xref: /illumos-gate/usr/src/uts/common/io/cxgbe/t4nex/t4_sge.c (revision 3fe455549728ac525df3be56130ad8e075d645d7)
1 /*
2  * This file and its contents are supplied under the terms of the
3  * Common Development and Distribution License ("CDDL"), version 1.0.
4  * You may only use this file in accordance with the terms of version
5  * 1.0 of the CDDL.
6  *
7  * A full copy of the text of the CDDL should have accompanied this
8  * source. A copy of the CDDL is also available via the Internet at
9  * http://www.illumos.org/license/CDDL.
10  */
11 
12 /*
13  * This file is part of the Chelsio T4 support code.
14  *
15  * Copyright (C) 2010-2013 Chelsio Communications.  All rights reserved.
16  *
17  * This program is distributed in the hope that it will be useful, but WITHOUT
18  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
19  * FITNESS FOR A PARTICULAR PURPOSE.  See the LICENSE file included in this
20  * release for licensing terms and conditions.
21  */
22 
23 /*
24  * Copyright 2024 Oxide Computer Company
25  */
26 
27 #include <sys/ddi.h>
28 #include <sys/sunddi.h>
29 #include <sys/sunndi.h>
30 #include <sys/atomic.h>
31 #include <sys/dlpi.h>
32 #include <sys/pattr.h>
33 #include <sys/strsubr.h>
34 #include <sys/stream.h>
35 #include <sys/strsun.h>
36 #include <inet/ip.h>
37 #include <inet/tcp.h>
38 
39 #include "version.h"
40 #include "common/common.h"
41 #include "common/t4_msg.h"
42 #include "common/t4_regs.h"
43 #include "common/t4_regs_values.h"
44 
45 /* TODO: Tune. */
46 int rx_buf_size = 8192;
47 int tx_copy_threshold = 256;
48 uint16_t rx_copy_threshold = 256;
49 
50 /* Used to track coalesced tx work request */
51 struct txpkts {
52 	mblk_t *tail;		/* head is in the software descriptor */
53 	uint64_t *flitp;	/* ptr to flit where next pkt should start */
54 	uint8_t npkt;		/* # of packets in this work request */
55 	uint8_t nflits;		/* # of flits used by this work request */
56 	uint16_t plen;		/* total payload (sum of all packets) */
57 };
58 
59 /* All information needed to tx a frame */
60 struct txinfo {
61 	uint32_t len;		/* Total length of frame */
62 	uint32_t flags;		/* Checksum and LSO flags */
63 	uint32_t mss;		/* MSS for LSO */
64 	uint8_t nsegs;		/* # of segments in the SGL, 0 means imm. tx */
65 	uint8_t nflits;		/* # of flits needed for the SGL */
66 	uint8_t hdls_used;	/* # of DMA handles used */
67 	uint32_t txb_used;	/* txb_space used */
68 	mac_ether_offload_info_t meoi;	/* pkt hdr info for offloads */
69 	struct ulptx_sgl sgl __attribute__((aligned(8)));
70 	struct ulptx_sge_pair reserved[TX_SGL_SEGS / 2];
71 };
72 
73 static int service_iq(struct sge_iq *iq, int budget);
74 static inline void init_iq(struct sge_iq *iq, struct adapter *sc, int tmr_idx,
75     int8_t pktc_idx, int qsize, uint8_t esize);
76 static inline void init_fl(struct sge_fl *fl, uint16_t qsize);
77 static inline void init_eq(struct adapter *sc, struct sge_eq *eq,
78     uint16_t eqtype, uint16_t qsize,uint8_t tx_chan, uint16_t iqid);
79 static int alloc_iq_fl(struct port_info *pi, struct sge_iq *iq,
80     struct sge_fl *fl, int intr_idx, int cong);
81 static int free_iq_fl(struct port_info *pi, struct sge_iq *iq,
82     struct sge_fl *fl);
83 static int alloc_fwq(struct adapter *sc);
84 static int free_fwq(struct adapter *sc);
85 static int alloc_rxq(struct port_info *pi, struct sge_rxq *rxq, int intr_idx,
86     int i);
87 static int free_rxq(struct port_info *pi, struct sge_rxq *rxq);
88 static int ctrl_eq_alloc(struct adapter *sc, struct sge_eq *eq);
89 static int eth_eq_alloc(struct adapter *sc, struct port_info *pi,
90     struct sge_eq *eq);
91 static int alloc_eq(struct adapter *sc, struct port_info *pi,
92     struct sge_eq *eq);
93 static int free_eq(struct adapter *sc, struct sge_eq *eq);
94 static int alloc_txq(struct port_info *pi, struct sge_txq *txq, int idx);
95 static int free_txq(struct port_info *pi, struct sge_txq *txq);
