1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 /* 22 * Copyright 2007 Sun Microsystems, Inc. All rights reserved. 23 * Use is subject to license terms. 24 */ 25 26 #pragma ident "%Z%%M% %I% %E% SMI" 27 28 /* 29 * driver for accessing kernel devinfo tree. 30 */ 31 #include <sys/types.h> 32 #include <sys/pathname.h> 33 #include <sys/debug.h> 34 #include <sys/autoconf.h> 35 #include <sys/conf.h> 36 #include <sys/file.h> 37 #include <sys/kmem.h> 38 #include <sys/modctl.h> 39 #include <sys/stat.h> 40 #include <sys/ddi.h> 41 #include <sys/sunddi.h> 42 #include <sys/sunldi_impl.h> 43 #include <sys/sunndi.h> 44 #include <sys/esunddi.h> 45 #include <sys/sunmdi.h> 46 #include <sys/ddi_impldefs.h> 47 #include <sys/ndi_impldefs.h> 48 #include <sys/mdi_impldefs.h> 49 #include <sys/devinfo_impl.h> 50 #include <sys/thread.h> 51 #include <sys/modhash.h> 52 #include <sys/bitmap.h> 53 #include <util/qsort.h> 54 #include <sys/disp.h> 55 #include <sys/kobj.h> 56 #include <sys/crc32.h> 57 58 59 #ifdef DEBUG 60 static int di_debug; 61 #define dcmn_err(args) if (di_debug >= 1) cmn_err args 62 #define dcmn_err2(args) if (di_debug >= 2) cmn_err args 63 #define dcmn_err3(args) if (di_debug >= 3) cmn_err args 64 #else 65 #define dcmn_err(args) /* nothing */ 66 #define dcmn_err2(args) /* nothing */ 67 #define dcmn_err3(args) /* nothing */ 68 #endif 69 70 /* 71 * We partition the space of devinfo minor nodes equally between the full and 72 * unprivileged versions of the driver. The even-numbered minor nodes are the 73 * full version, while the odd-numbered ones are the read-only version. 74 */ 75 static int di_max_opens = 32; 76 77 #define DI_FULL_PARENT 0 78 #define DI_READONLY_PARENT 1 79 #define DI_NODE_SPECIES 2 80 #define DI_UNPRIVILEGED_NODE(x) (((x) % 2) != 0) 81 82 #define IOC_IDLE 0 /* snapshot ioctl states */ 83 #define IOC_SNAP 1 /* snapshot in progress */ 84 #define IOC_DONE 2 /* snapshot done, but not copied out */ 85 #define IOC_COPY 3 /* copyout in progress */ 86 87 /* 88 * Keep max alignment so we can move snapshot to different platforms 89 */ 90 #define DI_ALIGN(addr) ((addr + 7l) & ~7l) 91 92 /* 93 * To avoid wasting memory, make a linked list of memory chunks. 94 * Size of each chunk is buf_size. 95 */ 96 struct di_mem { 97 struct di_mem *next; /* link to next chunk */ 98 char *buf; /* contiguous kernel memory */ 99 size_t buf_size; /* size of buf in bytes */ 100 devmap_cookie_t cook; /* cookie from ddi_umem_alloc */ 101 }; 102 103 /* 104 * This is a stack for walking the tree without using recursion. 105 * When the devinfo tree height is above some small size, one 106 * gets watchdog resets on sun4m. 107 */ 108 struct di_stack { 109 void *offset[MAX_TREE_DEPTH]; 110 struct dev_info *dip[MAX_TREE_DEPTH]; 111 int circ[MAX_TREE_DEPTH]; 112 int depth; /* depth of current node to be copied */ 113 }; 114 115 #define TOP_OFFSET(stack) \ 116 ((di_off_t *)(stack)->offset[(stack)->depth - 1]) 117 #define TOP_NODE(stack) \ 118 ((stack)->dip[(stack)->depth - 1]) 119 #define PARENT_OFFSET(stack) \ 120 ((di_off_t *)(stack)->offset[(stack)->depth - 2]) 121 #define EMPTY_STACK(stack) ((stack)->depth == 0) 122 #define POP_STACK(stack) { \ 123 ndi_devi_exit((dev_info_t *)TOP_NODE(stack), \ 124 (stack)->circ[(stack)->depth - 1]); \ 125 ((stack)->depth--); \ 126 } 127 #define PUSH_STACK(stack, node, offp) { \ 128 ASSERT(node != NULL); \ 129 ndi_devi_enter((dev_info_t *)node, &(stack)->circ[(stack)->depth]); \ 130 (stack)->dip[(stack)->depth] = (node); \ 131 (stack)->offset[(stack)->depth] = (void *)(offp); \ 132 ((stack)->depth)++; \ 133 } 134 135 #define DI_ALL_PTR(s) ((struct di_all *)(intptr_t)di_mem_addr((s), 0)) 136 137 /* 138 * With devfs, the device tree has no global locks. The device tree is 139 * dynamic and dips may come and go if they are not locked locally. Under 140 * these conditions, pointers are no longer reliable as unique IDs. 141 * Specifically, these pointers cannot be used as keys for hash tables 142 * as the same devinfo structure may be freed in one part of the tree only 143 * to be allocated as the structure for a different device in another 144 * part of the tree. This can happen if DR and the snapshot are 145 * happening concurrently. 146 * The following data structures act as keys for devinfo nodes and 147 * pathinfo nodes. 148 */ 149 150 enum di_ktype { 151 DI_DKEY = 1, 152 DI_PKEY = 2 153 }; 154 155 struct di_dkey { 156 dev_info_t *dk_dip; 157 major_t dk_major; 158 int dk_inst; 159 pnode_t dk_nodeid; 160 }; 161 162 struct di_pkey { 163 mdi_pathinfo_t *pk_pip; 164 char *pk_path_addr; 165 dev_info_t *pk_client; 166 dev_info_t *pk_phci; 167 }; 168 169 struct di_key { 170 enum di_ktype k_type; 171 union { 172 struct di_dkey dkey; 173 struct di_pkey pkey; 174 } k_u; 175 }; 176 177 178 struct i_lnode; 179 180 typedef struct i_link { 181 /* 182 * If a di_link struct representing this i_link struct makes it 183 * into the snapshot, then self will point to the offset of 184 * the di_link struct in the snapshot 185 */ 186 di_off_t self; 187 188 int spec_type; /* block or char access type */ 189 struct i_lnode *src_lnode; /* src i_lnode */ 190 struct i_lnode *tgt_lnode; /* tgt i_lnode */ 191 struct i_link *src_link_next; /* next src i_link /w same i_lnode */ 192 struct i_link *tgt_link_next; /* next tgt i_link /w same i_lnode */ 193 } i_link_t; 194 195 typedef struct i_lnode { 196 /* 197 * If a di_lnode struct representing this i_lnode struct makes it 198 * into the snapshot, then self will point to the offset of 199 * the di_lnode struct in the snapshot 200 */ 201 di_off_t self; 202 203 /* 204 * used for hashing and comparing i_lnodes 205 */ 206 int modid; 207 208 /* 209 * public information describing a link endpoint 210 */ 211 struct di_node *di_node; /* di_node in snapshot */ 212 dev_t devt; /* devt */ 213 214 /* 215 * i_link ptr to links coming into this i_lnode node 216 * (this i_lnode is the target of these i_links) 217 */ 218 i_link_t *link_in; 219 220 /* 221 * i_link ptr to links going out of this i_lnode node 222 * (this i_lnode is the source of these i_links) 223 */ 224 i_link_t *link_out; 225 } i_lnode_t; 226 227 /* 228 * Soft state associated with each instance of driver open. 229 */ 230 static struct di_state { 231 di_off_t mem_size; /* total # bytes in memlist */ 232 struct di_mem *memlist; /* head of memlist */ 233 uint_t command; /* command from ioctl */ 234 int di_iocstate; /* snapshot ioctl state */ 235 mod_hash_t *reg_dip_hash; 236 mod_hash_t *reg_pip_hash; 237 int lnode_count; 238 int link_count; 239 240 mod_hash_t *lnode_hash; 241 mod_hash_t *link_hash; 242 } **di_states; 243 244 static kmutex_t di_lock; /* serialize instance assignment */ 245 246 typedef enum { 247 DI_QUIET = 0, /* DI_QUIET must always be 0 */ 248 DI_ERR, 249 DI_INFO, 250 DI_TRACE, 251 DI_TRACE1, 252 DI_TRACE2 253 } di_cache_debug_t; 254 255 static uint_t di_chunk = 32; /* I/O chunk size in pages */ 256 257 #define DI_CACHE_LOCK(c) (mutex_enter(&(c).cache_lock)) 258 #define DI_CACHE_UNLOCK(c) (mutex_exit(&(c).cache_lock)) 259 #define DI_CACHE_LOCKED(c) (mutex_owned(&(c).cache_lock)) 260 261 /* 262 * Check that whole device tree is being configured as a pre-condition for 263 * cleaning up /etc/devices files. 264 */ 265 #define DEVICES_FILES_CLEANABLE(st) \ 266 (((st)->command & DINFOSUBTREE) && ((st)->command & DINFOFORCE) && \ 267 strcmp(DI_ALL_PTR(st)->root_path, "/") == 0) 268 269 #define CACHE_DEBUG(args) \ 270 { if (di_cache_debug != DI_QUIET) di_cache_print args; } 271 272 typedef struct phci_walk_arg { 273 di_off_t off; 274 struct di_state *st; 275 } phci_walk_arg_t; 276 277 static int di_open(dev_t *, int, int, cred_t *); 278 static int di_ioctl(dev_t, int, intptr_t, int, cred_t *, int *); 279 static int di_close(dev_t, int, int, cred_t *); 280 static int di_info(dev_info_t *, ddi_info_cmd_t, void *, void **); 281 static int di_attach(dev_info_t *, ddi_attach_cmd_t); 282 static int di_detach(dev_info_t *, ddi_detach_cmd_t); 283 284 static di_off_t di_copyformat(di_off_t, struct di_state *, intptr_t, int); 285 static di_off_t di_snapshot_and_clean(struct di_state *); 286 static di_off_t di_copydevnm(di_off_t *, struct di_state *); 287 static di_off_t di_copytree(struct dev_info *, di_off_t *, struct di_state *); 288 static di_off_t di_copynode(struct di_stack *, struct di_state *); 289 static di_off_t di_getmdata(struct ddi_minor_data *, di_off_t *, di_off_t, 290 struct di_state *); 291 static di_off_t di_getppdata(struct dev_info *, di_off_t *, struct di_state *); 292 static di_off_t di_getdpdata(struct dev_info *, di_off_t *, struct di_state *); 293 static di_off_t di_getprop(struct ddi_prop *, di_off_t *, 294 struct di_state *, struct dev_info *, int); 295 static void di_allocmem(struct di_state *, size_t); 296 static void di_freemem(struct di_state *); 297 static void di_copymem(struct di_state *st, caddr_t buf, size_t bufsiz); 298 static di_off_t di_checkmem(struct di_state *, di_off_t, size_t); 299 static caddr_t di_mem_addr(struct di_state *, di_off_t); 300 static int di_setstate(struct di_state *, int); 301 static void di_register_dip(struct di_state *, dev_info_t *, di_off_t); 302 static void di_register_pip(struct di_state *, mdi_pathinfo_t *, di_off_t); 303 static di_off_t di_getpath_data(dev_info_t *, di_off_t *, di_off_t, 304 struct di_state *, int); 305 static di_off_t di_getlink_data(di_off_t, struct di_state *); 306 static int di_dip_find(struct di_state *st, dev_info_t *node, di_off_t *off_p); 307 308 static int cache_args_valid(struct di_state *st, int *error); 309 static int snapshot_is_cacheable(struct di_state *st); 310 static int di_cache_lookup(struct di_state *st); 311 static int di_cache_update(struct di_state *st); 312 static void di_cache_print(di_cache_debug_t msglevel, char *fmt, ...); 313 int build_vhci_list(dev_info_t *vh_devinfo, void *arg); 314 int build_phci_list(dev_info_t *ph_devinfo, void *arg); 315 316 static struct cb_ops di_cb_ops = { 317 di_open, /* open */ 318 di_close, /* close */ 319 nodev, /* strategy */ 320 nodev, /* print */ 321 nodev, /* dump */ 322 nodev, /* read */ 323 nodev, /* write */ 324 di_ioctl, /* ioctl */ 325 nodev, /* devmap */ 326 nodev, /* mmap */ 327 nodev, /* segmap */ 328 nochpoll, /* poll */ 329 ddi_prop_op, /* prop_op */ 330 NULL, /* streamtab */ 331 D_NEW | D_MP /* Driver compatibility flag */ 332 }; 333 334 static struct dev_ops di_ops = { 335 DEVO_REV, /* devo_rev, */ 336 0, /* refcnt */ 337 di_info, /* info */ 338 nulldev, /* identify */ 339 nulldev, /* probe */ 340 di_attach, /* attach */ 341 di_detach, /* detach */ 342 nodev, /* reset */ 343 &di_cb_ops, /* driver operations */ 344 NULL /* bus operations */ 345 }; 346 347 /* 348 * Module linkage information for the kernel. 349 */ 350 static struct modldrv modldrv = { 351 &mod_driverops, 352 "DEVINFO Driver %I%", 353 &di_ops 354 }; 355 356 static struct modlinkage modlinkage = { 357 MODREV_1, 358 &modldrv, 359 NULL 360 }; 361 362 int 363 _init(void) 364 { 365 int error; 366 367 mutex_init(&di_lock, NULL, MUTEX_DRIVER, NULL); 368 369 error = mod_install(&modlinkage); 370 if (error != 0) { 371 mutex_destroy(&di_lock); 372 return (error); 373 } 374 375 return (0); 376 } 377 378 int 379 _info(struct modinfo *modinfop) 380 { 381 return (mod_info(&modlinkage, modinfop)); 382 } 383 384 int 385 _fini(void) 386 { 387 int error; 388 389 error = mod_remove(&modlinkage); 390 if (error != 0) { 391 return (error); 392 } 393 394 mutex_destroy(&di_lock); 395 return (0); 396 } 397 398 static dev_info_t *di_dip; 399 400 /*ARGSUSED*/ 401 static int 402 di_info(dev_info_t *dip, ddi_info_cmd_t infocmd, void *arg, void **result) 403 { 404 int error = DDI_FAILURE; 405 406 switch (infocmd) { 407 case DDI_INFO_DEVT2DEVINFO: 408 *result = (void *)di_dip; 409 error = DDI_SUCCESS; 410 break; 411 case DDI_INFO_DEVT2INSTANCE: 412 /* 413 * All dev_t's map to the same, single instance. 414 */ 415 *result = (void *)0; 416 error = DDI_SUCCESS; 417 break; 418 default: 419 break; 420 } 421 422 return (error); 423 } 424 425 static int 426 di_attach(dev_info_t *dip, ddi_attach_cmd_t cmd) 427 { 428 int error = DDI_FAILURE; 429 430 switch (cmd) { 431 case DDI_ATTACH: 432 di_states = kmem_zalloc( 433 di_max_opens * sizeof (struct di_state *), KM_SLEEP); 434 435 if (ddi_create_minor_node(dip, "devinfo", S_IFCHR, 436 DI_FULL_PARENT, DDI_PSEUDO, NULL) == DDI_FAILURE || 437 ddi_create_minor_node(dip, "devinfo,ro", S_IFCHR, 438 DI_READONLY_PARENT, DDI_PSEUDO, NULL) == DDI_FAILURE) { 439 kmem_free(di_states, 440 di_max_opens * sizeof (struct di_state *)); 441 ddi_remove_minor_node(dip, NULL); 442 error = DDI_FAILURE; 443 } else { 444 di_dip = dip; 445 ddi_report_dev(dip); 446 447 error = DDI_SUCCESS; 448 } 449 break; 450 default: 451 error = DDI_FAILURE; 452 break; 453 } 454 455 return (error); 456 } 457 458 static int 459 di_detach(dev_info_t *dip, ddi_detach_cmd_t cmd) 460 { 461 int error = DDI_FAILURE; 462 463 switch (cmd) { 464 case DDI_DETACH: 465 ddi_remove_minor_node(dip, NULL); 466 di_dip = NULL; 467 kmem_free(di_states, di_max_opens * sizeof (struct di_state *)); 468 469 error = DDI_SUCCESS; 470 break; 471 default: 472 error = DDI_FAILURE; 473 break; 474 } 475 476 return (error); 477 } 478 479 /* 480 * Allow multiple opens by tweaking the dev_t such that it looks like each 481 * open is getting a different minor device. Each minor gets a separate 482 * entry in the di_states[] table. Based on the original minor number, we 483 * discriminate opens of the full and read-only nodes. If all of the instances 484 * of the selected minor node are currently open, we return EAGAIN. 