xref: /illumos-gate/usr/src/uts/common/io/devinfo.c (revision 33efde4275d24731ef87927237b0ffb0630b6b2d)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 
22 /*
23  * Copyright (c) 1997, 2010, Oracle and/or its affiliates. All rights reserved.
24  */
25 
26 /*
27  * Copyright 2023 Oxide Computer Company
28  */
29 
30 /*
31  * driver for accessing kernel devinfo tree.
32  */
33 #include <sys/types.h>
34 #include <sys/pathname.h>
35 #include <sys/debug.h>
36 #include <sys/autoconf.h>
37 #include <sys/vmsystm.h>
38 #include <sys/conf.h>
39 #include <sys/file.h>
40 #include <sys/kmem.h>
41 #include <sys/modctl.h>
42 #include <sys/stat.h>
43 #include <sys/ddi.h>
44 #include <sys/sunddi.h>
45 #include <sys/sunldi_impl.h>
46 #include <sys/sunndi.h>
47 #include <sys/esunddi.h>
48 #include <sys/sunmdi.h>
49 #include <sys/ddi_impldefs.h>
50 #include <sys/ndi_impldefs.h>
51 #include <sys/mdi_impldefs.h>
52 #include <sys/devinfo_impl.h>
53 #include <sys/thread.h>
54 #include <sys/modhash.h>
55 #include <sys/bitmap.h>
56 #include <util/qsort.h>
57 #include <sys/disp.h>
58 #include <sys/kobj.h>
59 #include <sys/crc32.h>
60 #include <sys/ddi_hp.h>
61 #include <sys/ddi_hp_impl.h>
62 #include <sys/sysmacros.h>
63 #include <sys/list.h>
64 
65 
66 #ifdef DEBUG
67 static int di_debug;
68 #define	dcmn_err(args) if (di_debug >= 1) cmn_err args
69 #define	dcmn_err2(args) if (di_debug >= 2) cmn_err args
70 #define	dcmn_err3(args) if (di_debug >= 3) cmn_err args
71 #else
72 #define	dcmn_err(args) /* nothing */
73 #define	dcmn_err2(args) /* nothing */
74 #define	dcmn_err3(args) /* nothing */
75 #endif
76 
77 /*
78  * We partition the space of devinfo minor nodes equally between the full and
79  * unprivileged versions of the driver.  The even-numbered minor nodes are the
80  * full version, while the odd-numbered ones are the read-only version.
81  */
82 static int di_max_opens = 32;
83 
84 static int di_prop_dyn = 1;		/* enable dynamic property support */
85 
86 #define	DI_FULL_PARENT		0
87 #define	DI_READONLY_PARENT	1
88 #define	DI_NODE_SPECIES		2
89 #define	DI_UNPRIVILEGED_NODE(x)	(((x) % 2) != 0)
90 
91 #define	IOC_IDLE	0	/* snapshot ioctl states */
92 #define	IOC_SNAP	1	/* snapshot in progress */
93 #define	IOC_DONE	2	/* snapshot done, but not copied out */
94 #define	IOC_COPY	3	/* copyout in progress */
95 
96 /*
97  * Keep max alignment so we can move snapshot to different platforms.
98  *
99  * NOTE: Most callers should rely on the di_checkmem return value
100  * being aligned, and reestablish *off_p with aligned value, instead
101  * of trying to align size of their allocations: this approach will
102  * minimize memory use.
103  */
104 #define	DI_ALIGN(addr)	((addr + 7l) & ~7l)
105 
106 /*
107  * To avoid wasting memory, make a linked list of memory chunks.
108  * Size of each chunk is buf_size.
109  */
110 struct di_mem {
111 	struct di_mem	*next;		/* link to next chunk */
112 	char		*buf;		/* contiguous kernel memory */
113 	size_t		buf_size;	/* size of buf in bytes */
114 	devmap_cookie_t	cook;		/* cookie from ddi_umem_alloc */
115 };
116 
117 /*
118  * This is a stack for walking the tree without using recursion.
119  * When the devinfo tree height is above some small size, one
120  * gets watchdog resets on sun4m.
121  */
122 struct di_stack {
123 	void		*offset[MAX_TREE_DEPTH];
124 	struct dev_info *dip[MAX_TREE_DEPTH];
125 	int		depth;	/* depth of current node to be copied */
126 };
127 
128 #define	TOP_OFFSET(stack)	\
129 	((di_off_t *)(stack)->offset[(stack)->depth - 1])
130 #define	TOP_NODE(stack)		\
131 	((stack)->dip[(stack)->depth - 1])
132 #define	PARENT_OFFSET(stack)	\
133 	((di_off_t *)(stack)->offset[(stack)->depth - 2])
134 #define	EMPTY_STACK(stack)	((stack)->depth == 0)
135 #define	POP_STACK(stack)	{ \
136 	ndi_devi_exit((dev_info_t *)TOP_NODE(stack)); \
137 	((stack)->depth--); \
138 }
139 #define	PUSH_STACK(stack, node, off_p)	{ \
140 	ASSERT(node != NULL); \
141 	ndi_devi_enter((dev_info_t *)node); \
142 	(stack)->dip[(stack)->depth] = (node); \
143 	(stack)->offset[(stack)->depth] = (void *)(off_p); \
144 	((stack)->depth)++; \
145 }
146 
147 #define	DI_ALL_PTR(s)	DI_ALL(di_mem_addr((s), 0))
148 
149 /*
150  * With devfs, the device tree has no global locks. The device tree is
151  * dynamic and dips may come and go if they are not locked locally. Under
152  * these conditions, pointers are no longer reliable as unique IDs.
153  * Specifically, these pointers cannot be used as keys for hash tables
154  * as the same devinfo structure may be freed in one part of the tree only
155  * to be allocated as the structure for a different device in another
156  * part of the tree. This can happen if DR and the snapshot are
157  * happening concurrently.
158  * The following data structures act as keys for devinfo nodes and
159  * pathinfo nodes.
160  */
161 
162 enum di_ktype {
163 	DI_DKEY = 1,
164 	DI_PKEY = 2
165 };
166 
167 struct di_dkey {
168 	dev_info_t	*dk_dip;
169 	major_t		dk_major;
170 	int		dk_inst;
171 	pnode_t		dk_nodeid;
172 };
173 
174 struct di_pkey {
175 	mdi_pathinfo_t	*pk_pip;
176 	char		*pk_path_addr;
177 	dev_info_t	*pk_client;
178 	dev_info_t	*pk_phci;
179 };
180 
181 struct di_key {
182 	enum di_ktype	k_type;
183 	union {
184 		struct di_dkey dkey;
185 		struct di_pkey pkey;
186 	} k_u;
187 };
188 
189 
190 struct i_lnode;
191 
192 typedef struct i_link {
193 	/*
194 	 * If a di_link struct representing this i_link struct makes it
195 	 * into the snapshot, then self will point to the offset of
196 	 * the di_link struct in the snapshot
197 	 */
198 	di_off_t	self;
199 
200 	int		spec_type;	/* block or char access type */
201 	struct i_lnode	*src_lnode;	/* src i_lnode */
202 	struct i_lnode	*tgt_lnode;	/* tgt i_lnode */
203 	struct i_link	*src_link_next;	/* next src i_link /w same i_lnode */
204 	struct i_link	*tgt_link_next;	/* next tgt i_link /w same i_lnode */
205 } i_link_t;
206 
207 typedef struct i_lnode {
208 	/*
209 	 * If a di_lnode struct representing this i_lnode struct makes it
210 	 * into the snapshot, then self will point to the offset of
211 	 * the di_lnode struct in the snapshot
212 	 */
213 	di_off_t	self;
214 
215 	/*
216 	 * used for hashing and comparing i_lnodes
217 	 */
218 	int		modid;
219 
220 	/*
221 	 * public information describing a link endpoint
222 	 */
223 	struct di_node	*di_node;	/* di_node in snapshot */
224 	dev_t		devt;		/* devt */
225 
226 	/*
227 	 * i_link ptr to links coming into this i_lnode node
228 	 * (this i_lnode is the target of these i_links)
229 	 */
230 	i_link_t	*link_in;
231 
232 	/*
233 	 * i_link ptr to links going out of this i_lnode node
234 	 * (this i_lnode is the source of these i_links)
235 	 */
236 	i_link_t	*link_out;
237 } i_lnode_t;
238 
239 typedef struct i_hp {
240 	di_off_t	hp_off;		/* Offset of di_hp_t in snapshot */
241 	dev_info_t	*hp_child;	/* Child devinfo node of the di_hp_t */
242 	list_node_t	hp_link;	/* List linkage */
243 } i_hp_t;
244 
245 /*
246  * Soft state associated with each instance of driver open.
247  */
248 static struct di_state {
249 	di_off_t	mem_size;	/* total # bytes in memlist */
250 	struct di_mem	*memlist;	/* head of memlist */
251 	uint_t		command;	/* command from ioctl */
252 	int		di_iocstate;	/* snapshot ioctl state	*/
253 	mod_hash_t	*reg_dip_hash;
254 	mod_hash_t	*reg_pip_hash;
255 	int		lnode_count;
256 	int		link_count;
257 
258 	mod_hash_t	*lnode_hash;
259 	mod_hash_t	*link_hash;
260 
261 	list_t		hp_list;
262 } **di_states;
263 
264 static kmutex_t di_lock;	/* serialize instance assignment */
265 
266 typedef enum {
267 	DI_QUIET = 0,	/* DI_QUIET must always be 0 */
268 	DI_ERR,
269 	DI_INFO,
270 	DI_TRACE,
271 	DI_TRACE1,
272 	DI_TRACE2
273 } di_cache_debug_t;
274 
275 static uint_t	di_chunk = 32;		/* I/O chunk size in pages */
276 
277 #define	DI_CACHE_LOCK(c)	(mutex_enter(&(c).cache_lock))
278 #define	DI_CACHE_UNLOCK(c)	(mutex_exit(&(c).cache_lock))
279 #define	DI_CACHE_LOCKED(c)	(mutex_owned(&(c).cache_lock))
280 
281 /*
282  * Check that whole device tree is being configured as a pre-condition for
283  * cleaning up /etc/devices files.
284  */
285 #define	DEVICES_FILES_CLEANABLE(st)	\
286 	(((st)->command & DINFOSUBTREE) && ((st)->command & DINFOFORCE) && \
287 	strcmp(DI_ALL_PTR(st)->root_path, "/") == 0)
288 
289 #define	CACHE_DEBUG(args)	\
290 	{ if (di_cache_debug != DI_QUIET) di_cache_print args; }
291 
292 typedef struct phci_walk_arg {
293 	di_off_t	off;
294 	struct di_state	*st;
295 } phci_walk_arg_t;
296 
297 static int di_open(dev_t *, int, int, cred_t *);
298 static int di_ioctl(dev_t, int, intptr_t, int, cred_t *, int *);
299 static int di_close(dev_t, int, int, cred_t *);
300 static int di_info(dev_info_t *, ddi_info_cmd_t, void *, void **);
301 static int di_attach(dev_info_t *, ddi_attach_cmd_t);
302 static int di_detach(dev_info_t *, ddi_detach_cmd_t);
303 
304 static di_off_t di_copyformat(di_off_t, struct di_state *, intptr_t, int);
305 static di_off_t di_snapshot_and_clean(struct di_state *);
306 static di_off_t di_copydevnm(di_off_t *, struct di_state *);
307 static di_off_t di_copytree(struct dev_info *, di_off_t *, struct di_state *);
308 static di_off_t di_copynode(struct dev_info *, struct di_stack *,
309     struct di_state *);
310 static di_off_t di_getmdata(struct ddi_minor_data *, di_off_t *, di_off_t,
311     struct di_state *);
312 static di_off_t di_getppdata(struct dev_info *, di_off_t *, struct di_state *);
313 static di_off_t di_getdpdata(struct dev_info *, di_off_t *, struct di_state *);
314 static di_off_t di_gethpdata(ddi_hp_cn_handle_t *, di_off_t *,
315     struct di_state *);
316 static di_off_t di_getprop(int, struct ddi_prop **, di_off_t *,
317     struct di_state *, struct dev_info *);
318 static void di_allocmem(struct di_state *, size_t);
319 static void di_freemem(struct di_state *);
320 static void di_copymem(struct di_state *st, caddr_t buf, size_t bufsiz);
321 static di_off_t di_checkmem(struct di_state *, di_off_t, size_t);
322 static void *di_mem_addr(struct di_state *, di_off_t);
323 static int di_setstate(struct di_state *, int);
324 static void di_register_dip(struct di_state *, dev_info_t *, di_off_t);
325 static void di_register_pip(struct di_state *, mdi_pathinfo_t *, di_off_t);
326 static di_off_t di_getpath_data(dev_info_t *, di_off_t *, di_off_t,
327     struct di_state *, int);
328 static di_off_t di_getlink_data(di_off_t, struct di_state *);
329 static int di_dip_find(struct di_state *st, dev_info_t *node, di_off_t *off_p);
330 
331 static int cache_args_valid(struct di_state *st, int *error);
332 static int snapshot_is_cacheable(struct di_state *st);
333 static int di_cache_lookup(struct di_state *st);
334 static int di_cache_update(struct di_state *st);
335 static void di_cache_print(di_cache_debug_t msglevel, char *fmt, ...);
336 static int build_vhci_list(dev_info_t *vh_devinfo, void *arg);
337 static int build_phci_list(dev_info_t *ph_devinfo, void *arg);
338 static void di_hotplug_children(struct di_state *st);
339 
340 extern int modrootloaded;
341 extern void mdi_walk_vhcis(int (*)(dev_info_t *, void *), void *);
342 extern void mdi_vhci_walk_phcis(dev_info_t *,
343 	int (*)(dev_info_t *, void *), void *);
344 
345 
346 static struct cb_ops di_cb_ops = {
347 	di_open,		/* open */
348 	di_close,		/* close */
349 	nodev,			/* strategy */
350 	nodev,			/* print */
351 	nodev,			/* dump */
352 	nodev,			/* read */
353 	nodev,			/* write */
354 	di_ioctl,		/* ioctl */
355 	nodev,			/* devmap */
356 	nodev,			/* mmap */
357 	nodev,			/* segmap */
358 	nochpoll,		/* poll */
359 	ddi_prop_op,		/* prop_op */
360 	NULL,			/* streamtab  */
361 	D_NEW | D_MP		/* Driver compatibility flag */
362 };
363 
364 static struct dev_ops di_ops = {
365 	DEVO_REV,		/* devo_rev, */
366 	0,			/* refcnt  */
367 	di_info,		/* info */
368 	nulldev,		/* identify */
369 	nulldev,		/* probe */
370 	di_attach,		/* attach */
371 	di_detach,		/* detach */
372 	nodev,			/* reset */
373 	&di_cb_ops,		/* driver operations */
374 	NULL			/* bus operations */
375 };
376 
377 /*
378  * Module linkage information for the kernel.
379  */
380 static struct modldrv modldrv = {
381 	&mod_driverops,
382 	"DEVINFO Driver",
383 	&di_ops
384 };
385 
386 static struct modlinkage modlinkage = {
387 	MODREV_1,
388 	&modldrv,
389 	NULL
390 };
391 
392 int
_init(void)393 _init(void)
394 {
395 	int	error;
396 
397 	mutex_init(&di_lock, NULL, MUTEX_DRIVER, NULL);
398 
399 	error = mod_install(&modlinkage);
400 	if (error != 0) {
401 		mutex_destroy(&di_lock);
402 		return (error);
403 	}
404 
405 	return (0);
406 }
407 
408 int
_info(struct modinfo * modinfop)409 _info(struct modinfo *modinfop)
410 {
411 	return (mod_info(&modlinkage, modinfop));
412 }
413 
414 int
_fini(void)415 _fini(void)
416 {
417 	int	error;
418 
419 	error = mod_remove(&modlinkage);
420 	if (error != 0) {
421 		return (error);
422 	}
423 
424 	mutex_destroy(&di_lock);
425 	return (0);
426 }
427 
428 static dev_info_t *di_dip;
429 
430 /*ARGSUSED*/
431 static int
di_info(dev_info_t * dip,ddi_info_cmd_t infocmd,void * arg,void ** result)432 di_info(dev_info_t *dip, ddi_info_cmd_t infocmd, void *arg, void **result)
433 {
434 	int	error = DDI_FAILURE;
435 
436 	switch (infocmd) {
437 	case DDI_INFO_DEVT2DEVINFO:
438 		*result = (void *)di_dip;
439 		error = DDI_SUCCESS;
440 		break;
441 	case DDI_INFO_DEVT2INSTANCE:
442 		/*
443 		 * All dev_t's map to the same, single instance.
444 		 */
445 		*result = (void *)0;
446 		error = DDI_SUCCESS;
447 		break;
448 	default:
449 		break;
450 	}
451 
452 	return (error);
453 }
454 
455 static int
di_attach(dev_info_t * dip,ddi_attach_cmd_t cmd)456 di_attach(dev_info_t *dip, ddi_attach_cmd_t cmd)
457 {
458 	int	error = DDI_FAILURE;
459 
460 	switch (cmd) {
461 	case DDI_ATTACH:
462 		di_states = kmem_zalloc(
463 		    di_max_opens * sizeof (struct di_state *), KM_SLEEP);
464 
465 		if (ddi_create_minor_node(dip, "devinfo", S_IFCHR,
466 		    DI_FULL_PARENT, DDI_PSEUDO, 0) == DDI_FAILURE ||
467 		    ddi_create_minor_node(dip, "devinfo,ro", S_IFCHR,
468 		    DI_READONLY_PARENT, DDI_PSEUDO, 0) == DDI_FAILURE) {
469 			kmem_free(di_states,
470 			    di_max_opens * sizeof (struct di_state *));
471 			ddi_remove_minor_node(dip, NULL);
472 			error = DDI_FAILURE;
473 		} else {
474 			di_dip = dip;
475 			ddi_report_dev(dip);
476 
477 			error = DDI_SUCCESS;
478 		}
479 		break;
480 	default:
481 		error = DDI_FAILURE;
482 		break;
483 	}
484 
485 	return (error);
486 }
487 
488 static int
di_detach(dev_info_t * dip,ddi_detach_cmd_t cmd)489 di_detach(dev_info_t *dip, ddi_detach_cmd_t cmd)
490 {
491 	int	error = DDI_FAILURE;
492 
493 	switch (cmd) {
494 	case DDI_DETACH:
495 		ddi_remove_minor_node(dip, NULL);
496 		di_dip = NULL;
497 		kmem_free(di_states, di_max_opens * sizeof (struct di_state *));
498 
499 		error = DDI_SUCCESS;
500 		break;
501 	default:
502 		error = DDI_FAILURE;
503 		break;
504 	}
505 
506 	return (error);
507 }
508 
509 /*
510  * Allow multiple opens by tweaking the dev_t such that it looks like each
511  * open is getting a different minor device.  Each minor gets a separate
512  * entry in the di_states[] table.  Based on the original minor number, we
513  * discriminate opens of the full and read-only nodes.  If all of the instances
514  * of the selected minor node are currently open, we return EAGAIN.
515  */
516 /*ARGSUSED*/
517 static int
di_open(dev_t * devp,int flag,int otyp,cred_t * credp)518 di_open(dev_t *devp, int flag, int otyp, cred_t *credp)
519 {
520 	int	m;
521 	minor_t	minor_parent = getminor(*devp);
522 
523 	if (minor_parent != DI_FULL_PARENT &&
524 	    minor_parent != DI_READONLY_PARENT)
525 		return (ENXIO);
526 
527 	mutex_enter(&di_lock);
528 
529 	for (m = minor_parent; m < di_max_opens; m += DI_NODE_SPECIES) {
530 		if (di_states[m] != NULL)
531 			continue;
532 
533 		di_states[m] = kmem_zalloc(sizeof (struct di_state), KM_SLEEP);
534 		break;	/* It's ours. */
535 	}
536 
537 	if (m >= di_max_opens) {
538 		/*
539 		 * maximum open instance for device reached
540 		 */
541 		mutex_exit(&di_lock);
542 		dcmn_err((CE_WARN, "devinfo: maximum devinfo open reached"));
543 		return (EAGAIN);
544 	}
545 	mutex_exit(&di_lock);
546 
547 	ASSERT(m < di_max_opens);
548 	*devp = makedevice(getmajor(*devp), (minor_t)(m + DI_NODE_SPECIES));
549 
550 	dcmn_err((CE_CONT, "di_open: thread = %p, assigned minor = %d\n",
551 	    (void *)curthread, m + DI_NODE_SPECIES));
552 
553 	return (0);
554 }
555 
556 /*ARGSUSED*/
557 static int
di_close(dev_t dev,int flag,int otype,cred_t * cred_p)558 di_close(dev_t dev, int flag, int otype, cred_t *cred_p)
559 {
560 	struct di_state	*st;
561 	int		m = (int)getminor(dev) - DI_NODE_SPECIES;
562 
563 	if (m < 0) {
564 		cmn_err(CE_WARN, "closing non-existent devinfo minor %d",
565 		    m + DI_NODE_SPECIES);
566 		return (ENXIO);
567 	}
568 
569 	st = di_states[m];
570 	ASSERT(m < di_max_opens && st != NULL);
571 
572 	di_freemem(st);
573 	kmem_free(st, sizeof (struct di_state));
574 
575 	/*
576 	 * empty slot in state table
577 	 */
578 	mutex_enter(&di_lock);
579 	di_states[m] = NULL;
580 	dcmn_err((CE_CONT, "di_close: thread = %p, assigned minor = %d\n",
581 	    (void *)curthread, m + DI_NODE_SPECIES));
582 	mutex_exit(&di_lock);
583 
584 	return (0);
585 }
586 
587 
588 /*ARGSUSED*/
589 static int
di_ioctl(dev_t dev,int cmd,intptr_t arg,int mode,cred_t * credp,int * rvalp)590 di_ioctl(dev_t dev, int cmd, intptr_t arg, int mode, cred_t *credp, int *rvalp)
591 {
592 	int		rv, error;
593 	di_off_t	off;
594 	struct di_all	*all;
595 	struct di_state	*st;
596 	int		m = (int)getminor(dev) - DI_NODE_SPECIES;
597 	major_t		i;
598 	char		*drv_name;
599 	size_t		map_size, size;
600 	struct di_mem	*dcp;
601 	int		ndi_flags;
602 
603 	if (m < 0 || m >= di_max_opens) {
604 		return (ENXIO);
605 	}
606 
607 	st = di_states[m];
608 	ASSERT(st != NULL);
609 
610 	dcmn_err2((CE_CONT, "di_ioctl: mode = %x, cmd = %x\n", mode, cmd));
611 
612 	switch (cmd) {
613 	case DINFOIDENT:
614 		/*
615 		 * This is called from di_init to verify that the driver
616 		 * opened is indeed devinfo. The purpose is to guard against
617 		 * sending ioctl to an unknown driver in case of an
618 		 * unresolved major number conflict during bfu.
