allocated above, 3033 * which means the length of an active property should 3034 * remain fixed for this implementation to work. 3035 */ 3036 3037 3038 prop_op = ops->devo_cb_ops->cb_prop_op; 3039 pp = (struct di_prop *)(intptr_t)di_mem_addr(st, *off_p); 3040 3041 mutex_exit(&dip->devi_lock); 3042 3043 do { 3044 int err; 3045 struct di_prop *tmp; 3046 3047 if (pp->next) { 3048 tmp = (struct di_prop *) 3049 (intptr_t)di_mem_addr(st, pp->next); 3050 } else { 3051 tmp = NULL; 3052 } 3053 3054 /* 3055 * call into driver's prop_op entry point 3056 * 3057 * Must search DDI_DEV_T_NONE with DDI_DEV_T_ANY 3058 */ 3059 dev = makedevice(pp->dev_major, pp->dev_minor); 3060 if (dev == DDI_DEV_T_NONE) 3061 dev = DDI_DEV_T_ANY; 3062 3063 dcmn_err((CE_CONT, "call prop_op" 3064 "(%lx, %p, PROP_LEN_AND_VAL_BUF, " 3065 "DDI_PROP_DONTPASS, \"%s\", %p, &%d)\n", 3066 dev, 3067 (void *)dip, 3068 (char *)di_mem_addr(st, pp->prop_name), 3069 (void *)di_mem_addr(st, pp->prop_data), 3070 pp->prop_len)); 3071 3072 if ((err = (*prop_op)(dev, (dev_info_t)dip, 3073 PROP_LEN_AND_VAL_ALLOC, DDI_PROP_DONTPASS, 3074 (char *)di_mem_addr(st, pp->prop_name), 3075 &prop_val, &prop_len)) != DDI_PROP_SUCCESS) { 3076 if ((propp = i_ddi_prop_search(dev, 3077 (char *)di_mem_addr(st, pp->prop_name), 3078 (uint_t)pp->prop_flags, 3079 &(DEVI(dip)->devi_drv_prop_ptr))) != NULL) { 3080 pp->prop_len = propp->prop_len; 3081 if (pp->prop_len != 0) { 3082 off = di_checkmem(st, off, 3083 pp->prop_len); 3084 pp->prop_data = off; 3085 bcopy(propp->prop_val, di_mem_addr(st, 3086 pp->prop_data), propp->prop_len); 3087 off += DI_ALIGN(pp->prop_len); 3088 } 3089 } else { 3090 prop_op_fail = 1; 3091 } 3092 } else if (prop_len != 0) { 3093 pp->prop_len = prop_len; 3094 off = di_checkmem(st, off, prop_len); 3095 pp->prop_data = off; 3096 bcopy(prop_val, di_mem_addr(st, off), prop_len); 3097 off += DI_ALIGN(prop_len); 3098 kmem_free(prop_val, prop_len); 3099 } 3100 3101 if (prop_op_fail) { 3102 pp->prop_data = -1; 3103 dcmn_err((CE_WARN, "devinfo: prop_op failure " 3104 "for \"%s\" err %d", 3105 di_mem_addr(st, pp->prop_name), err)); 3106 } 3107 3108 pp = tmp; 3109 3110 } while (pp); 3111 3112 mutex_enter(&dip->devi_lock); 3113 dcmn_err((CE_CONT, "finished property list at offset 0x%x\n", off)); 3114 return (off); 3115 } 3116 3117 /* 3118 * find private data format attached to a dip 3119 * parent = 1 to match driver name of parent dip (for parent private data) 3120 * 0 to match driver name of current dip (for driver private data) 3121 */ 3122 #define DI_MATCH_DRIVER 0 3123 #define DI_MATCH_PARENT 1 3124 3125 struct di_priv_format * 3126 di_match_drv_name(struct dev_info *node, struct di_state *st, int match) 3127 { 3128 int i, count, len; 3129 char *drv_name; 3130 major_t major; 3131 struct di_all *all; 3132 struct di_priv_format *form; 3133 3134 dcmn_err2((CE_CONT, "di_match_drv_name: node = %s, match = %x\n", 3135 node->devi_node_name, match)); 3136 3137 if (match == DI_MATCH_PARENT) { 3138 node = DEVI(node->devi_parent); 3139 } 3140 3141 if (node == NULL) { 3142 return (NULL); 3143 } 3144 3145 major = ddi_name_to_major(node->devi_binding_name); 3146 if (major == (major_t)(-1)) { 3147 return (NULL); 3148 } 3149 3150 /* 3151 * Match the driver name. 3152 */ 3153 drv_name = ddi_major_to_name(major); 3154 if ((drv_name == NULL) || *drv_name == '\0') { 3155 return (NULL); 3156 } 3157 3158 /* Now get the di_priv_format array */ 3159 all = (struct di_all *)(intptr_t)di_mem_addr(st, 0); 3160 3161 if (match == DI_MATCH_PARENT) { 3162 count = all->n_ppdata; 3163 form = (struct di_priv_format *) 3164 (intptr_t)(di_mem_addr(st, 0) + all->ppdata_format); 3165 } else { 3166 count = all->n_dpdata; 3167 form = (struct di_priv_format *) 3168 (intptr_t)((caddr_t)all + all->dpdata_format); 3169 } 3170 3171 len = strlen(drv_name); 3172 for (i = 0; i < count; i++) { 3173 char *tmp; 3174 3175 tmp = form[i].drv_name; 3176 while (tmp && (*tmp != '\0')) { 3177 if (strncmp(drv_name, tmp, len) == 0) { 3178 return (&form[i]); 3179 } 3180 /* 3181 * Move to next driver name, skipping a white space 3182 */ 3183 if (tmp = strchr(tmp, ' ')) { 3184 tmp++; 3185 } 3186 } 3187 } 3188 3189 return (NULL); 3190 } 3191 3192 /* 3193 * The following functions copy data as specified by the format passed in. 3194 * To prevent invalid format from panicing the system, we call on_fault(). 3195 * A return value of 0 indicates an error. Otherwise, the total offset 3196 * is returned. 3197 */ 3198 #define DI_MAX_PRIVDATA (PAGESIZE >> 1) /* max private data size */ 3199 3200 static di_off_t 3201 di_getprvdata(struct di_priv_format *pdp, struct dev_info *node, 3202 void *data, di_off_t *off_p, struct di_state *st) 3203 { 3204 caddr_t pa; 3205 void *ptr; 3206 int i, size, repeat; 3207 di_off_t off, off0, *tmp; 3208 char *path; 3209 3210 label_t ljb; 3211 3212 dcmn_err2((CE_CONT, "di_getprvdata:\n")); 3213 3214 /* 3215 * check memory availability. Private data size is 3216 * limited to DI_MAX_PRIVDATA. 3217 */ 3218 off = di_checkmem(st, *off_p, DI_MAX_PRIVDATA); 3219 3220 if ((pdp->bytes == 0) || pdp->bytes > DI_MAX_PRIVDATA) { 3221 goto failure; 3222 } 3223 3224 if (!on_fault(&ljb)) { 3225 /* copy the struct */ 3226 bcopy(data, di_mem_addr(st, off), pdp->bytes); 3227 off0 = DI_ALIGN(pdp->bytes); 3228 3229 /* dereferencing pointers */ 3230 for (i = 0; i < MAX_PTR_IN_PRV; i++) { 3231 3232 if (pdp->ptr[i].size == 0) { 3233 goto success; /* no more ptrs */ 3234 } 3235 3236 /* 3237 * first, get the pointer content 3238 */ 3239 if ((pdp->ptr[i].offset < 0) || 3240 (pdp->ptr[i].offset > 3241 pdp->bytes - sizeof (char *))) 3242 goto failure; /* wrong offset */ 3243 3244 pa = di_mem_addr(st, off + pdp->ptr[i].offset); 3245 3246 /* save a tmp ptr to store off_t later */ 3247 tmp = (di_off_t *)(intptr_t)pa; 3248 3249 /* get pointer value, if NULL continue */ 3250 ptr = *((void **) (intptr_t)pa); 3251 if (ptr == NULL) { 3252 continue; 3253 } 3254 3255 /* 3256 * next, find the repeat count (array dimension) 3257 */ 3258 repeat = pdp->ptr[i].len_offset; 3259 3260 /* 3261 * Positive value indicates a fixed sized array. 3262 * 0 or negative value indicates variable sized array. 