485 */ 486 /*ARGSUSED*/ 487 static int 488 di_open(dev_t *devp, int flag, int otyp, cred_t *credp) 489 { 490 int m; 491 minor_t minor_parent = getminor(*devp); 492 493 if (minor_parent != DI_FULL_PARENT && 494 minor_parent != DI_READONLY_PARENT) 495 return (ENXIO); 496 497 mutex_enter(&di_lock); 498 499 for (m = minor_parent; m < di_max_opens; m += DI_NODE_SPECIES) { 500 if (di_states[m] != NULL) 501 continue; 502 503 di_states[m] = kmem_zalloc(sizeof (struct di_state), KM_SLEEP); 504 break; /* It's ours. */ 505 } 506 507 if (m >= di_max_opens) { 508 /* 509 * maximum open instance for device reached 510 */ 511 mutex_exit(&di_lock); 512 dcmn_err((CE_WARN, "devinfo: maximum devinfo open reached")); 513 return (EAGAIN); 514 } 515 mutex_exit(&di_lock); 516 517 ASSERT(m < di_max_opens); 518 *devp = makedevice(getmajor(*devp), (minor_t)(m + DI_NODE_SPECIES)); 519 520 dcmn_err((CE_CONT, "di_open: thread = %p, assigned minor = %d\n", 521 (void *)curthread, m + DI_NODE_SPECIES)); 522 523 return (0); 524 } 525 526 /*ARGSUSED*/ 527 static int 528 di_close(dev_t dev, int flag, int otype, cred_t *cred_p) 529 { 530 struct di_state *st; 531 int m = (int)getminor(dev) - DI_NODE_SPECIES; 532 533 if (m < 0) { 534 cmn_err(CE_WARN, "closing non-existent devinfo minor %d", 535 m + DI_NODE_SPECIES); 536 return (ENXIO); 537 } 538 539 st = di_states[m]; 540 ASSERT(m < di_max_opens && st != NULL); 541 542 di_freemem(st); 543 kmem_free(st, sizeof (struct di_state)); 544 545 /* 546 * empty slot in state table 547 */ 548 mutex_enter(&di_lock); 549 di_states[m] = NULL; 550 dcmn_err((CE_CONT, "di_close: thread = %p, assigned minor = %d\n", 551 (void *)curthread, m + DI_NODE_SPECIES)); 552 mutex_exit(&di_lock); 553 554 return (0); 555 } 556 557 558 /*ARGSUSED*/ 559 static int 560 di_ioctl(dev_t dev, int cmd, intptr_t arg, int mode, cred_t *credp, int *rvalp) 561 { 562 int rv, error; 563 di_off_t off; 564 struct di_all *all; 565 struct di_state *st; 566 int m = (int)getminor(dev) - DI_NODE_SPECIES; 567 568 major_t i; 569 char *drv_name; 570 size_t map_size, size; 571 struct di_mem *dcp; 572 int ndi_flags; 573 574 if (m < 0 || m >= di_max_opens) { 575 return (ENXIO); 576 } 577 578 st = di_states[m]; 579 ASSERT(st != NULL); 580 581 dcmn_err2((CE_CONT, "di_ioctl: mode = %x, cmd = %x\n", mode, cmd)); 582 583 switch (cmd) { 584 case DINFOIDENT: 585 /* 586 * This is called from di_init to verify that the driver 587 * opened is indeed devinfo. The purpose is to guard against 588 * sending ioctl to an unknown driver in case of an 589 * unresolved major number conflict during bfu. 590 */ 591 *rvalp = DI_MAGIC; 592 return (0); 593 594 case DINFOLODRV: 595 /* 596 * Hold an installed driver and return the result 597 */ 598 if (DI_UNPRIVILEGED_NODE(m)) { 599 /* 600 * Only the fully enabled instances may issue 601 * DINFOLDDRV. 602 */ 603 return (EACCES); 604 } 605 606 drv_name = kmem_alloc(MAXNAMELEN, KM_SLEEP); 607 if (ddi_copyin((void *)arg, drv_name, MAXNAMELEN, mode) != 0) { 608 kmem_free(drv_name, MAXNAMELEN); 609 return (EFAULT); 610 } 611 612 /* 613 * Some 3rd party driver's _init() walks the device tree, 614 * so we load the driver module before configuring driver. 615 */ 616 i = ddi_name_to_major(drv_name); 617 if (ddi_hold_driver(i) == NULL) { 618 kmem_free(drv_name, MAXNAMELEN); 619 return (ENXIO); 620 } 621 622 ndi_flags = NDI_DEVI_PERSIST | NDI_CONFIG | NDI_NO_EVENT; 623 624 /* 625 * i_ddi_load_drvconf() below will trigger a reprobe 626 * via reset_nexus_flags(). NDI_DRV_CONF_REPROBE isn't 627 * needed here. 628 */ 629 modunload_disable(); 630 (void) i_ddi_load_drvconf(i); 631 (void) ndi_devi_config_driver(ddi_root_node(), ndi_flags, i); 632 kmem_free(drv_name, MAXNAMELEN); 633 ddi_rele_driver(i); 634 rv = i_ddi_devs_attached(i); 635 modunload_enable(); 636 637 i_ddi_di_cache_invalidate(KM_SLEEP); 638 639 return ((rv == DDI_SUCCESS)? 0 : ENXIO); 640 641 case DINFOUSRLD: 642 /* 643 * The case for copying snapshot to userland 644 */ 645 if (di_setstate(st, IOC_COPY) == -1) 646 return (EBUSY); 647 648 map_size = ((struct di_all *) 649 (intptr_t)di_mem_addr(st, 0))->map_size; 650 if (map_size == 0) { 651 (void) di_setstate(st, IOC_DONE); 652 return (EFAULT); 653 } 654 655 /* 656 * copyout the snapshot 657 */ 658 map_size = (map_size + PAGEOFFSET) & PAGEMASK; 659 660 /* 661 * Return the map size, so caller may do a sanity 662 * check against the return value of snapshot ioctl() 663 */ 664 *rvalp = (int)map_size; 665 666 /* 667 * Copy one chunk at a time 668 */ 669 off = 0; 670 dcp = st->memlist; 671 while (map_size) { 672 size = dcp->buf_size; 673 if (map_size <= size) { 674 size = map_size; 675 } 676 677 if (ddi_copyout(di_mem_addr(st, off), 678 (void *)(arg + off), size, mode) != 0) { 679 (void) di_setstate(st, IOC_DONE); 680 return (EFAULT); 681 } 682 683 map_size -= size; 684 off += size; 685 dcp = dcp->next; 686 } 687 688 di_freemem(st); 689 (void) di_setstate(st, IOC_IDLE); 690 return (0); 691 692 default: 693 if ((cmd & ~DIIOC_MASK) != DIIOC) { 694 /* 695 * Invalid ioctl command 696 */ 697 return (ENOTTY); 698 } 699 /* 700 * take a snapshot 701 */ 702 st->command = cmd & DIIOC_MASK; 703 /*FALLTHROUGH*/ 704 } 705 706 /* 707 * Obtain enough memory to hold header + rootpath. We prevent kernel 708 * memory exhaustion by freeing any previously allocated snapshot and 709 * refusing the operation; otherwise we would be allowing ioctl(), 710 * ioctl(), ioctl(), ..., panic. 711 */ 712 if (di_setstate(st, IOC_SNAP) == -1) 713 return (EBUSY); 714 715 size = sizeof (struct di_all) + 716 sizeof (((struct dinfo_io *)(NULL))->root_path); 717 if (size < PAGESIZE) 718 size = PAGESIZE; 719 di_allocmem(st, size); 720 721 all = (struct di_all *)(intptr_t)di_mem_addr(st, 0); 722 all->devcnt = devcnt; 723 all->command = st->command; 724 all->version = DI_SNAPSHOT_VERSION; 725 all->top_vhci_devinfo = 0; /* filled up by build_vhci_list. */ 726 727 /* 728 * Note the endianness in case we need to transport snapshot 729 * over the network. 730 */ 731 #if defined(_LITTLE_ENDIAN) 732 all->endianness = DI_LITTLE_ENDIAN; 733 #else 734 all->endianness = DI_BIG_ENDIAN; 735 #endif 736 737 /* Copyin ioctl args, store in the snapshot. */ 738 if (copyinstr((void *)arg, all->root_path, 739 sizeof (((struct dinfo_io *)(NULL))->root_path), &size) != 0) { 740 di_freemem(st); 741 (void) di_setstate(st, IOC_IDLE); 742 return (EFAULT); 743 } 744 745 if ((st->command & DINFOCLEANUP) && !DEVICES_FILES_CLEANABLE(st)) { 746 di_freemem(st); 747 (void) di_setstate(st, IOC_IDLE); 748 return (EINVAL); 749 } 750 751 error = 0; 752 if ((st->command & DINFOCACHE) && !cache_args_valid(st, &error)) { 753 di_freemem(st); 754 (void) di_setstate(st, IOC_IDLE); 755 return (error); 756 } 757 758 off = DI_ALIGN(sizeof (struct di_all) + size); 759 760 /* 761 * Only the fully enabled version may force load drivers or read 762 * the parent private data from a driver. 763 */ 764 if ((st->command & (DINFOPRIVDATA | DINFOFORCE)) != 0 && 765 DI_UNPRIVILEGED_NODE(m)) { 766 di_freemem(st); 767 (void) di_setstate(st, IOC_IDLE); 768 return (EACCES); 769 } 770 771 /* Do we need private data? */ 772 if (st->command & DINFOPRIVDATA) { 773 arg += sizeof (((struct dinfo_io *)(NULL))->root_path); 774 775 #ifdef _MULTI_DATAMODEL 776 switch (ddi_model_convert_from(mode & FMODELS)) { 777 case DDI_MODEL_ILP32: { 778 /* 779 * Cannot copy private data from 64-bit kernel 780 * to 32-bit app 781 */ 782 di_freemem(st); 783 (void) di_setstate(st, IOC_IDLE); 784 return (EINVAL); 785 } 786 case DDI_MODEL_NONE: 787 if ((off = di_copyformat(off, st, arg, mode)) == 0) { 788 di_freemem(st); 789 (void) di_setstate(st, IOC_IDLE); 790 return (EFAULT); 791 } 792 break; 793 } 794 #else /* !_MULTI_DATAMODEL */ 795 if ((off = di_copyformat(off, st, arg, mode)) == 0) { 796 di_freemem(st); 797 (void) di_setstate(st, IOC_IDLE); 798 return (EFAULT); 799 } 800 #endif /* _MULTI_DATAMODEL */ 801 } 802 803 all->top_devinfo = DI_ALIGN(off); 804 805 /* 806 * For cache lookups we reallocate memory from scratch, 807 * so the value of "all" is no longer valid. 808 */ 809 all = NULL; 810 811 if (st->command & DINFOCACHE) { 812 *rvalp = di_cache_lookup(st); 813 } else if (snapshot_is_cacheable(st)) { 814 DI_CACHE_LOCK(di_cache); 815 *rvalp = di_cache_update(st); 816 DI_CACHE_UNLOCK(di_cache); 817 } else 818 *rvalp = di_snapshot_and_clean(st); 819 820 if (*rvalp) { 821 DI_ALL_PTR(st)->map_size = *rvalp; 822 (void) di_setstate(st, IOC_DONE); 823 } else { 824 di_freemem(st); 825 (void) di_setstate(st, IOC_IDLE); 826 } 827 828 return (0); 829 } 830 831 /* 832 * Get a chunk of memory >= size, for the snapshot 833 */ 834 static void 835 di_allocmem(struct di_state *st, size_t size) 836 { 837 struct di_mem *mem = kmem_zalloc(sizeof (struct di_mem), 838 KM_SLEEP); 839 /* 840 * Round up size to nearest power of 2. If it is less 841 * than st->mem_size, set it to st->mem_size (i.e., 842 * the mem_size is doubled every time) to reduce the 843 * number of memory allocations. 844 */ 845 size_t tmp = 1; 846 while (tmp < size) { 847 tmp <<= 1; 848 } 849 size = (tmp > st->mem_size) ? tmp : st->mem_size; 850 851 mem->buf = ddi_umem_alloc(size, DDI_UMEM_SLEEP, &mem->cook); 852 mem->buf_size = size; 853 854 dcmn_err2((CE_CONT, "di_allocmem: mem_size=%x\n", st->mem_size)); 855 856 if (st->mem_size == 0) { /* first chunk */ 857 st->memlist = mem; 858 } else { 859 /* 860 * locate end of linked list and add a chunk at the end 861 */ 862 struct di_mem *dcp = st->memlist; 863 while (dcp->next != NULL) { 864 dcp = dcp->next; 865 } 866 867 dcp->next = mem; 868 } 869 870 st->mem_size += size; 871 } 872 873 /* 874 * Copy upto bufsiz bytes of the memlist to buf 875 */ 876 static void 877 di_copymem(struct di_state *st, caddr_t buf, size_t bufsiz) 878 { 879 struct di_mem *dcp; 880 size_t copysz; 881 882 if (st->mem_size == 0) { 883 ASSERT(st->memlist == NULL); 884 return; 885 } 886 887 copysz = 0; 888 for (dcp = st->memlist; dcp; dcp = dcp->next) { 889 890 ASSERT(bufsiz > 0); 891 892 if (bufsiz <= dcp->buf_size) 893 copysz = bufsiz; 894 else 895 copysz = dcp->buf_size; 896 897 bcopy(dcp->buf, buf, copysz); 898 899 buf += copysz; 900 bufsiz -= copysz; 901 902 if (bufsiz == 0) 903 break; 904 } 905 } 906 907 /* 908 * Free all memory for the snapshot 909 */ 910 static void 911 di_freemem(struct di_state *st) 912 { 913 struct di_mem *dcp, *tmp; 914 915 dcmn_err2((CE_CONT, "di_freemem\n")); 916 917 if (st->mem_size) { 918 dcp = st->memlist; 919 while (dcp) { /* traverse the linked list */ 920 tmp = dcp; 921 dcp = dcp->next; 922 ddi_umem_free(tmp->cook); 923 kmem_free(tmp, sizeof (struct di_mem)); 924 } 925 st->mem_size = 0; 926 st->memlist = NULL; 927 } 928 929 ASSERT(st->mem_size == 0); 930 ASSERT(st->memlist == NULL); 931 } 932 933 /* 934 * Copies cached data to the di_state structure. 935 * Returns: 936 * - size of data copied, on SUCCESS 937 * - 0 on failure 938 */ 939 static int 940 di_cache2mem(struct di_cache *cache, struct di_state *st) 941 { 942 caddr_t pa; 943 944 ASSERT(st->mem_size == 0); 945 ASSERT(st->memlist == NULL); 946 ASSERT(!servicing_interrupt()); 947 ASSERT(DI_CACHE_LOCKED(*cache)); 948 949 if (cache->cache_size == 0) { 950 ASSERT(cache->cache_data == NULL); 951 CACHE_DEBUG((DI_ERR, "Empty cache. Skipping copy")); 952 return (0); 953 } 954 955 ASSERT(cache->cache_data); 956 957 di_allocmem(st, cache->cache_size); 958 959 pa = di_mem_addr(st, 0); 960 961 ASSERT(pa); 962 963 /* 964 * Verify that di_allocmem() allocates contiguous memory, 965 * so that it is safe to do straight bcopy() 966 */ 967 ASSERT(st->memlist != NULL); 968 ASSERT(st->memlist->next == NULL); 969 bcopy(cache->cache_data, pa, cache->cache_size); 970 971 return (cache->cache_size); 972 } 973 974 /* 975 * Copies a snapshot from di_state to the cache 976 * Returns: 977 * - 0 on failure 978 * - size of copied data on success 979 */ 980 static size_t 981 di_mem2cache(struct di_state *st, struct di_cache *cache) 982 { 983 size_t map_size; 984 985 ASSERT(cache->cache_size == 0); 986 ASSERT(cache->cache_data == NULL); 987 ASSERT(!servicing_interrupt()); 988 ASSERT(DI_CACHE_LOCKED(*cache)); 989 990 if (st->mem_size == 0) { 991 ASSERT(st->memlist == NULL); 992 CACHE_DEBUG((DI_ERR, "Empty memlist. Skipping copy")); 993 return (0); 994 } 995 996 ASSERT(st->memlist); 997 998 /* 999 * The size of the memory list may be much larger than the 1000 * size of valid data (map_size). Cache only the valid data 1001 */ 1002 map_size = DI_ALL_PTR(st)->map_size; 1003 if (map_size == 0 || map_size < sizeof (struct di_all) || 1004 map_size > st->mem_size) { 1005 CACHE_DEBUG((DI_ERR, "cannot cache: bad size: 0x%x", map_size)); 1006 return (0); 1007 } 1008 1009 cache->cache_data = kmem_alloc(map_size, KM_SLEEP); 1010 cache->cache_size = map_size; 1011 di_copymem(st, cache->cache_data, cache->cache_size); 1012 1013 return (map_size); 1014 } 1015 1016 /* 1017 * Make sure there is at least "size" bytes memory left before 1018 * going on. Otherwise, start on a new chunk. 1019 */ 1020 static di_off_t 1021 di_checkmem(struct di_state *st, di_off_t off, size_t size) 1022 { 1023 dcmn_err3((CE_CONT, "di_checkmem: off=%x size=%x\n", 1024 off, (int)size)); 1025 1026 /* 1027 * di_checkmem() shouldn't be called with a size of zero. 1028 * But in case it is, we want to make sure we return a valid 1029 * offset within the memlist and not an offset that points us 1030 * at the end of the memlist. 1031 */ 1032 if (size == 0) { 1033 dcmn_err((CE_WARN, "di_checkmem: invalid zero size used")); 1034 size = 1; 1035 } 1036 1037 off = DI_ALIGN(off); 1038 if ((st->mem_size - off) < size) { 1039 off = st->mem_size; 1040 di_allocmem(st, size); 1041 } 1042 1043 return (off); 1044 } 1045 1046 /* 1047 * Copy the private data format from ioctl arg. 1048 * On success, the ending offset is returned. On error 0 is returned. 