619 		 */
620 		*rvalp = DI_MAGIC;
621 		return (0);
622 
623 	case DINFOLODRV:
624 		/*
625 		 * Hold an installed driver and return the result
626 		 */
627 		if (DI_UNPRIVILEGED_NODE(m)) {
628 			/*
629 			 * Only the fully enabled instances may issue
630 			 * DINFOLDDRV.
631 			 */
632 			return (EACCES);
633 		}
634 
635 		drv_name = kmem_alloc(MAXNAMELEN, KM_SLEEP);
636 		if (ddi_copyin((void *)arg, drv_name, MAXNAMELEN, mode) != 0) {
637 			kmem_free(drv_name, MAXNAMELEN);
638 			return (EFAULT);
639 		}
640 
641 		/*
642 		 * Some 3rd party driver's _init() walks the device tree,
643 		 * so we load the driver module before configuring driver.
644 		 */
645 		i = ddi_name_to_major(drv_name);
646 		if (ddi_hold_driver(i) == NULL) {
647 			kmem_free(drv_name, MAXNAMELEN);
648 			return (ENXIO);
649 		}
650 
651 		ndi_flags = NDI_DEVI_PERSIST | NDI_CONFIG | NDI_NO_EVENT;
652 
653 		/*
654 		 * i_ddi_load_drvconf() below will trigger a reprobe
655 		 * via reset_nexus_flags(). NDI_DRV_CONF_REPROBE isn't
656 		 * needed here.
657 		 */
658 		modunload_disable();
659 		(void) i_ddi_load_drvconf(i);
660 		(void) ndi_devi_config_driver(ddi_root_node(), ndi_flags, i);
661 		kmem_free(drv_name, MAXNAMELEN);
662 		ddi_rele_driver(i);
663 		rv = i_ddi_devs_attached(i);
664 		modunload_enable();
665 
666 		i_ddi_di_cache_invalidate();
667 
668 		return ((rv == DDI_SUCCESS)? 0 : ENXIO);
669 
670 	case DINFOUSRLD:
671 		/*
672 		 * The case for copying snapshot to userland
673 		 */
674 		if (di_setstate(st, IOC_COPY) == -1)
675 			return (EBUSY);
676 
677 		map_size = DI_ALL_PTR(st)->map_size;
678 		if (map_size == 0) {
679 			(void) di_setstate(st, IOC_DONE);
680 			return (EFAULT);
681 		}
682 
683 		/*
684 		 * copyout the snapshot
685 		 */
686 		map_size = (map_size + PAGEOFFSET) & PAGEMASK;
687 
688 		/*
689 		 * Return the map size, so caller may do a sanity
690 		 * check against the return value of snapshot ioctl()
691 		 */
692 		*rvalp = (int)map_size;
693 
694 		/*
695 		 * Copy one chunk at a time
696 		 */
697 		off = 0;
698 		dcp = st->memlist;
699 		while (map_size) {
700 			size = dcp->buf_size;
701 			if (map_size <= size) {
702 				size = map_size;
703 			}
704 
705 			if (ddi_copyout(di_mem_addr(st, off),
706 			    (void *)(arg + off), size, mode) != 0) {
707 				(void) di_setstate(st, IOC_DONE);
708 				return (EFAULT);
709 			}
710 
711 			map_size -= size;
712 			off += size;
713 			dcp = dcp->next;
714 		}
715 
716 		di_freemem(st);
717 		(void) di_setstate(st, IOC_IDLE);
718 		return (0);
719 
720 	default:
721 		if ((cmd & ~DIIOC_MASK) != DIIOC) {
722 			/*
723 			 * Invalid ioctl command
724 			 */
725 			return (ENOTTY);
726 		}
727 		/*
728 		 * take a snapshot
729 		 */
730 		st->command = cmd & DIIOC_MASK;
731 		/*FALLTHROUGH*/
732 	}
733 
734 	/*
735 	 * Obtain enough memory to hold header + rootpath.  We prevent kernel
736 	 * memory exhaustion by freeing any previously allocated snapshot and
737 	 * refusing the operation; otherwise we would be allowing ioctl(),
738 	 * ioctl(), ioctl(), ..., panic.
739 	 */
740 	if (di_setstate(st, IOC_SNAP) == -1)
741 		return (EBUSY);
742 
743 	/*
744 	 * Initial memlist always holds di_all and the root_path - and
745 	 * is at least a page and size.
746 	 */
747 	size = sizeof (struct di_all) +
748 	    sizeof (((struct dinfo_io *)(NULL))->root_path);
749 	if (size < PAGESIZE)
750 		size = PAGESIZE;
751 	off = di_checkmem(st, 0, size);
752 	all = DI_ALL_PTR(st);
753 	off += sizeof (struct di_all);		/* real length of di_all */
754 
755 	all->devcnt = devcnt;
756 	all->command = st->command;
757 	all->version = DI_SNAPSHOT_VERSION;
758 	all->top_vhci_devinfo = 0;		/* filled by build_vhci_list. */
759 
760 	/*
761 	 * Note the endianness in case we need to transport snapshot
762 	 * over the network.
763 	 */
764 #if defined(_LITTLE_ENDIAN)
765 	all->endianness = DI_LITTLE_ENDIAN;
766 #else
767 	all->endianness = DI_BIG_ENDIAN;
768 #endif
769 
770 	/* Copyin ioctl args, store in the snapshot. */
771 	if (copyinstr((void *)arg, all->req_path,
772 	    sizeof (((struct dinfo_io *)(NULL))->root_path), &size) != 0) {
773 		di_freemem(st);
774 		(void) di_setstate(st, IOC_IDLE);
775 		return (EFAULT);
776 	}
777 	(void) strcpy(all->root_path, all->req_path);
778 	off += size;				/* real length of root_path */
779 
780 	if ((st->command & DINFOCLEANUP) && !DEVICES_FILES_CLEANABLE(st)) {
781 		di_freemem(st);
782 		(void) di_setstate(st, IOC_IDLE);
783 		return (EINVAL);
784 	}
785 
786 	error = 0;
787 	if ((st->command & DINFOCACHE) && !cache_args_valid(st, &error)) {
788 		di_freemem(st);
789 		(void) di_setstate(st, IOC_IDLE);
790 		return (error);
791 	}
792 
793 	/*
794 	 * Only the fully enabled version may force load drivers or read
795 	 * the parent private data from a driver.
796 	 */
797 	if ((st->command & (DINFOPRIVDATA | DINFOFORCE)) != 0 &&
798 	    DI_UNPRIVILEGED_NODE(m)) {
799 		di_freemem(st);
800 		(void) di_setstate(st, IOC_IDLE);
801 		return (EACCES);
802 	}
803 
804 	/* Do we need private data? */
805 	if (st->command & DINFOPRIVDATA) {
806 		arg += sizeof (((struct dinfo_io *)(NULL))->root_path);
807 
808 #ifdef _MULTI_DATAMODEL
809 		switch (ddi_model_convert_from(mode & FMODELS)) {
810 		case DDI_MODEL_ILP32: {
811 			/*
812 			 * Cannot copy private data from 64-bit kernel
813 			 * to 32-bit app
814 			 */
815 			di_freemem(st);
816 			(void) di_setstate(st, IOC_IDLE);
817 			return (EINVAL);
818 		}
819 		case DDI_MODEL_NONE:
820 			if ((off = di_copyformat(off, st, arg, mode)) == 0) {
821 				di_freemem(st);
822 				(void) di_setstate(st, IOC_IDLE);
823 				return (EFAULT);
824 			}
825 			break;
826 		}
827 #else /* !_MULTI_DATAMODEL */
828 		if ((off = di_copyformat(off, st, arg, mode)) == 0) {
829 			di_freemem(st);
830 			(void) di_setstate(st, IOC_IDLE);
831 			return (EFAULT);
832 		}
833 #endif /* _MULTI_DATAMODEL */
834 	}
835 
836 	all->top_devinfo = DI_ALIGN(off);
837 
838 	/*
839 	 * For cache lookups we reallocate memory from scratch,
840 	 * so the value of "all" is no longer valid.
841 	 */
842 	all = NULL;
843 
844 	if (st->command & DINFOCACHE) {
845 		*rvalp = di_cache_lookup(st);
846 	} else if (snapshot_is_cacheable(st)) {
847 		DI_CACHE_LOCK(di_cache);
848 		*rvalp = di_cache_update(st);
849 		DI_CACHE_UNLOCK(di_cache);
850 	} else
851 		*rvalp = di_snapshot_and_clean(st);
852 
853 	if (*rvalp) {
854 		DI_ALL_PTR(st)->map_size = *rvalp;
855 		(void) di_setstate(st, IOC_DONE);
856 	} else {
857 		di_freemem(st);
858 		(void) di_setstate(st, IOC_IDLE);
859 	}
860 
861 	return (0);
862 }
863 
864 /*
865  * Get a chunk of memory >= size, for the snapshot
866  */
867 static void
di_allocmem(struct di_state * st,size_t size)868 di_allocmem(struct di_state *st, size_t size)
869 {
870 	struct di_mem	*mem = kmem_zalloc(sizeof (struct di_mem), KM_SLEEP);
871 
872 	/*
873 	 * Round up size to nearest power of 2. If it is less
874 	 * than st->mem_size, set it to st->mem_size (i.e.,
875 	 * the mem_size is doubled every time) to reduce the
876 	 * number of memory allocations.
877 	 */
878 	size_t tmp = 1;
879 	while (tmp < size) {
880 		tmp <<= 1;
881 	}
882 	size = (tmp > st->mem_size) ? tmp : st->mem_size;
883 
884 	mem->buf = ddi_umem_alloc(size, DDI_UMEM_SLEEP, &mem->cook);
885 	mem->buf_size = size;
886 
887 	dcmn_err2((CE_CONT, "di_allocmem: mem_size=%x\n", st->mem_size));
888 
889 	if (st->mem_size == 0) {	/* first chunk */
890 		st->memlist = mem;
891 	} else {
892 		/*
893 		 * locate end of linked list and add a chunk at the end
894 		 */
895 		struct di_mem *dcp = st->memlist;
896 		while (dcp->next != NULL) {
897 			dcp = dcp->next;
898 		}
899 
900 		dcp->next = mem;
901 	}
902 
903 	st->mem_size += size;
904 }
905 
906 /*
907  * Copy upto bufsiz bytes of the memlist to buf
908  */
909 static void
di_copymem(struct di_state * st,caddr_t buf,size_t bufsiz)910 di_copymem(struct di_state *st, caddr_t buf, size_t bufsiz)
911 {
912 	struct di_mem	*dcp;
913 	size_t		copysz;
914 
915 	if (st->mem_size == 0) {
916 		ASSERT(st->memlist == NULL);
917 		return;
918 	}
919 
920 	copysz = 0;
921 	for (dcp = st->memlist; dcp; dcp = dcp->next) {
922 
923 		ASSERT(bufsiz > 0);
924 
925 		if (bufsiz <= dcp->buf_size)
926 			copysz = bufsiz;
927 		else
928 			copysz = dcp->buf_size;
929 
930 		bcopy(dcp->buf, buf, copysz);
931 
932 		buf += copysz;
933 		bufsiz -= copysz;
934 
935 		if (bufsiz == 0)
936 			break;
937 	}
938 }
939 
940 /*
941  * Free all memory for the snapshot
942  */
943 static void
di_freemem(struct di_state * st)944 di_freemem(struct di_state *st)
945 {
946 	struct di_mem	*dcp, *tmp;
947 
948 	dcmn_err2((CE_CONT, "di_freemem\n"));
949 
950 	if (st->mem_size) {
951 		dcp = st->memlist;
952 		while (dcp) {	/* traverse the linked list */
953 			tmp = dcp;
954 			dcp = dcp->next;
955 			ddi_umem_free(tmp->cook);
956 			kmem_free(tmp, sizeof (struct di_mem));
957 		}
958 		st->mem_size = 0;
959 		st->memlist = NULL;
960 	}
961 
962 	ASSERT(st->mem_size == 0);
963 	ASSERT(st->memlist == NULL);
964 }
965 
966 /*
967  * Copies cached data to the di_state structure.
968  * Returns:
969  *	- size of data copied, on SUCCESS
970  *	- 0 on failure
971  */
972 static int
di_cache2mem(struct di_cache * cache,struct di_state * st)973 di_cache2mem(struct di_cache *cache, struct di_state *st)
974 {
975 	caddr_t	pa;
976 
977 	ASSERT(st->mem_size == 0);
978 	ASSERT(st->memlist == NULL);
979 	ASSERT(!servicing_interrupt());
980 	ASSERT(DI_CACHE_LOCKED(*cache));
981 
982 	if (cache->cache_size == 0) {
983 		ASSERT(cache->cache_data == NULL);
984 		CACHE_DEBUG((DI_ERR, "Empty cache. Skipping copy"));
985 		return (0);
986 	}
987 
988 	ASSERT(cache->cache_data);
989 
990 	di_allocmem(st, cache->cache_size);
991 
992 	pa = di_mem_addr(st, 0);
993 
994 	ASSERT(pa);
995 
996 	/*
997 	 * Verify that di_allocmem() allocates contiguous memory,
998 	 * so that it is safe to do straight bcopy()
999 	 */
1000 	ASSERT(st->memlist != NULL);
1001 	ASSERT(st->memlist->next == NULL);
1002 	bcopy(cache->cache_data, pa, cache->cache_size);
1003 
1004 	return (cache->cache_size);
1005 }
1006 
1007 /*
1008  * Copies a snapshot from di_state to the cache
1009  * Returns:
1010  *	- 0 on failure
1011  *	- size of copied data on success
1012  */
1013 static size_t
di_mem2cache(struct di_state * st,struct di_cache * cache)1014 di_mem2cache(struct di_state *st, struct di_cache *cache)
1015 {
1016 	size_t	map_size;
1017 
1018 	ASSERT(cache->cache_size == 0);
1019 	ASSERT(cache->cache_data == NULL);
1020 	ASSERT(!servicing_interrupt());
1021 	ASSERT(DI_CACHE_LOCKED(*cache));
1022 
1023 	if (st->mem_size == 0) {
1024 		ASSERT(st->memlist == NULL);
1025 		CACHE_DEBUG((DI_ERR, "Empty memlist. Skipping copy"));
1026 		return (0);
1027 	}
1028 
1029 	ASSERT(st->memlist);
1030 
1031 	/*
1032 	 * The size of the memory list may be much larger than the
1033 	 * size of valid data (map_size). Cache only the valid data
1034 	 */
1035 	map_size = DI_ALL_PTR(st)->map_size;
1036 	if (map_size == 0 || map_size < sizeof (struct di_all) ||
1037 	    map_size > st->mem_size) {
1038 		CACHE_DEBUG((DI_ERR, "cannot cache: bad size: 0x%x", map_size));
1039 		return (0);
1040 	}
1041 
1042 	cache->cache_data = kmem_alloc(map_size, KM_SLEEP);
1043 	cache->cache_size = map_size;
1044 	di_copymem(st, cache->cache_data, cache->cache_size);
1045 
1046 	return (map_size);
1047 }
1048 
1049 /*
1050  * Make sure there is at least "size" bytes memory left before
1051  * going on. Otherwise, start on a new chunk.
1052  */
1053 static di_off_t
di_checkmem(struct di_state * st,di_off_t off,size_t size)1054 di_checkmem(struct di_state *st, di_off_t off, size_t size)
1055 {
1056 	dcmn_err3((CE_CONT, "di_checkmem: off=%x size=%x\n",
1057 	    off, (int)size));
1058 
1059 	/*
1060 	 * di_checkmem() shouldn't be called with a size of zero.
1061 	 * But in case it is, we want to make sure we return a valid
1062 	 * offset within the memlist and not an offset that points us
1063 	 * at the end of the memlist.
1064 	 */
1065 	if (size == 0) {
1066 		dcmn_err((CE_WARN, "di_checkmem: invalid zero size used"));
1067 		size = 1;
1068 	}
1069 
1070 	off = DI_ALIGN(off);
1071 	if ((st->mem_size - off) < size) {
1072 		off = st->mem_size;
1073 		di_allocmem(st, size);
1074 	}
1075 
1076 	/* verify that return value is aligned */
1077 	ASSERT(off == DI_ALIGN(off));
1078 	return (off);
1079 }
1080 
1081 /*
1082  * Copy the private data format from ioctl arg.
1083  * On success, the ending offset is returned. On error 0 is returned.
1084  */
1085 static di_off_t
di_copyformat(di_off_t off,struct di_state * st,intptr_t arg,int mode)1086 di_copyformat(di_off_t off, struct di_state *st, intptr_t arg, int mode)
1087 {
1088 	di_off_t		size;
1089 	struct di_priv_data	*priv;
1090 	struct di_all		*all = DI_ALL_PTR(st);
1091 
1092 	dcmn_err2((CE_CONT, "di_copyformat: off=%x, arg=%p mode=%x\n",
1093 	    off, (void *)arg, mode));
1094 
1095 	/*
1096 	 * Copyin data and check version.
1097 	 * We only handle private data version 0.
1098 	 */
1099 	priv = kmem_alloc(sizeof (struct di_priv_data), KM_SLEEP);
1100 	if ((ddi_copyin((void *)arg, priv, sizeof (struct di_priv_data),
1101 	    mode) != 0) || (priv->version != DI_PRIVDATA_VERSION_0)) {
1102 		kmem_free(priv, sizeof (struct di_priv_data));
1103 		return (0);
1104 	}
1105 
1106 	/*
1107 	 * Save di_priv_data copied from userland in snapshot.
1108 	 */
1109 	all->pd_version = priv->version;
1110 	all->n_ppdata = priv->n_parent;
1111 	all->n_dpdata = priv->n_driver;
1112 
1113 	/*
1114 	 * copyin private data format, modify offset accordingly
1115 	 */
1116 	if (all->n_ppdata) {	/* parent private data format */
1117 		/*
1118 		 * check memory
1119 		 */
1120 		size = all->n_ppdata * sizeof (struct di_priv_format);
1121 		all->ppdata_format = off = di_checkmem(st, off, size);
1122 		if (ddi_copyin(priv->parent, di_mem_addr(st, off), size,
1123 		    mode) != 0) {
1124 			kmem_free(priv, sizeof (struct di_priv_data));
1125 			return (0);
1126 		}
1127 
1128 		off += size;
1129 	}
1130 
1131 	if (all->n_dpdata) {	/* driver private data format */
1132 		/*
1133 		 * check memory
1134 		 */
1135 		size = all->n_dpdata * sizeof (struct di_priv_format);
1136 		all->dpdata_format = off = di_checkmem(st, off, size);
1137 		if (ddi_copyin(priv->driver, di_mem_addr(st, off), size,
1138 		    mode) != 0) {
1139 			kmem_free(priv, sizeof (struct di_priv_data));
1140 			return (0);
1141 		}
1142 
1143 		off += size;
1144 	}
1145 
1146 	kmem_free(priv, sizeof (struct di_priv_data));
1147 	return (off);
1148 }
1149 
1150 /*
1151  * Return the real address based on the offset (off) within snapshot
1152  */
1153 static void *
di_mem_addr(struct di_state * st,di_off_t off)1154 di_mem_addr(struct di_state *st, di_off_t off)
1155 {
1156 	struct di_mem	*dcp = st->memlist;
1157 
1158 	dcmn_err3((CE_CONT, "di_mem_addr: dcp=%p off=%x\n",
1159 	    (void *)dcp, off));
1160 
1161 	ASSERT(off < st->mem_size);
1162 
1163 	while (off >= dcp->buf_size) {
1164 		off -= dcp->buf_size;
1165 		dcp = dcp->next;
1166 	}
1167 
1168 	dcmn_err3((CE_CONT, "di_mem_addr: new off=%x, return = %p\n",
1169 	    off, (void *)(dcp->buf + off)));
1170 
1171 	return (dcp->buf + off);
1172 }
1173 
1174 /*
1175  * Ideally we would use the whole key to derive the hash
1176  * value. However, the probability that two keys will
1177  * have the same dip (or pip) is very low, so
1178  * hashing by dip (or pip) pointer should suffice.