3263 * 3264 * For variable sized array, the variable must be 3265 * an int member of the structure, with an offset 3266 * equal to the absolution value of struct member. 3267 */ 3268 if (repeat > pdp->bytes - sizeof (int)) { 3269 goto failure; /* wrong offset */ 3270 } 3271 3272 if (repeat >= 0) { 3273 repeat = *((int *) 3274 (intptr_t)((caddr_t)data + repeat)); 3275 } else { 3276 repeat = -repeat; 3277 } 3278 3279 /* 3280 * next, get the size of the object to be copied 3281 */ 3282 size = pdp->ptr[i].size * repeat; 3283 3284 /* 3285 * Arbitrarily limit the total size of object to be 3286 * copied (1 byte to 1/4 page). 3287 */ 3288 if ((size <= 0) || (size > (DI_MAX_PRIVDATA - off0))) { 3289 goto failure; /* wrong size or too big */ 3290 } 3291 3292 /* 3293 * Now copy the data 3294 */ 3295 *tmp = off0; 3296 bcopy(ptr, di_mem_addr(st, off + off0), size); 3297 off0 += DI_ALIGN(size); 3298 } 3299 } else { 3300 goto failure; 3301 } 3302 3303 success: 3304 /* 3305 * success if reached here 3306 */ 3307 no_fault(); 3308 *off_p = off; 3309 3310 return (off + off0); 3311 /*NOTREACHED*/ 3312 3313 failure: 3314 /* 3315 * fault occurred 3316 */ 3317 no_fault(); 3318 path = kmem_alloc(MAXPATHLEN, KM_SLEEP); 3319 cmn_err(CE_WARN, "devinfo: fault on private data for '%s' at %p", 3320 ddi_pathname((dev_info_t *)node, path), data); 3321 kmem_free(path, MAXPATHLEN); 3322 *off_p = -1; /* set private data to indicate error */ 3323 3324 return (off); 3325 } 3326 3327 /* 3328 * get parent private data; on error, returns original offset 3329 */ 3330 static di_off_t 3331 di_getppdata(struct dev_info *node, di_off_t *off_p, struct di_state *st) 3332 { 3333 int off; 3334 struct di_priv_format *ppdp; 3335 3336 dcmn_err2((CE_CONT, "di_getppdata:\n")); 3337 3338 /* find the parent data format */ 3339 if ((ppdp = di_match_drv_name(node, st, DI_MATCH_PARENT)) == NULL) { 3340 off = *off_p; 3341 *off_p = 0; /* set parent data to none */ 3342 return (off); 3343 } 3344 3345 return (di_getprvdata(ppdp, node, 3346 ddi_get_parent_data((dev_info_t *)node), off_p, st)); 3347 } 3348 3349 /* 3350 * get parent private data; returns original offset 3351 */ 3352 static di_off_t 3353 di_getdpdata(struct dev_info *node, di_off_t *off_p, struct di_state *st) 3354 { 3355 int off; 3356 struct di_priv_format *dpdp; 3357 3358 dcmn_err2((CE_CONT, "di_getdpdata:")); 3359 3360 /* find the parent data format */ 3361 if ((dpdp = di_match_drv_name(node, st, DI_MATCH_DRIVER)) == NULL) { 3362 off = *off_p; 3363 *off_p = 0; /* set driver data to none */ 3364 return (off); 3365 } 3366 3367 return (di_getprvdata(dpdp, node, 3368 ddi_get_driver_private((dev_info_t *)node), off_p, st)); 3369 } 3370 3371 /* 3372 * The driver is stateful across DINFOCPYALL and DINFOUSRLD. 