1049 */ 1050 static di_off_t 1051 di_copyformat(di_off_t off, struct di_state *st, intptr_t arg, int mode) 1052 { 1053 di_off_t size; 1054 struct di_priv_data *priv; 1055 struct di_all *all = (struct di_all *)(intptr_t)di_mem_addr(st, 0); 1056 1057 dcmn_err2((CE_CONT, "di_copyformat: off=%x, arg=%p mode=%x\n", 1058 off, (void *)arg, mode)); 1059 1060 /* 1061 * Copyin data and check version. 1062 * We only handle private data version 0. 1063 */ 1064 priv = kmem_alloc(sizeof (struct di_priv_data), KM_SLEEP); 1065 if ((ddi_copyin((void *)arg, priv, sizeof (struct di_priv_data), 1066 mode) != 0) || (priv->version != DI_PRIVDATA_VERSION_0)) { 1067 kmem_free(priv, sizeof (struct di_priv_data)); 1068 return (0); 1069 } 1070 1071 /* 1072 * Save di_priv_data copied from userland in snapshot. 1073 */ 1074 all->pd_version = priv->version; 1075 all->n_ppdata = priv->n_parent; 1076 all->n_dpdata = priv->n_driver; 1077 1078 /* 1079 * copyin private data format, modify offset accordingly 1080 */ 1081 if (all->n_ppdata) { /* parent private data format */ 1082 /* 1083 * check memory 1084 */ 1085 size = all->n_ppdata * sizeof (struct di_priv_format); 1086 off = di_checkmem(st, off, size); 1087 all->ppdata_format = off; 1088 if (ddi_copyin(priv->parent, di_mem_addr(st, off), size, 1089 mode) != 0) { 1090 kmem_free(priv, sizeof (struct di_priv_data)); 1091 return (0); 1092 } 1093 1094 off += size; 1095 } 1096 1097 if (all->n_dpdata) { /* driver private data format */ 1098 /* 1099 * check memory 1100 */ 1101 size = all->n_dpdata * sizeof (struct di_priv_format); 1102 off = di_checkmem(st, off, size); 1103 all->dpdata_format = off; 1104 if (ddi_copyin(priv->driver, di_mem_addr(st, off), size, 1105 mode) != 0) { 1106 kmem_free(priv, sizeof (struct di_priv_data)); 1107 return (0); 1108 } 1109 1110 off += size; 1111 } 1112 1113 kmem_free(priv, sizeof (struct di_priv_data)); 1114 return (off); 1115 } 1116 1117 /* 1118 * Return the real address based on the offset (off) within snapshot 1119 */ 1120 static caddr_t 1121 di_mem_addr(struct di_state *st, di_off_t off) 1122 { 1123 struct di_mem *dcp = st->memlist; 1124 1125 dcmn_err3((CE_CONT, "di_mem_addr: dcp=%p off=%x\n", 1126 (void *)dcp, off)); 1127 1128 ASSERT(off < st->mem_size); 1129 1130 while (off >= dcp->buf_size) { 1131 off -= dcp->buf_size; 1132 dcp = dcp->next; 1133 } 1134 1135 dcmn_err3((CE_CONT, "di_mem_addr: new off=%x, return = %p\n", 1136 off, (void *)(dcp->buf + off))); 1137 1138 return (dcp->buf + off); 1139 } 1140 1141 /* 1142 * Ideally we would use the whole key to derive the hash 1143 * value. However, the probability that two keys will 1144 * have the same dip (or pip) is very low, so 1145 * hashing by dip (or pip) pointer should suffice. 1146 */ 1147 static uint_t 1148 di_hash_byptr(void *arg, mod_hash_key_t key) 1149 { 1150 struct di_key *dik = key; 1151 size_t rshift; 1152 void *ptr; 1153 1154 ASSERT(arg == NULL); 1155 1156 switch (dik->k_type) { 1157 case DI_DKEY: 1158 ptr = dik->k_u.dkey.dk_dip; 1159 rshift = highbit(sizeof (struct dev_info)); 1160 break; 1161 case DI_PKEY: 1162 ptr = dik->k_u.pkey.pk_pip; 1163 rshift = highbit(sizeof (struct mdi_pathinfo)); 1164 break; 1165 default: 1166 panic("devinfo: unknown key type"); 1167 /*NOTREACHED*/ 1168 } 1169 return (mod_hash_byptr((void *)rshift, ptr)); 1170 } 1171 1172 static void 1173 di_key_dtor(mod_hash_key_t key) 1174 { 1175 char *path_addr; 1176 struct di_key *dik = key; 1177 1178 switch (dik->k_type) { 1179 case DI_DKEY: 1180 break; 1181 case DI_PKEY: 1182 path_addr = dik->k_u.pkey.pk_path_addr; 1183 if (path_addr) 1184 kmem_free(path_addr, strlen(path_addr) + 1); 1185 break; 1186 default: 1187 panic("devinfo: unknown key type"); 1188 /*NOTREACHED*/ 1189 } 1190 1191 kmem_free(dik, sizeof (struct di_key)); 1192 } 1193 1194 static int 1195 di_dkey_cmp(struct di_dkey *dk1, struct di_dkey *dk2) 1196 { 1197 if (dk1->dk_dip != dk2->dk_dip) 1198 return (dk1->dk_dip > dk2->dk_dip ? 1 : -1); 1199 1200 if (dk1->dk_major != (major_t)-1 && dk2->dk_major != (major_t)-1) { 1201 if (dk1->dk_major != dk2->dk_major) 1202 return (dk1->dk_major > dk2->dk_major ? 1 : -1); 1203 1204 if (dk1->dk_inst != dk2->dk_inst) 1205 return (dk1->dk_inst > dk2->dk_inst ? 1 : -1); 1206 } 1207 1208 if (dk1->dk_nodeid != dk2->dk_nodeid) 1209 return (dk1->dk_nodeid > dk2->dk_nodeid ? 1 : -1); 1210 1211 return (0); 1212 } 1213 1214 static int 1215 di_pkey_cmp(struct di_pkey *pk1, struct di_pkey *pk2) 1216 { 1217 char *p1, *p2; 1218 int rv; 1219 1220 if (pk1->pk_pip != pk2->pk_pip) 1221 return (pk1->pk_pip > pk2->pk_pip ? 1 : -1); 1222 1223 p1 = pk1->pk_path_addr; 1224 p2 = pk2->pk_path_addr; 1225 1226 p1 = p1 ? p1 : ""; 1227 p2 = p2 ? p2 : ""; 1228 1229 rv = strcmp(p1, p2); 1230 if (rv) 1231 return (rv > 0 ? 1 : -1); 1232 1233 if (pk1->pk_client != pk2->pk_client) 1234 return (pk1->pk_client > pk2->pk_client ? 1 : -1); 1235 1236 if (pk1->pk_phci != pk2->pk_phci) 1237 return (pk1->pk_phci > pk2->pk_phci ? 1 : -1); 1238 1239 return (0); 1240 } 1241 1242 static int 1243 di_key_cmp(mod_hash_key_t key1, mod_hash_key_t key2) 1244 { 1245 struct di_key *dik1, *dik2; 1246 1247 dik1 = key1; 1248 dik2 = key2; 1249 1250 if (dik1->k_type != dik2->k_type) { 1251 panic("devinfo: mismatched keys"); 1252 /*NOTREACHED*/ 1253 } 1254 1255 switch (dik1->k_type) { 1256 case DI_DKEY: 1257 return (di_dkey_cmp(&(dik1->k_u.dkey), &(dik2->k_u.dkey))); 1258 case DI_PKEY: 1259 return (di_pkey_cmp(&(dik1->k_u.pkey), &(dik2->k_u.pkey))); 1260 default: 1261 panic("devinfo: unknown key type"); 1262 /*NOTREACHED*/ 1263 } 1264 } 1265 1266 /* 1267 * This is the main function that takes a snapshot 1268 */ 1269 static di_off_t 1270 di_snapshot(struct di_state *st) 1271 { 1272 di_off_t off; 1273 struct di_all *all; 1274 dev_info_t *rootnode; 1275 char buf[80]; 1276 int plen; 1277 char *path; 1278 vnode_t *vp; 1279 1280 all = (struct di_all *)(intptr_t)di_mem_addr(st, 0); 1281 dcmn_err((CE_CONT, "Taking a snapshot of devinfo tree...\n")); 1282 1283 /* 1284 * Verify path before entrusting it to e_ddi_hold_devi_by_path because 1285 * some platforms have OBP bugs where executing the NDI_PROMNAME code 1286 * path against an invalid path results in panic. The lookupnameat 1287 * is done relative to rootdir without a leading '/' on "devices/" 1288 * to force the lookup to occur in the global zone. 1289 */ 1290 plen = strlen("devices/") + strlen(all->root_path) + 1; 1291 path = kmem_alloc(plen, KM_SLEEP); 1292 (void) snprintf(path, plen, "devices/%s", all->root_path); 1293 if (lookupnameat(path, UIO_SYSSPACE, FOLLOW, NULLVPP, &vp, rootdir)) { 1294 dcmn_err((CE_CONT, "Devinfo node %s not found\n", 1295 all->root_path)); 1296 kmem_free(path, plen); 1297 return (0); 1298 } 1299 kmem_free(path, plen); 1300 VN_RELE(vp); 1301 1302 /* 1303 * Hold the devinfo node referred by the path. 1304 */ 1305 rootnode = e_ddi_hold_devi_by_path(all->root_path, 0); 1306 if (rootnode == NULL) { 1307 dcmn_err((CE_CONT, "Devinfo node %s not found\n", 1308 all->root_path)); 1309 return (0); 1310 } 1311 1312 (void) snprintf(buf, sizeof (buf), 1313 "devinfo registered dips (statep=%p)", (void *)st); 1314 1315 st->reg_dip_hash = mod_hash_create_extended(buf, 64, 1316 di_key_dtor, mod_hash_null_valdtor, di_hash_byptr, 1317 NULL, di_key_cmp, KM_SLEEP); 1318 1319 1320 (void) snprintf(buf, sizeof (buf), 1321 "devinfo registered pips (statep=%p)", (void *)st); 1322 1323 st->reg_pip_hash = mod_hash_create_extended(buf, 64, 1324 di_key_dtor, mod_hash_null_valdtor, di_hash_byptr, 1325 NULL, di_key_cmp, KM_SLEEP); 1326 1327 /* 1328 * copy the device tree 1329 */ 1330 off = di_copytree(DEVI(rootnode), &all->top_devinfo, st); 1331 1332 if (DINFOPATH & st->command) { 1333 mdi_walk_vhcis(build_vhci_list, st); 1334 } 1335 1336 ddi_release_devi(rootnode); 1337 1338 /* 1339 * copy the devnames array 1340 */ 1341 all->devnames = off; 1342 off = di_copydevnm(&all->devnames, st); 1343 1344 1345 /* initialize the hash tables */ 1346 st->lnode_count = 0; 1347 st->link_count = 0; 1348 1349 if (DINFOLYR & st->command) { 1350 off = di_getlink_data(off, st); 1351 } 1352 1353 /* 1354 * Free up hash tables 1355 */ 1356 mod_hash_destroy_hash(st->reg_dip_hash); 1357 mod_hash_destroy_hash(st->reg_pip_hash); 1358 1359 /* 1360 * Record the timestamp now that we are done with snapshot. 1361 * 1362 * We compute the checksum later and then only if we cache 1363 * the snapshot, since checksumming adds some overhead. 1364 * The checksum is checked later if we read the cache file. 1365 * from disk. 1366 * 1367 * Set checksum field to 0 as CRC is calculated with that 1368 * field set to 0. 1369 */ 1370 all->snapshot_time = ddi_get_time(); 1371 all->cache_checksum = 0; 1372 1373 ASSERT(all->snapshot_time != 0); 1374 1375 return (off); 1376 } 1377 1378 /* 1379 * Take a snapshot and clean /etc/devices files if DINFOCLEANUP is set 1380 */ 1381 static di_off_t 1382 di_snapshot_and_clean(struct di_state *st) 1383 { 1384 di_off_t off; 1385 1386 modunload_disable(); 1387 off = di_snapshot(st); 1388 if (off != 0 && (st->command & DINFOCLEANUP)) { 1389 ASSERT(DEVICES_FILES_CLEANABLE(st)); 1390 /* 1391 * Cleanup /etc/devices files: 1392 * In order to accurately account for the system configuration 1393 * in /etc/devices files, the appropriate drivers must be 1394 * fully configured before the cleanup starts. 1395 * So enable modunload only after the cleanup. 1396 */ 1397 i_ddi_clean_devices_files(); 1398 /* 1399 * Remove backing store nodes for unused devices, 1400 * which retain past permissions customizations 1401 * and may be undesired for newly configured devices. 1402 */ 1403 dev_devices_cleanup(); 1404 } 1405 modunload_enable(); 1406 1407 return (off); 1408 } 1409 1410 /* 1411 * construct vhci linkage in the snapshot. 1412 */ 1413 int 1414 build_vhci_list(dev_info_t *vh_devinfo, void *arg) 1415 { 1416 struct di_all *all; 1417 struct di_node *me; 1418 struct di_state *st; 1419 di_off_t off; 1420 phci_walk_arg_t pwa; 1421 1422 dcmn_err3((CE_CONT, "build_vhci list\n")); 1423 1424 dcmn_err3((CE_CONT, "vhci node %s, instance #%d\n", 1425 DEVI(vh_devinfo)->devi_node_name, 1426 DEVI(vh_devinfo)->devi_instance)); 1427 1428 st = (struct di_state *)arg; 1429 if (di_dip_find(st, vh_devinfo, &off) != 0) { 1430 dcmn_err((CE_WARN, "di_dip_find error for the given node\n")); 1431 return (DDI_WALK_TERMINATE); 1432 } 1433 1434 dcmn_err3((CE_CONT, "st->mem_size: %d vh_devinfo off: 0x%x\n", 1435 st->mem_size, off)); 1436 1437 all = (struct di_all *)(intptr_t)di_mem_addr(st, 0); 1438 if (all->top_vhci_devinfo == 0) { 1439 all->top_vhci_devinfo = off; 1440 } else { 1441 me = (struct di_node *) 1442 (intptr_t)di_mem_addr(st, all->top_vhci_devinfo); 1443 1444 while (me->next_vhci != 0) { 1445 me = (struct di_node *) 1446 (intptr_t)di_mem_addr(st, me->next_vhci); 1447 } 1448 1449 me->next_vhci = off; 1450 } 1451 1452 pwa.off = off; 1453 pwa.st = st; 1454 mdi_vhci_walk_phcis(vh_devinfo, build_phci_list, &pwa); 1455 1456 return (DDI_WALK_CONTINUE); 1457 } 1458 1459 /* 1460 * construct phci linkage for the given vhci in the snapshot. 1461 */ 1462 int 1463 build_phci_list(dev_info_t *ph_devinfo, void *arg) 1464 { 1465 struct di_node *vh_di_node; 1466 struct di_node *me; 1467 phci_walk_arg_t *pwa; 1468 di_off_t off; 1469 1470 pwa = (phci_walk_arg_t *)arg; 1471 1472 dcmn_err3((CE_CONT, "build_phci list for vhci at offset: 0x%x\n", 1473 pwa->off)); 1474 1475 vh_di_node = (struct di_node *)(intptr_t)di_mem_addr(pwa->st, pwa->off); 1476 1477 if (di_dip_find(pwa->st, ph_devinfo, &off) != 0) { 1478 dcmn_err((CE_WARN, "di_dip_find error for the given node\n")); 1479 return (DDI_WALK_TERMINATE); 1480 } 1481 1482 dcmn_err3((CE_CONT, "phci node %s, instance #%d, at offset 0x%x\n", 1483 DEVI(ph_devinfo)->devi_node_name, 1484 DEVI(ph_devinfo)->devi_instance, off)); 1485 1486 if (vh_di_node->top_phci == 0) { 1487 vh_di_node->top_phci = off; 1488 return (DDI_WALK_CONTINUE); 1489 } 1490 1491 me = (struct di_node *) 1492 (intptr_t)di_mem_addr(pwa->st, vh_di_node->top_phci); 1493 1494 while (me->next_phci != 0) { 1495 me = (struct di_node *) 1496 (intptr_t)di_mem_addr(pwa->st, me->next_phci); 1497 } 1498 me->next_phci = off; 1499 1500 return (DDI_WALK_CONTINUE); 1501 } 1502 1503 /* 1504 * Assumes all devinfo nodes in device tree have been snapshotted 1505 */ 1506 static void 1507 snap_driver_list(struct di_state *st, struct devnames *dnp, di_off_t *poff_p) 1508 { 1509 struct dev_info *node; 1510 struct di_node *me; 1511 di_off_t off; 1512 1513 ASSERT(mutex_owned(&dnp->dn_lock)); 1514 1515 node = DEVI(dnp->dn_head); 1516 for (; node; node = node->devi_next) { 1517 if (di_dip_find(st, (dev_info_t *)node, &off) != 0) 1518 continue; 1519 1520 ASSERT(off > 0); 1521 me = (struct di_node *)(intptr_t)di_mem_addr(st, off); 1522 ASSERT(me->next == 0 || me->next == -1); 1523 /* 1524 * Only nodes which were BOUND when they were 1525 * snapshotted will be added to per-driver list. 1526 */ 1527 if (me->next != -1) 1528 continue; 1529 1530 *poff_p = off; 1531 poff_p = &me->next; 1532 } 1533 1534 *poff_p = 0; 1535 } 1536 1537 /* 1538 * Copy the devnames array, so we have a list of drivers in the snapshot. 1539 * Also makes it possible to locate the per-driver devinfo nodes. 