1179  */
1180 static uint_t
di_hash_byptr(void * arg,mod_hash_key_t key)1181 di_hash_byptr(void *arg, mod_hash_key_t key)
1182 {
1183 	struct di_key	*dik = key;
1184 	size_t		rshift;
1185 	void		*ptr;
1186 
1187 	ASSERT(arg == NULL);
1188 
1189 	switch (dik->k_type) {
1190 	case DI_DKEY:
1191 		ptr = dik->k_u.dkey.dk_dip;
1192 		rshift = highbit(sizeof (struct dev_info));
1193 		break;
1194 	case DI_PKEY:
1195 		ptr = dik->k_u.pkey.pk_pip;
1196 		rshift = highbit(sizeof (struct mdi_pathinfo));
1197 		break;
1198 	default:
1199 		panic("devinfo: unknown key type");
1200 		/*NOTREACHED*/
1201 	}
1202 	return (mod_hash_byptr((void *)rshift, ptr));
1203 }
1204 
1205 static void
di_key_dtor(mod_hash_key_t key)1206 di_key_dtor(mod_hash_key_t key)
1207 {
1208 	char		*path_addr;
1209 	struct di_key	*dik = key;
1210 
1211 	switch (dik->k_type) {
1212 	case DI_DKEY:
1213 		break;
1214 	case DI_PKEY:
1215 		path_addr = dik->k_u.pkey.pk_path_addr;
1216 		if (path_addr)
1217 			kmem_free(path_addr, strlen(path_addr) + 1);
1218 		break;
1219 	default:
1220 		panic("devinfo: unknown key type");
1221 		/*NOTREACHED*/
1222 	}
1223 
1224 	kmem_free(dik, sizeof (struct di_key));
1225 }
1226 
1227 static int
di_dkey_cmp(struct di_dkey * dk1,struct di_dkey * dk2)1228 di_dkey_cmp(struct di_dkey *dk1, struct di_dkey *dk2)
1229 {
1230 	if (dk1->dk_dip !=  dk2->dk_dip)
1231 		return (dk1->dk_dip > dk2->dk_dip ? 1 : -1);
1232 
1233 	if (dk1->dk_major != DDI_MAJOR_T_NONE &&
1234 	    dk2->dk_major != DDI_MAJOR_T_NONE) {
1235 		if (dk1->dk_major !=  dk2->dk_major)
1236 			return (dk1->dk_major > dk2->dk_major ? 1 : -1);
1237 
1238 		if (dk1->dk_inst !=  dk2->dk_inst)
1239 			return (dk1->dk_inst > dk2->dk_inst ? 1 : -1);
1240 	}
1241 
1242 	if (dk1->dk_nodeid != dk2->dk_nodeid)
1243 		return (dk1->dk_nodeid > dk2->dk_nodeid ? 1 : -1);
1244 
1245 	return (0);
1246 }
1247 
1248 static int
di_pkey_cmp(struct di_pkey * pk1,struct di_pkey * pk2)1249 di_pkey_cmp(struct di_pkey *pk1, struct di_pkey *pk2)
1250 {
1251 	char	*p1, *p2;
1252 	int	rv;
1253 
1254 	if (pk1->pk_pip !=  pk2->pk_pip)
1255 		return (pk1->pk_pip > pk2->pk_pip ? 1 : -1);
1256 
1257 	p1 = pk1->pk_path_addr;
1258 	p2 = pk2->pk_path_addr;
1259 
1260 	p1 = p1 ? p1 : "";
1261 	p2 = p2 ? p2 : "";
1262 
1263 	rv = strcmp(p1, p2);
1264 	if (rv)
1265 		return (rv > 0  ? 1 : -1);
1266 
1267 	if (pk1->pk_client !=  pk2->pk_client)
1268 		return (pk1->pk_client > pk2->pk_client ? 1 : -1);
1269 
1270 	if (pk1->pk_phci !=  pk2->pk_phci)
1271 		return (pk1->pk_phci > pk2->pk_phci ? 1 : -1);
1272 
1273 	return (0);
1274 }
1275 
1276 static int
di_key_cmp(mod_hash_key_t key1,mod_hash_key_t key2)1277 di_key_cmp(mod_hash_key_t key1, mod_hash_key_t key2)
1278 {
1279 	struct di_key	*dik1, *dik2;
1280 
1281 	dik1 = key1;
1282 	dik2 = key2;
1283 
1284 	if (dik1->k_type != dik2->k_type) {
1285 		panic("devinfo: mismatched keys");
1286 		/*NOTREACHED*/
1287 	}
1288 
1289 	switch (dik1->k_type) {
1290 	case DI_DKEY:
1291 		return (di_dkey_cmp(&(dik1->k_u.dkey), &(dik2->k_u.dkey)));
1292 	case DI_PKEY:
1293 		return (di_pkey_cmp(&(dik1->k_u.pkey), &(dik2->k_u.pkey)));
1294 	default:
1295 		panic("devinfo: unknown key type");
1296 		/*NOTREACHED*/
1297 	}
1298 }
1299 
1300 static void
di_copy_aliases(struct di_state * st,alias_pair_t * apair,di_off_t * offp)1301 di_copy_aliases(struct di_state *st, alias_pair_t *apair, di_off_t *offp)
1302 {
1303 	di_off_t		off;
1304 	struct di_all		*all = DI_ALL_PTR(st);
1305 	struct di_alias		*di_alias;
1306 	di_off_t		curroff;
1307 	dev_info_t		*currdip;
1308 	size_t			size;
1309 
1310 	currdip = NULL;
1311 	if (resolve_pathname(apair->pair_alias, &currdip, NULL, NULL) != 0) {
1312 		return;
1313 	}
1314 
1315 	if (di_dip_find(st, currdip, &curroff) != 0) {
1316 		ndi_rele_devi(currdip);
1317 		return;
1318 	}
1319 	ndi_rele_devi(currdip);
1320 
1321 	off = *offp;
1322 	size = sizeof (struct di_alias);
1323 	size += strlen(apair->pair_alias) + 1;
1324 	off = di_checkmem(st, off, size);
1325 	di_alias = DI_ALIAS(di_mem_addr(st, off));
1326 
1327 	di_alias->self = off;
1328 	di_alias->next = all->aliases;
1329 	all->aliases = off;
1330 	(void) strcpy(di_alias->alias, apair->pair_alias);
1331 	di_alias->curroff = curroff;
1332 
1333 	off += size;
1334 
1335 	*offp = off;
1336 }
1337 
1338 /*
1339  * This is the main function that takes a snapshot
1340  */
1341 static di_off_t
di_snapshot(struct di_state * st)1342 di_snapshot(struct di_state *st)
1343 {
1344 	di_off_t	off;
1345 	struct di_all	*all;
1346 	dev_info_t	*rootnode;
1347 	char		buf[80];
1348 	int		plen;
1349 	char		*path;
1350 	vnode_t		*vp;
1351 	int		i;
1352 
1353 	all = DI_ALL_PTR(st);
1354 	dcmn_err((CE_CONT, "Taking a snapshot of devinfo tree...\n"));
1355 
1356 	/*
1357 	 * Translate requested root path if an alias and snap-root != "/"
1358 	 */
1359 	if (ddi_aliases_present == B_TRUE && strcmp(all->root_path, "/") != 0) {
1360 		/* If there is no redirected alias, use root_path as is */
1361 		rootnode = ddi_alias_redirect(all->root_path);
1362 		if (rootnode) {
1363 			(void) ddi_pathname(rootnode, all->root_path);
1364 			goto got_root;
1365 		}
1366 	}
1367 
1368 	/*
1369 	 * Verify path before entrusting it to e_ddi_hold_devi_by_path because
1370 	 * some platforms have OBP bugs where executing the NDI_PROMNAME code
1371 	 * path against an invalid path results in panic.  The lookupnameat
1372 	 * is done relative to rootdir without a leading '/' on "devices/"
1373 	 * to force the lookup to occur in the global zone.
1374 	 */
1375 	plen = strlen("devices/") + strlen(all->root_path) + 1;
1376 	path = kmem_alloc(plen, KM_SLEEP);
1377 	(void) snprintf(path, plen, "devices/%s", all->root_path);
1378 	if (lookupnameat(path, UIO_SYSSPACE, FOLLOW, NULLVPP, &vp, rootdir)) {
1379 		dcmn_err((CE_CONT, "Devinfo node %s not found\n",
1380 		    all->root_path));
1381 		kmem_free(path, plen);
1382 		return (0);
1383 	}
1384 	kmem_free(path, plen);
1385 	VN_RELE(vp);
1386 
1387 	/*
1388 	 * Hold the devinfo node referred by the path.
1389 	 */
1390 	rootnode = e_ddi_hold_devi_by_path(all->root_path, 0);
1391 	if (rootnode == NULL) {
1392 		dcmn_err((CE_CONT, "Devinfo node %s not found\n",
1393 		    all->root_path));
1394 		return (0);
1395 	}
1396 
1397 got_root:
1398 	(void) snprintf(buf, sizeof (buf),
1399 	    "devinfo registered dips (statep=%p)", (void *)st);
1400 
1401 	st->reg_dip_hash = mod_hash_create_extended(buf, 64,
1402 	    di_key_dtor, mod_hash_null_valdtor, di_hash_byptr,
1403 	    NULL, di_key_cmp, KM_SLEEP);
1404 
1405 
1406 	(void) snprintf(buf, sizeof (buf),
1407 	    "devinfo registered pips (statep=%p)", (void *)st);
1408 
1409 	st->reg_pip_hash = mod_hash_create_extended(buf, 64,
1410 	    di_key_dtor, mod_hash_null_valdtor, di_hash_byptr,
1411 	    NULL, di_key_cmp, KM_SLEEP);
1412 
1413 	if (DINFOHP & st->command) {
1414 		list_create(&st->hp_list, sizeof (i_hp_t),
1415 		    offsetof(i_hp_t, hp_link));
1416 	}
1417 
1418 	/*
1419 	 * copy the device tree
1420 	 */
1421 	off = di_copytree(DEVI(rootnode), &all->top_devinfo, st);
1422 
1423 	if (DINFOPATH & st->command) {
1424 		mdi_walk_vhcis(build_vhci_list, st);
1425 	}
1426 
1427 	if (DINFOHP & st->command) {
1428 		di_hotplug_children(st);
1429 	}
1430 
1431 	ddi_release_devi(rootnode);
1432 
1433 	/*
1434 	 * copy the devnames array
1435 	 */
1436 	all->devnames = off;
1437 	off = di_copydevnm(&all->devnames, st);
1438 
1439 
1440 	/* initialize the hash tables */
1441 	st->lnode_count = 0;
1442 	st->link_count = 0;
1443 
1444 	if (DINFOLYR & st->command) {
1445 		off = di_getlink_data(off, st);
1446 	}
1447 
1448 	all->aliases = 0;
1449 	if (ddi_aliases_present == B_FALSE)
1450 		goto done;
1451 
1452 	for (i = 0; i < ddi_aliases.dali_num_pairs; i++) {
1453 		di_copy_aliases(st, &(ddi_aliases.dali_alias_pairs[i]), &off);
1454 	}
1455 
1456 done:
1457 	/*
1458 	 * Free up hash tables
1459 	 */
1460 	mod_hash_destroy_hash(st->reg_dip_hash);
1461 	mod_hash_destroy_hash(st->reg_pip_hash);
1462 
1463 	/*
1464 	 * Record the timestamp now that we are done with snapshot.
1465 	 *
1466 	 * We compute the checksum later and then only if we cache
1467 	 * the snapshot, since checksumming adds some overhead.
1468 	 * The checksum is checked later if we read the cache file.
1469 	 * from disk.
1470 	 *
1471 	 * Set checksum field to 0 as CRC is calculated with that
1472 	 * field set to 0.
1473 	 */
1474 	all->snapshot_time = ddi_get_time();
1475 	all->cache_checksum = 0;
1476 
1477 	ASSERT(all->snapshot_time != 0);
1478 
1479 	return (off);
1480 }
1481 
1482 /*
1483  * Take a snapshot and clean /etc/devices files if DINFOCLEANUP is set
1484  */
1485 static di_off_t
di_snapshot_and_clean(struct di_state * st)1486 di_snapshot_and_clean(struct di_state *st)
1487 {
1488 	di_off_t	off;
1489 
1490 	modunload_disable();
1491 	off = di_snapshot(st);
1492 	if (off != 0 && (st->command & DINFOCLEANUP)) {
1493 		ASSERT(DEVICES_FILES_CLEANABLE(st));
1494 		/*
1495 		 * Cleanup /etc/devices files:
1496 		 * In order to accurately account for the system configuration
1497 		 * in /etc/devices files, the appropriate drivers must be
1498 		 * fully configured before the cleanup starts.
1499 		 * So enable modunload only after the cleanup.
1500 		 */
1501 		i_ddi_clean_devices_files();
1502 		/*
1503 		 * Remove backing store nodes for unused devices,
1504 		 * which retain past permissions customizations
1505 		 * and may be undesired for newly configured devices.
1506 		 */
1507 		dev_devices_cleanup();
1508 	}
1509 	modunload_enable();
1510 
1511 	return (off);
1512 }
1513 
1514 /*
1515  * construct vhci linkage in the snapshot.
1516  */
1517 static int
build_vhci_list(dev_info_t * vh_devinfo,void * arg)1518 build_vhci_list(dev_info_t *vh_devinfo, void *arg)
1519 {
1520 	struct di_all	*all;
1521 	struct di_node	*me;
1522 	struct di_state	*st;
1523 	di_off_t	off;
1524 	phci_walk_arg_t	pwa;
1525 
1526 	dcmn_err3((CE_CONT, "build_vhci list\n"));
1527 
1528 	dcmn_err3((CE_CONT, "vhci node %s%d\n",
1529 	    ddi_driver_name(vh_devinfo), ddi_get_instance(vh_devinfo)));
1530 
1531 	st = (struct di_state *)arg;
1532 	if (di_dip_find(st, vh_devinfo, &off) != 0) {
1533 		dcmn_err((CE_WARN, "di_dip_find error for the given node\n"));
1534 		return (DDI_WALK_TERMINATE);
1535 	}
1536 
1537 	dcmn_err3((CE_CONT, "st->mem_size: %d vh_devinfo off: 0x%x\n",
1538 	    st->mem_size, off));
1539 
1540 	all = DI_ALL_PTR(st);
1541 	if (all->top_vhci_devinfo == 0) {
1542 		all->top_vhci_devinfo = off;
1543 	} else {
1544 		me = DI_NODE(di_mem_addr(st, all->top_vhci_devinfo));
1545 
1546 		while (me->next_vhci != 0) {
1547 			me = DI_NODE(di_mem_addr(st, me->next_vhci));
1548 		}
1549 
1550 		me->next_vhci = off;
1551 	}
1552 
1553 	pwa.off = off;
1554 	pwa.st = st;
1555 	mdi_vhci_walk_phcis(vh_devinfo, build_phci_list, &pwa);
1556 
1557 	return (DDI_WALK_CONTINUE);
1558 }
1559 
1560 /*
1561  * construct phci linkage for the given vhci in the snapshot.
1562  */
1563 static int
build_phci_list(dev_info_t * ph_devinfo,void * arg)1564 build_phci_list(dev_info_t *ph_devinfo, void *arg)
1565 {
1566 	struct di_node	*vh_di_node;
1567 	struct di_node	*me;
1568 	phci_walk_arg_t	*pwa;
1569 	di_off_t	off;
1570 
1571 	pwa = (phci_walk_arg_t *)arg;
1572 
1573 	dcmn_err3((CE_CONT, "build_phci list for vhci at offset: 0x%x\n",
1574 	    pwa->off));
1575 
1576 	vh_di_node = DI_NODE(di_mem_addr(pwa->st, pwa->off));
1577 	if (di_dip_find(pwa->st, ph_devinfo, &off) != 0) {
1578 		dcmn_err((CE_WARN, "di_dip_find error for the given node\n"));
1579 		return (DDI_WALK_TERMINATE);
1580 	}
1581 
1582 	dcmn_err3((CE_CONT, "phci node %s%d, at offset 0x%x\n",
1583 	    ddi_driver_name(ph_devinfo), ddi_get_instance(ph_devinfo), off));
1584 
1585 	if (vh_di_node->top_phci == 0) {
1586 		vh_di_node->top_phci = off;
1587 		return (DDI_WALK_CONTINUE);
1588 	}
1589 
1590 	me = DI_NODE(di_mem_addr(pwa->st, vh_di_node->top_phci));
1591 
1592 	while (me->next_phci != 0) {
1593 		me = DI_NODE(di_mem_addr(pwa->st, me->next_phci));
1594 	}
1595 	me->next_phci = off;
1596 
1597 	return (DDI_WALK_CONTINUE);
1598 }
1599 
1600 /*
1601  * Assumes all devinfo nodes in device tree have been snapshotted
1602  */
1603 static void
snap_driver_list(struct di_state * st,struct devnames * dnp,di_off_t * off_p)1604 snap_driver_list(struct di_state *st, struct devnames *dnp, di_off_t *off_p)
1605 {
1606 	struct dev_info	*node;
1607 	struct di_node	*me;
1608 	di_off_t	off;
1609 
1610 	ASSERT(mutex_owned(&dnp->dn_lock));
1611 
1612 	node = DEVI(dnp->dn_head);
1613 	for (; node; node = node->devi_next) {
1614 		if (di_dip_find(st, (dev_info_t *)node, &off) != 0)
1615 			continue;
1616 
1617 		ASSERT(off > 0);
1618 		me = DI_NODE(di_mem_addr(st, off));
1619 		ASSERT(me->next == 0 || me->next == -1);
1620 		/*
1621 		 * Only nodes which were BOUND when they were
1622 		 * snapshotted will be added to per-driver list.
1623 		 */
1624 		if (me->next != -1)
1625 			continue;
1626 
1627 		*off_p = off;
1628 		off_p = &me->next;
1629 	}
1630 
1631 	*off_p = 0;
1632 }
1633 
1634 /*
1635  * Copy the devnames array, so we have a list of drivers in the snapshot.
1636  * Also makes it possible to locate the per-driver devinfo nodes.
1637  */
1638 static di_off_t
di_copydevnm(di_off_t * off_p,struct di_state * st)1639 di_copydevnm(di_off_t *off_p, struct di_state *st)
1640 {
1641 	int		i;
1642 	di_off_t	off;
1643 	size_t		size;
1644 	struct di_devnm	*dnp;
1645 
1646 	dcmn_err2((CE_CONT, "di_copydevnm: *off_p = %p\n", (void *)off_p));
1647 
1648 	/*
1649 	 * make sure there is some allocated memory
1650 	 */
1651 	size = devcnt * sizeof (struct di_devnm);
1652 	*off_p = off = di_checkmem(st, *off_p, size);
1653 	dnp = DI_DEVNM(di_mem_addr(st, off));
1654 	off += size;
1655 
1656 	dcmn_err((CE_CONT, "Start copying devnamesp[%d] at offset 0x%x\n",
1657 	    devcnt, off));
1658 
1659 	for (i = 0; i < devcnt; i++) {
1660 		if (devnamesp[i].dn_name == NULL) {
1661 			continue;
1662 		}
1663 
1664 		/*
1665 		 * dn_name is not freed during driver unload or removal.
1666 		 *
1667 		 * There is a race condition when make_devname() changes
1668 		 * dn_name during our strcpy. This should be rare since
1669 		 * only add_drv does this. At any rate, we never had a
1670 		 * problem with ddi_name_to_major(), which should have
1671 		 * the same problem.