3373 * This function encapsulates the state machine: 3374 * 3375 * -> IOC_IDLE -> IOC_SNAP -> IOC_DONE -> IOC_COPY -> 3376 * | SNAPSHOT USRLD | 3377 * -------------------------------------------------- 3378 * 3379 * Returns 0 on success and -1 on failure 3380 */ 3381 static int 3382 di_setstate(struct di_state *st, int new_state) 3383 { 3384 int ret = 0; 3385 3386 mutex_enter(&di_lock); 3387 switch (new_state) { 3388 case IOC_IDLE: 3389 case IOC_DONE: 3390 break; 3391 case IOC_SNAP: 3392 if (st->di_iocstate != IOC_IDLE) 3393 ret = -1; 3394 break; 3395 case IOC_COPY: 3396 if (st->di_iocstate != IOC_DONE) 3397 ret = -1; 3398 break; 3399 default: 3400 ret = -1; 3401 } 3402 3403 if (ret == 0) 3404 st->di_iocstate = new_state; 3405 else 3406 cmn_err(CE_NOTE, "incorrect state transition from %d to %d", 3407 st->di_iocstate, new_state); 3408 mutex_exit(&di_lock); 3409 return (ret); 3410 } 3411 3412 /* 3413 * We cannot assume the presence of the entire 3414 * snapshot in this routine. All we are guaranteed 3415 * is the di_all struct + 1 byte (for root_path) 3416 */ 3417 static int 3418 header_plus_one_ok(struct di_all *all) 3419 { 3420 /* 3421 * Refuse to read old versions 3422 */ 3423 if (all->version != DI_SNAPSHOT_VERSION) { 3424 CACHE_DEBUG((DI_ERR, "bad version: 0x%x", all->version)); 3425 return (0); 3426 } 3427 3428 if (all->cache_magic != DI_CACHE_MAGIC) { 3429 CACHE_DEBUG((DI_ERR, "bad magic #: 0x%x", all->cache_magic)); 3430 return (0); 3431 } 3432 3433 if (all->snapshot_time == 0) { 3434 CACHE_DEBUG((DI_ERR, "bad timestamp: %ld", all->snapshot_time)); 3435 return (0); 3436 } 3437 3438 if (all->top_devinfo == 0) { 3439 CACHE_DEBUG((DI_ERR, "NULL top devinfo")); 3440 return (0); 3441 } 3442 3443 if (all->map_size < sizeof (*all) + 1) { 3444 CACHE_DEBUG((DI_ERR, "bad map size: %u", all->map_size)); 3445 return (0); 3446 } 3447 3448 if (all->root_path[0] != '/' || all->root_path[1] != '\0') { 3449 CACHE_DEBUG((DI_ERR, "bad rootpath: %c%c", 3450 all->root_path[0], all->root_path[1])); 3451 return (0); 3452 } 3453 3454 /* 3455 * We can't check checksum here as we just have the header 3456 */ 3457 3458 return (1); 3459 } 3460 3461 static int 3462 chunk_write(struct vnode *vp, offset_t off, caddr_t buf, size_t len) 3463 { 3464 rlim64_t rlimit; 3465 ssize_t resid; 3466 int error = 0; 3467 3468 3469 rlimit = RLIM64_INFINITY; 3470 3471 while (len) { 3472 resid = 0; 3473 error = vn_rdwr(UIO_WRITE, vp, buf, len, off, 3474 UIO_SYSSPACE, FSYNC, rlimit, kcred, &resid); 3475 3476 if (error || resid < 0) { 3477 error = error ? error : EIO; 3478 CACHE_DEBUG((DI_ERR, "write error: %d", error)); 3479 break; 3480 } 3481 3482 /* 3483 * Check if we are making progress 3484 */ 3485 if (resid >= len) { 3486 error = ENOSPC; 3487 break; 3488 } 3489 buf += len - resid; 3490 off += len - resid; 3491 len = resid; 3492 } 3493 3494 return (error); 3495 } 3496 3497 extern int modrootloaded; 3498 extern void mdi_walk_vhcis(int (*)(dev_info_t *, void *), void *); 3499 extern void mdi_vhci_walk_phcis(dev_info_t *, 3500 int (*)(dev_info_t *, void *), void *); 3501 3502 static void 3503 di_cache_write(struct di_cache *cache) 3504 { 3505 struct di_all *all; 3506 struct vnode *vp; 3507 int oflags; 3508 size_t map_size; 3509 size_t chunk; 3510 offset_t off; 3511 int error; 3512 char *buf; 3513 3514 ASSERT(DI_CACHE_LOCKED(*cache)); 3515 ASSERT(!servicing_interrupt()); 3516 3517 if (cache->cache_size == 0) { 3518 ASSERT(cache->cache_data == NULL); 3519 CACHE_DEBUG((DI_ERR, "Empty