1540 */ 1541 static di_off_t 1542 di_copydevnm(di_off_t *off_p, struct di_state *st) 1543 { 1544 int i; 1545 di_off_t off; 1546 size_t size; 1547 struct di_devnm *dnp; 1548 1549 dcmn_err2((CE_CONT, "di_copydevnm: *off_p = %p\n", (void *)off_p)); 1550 1551 /* 1552 * make sure there is some allocated memory 1553 */ 1554 size = devcnt * sizeof (struct di_devnm); 1555 off = di_checkmem(st, *off_p, size); 1556 *off_p = off; 1557 1558 dcmn_err((CE_CONT, "Start copying devnamesp[%d] at offset 0x%x\n", 1559 devcnt, off)); 1560 1561 dnp = (struct di_devnm *)(intptr_t)di_mem_addr(st, off); 1562 off += size; 1563 1564 for (i = 0; i < devcnt; i++) { 1565 if (devnamesp[i].dn_name == NULL) { 1566 continue; 1567 } 1568 1569 /* 1570 * dn_name is not freed during driver unload or removal. 1571 * 1572 * There is a race condition when make_devname() changes 1573 * dn_name during our strcpy. This should be rare since 1574 * only add_drv does this. At any rate, we never had a 1575 * problem with ddi_name_to_major(), which should have 1576 * the same problem. 1577 */ 1578 dcmn_err2((CE_CONT, "di_copydevnm: %s%d, off=%x\n", 1579 devnamesp[i].dn_name, devnamesp[i].dn_instance, 1580 off)); 1581 1582 off = di_checkmem(st, off, strlen(devnamesp[i].dn_name) + 1); 1583 dnp[i].name = off; 1584 (void) strcpy((char *)di_mem_addr(st, off), 1585 devnamesp[i].dn_name); 1586 off += DI_ALIGN(strlen(devnamesp[i].dn_name) + 1); 1587 1588 mutex_enter(&devnamesp[i].dn_lock); 1589 1590 /* 1591 * Snapshot per-driver node list 1592 */ 1593 snap_driver_list(st, &devnamesp[i], &dnp[i].head); 1594 1595 /* 1596 * This is not used by libdevinfo, leave it for now 1597 */ 1598 dnp[i].flags = devnamesp[i].dn_flags; 1599 dnp[i].instance = devnamesp[i].dn_instance; 1600 1601 /* 1602 * get global properties 1603 */ 1604 if ((DINFOPROP & st->command) && 1605 devnamesp[i].dn_global_prop_ptr) { 1606 dnp[i].global_prop = off; 1607 off = di_getprop( 1608 devnamesp[i].dn_global_prop_ptr->prop_list, 1609 &dnp[i].global_prop, st, NULL, DI_PROP_GLB_LIST); 1610 } 1611 1612 /* 1613 * Bit encode driver ops: & bus_ops, cb_ops, & cb_ops->cb_str 1614 */ 1615 if (CB_DRV_INSTALLED(devopsp[i])) { 1616 if (devopsp[i]->devo_cb_ops) { 1617 dnp[i].ops |= DI_CB_OPS; 1618 if (devopsp[i]->devo_cb_ops->cb_str) 1619 dnp[i].ops |= DI_STREAM_OPS; 1620 } 1621 if (NEXUS_DRV(devopsp[i])) { 1622 dnp[i].ops |= DI_BUS_OPS; 1623 } 1624 } 1625 1626 mutex_exit(&devnamesp[i].dn_lock); 1627 } 1628 1629 dcmn_err((CE_CONT, "End copying devnamesp at offset 0x%x\n", off)); 1630 1631 return (off); 1632 } 1633 1634 /* 1635 * Copy the kernel devinfo tree. The tree and the devnames array forms 1636 * the entire snapshot (see also di_copydevnm). 1637 */ 1638 static di_off_t 1639 di_copytree(struct dev_info *root, di_off_t *off_p, struct di_state *st) 1640 { 1641 di_off_t off; 1642 struct di_stack *dsp = kmem_zalloc(sizeof (struct di_stack), KM_SLEEP); 1643 1644 dcmn_err((CE_CONT, "di_copytree: root = %p, *off_p = %x\n", 1645 (void *)root, *off_p)); 1646 1647 /* force attach drivers */ 1648 if (i_ddi_devi_attached((dev_info_t *)root) && 1649 (st->command & DINFOSUBTREE) && (st->command & DINFOFORCE)) { 1650 (void) ndi_devi_config((dev_info_t *)root, 1651 NDI_CONFIG | NDI_DEVI_PERSIST | NDI_NO_EVENT | 1652 NDI_DRV_CONF_REPROBE); 1653 } 1654 1655 /* 1656 * Push top_devinfo onto a stack 1657 * 1658 * The stack is necessary to avoid recursion, which can overrun 1659 * the kernel stack. 1660 */ 1661 PUSH_STACK(dsp, root, off_p); 1662 1663 /* 1664 * As long as there is a node on the stack, copy the node. 1665 * di_copynode() is responsible for pushing and popping 1666 * child and sibling nodes on the stack. 1667 */ 1668 while (!EMPTY_STACK(dsp)) { 1669 off = di_copynode(dsp, st); 1670 } 1671 1672 /* 1673 * Free the stack structure 1674 */ 1675 kmem_free(dsp, sizeof (struct di_stack)); 1676 1677 return (off); 1678 } 1679 1680 /* 1681 * This is the core function, which copies all data associated with a single 1682 * node into the snapshot. The amount of information is determined by the 1683 * ioctl command. 1684 */ 1685 static di_off_t 1686 di_copynode(struct di_stack *dsp, struct di_state *st) 1687 { 1688 di_off_t off; 1689 struct di_node *me; 1690 struct dev_info *node; 1691 1692 dcmn_err2((CE_CONT, "di_copynode: depth = %x\n", dsp->depth)); 1693 1694 node = TOP_NODE(dsp); 1695 1696 ASSERT(node != NULL); 1697 1698 /* 1699 * check memory usage, and fix offsets accordingly. 1700 */ 1701 off = di_checkmem(st, *(TOP_OFFSET(dsp)), sizeof (struct di_node)); 1702 *(TOP_OFFSET(dsp)) = off; 1703 me = DI_NODE(di_mem_addr(st, off)); 1704 1705 dcmn_err((CE_CONT, "copy node %s, instance #%d, at offset 0x%x\n", 1706 node->devi_node_name, node->devi_instance, off)); 1707 1708 /* 1709 * Node parameters: 1710 * self -- offset of current node within snapshot 1711 * nodeid -- pointer to PROM node (tri-valued) 1712 * state -- hot plugging device state 1713 * node_state -- devinfo node state (CF1, CF2, etc.) 1714 */ 1715 me->self = off; 1716 me->instance = node->devi_instance; 1717 me->nodeid = node->devi_nodeid; 1718 me->node_class = node->devi_node_class; 1719 me->attributes = node->devi_node_attributes; 1720 me->state = node->devi_state; 1721 me->flags = node->devi_flags; 1722 me->node_state = node->devi_node_state; 1723 me->next_vhci = 0; /* Filled up by build_vhci_list. */ 1724 me->top_phci = 0; /* Filled up by build_phci_list. */ 1725 me->next_phci = 0; /* Filled up by build_phci_list. */ 1726 me->multipath_component = MULTIPATH_COMPONENT_NONE; /* set default. */ 1727 me->user_private_data = NULL; 1728 1729 /* 1730 * Get parent's offset in snapshot from the stack 1731 * and store it in the current node 1732 */ 1733 if (dsp->depth > 1) { 1734 me->parent = *(PARENT_OFFSET(dsp)); 1735 } 1736 1737 /* 1738 * Save the offset of this di_node in a hash table. 1739 * This is used later to resolve references to this 1740 * dip from other parts of the tree (per-driver list, 1741 * multipathing linkages, layered usage linkages). 1742 * The key used for the hash table is derived from 1743 * information in the dip. 1744 */ 1745 di_register_dip(st, (dev_info_t *)node, me->self); 1746 1747 /* 1748 * increment offset 1749 */ 1750 off += sizeof (struct di_node); 1751 1752 #ifdef DEVID_COMPATIBILITY 1753 /* check for devid as property marker */ 1754 if (node->devi_devid) { 1755 ddi_devid_t devid; 1756 char *devidstr; 1757 int devid_size; 1758 1759 /* 1760 * The devid is now represented as a property. 1761 * For micro release compatibility with di_devid interface 1762 * in libdevinfo we must return it as a binary structure in' 1763 * the snapshot. When di_devid is removed from libdevinfo 1764 * in a future release (and devi_devid is deleted) then 1765 * code related to DEVID_COMPATIBILITY can be removed. 1766 */ 1767 ASSERT(node->devi_devid == DEVID_COMPATIBILITY); 1768 /* XXX should be DDI_DEV_T_NONE! */ 1769 if (ddi_prop_lookup_string(DDI_DEV_T_ANY, (dev_info_t *)node, 1770 DDI_PROP_DONTPASS, DEVID_PROP_NAME, &devidstr) == 1771 DDI_PROP_SUCCESS) { 1772 if (ddi_devid_str_decode(devidstr, &devid, NULL) == 1773 DDI_SUCCESS) { 1774 devid_size = ddi_devid_sizeof(devid); 1775 off = di_checkmem(st, off, devid_size); 1776 me->devid = off; 1777 bcopy(devid, 1778 di_mem_addr(st, off), devid_size); 1779 off += devid_size; 1780 ddi_devid_free(devid); 1781 } 1782 ddi_prop_free(devidstr); 1783 } 1784 } 1785 #endif /* DEVID_COMPATIBILITY */ 1786 1787 if (node->devi_node_name) { 1788 off = di_checkmem(st, off, strlen(node->devi_node_name) + 1); 1789 me->node_name = off; 1790 (void) strcpy(di_mem_addr(st, off), node->devi_node_name); 1791 off += strlen(node->devi_node_name) + 1; 1792 } 1793 1794 if (node->devi_compat_names && (node->devi_compat_length > 1)) { 1795 off = di_checkmem(st, off, node->devi_compat_length); 1796 me->compat_names = off; 1797 me->compat_length = node->devi_compat_length; 1798 bcopy(node->devi_compat_names, di_mem_addr(st, off), 1799 node->devi_compat_length); 1800 off += node->devi_compat_length; 1801 } 1802 1803 if (node->devi_addr) { 1804 off = di_checkmem(st, off, strlen(node->devi_addr) + 1); 1805 me->address = off; 1806 (void) strcpy(di_mem_addr(st, off), node->devi_addr); 1807 off += strlen(node->devi_addr) + 1; 1808 } 1809 1810 if (node->devi_binding_name) { 1811 off = di_checkmem(st, off, strlen(node->devi_binding_name) + 1); 1812 me->bind_name = off; 1813 (void) strcpy(di_mem_addr(st, off), node->devi_binding_name); 1814 off += strlen(node->devi_binding_name) + 1; 1815 } 1816 1817 me->drv_major = node->devi_major; 1818 1819 /* 1820 * If the dip is BOUND, set the next pointer of the 1821 * per-instance list to -1, indicating that it is yet to be resolved. 1822 * This will be resolved later in snap_driver_list(). 1823 */ 1824 if (me->drv_major != -1) { 1825 me->next = -1; 1826 } else { 1827 me->next = 0; 1828 } 1829 1830 /* 1831 * An optimization to skip mutex_enter when not needed. 1832 */ 1833 if (!((DINFOMINOR | DINFOPROP | DINFOPATH) & st->command)) { 1834 goto priv_data; 1835 } 1836 1837 /* 1838 * Grab current per dev_info node lock to 1839 * get minor data and properties. 1840 */ 1841 mutex_enter(&(node->devi_lock)); 1842 1843 if (!(DINFOMINOR & st->command)) { 1844 goto path; 1845 } 1846 1847 if (node->devi_minor) { /* minor data */ 1848 me->minor_data = DI_ALIGN(off); 1849 off = di_getmdata(node->devi_minor, &me->minor_data, 1850 me->self, st); 1851 } 1852 1853 path: 1854 if (!(DINFOPATH & st->command)) { 1855 goto property; 1856 } 1857 1858 if (MDI_VHCI(node)) { 1859 me->multipath_component = MULTIPATH_COMPONENT_VHCI; 1860 } 1861 1862 if (MDI_CLIENT(node)) { 1863 me->multipath_component = MULTIPATH_COMPONENT_CLIENT; 1864 me->multipath_client = DI_ALIGN(off); 1865 off = di_getpath_data((dev_info_t *)node, &me->multipath_client, 1866 me->self, st, 1); 1867 dcmn_err((CE_WARN, "me->multipath_client = %x for node %p " 1868 "component type = %d. off=%d", 1869 me->multipath_client, 1870 (void *)node, node->devi_mdi_component, off)); 1871 } 1872 1873 if (MDI_PHCI(node)) { 1874 me->multipath_component = MULTIPATH_COMPONENT_PHCI; 1875 me->multipath_phci = DI_ALIGN(off); 1876 off = di_getpath_data((dev_info_t *)node, &me->multipath_phci, 1877 me->self, st, 0); 1878 dcmn_err((CE_WARN, "me->multipath_phci = %x for node %p " 1879 "component type = %d. off=%d", 1880 me->multipath_phci, 1881 (void *)node, node->devi_mdi_component, off)); 1882 } 1883 1884 property: 1885 if (!(DINFOPROP & st->command)) { 1886 goto unlock; 1887 } 1888 1889 if (node->devi_drv_prop_ptr) { /* driver property list */ 1890 me->drv_prop = DI_ALIGN(off); 1891 off = di_getprop(node->devi_drv_prop_ptr, &me->drv_prop, st, 1892 node, DI_PROP_DRV_LIST); 1893 } 1894 1895 if (node->devi_sys_prop_ptr) { /* system property list */ 1896 me->sys_prop = DI_ALIGN(off); 1897 off = di_getprop(node->devi_sys_prop_ptr, &me->sys_prop, st, 1898 node, DI_PROP_SYS_LIST); 1899 } 1900 1901 if (node->devi_hw_prop_ptr) { /* hardware property list */ 1902 me->hw_prop = DI_ALIGN(off); 1903 off = di_getprop(node->devi_hw_prop_ptr, &me->hw_prop, st, 1904 node, DI_PROP_HW_LIST); 1905 } 1906 1907 if (node->devi_global_prop_list == NULL) { 1908 me->glob_prop = (di_off_t)-1; /* not global property */ 1909 } else { 1910 /* 1911 * Make copy of global property list if this devinfo refers 1912 * global properties different from what's on the devnames 1913 * array. It can happen if there has been a forced 1914 * driver.conf update. See mod_drv(1M). 1915 */ 1916 ASSERT(me->drv_major != -1); 1917 if (node->devi_global_prop_list != 1918 devnamesp[me->drv_major].dn_global_prop_ptr) { 1919 me->glob_prop = DI_ALIGN(off); 1920 off = di_getprop(node->devi_global_prop_list->prop_list, 1921 &me->glob_prop, st, node, DI_PROP_GLB_LIST); 1922 } 1923 } 1924 1925 unlock: 1926 /* 1927 * release current per dev_info node lock 1928 */ 1929 mutex_exit(&(node->devi_lock)); 1930 1931 priv_data: 1932 if (!(DINFOPRIVDATA & st->command)) { 1933 goto pm_info; 1934 } 1935 1936 if (ddi_get_parent_data((dev_info_t *)node) != NULL) { 1937 me->parent_data = DI_ALIGN(off); 1938 off = di_getppdata(node, &me->parent_data, st); 1939 } 1940 1941 if (ddi_get_driver_private((dev_info_t *)node) != NULL) { 1942 me->driver_data = DI_ALIGN(off); 1943 off = di_getdpdata(node, &me->driver_data, st); 1944 } 1945 1946 pm_info: /* NOT implemented */ 1947 1948 subtree: 1949 if (!(DINFOSUBTREE & st->command)) { 1950 POP_STACK(dsp); 1951 return (DI_ALIGN(off)); 1952 } 1953 1954 child: 1955 /* 1956 * If there is a child--push child onto stack. 