96 static int alloc_dma_memory(struct adapter *sc, size_t len, int flags,
97     ddi_device_acc_attr_t *acc_attr, ddi_dma_attr_t *dma_attr,
98     ddi_dma_handle_t *dma_hdl, ddi_acc_handle_t *acc_hdl, uint64_t *pba,
99     caddr_t *pva);
100 static int free_dma_memory(ddi_dma_handle_t *dhdl, ddi_acc_handle_t *ahdl);
101 static int alloc_desc_ring(struct adapter *sc, size_t len, int rw,
102     ddi_dma_handle_t *dma_hdl, ddi_acc_handle_t *acc_hdl, uint64_t *pba,
103     caddr_t *pva);
104 static int free_desc_ring(ddi_dma_handle_t *dhdl, ddi_acc_handle_t *ahdl);
105 static int alloc_tx_copybuffer(struct adapter *sc, size_t len,
106     ddi_dma_handle_t *dma_hdl, ddi_acc_handle_t *acc_hdl, uint64_t *pba,
107     caddr_t *pva);
108 static inline bool is_new_response(const struct sge_iq *iq,
109     struct rsp_ctrl **ctrl);
110 static inline void iq_next(struct sge_iq *iq);
111 static int refill_fl(struct adapter *sc, struct sge_fl *fl, int nbufs);
112 static void refill_sfl(void *arg);
113 static void add_fl_to_sfl(struct adapter *sc, struct sge_fl *fl);
114 static void free_fl_bufs(struct sge_fl *fl);
115 static mblk_t *get_fl_payload(struct adapter *sc, struct sge_fl *fl,
116     uint32_t len_newbuf, int *fl_bufs_used);
117 static int get_frame_txinfo(struct sge_txq *txq, mblk_t **fp,
118     struct txinfo *txinfo, int sgl_only);
119 static inline int fits_in_txb(struct sge_txq *txq, int len, int *waste);
120 static inline int copy_into_txb(struct sge_txq *txq, mblk_t *m, int len,
121     struct txinfo *txinfo);
122 static inline void add_seg(struct txinfo *txinfo, uint64_t ba, uint32_t len);
123 static inline int add_mblk(struct sge_txq *txq, struct txinfo *txinfo,
124     mblk_t *m, int len);
125 static void free_txinfo_resources(struct sge_txq *txq, struct txinfo *txinfo);
126 static int add_to_txpkts(struct sge_txq *txq, struct txpkts *txpkts, mblk_t *m,
127     struct txinfo *txinfo);
128 static void write_txpkts_wr(struct sge_txq *txq, struct txpkts *txpkts);
129 static int write_txpkt_wr(struct port_info *pi, struct sge_txq *txq, mblk_t *m,
130     struct txinfo *txinfo);
131 static inline void write_ulp_cpl_sgl(struct port_info *pi, struct sge_txq *txq,
132     struct txpkts *txpkts, struct txinfo *txinfo);
133 static inline void copy_to_txd(struct sge_eq *eq, caddr_t from, caddr_t *to,
134     int len);
135 static inline void ring_tx_db(struct adapter *sc, struct sge_eq *eq);
136 static int reclaim_tx_descs(struct sge_txq *txq, int howmany);
137 static void write_txqflush_wr(struct sge_txq *txq);
138 static int t4_eth_rx(struct sge_iq *iq, const struct rss_header *rss,
139     mblk_t *m);
140 static inline void ring_fl_db(struct adapter *sc, struct sge_fl *fl);
141 static kstat_t *setup_port_config_kstats(struct port_info *pi);
142 static kstat_t *setup_port_info_kstats(struct port_info *pi);
143 static kstat_t *setup_rxq_kstats(struct port_info *pi, struct sge_rxq *rxq,
144     int idx);
145 static int update_rxq_kstats(kstat_t *ksp, int rw);
146 static int update_port_info_kstats(kstat_t *ksp, int rw);
147 static kstat_t *setup_txq_kstats(struct port_info *pi, struct sge_txq *txq,
148     int idx);
149 static int update_txq_kstats(kstat_t *ksp, int rw);
150 static int handle_sge_egr_update(struct sge_iq *, const struct rss_header *,
151     mblk_t *);
152 static int handle_fw_rpl(struct sge_iq *iq, const struct rss_header *rss,
153     mblk_t *m);
154 
155 static inline int
156 reclaimable(struct sge_eq *eq)
157 {
158 	unsigned int cidx;
159 
160 	cidx = eq->spg->cidx;   /* stable snapshot */
161 	cidx = be16_to_cpu(cidx);
162 
163 	if (cidx >= eq->cidx)
164 		return (cidx - eq->cidx);
165 	else
166 		return (cidx + eq->cap - eq->cidx);
167 }
168 
169 void
170 t4_sge_init(struct adapter *sc)
171 {
172 	struct driver_properties *p = &sc->props;
173 	ddi_dma_attr_t *dma_attr;
174 	ddi_device_acc_attr_t *acc_attr;
175 	uint32_t sge_control, sge_conm_ctrl;