1672 		 */
1673 		dcmn_err2((CE_CONT, "di_copydevnm: %s%d, off=%x\n",
1674 		    devnamesp[i].dn_name, devnamesp[i].dn_instance, off));
1675 
1676 		size = strlen(devnamesp[i].dn_name) + 1;
1677 		dnp[i].name = off = di_checkmem(st, off, size);
1678 		(void) strcpy((char *)di_mem_addr(st, off),
1679 		    devnamesp[i].dn_name);
1680 		off += size;
1681 
1682 		mutex_enter(&devnamesp[i].dn_lock);
1683 
1684 		/*
1685 		 * Snapshot per-driver node list
1686 		 */
1687 		snap_driver_list(st, &devnamesp[i], &dnp[i].head);
1688 
1689 		/*
1690 		 * This is not used by libdevinfo, leave it for now
1691 		 */
1692 		dnp[i].flags = devnamesp[i].dn_flags;
1693 		dnp[i].instance = devnamesp[i].dn_instance;
1694 
1695 		/*
1696 		 * get global properties
1697 		 */
1698 		if ((DINFOPROP & st->command) &&
1699 		    devnamesp[i].dn_global_prop_ptr) {
1700 			dnp[i].global_prop = off;
1701 			off = di_getprop(DI_PROP_GLB_LIST,
1702 			    &devnamesp[i].dn_global_prop_ptr->prop_list,
1703 			    &dnp[i].global_prop, st, NULL);
1704 		}
1705 
1706 		/*
1707 		 * Bit encode driver ops: & bus_ops, cb_ops, & cb_ops->cb_str
1708 		 */
1709 		if (CB_DRV_INSTALLED(devopsp[i])) {
1710 			if (devopsp[i]->devo_cb_ops) {
1711 				dnp[i].ops |= DI_CB_OPS;
1712 				if (devopsp[i]->devo_cb_ops->cb_str)
1713 					dnp[i].ops |= DI_STREAM_OPS;
1714 			}
1715 			if (NEXUS_DRV(devopsp[i])) {
1716 				dnp[i].ops |= DI_BUS_OPS;
1717 			}
1718 		}
1719 
1720 		mutex_exit(&devnamesp[i].dn_lock);
1721 	}
1722 
1723 	dcmn_err((CE_CONT, "End copying devnamesp at offset 0x%x\n", off));
1724 
1725 	return (off);
1726 }
1727 
1728 /*
1729  * Copy the kernel devinfo tree. The tree and the devnames array forms
1730  * the entire snapshot (see also di_copydevnm).
1731  */
1732 static di_off_t
di_copytree(struct dev_info * root,di_off_t * off_p,struct di_state * st)1733 di_copytree(struct dev_info *root, di_off_t *off_p, struct di_state *st)
1734 {
1735 	di_off_t	off;
1736 	struct dev_info	*node;
1737 	struct di_stack	*dsp = kmem_zalloc(sizeof (struct di_stack), KM_SLEEP);
1738 
1739 	dcmn_err((CE_CONT, "di_copytree: root = %p, *off_p = %x\n",
1740 	    (void *)root, *off_p));
1741 
1742 	/* force attach drivers */
1743 	if (i_ddi_devi_attached((dev_info_t *)root) &&
1744 	    (st->command & DINFOSUBTREE) && (st->command & DINFOFORCE)) {
1745 		(void) ndi_devi_config((dev_info_t *)root,
1746 		    NDI_CONFIG | NDI_DEVI_PERSIST | NDI_NO_EVENT |
1747 		    NDI_DRV_CONF_REPROBE);
1748 	}
1749 
1750 	/*
1751 	 * Push top_devinfo onto a stack
1752 	 *
1753 	 * The stack is necessary to avoid recursion, which can overrun
1754 	 * the kernel stack.
1755 	 */
1756 	PUSH_STACK(dsp, root, off_p);
1757 
1758 	/*
1759 	 * As long as there is a node on the stack, copy the node.
1760 	 * di_copynode() is responsible for pushing and popping
1761 	 * child and sibling nodes on the stack.
1762 	 */
1763 	while (!EMPTY_STACK(dsp)) {
1764 		node = TOP_NODE(dsp);
1765 		off = di_copynode(node, dsp, st);
1766 	}
1767 
1768 	/*
1769 	 * Free the stack structure
1770 	 */
1771 	kmem_free(dsp, sizeof (struct di_stack));
1772 
1773 	return (off);
1774 }
1775 
1776 /*
1777  * This is the core function, which copies all data associated with a single
1778  * node into the snapshot. The amount of information is determined by the
1779  * ioctl command.
1780  */
1781 static di_off_t
di_copynode(struct dev_info * node,struct di_stack * dsp,struct di_state * st)1782 di_copynode(struct dev_info *node, struct di_stack *dsp, struct di_state *st)
1783 {
1784 	di_off_t	off;
1785 	struct di_node	*me;
1786 	size_t		size;
1787 	struct dev_info *n;
1788 
1789 	dcmn_err2((CE_CONT, "di_copynode: depth = %x\n", dsp->depth));
1790 	ASSERT((node != NULL) && (node == TOP_NODE(dsp)));
1791 
1792 	/*
1793 	 * check memory usage, and fix offsets accordingly.
1794 	 */
1795 	size = sizeof (struct di_node);
1796 	*(TOP_OFFSET(dsp)) = off = di_checkmem(st, *(TOP_OFFSET(dsp)), size);
1797 	me = DI_NODE(di_mem_addr(st, off));
1798 	me->self = off;
1799 	off += size;
1800 
1801 	dcmn_err((CE_CONT, "copy node %s, instance #%d, at offset 0x%x\n",
1802 	    node->devi_node_name, node->devi_instance, off));
1803 
1804 	/*
1805 	 * Node parameters:
1806 	 * self		-- offset of current node within snapshot
1807 	 * nodeid	-- pointer to PROM node (tri-valued)
1808 	 * state	-- hot plugging device state
1809 	 * node_state	-- devinfo node state
1810 	 */
1811 	me->instance = node->devi_instance;
1812 	me->nodeid = node->devi_nodeid;
1813 	me->node_class = node->devi_node_class;
1814 	me->attributes = node->devi_node_attributes;
1815 	me->state = node->devi_state;
1816 	me->flags = node->devi_flags;
1817 	me->node_state = node->devi_node_state;
1818 	me->next_vhci = 0;		/* Filled up by build_vhci_list. */
1819 	me->top_phci = 0;		/* Filled up by build_phci_list. */
1820 	me->next_phci = 0;		/* Filled up by build_phci_list. */
1821 	me->multipath_component = MULTIPATH_COMPONENT_NONE; /* set default. */
1822 	me->user_private_data = 0;
1823 
1824 	/*
1825 	 * Get parent's offset in snapshot from the stack
1826 	 * and store it in the current node
1827 	 */
1828 	if (dsp->depth > 1) {
1829 		me->parent = *(PARENT_OFFSET(dsp));
1830 	}
1831 
1832 	/*
1833 	 * Save the offset of this di_node in a hash table.
1834 	 * This is used later to resolve references to this
1835 	 * dip from other parts of the tree (per-driver list,
1836 	 * multipathing linkages, layered usage linkages).
1837 	 * The key used for the hash table is derived from
1838 	 * information in the dip.
1839 	 */
1840 	di_register_dip(st, (dev_info_t *)node, me->self);
1841 
1842 #ifdef	DEVID_COMPATIBILITY
1843 	/* check for devid as property marker */
1844 	if (node->devi_devid_str) {
1845 		ddi_devid_t	devid;
1846 
1847 		/*
1848 		 * The devid is now represented as a property. For
1849 		 * compatibility with di_devid() interface in libdevinfo we
1850 		 * must return it as a binary structure in the snapshot. When
1851 		 * (if) di_devid() is removed from libdevinfo then the code
1852 		 * related to DEVID_COMPATIBILITY can be removed.
1853 		 */
1854 		if (ddi_devid_str_decode(node->devi_devid_str, &devid, NULL) ==
1855 		    DDI_SUCCESS) {
1856 			size = ddi_devid_sizeof(devid);
1857 			off = di_checkmem(st, off, size);
1858 			me->devid = off;
1859 			bcopy(devid, di_mem_addr(st, off), size);
1860 			off += size;
1861 			ddi_devid_free(devid);
1862 		}
1863 	}
1864 #endif	/* DEVID_COMPATIBILITY */
1865 
1866 	if (node->devi_node_name) {
1867 		size = strlen(node->devi_node_name) + 1;
1868 		me->node_name = off = di_checkmem(st, off, size);
1869 		(void) strcpy(di_mem_addr(st, off), node->devi_node_name);
1870 		off += size;
1871 	}
1872 
1873 	if (node->devi_compat_names && (node->devi_compat_length > 1)) {
1874 		size = node->devi_compat_length;
1875 		me->compat_names = off = di_checkmem(st, off, size);
1876 		me->compat_length = (int)size;
1877 		bcopy(node->devi_compat_names, di_mem_addr(st, off), size);
1878 		off += size;
1879 	}
1880 
1881 	if (node->devi_addr) {
1882 		size = strlen(node->devi_addr) + 1;
1883 		me->address = off = di_checkmem(st, off, size);
1884 		(void) strcpy(di_mem_addr(st, off), node->devi_addr);
1885 		off += size;
1886 	}
1887 
1888 	if (node->devi_binding_name) {
1889 		size = strlen(node->devi_binding_name) + 1;
1890 		me->bind_name = off = di_checkmem(st, off, size);
1891 		(void) strcpy(di_mem_addr(st, off), node->devi_binding_name);
1892 		off += size;
1893 	}
1894 
1895 	me->drv_major = node->devi_major;
1896 
1897 	/*
1898 	 * If the dip is BOUND, set the next pointer of the
1899 	 * per-instance list to -1, indicating that it is yet to be resolved.
1900 	 * This will be resolved later in snap_driver_list().
1901 	 */
1902 	if (me->drv_major != -1) {
1903 		me->next = -1;
1904 	} else {
1905 		me->next = 0;
1906 	}
1907 
1908 	/*
1909 	 * An optimization to skip mutex_enter when not needed.
1910 	 */
1911 	if (!((DINFOMINOR | DINFOPROP | DINFOPATH | DINFOHP) & st->command)) {
1912 		goto priv_data;
1913 	}
1914 
1915 	/*
1916 	 * LOCKING: We already have an active ndi_devi_enter to gather the
1917 	 * minor data, and we will take devi_lock to gather properties as
1918 	 * needed off di_getprop.
1919 	 */
1920 	if (!(DINFOMINOR & st->command)) {
1921 		goto path;
1922 	}
1923 
1924 	ASSERT(DEVI_BUSY_OWNED(node));
1925 	if (node->devi_minor) {		/* minor data */
1926 		me->minor_data = off;
1927 		off = di_getmdata(node->devi_minor, &me->minor_data,
1928 		    me->self, st);
1929 	}
1930 
1931 path:
1932 	if (!(DINFOPATH & st->command)) {
1933 		goto property;
1934 	}
1935 
1936 	if (MDI_VHCI(node)) {
1937 		me->multipath_component = MULTIPATH_COMPONENT_VHCI;
1938 	}
1939 
1940 	if (MDI_CLIENT(node)) {
1941 		me->multipath_component = MULTIPATH_COMPONENT_CLIENT;
1942 		me->multipath_client = off;
1943 		off = di_getpath_data((dev_info_t *)node, &me->multipath_client,
1944 		    me->self, st, 1);
1945 		dcmn_err((CE_WARN, "me->multipath_client = %x for node %p "
1946 		    "component type = %d.  off=%d",
1947 		    me->multipath_client,
1948 		    (void *)node, node->devi_mdi_component, off));
1949 	}
1950 
1951 	if (MDI_PHCI(node)) {
1952 		me->multipath_component = MULTIPATH_COMPONENT_PHCI;
1953 		me->multipath_phci = off;
1954 		off = di_getpath_data((dev_info_t *)node, &me->multipath_phci,
1955 		    me->self, st, 0);
1956 		dcmn_err((CE_WARN, "me->multipath_phci = %x for node %p "
1957 		    "component type = %d.  off=%d",
1958 		    me->multipath_phci,
1959 		    (void *)node, node->devi_mdi_component, off));
1960 	}
1961 
1962 property:
1963 	if (!(DINFOPROP & st->command)) {
1964 		goto hotplug_data;
1965 	}
1966 
1967 	if (node->devi_drv_prop_ptr) {	/* driver property list */
1968 		me->drv_prop = off;
1969 		off = di_getprop(DI_PROP_DRV_LIST, &node->devi_drv_prop_ptr,
1970 		    &me->drv_prop, st, node);
1971 	}
1972 
1973 	if (node->devi_sys_prop_ptr) {	/* system property list */
1974 		me->sys_prop = off;
1975 		off = di_getprop(DI_PROP_SYS_LIST, &node->devi_sys_prop_ptr,
1976 		    &me->sys_prop, st, node);
1977 	}
1978 
1979 	if (node->devi_hw_prop_ptr) {	/* hardware property list */
1980 		me->hw_prop = off;
1981 		off = di_getprop(DI_PROP_HW_LIST, &node->devi_hw_prop_ptr,
1982 		    &me->hw_prop, st, node);
1983 	}
1984 
1985 	if (node->devi_global_prop_list == NULL) {
1986 		me->glob_prop = (di_off_t)-1;	/* not global property */
1987 	} else {
1988 		/*
1989 		 * Make copy of global property list if this devinfo refers
1990 		 * global properties different from what's on the devnames
1991 		 * array. It can happen if there has been a forced
1992 		 * driver.conf update. See update_drv(8).
1993 		 */
1994 		ASSERT(me->drv_major != -1);
1995 		if (node->devi_global_prop_list !=
1996 		    devnamesp[me->drv_major].dn_global_prop_ptr) {
1997 			me->glob_prop = off;
1998 			off = di_getprop(DI_PROP_GLB_LIST,
1999 			    &node->devi_global_prop_list->prop_list,
2000 			    &me->glob_prop, st, node);
2001 		}
2002 	}
2003 
2004 hotplug_data:
2005 	if (!(DINFOHP & st->command)) {
2006 		goto priv_data;
2007 	}
2008 
2009 	if (node->devi_hp_hdlp) {	/* hotplug data */
2010 		me->hp_data = off;
2011 		off = di_gethpdata(node->devi_hp_hdlp, &me->hp_data, st);
2012 	}
2013 
2014 priv_data:
2015 	if (!(DINFOPRIVDATA & st->command)) {
2016 		goto pm_info;
2017 	}
2018 
2019 	if (ddi_get_parent_data((dev_info_t *)node) != NULL) {
2020 		me->parent_data = off;
2021 		off = di_getppdata(node, &me->parent_data, st);
2022 	}
2023 
2024 	if (ddi_get_driver_private((dev_info_t *)node) != NULL) {
2025 		me->driver_data = off;
2026 		off = di_getdpdata(node, &me->driver_data, st);
2027 	}
2028 
2029 pm_info: /* NOT implemented */
2030 
2031 	/* keep the stack aligned */
2032 	off = DI_ALIGN(off);
2033 
2034 	if (!(DINFOSUBTREE & st->command)) {
2035 		POP_STACK(dsp);
2036 		return (off);
2037 	}
2038 
2039 	/*
2040 	 * If there is a visible child--push child onto stack.
2041 	 * Hold the parent (me) busy while doing so.
2042 	 */
2043 	if ((n = node->devi_child) != NULL) {
2044 		/* skip hidden nodes */
2045 		while (n && ndi_dev_is_hidden_node((dev_info_t *)n))
2046 			n = n->devi_sibling;
2047 		if (n) {
2048 			me->child = off;
2049 			PUSH_STACK(dsp, n, &me->child);
2050 			return (me->child);
2051 		}
2052 	}
2053 
2054 	/*
2055 	 * Done with any child nodes, unroll the stack till a visible
2056 	 * sibling of a parent node is found or root node is reached.
2057 	 */
2058 	POP_STACK(dsp);
2059 	while (!EMPTY_STACK(dsp)) {
2060 		if ((n = node->devi_sibling) != NULL) {
2061 			/* skip hidden nodes */
2062 			while (n && ndi_dev_is_hidden_node((dev_info_t *)n))
2063 				n = n->devi_sibling;
2064 			if (n) {
2065 				me->sibling = DI_ALIGN(off);
2066 				PUSH_STACK(dsp, n, &me->sibling);
2067 				return (me->sibling);
2068 			}
2069 		}
2070 		node = TOP_NODE(dsp);
2071 		me = DI_NODE(di_mem_addr(st, *(TOP_OFFSET(dsp))));
2072 		POP_STACK(dsp);
2073 	}
2074 
2075 	/*
2076 	 * DONE with all nodes
2077 	 */
2078 	return (off);
2079 }
2080 
2081 static i_lnode_t *
i_lnode_alloc(int modid)2082 i_lnode_alloc(int modid)
2083 {
2084 	i_lnode_t	*i_lnode;
2085 
2086 	i_lnode = kmem_zalloc(sizeof (i_lnode_t), KM_SLEEP);
2087 
2088 	ASSERT(modid != -1);
2089 	i_lnode->modid = modid;
2090 
2091 	return (i_lnode);
2092 }
2093 
2094 static void
i_lnode_free(i_lnode_t * i_lnode)2095 i_lnode_free(i_lnode_t *i_lnode)
2096 {
2097 	kmem_free(i_lnode, sizeof (i_lnode_t));
2098 }
2099 
2100 static void
i_lnode_check_free(i_lnode_t * i_lnode)2101 i_lnode_check_free(i_lnode_t *i_lnode)
2102 {
2103 	/* This lnode and its dip must have been snapshotted */
2104 	ASSERT(i_lnode->self > 0);
2105 	ASSERT(i_lnode->di_node->self > 0);
2106 
2107 	/* at least 1 link (in or out) must exist for this lnode */
2108 	ASSERT(i_lnode->link_in || i_lnode->link_out);
2109 
2110 	i_lnode_free(i_lnode);
2111 }
2112 
2113 static i_link_t *
i_link_alloc(int spec_type)2114 i_link_alloc(int spec_type)
2115 {
2116 	i_link_t	*i_link;
2117 
2118 	i_link = kmem_zalloc(sizeof (i_link_t), KM_SLEEP);
2119 	i_link->spec_type = spec_type;
2120 
2121 	return (i_link);
2122 }
2123 
2124 static void
i_link_check_free(i_link_t * i_link)2125 i_link_check_free(i_link_t *i_link)
2126 {
2127 	/* This link must have been snapshotted */
2128 	ASSERT(i_link->self > 0);
2129 
2130 	/* Both endpoint lnodes must exist for this link */
2131 	ASSERT(i_link->src_lnode);
2132 	ASSERT(i_link->tgt_lnode);
2133 
2134 	kmem_free(i_link, sizeof (i_link_t));
2135 }
2136 
2137 /*ARGSUSED*/
2138 static uint_t
i_lnode_hashfunc(void * arg,mod_hash_key_t key)2139 i_lnode_hashfunc(void *arg, mod_hash_key_t key)
2140 {
2141 	i_lnode_t	*i_lnode = (i_lnode_t *)key;
2142 	struct di_node	*ptr;
2143 	dev_t		dev;
2144 
2145 	dev = i_lnode->devt;
2146 	if (dev != DDI_DEV_T_NONE)
2147 		return (i_lnode->modid + getminor(dev) + getmajor(dev));
2148 
2149 	ptr = i_lnode->di_node;
2150 	ASSERT(ptr->self > 0);
2151 	if (ptr) {
2152 		uintptr_t k = (uintptr_t)ptr;
2153 		k >>= (int)highbit(sizeof (struct di_node));
2154 		return ((uint_t)k);
2155 	}
2156 
2157 	return (i_lnode->modid);
2158 }
2159 
2160 static int
i_lnode_cmp(void * arg1,void * arg2)2161 i_lnode_cmp(void *arg1, void *arg2)
2162 {
2163 	i_lnode_t	*i_lnode1 = (i_lnode_t *)arg1;
2164 	i_lnode_t	*i_lnode2 = (i_lnode_t *)arg2;
2165 
2166 	if (i_lnode1->modid != i_lnode2->modid) {
2167 		return ((i_lnode1->modid < i_lnode2->modid) ? -1 : 1);
2168 	}
2169 
2170 	if (i_lnode1->di_node != i_lnode2->di_node)
2171 		return ((i_lnode1->di_node < i_lnode2->di_node) ? -1 : 1);
2172 
2173 	if (i_lnode1->devt != i_lnode2->devt)
2174 		return ((i_lnode1->devt < i_lnode2->devt) ? -1 : 1);
2175 
2176 	return (0);
2177 }
2178 
2179 /*
2180  * An lnode represents a {dip, dev_t} tuple. A link represents a
2181  * {src_lnode, tgt_lnode, spec_type} tuple.
2182  * The following callback assumes that LDI framework ref-counts the
2183  * src_dip and tgt_dip while invoking this callback.
2184  */
2185 static int
di_ldi_callback(const ldi_usage_t * ldi_usage,void * arg)2186 di_ldi_callback(const ldi_usage_t *ldi_usage, void *arg)
2187 {
2188 	struct di_state	*st = (struct di_state *)arg;
2189 	i_lnode_t	*src_lnode, *tgt_lnode, *i_lnode;
2190 	i_link_t	**i_link_next, *i_link;
2191 	di_off_t	soff, toff;
2192 	mod_hash_val_t	nodep = NULL;
2193 	int		res;
2194 
2195 	/*
2196 	 * if the source or target of this device usage information doesn't
2197 	 * correspond to a device node then we don't report it via
2198 	 * libdevinfo so return.