1957 * Hold the parent busy while doing so. 1958 */ 1959 if (node->devi_child) { 1960 me->child = DI_ALIGN(off); 1961 PUSH_STACK(dsp, node->devi_child, &me->child); 1962 return (me->child); 1963 } 1964 1965 sibling: 1966 /* 1967 * no child node, unroll the stack till a sibling of 1968 * a parent node is found or root node is reached 1969 */ 1970 POP_STACK(dsp); 1971 while (!EMPTY_STACK(dsp) && (node->devi_sibling == NULL)) { 1972 node = TOP_NODE(dsp); 1973 me = DI_NODE(di_mem_addr(st, *(TOP_OFFSET(dsp)))); 1974 POP_STACK(dsp); 1975 } 1976 1977 if (!EMPTY_STACK(dsp)) { 1978 /* 1979 * a sibling is found, replace top of stack by its sibling 1980 */ 1981 me->sibling = DI_ALIGN(off); 1982 PUSH_STACK(dsp, node->devi_sibling, &me->sibling); 1983 return (me->sibling); 1984 } 1985 1986 /* 1987 * DONE with all nodes 1988 */ 1989 return (DI_ALIGN(off)); 1990 } 1991 1992 static i_lnode_t * 1993 i_lnode_alloc(int modid) 1994 { 1995 i_lnode_t *i_lnode; 1996 1997 i_lnode = kmem_zalloc(sizeof (i_lnode_t), KM_SLEEP); 1998 1999 ASSERT(modid != -1); 2000 i_lnode->modid = modid; 2001 2002 return (i_lnode); 2003 } 2004 2005 static void 2006 i_lnode_free(i_lnode_t *i_lnode) 2007 { 2008 kmem_free(i_lnode, sizeof (i_lnode_t)); 2009 } 2010 2011 static void 2012 i_lnode_check_free(i_lnode_t *i_lnode) 2013 { 2014 /* This lnode and its dip must have been snapshotted */ 2015 ASSERT(i_lnode->self > 0); 2016 ASSERT(i_lnode->di_node->self > 0); 2017 2018 /* at least 1 link (in or out) must exist for this lnode */ 2019 ASSERT(i_lnode->link_in || i_lnode->link_out); 2020 2021 i_lnode_free(i_lnode); 2022 } 2023 2024 static i_link_t * 2025 i_link_alloc(int spec_type) 2026 { 2027 i_link_t *i_link; 2028 2029 i_link = kmem_zalloc(sizeof (i_link_t), KM_SLEEP); 2030 i_link->spec_type = spec_type; 2031 2032 return (i_link); 2033 } 2034 2035 static void 2036 i_link_check_free(i_link_t *i_link) 2037 { 2038 /* This link must have been snapshotted */ 2039 ASSERT(i_link->self > 0); 2040 2041 /* Both endpoint lnodes must exist for this link */ 2042 ASSERT(i_link->src_lnode); 2043 ASSERT(i_link->tgt_lnode); 2044 2045 kmem_free(i_link, sizeof (i_link_t)); 2046 } 2047 2048 /*ARGSUSED*/ 2049 static uint_t 2050 i_lnode_hashfunc(void *arg, mod_hash_key_t key) 2051 { 2052 i_lnode_t *i_lnode = (i_lnode_t *)key; 2053 struct di_node *ptr; 2054 dev_t dev; 2055 2056 dev = i_lnode->devt; 2057 if (dev != DDI_DEV_T_NONE) 2058 return (i_lnode->modid + getminor(dev) + getmajor(dev)); 2059 2060 ptr = i_lnode->di_node; 2061 ASSERT(ptr->self > 0); 2062 if (ptr) { 2063 uintptr_t k = (uintptr_t)ptr; 2064 k >>= (int)highbit(sizeof (struct di_node)); 2065 return ((uint_t)k); 2066 } 2067 2068 return (i_lnode->modid); 2069 } 2070 2071 static int 2072 i_lnode_cmp(void *arg1, void *arg2) 2073 { 2074 i_lnode_t *i_lnode1 = (i_lnode_t *)arg1; 2075 i_lnode_t *i_lnode2 = (i_lnode_t *)arg2; 2076 2077 if (i_lnode1->modid != i_lnode2->modid) { 2078 return ((i_lnode1->modid < i_lnode2->modid) ? -1 : 1); 2079 } 2080 2081 if (i_lnode1->di_node != i_lnode2->di_node) 2082 return ((i_lnode1->di_node < i_lnode2->di_node) ? -1 : 1); 2083 2084 if (i_lnode1->devt != i_lnode2->devt) 2085 return ((i_lnode1->devt < i_lnode2->devt) ? -1 : 1); 2086 2087 return (0); 2088 } 2089 2090 /* 2091 * An lnode represents a {dip, dev_t} tuple. A link represents a 2092 * {src_lnode, tgt_lnode, spec_type} tuple. 2093 * The following callback assumes that LDI framework ref-counts the 2094 * src_dip and tgt_dip while invoking this callback. 2095 */ 2096 static int 2097 di_ldi_callback(const ldi_usage_t *ldi_usage, void *arg) 2098 { 2099 struct di_state *st = (struct di_state *)arg; 2100 i_lnode_t *src_lnode, *tgt_lnode, *i_lnode; 2101 i_link_t **i_link_next, *i_link; 2102 di_off_t soff, toff; 2103 mod_hash_val_t nodep = NULL; 2104 int res; 2105 2106 /* 2107 * if the source or target of this device usage information doesn't 2108 * corrospond to a device node then we don't report it via 2109 * libdevinfo so return. 2110 */ 2111 if ((ldi_usage->src_dip == NULL) || (ldi_usage->tgt_dip == NULL)) 2112 return (LDI_USAGE_CONTINUE); 2113 2114 ASSERT(e_ddi_devi_holdcnt(ldi_usage->src_dip)); 2115 ASSERT(e_ddi_devi_holdcnt(ldi_usage->tgt_dip)); 2116 2117 /* 2118 * Skip the ldi_usage if either src or tgt dip is not in the 2119 * snapshot. This saves us from pruning bad lnodes/links later. 2120 */ 2121 if (di_dip_find(st, ldi_usage->src_dip, &soff) != 0) 2122 return (LDI_USAGE_CONTINUE); 2123 if (di_dip_find(st, ldi_usage->tgt_dip, &toff) != 0) 2124 return (LDI_USAGE_CONTINUE); 2125 2126 ASSERT(soff > 0); 2127 ASSERT(toff > 0); 2128 2129 /* 2130 * allocate an i_lnode and add it to the lnode hash 2131 * if it is not already present. For this particular 2132 * link the lnode is a source, but it may 2133 * participate as tgt or src in any number of layered 2134 * operations - so it may already be in the hash. 2135 */ 2136 i_lnode = i_lnode_alloc(ldi_usage->src_modid); 2137 i_lnode->di_node = (struct di_node *)(intptr_t)di_mem_addr(st, soff); 2138 i_lnode->devt = ldi_usage->src_devt; 2139 2140 res = mod_hash_find(st->lnode_hash, i_lnode, &nodep); 2141 if (res == MH_ERR_NOTFOUND) { 2142 /* 2143 * new i_lnode 2144 * add it to the hash and increment the lnode count 2145 */ 2146 res = mod_hash_insert(st->lnode_hash, i_lnode, i_lnode); 2147 ASSERT(res == 0); 2148 st->lnode_count++; 2149 src_lnode = i_lnode; 2150 } else { 2151 /* this i_lnode already exists in the lnode_hash */ 2152 i_lnode_free(i_lnode); 2153 src_lnode = (i_lnode_t *)nodep; 2154 } 2155 2156 /* 2157 * allocate a tgt i_lnode and add it to the lnode hash 2158 */ 2159 i_lnode = i_lnode_alloc(ldi_usage->tgt_modid); 2160 i_lnode->di_node = (struct di_node *)(intptr_t)di_mem_addr(st, toff); 2161 i_lnode->devt = ldi_usage->tgt_devt; 2162 2163 res = mod_hash_find(st->lnode_hash, i_lnode, &nodep); 2164 if (res == MH_ERR_NOTFOUND) { 2165 /* 2166 * new i_lnode 2167 * add it to the hash and increment the lnode count 2168 */ 2169 res = mod_hash_insert(st->lnode_hash, i_lnode, i_lnode); 2170 ASSERT(res == 0); 2171 st->lnode_count++; 2172 tgt_lnode = i_lnode; 2173 } else { 2174 /* this i_lnode already exists in the lnode_hash */ 2175 i_lnode_free(i_lnode); 2176 tgt_lnode = (i_lnode_t *)nodep; 2177 } 2178 2179 /* 2180 * allocate a i_link 2181 */ 2182 i_link = i_link_alloc(ldi_usage->tgt_spec_type); 2183 i_link->src_lnode = src_lnode; 2184 i_link->tgt_lnode = tgt_lnode; 2185 2186 /* 2187 * add this link onto the src i_lnodes outbound i_link list 2188 */ 2189 i_link_next = &(src_lnode->link_out); 2190 while (*i_link_next != NULL) { 2191 if ((i_lnode_cmp(tgt_lnode, (*i_link_next)->tgt_lnode) == 0) && 2192 (i_link->spec_type == (*i_link_next)->spec_type)) { 2193 /* this link already exists */ 2194 kmem_free(i_link, sizeof (i_link_t)); 2195 return (LDI_USAGE_CONTINUE); 2196 } 2197 i_link_next = &((*i_link_next)->src_link_next); 2198 } 2199 *i_link_next = i_link; 2200 2201 /* 2202 * add this link onto the tgt i_lnodes inbound i_link list 2203 */ 2204 i_link_next = &(tgt_lnode->link_in); 2205 while (*i_link_next != NULL) { 2206 ASSERT(i_lnode_cmp(src_lnode, (*i_link_next)->src_lnode) != 0); 2207 i_link_next = &((*i_link_next)->tgt_link_next); 2208 } 2209 *i_link_next = i_link; 2210 2211 /* 2212 * add this i_link to the link hash 2213 */ 2214 res = mod_hash_insert(st->link_hash, i_link, i_link); 2215 ASSERT(res == 0); 2216 st->link_count++; 2217 2218 return (LDI_USAGE_CONTINUE); 2219 } 2220 2221 struct i_layer_data { 2222 struct di_state *st; 2223 int lnode_count; 2224 int link_count; 2225 di_off_t lnode_off; 2226 di_off_t link_off; 2227 }; 2228 2229 /*ARGSUSED*/ 2230 static uint_t 2231 i_link_walker(mod_hash_key_t key, mod_hash_val_t *val, void *arg) 2232 { 2233 i_link_t *i_link = (i_link_t *)key; 2234 struct i_layer_data *data = arg; 2235 struct di_link *me; 2236 struct di_lnode *melnode; 2237 struct di_node *medinode; 2238 2239 ASSERT(i_link->self == 0); 2240 2241 i_link->self = data->link_off + 2242 (data->link_count * sizeof (struct di_link)); 2243 data->link_count++; 2244 2245 ASSERT(data->link_off > 0 && data->link_count > 0); 2246 ASSERT(data->lnode_count == data->st->lnode_count); /* lnodes done */ 2247 ASSERT(data->link_count <= data->st->link_count); 2248 2249 /* fill in fields for the di_link snapshot */ 2250 me = (struct di_link *)(intptr_t)di_mem_addr(data->st, i_link->self); 2251 me->self = i_link->self; 2252 me->spec_type = i_link->spec_type; 2253 2254 /* 2255 * The src_lnode and tgt_lnode i_lnode_t for this i_link_t 2256 * are created during the LDI table walk. Since we are 2257 * walking the link hash, the lnode hash has already been 2258 * walked and the lnodes have been snapshotted. Save lnode 2259 * offsets. 2260 */ 2261 me->src_lnode = i_link->src_lnode->self; 2262 me->tgt_lnode = i_link->tgt_lnode->self; 2263 2264 /* 2265 * Save this link's offset in the src_lnode snapshot's link_out 2266 * field 2267 */ 2268 melnode = (struct di_lnode *) 2269 (intptr_t)di_mem_addr(data->st, me->src_lnode); 2270 me->src_link_next = melnode->link_out; 2271 melnode->link_out = me->self; 2272 2273 /* 2274 * Put this link on the tgt_lnode's link_in field 2275 */ 2276 melnode = (struct di_lnode *) 2277 (intptr_t)di_mem_addr(data->st, me->tgt_lnode); 2278 me->tgt_link_next = melnode->link_in; 2279 melnode->link_in = me->self; 2280 2281 /* 2282 * An i_lnode_t is only created if the corresponding dip exists 2283 * in the snapshot. A pointer to the di_node is saved in the 2284 * i_lnode_t when it is allocated. For this link, get the di_node 2285 * for the source lnode. Then put the link on the di_node's list 2286 * of src links 2287 */ 2288 medinode = i_link->src_lnode->di_node; 2289 me->src_node_next = medinode->src_links; 2290 medinode->src_links = me->self; 2291 2292 /* 2293 * Put this link on the tgt_links list of the target 2294 * dip. 2295 */ 2296 medinode = i_link->tgt_lnode->di_node; 2297 me->tgt_node_next = medinode->tgt_links; 2298 medinode->tgt_links = me->self; 2299 2300 return (MH_WALK_CONTINUE); 2301 } 2302 2303 /*ARGSUSED*/ 2304 static uint_t 2305 i_lnode_walker(mod_hash_key_t key, mod_hash_val_t *val, void *arg) 2306 { 2307 i_lnode_t *i_lnode = (i_lnode_t *)key; 2308 struct i_layer_data *data = arg; 2309 struct di_lnode *me; 2310 struct di_node *medinode; 2311 2312 ASSERT(i_lnode->self == 0); 2313 2314 i_lnode->self = data->lnode_off + 2315 (data->lnode_count * sizeof (struct di_lnode)); 2316 data->lnode_count++; 2317 2318 ASSERT(data->lnode_off > 0 && data->lnode_count > 0); 2319 ASSERT(data->link_count == 0); /* links not done yet */ 2320 ASSERT(data->lnode_count <= data->st->lnode_count); 2321 2322 /* fill in fields for the di_lnode snapshot */ 2323 me = (struct di_lnode *)(intptr_t)di_mem_addr(data->st, i_lnode->self); 2324 me->self = i_lnode->self; 2325 2326 if (i_lnode->devt == DDI_DEV_T_NONE) { 2327 me->dev_major = (major_t)-1; 2328 me->dev_minor = (minor_t)-1; 2329 } else { 2330 me->dev_major = getmajor(i_lnode->devt); 2331 me->dev_minor = getminor(i_lnode->devt); 2332 } 2333 2334 /* 2335 * The dip corresponding to this lnode must exist in 2336 * the snapshot or we wouldn't have created the i_lnode_t 2337 * during LDI walk. Save the offset of the dip. 2338 */ 2339 ASSERT(i_lnode->di_node && i_lnode->di_node->self > 0); 2340 me->node = i_lnode->di_node->self; 2341 2342 /* 2343 * There must be at least one link in or out of this lnode 2344 * or we wouldn't have created it. These fields will be set 2345 * during the link hash walk. 2346 */ 2347 ASSERT((i_lnode->link_in != NULL) || (i_lnode->link_out != NULL)); 2348 2349 /* 2350 * set the offset of the devinfo node associated with this 2351 * lnode. Also update the node_next next pointer. this pointer 2352 * is set if there are multiple lnodes associated with the same 2353 * devinfo node. (could occure when multiple minor nodes 2354 * are open for one device, etc.) 2355 */ 2356 medinode = i_lnode->di_node; 2357 me->node_next = medinode->lnodes; 2358 medinode->lnodes = me->self; 2359 2360 return (MH_WALK_CONTINUE); 2361 } 2362 2363 static di_off_t 2364 di_getlink_data(di_off_t off, struct di_state *st) 2365 { 2366 struct i_layer_data data = {0}; 2367 size_t size; 2368 2369 dcmn_err2((CE_CONT, "di_copylyr: off = %x\n", off)); 2370 2371 st->lnode_hash = mod_hash_create_extended("di_lnode_hash", 32, 2372 mod_hash_null_keydtor, (void (*)(mod_hash_val_t))i_lnode_check_free, 2373 i_lnode_hashfunc, NULL, i_lnode_cmp, KM_SLEEP); 2374 2375 st->link_hash = mod_hash_create_ptrhash("di_link_hash", 32, 2376 (void (*)(mod_hash_val_t))i_link_check_free, sizeof (i_link_t)); 2377 2378 /* get driver layering information */ 2379 (void) ldi_usage_walker(st, di_ldi_callback); 2380 2381 /* check if there is any link data to include in the snapshot */ 2382 if (st->lnode_count == 0) { 2383 ASSERT(st->link_count == 0); 2384 goto out; 2385 } 2386 2387 ASSERT(st->link_count != 0); 2388 2389 /* get a pointer to snapshot memory for all the di_lnodes */ 2390 size = sizeof (struct di_lnode) * st->lnode_count; 2391 data.lnode_off = off = di_checkmem(st, off, size); 2392 off += DI_ALIGN(size); 2393 2394 /* get a pointer to snapshot memory for all the di_links */ 2395 size = sizeof (struct di_link) * st->link_count; 2396 data.link_off = off = di_checkmem(st, off, size); 2397 off += DI_ALIGN(size); 2398 2399 data.lnode_count = data.link_count = 0; 2400 data.st = st; 2401 2402 /* 2403 * We have lnodes and links that will go into the 2404 * snapshot, so let's walk the respective hashes 2405 * and snapshot them. The various linkages are 2406 * also set up during the walk. 2407 */ 2408 mod_hash_walk(st->lnode_hash, i_lnode_walker, (void *)&data); 2409 ASSERT(data.lnode_count == st->lnode_count); 2410 2411 mod_hash_walk(st->link_hash, i_link_walker, (void *)&data); 2412 ASSERT(data.link_count == st->link_count); 2413 2414 out: 2415 /* free up the i_lnodes and i_links used to create the snapshot */ 2416 mod_hash_destroy_hash(st->lnode_hash); 2417 mod_hash_destroy_hash(st->link_hash); 2418 st->lnode_count = 0; 2419 st->link_count = 0; 2420 2421 return (off); 2422 } 2423 2424 2425 /* 2426 * Copy all minor data nodes attached to a devinfo node into the snapshot. 