176 	int egress_threshold;
177 
178 	/*
179 	 * Device access and DMA attributes for descriptor rings
180 	 */
181 	acc_attr = &sc->sge.acc_attr_desc;
182 	acc_attr->devacc_attr_version = DDI_DEVICE_ATTR_V0;
183 	acc_attr->devacc_attr_endian_flags = DDI_NEVERSWAP_ACC;
184 	acc_attr->devacc_attr_dataorder = DDI_STRICTORDER_ACC;
185 
186 	dma_attr = &sc->sge.dma_attr_desc;
187 	dma_attr->dma_attr_version = DMA_ATTR_V0;
188 	dma_attr->dma_attr_addr_lo = 0;
189 	dma_attr->dma_attr_addr_hi = UINT64_MAX;
190 	dma_attr->dma_attr_count_max = UINT64_MAX;
191 	dma_attr->dma_attr_align = 512;
192 	dma_attr->dma_attr_burstsizes = 0xfff;
193 	dma_attr->dma_attr_minxfer = 1;
194 	dma_attr->dma_attr_maxxfer = UINT64_MAX;
195 	dma_attr->dma_attr_seg = UINT64_MAX;
196 	dma_attr->dma_attr_sgllen = 1;
197 	dma_attr->dma_attr_granular = 1;
198 	dma_attr->dma_attr_flags = 0;
199 
200 	/*
201 	 * Device access and DMA attributes for tx buffers
202 	 */
203 	acc_attr = &sc->sge.acc_attr_tx;
204 	acc_attr->devacc_attr_version = DDI_DEVICE_ATTR_V0;
205 	acc_attr->devacc_attr_endian_flags = DDI_NEVERSWAP_ACC;
206 
207 	dma_attr = &sc->sge.dma_attr_tx;
208 	dma_attr->dma_attr_version = DMA_ATTR_V0;
209 	dma_attr->dma_attr_addr_lo = 0;
210 	dma_attr->dma_attr_addr_hi = UINT64_MAX;
211 	dma_attr->dma_attr_count_max = UINT64_MAX;
212 	dma_attr->dma_attr_align = 1;
213 	dma_attr->dma_attr_burstsizes = 0xfff;
214 	dma_attr->dma_attr_minxfer = 1;
215 	dma_attr->dma_attr_maxxfer = UINT64_MAX;
216 	dma_attr->dma_attr_seg = UINT64_MAX;
217 	dma_attr->dma_attr_sgllen = TX_SGL_SEGS;
218 	dma_attr->dma_attr_granular = 1;
219 	dma_attr->dma_attr_flags = 0;
220 
221 	/*
222 	 * Ingress Padding Boundary and Egress Status Page Size are set up by
223 	 * t4_fixup_host_params().
224 	 */
225 	sge_control = t4_read_reg(sc, A_SGE_CONTROL);
226 	sc->sge.pktshift = G_PKTSHIFT(sge_control);
227 	sc->sge.stat_len = (sge_control & F_EGRSTATUSPAGESIZE) ? 128 : 64;
228 
229 	/* t4_nex uses FLM packed mode */
230 	sc->sge.fl_align = t4_fl_pkt_align(sc, true);
231 
232 	/*
233 	 * Device access and DMA attributes for rx buffers
234 	 */
235 	sc->sge.rxb_params.dip = sc->dip;
236 	sc->sge.rxb_params.buf_size = rx_buf_size;
237 
238 	acc_attr = &sc->sge.rxb_params.acc_attr_rx;
239 	acc_attr->devacc_attr_version = DDI_DEVICE_ATTR_V0;
240 	acc_attr->devacc_attr_endian_flags = DDI_NEVERSWAP_ACC;
241 
242 	dma_attr = &sc->sge.rxb_params.dma_attr_rx;
243 	dma_attr->dma_attr_version = DMA_ATTR_V0;
244 	dma_attr->dma_attr_addr_lo = 0;
245 	dma_attr->dma_attr_addr_hi = UINT64_MAX;
246 	dma_attr->dma_attr_count_max = UINT64_MAX;
247 	/*
248 	 * Low 4 bits of an rx buffer address have a special meaning to the SGE
249 	 * and an rx buf cannot have an address with any of these bits set.
250 	 * FL_ALIGN is >= 32 so we're sure things are ok.
251 	 */
252 	dma_attr->dma_attr_align = sc->sge.fl_align;
253 	dma_attr->dma_attr_burstsizes = 0xfff;
254 	dma_attr->dma_attr_minxfer = 1;
255 	dma_attr->dma_attr_maxxfer = UINT64_MAX;
256 	dma_attr->dma_attr_seg = UINT64_MAX;
257 	dma_attr->dma_attr_sgllen = 1;
258 	dma_attr->dma_attr_granular = 1;
259 	dma_attr->dma_attr_flags = 0;
260 
261 	sc->sge.rxbuf_cache = rxbuf_cache_create(&sc->sge.rxb_params);
262 
263 	/*
264 	 * A FL with <= fl_starve_thres buffers is starving and a periodic
265 	 * timer will attempt to refill it.  This needs to be larger than the
266 	 * SGE's Egress Congestion Threshold.  If it isn't, then we can get
267 	 * stuck waiting for new packets while the SGE is waiting for us to
268 	 * give it more Free List entries.  (Note that the SGE's Egress
269 	 * Congestion Threshold is in units of 2 Free List pointers.) For T4,
270 	 * there was only a single field to control this.  For T5 there's the
271 	 * original field which now only applies to Unpacked Mode Free List
272 	 * buffers and a new field which only applies to Packed Mode Free List
273 	 * buffers.