2199 	 */
2200 	if ((ldi_usage->src_dip == NULL) || (ldi_usage->tgt_dip == NULL))
2201 		return (LDI_USAGE_CONTINUE);
2202 
2203 	ASSERT(e_ddi_devi_holdcnt(ldi_usage->src_dip));
2204 	ASSERT(e_ddi_devi_holdcnt(ldi_usage->tgt_dip));
2205 
2206 	/*
2207 	 * Skip the ldi_usage if either src or tgt dip is not in the
2208 	 * snapshot. This saves us from pruning bad lnodes/links later.
2209 	 */
2210 	if (di_dip_find(st, ldi_usage->src_dip, &soff) != 0)
2211 		return (LDI_USAGE_CONTINUE);
2212 	if (di_dip_find(st, ldi_usage->tgt_dip, &toff) != 0)
2213 		return (LDI_USAGE_CONTINUE);
2214 
2215 	ASSERT(soff > 0);
2216 	ASSERT(toff > 0);
2217 
2218 	/*
2219 	 * allocate an i_lnode and add it to the lnode hash
2220 	 * if it is not already present. For this particular
2221 	 * link the lnode is a source, but it may
2222 	 * participate as tgt or src in any number of layered
2223 	 * operations - so it may already be in the hash.
2224 	 */
2225 	i_lnode = i_lnode_alloc(ldi_usage->src_modid);
2226 	i_lnode->di_node = DI_NODE(di_mem_addr(st, soff));
2227 	i_lnode->devt = ldi_usage->src_devt;
2228 
2229 	res = mod_hash_find(st->lnode_hash, i_lnode, &nodep);
2230 	if (res == MH_ERR_NOTFOUND) {
2231 		/*
2232 		 * new i_lnode
2233 		 * add it to the hash and increment the lnode count
2234 		 */
2235 		res = mod_hash_insert(st->lnode_hash, i_lnode, i_lnode);
2236 		ASSERT(res == 0);
2237 		st->lnode_count++;
2238 		src_lnode = i_lnode;
2239 	} else {
2240 		/* this i_lnode already exists in the lnode_hash */
2241 		i_lnode_free(i_lnode);
2242 		src_lnode = (i_lnode_t *)nodep;
2243 	}
2244 
2245 	/*
2246 	 * allocate a tgt i_lnode and add it to the lnode hash
2247 	 */
2248 	i_lnode = i_lnode_alloc(ldi_usage->tgt_modid);
2249 	i_lnode->di_node = DI_NODE(di_mem_addr(st, toff));
2250 	i_lnode->devt = ldi_usage->tgt_devt;
2251 
2252 	res = mod_hash_find(st->lnode_hash, i_lnode, &nodep);
2253 	if (res == MH_ERR_NOTFOUND) {
2254 		/*
2255 		 * new i_lnode
2256 		 * add it to the hash and increment the lnode count
2257 		 */
2258 		res = mod_hash_insert(st->lnode_hash, i_lnode, i_lnode);
2259 		ASSERT(res == 0);
2260 		st->lnode_count++;
2261 		tgt_lnode = i_lnode;
2262 	} else {
2263 		/* this i_lnode already exists in the lnode_hash */
2264 		i_lnode_free(i_lnode);
2265 		tgt_lnode = (i_lnode_t *)nodep;
2266 	}
2267 
2268 	/*
2269 	 * allocate a i_link
2270 	 */
2271 	i_link = i_link_alloc(ldi_usage->tgt_spec_type);
2272 	i_link->src_lnode = src_lnode;
2273 	i_link->tgt_lnode = tgt_lnode;
2274 
2275 	/*
2276 	 * add this link onto the src i_lnodes outbound i_link list
2277 	 */
2278 	i_link_next = &(src_lnode->link_out);
2279 	while (*i_link_next != NULL) {
2280 		if ((i_lnode_cmp(tgt_lnode, (*i_link_next)->tgt_lnode) == 0) &&
2281 		    (i_link->spec_type == (*i_link_next)->spec_type)) {
2282 			/* this link already exists */
2283 			kmem_free(i_link, sizeof (i_link_t));
2284 			return (LDI_USAGE_CONTINUE);
2285 		}
2286 		i_link_next = &((*i_link_next)->src_link_next);
2287 	}
2288 	*i_link_next = i_link;
2289 
2290 	/*
2291 	 * add this link onto the tgt i_lnodes inbound i_link list
2292 	 */
2293 	i_link_next = &(tgt_lnode->link_in);
2294 	while (*i_link_next != NULL) {
2295 		ASSERT(i_lnode_cmp(src_lnode, (*i_link_next)->src_lnode) != 0);
2296 		i_link_next = &((*i_link_next)->tgt_link_next);
2297 	}
2298 	*i_link_next = i_link;
2299 
2300 	/*
2301 	 * add this i_link to the link hash
2302 	 */
2303 	res = mod_hash_insert(st->link_hash, i_link, i_link);
2304 	ASSERT(res == 0);
2305 	st->link_count++;
2306 
2307 	return (LDI_USAGE_CONTINUE);
2308 }
2309 
2310 struct i_layer_data {
2311 	struct di_state	*st;
2312 	int		lnode_count;
2313 	int		link_count;
2314 	di_off_t	lnode_off;
2315 	di_off_t	link_off;
2316 };
2317 
2318 /*ARGSUSED*/
2319 static uint_t
i_link_walker(mod_hash_key_t key,mod_hash_val_t * val,void * arg)2320 i_link_walker(mod_hash_key_t key, mod_hash_val_t *val, void *arg)
2321 {
2322 	i_link_t		*i_link  = (i_link_t *)key;
2323 	struct i_layer_data	*data = arg;
2324 	struct di_link		*me;
2325 	struct di_lnode		*melnode;
2326 	struct di_node		*medinode;
2327 
2328 	ASSERT(i_link->self == 0);
2329 
2330 	i_link->self = data->link_off +
2331 	    (data->link_count * sizeof (struct di_link));
2332 	data->link_count++;
2333 
2334 	ASSERT(data->link_off > 0 && data->link_count > 0);
2335 	ASSERT(data->lnode_count == data->st->lnode_count); /* lnodes done */
2336 	ASSERT(data->link_count <= data->st->link_count);
2337 
2338 	/* fill in fields for the di_link snapshot */
2339 	me = DI_LINK(di_mem_addr(data->st, i_link->self));
2340 	me->self = i_link->self;
2341 	me->spec_type = i_link->spec_type;
2342 
2343 	/*
2344 	 * The src_lnode and tgt_lnode i_lnode_t for this i_link_t
2345 	 * are created during the LDI table walk. Since we are
2346 	 * walking the link hash, the lnode hash has already been
2347 	 * walked and the lnodes have been snapshotted. Save lnode
2348 	 * offsets.
2349 	 */
2350 	me->src_lnode = i_link->src_lnode->self;
2351 	me->tgt_lnode = i_link->tgt_lnode->self;
2352 
2353 	/*
2354 	 * Save this link's offset in the src_lnode snapshot's link_out
2355 	 * field
2356 	 */
2357 	melnode = DI_LNODE(di_mem_addr(data->st, me->src_lnode));
2358 	me->src_link_next = melnode->link_out;
2359 	melnode->link_out = me->self;
2360 
2361 	/*
2362 	 * Put this link on the tgt_lnode's link_in field
2363 	 */
2364 	melnode = DI_LNODE(di_mem_addr(data->st, me->tgt_lnode));
2365 	me->tgt_link_next = melnode->link_in;
2366 	melnode->link_in = me->self;
2367 
2368 	/*
2369 	 * An i_lnode_t is only created if the corresponding dip exists
2370 	 * in the snapshot. A pointer to the di_node is saved in the
2371 	 * i_lnode_t when it is allocated. For this link, get the di_node
2372 	 * for the source lnode. Then put the link on the di_node's list
2373 	 * of src links
2374 	 */
2375 	medinode = i_link->src_lnode->di_node;
2376 	me->src_node_next = medinode->src_links;
2377 	medinode->src_links = me->self;
2378 
2379 	/*
2380 	 * Put this link on the tgt_links list of the target
2381 	 * dip.
2382 	 */
2383 	medinode = i_link->tgt_lnode->di_node;
2384 	me->tgt_node_next = medinode->tgt_links;
2385 	medinode->tgt_links = me->self;
2386 
2387 	return (MH_WALK_CONTINUE);
2388 }
2389 
2390 /*ARGSUSED*/
2391 static uint_t
i_lnode_walker(mod_hash_key_t key,mod_hash_val_t * val,void * arg)2392 i_lnode_walker(mod_hash_key_t key, mod_hash_val_t *val, void *arg)
2393 {
2394 	i_lnode_t		*i_lnode = (i_lnode_t *)key;
2395 	struct i_layer_data	*data = arg;
2396 	struct di_lnode		*me;
2397 	struct di_node		*medinode;
2398 
2399 	ASSERT(i_lnode->self == 0);
2400 
2401 	i_lnode->self = data->lnode_off +
2402 	    (data->lnode_count * sizeof (struct di_lnode));
2403 	data->lnode_count++;
2404 
2405 	ASSERT(data->lnode_off > 0 && data->lnode_count > 0);
2406 	ASSERT(data->link_count == 0); /* links not done yet */
2407 	ASSERT(data->lnode_count <= data->st->lnode_count);
2408 
2409 	/* fill in fields for the di_lnode snapshot */
2410 	me = DI_LNODE(di_mem_addr(data->st, i_lnode->self));
2411 	me->self = i_lnode->self;
2412 
2413 	if (i_lnode->devt == DDI_DEV_T_NONE) {
2414 		me->dev_major = DDI_MAJOR_T_NONE;
2415 		me->dev_minor = DDI_MAJOR_T_NONE;
2416 	} else {
2417 		me->dev_major = getmajor(i_lnode->devt);
2418 		me->dev_minor = getminor(i_lnode->devt);
2419 	}
2420 
2421 	/*
2422 	 * The dip corresponding to this lnode must exist in
2423 	 * the snapshot or we wouldn't have created the i_lnode_t
2424 	 * during LDI walk. Save the offset of the dip.
2425 	 */
2426 	ASSERT(i_lnode->di_node && i_lnode->di_node->self > 0);
2427 	me->node = i_lnode->di_node->self;
2428 
2429 	/*
2430 	 * There must be at least one link in or out of this lnode
2431 	 * or we wouldn't have created it. These fields will be set
2432 	 * during the link hash walk.
2433 	 */
2434 	ASSERT((i_lnode->link_in != NULL) || (i_lnode->link_out != NULL));
2435 
2436 	/*
2437 	 * set the offset of the devinfo node associated with this
2438 	 * lnode. Also update the node_next next pointer.  this pointer
2439 	 * is set if there are multiple lnodes associated with the same
2440 	 * devinfo node.  (could occure when multiple minor nodes
2441 	 * are open for one device, etc.)
2442 	 */
2443 	medinode = i_lnode->di_node;
2444 	me->node_next = medinode->lnodes;
2445 	medinode->lnodes = me->self;
2446 
2447 	return (MH_WALK_CONTINUE);
2448 }
2449 
2450 static di_off_t
di_getlink_data(di_off_t off,struct di_state * st)2451 di_getlink_data(di_off_t off, struct di_state *st)
2452 {
2453 	struct i_layer_data	data = {0};
2454 	size_t			size;
2455 
2456 	dcmn_err2((CE_CONT, "di_copylyr: off = %x\n", off));
2457 
2458 	st->lnode_hash = mod_hash_create_extended("di_lnode_hash", 32,
2459 	    mod_hash_null_keydtor, (void (*)(mod_hash_val_t))i_lnode_check_free,
2460 	    i_lnode_hashfunc, NULL, i_lnode_cmp, KM_SLEEP);
2461 
2462 	st->link_hash = mod_hash_create_ptrhash("di_link_hash", 32,
2463 	    (void (*)(mod_hash_val_t))i_link_check_free, sizeof (i_link_t));
2464 
2465 	/* get driver layering information */
2466 	(void) ldi_usage_walker(st, di_ldi_callback);
2467 
2468 	/* check if there is any link data to include in the snapshot */
2469 	if (st->lnode_count == 0) {
2470 		ASSERT(st->link_count == 0);
2471 		goto out;
2472 	}
2473 
2474 	ASSERT(st->link_count != 0);
2475 
2476 	/* get a pointer to snapshot memory for all the di_lnodes */
2477 	size = sizeof (struct di_lnode) * st->lnode_count;
2478 	data.lnode_off = off = di_checkmem(st, off, size);
2479 	off += size;
2480 
2481 	/* get a pointer to snapshot memory for all the di_links */
2482 	size = sizeof (struct di_link) * st->link_count;
2483 	data.link_off = off = di_checkmem(st, off, size);
2484 	off += size;
2485 
2486 	data.lnode_count = data.link_count = 0;
2487 	data.st = st;
2488 
2489 	/*
2490 	 * We have lnodes and links that will go into the
2491 	 * snapshot, so let's walk the respective hashes
2492 	 * and snapshot them. The various linkages are
2493 	 * also set up during the walk.
2494 	 */
2495 	mod_hash_walk(st->lnode_hash, i_lnode_walker, (void *)&data);
2496 	ASSERT(data.lnode_count == st->lnode_count);
2497 
2498 	mod_hash_walk(st->link_hash, i_link_walker, (void *)&data);
2499 	ASSERT(data.link_count == st->link_count);
2500 
2501 out:
2502 	/* free up the i_lnodes and i_links used to create the snapshot */
2503 	mod_hash_destroy_hash(st->lnode_hash);
2504 	mod_hash_destroy_hash(st->link_hash);
2505 	st->lnode_count = 0;
2506 	st->link_count = 0;
2507 
2508 	return (off);
2509 }
2510 
2511 
2512 /*
2513  * Copy all minor data nodes attached to a devinfo node into the snapshot.
2514  * It is called from di_copynode with active ndi_devi_enter to protect
2515  * the list of minor nodes.
2516  */
2517 static di_off_t
di_getmdata(struct ddi_minor_data * mnode,di_off_t * off_p,di_off_t node,struct di_state * st)2518 di_getmdata(struct ddi_minor_data *mnode, di_off_t *off_p, di_off_t node,
2519     struct di_state *st)
2520 {
2521 	di_off_t	off;
2522 	struct di_minor	*me;
2523 	size_t		size;
2524 
2525 	dcmn_err2((CE_CONT, "di_getmdata:\n"));
2526 
2527 	/*
2528 	 * check memory first
2529 	 */
2530 	off = di_checkmem(st, *off_p, sizeof (struct di_minor));
2531 	*off_p = off;
2532 
2533 	do {
2534 		me = DI_MINOR(di_mem_addr(st, off));
2535 		me->self = off;
2536 		me->type = mnode->type;
2537 		me->node = node;
2538 		me->user_private_data = 0;
2539 
2540 		off += sizeof (struct di_minor);
2541 
2542 		/*
2543 		 * Split dev_t to major/minor, so it works for
2544 		 * both ILP32 and LP64 model
2545 		 */
2546 		me->dev_major = getmajor(mnode->ddm_dev);
2547 		me->dev_minor = getminor(mnode->ddm_dev);
2548 		me->spec_type = mnode->ddm_spec_type;
2549 
2550 		if (mnode->ddm_name) {
2551 			size = strlen(mnode->ddm_name) + 1;
2552 			me->name = off = di_checkmem(st, off, size);
2553 			(void) strcpy(di_mem_addr(st, off), mnode->ddm_name);
2554 			off += size;
2555 		}
2556 
2557 		if (mnode->ddm_node_type) {
2558 			size = strlen(mnode->ddm_node_type) + 1;
2559 			me->node_type = off = di_checkmem(st, off, size);
2560 			(void) strcpy(di_mem_addr(st, off),
2561 			    mnode->ddm_node_type);
2562 			off += size;
2563 		}
2564 
2565 		off = di_checkmem(st, off, sizeof (struct di_minor));
2566 		me->next = off;
2567 		mnode = mnode->next;
2568 	} while (mnode);
2569 
2570 	me->next = 0;
2571 
2572 	return (off);
2573 }
2574 
2575 /*
2576  * di_register_dip(), di_find_dip(): The dip must be protected
2577  * from deallocation when using these routines - this can either
2578  * be a reference count, a busy hold or a per-driver lock.
2579  */
2580 
2581 static void
di_register_dip(struct di_state * st,dev_info_t * dip,di_off_t off)2582 di_register_dip(struct di_state *st, dev_info_t *dip, di_off_t off)
2583 {
2584 	struct dev_info	*node = DEVI(dip);
2585 	struct di_key	*key = kmem_zalloc(sizeof (*key), KM_SLEEP);
2586 	struct di_dkey	*dk;
2587 
2588 	ASSERT(dip);
2589 	ASSERT(off > 0);
2590 
2591 	key->k_type = DI_DKEY;
2592 	dk = &(key->k_u.dkey);
2593 
2594 	dk->dk_dip = dip;
2595 	dk->dk_major = node->devi_major;
2596 	dk->dk_inst = node->devi_instance;
2597 	dk->dk_nodeid = node->devi_nodeid;
2598 
2599 	if (mod_hash_insert(st->reg_dip_hash, (mod_hash_key_t)key,
2600 	    (mod_hash_val_t)(uintptr_t)off) != 0) {
2601 		panic(
2602 		    "duplicate devinfo (%p) registered during device "
2603 		    "tree walk", (void *)dip);
2604 	}
2605 }
2606 
2607 
2608 static int
di_dip_find(struct di_state * st,dev_info_t * dip,di_off_t * off_p)2609 di_dip_find(struct di_state *st, dev_info_t *dip, di_off_t *off_p)
2610 {
2611 	/*
2612 	 * uintptr_t must be used because it matches the size of void *;
2613 	 * mod_hash expects clients to place results into pointer-size
2614 	 * containers; since di_off_t is always a 32-bit offset, alignment
2615 	 * would otherwise be broken on 64-bit kernels.
2616 	 */
2617 	uintptr_t	offset;
2618 	struct		di_key key = {0};
2619 	struct		di_dkey *dk;
2620 
2621 	ASSERT(st->reg_dip_hash);
2622 	ASSERT(dip);
2623 	ASSERT(off_p);
2624 
2625 
2626 	key.k_type = DI_DKEY;
2627 	dk = &(key.k_u.dkey);
2628 
2629 	dk->dk_dip = dip;
2630 	dk->dk_major = DEVI(dip)->devi_major;
2631 	dk->dk_inst = DEVI(dip)->devi_instance;
2632 	dk->dk_nodeid = DEVI(dip)->devi_nodeid;
2633 
2634 	if (mod_hash_find(st->reg_dip_hash, (mod_hash_key_t)&key,
2635 	    (mod_hash_val_t *)&offset) == 0) {
2636 		*off_p = (di_off_t)offset;
2637 		return (0);
2638 	} else {
2639 		return (-1);
2640 	}
2641 }
2642 
2643 /*
2644  * di_register_pip(), di_find_pip(): The pip must be protected from deallocation
2645  * when using these routines. The caller must do this by protecting the
2646  * client(or phci)<->pip linkage while traversing the list and then holding the
2647  * pip when it is found in the list.
2648  */
2649 
2650 static void
di_register_pip(struct di_state * st,mdi_pathinfo_t * pip,di_off_t off)2651 di_register_pip(struct di_state *st, mdi_pathinfo_t *pip, di_off_t off)
2652 {
2653 	struct di_key	*key = kmem_zalloc(sizeof (*key), KM_SLEEP);
2654 	char		*path_addr;
2655 	struct di_pkey	*pk;
2656 
2657 	ASSERT(pip);
2658 	ASSERT(off > 0);
2659 
2660 	key->k_type = DI_PKEY;
2661 	pk = &(key->k_u.pkey);
2662 
2663 	pk->pk_pip = pip;
2664 	path_addr = mdi_pi_get_addr(pip);
2665 	if (path_addr)
2666 		pk->pk_path_addr = i_ddi_strdup(path_addr, KM_SLEEP);
2667 	pk->pk_client = mdi_pi_get_client(pip);
2668 	pk->pk_phci = mdi_pi_get_phci(pip);
2669 
2670 	if (mod_hash_insert(st->reg_pip_hash, (mod_hash_key_t)key,
2671 	    (mod_hash_val_t)(uintptr_t)off) != 0) {
2672 		panic(
2673 		    "duplicate pathinfo (%p) registered during device "
2674 		    "tree walk", (void *)pip);
2675 	}
2676 }
2677 
2678 /*
2679  * As with di_register_pip, the caller must hold or lock the pip
2680  */
2681 static int
di_pip_find(struct di_state * st,mdi_pathinfo_t * pip,di_off_t * off_p)2682 di_pip_find(struct di_state *st, mdi_pathinfo_t *pip, di_off_t *off_p)
2683 {
2684 	/*
2685 	 * uintptr_t must be used because it matches the size of void *;
2686 	 * mod_hash expects clients to place results into pointer-size
2687 	 * containers; since di_off_t is always a 32-bit offset, alignment
2688 	 * would otherwise be broken on 64-bit kernels.