2427 * It is called from di_copynode with devi_lock held. 2428 */ 2429 static di_off_t 2430 di_getmdata(struct ddi_minor_data *mnode, di_off_t *off_p, di_off_t node, 2431 struct di_state *st) 2432 { 2433 di_off_t off; 2434 struct di_minor *me; 2435 2436 dcmn_err2((CE_CONT, "di_getmdata:\n")); 2437 2438 /* 2439 * check memory first 2440 */ 2441 off = di_checkmem(st, *off_p, sizeof (struct di_minor)); 2442 *off_p = off; 2443 2444 do { 2445 me = (struct di_minor *)(intptr_t)di_mem_addr(st, off); 2446 me->self = off; 2447 me->type = mnode->type; 2448 me->node = node; 2449 me->user_private_data = NULL; 2450 2451 off += DI_ALIGN(sizeof (struct di_minor)); 2452 2453 /* 2454 * Split dev_t to major/minor, so it works for 2455 * both ILP32 and LP64 model 2456 */ 2457 me->dev_major = getmajor(mnode->ddm_dev); 2458 me->dev_minor = getminor(mnode->ddm_dev); 2459 me->spec_type = mnode->ddm_spec_type; 2460 2461 if (mnode->ddm_name) { 2462 off = di_checkmem(st, off, 2463 strlen(mnode->ddm_name) + 1); 2464 me->name = off; 2465 (void) strcpy(di_mem_addr(st, off), mnode->ddm_name); 2466 off += DI_ALIGN(strlen(mnode->ddm_name) + 1); 2467 } 2468 2469 if (mnode->ddm_node_type) { 2470 off = di_checkmem(st, off, 2471 strlen(mnode->ddm_node_type) + 1); 2472 me->node_type = off; 2473 (void) strcpy(di_mem_addr(st, off), 2474 mnode->ddm_node_type); 2475 off += DI_ALIGN(strlen(mnode->ddm_node_type) + 1); 2476 } 2477 2478 off = di_checkmem(st, off, sizeof (struct di_minor)); 2479 me->next = off; 2480 mnode = mnode->next; 2481 } while (mnode); 2482 2483 me->next = 0; 2484 2485 return (off); 2486 } 2487 2488 /* 2489 * di_register_dip(), di_find_dip(): The dip must be protected 2490 * from deallocation when using these routines - this can either 2491 * be a reference count, a busy hold or a per-driver lock. 2492 */ 2493 2494 static void 2495 di_register_dip(struct di_state *st, dev_info_t *dip, di_off_t off) 2496 { 2497 struct dev_info *node = DEVI(dip); 2498 struct di_key *key = kmem_zalloc(sizeof (*key), KM_SLEEP); 2499 struct di_dkey *dk; 2500 2501 ASSERT(dip); 2502 ASSERT(off > 0); 2503 2504 key->k_type = DI_DKEY; 2505 dk = &(key->k_u.dkey); 2506 2507 dk->dk_dip = dip; 2508 dk->dk_major = node->devi_major; 2509 dk->dk_inst = node->devi_instance; 2510 dk->dk_nodeid = node->devi_nodeid; 2511 2512 if (mod_hash_insert(st->reg_dip_hash, (mod_hash_key_t)key, 2513 (mod_hash_val_t)(uintptr_t)off) != 0) { 2514 panic( 2515 "duplicate devinfo (%p) registered during device " 2516 "tree walk", (void *)dip); 2517 } 2518 } 2519 2520 2521 static int 2522 di_dip_find(struct di_state *st, dev_info_t *dip, di_off_t *off_p) 2523 { 2524 /* 2525 * uintptr_t must be used because it matches the size of void *; 2526 * mod_hash expects clients to place results into pointer-size 2527 * containers; since di_off_t is always a 32-bit offset, alignment 2528 * would otherwise be broken on 64-bit kernels. 2529 */ 2530 uintptr_t offset; 2531 struct di_key key = {0}; 2532 struct di_dkey *dk; 2533 2534 ASSERT(st->reg_dip_hash); 2535 ASSERT(dip); 2536 ASSERT(off_p); 2537 2538 2539 key.k_type = DI_DKEY; 2540 dk = &(key.k_u.dkey); 2541 2542 dk->dk_dip = dip; 2543 dk->dk_major = DEVI(dip)->devi_major; 2544 dk->dk_inst = DEVI(dip)->devi_instance; 2545 dk->dk_nodeid = DEVI(dip)->devi_nodeid; 2546 2547 if (mod_hash_find(st->reg_dip_hash, (mod_hash_key_t)&key, 2548 (mod_hash_val_t *)&offset) == 0) { 2549 *off_p = (di_off_t)offset; 2550 return (0); 2551 } else { 2552 return (-1); 2553 } 2554 } 2555 2556 /* 2557 * di_register_pip(), di_find_pip(): The pip must be protected from deallocation 2558 * when using these routines. The caller must do this by protecting the 2559 * client(or phci)<->pip linkage while traversing the list and then holding the 2560 * pip when it is found in the list. 2561 */ 2562 2563 static void 2564 di_register_pip(struct di_state *st, mdi_pathinfo_t *pip, di_off_t off) 2565 { 2566 struct di_key *key = kmem_zalloc(sizeof (*key), KM_SLEEP); 2567 char *path_addr; 2568 struct di_pkey *pk; 2569 2570 ASSERT(pip); 2571 ASSERT(off > 0); 2572 2573 key->k_type = DI_PKEY; 2574 pk = &(key->k_u.pkey); 2575 2576 pk->pk_pip = pip; 2577 path_addr = mdi_pi_get_addr(pip); 2578 if (path_addr) 2579 pk->pk_path_addr = i_ddi_strdup(path_addr, KM_SLEEP); 2580 pk->pk_client = mdi_pi_get_client(pip); 2581 pk->pk_phci = mdi_pi_get_phci(pip); 2582 2583 if (mod_hash_insert(st->reg_pip_hash, (mod_hash_key_t)key, 2584 (mod_hash_val_t)(uintptr_t)off) != 0) { 2585 panic( 2586 "duplicate pathinfo (%p) registered during device " 2587 "tree walk", (void *)pip); 2588 } 2589 } 2590 2591 /* 2592 * As with di_register_pip, the caller must hold or lock the pip 2593 */ 2594 static int 2595 di_pip_find(struct di_state *st, mdi_pathinfo_t *pip, di_off_t *off_p) 2596 { 2597 /* 2598 * uintptr_t must be used because it matches the size of void *; 2599 * mod_hash expects clients to place results into pointer-size 2600 * containers; since di_off_t is always a 32-bit offset, alignment 2601 * would otherwise be broken on 64-bit kernels. 2602 */ 2603 uintptr_t offset; 2604 struct di_key key = {0}; 2605 struct di_pkey *pk; 2606 2607 ASSERT(st->reg_pip_hash); 2608 ASSERT(off_p); 2609 2610 if (pip == NULL) { 2611 *off_p = 0; 2612 return (0); 2613 } 2614 2615 key.k_type = DI_PKEY; 2616 pk = &(key.k_u.pkey); 2617 2618 pk->pk_pip = pip; 2619 pk->pk_path_addr = mdi_pi_get_addr(pip); 2620 pk->pk_client = mdi_pi_get_client(pip); 2621 pk->pk_phci = mdi_pi_get_phci(pip); 2622 2623 if (mod_hash_find(st->reg_pip_hash, (mod_hash_key_t)&key, 2624 (mod_hash_val_t *)&offset) == 0) { 2625 *off_p = (di_off_t)offset; 2626 return (0); 2627 } else { 2628 return (-1); 2629 } 2630 } 2631 2632 static di_path_state_t 2633 path_state_convert(mdi_pathinfo_state_t st) 2634 { 2635 switch (st) { 2636 case MDI_PATHINFO_STATE_ONLINE: 2637 return (DI_PATH_STATE_ONLINE); 2638 case MDI_PATHINFO_STATE_STANDBY: 2639 return (DI_PATH_STATE_STANDBY); 2640 case MDI_PATHINFO_STATE_OFFLINE: 2641 return (DI_PATH_STATE_OFFLINE); 2642 case MDI_PATHINFO_STATE_FAULT: 2643 return (DI_PATH_STATE_FAULT); 2644 default: 2645 return (DI_PATH_STATE_UNKNOWN); 2646 } 2647 } 2648 2649 2650 static di_off_t 2651 di_path_getprop(mdi_pathinfo_t *pip, di_off_t off, di_off_t *off_p, 2652 struct di_state *st) 2653 { 2654 nvpair_t *prop = NULL; 2655 struct di_path_prop *me; 2656 2657 if (mdi_pi_get_next_prop(pip, NULL) == NULL) { 2658 *off_p = 0; 2659 return (off); 2660 } 2661 2662 off = di_checkmem(st, off, sizeof (struct di_path_prop)); 2663 *off_p = off; 2664 2665 while (prop = mdi_pi_get_next_prop(pip, prop)) { 2666 int delta = 0; 2667 2668 me = (struct di_path_prop *)(intptr_t)di_mem_addr(st, off); 2669 me->self = off; 2670 off += sizeof (struct di_path_prop); 2671 2672 /* 2673 * property name 2674 */ 2675 off = di_checkmem(st, off, strlen(nvpair_name(prop)) + 1); 2676 me->prop_name = off; 2677 (void) strcpy(di_mem_addr(st, off), nvpair_name(prop)); 2678 off += strlen(nvpair_name(prop)) + 1; 2679 2680 switch (nvpair_type(prop)) { 2681 case DATA_TYPE_BYTE: 2682 case DATA_TYPE_INT16: 2683 case DATA_TYPE_UINT16: 2684 case DATA_TYPE_INT32: 2685 case DATA_TYPE_UINT32: 2686 delta = sizeof (int32_t); 2687 me->prop_type = DDI_PROP_TYPE_INT; 2688 off = di_checkmem(st, off, delta); 2689 (void) nvpair_value_int32(prop, 2690 (int32_t *)(intptr_t)di_mem_addr(st, off)); 2691 break; 2692 2693 case DATA_TYPE_INT64: 2694 case DATA_TYPE_UINT64: 2695 delta = sizeof (int64_t); 2696 me->prop_type = DDI_PROP_TYPE_INT64; 2697 off = di_checkmem(st, off, delta); 2698 (void) nvpair_value_int64(prop, 2699 (int64_t *)(intptr_t)di_mem_addr(st, off)); 2700 break; 2701 2702 case DATA_TYPE_STRING: 2703 { 2704 char *str; 2705 (void) nvpair_value_string(prop, &str); 2706 delta = strlen(str) + 1; 2707 me->prop_type = DDI_PROP_TYPE_STRING; 2708 off = di_checkmem(st, off, delta); 2709 (void) strcpy(di_mem_addr(st, off), str); 2710 break; 2711 } 2712 case DATA_TYPE_BYTE_ARRAY: 2713 case DATA_TYPE_INT16_ARRAY: 2714 case DATA_TYPE_UINT16_ARRAY: 2715 case DATA_TYPE_INT32_ARRAY: 2716 case DATA_TYPE_UINT32_ARRAY: 2717 case DATA_TYPE_INT64_ARRAY: 2718 case DATA_TYPE_UINT64_ARRAY: 2719 { 2720 uchar_t *buf; 2721 uint_t nelems; 2722 (void) nvpair_value_byte_array(prop, &buf, &nelems); 2723 delta = nelems; 2724 me->prop_type = DDI_PROP_TYPE_BYTE; 2725 if (nelems != 0) { 2726 off = di_checkmem(st, off, delta); 2727 bcopy(buf, di_mem_addr(st, off), nelems); 2728 } 2729 break; 2730 } 2731 2732 default: /* Unknown or unhandled type; skip it */ 2733 delta = 0; 2734 break; 2735 } 2736 2737 if (delta > 0) { 2738 me->prop_data = off; 2739 } 2740 2741 me->prop_len = delta; 2742 off += delta; 2743 2744 off = di_checkmem(st, off, sizeof (struct di_path_prop)); 2745 me->prop_next = off; 2746 } 2747 2748 me->prop_next = 0; 2749 return (off); 2750 } 2751 2752 2753 static void 2754 di_path_one_endpoint(struct di_path *me, di_off_t noff, di_off_t **off_pp, 2755 int get_client) 2756 { 2757 if (get_client) { 2758 ASSERT(me->path_client == 0); 2759 me->path_client = noff; 2760 ASSERT(me->path_c_link == 0); 2761 *off_pp = &me->path_c_link; 2762 me->path_snap_state &= 2763 ~(DI_PATH_SNAP_NOCLIENT | DI_PATH_SNAP_NOCLINK); 2764 } else { 2765 ASSERT(me->path_phci == 0); 2766 me->path_phci = noff; 2767 ASSERT(me->path_p_link == 0); 2768 *off_pp = &me->path_p_link; 2769 me->path_snap_state &= 2770 ~(DI_PATH_SNAP_NOPHCI | DI_PATH_SNAP_NOPLINK); 2771 } 2772 } 2773 2774 /* 2775 * poff_p: pointer to the linkage field. This links pips along the client|phci 2776 * linkage list. 2777 * noff : Offset for the endpoint dip snapshot. 2778 */ 2779 static di_off_t 2780 di_getpath_data(dev_info_t *dip, di_off_t *poff_p, di_off_t noff, 2781 struct di_state *st, int get_client) 2782 { 2783 di_off_t off; 2784 mdi_pathinfo_t *pip; 2785 struct di_path *me; 2786 mdi_pathinfo_t *(*next_pip)(dev_info_t *, mdi_pathinfo_t *); 2787 2788 dcmn_err2((CE_WARN, "di_getpath_data: client = %d", get_client)); 2789 2790 /* 2791 * The naming of the following mdi_xyz() is unfortunately 2792 * non-intuitive. mdi_get_next_phci_path() follows the 2793 * client_link i.e. the list of pip's belonging to the 2794 * given client dip. 2795 */ 2796 if (get_client) 2797 next_pip = &mdi_get_next_phci_path; 2798 else 2799 next_pip = &mdi_get_next_client_path; 2800 2801 off = *poff_p; 2802 2803 pip = NULL; 2804 while (pip = (*next_pip)(dip, pip)) { 2805 mdi_pathinfo_state_t state; 2806 di_off_t stored_offset; 2807 2808 dcmn_err((CE_WARN, "marshalling pip = %p", (void *)pip)); 2809 2810 mdi_pi_lock(pip); 2811 2812 if (di_pip_find(st, pip, &stored_offset) != -1) { 2813 /* 2814 * We've already seen this pathinfo node so we need to 2815 * take care not to snap it again; However, one endpoint 2816 * and linkage will be set here. The other endpoint 2817 * and linkage has already been set when the pip was 2818 * first snapshotted i.e. when the other endpoint dip 2819 * was snapshotted. 2820 */ 2821 me = (struct di_path *)(intptr_t) 2822 di_mem_addr(st, stored_offset); 2823 2824 *poff_p = stored_offset; 2825 2826 di_path_one_endpoint(me, noff, &poff_p, get_client); 2827 2828 /* 2829 * The other endpoint and linkage were set when this 2830 * pip was snapshotted. So we are done with both 2831 * endpoints and linkages. 2832 */ 2833 ASSERT(!(me->path_snap_state & 2834 (DI_PATH_SNAP_NOCLIENT|DI_PATH_SNAP_NOPHCI))); 2835 ASSERT(!(me->path_snap_state & 2836 (DI_PATH_SNAP_NOCLINK|DI_PATH_SNAP_NOPLINK))); 2837 2838 mdi_pi_unlock(pip); 2839 continue; 2840 } 2841 2842 /* 2843 * Now that we need to snapshot this pip, check memory 2844 */ 2845 off = di_checkmem(st, off, sizeof (struct di_path)); 2846 me = (struct di_path *)(intptr_t)di_mem_addr(st, off); 2847 me->self = off; 2848 *poff_p = off; 2849 off += sizeof (struct di_path); 2850 2851 me->path_snap_state = 2852 DI_PATH_SNAP_NOCLINK | DI_PATH_SNAP_NOPLINK; 2853 me->path_snap_state |= 2854 DI_PATH_SNAP_NOCLIENT | DI_PATH_SNAP_NOPHCI; 2855 2856 /* 2857 * Zero out fields as di_checkmem() doesn't guarantee 2858 * zero-filled memory 2859 */ 2860 me->path_client = me->path_phci = 0; 2861 me->path_c_link = me->path_p_link = 0; 2862 2863 di_path_one_endpoint(me, noff, &poff_p, get_client); 2864 2865 /* 2866 * Note the existence of this pathinfo 2867 */ 2868 di_register_pip(st, pip, me->self); 2869 2870 state = mdi_pi_get_state(pip); 2871 me->path_state = path_state_convert(state); 2872 2873 /* 2874 * Get intermediate addressing info. 2875 */ 2876 off = di_checkmem(st, off, strlen(mdi_pi_get_addr(pip)) + 1); 2877 me->path_addr = off; 2878 (void) strcpy(di_mem_addr(st, off), mdi_pi_get_addr(pip)); 2879 off += strlen(mdi_pi_get_addr(pip)) + 1; 2880 2881 /* 2882 * Get path properties if props are to be included in the 2883 * snapshot 2884 */ 2885 if (DINFOPROP & st->command) { 2886 off = di_path_getprop(pip, off, &me->path_prop, st); 2887 } else { 2888 me->path_prop = 0; 2889 } 2890 2891 mdi_pi_unlock(pip); 2892 } 2893 2894 *poff_p = 0; 2895 2896 return (off); 2897 } 2898 2899 /* 2900 * Copy a list of properties attached to a devinfo node. Called from 2901 * di_copynode with devi_lock held. The major number is passed in case 2902 * we need to call driver's prop_op entry. The value of list indicates 2903 * which list we are copying. Possible values are: 2904 * DI_PROP_DRV_LIST, DI_PROP_SYS_LIST, DI_PROP_GLB_LIST, DI_PROP_HW_LIST 2905 */ 2906 static di_off_t 2907 di_getprop(struct ddi_prop *prop, di_off_t *off_p, struct di_state *st, 2908 struct dev_info *dip, int list) 2909 { 2910 dev_t dev; 2911 int (*prop_op)(); 2912 int off, need_prop_op = 0; 2913 int prop_op_fail = 0; 2914 ddi_prop_t *propp = NULL; 2915 struct di_prop *pp; 2916 struct dev_ops *ops = NULL; 2917 int prop_len; 2918 caddr_t prop_val; 2919 2920 2921 dcmn_err2((CE_CONT, "di_getprop:\n")); 2922 2923 ASSERT(st != NULL); 2924 2925 dcmn_err((CE_CONT, "copy property list at addr %p\n", (void *)prop)); 2926 2927 /* 2928 * Figure out if we need to call driver's prop_op entry point. 2929 * The conditions are: 2930 * -- driver property list 2931 * -- driver must be attached and held 2932 * -- driver's cb_prop_op != ddi_prop_op 2933 * or parent's bus_prop_op != ddi_bus_prop_op 2934 */ 2935 2936 if (list != DI_PROP_DRV_LIST) { 2937 goto getprop; 2938 } 2939 2940 /* 2941 * If driver is not attached or if major is -1, we ignore 2942 * the driver property list. No one should rely on such 2943 * properties. 2944 */ 2945 if (!i_ddi_devi_attached((dev_info_t *)dip)) { 2946 off = *off_p; 2947 *off_p = 0; 2948 return (off); 2949 } 2950 2951 /* 2952 * Now we have a driver which is held. We can examine entry points 2953 * and check the condition listed above. 