274 	 */
275 
276 	sge_conm_ctrl = t4_read_reg(sc, A_SGE_CONM_CTRL);
277 	switch (CHELSIO_CHIP_VERSION(sc->params.chip)) {
278 	case CHELSIO_T4:
279 		egress_threshold = G_EGRTHRESHOLD(sge_conm_ctrl);
280 		break;
281 	case CHELSIO_T5:
282 		egress_threshold = G_EGRTHRESHOLDPACKING(sge_conm_ctrl);
283 		break;
284 	case CHELSIO_T6:
285 	default:
286 		egress_threshold = G_T6_EGRTHRESHOLDPACKING(sge_conm_ctrl);
287 	}
288 	sc->sge.fl_starve_threshold = 2*egress_threshold + 1;
289 
290 	t4_write_reg(sc, A_SGE_FL_BUFFER_SIZE0, rx_buf_size);
291 
292 	t4_write_reg(sc, A_SGE_INGRESS_RX_THRESHOLD,
293 	    V_THRESHOLD_0(p->counter_val[0]) |
294 	    V_THRESHOLD_1(p->counter_val[1]) |
295 	    V_THRESHOLD_2(p->counter_val[2]) |
296 	    V_THRESHOLD_3(p->counter_val[3]));
297 
298 	t4_write_reg(sc, A_SGE_TIMER_VALUE_0_AND_1,
299 	    V_TIMERVALUE0(us_to_core_ticks(sc, p->timer_val[0])) |
300 	    V_TIMERVALUE1(us_to_core_ticks(sc, p->timer_val[1])));
301 	t4_write_reg(sc, A_SGE_TIMER_VALUE_2_AND_3,
302 	    V_TIMERVALUE2(us_to_core_ticks(sc, p->timer_val[2])) |
303 	    V_TIMERVALUE3(us_to_core_ticks(sc, p->timer_val[3])));
304 	t4_write_reg(sc, A_SGE_TIMER_VALUE_4_AND_5,
305 	    V_TIMERVALUE4(us_to_core_ticks(sc, p->timer_val[4])) |
306 	    V_TIMERVALUE5(us_to_core_ticks(sc, p->timer_val[5])));
307 
308 	(void) t4_register_cpl_handler(sc, CPL_FW4_MSG, handle_fw_rpl);
309 	(void) t4_register_cpl_handler(sc, CPL_FW6_MSG, handle_fw_rpl);
310 	(void) t4_register_cpl_handler(sc, CPL_SGE_EGR_UPDATE, handle_sge_egr_update);
311 	(void) t4_register_cpl_handler(sc, CPL_RX_PKT, t4_eth_rx);
312 	(void) t4_register_fw_msg_handler(sc, FW6_TYPE_CMD_RPL,
313 		    t4_handle_fw_rpl);
314 }
315 
316 /*
317  * Allocate and initialize the firmware event queue and the forwarded interrupt
318  * queues, if any.  The adapter owns all these queues as they are not associated
319  * with any particular port.
320  *
321  * Returns errno on failure.  Resources allocated up to that point may still be
322  * allocated.  Caller is responsible for cleanup in case this function fails.
323  */
324 int
325 t4_setup_adapter_queues(struct adapter *sc)
326 {
327 	int rc;
328 
329 	ADAPTER_LOCK_ASSERT_NOTOWNED(sc);
330 
331 	/*
332 	 * Firmware event queue
333 	 */
334 	rc = alloc_fwq(sc);
335 	if (rc != 0)
336 		return (rc);
337 
338 	return (rc);
339 }
340 
341 /*
342  * Idempotent
343  */
344 int
345 t4_teardown_adapter_queues(struct adapter *sc)
346 {
347 
348 	ADAPTER_LOCK_ASSERT_NOTOWNED(sc);
349 
350 	(void) free_fwq(sc);
351 
352 	return (0);
353 }
354 
355 static inline int
356 first_vector(struct port_info *pi)
357 {
358 	struct adapter *sc = pi->adapter;
359 	int rc = T4_EXTRA_INTR, i;
360 
361 	if (sc->intr_count == 1)
362 		return (0);
363 
364 	for_each_port(sc, i) {
365 		struct port_info *p = sc->port[i];
366 
367 		if (i == pi->port_id)
368 			break;
369 
370 		/*
371 		 * Not compiled with offload support and intr_count > 1.  Only
372 		 * NIC queues exist and they'd better be taking direct
373 		 * interrupts.
374 		 */
375 		ASSERT(!(sc->flags & INTR_FWD));
376 		rc += p->nrxq;
377 	}
378 	return (rc);
379 }
380 
381 /*
382  * Given an arbitrary "index," come up with an iq that can be used by other
383  * queues (of this port) for interrupt forwarding, SGE egress updates, etc.
384  * The iq returned is guaranteed to be something that takes direct interrupts.
385  */
386 static struct sge_iq *
387 port_intr_iq(struct port_info *pi, int idx)
388 {
389 	struct adapter *sc = pi->adapter;
390 	struct sge *s = &sc->sge;
391 	struct sge_iq *iq = NULL;
392 
393 	if (sc->intr_count == 1)
394 		return (&sc->sge.fwq);
395 
396 	/*
397 	 * Not compiled with offload support and intr_count > 1.  Only NIC
398 	 * queues exist and they'd better be taking direct interrupts.
399 	 */
400 	ASSERT(!(sc->flags & INTR_FWD));
401 
402 	idx %= pi->nrxq;
403 	iq = &s->rxq[pi->first_rxq + idx].iq;
404 
405 	return (iq);
406 }
407 
408 int
409 t4_setup_port_queues(struct port_info *pi)
410 {
411 	int rc = 0, i, intr_idx, j;
412 	struct sge_rxq *rxq;
413 	struct sge_txq *txq;
414 	struct adapter *sc = pi->adapter;
415 	struct driver_properties *p = &sc->props;
416 
417 	pi->ksp_config = setup_port_config_kstats(pi);
418 	pi->ksp_info   = setup_port_info_kstats(pi);
419 
420 	/* Interrupt vector to start from (when using multiple vectors) */
421 	intr_idx = first_vector(pi);
422 
423 	/*
424 	 * First pass over all rx queues (NIC and TOE):
425 	 * a) initialize iq and fl
426 	 * b) allocate queue iff it will take direct interrupts.