2689 	 */
2690 	uintptr_t	offset;
2691 	struct di_key	key = {0};
2692 	struct di_pkey	*pk;
2693 
2694 	ASSERT(st->reg_pip_hash);
2695 	ASSERT(off_p);
2696 
2697 	if (pip == NULL) {
2698 		*off_p = 0;
2699 		return (0);
2700 	}
2701 
2702 	key.k_type = DI_PKEY;
2703 	pk = &(key.k_u.pkey);
2704 
2705 	pk->pk_pip = pip;
2706 	pk->pk_path_addr = mdi_pi_get_addr(pip);
2707 	pk->pk_client = mdi_pi_get_client(pip);
2708 	pk->pk_phci = mdi_pi_get_phci(pip);
2709 
2710 	if (mod_hash_find(st->reg_pip_hash, (mod_hash_key_t)&key,
2711 	    (mod_hash_val_t *)&offset) == 0) {
2712 		*off_p = (di_off_t)offset;
2713 		return (0);
2714 	} else {
2715 		return (-1);
2716 	}
2717 }
2718 
2719 static di_path_state_t
path_state_convert(mdi_pathinfo_state_t st)2720 path_state_convert(mdi_pathinfo_state_t st)
2721 {
2722 	switch (st) {
2723 	case MDI_PATHINFO_STATE_ONLINE:
2724 		return (DI_PATH_STATE_ONLINE);
2725 	case MDI_PATHINFO_STATE_STANDBY:
2726 		return (DI_PATH_STATE_STANDBY);
2727 	case MDI_PATHINFO_STATE_OFFLINE:
2728 		return (DI_PATH_STATE_OFFLINE);
2729 	case MDI_PATHINFO_STATE_FAULT:
2730 		return (DI_PATH_STATE_FAULT);
2731 	default:
2732 		return (DI_PATH_STATE_UNKNOWN);
2733 	}
2734 }
2735 
2736 static uint_t
path_flags_convert(uint_t pi_path_flags)2737 path_flags_convert(uint_t pi_path_flags)
2738 {
2739 	uint_t	di_path_flags = 0;
2740 
2741 	/* MDI_PATHINFO_FLAGS_HIDDEN nodes not in snapshot */
2742 
2743 	if (pi_path_flags & MDI_PATHINFO_FLAGS_DEVICE_REMOVED)
2744 		di_path_flags |= DI_PATH_FLAGS_DEVICE_REMOVED;
2745 
2746 	return (di_path_flags);
2747 }
2748 
2749 
2750 static di_off_t
di_path_getprop(mdi_pathinfo_t * pip,di_off_t * off_p,struct di_state * st)2751 di_path_getprop(mdi_pathinfo_t *pip, di_off_t *off_p,
2752     struct di_state *st)
2753 {
2754 	nvpair_t		*prop = NULL;
2755 	struct di_path_prop	*me;
2756 	int			off;
2757 	size_t			size;
2758 	char			*str;
2759 	uchar_t			*buf;
2760 	uint_t			nelems;
2761 
2762 	off = *off_p;
2763 	if (mdi_pi_get_next_prop(pip, NULL) == NULL) {
2764 		*off_p = 0;
2765 		return (off);
2766 	}
2767 
2768 	off = di_checkmem(st, off, sizeof (struct di_path_prop));
2769 	*off_p = off;
2770 
2771 	while (prop = mdi_pi_get_next_prop(pip, prop)) {
2772 		me = DI_PATHPROP(di_mem_addr(st, off));
2773 		me->self = off;
2774 		off += sizeof (struct di_path_prop);
2775 
2776 		/*
2777 		 * property name
2778 		 */
2779 		size = strlen(nvpair_name(prop)) + 1;
2780 		me->prop_name = off = di_checkmem(st, off, size);
2781 		(void) strcpy(di_mem_addr(st, off), nvpair_name(prop));
2782 		off += size;
2783 
2784 		switch (nvpair_type(prop)) {
2785 		case DATA_TYPE_BYTE:
2786 		case DATA_TYPE_INT16:
2787 		case DATA_TYPE_UINT16:
2788 		case DATA_TYPE_INT32:
2789 		case DATA_TYPE_UINT32:
2790 			me->prop_type = DDI_PROP_TYPE_INT;
2791 			size = sizeof (int32_t);
2792 			off = di_checkmem(st, off, size);
2793 			(void) nvpair_value_int32(prop,
2794 			    (int32_t *)di_mem_addr(st, off));
2795 			break;
2796 
2797 		case DATA_TYPE_INT64:
2798 		case DATA_TYPE_UINT64:
2799 			me->prop_type = DDI_PROP_TYPE_INT64;
2800 			size = sizeof (int64_t);
2801 			off = di_checkmem(st, off, size);
2802 			(void) nvpair_value_int64(prop,
2803 			    (int64_t *)di_mem_addr(st, off));
2804 			break;
2805 
2806 		case DATA_TYPE_STRING:
2807 			me->prop_type = DDI_PROP_TYPE_STRING;
2808 			(void) nvpair_value_string(prop, &str);
2809 			size = strlen(str) + 1;
2810 			off = di_checkmem(st, off, size);
2811 			(void) strcpy(di_mem_addr(st, off), str);
2812 			break;
2813 
2814 		case DATA_TYPE_BYTE_ARRAY:
2815 		case DATA_TYPE_INT16_ARRAY:
2816 		case DATA_TYPE_UINT16_ARRAY:
2817 		case DATA_TYPE_INT32_ARRAY:
2818 		case DATA_TYPE_UINT32_ARRAY:
2819 		case DATA_TYPE_INT64_ARRAY:
2820 		case DATA_TYPE_UINT64_ARRAY:
2821 			me->prop_type = DDI_PROP_TYPE_BYTE;
2822 			(void) nvpair_value_byte_array(prop, &buf, &nelems);
2823 			size = nelems;
2824 			if (nelems != 0) {
2825 				off = di_checkmem(st, off, size);
2826 				bcopy(buf, di_mem_addr(st, off), size);
2827 			}
2828 			break;
2829 
2830 		default:	/* Unknown or unhandled type; skip it */
2831 			size = 0;
2832 			break;
2833 		}
2834 
2835 		if (size > 0) {
2836 			me->prop_data = off;
2837 		}
2838 
2839 		me->prop_len = (int)size;
2840 		off += size;
2841 
2842 		off = di_checkmem(st, off, sizeof (struct di_path_prop));
2843 		me->prop_next = off;
2844 	}
2845 
2846 	me->prop_next = 0;
2847 	return (off);
2848 }
2849 
2850 
2851 static void
di_path_one_endpoint(struct di_path * me,di_off_t noff,di_off_t ** off_pp,int get_client)2852 di_path_one_endpoint(struct di_path *me, di_off_t noff, di_off_t **off_pp,
2853     int get_client)
2854 {
2855 	if (get_client) {
2856 		ASSERT(me->path_client == 0);
2857 		me->path_client = noff;
2858 		ASSERT(me->path_c_link == 0);
2859 		*off_pp = &me->path_c_link;
2860 		me->path_snap_state &=
2861 		    ~(DI_PATH_SNAP_NOCLIENT | DI_PATH_SNAP_NOCLINK);
2862 	} else {
2863 		ASSERT(me->path_phci == 0);
2864 		me->path_phci = noff;
2865 		ASSERT(me->path_p_link == 0);
2866 		*off_pp = &me->path_p_link;
2867 		me->path_snap_state &=
2868 		    ~(DI_PATH_SNAP_NOPHCI | DI_PATH_SNAP_NOPLINK);
2869 	}
2870 }
2871 
2872 /*
2873  * off_p: pointer to the linkage field. This links pips along the client|phci
2874  *	   linkage list.
2875  * noff  : Offset for the endpoint dip snapshot.
2876  */
2877 static di_off_t
di_getpath_data(dev_info_t * dip,di_off_t * off_p,di_off_t noff,struct di_state * st,int get_client)2878 di_getpath_data(dev_info_t *dip, di_off_t *off_p, di_off_t noff,
2879     struct di_state *st, int get_client)
2880 {
2881 	di_off_t	off;
2882 	mdi_pathinfo_t	*pip;
2883 	struct di_path	*me;
2884 	mdi_pathinfo_t	*(*next_pip)(dev_info_t *, mdi_pathinfo_t *);
2885 	size_t		size;
2886 
2887 	dcmn_err2((CE_WARN, "di_getpath_data: client = %d", get_client));
2888 
2889 	/*
2890 	 * The naming of the following mdi_xyz() is unfortunately
2891 	 * non-intuitive. mdi_get_next_phci_path() follows the
2892 	 * client_link i.e. the list of pip's belonging to the
2893 	 * given client dip.
2894 	 */
2895 	if (get_client)
2896 		next_pip = &mdi_get_next_phci_path;
2897 	else
2898 		next_pip = &mdi_get_next_client_path;
2899 
2900 	off = *off_p;
2901 
2902 	pip = NULL;
2903 	while (pip = (*next_pip)(dip, pip)) {
2904 		di_off_t stored_offset;
2905 
2906 		dcmn_err((CE_WARN, "marshalling pip = %p", (void *)pip));
2907 
2908 		mdi_pi_lock(pip);
2909 
2910 		/* We don't represent hidden paths in the snapshot */
2911 		if (mdi_pi_ishidden(pip)) {
2912 			dcmn_err((CE_WARN, "hidden, skip"));
2913 			mdi_pi_unlock(pip);
2914 			continue;
2915 		}
2916 
2917 		if (di_pip_find(st, pip, &stored_offset) != -1) {
2918 			/*
2919 			 * We've already seen this pathinfo node so we need to
2920 			 * take care not to snap it again; However, one endpoint
2921 			 * and linkage will be set here. The other endpoint
2922 			 * and linkage has already been set when the pip was
2923 			 * first snapshotted i.e. when the other endpoint dip
2924 			 * was snapshotted.
2925 			 */
2926 			me = DI_PATH(di_mem_addr(st, stored_offset));
2927 			*off_p = stored_offset;
2928 
2929 			di_path_one_endpoint(me, noff, &off_p, get_client);
2930 
2931 			/*
2932 			 * The other endpoint and linkage were set when this
2933 			 * pip was snapshotted. So we are done with both
2934 			 * endpoints and linkages.
2935 			 */
2936 			ASSERT(!(me->path_snap_state &
2937 			    (DI_PATH_SNAP_NOCLIENT|DI_PATH_SNAP_NOPHCI)));
2938 			ASSERT(!(me->path_snap_state &
2939 			    (DI_PATH_SNAP_NOCLINK|DI_PATH_SNAP_NOPLINK)));
2940 
2941 			mdi_pi_unlock(pip);
2942 			continue;
2943 		}
2944 
2945 		/*
2946 		 * Now that we need to snapshot this pip, check memory
2947 		 */
2948 		size = sizeof (struct di_path);
2949 		*off_p = off = di_checkmem(st, off, size);
2950 		me = DI_PATH(di_mem_addr(st, off));
2951 		me->self = off;
2952 		off += size;
2953 
2954 		me->path_snap_state =
2955 		    DI_PATH_SNAP_NOCLINK | DI_PATH_SNAP_NOPLINK;
2956 		me->path_snap_state |=
2957 		    DI_PATH_SNAP_NOCLIENT | DI_PATH_SNAP_NOPHCI;
2958 
2959 		/*
2960 		 * Zero out fields as di_checkmem() doesn't guarantee
2961 		 * zero-filled memory
2962 		 */
2963 		me->path_client = me->path_phci = 0;
2964 		me->path_c_link = me->path_p_link = 0;
2965 
2966 		di_path_one_endpoint(me, noff, &off_p, get_client);
2967 
2968 		/*
2969 		 * Note the existence of this pathinfo
2970 		 */
2971 		di_register_pip(st, pip, me->self);
2972 
2973 		me->path_state = path_state_convert(mdi_pi_get_state(pip));
2974 		me->path_flags = path_flags_convert(mdi_pi_get_flags(pip));
2975 
2976 		me->path_instance = mdi_pi_get_path_instance(pip);
2977 
2978 		/*
2979 		 * Get intermediate addressing info.
2980 		 */
2981 		size = strlen(mdi_pi_get_addr(pip)) + 1;
2982 		me->path_addr = off = di_checkmem(st, off, size);
2983 		(void) strcpy(di_mem_addr(st, off), mdi_pi_get_addr(pip));
2984 		off += size;
2985 
2986 		/*
2987 		 * Get path properties if props are to be included in the
2988 		 * snapshot
2989 		 */
2990 		if (DINFOPROP & st->command) {
2991 			me->path_prop = off;
2992 			off = di_path_getprop(pip, &me->path_prop, st);
2993 		} else {
2994 			me->path_prop = 0;
2995 		}
2996 
2997 		mdi_pi_unlock(pip);
2998 	}
2999 
3000 	*off_p = 0;
3001 	return (off);
3002 }
3003 
3004 /*
3005  * Return driver prop_op entry point for the specified devinfo node.
3006  *
3007  * To return a non-NULL value:
3008  * - driver must be attached and held:
3009  *   If driver is not attached we ignore the driver property list.
3010  *   No one should rely on such properties.
3011  * - driver "cb_prop_op != ddi_prop_op":
3012  *   If "cb_prop_op == ddi_prop_op", framework does not need to call driver.
3013  *   XXX or parent's bus_prop_op != ddi_bus_prop_op
3014  */
3015 static int
di_getprop_prop_op(struct dev_info * dip)3016 (*di_getprop_prop_op(struct dev_info *dip))
3017 	(dev_t, dev_info_t *, ddi_prop_op_t, int, char *, caddr_t, int *)
3018 {
3019 	struct dev_ops	*ops;
3020 
3021 	/* If driver is not attached we ignore the driver property list. */
3022 	if ((dip == NULL) || !i_ddi_devi_attached((dev_info_t *)dip))
3023 		return (NULL);
3024 
3025 	/*
3026 	 * Some nexus drivers incorrectly set cb_prop_op to nodev, nulldev,
3027 	 * or even NULL.
3028 	 */
3029 	ops = dip->devi_ops;
3030 	if (ops && ops->devo_cb_ops &&
3031 	    (ops->devo_cb_ops->cb_prop_op != ddi_prop_op) &&
3032 	    (ops->devo_cb_ops->cb_prop_op != nodev) &&
3033 	    (ops->devo_cb_ops->cb_prop_op != nulldev) &&
3034 	    (ops->devo_cb_ops->cb_prop_op != NULL))
3035 		return (ops->devo_cb_ops->cb_prop_op);
3036 	return (NULL);
3037 }
3038 
3039 static di_off_t
di_getprop_add(int list,int dyn,struct di_state * st,struct dev_info * dip,int (* prop_op)(),char * name,dev_t devt,int aflags,int alen,caddr_t aval,di_off_t off,di_off_t ** off_pp)3040 di_getprop_add(int list, int dyn, struct di_state *st, struct dev_info *dip,
3041     int (*prop_op)(),
3042     char *name, dev_t devt, int aflags, int alen, caddr_t aval,
3043     di_off_t off, di_off_t **off_pp)
3044 {
3045 	int		need_free = 0;
3046 	dev_t		pdevt;
3047 	int		pflags;
3048 	int		rv;
3049 	caddr_t		val;
3050 	int		len;
3051 	size_t		size;
3052 	struct di_prop	*pp;
3053 
3054 	/* If we have prop_op function, ask driver for latest value */
3055 	if (prop_op) {
3056 		ASSERT(dip);
3057 
3058 		/* Must search DDI_DEV_T_NONE with DDI_DEV_T_ANY */
3059 		pdevt = (devt == DDI_DEV_T_NONE) ? DDI_DEV_T_ANY : devt;
3060 
3061 		/*
3062 		 * We have type information in flags, but are invoking an
3063 		 * old non-typed prop_op(9E) interface. Since not all types are
3064 		 * part of DDI_PROP_TYPE_ANY (example is DDI_PROP_TYPE_INT64),
3065 		 * we set DDI_PROP_CONSUMER_TYPED - causing the framework to
3066 		 * expand type bits beyond DDI_PROP_TYPE_ANY.  This allows us
3067 		 * to use the legacy prop_op(9E) interface to obtain updates
3068 		 * non-DDI_PROP_TYPE_ANY dynamic properties.
3069 		 */
3070 		pflags = aflags & ~DDI_PROP_TYPE_MASK;
3071 		pflags |= DDI_PROP_DONTPASS | DDI_PROP_NOTPROM |
3072 		    DDI_PROP_CONSUMER_TYPED;
3073 
3074 		/*
3075 		 * Hold and exit across prop_op(9E) to avoid lock order
3076 		 * issues between
3077 		 *   [ndi_devi_enter() ..prop_op(9E).. driver-lock]
3078 		 * .vs.
3079 		 *   [..ioctl(9E).. driver-lock ..ddi_remove_minor_node(9F)..
3080 		 *   ndi_devi_enter()]
3081 		 * ordering.
3082 		 */
3083 		ndi_hold_devi((dev_info_t *)dip);
3084 		ndi_devi_exit((dev_info_t *)dip);
3085 		rv = (*prop_op)(pdevt, (dev_info_t *)dip,
3086 		    PROP_LEN_AND_VAL_ALLOC, pflags, name, &val, &len);
3087 		ndi_devi_enter((dev_info_t *)dip);
3088 		ndi_rele_devi((dev_info_t *)dip);
3089 
3090 		if (rv == DDI_PROP_SUCCESS) {
3091 			need_free = 1;		/* dynamic prop obtained */
3092 		} else if (dyn) {
3093 			/*
3094 			 * A dynamic property must succeed prop_op(9E) to show
3095 			 * up in the snapshot - that is the only source of its
3096 			 * value.
3097 			 */
3098 			return (off);		/* dynamic prop not supported */
3099 		} else {
3100 			/*
3101 			 * In case calling the driver caused an update off
3102 			 * prop_op(9E) of a non-dynamic property (code leading
3103 			 * to ddi_prop_change), we defer picking up val and
3104 			 * len informatiojn until after prop_op(9E) to ensure
3105 			 * that we snapshot the latest value.
3106 			 */
3107 			val = aval;
3108 			len = alen;
3109 
3110 		}
3111 	} else {
3112 		val = aval;
3113 		len = alen;
3114 	}
3115 
3116 	dcmn_err((CE_CONT, "di_getprop_add: list %d %s len %d val %p\n",
3117 	    list, name ? name : "NULL", len, (void *)val));
3118 
3119 	size = sizeof (struct di_prop);
3120 	**off_pp = off = di_checkmem(st, off, size);
3121 	pp = DI_PROP(di_mem_addr(st, off));
3122 	pp->self = off;
3123 	off += size;
3124 
3125 	pp->dev_major = getmajor(devt);
3126 	pp->dev_minor = getminor(devt);
3127 	pp->prop_flags = aflags;
3128 	pp->prop_list = list;
3129 
3130 	/* property name */
3131 	if (name) {
3132 		size = strlen(name) + 1;
3133 		pp->prop_name = off = di_checkmem(st, off, size);
3134 		(void) strcpy(di_mem_addr(st, off), name);
3135 		off += size;
3136 	} else {
3137 		pp->prop_name = -1;
3138 	}
3139 
3140 	pp->prop_len = len;
3141 	if (val == NULL) {
3142 		pp->prop_data = -1;
3143 	} else if (len != 0) {
3144 		size = len;
3145 		pp->prop_data = off = di_checkmem(st, off, size);
3146 		bcopy(val, di_mem_addr(st, off), size);
3147 		off += size;
3148 	}
3149 
3150 	pp->next = 0;			/* assume tail for now */
3151 	*off_pp = &pp->next;		/* return pointer to our next */
3152 
3153 	if (need_free)			/* free PROP_LEN_AND_VAL_ALLOC alloc */
3154 		kmem_free(val, len);
3155 	return (off);
3156 }
3157 
3158 
3159 /*
3160  * Copy a list of properties attached to a devinfo node. Called from
3161  * di_copynode with active ndi_devi_enter. The major number is passed in case
3162  * we need to call driver's prop_op entry. The value of list indicates
3163  * which list we are copying. Possible values are:
3164  * DI_PROP_DRV_LIST, DI_PROP_SYS_LIST, DI_PROP_GLB_LIST, DI_PROP_HW_LIST
3165  */
3166 static di_off_t
di_getprop(int list,struct ddi_prop ** pprop,di_off_t * off_p,struct di_state * st,struct dev_info * dip)3167 di_getprop(int list, struct ddi_prop **pprop, di_off_t *off_p,
3168     struct di_state *st, struct dev_info *dip)
3169 {
3170 	struct ddi_prop		*prop;
3171 	int			(*prop_op)();
3172 	int			off;
3173 	struct ddi_minor_data	*mn;
3174 	i_ddi_prop_dyn_t	*dp;
3175 	struct plist {
3176 		struct plist	*pl_next;
3177 		char		*pl_name;
3178 		int		pl_flags;
3179 		dev_t		pl_dev;
3180 		int		pl_len;
3181 		caddr_t		pl_val;
3182 	}			*pl, *pl0, **plp;
3183 
3184 	ASSERT(st != NULL);
3185 
3186 	off = *off_p;
3187 	*off_p = 0;
3188 	dcmn_err((CE_CONT, "di_getprop: copy property list %d at addr %p\n",
3189 	    list, (void *)*pprop));
3190 
3191 	/* get pointer to driver's prop_op(9E) implementation if DRV_LIST */
3192 	prop_op = (list == DI_PROP_DRV_LIST) ? di_getprop_prop_op(dip) : NULL;
3193 
3194 	/*
3195 	 * Form private list of properties, holding devi_lock for properties
3196 	 * that hang off the dip.