2954 */ 2955 ops = dip->devi_ops; 2956 2957 /* 2958 * Some nexus drivers incorrectly set cb_prop_op to nodev, 2959 * nulldev or even NULL. 2960 */ 2961 if (ops && ops->devo_cb_ops && 2962 (ops->devo_cb_ops->cb_prop_op != ddi_prop_op) && 2963 (ops->devo_cb_ops->cb_prop_op != nodev) && 2964 (ops->devo_cb_ops->cb_prop_op != nulldev) && 2965 (ops->devo_cb_ops->cb_prop_op != NULL)) { 2966 need_prop_op = 1; 2967 } 2968 2969 getprop: 2970 /* 2971 * check memory availability 2972 */ 2973 off = di_checkmem(st, *off_p, sizeof (struct di_prop)); 2974 *off_p = off; 2975 /* 2976 * Now copy properties 2977 */ 2978 do { 2979 pp = (struct di_prop *)(intptr_t)di_mem_addr(st, off); 2980 pp->self = off; 2981 /* 2982 * Split dev_t to major/minor, so it works for 2983 * both ILP32 and LP64 model 2984 */ 2985 pp->dev_major = getmajor(prop->prop_dev); 2986 pp->dev_minor = getminor(prop->prop_dev); 2987 pp->prop_flags = prop->prop_flags; 2988 pp->prop_list = list; 2989 2990 /* 2991 * property name 2992 */ 2993 off += sizeof (struct di_prop); 2994 if (prop->prop_name) { 2995 off = di_checkmem(st, off, strlen(prop->prop_name) 2996 + 1); 2997 pp->prop_name = off; 2998 (void) strcpy(di_mem_addr(st, off), prop->prop_name); 2999 off += strlen(prop->prop_name) + 1; 3000 } 3001 3002 /* 3003 * Set prop_len here. This may change later 3004 * if cb_prop_op returns a different length. 3005 */ 3006 pp->prop_len = prop->prop_len; 3007 if (!need_prop_op) { 3008 if (prop->prop_val == NULL) { 3009 dcmn_err((CE_WARN, 3010 "devinfo: property fault at %p", 3011 (void *)prop)); 3012 pp->prop_data = -1; 3013 } else if (prop->prop_len != 0) { 3014 off = di_checkmem(st, off, prop->prop_len); 3015 pp->prop_data = off; 3016 bcopy(prop->prop_val, di_mem_addr(st, off), 3017 prop->prop_len); 3018 off += DI_ALIGN(pp->prop_len); 3019 } 3020 } 3021 3022 off = di_checkmem(st, off, sizeof (struct di_prop)); 3023 pp->next = off; 3024 prop = prop->prop_next; 3025 } while (prop); 3026 3027 pp->next = 0; 3028 3029 if (!need_prop_op) { 3030 dcmn_err((CE_CONT, "finished property " 3031 "list at offset 0x%x\n", off)); 3032 return (off); 3033 } 3034 3035 /* 3036 * If there is a need to call driver's prop_op entry, 3037 * we must release driver's devi_lock, because the 3038 * cb_prop_op entry point will grab it. 3039 * 3040 * The snapshot memory has already been allocated above, 3041 * which means the length of an active property should 3042 * remain fixed for this implementation to work. 3043 */ 3044 3045 3046 prop_op = ops->devo_cb_ops->cb_prop_op; 3047 pp = (struct di_prop *)(intptr_t)di_mem_addr(st, *off_p); 3048 3049 mutex_exit(&dip->devi_lock); 3050 3051 do { 3052 int err; 3053 struct di_prop *tmp; 3054 3055 if (pp->next) { 3056 tmp = (struct di_prop *) 3057 (intptr_t)di_mem_addr(st, pp->next); 3058 } else { 3059 tmp = NULL; 3060 } 3061 3062 /* 3063 * call into driver's prop_op entry point 3064 * 3065 * Must search DDI_DEV_T_NONE with DDI_DEV_T_ANY 3066 */ 3067 dev = makedevice(pp->dev_major, pp->dev_minor); 3068 if (dev == DDI_DEV_T_NONE) 3069 dev = DDI_DEV_T_ANY; 3070 3071 dcmn_err((CE_CONT, "call prop_op" 3072 "(%lx, %p, PROP_LEN_AND_VAL_BUF, " 3073 "DDI_PROP_DONTPASS, \"%s\", %p, &%d)\n", 3074 dev, 3075 (void *)dip, 3076 (char *)di_mem_addr(st, pp->prop_name), 3077 (void *)di_mem_addr(st, pp->prop_data), 3078 pp->prop_len)); 3079 3080 if ((err = (*prop_op)(dev, (dev_info_t)dip, 3081 PROP_LEN_AND_VAL_ALLOC, DDI_PROP_DONTPASS, 3082 (char *)di_mem_addr(st, pp->prop_name), 3083 &prop_val, &prop_len)) != DDI_PROP_SUCCESS) { 3084 if ((propp = i_ddi_prop_search(dev, 3085 (char *)di_mem_addr(st, pp->prop_name), 3086 (uint_t)pp->prop_flags, 3087 &(DEVI(dip)->devi_drv_prop_ptr))) != NULL) { 3088 pp->prop_len = propp->prop_len; 3089 if (pp->prop_len != 0) { 3090 off = di_checkmem(st, off, 3091 pp->prop_len); 3092 pp->prop_data = off; 3093 bcopy(propp->prop_val, di_mem_addr(st, 3094 pp->prop_data), propp->prop_len); 3095 off += DI_ALIGN(pp->prop_len); 3096 } 3097 } else { 3098 prop_op_fail = 1; 3099 } 3100 } else if (prop_len != 0) { 3101 pp->prop_len = prop_len; 3102 off = di_checkmem(st, off, prop_len); 3103 pp->prop_data = off; 3104 bcopy(prop_val, di_mem_addr(st, off), prop_len); 3105 off += DI_ALIGN(prop_len); 3106 kmem_free(prop_val, prop_len); 3107 } 3108 3109 if (prop_op_fail) { 3110 pp->prop_data = -1; 3111 dcmn_err((CE_WARN, "devinfo: prop_op failure " 3112 "for \"%s\" err %d", 3113 di_mem_addr(st, pp->prop_name), err)); 3114 } 3115 3116 pp = tmp; 3117 3118 } while (pp); 3119 3120 mutex_enter(&dip->devi_lock); 3121 dcmn_err((CE_CONT, "finished property list at offset 0x%x\n", off)); 3122 return (off); 3123 } 3124 3125 /* 3126 * find private data format attached to a dip 3127 * parent = 1 to match driver name of parent dip (for parent private data) 3128 * 0 to match driver name of current dip (for driver private data) 3129 */ 3130 #define DI_MATCH_DRIVER 0 3131 #define DI_MATCH_PARENT 1 3132 3133 struct di_priv_format * 3134 di_match_drv_name(struct dev_info *node, struct di_state *st, int match) 3135 { 3136 int i, count, len; 3137 char *drv_name; 3138 major_t major; 3139 struct di_all *all; 3140 struct di_priv_format *form; 3141 3142 dcmn_err2((CE_CONT, "di_match_drv_name: node = %s, match = %x\n", 3143 node->devi_node_name, match)); 3144 3145 if (match == DI_MATCH_PARENT) { 3146 node = DEVI(node->devi_parent); 3147 } 3148 3149 if (node == NULL) { 3150 return (NULL); 3151 } 3152 3153 major = ddi_name_to_major(node->devi_binding_name); 3154 if (major == (major_t)(-1)) { 3155 return (NULL); 3156 } 3157 3158 /* 3159 * Match the driver name. 3160 */ 3161 drv_name = ddi_major_to_name(major); 3162 if ((drv_name == NULL) || *drv_name == '\0') { 3163 return (NULL); 3164 } 3165 3166 /* Now get the di_priv_format array */ 3167 all = (struct di_all *)(intptr_t)di_mem_addr(st, 0); 3168 3169 if (match == DI_MATCH_PARENT) { 3170 count = all->n_ppdata; 3171 form = (struct di_priv_format *) 3172 (intptr_t)(di_mem_addr(st, 0) + all->ppdata_format); 3173 } else { 3174 count = all->n_dpdata; 3175 form = (struct di_priv_format *) 3176 (intptr_t)((caddr_t)all + all->dpdata_format); 3177 } 3178 3179 len = strlen(drv_name); 3180 for (i = 0; i < count; i++) { 3181 char *tmp; 3182 3183 tmp = form[i].drv_name; 3184 while (tmp && (*tmp != '\0')) { 3185 if (strncmp(drv_name, tmp, len) == 0) { 3186 return (&form[i]); 3187 } 3188 /* 3189 * Move to next driver name, skipping a white space 3190 */ 3191 if (tmp = strchr(tmp, ' ')) { 3192 tmp++; 3193 } 3194 } 3195 } 3196 3197 return (NULL); 3198 } 3199 3200 /* 3201 * The following functions copy data as specified by the format passed in. 3202 * To prevent invalid format from panicing the system, we call on_fault(). 3203 * A return value of 0 indicates an error. Otherwise, the total offset 3204 * is returned. 3205 */ 3206 #define DI_MAX_PRIVDATA (PAGESIZE >> 1) /* max private data size */ 3207 3208 static di_off_t 3209 di_getprvdata(struct di_priv_format *pdp, struct dev_info *node, 3210 void *data, di_off_t *off_p, struct di_state *st) 3211 { 3212 caddr_t pa; 3213 void *ptr; 3214 int i, size, repeat; 3215 di_off_t off, off0, *tmp; 3216 char *path; 3217 3218 label_t ljb; 3219 3220 dcmn_err2((CE_CONT, "di_getprvdata:\n")); 3221 3222 /* 3223 * check memory availability. Private data size is 3224 * limited to DI_MAX_PRIVDATA. 3225 */ 3226 off = di_checkmem(st, *off_p, DI_MAX_PRIVDATA); 3227 3228 if ((pdp->bytes == 0) || pdp->bytes > DI_MAX_PRIVDATA) { 3229 goto failure; 3230 } 3231 3232 if (!on_fault(&ljb)) { 3233 /* copy the struct */ 3234 bcopy(data, di_mem_addr(st, off), pdp->bytes); 3235 off0 = DI_ALIGN(pdp->bytes); 3236 3237 /* dereferencing pointers */ 3238 for (i = 0; i < MAX_PTR_IN_PRV; i++) { 3239 3240 if (pdp->ptr[i].size == 0) { 3241 goto success; /* no more ptrs */ 3242 } 3243 3244 /* 3245 * first, get the pointer content 3246 */ 3247 if ((pdp->ptr[i].offset < 0) || 3248 (pdp->ptr[i].offset > 3249 pdp->bytes - sizeof (char *))) 3250 goto failure; /* wrong offset */ 3251 3252 pa = di_mem_addr(st, off + pdp->ptr[i].offset); 3253 3254 /* save a tmp ptr to store off_t later */ 3255 tmp = (di_off_t *)(intptr_t)pa; 3256 3257 /* get pointer value, if NULL continue */ 3258 ptr = *((void **) (intptr_t)pa); 3259 if (ptr == NULL) { 3260 continue; 3261 } 3262 3263 /* 3264 * next, find the repeat count (array dimension) 3265 */ 3266 repeat = pdp->ptr[i].len_offset; 3267 3268 /* 3269 * Positive value indicates a fixed sized array. 3270 * 0 or negative value indicates variable sized array. 3271 * 3272 * For variable sized array, the variable must be 3273 * an int member of the structure, with an offset 3274 * equal to the absolution value of struct member. 3275 */ 3276 if (repeat > pdp->bytes - sizeof (int)) { 3277 goto failure; /* wrong offset */ 3278 } 3279 3280 if (repeat >= 0) { 3281 repeat = *((int *) 3282 (intptr_t)((caddr_t)data + repeat)); 3283 } else { 3284 repeat = -repeat; 3285 } 3286 3287 /* 3288 * next, get the size of the object to be copied 3289 */ 3290 size = pdp->ptr[i].size * repeat; 3291 3292 /* 3293 * Arbitrarily limit the total size of object to be 3294 * copied (1 byte to 1/4 page). 3295 */ 3296 if ((size <= 0) || (size > (DI_MAX_PRIVDATA - off0))) { 3297 goto failure; /* wrong size or too big */ 3298 } 3299 3300 /* 3301 * Now copy the data 3302 */ 3303 *tmp = off0; 3304 bcopy(ptr, di_mem_addr(st, off + off0), size); 3305 off0 += DI_ALIGN(size); 3306 } 3307 } else { 3308 goto failure; 3309 } 3310 3311 success: 3312 /* 3313 * success if reached here 3314 */ 3315 no_fault(); 3316 *off_p = off; 3317 3318 return (off + off0); 3319 /*NOTREACHED*/ 3320 3321 failure: 3322 /* 3323 * fault occurred 3324 */ 3325 no_fault(); 3326 path = kmem_alloc(MAXPATHLEN, KM_SLEEP); 3327 cmn_err(CE_WARN, "devinfo: fault on private data for '%s' at %p", 3328 ddi_pathname((dev_info_t *)node, path), data); 3329 kmem_free(path, MAXPATHLEN); 3330 *off_p = -1; /* set private data to indicate error */ 3331 3332 return (off); 3333 } 3334 3335 /* 3336 * get parent private data; on error, returns original offset 3337 */ 3338 static di_off_t 3339 di_getppdata(struct dev_info *node, di_off_t *off_p, struct di_state *st) 3340 { 3341 int off; 3342 struct di_priv_format *ppdp; 3343 3344 dcmn_err2((CE_CONT, "di_getppdata:\n")); 3345 3346 /* find the parent data format */ 3347 if ((ppdp = di_match_drv_name(node, st, DI_MATCH_PARENT)) == NULL) { 3348 off = *off_p; 3349 *off_p = 0; /* set parent data to none */ 3350 return (off); 3351 } 3352 3353 return (di_getprvdata(ppdp, node, 3354 ddi_get_parent_data((dev_info_t *)node), off_p, st)); 3355 } 3356 3357 /* 3358 * get parent private data; returns original offset 3359 */ 3360 static di_off_t 3361 di_getdpdata(struct dev_info *node, di_off_t *off_p, struct di_state *st) 3362 { 3363 int off; 3364 struct di_priv_format *dpdp; 3365 3366 dcmn_err2((CE_CONT, "di_getdpdata:")); 3367 3368 /* find the parent data format */ 3369 if ((dpdp = di_match_drv_name(node, st, DI_MATCH_DRIVER)) == NULL) { 3370 off = *off_p; 3371 *off_p = 0; /* set driver data to none */ 3372 return (off); 3373 } 3374 3375 return (di_getprvdata(dpdp, node, 3376 ddi_get_driver_private((dev_info_t *)node), off_p, st)); 3377 } 3378 3379 /* 3380 * The driver is stateful across DINFOCPYALL and DINFOUSRLD. 3381 * This function encapsulates the state machine: 3382 * 3383 * -> IOC_IDLE -> IOC_SNAP -> IOC_DONE -> IOC_COPY -> 3384 * | SNAPSHOT USRLD | 3385 * -------------------------------------------------- 3386 * 3387 * Returns 0 on success and -1 on failure 3388 */ 3389 static int 3390 di_setstate(struct di_state *st, int new_state) 3391 { 3392 int ret = 0; 3393 3394 mutex_enter(&di_lock); 3395 switch (new_state) { 3396 case IOC_IDLE: 3397 case IOC_DONE: 3398 break; 3399 case IOC_SNAP: 3400 if (st->di_iocstate != IOC_IDLE) 3401 ret = -1; 3402 break; 3403 case IOC_COPY: 3404 if (st->di_iocstate != IOC_DONE) 3405 ret = -1; 3406 break; 3407 default: 3408 ret = -1; 3409 } 3410 3411 if (ret == 0) 3412 st->di_iocstate = new_state; 3413 else 3414 cmn_err(CE_NOTE, "incorrect state transition from %d to %d", 3415 st->di_iocstate, new_state); 3416 mutex_exit(&di_lock); 3417 return (ret); 3418 } 3419 3420 /* 3421 * We cannot assume the presence of the entire 3422 * snapshot in this routine. All we are guaranteed 3423 * is the di_all struct + 1 byte (for root_path) 3424 */ 3425 static int 3426 header_plus_one_ok(struct di_all *all) 3427 { 3428 /* 3429 * Refuse to read old versions 3430 */ 3431 if (all->version != DI_SNAPSHOT_VERSION) { 3432 CACHE_DEBUG((DI_ERR, "bad version: 0x%x", all->version)); 3433 return (0); 3434 } 3435 3436 if (all->cache_magic != DI_CACHE_MAGIC) { 3437 CACHE_DEBUG((DI_ERR, "bad magic #: 0x%x", all->cache_magic)); 3438 return (0); 3439 } 3440 3441 if (all->snapshot_time == 0) { 3442 CACHE_DEBUG((DI_ERR, "bad timestamp: %ld", all->snapshot_time)); 3443 return (0); 3444 } 3445 3446 if (all->top_devinfo == 0) { 3447 CACHE_DEBUG((DI_ERR, "NULL top devinfo")); 3448 return (0); 3449 } 3450 3451 if (all->map_size < sizeof (*all) + 1) { 3452 CACHE_DEBUG((DI_ERR, "bad map size: %u", all->map_size)); 3453 return (0); 3454 } 3455 3456 if (all->root_path[0] != '/' || all->root_path[1] != '\0') { 3457 CACHE_DEBUG((DI_ERR, "bad rootpath: %c%c", 3458 all->root_path[0], all->root_path[1])); 3459 return (0); 3460 } 3461 3462 /* 3463 * We can't check checksum here as we just have the header 3464 */ 3465 3466 return (1); 3467 } 3468 3469 static int 3470 chunk_write(struct vnode *vp, offset_t off, caddr_t buf, size_t len) 3471 { 3472 rlim64_t rlimit; 3473 ssize_t resid; 3474 int error = 0; 3475 3476 3477 rlimit = RLIM64_INFINITY; 3478 3479 while (len) { 3480 resid = 0; 3481 error = vn_rdwr(UIO_WRITE, vp, buf, len, off, 3482 UIO_SYSSPACE, FSYNC, rlimit, kcred, &resid); 3483 3484 if (error || resid < 0) { 3485 error = error ? error : EIO; 3486 CACHE_DEBUG((DI_ERR, "write error: %d", error)); 3487 break; 3488 } 3489 3490 /* 3491 * Check if we are making progress 3492 */ 3493 if (resid >= len) { 3494 error = ENOSPC; 3495 break; 3496 } 3497 buf += len - resid; 3498 off += len - resid; 3499 len = resid; 3500 } 3501 3502 return (error); 3503 } 3504 3505 extern int modrootloaded; 3506 extern void mdi_walk_vhcis(int (*)(dev_info_t *, void *), void *); 3507 extern void mdi_vhci_walk_phcis(dev_info_t *, 3508 int (*)(dev_info_t *, void *), void *); 3509 3510 static void 3511 di_cache_write(struct di_cache *cache) 3512 { 3513 struct di_all *all; 3514 struct vnode *vp; 3515 int oflags; 3516 size_t map_size; 3517 size_t chunk; 3518 offset_t off; 3519 int error; 3520 char *buf; 3521 3522 ASSERT(DI_CACHE_LOCKED(*cache)); 3523 ASSERT(!servicing_interrupt()); 3524 3525 if (cache->cache_size == 0) { 3526 ASSERT(cache->cache_data == NULL); 3527 CACHE_DEBUG((DI_ERR, "Empty cache. Skipping write")); 3528 return; 3529 } 3530 3531 ASSERT(cache->cache_size > 0); 3532 ASSERT(cache->cache_data); 3533 3534 if (!modrootloaded || rootvp == NULL || vn_is_readonly(rootvp)) { 3535 CACHE_DEBUG((DI_ERR, "Can't write to rootFS. Skipping write")); 3536 return; 3537 } 3538 3539 all = (struct di_all *)cache->cache_data; 3540 3541 if (!header_plus_one_ok(all)) { 3542 CACHE_DEBUG((DI_ERR, "Invalid header. Skipping write")); 3543 return; 3544 } 3545 3546 ASSERT(strcmp(all->root_path, "/") == 0); 3547 3548 /* 3549 * The cache_size is the total allocated memory for the cache. 