427 	 */
428 
429 	for_each_rxq(pi, i, rxq) {
430 
431 		init_iq(&rxq->iq, sc, pi->tmr_idx, pi->pktc_idx, p->qsize_rxq,
432 		    RX_IQ_ESIZE);
433 
434 		init_fl(&rxq->fl, p->qsize_rxq / 8); /* 8 bufs in each entry */
435 
436 		if ((!(sc->flags & INTR_FWD)) ||
437 		    (sc->intr_count > 1 && pi->nrxq)) {
438 			rxq->iq.flags |= IQ_INTR;
439 			rc = alloc_rxq(pi, rxq, intr_idx, i);
440 			if (rc != 0)
441 				goto done;
442 			intr_idx++;
443 		}
444 
445 	}
446 
447 	/*
448 	 * Second pass over all rx queues (NIC and TOE).  The queues forwarding
449 	 * their interrupts are allocated now.
450 	 */
451 	j = 0;
452 	for_each_rxq(pi, i, rxq) {
453 		if (rxq->iq.flags & IQ_INTR)
454 			continue;
455 
456 		intr_idx = port_intr_iq(pi, j)->abs_id;
457 
458 		rc = alloc_rxq(pi, rxq, intr_idx, i);
459 		if (rc != 0)
460 			goto done;
461 		j++;
462 	}
463 
464 	/*
465 	 * Now the tx queues.  Only one pass needed.
466 	 */
467 	j = 0;
468 	for_each_txq(pi, i, txq) {
469 		uint16_t iqid;
470 
471 		iqid = port_intr_iq(pi, j)->cntxt_id;
472 		init_eq(sc, &txq->eq, EQ_ETH, p->qsize_txq, pi->tx_chan, iqid);
473 		rc = alloc_txq(pi, txq, i);
474 		if (rc != 0)
475 			goto done;
476 	}
477 
478 done:
479 	if (rc != 0)
480 		(void) t4_teardown_port_queues(pi);
481 
482 	return (rc);
483 }
484 
485 /*
486  * Idempotent
487  */
488 int
489 t4_teardown_port_queues(struct port_info *pi)
490 {
491 	int i;
492 	struct sge_rxq *rxq;
493 	struct sge_txq *txq;
494 
495 	if (pi->ksp_config != NULL) {
496 		kstat_delete(pi->ksp_config);
497 		pi->ksp_config = NULL;
498 	}
499 	if (pi->ksp_info != NULL) {
500 		kstat_delete(pi->ksp_info);
501 		pi->ksp_info = NULL;
502 	}
503 
504 	for_each_txq(pi, i, txq) {
505 		(void) free_txq(pi, txq);
506 	}
507 
508 	for_each_rxq(pi, i, rxq) {
509 		if ((rxq->iq.flags & IQ_INTR) == 0)
510 			(void) free_rxq(pi, rxq);
511 	}
512 
513 	/*
514 	 * Then take down the rx queues that take direct interrupts.
515 	 */
516 
517 	for_each_rxq(pi, i, rxq) {
518 		if (rxq->iq.flags & IQ_INTR)
519 			(void) free_rxq(pi, rxq);
520 	}
521 
522 	return (0);
523 }
524 
525 /* Deals with errors and forwarded interrupts */
526 uint_t
527 t4_intr_all(caddr_t arg1, caddr_t arg2)
528 {
529 
530 	(void) t4_intr_err(arg1, arg2);
531 	(void) t4_intr(arg1, arg2);
532 
533 	return (DDI_INTR_CLAIMED);
534 }
535 
536 static void
537 t4_intr_rx_work(struct sge_iq *iq)
538 {
539 	mblk_t *mp = NULL;
540 	struct sge_rxq *rxq = iq_to_rxq(iq);	/* Use iff iq is part of rxq */
541 	RXQ_LOCK(rxq);
542 	if (!iq->polling) {
543 		mp = t4_ring_rx(rxq, iq->qsize/8);
544 		t4_write_reg(iq->adapter, MYPF_REG(A_SGE_PF_GTS),
545 		     V_INGRESSQID((u32)iq->cntxt_id) | V_SEINTARM(iq->intr_next));
546 	}
547 	RXQ_UNLOCK(rxq);
548 	if (mp != NULL)
549 		mac_rx_ring(rxq->port->mh, rxq->ring_handle, mp,
550 			    rxq->ring_gen_num);
551 }
552 
553 /* Deals with interrupts on the given ingress queue */
554 /* ARGSUSED */
555 uint_t
556 t4_intr(caddr_t arg1, caddr_t arg2)
557 {
558 	struct sge_iq *iq = (struct sge_iq *)arg2;
559 	int state;
560 
561 	/* Right now receive polling is only enabled for MSI-X and
562 	 * when we have enough msi-x vectors i.e no interrupt forwarding.