3197 	 */
3198 	if (dip)
3199 		mutex_enter(&(dip->devi_lock));
3200 	for (pl0 = NULL, plp = &pl0, prop = *pprop;
3201 	    prop; plp = &pl->pl_next, prop = prop->prop_next) {
3202 		pl = kmem_alloc(sizeof (*pl), KM_SLEEP);
3203 		*plp = pl;
3204 		pl->pl_next = NULL;
3205 		if (prop->prop_name)
3206 			pl->pl_name = i_ddi_strdup(prop->prop_name, KM_SLEEP);
3207 		else
3208 			pl->pl_name = NULL;
3209 		pl->pl_flags = prop->prop_flags;
3210 		pl->pl_dev = prop->prop_dev;
3211 		if (prop->prop_len) {
3212 			pl->pl_len = prop->prop_len;
3213 			pl->pl_val = kmem_alloc(pl->pl_len, KM_SLEEP);
3214 			bcopy(prop->prop_val, pl->pl_val, pl->pl_len);
3215 		} else {
3216 			pl->pl_len = 0;
3217 			pl->pl_val = NULL;
3218 		}
3219 	}
3220 	if (dip)
3221 		mutex_exit(&(dip->devi_lock));
3222 
3223 	/*
3224 	 * Now that we have dropped devi_lock, perform a second-pass to
3225 	 * add properties to the snapshot.  We do this as a second pass
3226 	 * because we may need to call prop_op(9E) and we can't hold
3227 	 * devi_lock across that call.
3228 	 */
3229 	for (pl = pl0; pl; pl = pl0) {
3230 		pl0 = pl->pl_next;
3231 		off = di_getprop_add(list, 0, st, dip, prop_op, pl->pl_name,
3232 		    pl->pl_dev, pl->pl_flags, pl->pl_len, pl->pl_val,
3233 		    off, &off_p);
3234 		if (pl->pl_val)
3235 			kmem_free(pl->pl_val, pl->pl_len);
3236 		if (pl->pl_name)
3237 			kmem_free(pl->pl_name, strlen(pl->pl_name) + 1);
3238 		kmem_free(pl, sizeof (*pl));
3239 	}
3240 
3241 	/*
3242 	 * If there is no prop_op or dynamic property support has been
3243 	 * disabled, we are done.
3244 	 */
3245 	if ((prop_op == NULL) || (di_prop_dyn == 0)) {
3246 		*off_p = 0;
3247 		return (off);
3248 	}
3249 
3250 	/* Add dynamic driver properties to snapshot */
3251 	for (dp = i_ddi_prop_dyn_driver_get((dev_info_t *)dip);
3252 	    dp && dp->dp_name; dp++) {
3253 		if (dp->dp_spec_type) {
3254 			/* if spec_type, property of matching minor */
3255 			ASSERT(DEVI_BUSY_OWNED(dip));
3256 			for (mn = dip->devi_minor; mn; mn = mn->next) {
3257 				if (mn->ddm_spec_type != dp->dp_spec_type)
3258 					continue;
3259 				off = di_getprop_add(list, 1, st, dip, prop_op,
3260 				    dp->dp_name, mn->ddm_dev, dp->dp_type,
3261 				    0, NULL, off, &off_p);
3262 			}
3263 		} else {
3264 			/* property of devinfo node */
3265 			off = di_getprop_add(list, 1, st, dip, prop_op,
3266 			    dp->dp_name, DDI_DEV_T_NONE, dp->dp_type,
3267 			    0, NULL, off, &off_p);
3268 		}
3269 	}
3270 
3271 	/* Add dynamic parent properties to snapshot */
3272 	for (dp = i_ddi_prop_dyn_parent_get((dev_info_t *)dip);
3273 	    dp && dp->dp_name; dp++) {
3274 		if (dp->dp_spec_type) {
3275 			/* if spec_type, property of matching minor */
3276 			ASSERT(DEVI_BUSY_OWNED(dip));
3277 			for (mn = dip->devi_minor; mn; mn = mn->next) {
3278 				if (mn->ddm_spec_type != dp->dp_spec_type)
3279 					continue;
3280 				off = di_getprop_add(list, 1, st, dip, prop_op,
3281 				    dp->dp_name, mn->ddm_dev, dp->dp_type,
3282 				    0, NULL, off, &off_p);
3283 			}
3284 		} else {
3285 			/* property of devinfo node */
3286 			off = di_getprop_add(list, 1, st, dip, prop_op,
3287 			    dp->dp_name, DDI_DEV_T_NONE, dp->dp_type,
3288 			    0, NULL, off, &off_p);
3289 		}
3290 	}
3291 
3292 	*off_p = 0;
3293 	return (off);
3294 }
3295 
3296 /*
3297  * find private data format attached to a dip
3298  * parent = 1 to match driver name of parent dip (for parent private data)
3299  *	0 to match driver name of current dip (for driver private data)
3300  */
3301 #define	DI_MATCH_DRIVER	0
3302 #define	DI_MATCH_PARENT	1
3303 
3304 struct di_priv_format *
di_match_drv_name(struct dev_info * node,struct di_state * st,int match)3305 di_match_drv_name(struct dev_info *node, struct di_state *st, int match)
3306 {
3307 	int			i, count, len;
3308 	char			*drv_name;
3309 	major_t			major;
3310 	struct di_all		*all;
3311 	struct di_priv_format	*form;
3312 
3313 	dcmn_err2((CE_CONT, "di_match_drv_name: node = %s, match = %x\n",
3314 	    node->devi_node_name, match));
3315 
3316 	if (match == DI_MATCH_PARENT) {
3317 		node = DEVI(node->devi_parent);
3318 	}
3319 
3320 	if (node == NULL) {
3321 		return (NULL);
3322 	}
3323 
3324 	major = node->devi_major;
3325 	if (major == (major_t)(-1)) {
3326 		return (NULL);
3327 	}
3328 
3329 	/*
3330 	 * Match the driver name.
3331 	 */
3332 	drv_name = ddi_major_to_name(major);
3333 	if ((drv_name == NULL) || *drv_name == '\0') {
3334 		return (NULL);
3335 	}
3336 
3337 	/* Now get the di_priv_format array */
3338 	all = DI_ALL_PTR(st);
3339 	if (match == DI_MATCH_PARENT) {
3340 		count = all->n_ppdata;
3341 		form = DI_PRIV_FORMAT(di_mem_addr(st, all->ppdata_format));
3342 	} else {
3343 		count = all->n_dpdata;
3344 		form = DI_PRIV_FORMAT(di_mem_addr(st, all->dpdata_format));
3345 	}
3346 
3347 	len = strlen(drv_name);
3348 	for (i = 0; i < count; i++) {
3349 		char *tmp;
3350 
3351 		tmp = form[i].drv_name;
3352 		while (tmp && (*tmp != '\0')) {
3353 			if (strncmp(drv_name, tmp, len) == 0) {
3354 				return (&form[i]);
3355 			}
3356 			/*
3357 			 * Move to next driver name, skipping a white space
3358 			 */
3359 			if (tmp = strchr(tmp, ' ')) {
3360 				tmp++;
3361 			}
3362 		}
3363 	}
3364 
3365 	return (NULL);
3366 }
3367 
3368 /*
3369  * The following functions copy data as specified by the format passed in.
3370  * To prevent invalid format from panicing the system, we call on_fault().
3371  * A return value of 0 indicates an error. Otherwise, the total offset
3372  * is returned.
3373  */
3374 #define	DI_MAX_PRIVDATA	(PAGESIZE >> 1)	/* max private data size */
3375 
3376 static di_off_t
di_getprvdata(struct di_priv_format * pdp,struct dev_info * node,void * data,di_off_t * off_p,struct di_state * st)3377 di_getprvdata(struct di_priv_format *pdp, struct dev_info *node,
3378     void *data, di_off_t *off_p, struct di_state *st)
3379 {
3380 	caddr_t		pa;
3381 	void		*ptr;
3382 	int		i, size, repeat;
3383 	di_off_t	off, off0, *tmp;
3384 	char		*path;
3385 	label_t		ljb;
3386 
3387 	dcmn_err2((CE_CONT, "di_getprvdata:\n"));
3388 
3389 	/*
3390 	 * check memory availability. Private data size is
3391 	 * limited to DI_MAX_PRIVDATA.
3392 	 */
3393 	off = di_checkmem(st, *off_p, DI_MAX_PRIVDATA);
3394 	*off_p = off;
3395 
3396 	if ((pdp->bytes == 0) || pdp->bytes > DI_MAX_PRIVDATA) {
3397 		goto failure;
3398 	}
3399 
3400 	if (!on_fault(&ljb)) {
3401 		/* copy the struct */
3402 		bcopy(data, di_mem_addr(st, off), pdp->bytes);
3403 		off0 = DI_ALIGN(pdp->bytes);	/* XXX remove DI_ALIGN */
3404 
3405 		/* dereferencing pointers */
3406 		for (i = 0; i < MAX_PTR_IN_PRV; i++) {
3407 
3408 			if (pdp->ptr[i].size == 0) {
3409 				goto success;	/* no more ptrs */
3410 			}
3411 
3412 			/*
3413 			 * first, get the pointer content
3414 			 */
3415 			if ((pdp->ptr[i].offset < 0) ||
3416 			    (pdp->ptr[i].offset > pdp->bytes - sizeof (char *)))
3417 				goto failure;	/* wrong offset */
3418 
3419 			pa = di_mem_addr(st, off + pdp->ptr[i].offset);
3420 
3421 			/* save a tmp ptr to store off_t later */
3422 			tmp = (di_off_t *)(intptr_t)pa;
3423 
3424 			/* get pointer value, if NULL continue */
3425 			ptr = *((void **) (intptr_t)pa);
3426 			if (ptr == NULL) {
3427 				continue;
3428 			}
3429 
3430 			/*
3431 			 * next, find the repeat count (array dimension)
3432 			 */
3433 			repeat = pdp->ptr[i].len_offset;
3434 
3435 			/*
3436 			 * Positive value indicates a fixed sized array.
3437 			 * 0 or negative value indicates variable sized array.
3438 			 *
3439 			 * For variable sized array, the variable must be
3440 			 * an int member of the structure, with an offset
3441 			 * equal to the absolution value of struct member.
3442 			 */
3443 			if (repeat > pdp->bytes - sizeof (int)) {
3444 				goto failure;	/* wrong offset */
3445 			}
3446 
3447 			if (repeat >= 0) {
3448 				repeat = *((int *)
3449 				    (intptr_t)((caddr_t)data + repeat));
3450 			} else {
3451 				repeat = -repeat;
3452 			}
3453 
3454 			/*
3455 			 * next, get the size of the object to be copied
3456 			 */
3457 			size = pdp->ptr[i].size * repeat;
3458 
3459 			/*
3460 			 * Arbitrarily limit the total size of object to be
3461 			 * copied (1 byte to 1/4 page).
3462 			 */
3463 			if ((size <= 0) || (size > (DI_MAX_PRIVDATA - off0))) {
3464 				goto failure;	/* wrong size or too big */
3465 			}
3466 
3467 			/*
3468 			 * Now copy the data
3469 			 */
3470 			*tmp = off0;
3471 			bcopy(ptr, di_mem_addr(st, off + off0), size);
3472 			off0 += DI_ALIGN(size);	/* XXX remove DI_ALIGN */
3473 		}
3474 	} else {
3475 		goto failure;
3476 	}
3477 
3478 success:
3479 	/*
3480 	 * success if reached here
3481 	 */
3482 	no_fault();
3483 	return (off + off0);
3484 	/*NOTREACHED*/
3485 
3486 failure:
3487 	/*
3488 	 * fault occurred
3489 	 */
3490 	no_fault();
3491 	path = kmem_alloc(MAXPATHLEN, KM_SLEEP);
3492 	cmn_err(CE_WARN, "devinfo: fault on private data for '%s' at %p",
3493 	    ddi_pathname((dev_info_t *)node, path), data);
3494 	kmem_free(path, MAXPATHLEN);
3495 	*off_p = -1;	/* set private data to indicate error */
3496 
3497 	return (off);
3498 }
3499 
3500 /*
3501  * get parent private data; on error, returns original offset
3502  */
3503 static di_off_t
di_getppdata(struct dev_info * node,di_off_t * off_p,struct di_state * st)3504 di_getppdata(struct dev_info *node, di_off_t *off_p, struct di_state *st)
3505 {
3506 	int			off;
3507 	struct di_priv_format	*ppdp;
3508 
3509 	dcmn_err2((CE_CONT, "di_getppdata:\n"));
3510 
3511 	/* find the parent data format */
3512 	if ((ppdp = di_match_drv_name(node, st, DI_MATCH_PARENT)) == NULL) {
3513 		off = *off_p;
3514 		*off_p = 0;	/* set parent data to none */
3515 		return (off);
3516 	}
3517 
3518 	return (di_getprvdata(ppdp, node,
3519 	    ddi_get_parent_data((dev_info_t *)node), off_p, st));
3520 }
3521 
3522 /*
3523  * get parent private data; returns original offset
3524  */
3525 static di_off_t
di_getdpdata(struct dev_info * node,di_off_t * off_p,struct di_state * st)3526 di_getdpdata(struct dev_info *node, di_off_t *off_p, struct di_state *st)
3527 {
3528 	int			off;
3529 	struct di_priv_format	*dpdp;
3530 
3531 	dcmn_err2((CE_CONT, "di_getdpdata:"));
3532 
3533 	/* find the parent data format */
3534 	if ((dpdp = di_match_drv_name(node, st, DI_MATCH_DRIVER)) == NULL) {
3535 		off = *off_p;
3536 		*off_p = 0;	/* set driver data to none */
3537 		return (off);
3538 	}
3539 
3540 	return (di_getprvdata(dpdp, node,
3541 	    ddi_get_driver_private((dev_info_t *)node), off_p, st));
3542 }
3543 
3544 /*
3545  * Copy hotplug data associated with a devinfo node into the snapshot.
3546  */
3547 static di_off_t
di_gethpdata(ddi_hp_cn_handle_t * hp_hdl,di_off_t * off_p,struct di_state * st)3548 di_gethpdata(ddi_hp_cn_handle_t *hp_hdl, di_off_t *off_p,
3549     struct di_state *st)
3550 {
3551 	struct i_hp	*hp;
3552 	struct di_hp	*me;
3553 	size_t		size;
3554 	di_off_t	off;
3555 
3556 	dcmn_err2((CE_CONT, "di_gethpdata:\n"));
3557 
3558 	/*
3559 	 * check memory first
3560 	 */
3561 	off = di_checkmem(st, *off_p, sizeof (struct di_hp));
3562 	*off_p = off;
3563 
3564 	do {
3565 		me = DI_HP(di_mem_addr(st, off));
3566 		me->self = off;
3567 		me->hp_name = 0;
3568 		me->hp_connection = (int)hp_hdl->cn_info.cn_num;
3569 		me->hp_depends_on = (int)hp_hdl->cn_info.cn_num_dpd_on;
3570 		(void) ddihp_cn_getstate(hp_hdl);
3571 		me->hp_state = (int)hp_hdl->cn_info.cn_state;
3572 		me->hp_type = (int)hp_hdl->cn_info.cn_type;
3573 		me->hp_type_str = 0;
3574 		me->hp_last_change = (uint32_t)hp_hdl->cn_info.cn_last_change;
3575 		me->hp_child = 0;
3576 
3577 		/*
3578 		 * Child links are resolved later by di_hotplug_children().
3579 		 * Store a reference to this di_hp_t in the list used later
3580 		 * by di_hotplug_children().
3581 		 */
3582 		hp = kmem_zalloc(sizeof (i_hp_t), KM_SLEEP);
3583 		hp->hp_off = off;
3584 		hp->hp_child = hp_hdl->cn_info.cn_child;
3585 		list_insert_tail(&st->hp_list, hp);
3586 
3587 		off += sizeof (struct di_hp);
3588 
3589 		/* Add name of this di_hp_t to the snapshot */
3590 		if (hp_hdl->cn_info.cn_name) {
3591 			size = strlen(hp_hdl->cn_info.cn_name) + 1;
3592 			me->hp_name = off = di_checkmem(st, off, size);
3593 			(void) strcpy(di_mem_addr(st, off),
3594 			    hp_hdl->cn_info.cn_name);
3595 			off += size;
3596 		}
3597 
3598 		/* Add type description of this di_hp_t to the snapshot */
3599 		if (hp_hdl->cn_info.cn_type_str) {
3600 			size = strlen(hp_hdl->cn_info.cn_type_str) + 1;
3601 			me->hp_type_str = off = di_checkmem(st, off, size);
3602 			(void) strcpy(di_mem_addr(st, off),
3603 			    hp_hdl->cn_info.cn_type_str);
3604 			off += size;
3605 		}
3606 
3607 		/*
3608 		 * Set link to next in the chain of di_hp_t nodes,
3609 		 * or terminate the chain when processing the last node.
3610 		 */
3611 		if (hp_hdl->next != NULL) {
3612 			off = di_checkmem(st, off, sizeof (struct di_hp));
3613 			me->next = off;
3614 		} else {
3615 			me->next = 0;
3616 		}
3617 
3618 		/* Update pointer to next in the chain */
3619 		hp_hdl = hp_hdl->next;
3620 
3621 	} while (hp_hdl);
3622 
3623 	return (off);
3624 }
3625 
3626 /*
3627  * The driver is stateful across DINFOCPYALL and DINFOUSRLD.
3628  * This function encapsulates the state machine:
3629  *
3630  *	-> IOC_IDLE -> IOC_SNAP -> IOC_DONE -> IOC_COPY ->
3631  *	|		SNAPSHOT		USRLD	 |
3632  *	--------------------------------------------------
3633  *
3634  * Returns 0 on success and -1 on failure
3635  */
3636 static int
di_setstate(struct di_state * st,int new_state)3637 di_setstate(struct di_state *st, int new_state)
3638 {
3639 	int	ret = 0;
3640 
3641 	mutex_enter(&di_lock);
3642 	switch (new_state) {
3643 	case IOC_IDLE:
3644 	case IOC_DONE:
3645 		break;
3646 	case IOC_SNAP:
3647 		if (st->di_iocstate != IOC_IDLE)
3648 			ret = -1;
3649 		break;
3650 	case IOC_COPY:
3651 		if (st->di_iocstate != IOC_DONE)
3652 			ret = -1;
3653 		break;
3654 	default:
3655 		ret = -1;
3656 	}
3657 
3658 	if (ret == 0)
3659 		st->di_iocstate = new_state;
3660 	else
3661 		cmn_err(CE_NOTE, "incorrect state transition from %d to %d",
3662 		    st->di_iocstate, new_state);
3663 	mutex_exit(&di_lock);
3664 	return (ret);
3665 }
3666 
3667 /*
3668  * We cannot assume the presence of the entire
3669  * snapshot in this routine. All we are guaranteed
3670  * is the di_all struct + 1 byte (for root_path)
3671  */
3672 static int
header_plus_one_ok(struct di_all * all)3673 header_plus_one_ok(struct di_all *all)
3674 {
3675 	/*
3676 	 * Refuse to read old versions
3677 	 */
3678 	if (all->version != DI_SNAPSHOT_VERSION) {
3679 		CACHE_DEBUG((DI_ERR, "bad version: 0x%x", all->version));
3680 		return (0);
3681 	}
3682 
3683 	if (all->cache_magic != DI_CACHE_MAGIC) {
3684 		CACHE_DEBUG((DI_ERR, "bad magic #: 0x%x", all->cache_magic));
3685 		return (0);
3686 	}
3687 
3688 	if (all->snapshot_time == 0) {
3689 		CACHE_DEBUG((DI_ERR, "bad timestamp: %ld", all->snapshot_time));
3690 		return (0);
3691 	}
3692 
3693 	if (all->top_devinfo == 0) {
3694 		CACHE_DEBUG((DI_ERR, "NULL top devinfo"));
3695 		return (0);
3696 	}
3697 
3698 	if (all->map_size < sizeof (*all) + 1) {
3699 		CACHE_DEBUG((DI_ERR, "bad map size: %u", all->map_size));
3700 		return (0);
3701 	}
3702 
3703 	if (all->root_path[0] != '/' || all->root_path[1] != '\0') {
3704 		CACHE_DEBUG((DI_ERR, "bad rootpath: %c%c",
3705 		    all->root_path[0], all->root_path[1]));
3706 		return (0);
3707 	}
3708 
3709 	/*
3710 	 * We can't check checksum here as we just have the header
3711 	 */
3712 
3713 	return (1);
3714 }
3715 
3716 static int
chunk_write(struct vnode * vp,offset_t off,caddr_t buf,size_t len)3717 chunk_write(struct vnode *vp, offset_t off, caddr_t buf, size_t len)
3718 {
3719 	rlim64_t	rlimit;
3720 	ssize_t		resid;
3721 	int		error = 0;
3722 
3723 
3724 	rlimit = RLIM64_INFINITY;
3725 
3726 	while (len) {
3727 		resid = 0;
3728 		error = vn_rdwr(UIO_WRITE, vp, buf, len, off,
3729 		    UIO_SYSSPACE, FSYNC, rlimit, kcred, &resid);
3730 
3731 		if (error || resid < 0) {
3732 			error = error ? error : EIO;
3733 			CACHE_DEBUG((DI_ERR, "write error: %d", error));
3734 			break;
3735 		}
3736 
3737 		/*
3738 		 * Check if we are making progress
3739 		 */
3740 		if (resid >= len) {
3741 			error = ENOSPC;
3742 			break;
3743 		}
3744 		buf += len - resid;
3745 		off += len - resid;
3746 		len = resid;
3747 	}
3748 
3749 	return (error);
3750 }
3751 
3752 static void
di_cache_write(struct di_cache * cache)3753 di_cache_write(struct di_cache *cache)
3754 {
3755 	struct di_all	*all;
3756 	struct vnode	*vp;
3757 	int		oflags;
3758 	size_t		map_size;
3759 	size_t		chunk;
3760 	offset_t	off;
3761 	int		error;
3762 	char		*buf;
3763 
3764 	ASSERT(DI_CACHE_LOCKED(*cache));
3765 	ASSERT(!servicing_interrupt());
3766 
3767 	if (cache->cache_size == 0) {
3768 		ASSERT(cache->cache_data == NULL);
3769 		CACHE_DEBUG((DI_ERR, "Empty cache. Skipping write"));
3770 		return;
3771 	}
3772 
3773 	ASSERT(cache->cache_size > 0);
3774 	ASSERT(cache->cache_data);
3775 
3776 	if (!modrootloaded || rootvp == NULL || vn_is_readonly(rootvp)) {
3777 		CACHE_DEBUG((DI_ERR, "Can't write to rootFS. Skipping write"));
3778 		return;
3779 	}
3780 
3781 	all = (struct di_all *)cache->cache_data;
3782 
3783 	if (!header_plus_one_ok(all)) {
3784 		CACHE_DEBUG((DI_ERR, "Invalid header. Skipping write"));
3785 		return;
3786 	}
3787 
3788 	ASSERT(strcmp(all->root_path, "/") == 0);
3789 
3790 	/*
3791 	 * The cache_size is the total allocated memory for the cache.