cache. Skipping write")); 3520 return; 3521 } 3522 3523 ASSERT(cache->cache_size > 0); 3524 ASSERT(cache->cache_data); 3525 3526 if (!modrootloaded || rootvp == NULL || vn_is_readonly(rootvp)) { 3527 CACHE_DEBUG((DI_ERR, "Can't write to rootFS. Skipping write")); 3528 return; 3529 } 3530 3531 all = (struct di_all *)cache->cache_data; 3532 3533 if (!header_plus_one_ok(all)) { 3534 CACHE_DEBUG((DI_ERR, "Invalid header. Skipping write")); 3535 return; 3536 } 3537 3538 ASSERT(strcmp(all->root_path, "/") == 0); 3539 3540 /* 3541 * The cache_size is the total allocated memory for the cache. 3542 * The map_size is the actual size of valid data in the cache. 3543 * map_size may be smaller than cache_size but cannot exceed 3544 * cache_size. 3545 */ 3546 if (all->map_size > cache->cache_size) { 3547 CACHE_DEBUG((DI_ERR, "map_size (0x%x) > cache_size (0x%x)." 3548 " Skipping write", all->map_size, cache->cache_size)); 3549 return; 3550 } 3551 3552 /* 3553 * First unlink the temp file 3554 */ 3555 error = vn_remove(DI_CACHE_TEMP, UIO_SYSSPACE, RMFILE); 3556 if (error && error != ENOENT) { 3557 CACHE_DEBUG((DI_ERR, "%s: unlink failed: %d", 3558 DI_CACHE_TEMP, error)); 3559 } 3560 3561 if (error == EROFS) { 3562 CACHE_DEBUG((DI_ERR, "RDONLY FS. Skipping write")); 3563 return; 3564 } 3565 3566 vp = NULL; 3567 oflags = (FCREAT|FWRITE); 3568 if (error = vn_open(DI_CACHE_TEMP, UIO_SYSSPACE, oflags, 3569 DI_CACHE_PERMS, &vp, CRCREAT, 0)) { 3570 CACHE_DEBUG((DI_ERR, "%s: create failed: %d", 3571 DI_CACHE_TEMP, error)); 3572 return; 3573 } 3574 3575 ASSERT(vp); 3576 3577 /* 3578 * Paranoid: Check if the file is on a read-only FS 3579 */ 3580 if (vn_is_readonly(vp)) { 3581 CACHE_DEBUG((DI_ERR, "cannot write: readonly FS")); 3582 goto fail; 3583 } 3584 3585 /* 3586 * Note that we only write map_size bytes to disk - this saves 3587 * space as the actual cache size may be larger than size of 3588 * valid data in the cache. 3589 * Another advantage is that it makes verification of size 3590 * easier when the file is read later. 3591 */ 3592 map_size = all->map_size; 3593 off = 0; 3594 buf = cache->cache_data; 3595 3596 while (map_size) { 3597 ASSERT(map_size > 0); 3598 /* 3599 * Write in chunks so that VM system 3600 * is not overwhelmed 3601 */ 3602 if (map_size > di_chunk * PAGESIZE) 3603 chunk = di_chunk * PAGESIZE; 3604 else 3605 chunk = map_size; 3606 3607 error = chunk_write(vp, off, buf, chunk); 3608 if (error) { 3609 CACHE_DEBUG((DI_ERR, "write failed: off=0x%x: %d", 3610 off, error)); 3611 goto fail; 3612 } 3613 3614 off += chunk; 3615 buf += chunk; 3616 map_size -= chunk; 3617 3618 /* Give pageout a chance to run */ 3619 delay(1); 3620 } 3621 3622 /* 3623 * Now sync the file and close it 3624 */ 3625 if (error = VOP_FSYNC(vp, FSYNC, kcred, NULL)) { 3626 CACHE_DEBUG((DI_ERR, "FSYNC failed: %d", error)); 3627 } 3628 3629 if (error = VOP_CLOSE(vp, oflags, 1, (offset_t)0, kcred, NULL)) { 3630 CACHE_DEBUG((DI_ERR, "close() failed: %d", error)); 3631 VN_RELE(vp); 3632 return; 3633 } 3634 3635 VN_RELE(vp); 3636 3637 /* 3638 * Now do the rename 3639 */ 3640 if (error = vn_rename(DI_CACHE_TEMP, DI_CACHE_FILE, UIO_SYSSPACE)) { 3641 CACHE_DEBUG((DI_ERR, "rename failed: %d", error)); 3642 return; 3643 } 3644 3645 CACHE_DEBUG((DI_INFO, "Cache write successful.")); 3646 3647 return; 3648 3649 fail: 3650 (void) VOP_CLOSE(vp, oflags, 1, (offset_t)0, kcred, NULL); 3651 VN_RELE(vp); 3652 } 3653 3654 3655 /* 3656 * Since we could be called early in boot, 3657 * use kobj_read_file() 3658 */ 3659 static void 3660 di_cache_read(struct di_cache *cache) 3661 { 3662 struct _buf *file; 3663 struct di_all *all; 3664 int n; 3665 size_t map_size, sz, chunk; 3666 offset_t off; 3667 caddr_t buf; 3668 uint32_t saved_crc, crc; 3669 3670 ASSERT(modrootloaded); 3671 ASSERT(DI_CACHE_LOCKED(*cache)); 3672 ASSERT(cache->cache_data == NULL); 3673 ASSERT(cache->cache_size == 0); 3674 ASSERT(!servicing_interrupt()); 3675 3676 file = kobj_open_file(DI_CACHE_FILE); 3677 if (file == (struct _buf *)-1) { 3678 CACHE_DEBUG((DI_ERR, "%s: open failed: %d", 3679 DI_CACHE_FILE, ENOENT)); 3680 return; 3681 } 3682 3683 /* 3684 * Read in the header+root_path first. The root_path must be "/" 3685 */ 3686 all = kmem_zalloc(sizeof (*all) + 1, KM_SLEEP); 3687 n = kobj_read_file(file, (caddr_t)all, sizeof (*all) + 1, 0); 3688 3689 if ((n != sizeof (*all) + 1) || !header_plus_one_ok(all)) { 3690 kmem_free(all, sizeof (*all) + 1); 3691 kobj_close_file(file); 3692 CACHE_DEBUG((DI_ERR, "cache header: read error or invalid")); 3693 return; 3694 } 3695 3696 map_size = all->map_size; 3697 3698 kmem_free(all, sizeof (*all) + 1); 3699 3700 ASSERT(map_size >= sizeof (*all) + 1); 3701 3702 buf = di_cache.cache_data = kmem_alloc(map_size, KM_SLEEP); 3703 sz = map_size; 3704 off = 0; 3705 while (sz) { 3706 /* Don't overload VM with large reads */ 3707 chunk = (sz > di_chunk * PAGESIZE) ? di_chunk * PAGESIZE : sz; 3708 n = kobj_read_file(file, buf, chunk, off); 3709 if (n != chunk) { 3710 CACHE_DEBUG((DI_ERR, "%s: read error at offset: %lld", 3711 DI_CACHE_FILE, off)); 3712 goto fail; 3713 } 3714 off += chunk; 3715 buf += chunk; 3716 sz -= chunk; 3717 } 3718 3719 ASSERT(off == map_size); 3720 3721 /* 3722 * Read past expected EOF to verify size. 3723 */ 3724 if (kobj_read_file(file, (caddr_t)&sz, 1, off) > 0) { 3725 CACHE_DEBUG((DI_ERR, "%s: file size changed", DI_CACHE_FILE)); 3726 goto fail; 3727 } 3728 3729 all = (struct di_all *)di_cache.cache_data; 3730 if (!header_plus_one_ok(all)) { 3731 CACHE_DEBUG((DI_ERR, "%s: file header changed", DI_CACHE_FILE)); 3732 goto fail; 3733 } 3734 3735 /* 3736 * Compute CRC with checksum field in the cache data set to 0 3737 */ 3738 saved_crc = all->cache_checksum; 3739 all->cache_checksum = 0; 3740 CRC32(crc, di_cache.cache_data, map_size, -1U, crc32_table); 3741 all->cache_checksum = saved_crc; 3742 3743 if (crc != all->cache_checksum) { 3744 CACHE_DEBUG((DI_ERR, 3745 "%s: checksum error: expected=0x%x actual=0x%x", 3746 DI_CACHE_FILE, all->cache_checksum, crc)); 3747 goto fail; 3748 } 3749 3750 if (all->map_size != map_size) { 3751 CACHE_DEBUG((DI_ERR, "%s: map size changed", DI_CACHE_FILE)); 3752 goto fail; 3753 } 3754 3755 kobj_close_file(file); 3756 3757 di_cache.cache_size = map_size; 3758 3759 return; 3760 3761 fail: 3762 kmem_free(di_cache.cache_data, map_size); 3763 kobj_close_file(file); 3764 di_cache.cache_data = NULL; 3765 di_cache.cache_size = 0; 3766 } 3767 3768 3769 /* 3770 * Checks if arguments are valid for using the cache. 