563 	 */
564 	if (iq->adapter->props.multi_rings) {
565 		t4_intr_rx_work(iq);
566 	} else {
567 		state = atomic_cas_uint(&iq->state, IQS_IDLE, IQS_BUSY);
568 		if (state == IQS_IDLE) {
569 			(void) service_iq(iq, 0);
570 			(void) atomic_cas_uint(&iq->state, IQS_BUSY, IQS_IDLE);
571 		}
572 	}
573 	return (DDI_INTR_CLAIMED);
574 }
575 
576 /* Deals with error interrupts */
577 /* ARGSUSED */
578 uint_t
579 t4_intr_err(caddr_t arg1, caddr_t arg2)
580 {
581 	/* LINTED: E_BAD_PTR_CAST_ALIGN */
582 	struct adapter *sc = (struct adapter *)arg1;
583 
584 	t4_write_reg(sc, MYPF_REG(A_PCIE_PF_CLI), 0);
585 	(void) t4_slow_intr_handler(sc);
586 
587 	return (DDI_INTR_CLAIMED);
588 }
589 
590 /*
591  * t4_ring_rx - Process responses from an SGE response queue.
592  *
593  * This function processes responses from an SGE response queue up to the supplied budget.
594  * Responses include received packets as well as control messages from FW
595  * or HW.
596  * It returns a chain of mblks containing the received data, to be
597  * passed up to mac_ring_rx().
598  */
599 mblk_t *
600 t4_ring_rx(struct sge_rxq *rxq, int budget)
601 {
602 	struct sge_iq *iq = &rxq->iq;
603 	struct sge_fl *fl = &rxq->fl;           /* Use iff IQ_HAS_FL */
604 	struct adapter *sc = iq->adapter;
605 	struct rsp_ctrl *ctrl;
606 	const struct rss_header *rss;
607 	int ndescs = 0, fl_bufs_used = 0;
608 	int rsp_type;
609 	uint32_t lq;
610 	mblk_t *mblk_head = NULL, **mblk_tail, *m;
611 	struct cpl_rx_pkt *cpl;
612 	uint32_t received_bytes = 0, pkt_len = 0;
613 	bool csum_ok;
614 	uint16_t err_vec;
615 
616 	mblk_tail = &mblk_head;
617 
618 	while (is_new_response(iq, &ctrl)) {
619 
620 		membar_consumer();
621 
622 		m = NULL;
623 		rsp_type = G_RSPD_TYPE(ctrl->u.type_gen);
624 		lq = be32_to_cpu(ctrl->pldbuflen_qid);
625 		rss = (const void *)iq->cdesc;
626 
627 		switch (rsp_type) {
628 		case X_RSPD_TYPE_FLBUF:
629 
630 			ASSERT(iq->flags & IQ_HAS_FL);
631 
632 			if (CPL_RX_PKT == rss->opcode) {
633 				cpl = (void *)(rss + 1);
634 				pkt_len = be16_to_cpu(cpl->len);
635 
636 				if (iq->polling && ((received_bytes + pkt_len) > budget))
637 					goto done;
638 
639 				m = get_fl_payload(sc, fl, lq, &fl_bufs_used);
640 				if (m == NULL)
641 					goto done;
642 
643 				iq->intr_next = iq->intr_params;
644 				m->b_rptr += sc->sge.pktshift;
645 				if (sc->params.tp.rx_pkt_encap)
646 				/* It is enabled only in T6 config file */
647 					err_vec = G_T6_COMPR_RXERR_VEC(ntohs(cpl->err_vec));
648 				else
649 					err_vec = ntohs(cpl->err_vec);
650 
651 				csum_ok = cpl->csum_calc && !err_vec;
652 
653 				/* TODO: what about cpl->ip_frag? */
654 				if (csum_ok && !cpl->ip_frag) {
655 					mac_hcksum_set(m, 0, 0, 0, 0xffff,
656 					    HCK_FULLCKSUM_OK | HCK_FULLCKSUM |
657 					    HCK_IPV4_HDRCKSUM_OK);
658 					rxq->rxcsum++;
659 				}
660 				rxq->rxpkts++;
661 				rxq->rxbytes += pkt_len;
662 				received_bytes += pkt_len;
663 
664 				*mblk_tail = m;
665 				mblk_tail = &m->b_next;
666 
667 				break;
668 			}
669 
670 			m = get_fl_payload(sc, fl, lq, &fl_bufs_used);
671 			if (m == NULL)
672 				goto done;
673 			/* FALLTHROUGH */
674 
675 		case X_RSPD_TYPE_CPL:
676 			ASSERT(rss->opcode < NUM_CPL_CMDS);
677 			sc->cpl_handler[rss->opcode](iq, rss, m);
678 			break;
679 
680 		default:
681 			break;
682 		}
683 		iq_next(iq);
684 		++ndescs;
685 		if (!iq->polling && (ndescs == budget))
686 			break;
687 	}
688 
689 done:
690 
691 	t4_write_reg(sc, MYPF_REG(A_SGE_PF_GTS),
692 		     V_CIDXINC(ndescs) | V_INGRESSQID(iq->cntxt_id) |
693 		     V_SEINTARM(V_QINTR_TIMER_IDX(X_TIMERREG_UPDATE_CIDX)));
694 
695 	if ((fl_bufs_used > 0) || (iq->flags & IQ_HAS_FL)) {
696 		int starved;
697 		FL_LOCK(fl);
698 		fl->needed += fl_bufs_used;
699 		starved = refill_fl(sc, fl, fl->cap / 8);
700 		FL_UNLOCK(fl);
701 		if (starved)
702 			add_fl_to_sfl(sc, fl);
703 	}
704 	return (mblk_head);
705 }
706 
707 /*
708  * Deals with anything and everything on the given ingress queue.