3792 	 * The map_size is the actual size of valid data in the cache.
3793 	 * map_size may be smaller than cache_size but cannot exceed
3794 	 * cache_size.
3795 	 */
3796 	if (all->map_size > cache->cache_size) {
3797 		CACHE_DEBUG((DI_ERR, "map_size (0x%x) > cache_size (0x%x)."
3798 		    " Skipping write", all->map_size, cache->cache_size));
3799 		return;
3800 	}
3801 
3802 	/*
3803 	 * First unlink the temp file
3804 	 */
3805 	error = vn_remove(DI_CACHE_TEMP, UIO_SYSSPACE, RMFILE);
3806 	if (error && error != ENOENT) {
3807 		CACHE_DEBUG((DI_ERR, "%s: unlink failed: %d",
3808 		    DI_CACHE_TEMP, error));
3809 	}
3810 
3811 	if (error == EROFS) {
3812 		CACHE_DEBUG((DI_ERR, "RDONLY FS. Skipping write"));
3813 		return;
3814 	}
3815 
3816 	vp = NULL;
3817 	oflags = (FCREAT|FWRITE);
3818 	if (error = vn_open(DI_CACHE_TEMP, UIO_SYSSPACE, oflags,
3819 	    DI_CACHE_PERMS, &vp, CRCREAT, 0)) {
3820 		CACHE_DEBUG((DI_ERR, "%s: create failed: %d",
3821 		    DI_CACHE_TEMP, error));
3822 		return;
3823 	}
3824 
3825 	ASSERT(vp);
3826 
3827 	/*
3828 	 * Paranoid: Check if the file is on a read-only FS
3829 	 */
3830 	if (vn_is_readonly(vp)) {
3831 		CACHE_DEBUG((DI_ERR, "cannot write: readonly FS"));
3832 		goto fail;
3833 	}
3834 
3835 	/*
3836 	 * Note that we only write map_size bytes to disk - this saves
3837 	 * space as the actual cache size may be larger than size of
3838 	 * valid data in the cache.
3839 	 * Another advantage is that it makes verification of size
3840 	 * easier when the file is read later.
3841 	 */
3842 	map_size = all->map_size;
3843 	off = 0;
3844 	buf = cache->cache_data;
3845 
3846 	while (map_size) {
3847 		ASSERT(map_size > 0);
3848 		/*
3849 		 * Write in chunks so that VM system
3850 		 * is not overwhelmed
3851 		 */
3852 		if (map_size > di_chunk * PAGESIZE)
3853 			chunk = di_chunk * PAGESIZE;
3854 		else
3855 			chunk = map_size;
3856 
3857 		error = chunk_write(vp, off, buf, chunk);
3858 		if (error) {
3859 			CACHE_DEBUG((DI_ERR, "write failed: off=0x%x: %d",
3860 			    off, error));
3861 			goto fail;
3862 		}
3863 
3864 		off += chunk;
3865 		buf += chunk;
3866 		map_size -= chunk;
3867 
3868 		/* If low on memory, give pageout a chance to run */
3869 		if (freemem < desfree)
3870 			delay(1);
3871 	}
3872 
3873 	/*
3874 	 * Now sync the file and close it
3875 	 */
3876 	if (error = VOP_FSYNC(vp, FSYNC, kcred, NULL)) {
3877 		CACHE_DEBUG((DI_ERR, "FSYNC failed: %d", error));
3878 	}
3879 
3880 	if (error = VOP_CLOSE(vp, oflags, 1, (offset_t)0, kcred, NULL)) {
3881 		CACHE_DEBUG((DI_ERR, "close() failed: %d", error));
3882 		VN_RELE(vp);
3883 		return;
3884 	}
3885 
3886 	VN_RELE(vp);
3887 
3888 	/*
3889 	 * Now do the rename
3890 	 */
3891 	if (error = vn_rename(DI_CACHE_TEMP, DI_CACHE_FILE, UIO_SYSSPACE)) {
3892 		CACHE_DEBUG((DI_ERR, "rename failed: %d", error));
3893 		return;
3894 	}
3895 
3896 	CACHE_DEBUG((DI_INFO, "Cache write successful."));
3897 
3898 	return;
3899 
3900 fail:
3901 	(void) VOP_CLOSE(vp, oflags, 1, (offset_t)0, kcred, NULL);
3902 	VN_RELE(vp);
3903 }
3904 
3905 
3906 /*
3907  * Since we could be called early in boot,
3908  * use kobj_read_file()
3909  */
3910 static void
di_cache_read(struct di_cache * cache)3911 di_cache_read(struct di_cache *cache)
3912 {
3913 	struct _buf	*file;
3914 	struct di_all	*all;
3915 	int		n;
3916 	size_t		map_size, sz, chunk;
3917 	offset_t	off;
3918 	caddr_t		buf;
3919 	uint32_t	saved_crc, crc;
3920 
3921 	ASSERT(modrootloaded);
3922 	ASSERT(DI_CACHE_LOCKED(*cache));
3923 	ASSERT(cache->cache_data == NULL);
3924 	ASSERT(cache->cache_size == 0);
3925 	ASSERT(!servicing_interrupt());
3926 
3927 	file = kobj_open_file(DI_CACHE_FILE);
3928 	if (file == (struct _buf *)-1) {
3929 		CACHE_DEBUG((DI_ERR, "%s: open failed: %d",
3930 		    DI_CACHE_FILE, ENOENT));
3931 		return;
3932 	}
3933 
3934 	/*
3935 	 * Read in the header+root_path first. The root_path must be "/"
3936 	 */
3937 	all = kmem_zalloc(sizeof (*all) + 1, KM_SLEEP);
3938 	n = kobj_read_file(file, (caddr_t)all, sizeof (*all) + 1, 0);
3939 
3940 	if ((n != sizeof (*all) + 1) || !header_plus_one_ok(all)) {
3941 		kmem_free(all, sizeof (*all) + 1);
3942 		kobj_close_file(file);
3943 		CACHE_DEBUG((DI_ERR, "cache header: read error or invalid"));
3944 		return;
3945 	}
3946 
3947 	map_size = all->map_size;
3948 
3949 	kmem_free(all, sizeof (*all) + 1);
3950 
3951 	ASSERT(map_size >= sizeof (*all) + 1);
3952 
3953 	buf = di_cache.cache_data = kmem_alloc(map_size, KM_SLEEP);
3954 	sz = map_size;
3955 	off = 0;
3956 	while (sz) {
3957 		/* Don't overload VM with large reads */
3958 		chunk = (sz > di_chunk * PAGESIZE) ? di_chunk * PAGESIZE : sz;
3959 		n = kobj_read_file(file, buf, chunk, off);
3960 		if (n != chunk) {
3961 			CACHE_DEBUG((DI_ERR, "%s: read error at offset: %lld",
3962 			    DI_CACHE_FILE, off));
3963 			goto fail;
3964 		}
3965 		off += chunk;
3966 		buf += chunk;
3967 		sz -= chunk;
3968 	}
3969 
3970 	ASSERT(off == map_size);
3971 
3972 	/*
3973 	 * Read past expected EOF to verify size.
3974 	 */
3975 	if (kobj_read_file(file, (caddr_t)&sz, 1, off) > 0) {
3976 		CACHE_DEBUG((DI_ERR, "%s: file size changed", DI_CACHE_FILE));
3977 		goto fail;
3978 	}
3979 
3980 	all = (struct di_all *)di_cache.cache_data;
3981 	if (!header_plus_one_ok(all)) {
3982 		CACHE_DEBUG((DI_ERR, "%s: file header changed", DI_CACHE_FILE));
3983 		goto fail;
3984 	}
3985 
3986 	/*
3987 	 * Compute CRC with checksum field in the cache data set to 0
3988 	 */
3989 	saved_crc = all->cache_checksum;
3990 	all->cache_checksum = 0;
3991 	CRC32(crc, di_cache.cache_data, map_size, -1U, crc32_table);
3992 	all->cache_checksum = saved_crc;
3993 
3994 	if (crc != all->cache_checksum) {
3995 		CACHE_DEBUG((DI_ERR,
3996 		    "%s: checksum error: expected=0x%x actual=0x%x",
3997 		    DI_CACHE_FILE, all->cache_checksum, crc));
3998 		goto fail;
3999 	}
4000 
4001 	if (all->map_size != map_size) {
4002 		CACHE_DEBUG((DI_ERR, "%s: map size changed", DI_CACHE_FILE));
4003 		goto fail;
4004 	}
4005 
4006 	kobj_close_file(file);
4007 
4008 	di_cache.cache_size = map_size;
4009 
4010 	return;
4011 
4012 fail:
4013 	kmem_free(di_cache.cache_data, map_size);
4014 	kobj_close_file(file);
4015 	di_cache.cache_data = NULL;
4016 	di_cache.cache_size = 0;
4017 }
4018 
4019 
4020 /*
4021  * Checks if arguments are valid for using the cache.
4022  */
4023 static int
cache_args_valid(struct di_state * st,int * error)4024 cache_args_valid(struct di_state *st, int *error)
4025 {
4026 	ASSERT(error);
4027 	ASSERT(st->mem_size > 0);
4028 	ASSERT(st->memlist != NULL);
4029 
4030 	if (!modrootloaded || !i_ddi_io_initialized()) {
4031 		CACHE_DEBUG((DI_ERR,
4032 		    "cache lookup failure: I/O subsystem not inited"));
4033 		*error = ENOTACTIVE;
4034 		return (0);
4035 	}
4036 
4037 	/*
4038 	 * No other flags allowed with DINFOCACHE
4039 	 */
4040 	if (st->command != (DINFOCACHE & DIIOC_MASK)) {
4041 		CACHE_DEBUG((DI_ERR,
4042 		    "cache lookup failure: bad flags: 0x%x",
4043 		    st->command));
4044 		*error = EINVAL;
4045 		return (0);
4046 	}
4047 
4048 	if (strcmp(DI_ALL_PTR(st)->root_path, "/") != 0) {
4049 		CACHE_DEBUG((DI_ERR,
4050 		    "cache lookup failure: bad root: %s",
4051 		    DI_ALL_PTR(st)->root_path));
4052 		*error = EINVAL;
4053 		return (0);
4054 	}
4055 
4056 	CACHE_DEBUG((DI_INFO, "cache lookup args ok: 0x%x", st->command));
4057 
4058 	*error = 0;
4059 
4060 	return (1);
4061 }
4062 
4063 static int
snapshot_is_cacheable(struct di_state * st)4064 snapshot_is_cacheable(struct di_state *st)
4065 {
4066 	ASSERT(st->mem_size > 0);
4067 	ASSERT(st->memlist != NULL);
4068 
4069 	if ((st->command & DI_CACHE_SNAPSHOT_FLAGS) !=
4070 	    (DI_CACHE_SNAPSHOT_FLAGS & DIIOC_MASK)) {
4071 		CACHE_DEBUG((DI_INFO,
4072 		    "not cacheable: incompatible flags: 0x%x",
4073 		    st->command));
4074 		return (0);
4075 	}
4076 
4077 	if (strcmp(DI_ALL_PTR(st)->root_path, "/") != 0) {
4078 		CACHE_DEBUG((DI_INFO,
4079 		    "not cacheable: incompatible root path: %s",
4080 		    DI_ALL_PTR(st)->root_path));
4081 		return (0);
4082 	}
4083 
4084 	CACHE_DEBUG((DI_INFO, "cacheable snapshot request: 0x%x", st->command));
4085 
4086 	return (1);
4087 }
4088 
4089 static int
di_cache_lookup(struct di_state * st)4090 di_cache_lookup(struct di_state *st)
4091 {
4092 	size_t	rval;
4093 	int	cache_valid;
4094 
4095 	ASSERT(cache_args_valid(st, &cache_valid));
4096 	ASSERT(modrootloaded);
4097 
4098 	DI_CACHE_LOCK(di_cache);
4099 
4100 	/*
4101 	 * The following assignment determines the validity
4102 	 * of the cache as far as this snapshot is concerned.
4103 	 */
4104 	cache_valid = di_cache.cache_valid;
4105 
4106 	if (cache_valid && di_cache.cache_data == NULL) {
4107 		di_cache_read(&di_cache);
4108 		/* check for read or file error */
4109 		if (di_cache.cache_data == NULL)
4110 			cache_valid = 0;
4111 	}
4112 
4113 	if (cache_valid) {
4114 		/*
4115 		 * Ok, the cache was valid as of this particular
4116 		 * snapshot. Copy the cached snapshot. This is safe
4117 		 * to do as the cache cannot be freed (we hold the
4118 		 * cache lock). Free the memory allocated in di_state
4119 		 * up until this point - we will simply copy everything
4120 		 * in the cache.
4121 		 */
4122 
4123 		ASSERT(di_cache.cache_data != NULL);
4124 		ASSERT(di_cache.cache_size > 0);
4125 
4126 		di_freemem(st);
4127 
4128 		rval = 0;
4129 		if (di_cache2mem(&di_cache, st) > 0) {
4130 			/*
4131 			 * map_size is size of valid data in the
4132 			 * cached snapshot and may be less than
4133 			 * size of the cache.
4134 			 */
4135 			ASSERT(DI_ALL_PTR(st));
4136 			rval = DI_ALL_PTR(st)->map_size;
4137 
4138 			ASSERT(rval >= sizeof (struct di_all));
4139 			ASSERT(rval <= di_cache.cache_size);
4140 		}
4141 	} else {
4142 		/*
4143 		 * The cache isn't valid, we need to take a snapshot.
4144 		 * Set the command flags appropriately
4145 		 */
4146 		ASSERT(st->command == (DINFOCACHE & DIIOC_MASK));
4147 		st->command = (DI_CACHE_SNAPSHOT_FLAGS & DIIOC_MASK);
4148 		rval = di_cache_update(st);
4149 		st->command = (DINFOCACHE & DIIOC_MASK);
4150 	}
4151 
4152 	DI_CACHE_UNLOCK(di_cache);
4153 
4154 	/*
4155 	 * For cached snapshots, the devinfo driver always returns
4156 	 * a snapshot rooted at "/".
4157 	 */
4158 	ASSERT(rval == 0 || strcmp(DI_ALL_PTR(st)->root_path, "/") == 0);
4159 
4160 	return ((int)rval);
4161 }
4162 
4163 /*
4164  * This is a forced update of the cache  - the previous state of the cache
4165  * may be:
4166  *	- unpopulated
4167  *	- populated and invalid
4168  *	- populated and valid
4169  */
4170 static int
di_cache_update(struct di_state * st)4171 di_cache_update(struct di_state *st)
4172 {
4173 	int		rval;
4174 	uint32_t	crc;
4175 	struct di_all	*all;
4176 
4177 	ASSERT(DI_CACHE_LOCKED(di_cache));
4178 	ASSERT(snapshot_is_cacheable(st));
4179 
4180 	/*
4181 	 * Free the in-core cache and the on-disk file (if they exist)
4182 	 */
4183 	i_ddi_di_cache_free(&di_cache);
4184 
4185 	/*
4186 	 * Set valid flag before taking the snapshot,
4187 	 * so that any invalidations that arrive
4188 	 * during or after the snapshot are not
4189 	 * removed by us.
4190 	 */
4191 	atomic_or_32(&di_cache.cache_valid, 1);
4192 
4193 	rval = di_snapshot_and_clean(st);
4194 
4195 	if (rval == 0) {
4196 		CACHE_DEBUG((DI_ERR, "can't update cache: bad snapshot"));
4197 		return (0);
4198 	}
4199 
4200 	DI_ALL_PTR(st)->map_size = rval;
4201 	if (di_mem2cache(st, &di_cache) == 0) {
4202 		CACHE_DEBUG((DI_ERR, "can't update cache: copy failed"));
4203 		return (0);
4204 	}
4205 
4206 	ASSERT(di_cache.cache_data);
4207 	ASSERT(di_cache.cache_size > 0);
4208 
4209 	/*
4210 	 * Now that we have cached the snapshot, compute its checksum.
4211 	 * The checksum is only computed over the valid data in the
4212 	 * cache, not the entire cache.
4213 	 * Also, set all the fields (except checksum) before computing
4214 	 * checksum.
4215 	 */
4216 	all = (struct di_all *)di_cache.cache_data;
4217 	all->cache_magic = DI_CACHE_MAGIC;
4218 	all->map_size = rval;
4219 
4220 	ASSERT(all->cache_checksum == 0);
4221 	CRC32(crc, di_cache.cache_data, all->map_size, -1U, crc32_table);
4222 	all->cache_checksum = crc;
4223 
4224 	di_cache_write(&di_cache);
4225 
4226 	return (rval);
4227 }
4228 
4229 static void
di_cache_print(di_cache_debug_t msglevel,char * fmt,...)4230 di_cache_print(di_cache_debug_t msglevel, char *fmt, ...)
4231 {
4232 	va_list	ap;
4233 
4234 	if (di_cache_debug <= DI_QUIET)
4235 		return;
4236 
4237 	if (di_cache_debug < msglevel)
4238 		return;
4239 
4240 	switch (msglevel) {
4241 		case DI_ERR:
4242 			msglevel = CE_WARN;
4243 			break;
4244 		case DI_INFO:
4245 		case DI_TRACE:
4246 		default:
4247 			msglevel = CE_NOTE;
4248 			break;
4249 	}
4250 
4251 	va_start(ap, fmt);
4252 	vcmn_err(msglevel, fmt, ap);
4253 	va_end(ap);
4254 }
4255 
4256 static void
di_hotplug_children(struct di_state * st)4257 di_hotplug_children(struct di_state *st)
4258 {
4259 	di_off_t	off;
4260 	struct di_hp	*hp;
4261 	struct i_hp	*hp_list_node;
4262 
4263 	while (hp_list_node = (struct i_hp *)list_remove_head(&st->hp_list)) {
4264 
4265 		if ((hp_list_node->hp_child != NULL) &&
4266 		    (di_dip_find(st, hp_list_node->hp_child, &off) == 0)) {
4267 			hp = DI_HP(di_mem_addr(st, hp_list_node->hp_off));
4268 			hp->hp_child = off;
4269 		}
4270 
4271 		kmem_free(hp_list_node, sizeof (i_hp_t));
4272 	}
4273 
4274 	list_destroy(&st->hp_list);
4275 }
4276