3771 */ 3772 static int 3773 cache_args_valid(struct di_state *st, int *error) 3774 { 3775 ASSERT(error); 3776 ASSERT(st->mem_size > 0); 3777 ASSERT(st->memlist != NULL); 3778 3779 if (!modrootloaded || !i_ddi_io_initialized()) { 3780 CACHE_DEBUG((DI_ERR, 3781 "cache lookup failure: I/O subsystem not inited")); 3782 *error = ENOTACTIVE; 3783 return (0); 3784 } 3785 3786 /* 3787 * No other flags allowed with DINFOCACHE 3788 */ 3789 if (st->command != (DINFOCACHE & DIIOC_MASK)) { 3790 CACHE_DEBUG((DI_ERR, 3791 "cache lookup failure: bad flags: 0x%x", 3792 st->command)); 3793 *error = EINVAL; 3794 return (0); 3795 } 3796 3797 if (strcmp(DI_ALL_PTR(st)->root_path, "/") != 0) { 3798 CACHE_DEBUG((DI_ERR, 3799 "cache lookup failure: bad root: %s", 3800 DI_ALL_PTR(st)->root_path)); 3801 *error = EINVAL; 3802 return (0); 3803 } 3804 3805 CACHE_DEBUG((DI_INFO, "cache lookup args ok: 0x%x", st->command)); 3806 3807 *error = 0; 3808 3809 return (1); 3810 } 3811 3812 static int 3813 snapshot_is_cacheable(struct di_state *st) 3814 { 3815 ASSERT(st->mem_size > 0); 3816 ASSERT(st->memlist != NULL); 3817 3818 if ((st->command & DI_CACHE_SNAPSHOT_FLAGS) != 3819 (DI_CACHE_SNAPSHOT_FLAGS & DIIOC_MASK)) { 3820 CACHE_DEBUG((DI_INFO, 3821 "not cacheable: incompatible flags: 0x%x", 3822 st->command)); 3823 return (0); 3824 } 3825 3826 if (strcmp(DI_ALL_PTR(st)->root_path, "/") != 0) { 3827 CACHE_DEBUG((DI_INFO, 3828 "not cacheable: incompatible root path: %s", 3829 DI_ALL_PTR(st)->root_path)); 3830 return (0); 3831 } 3832 3833 CACHE_DEBUG((DI_INFO, "cacheable snapshot request: 0x%x", st->command)); 3834 3835 return (1); 3836 } 3837 3838 static int 3839 di_cache_lookup(struct di_state *st) 3840 { 3841 size_t rval; 3842 int cache_valid; 3843 3844 ASSERT(cache_args_valid(st, &cache_valid)); 3845 ASSERT(modrootloaded); 3846 3847 DI_CACHE_LOCK(di_cache); 3848 3849 /* 3850 * The following assignment determines the validity 3851 * of the cache as far as this snapshot is concerned. 3852 */ 3853 cache_valid = di_cache.cache_valid; 3854 3855 if (cache_valid && di_cache.cache_data == NULL) { 3856 di_cache_read(&di_cache); 3857 /* check for read or file error */ 3858 if (di_cache.cache_data == NULL) 3859 cache_valid = 0; 3860 } 3861 3862 if (cache_valid) { 3863 /* 3864 * Ok, the cache was valid as of this particular 3865 * snapshot. Copy the cached snapshot. This is safe 3866 * to do as the cache cannot be freed (we hold the 3867 * cache lock). Free the memory allocated in di_state 3868 * up until this point - we will simply copy everything 3869 * in the cache. 3870 */ 3871 3872 ASSERT(di_cache.cache_data != NULL); 3873 ASSERT(di_cache.cache_size > 0); 3874 3875 di_freemem(st); 3876 3877 rval = 0; 3878 if (di_cache2mem(&di_cache, st) > 0) { 3879 3880 ASSERT(DI_ALL_PTR(st)); 3881 3882 /* 3883 * map_size is size of valid data in the 3884 * cached snapshot and may be less than 3885 * size of the cache. 