709  */
710 static int
711 service_iq(struct sge_iq *iq, int budget)
712 {
713 	struct sge_iq *q;
714 	struct sge_rxq *rxq = iq_to_rxq(iq);	/* Use iff iq is part of rxq */
715 	struct sge_fl *fl = &rxq->fl;		/* Use iff IQ_HAS_FL */
716 	struct adapter *sc = iq->adapter;
717 	struct rsp_ctrl *ctrl;
718 	const struct rss_header *rss;
719 	int ndescs = 0, limit, fl_bufs_used = 0;
720 	int rsp_type;
721 	uint32_t lq;
722 	int starved;
723 	mblk_t *m;
724 	STAILQ_HEAD(, sge_iq) iql = STAILQ_HEAD_INITIALIZER(iql);
725 
726 	limit = budget ? budget : iq->qsize / 8;
727 
728 	/*
729 	 * We always come back and check the descriptor ring for new indirect
730 	 * interrupts and other responses after running a single handler.
731 	 */
732 	for (;;) {
733 		while (is_new_response(iq, &ctrl)) {
734 
735 			membar_consumer();
736 
737 			m = NULL;
738 			rsp_type = G_RSPD_TYPE(ctrl->u.type_gen);
739 			lq = be32_to_cpu(ctrl->pldbuflen_qid);
740 			rss = (const void *)iq->cdesc;
741 
742 			switch (rsp_type) {
743 			case X_RSPD_TYPE_FLBUF:
744 
745 				ASSERT(iq->flags & IQ_HAS_FL);
746 
747 				m = get_fl_payload(sc, fl, lq, &fl_bufs_used);
748 				if (m == NULL) {
749 					/*
750 					 * Rearm the iq with a
751 					 * longer-than-default timer
752 					 */
753 					t4_write_reg(sc, MYPF_REG(A_SGE_PF_GTS), V_CIDXINC(ndescs) |
754 							V_INGRESSQID((u32)iq->cntxt_id) |
755 							V_SEINTARM(V_QINTR_TIMER_IDX(SGE_NTIMERS-1)));
756 					if (fl_bufs_used > 0) {
757 						ASSERT(iq->flags & IQ_HAS_FL);
758 						FL_LOCK(fl);
759 						fl->needed += fl_bufs_used;
760 						starved = refill_fl(sc, fl, fl->cap / 8);
761 						FL_UNLOCK(fl);
762 						if (starved)
763 							add_fl_to_sfl(sc, fl);
764 					}
765 					return (0);
766 				}
767 
768 			/* FALLTHRU */
769 			case X_RSPD_TYPE_CPL:
770 
771 				ASSERT(rss->opcode < NUM_CPL_CMDS);
772 				sc->cpl_handler[rss->opcode](iq, rss, m);
773 				break;
774 
775 			case X_RSPD_TYPE_INTR:
776 
777 				/*
778 				 * Interrupts should be forwarded only to queues
779 				 * that are not forwarding their interrupts.
780 				 * This means service_iq can recurse but only 1
781 				 * level deep.
782 				 */
783 				ASSERT(budget == 0);
784 
785 				q = sc->sge.iqmap[lq - sc->sge.iq_start];
786 				if (atomic_cas_uint(&q->state, IQS_IDLE,
787 				    IQS_BUSY) == IQS_IDLE) {
788 					if (service_iq(q, q->qsize / 8) == 0) {
789 						(void) atomic_cas_uint(
790 						    &q->state, IQS_BUSY,
791 						    IQS_IDLE);
792 					} else {
793 						STAILQ_INSERT_TAIL(&iql, q,
794 						    link);
795 					}
796 				}
797 				break;
798 
799 			default:
800 				break;
801 			}
802 
803 			iq_next(iq);
804 			if (++ndescs == limit) {
805 				t4_write_reg(sc, MYPF_REG(A_SGE_PF_GTS),
806 				    V_CIDXINC(ndescs) |
807 				    V_INGRESSQID(iq->cntxt_id) |
808 				    V_SEINTARM(V_QINTR_TIMER_IDX(
809 				    X_TIMERREG_UPDATE_CIDX)));
810 				ndescs = 0;
811 
812 				if (fl_bufs_used > 0) {
813 					ASSERT(iq->flags & IQ_HAS_FL);
814 					FL_LOCK(fl);
815 					fl->needed += fl_bufs_used;
816 					(void) refill_fl(sc, fl, fl->cap / 8);
817 					FL_UNLOCK(fl);
818 					fl_bufs_used = 0;
819 				}
820 
821 				if (budget != 0)
822 					return (EINPROGRESS);
823 			}
824 		}
825 
826 		if (STAILQ_EMPTY(&iql) != 0)
827 			break;
828 
829 		/*
830 		 * Process the head only, and send it to the back of the list if
831 		 * it's still not done.