3550 * The map_size is the actual size of valid data in the cache. 3551 * map_size may be smaller than cache_size but cannot exceed 3552 * cache_size. 3553 */ 3554 if (all->map_size > cache->cache_size) { 3555 CACHE_DEBUG((DI_ERR, "map_size (0x%x) > cache_size (0x%x)." 3556 " Skipping write", all->map_size, cache->cache_size)); 3557 return; 3558 } 3559 3560 /* 3561 * First unlink the temp file 3562 */ 3563 error = vn_remove(DI_CACHE_TEMP, UIO_SYSSPACE, RMFILE); 3564 if (error && error != ENOENT) { 3565 CACHE_DEBUG((DI_ERR, "%s: unlink failed: %d", 3566 DI_CACHE_TEMP, error)); 3567 } 3568 3569 if (error == EROFS) { 3570 CACHE_DEBUG((DI_ERR, "RDONLY FS. Skipping write")); 3571 return; 3572 } 3573 3574 vp = NULL; 3575 oflags = (FCREAT|FWRITE); 3576 if (error = vn_open(DI_CACHE_TEMP, UIO_SYSSPACE, oflags, 3577 DI_CACHE_PERMS, &vp, CRCREAT, 0)) { 3578 CACHE_DEBUG((DI_ERR, "%s: create failed: %d", 3579 DI_CACHE_TEMP, error)); 3580 return; 3581 } 3582 3583 ASSERT(vp); 3584 3585 /* 3586 * Paranoid: Check if the file is on a read-only FS 3587 */ 3588 if (vn_is_readonly(vp)) { 3589 CACHE_DEBUG((DI_ERR, "cannot write: readonly FS")); 3590 goto fail; 3591 } 3592 3593 /* 3594 * Note that we only write map_size bytes to disk - this saves 3595 * space as the actual cache size may be larger than size of 3596 * valid data in the cache. 3597 * Another advantage is that it makes verification of size 3598 * easier when the file is read later. 3599 */ 3600 map_size = all->map_size; 3601 off = 0; 3602 buf = cache->cache_data; 3603 3604 while (map_size) { 3605 ASSERT(map_size > 0); 3606 /* 3607 * Write in chunks so that VM system 3608 * is not overwhelmed 3609 */ 3610 if (map_size > di_chunk * PAGESIZE) 3611 chunk = di_chunk * PAGESIZE; 3612 else 3613 chunk = map_size; 3614 3615 error = chunk_write(vp, off, buf, chunk); 3616 if (error) { 3617 CACHE_DEBUG((DI_ERR, "write failed: off=0x%x: %d", 3618 off, error)); 3619 goto fail; 3620 } 3621 3622 off += chunk; 3623 buf += chunk; 3624 map_size -= chunk; 3625 3626 /* Give pageout a chance to run */ 3627 delay(1); 3628 } 3629 3630 /* 3631 * Now sync the file and close it 3632 */ 3633 if (error = VOP_FSYNC(vp, FSYNC, kcred)) { 3634 CACHE_DEBUG((DI_ERR, "FSYNC failed: %d", error)); 3635 } 3636 3637 if (error = VOP_CLOSE(vp, oflags, 1, (offset_t)0, kcred)) { 3638 CACHE_DEBUG((DI_ERR, "close() failed: %d", error)); 3639 VN_RELE(vp); 3640 return; 3641 } 3642 3643 VN_RELE(vp); 3644 3645 /* 3646 * Now do the rename 3647 */ 3648 if (error = vn_rename(DI_CACHE_TEMP, DI_CACHE_FILE, UIO_SYSSPACE)) { 3649 CACHE_DEBUG((DI_ERR, "rename failed: %d", error)); 3650 return; 3651 } 3652 3653 CACHE_DEBUG((DI_INFO, "Cache write successful.")); 3654 3655 return; 3656 3657 fail: 3658 (void) VOP_CLOSE(vp, oflags, 1, (offset_t)0, kcred); 3659 VN_RELE(vp); 3660 } 3661 3662 3663 /* 3664 * Since we could be called early in boot, 3665 * use kobj_read_file() 3666 */ 3667 static void 3668 di_cache_read(struct di_cache *cache) 3669 { 3670 struct _buf *file; 3671 struct di_all *all; 3672 int n; 3673 size_t map_size, sz, chunk; 3674 offset_t off; 3675 caddr_t buf; 3676 uint32_t saved_crc, crc; 3677 3678 ASSERT(modrootloaded); 3679 ASSERT(DI_CACHE_LOCKED(*cache)); 3680 ASSERT(cache->cache_data == NULL); 3681 ASSERT(cache->cache_size == 0); 3682 ASSERT(!servicing_interrupt()); 3683 3684 file = kobj_open_file(DI_CACHE_FILE); 3685 if (file == (struct _buf *)-1) { 3686 CACHE_DEBUG((DI_ERR, "%s: open failed: %d", 3687 DI_CACHE_FILE, ENOENT)); 3688 return; 3689 } 3690 3691 /* 3692 * Read in the header+root_path first. The root_path must be "/" 3693 */ 3694 all = kmem_zalloc(sizeof (*all) + 1, KM_SLEEP); 3695 n = kobj_read_file(file, (caddr_t)all, sizeof (*all) + 1, 0); 3696 3697 if ((n != sizeof (*all) + 1) || !header_plus_one_ok(all)) { 3698 kmem_free(all, sizeof (*all) + 1); 3699 kobj_close_file(file); 3700 CACHE_DEBUG((DI_ERR, "cache header: read error or invalid")); 3701 return; 3702 } 3703 3704 map_size = all->map_size; 3705 3706 kmem_free(all, sizeof (*all) + 1); 3707 3708 ASSERT(map_size >= sizeof (*all) + 1); 3709 3710 buf = di_cache.cache_data = kmem_alloc(map_size, KM_SLEEP); 3711 sz = map_size; 3712 off = 0; 3713 while (sz) { 3714 /* Don't overload VM with large reads */ 3715 chunk = (sz > di_chunk * PAGESIZE) ? di_chunk * PAGESIZE : sz; 3716 n = kobj_read_file(file, buf, chunk, off); 3717 if (n != chunk) { 3718 CACHE_DEBUG((DI_ERR, "%s: read error at offset: %lld", 3719 DI_CACHE_FILE, off)); 3720 goto fail; 3721 } 3722 off += chunk; 3723 buf += chunk; 3724 sz -= chunk; 3725 } 3726 3727 ASSERT(off == map_size); 3728 3729 /* 3730 * Read past expected EOF to verify size. 3731 */ 3732 if (kobj_read_file(file, (caddr_t)&sz, 1, off) > 0) { 3733 CACHE_DEBUG((DI_ERR, "%s: file size changed", DI_CACHE_FILE)); 3734 goto fail; 3735 } 3736 3737 all = (struct di_all *)di_cache.cache_data; 3738 if (!header_plus_one_ok(all)) { 3739 CACHE_DEBUG((DI_ERR, "%s: file header changed", DI_CACHE_FILE)); 3740 goto fail; 3741 } 3742 3743 /* 3744 * Compute CRC with checksum field in the cache data set to 0 3745 */ 3746 saved_crc = all->cache_checksum; 3747 all->cache_checksum = 0; 3748 CRC32(crc, di_cache.cache_data, map_size, -1U, crc32_table); 3749 all->cache_checksum = saved_crc; 3750 3751 if (crc != all->cache_checksum) { 3752 CACHE_DEBUG((DI_ERR, 3753 "%s: checksum error: expected=0x%x actual=0x%x", 3754 DI_CACHE_FILE, all->cache_checksum, crc)); 3755 goto fail; 3756 } 3757 3758 if (all->map_size != map_size) { 3759 CACHE_DEBUG((DI_ERR, "%s: map size changed", DI_CACHE_FILE)); 3760 goto fail; 3761 } 3762 3763 kobj_close_file(file); 3764 3765 di_cache.cache_size = map_size; 3766 3767 return; 3768 3769 fail: 3770 kmem_free(di_cache.cache_data, map_size); 3771 kobj_close_file(file); 3772 di_cache.cache_data = NULL; 3773 di_cache.cache_size = 0; 3774 } 3775 3776 3777 /* 3778 * Checks if arguments are valid for using the cache. 3779 */ 3780 static int 3781 cache_args_valid(struct di_state *st, int *error) 3782 { 3783 ASSERT(error); 3784 ASSERT(st->mem_size > 0); 3785 ASSERT(st->memlist != NULL); 3786 3787 if (!modrootloaded || !i_ddi_io_initialized()) { 3788 CACHE_DEBUG((DI_ERR, 3789 "cache lookup failure: I/O subsystem not inited")); 3790 *error = ENOTACTIVE; 3791 return (0); 3792 } 3793 3794 /* 3795 * No other flags allowed with DINFOCACHE 3796 */ 3797 if (st->command != (DINFOCACHE & DIIOC_MASK)) { 3798 CACHE_DEBUG((DI_ERR, 3799 "cache lookup failure: bad flags: 0x%x", 3800 st->command)); 3801 *error = EINVAL; 3802 return (0); 3803 } 3804 3805 if (strcmp(DI_ALL_PTR(st)->root_path, "/") != 0) { 3806 CACHE_DEBUG((DI_ERR, 3807 "cache lookup failure: bad root: %s", 3808 DI_ALL_PTR(st)->root_path)); 3809 *error = EINVAL; 3810 return (0); 3811 } 3812 3813 CACHE_DEBUG((DI_INFO, "cache lookup args ok: 0x%x", st->command)); 3814 3815 *error = 0; 3816 3817 return (1); 3818 } 3819 3820 static int 3821 snapshot_is_cacheable(struct di_state *st) 3822 { 3823 ASSERT(st->mem_size > 0); 3824 ASSERT(st->memlist != NULL); 3825 3826 if ((st->command & DI_CACHE_SNAPSHOT_FLAGS) != 3827 (DI_CACHE_SNAPSHOT_FLAGS & DIIOC_MASK)) { 3828 CACHE_DEBUG((DI_INFO, 3829 "not cacheable: incompatible flags: 0x%x", 3830 st->command)); 3831 return (0); 3832 } 3833 3834 if (strcmp(DI_ALL_PTR(st)->root_path, "/") != 0) { 3835 CACHE_DEBUG((DI_INFO, 3836 "not cacheable: incompatible root path: %s", 3837 DI_ALL_PTR(st)->root_path)); 3838 return (0); 3839 } 3840 3841 CACHE_DEBUG((DI_INFO, "cacheable snapshot request: 0x%x", st->command)); 3842 3843 return (1); 3844 } 3845 3846 static int 3847 di_cache_lookup(struct di_state *st) 3848 { 3849 size_t rval; 3850 int cache_valid; 3851 3852 ASSERT(cache_args_valid(st, &cache_valid)); 3853 ASSERT(modrootloaded); 3854 3855 DI_CACHE_LOCK(di_cache); 3856 3857 /* 3858 * The following assignment determines the validity 3859 * of the cache as far as this snapshot is concerned. 3860 */ 3861 cache_valid = di_cache.cache_valid; 3862 3863 if (cache_valid && di_cache.cache_data == NULL) { 3864 di_cache_read(&di_cache); 3865 /* check for read or file error */ 3866 if (di_cache.cache_data == NULL) 3867 cache_valid = 0; 3868 } 3869 3870 if (cache_valid) { 3871 /* 3872 * Ok, the cache was valid as of this particular 3873 * snapshot. Copy the cached snapshot. This is safe 3874 * to do as the cache cannot be freed (we hold the 3875 * cache lock). Free the memory allocated in di_state 3876 * up until this point - we will simply copy everything 3877 * in the cache. 3878 */ 3879 3880 ASSERT(di_cache.cache_data != NULL); 3881 ASSERT(di_cache.cache_size > 0); 3882 3883 di_freemem(st); 3884 3885 rval = 0; 3886 if (di_cache2mem(&di_cache, st) > 0) { 3887 3888 ASSERT(DI_ALL_PTR(st)); 3889 3890 /* 3891 * map_size is size of valid data in the 3892 * cached snapshot and may be less than 3893 * size of the cache. 3894 */ 3895 rval = DI_ALL_PTR(st)->map_size; 3896 3897 ASSERT(rval >= sizeof (struct di_all)); 3898 ASSERT(rval <= di_cache.cache_size); 3899 } 3900 } else { 3901 /* 3902 * The cache isn't valid, we need to take a snapshot. 3903 * Set the command flags appropriately 3904 */ 3905 ASSERT(st->command == (DINFOCACHE & DIIOC_MASK)); 3906 st->command = (DI_CACHE_SNAPSHOT_FLAGS & DIIOC_MASK); 3907 rval = di_cache_update(st); 3908 st->command = (DINFOCACHE & DIIOC_MASK); 3909 } 3910 3911 DI_CACHE_UNLOCK(di_cache); 3912 3913 /* 3914 * For cached snapshots, the devinfo driver always returns 3915 * a snapshot rooted at "/". 3916 */ 3917 ASSERT(rval == 0 || strcmp(DI_ALL_PTR(st)->root_path, "/") == 0); 3918 3919 return ((int)rval); 3920 } 3921 3922 /* 3923 * This is a forced update of the cache - the previous state of the cache 3924 * may be: 3925 * - unpopulated 3926 * - populated and invalid 3927 * - populated and valid 3928 */ 3929 static int 3930 di_cache_update(struct di_state *st) 3931 { 3932 int rval; 3933 uint32_t crc; 3934 struct di_all *all; 3935 3936 ASSERT(DI_CACHE_LOCKED(di_cache)); 3937 ASSERT(snapshot_is_cacheable(st)); 3938 3939 /* 3940 * Free the in-core cache and the on-disk file (if they exist) 3941 */ 3942 i_ddi_di_cache_free(&di_cache); 3943 3944 /* 3945 * Set valid flag before taking the snapshot, 3946 * so that any invalidations that arrive 3947 * during or after the snapshot are not 3948 * removed by us. 3949 */ 3950 atomic_or_32(&di_cache.cache_valid, 1); 3951 3952 rval = di_snapshot_and_clean(st); 3953 3954 if (rval == 0) { 3955 CACHE_DEBUG((DI_ERR, "can't update cache: bad snapshot")); 3956 return (0); 3957 } 3958 3959 DI_ALL_PTR(st)->map_size = rval; 3960 3961 if (di_mem2cache(st, &di_cache) == 0) { 3962 CACHE_DEBUG((DI_ERR, "can't update cache: copy failed")); 3963 return (0); 3964 } 3965 3966 ASSERT(di_cache.cache_data); 3967 ASSERT(di_cache.cache_size > 0); 3968 3969 /* 3970 * Now that we have cached the snapshot, compute its checksum. 3971 * The checksum is only computed over the valid data in the 3972 * cache, not the entire cache. 3973 * Also, set all the fields (except checksum) before computing 3974 * checksum. 3975 */ 3976 all = (struct di_all *)di_cache.cache_data; 3977 all->cache_magic = DI_CACHE_MAGIC; 3978 all->map_size = rval; 3979 3980 ASSERT(all->cache_checksum == 0); 3981 CRC32(crc, di_cache.cache_data, all->map_size, -1U, crc32_table); 3982 all->cache_checksum = crc; 3983 3984 di_cache_write(&di_cache); 3985 3986 return (rval); 3987 } 3988 3989 static void 3990 di_cache_print(di_cache_debug_t msglevel, char *fmt, ...) 3991 { 3992 va_list ap; 3993 3994 if (di_cache_debug <= DI_QUIET) 3995 return; 3996 3997 if (di_cache_debug < msglevel) 3998 return; 3999 4000 switch (msglevel) { 4001 case DI_ERR: 4002 msglevel = CE_WARN; 4003 break; 4004 case DI_INFO: 4005 case DI_TRACE: 4006 default: 4007 msglevel = CE_NOTE; 4008 break; 4009 } 4010 4011 va_start(ap, fmt); 4012 vcmn_err(msglevel, fmt, ap); 4013 va_end(ap); 4014 } 4015