3886 */ 3887 rval = DI_ALL_PTR(st)->map_size; 3888 3889 ASSERT(rval >= sizeof (struct di_all)); 3890 ASSERT(rval <= di_cache.cache_size); 3891 } 3892 } else { 3893 /* 3894 * The cache isn't valid, we need to take a snapshot. 3895 * Set the command flags appropriately 3896 */ 3897 ASSERT(st->command == (DINFOCACHE & DIIOC_MASK)); 3898 st->command = (DI_CACHE_SNAPSHOT_FLAGS & DIIOC_MASK); 3899 rval = di_cache_update(st); 3900 st->command = (DINFOCACHE & DIIOC_MASK); 3901 } 3902 3903 DI_CACHE_UNLOCK(di_cache); 3904 3905 /* 3906 * For cached snapshots, the devinfo driver always returns 3907 * a snapshot rooted at "/". 3908 */ 3909 ASSERT(rval == 0 || strcmp(DI_ALL_PTR(st)->root_path, "/") == 0); 3910 3911 return ((int)rval); 3912 } 3913 3914 /* 3915 * This is a forced update of the cache - the previous state of the cache 3916 * may be: 3917 * - unpopulated 3918 * - populated and invalid 3919 * - populated and valid 3920 */ 3921 static int 3922 di_cache_update(struct di_state *st) 3923 { 3924 int rval; 3925 uint32_t crc; 3926 struct di_all *all; 3927 3928 ASSERT(DI_CACHE_LOCKED(di_cache)); 3929 ASSERT(snapshot_is_cacheable(st)); 3930 3931 /* 3932 * Free the in-core cache and the on-disk file (if they exist) 3933 */ 3934 i_ddi_di_cache_free(&di_cache); 3935 3936 /* 3937 * Set valid flag before taking the snapshot, 3938 * so that any invalidations that arrive 3939 * during or after the snapshot are not 3940 * removed by us. 3941 */ 3942 atomic_or_32(&di_cache.cache_valid, 1); 3943 3944 rval = di_snapshot_and_clean(st); 3945 3946 if (rval == 0) { 3947 CACHE_DEBUG((DI_ERR, "can't update cache: bad snapshot")); 3948 return (0); 3949 } 3950 3951 DI_ALL_PTR(st)->map_size = rval; 3952 3953 if (di_mem2cache(st, &di_cache) == 0) { 3954 CACHE_DEBUG((DI_ERR, "can't update cache: copy failed")); 3955 return (0); 3956 } 3957 3958 ASSERT(di_cache.cache_data); 3959 ASSERT(di_cache.cache_size > 0); 3960 3961 /* 3962 * Now that we have cached the snapshot, compute its checksum. 3963 * The checksum is only computed over the valid data in the 3964 * cache, not the entire cache. 3965 * Also, set all the fields (except checksum) before computing 3966 * checksum. 3967 */ 3968 all = (struct di_all *)di_cache.cache_data; 3969 all->cache_magic = DI_CACHE_MAGIC; 3970 all->map_size = rval; 3971 3972 ASSERT(all->cache_checksum == 0); 3973 CRC32(crc, di_cache.cache_data, all->map_size, -1U, crc32_table); 3974 all->cache_checksum = crc; 3975 3976 di_cache_write(&di_cache); 3977 3978 return (rval); 3979 } 3980 3981 static void 3982 di_cache_print(di_cache_debug_t msglevel, char *fmt, ...) 3983 { 3984 va_list ap; 3985 3986 if (di_cache_debug <= DI_QUIET) 3987 return; 3988 3989 if (di_cache_debug < msglevel) 3990 return; 3991 3992 switch (msglevel) { 3993 case DI_ERR: 3994 msglevel = CE_WARN; 3995 break; 3996 case DI_INFO: 3997 case DI_TRACE: 3998 default: 3999 msglevel = CE_NOTE; 4000 break; 4001 } 4002 4003 va_start(ap, fmt); 4004 vcmn_err(msglevel, fmt, ap); 4005 va_end(ap); 4006 } 4007