832 		 */
833 		q = STAILQ_FIRST(&iql);
834 		STAILQ_REMOVE_HEAD(&iql, link);
835 		if (service_iq(q, q->qsize / 8) == 0)
836 			(void) atomic_cas_uint(&q->state, IQS_BUSY, IQS_IDLE);
837 		else
838 			STAILQ_INSERT_TAIL(&iql, q, link);
839 	}
840 
841 	t4_write_reg(sc, MYPF_REG(A_SGE_PF_GTS), V_CIDXINC(ndescs) |
842 	    V_INGRESSQID((u32)iq->cntxt_id) | V_SEINTARM(iq->intr_next));
843 
844 	if (iq->flags & IQ_HAS_FL) {
845 
846 		FL_LOCK(fl);
847 		fl->needed += fl_bufs_used;
848 		starved = refill_fl(sc, fl, fl->cap / 4);
849 		FL_UNLOCK(fl);
850 		if (starved != 0)
851 			add_fl_to_sfl(sc, fl);
852 	}
853 
854 	return (0);
855 }
856 
857 /* Per-packet header in a coalesced tx WR, before the SGL starts (in flits) */
858 #define	TXPKTS_PKT_HDR ((\
859 	sizeof (struct ulp_txpkt) + \
860 	sizeof (struct ulptx_idata) + \
861 	sizeof (struct cpl_tx_pkt_core)) / 8)
862 
863 /* Header of a coalesced tx WR, before SGL of first packet (in flits) */
864 #define	TXPKTS_WR_HDR (\
865 	sizeof (struct fw_eth_tx_pkts_wr) / 8 + \
866 	TXPKTS_PKT_HDR)
867 
868 /* Header of a tx WR, before SGL of first packet (in flits) */
869 #define	TXPKT_WR_HDR ((\
870 	sizeof (struct fw_eth_tx_pkt_wr) + \
871 	sizeof (struct cpl_tx_pkt_core)) / 8)
872 
873 /* Header of a tx LSO WR, before SGL of first packet (in flits) */
874 #define	TXPKT_LSO_WR_HDR ((\
875 	sizeof (struct fw_eth_tx_pkt_wr) + \
876 	sizeof(struct cpl_tx_pkt_lso_core) + \
877 	sizeof (struct cpl_tx_pkt_core)) / 8)
878 
879 mblk_t *
880 t4_eth_tx(void *arg, mblk_t *frame)
881 {
882 	struct sge_txq *txq = (struct sge_txq *) arg;
883 	struct port_info *pi = txq->port;
884 	struct adapter *sc = pi->adapter;
885 	struct sge_eq *eq = &txq->eq;
886 	mblk_t *next_frame;
887 	int rc, coalescing;
888 	struct txpkts txpkts;
889 	struct txinfo txinfo;
890 
891 	txpkts.npkt = 0; /* indicates there's nothing in txpkts */
892 	coalescing = 0;
893 
894 	TXQ_LOCK(txq);
895 	if (eq->avail < 8)
896 		(void) reclaim_tx_descs(txq, 8);
897 	for (; frame; frame = next_frame) {
898 
899 		if (eq->avail < 8)
900 			break;
901 
902 		next_frame = frame->b_next;
903 		frame->b_next = NULL;
904 
905 		if (next_frame != NULL)
906 			coalescing = 1;
907 
908 		rc = get_frame_txinfo(txq, &frame, &txinfo, coalescing);
909 		if (rc != 0) {
910 			if (rc == ENOMEM) {
911 
912 				/* Short of resources, suspend tx */
913 
914 				frame->b_next = next_frame;
915 				break;
916 			}
917 
918 			/*
919 			 * Unrecoverable error for this frame, throw it
920 			 * away and move on to the next.
921 			 */
922 
923 			freemsg(frame);
924 			continue;
925 		}
926 
927 		if (coalescing != 0 &&
928 		    add_to_txpkts(txq, &txpkts, frame, &txinfo) == 0) {
929 
930 			/* Successfully absorbed into txpkts */
931 
932 			write_ulp_cpl_sgl(pi, txq, &txpkts, &txinfo);
933 			goto doorbell;
934 		}
935 
936 		/*
937 		 * We weren't coalescing to begin with, or current frame could
938 		 * not be coalesced (add_to_txpkts flushes txpkts if a frame
939 		 * given to it can't be coalesced).  Either way there should be
940 		 * nothing in txpkts.
941 		 */
942 		ASSERT(txpkts.npkt == 0);
943 
944 		/* We're sending out individual frames now */
945 		coalescing = 0;
946 
947 		if (eq->avail < 8)
948 			(void) reclaim_tx_descs(txq, 8);
949 		rc = write_txpkt_wr(pi, txq, frame, &txinfo);
950 		if (rc != 0) {
951 
952 			/* Short of hardware descriptors, suspend tx */
953 
954 			/*
955 			 * This is an unlikely but expensive failure.  We've
956 			 * done all the hard work (DMA bindings etc.) and now we
957 			 * can't send out the frame.  What's worse, we have to
958 			 * spend even more time freeing up everything in txinfo.
959 			 */
960 			txq->qfull++;
961 			free_txinfo_resources(txq, &txinfo);
962 
963 			frame->b_next = next_frame;
964 			break;
965 		}
966 
967 doorbell:
968 		/* Fewer and fewer doorbells as the queue fills up */
969 		if (eq->pending >= (1 << (fls(eq->qsize - eq->avail) / 2))) {
970 			txq->txbytes += txinfo.len;
971 			txq->txpkts++;
972 			ring_tx_db(sc, eq);
973 		}
974 		(void) reclaim_tx_descs(txq, 32);
975 	}
976 
977 	if (txpkts.npkt > 0)
978 		write_txpkts_wr(txq, &txpkts);
979 
980 	/*
981 	 * frame not NULL means there was an error but we haven't thrown it
982 	 * away.  This can happen when we're short of tx descriptors (qfull) or
983 	 * maybe even DMA handles (dma_hdl_failed).  Either way, a credit flush
984 	 * and reclaim will get things going again.
985 	 *
986 	 * If eq->avail is already 0 we know a credit flush was requested in the
987 	 * WR that reduced it to 0 so we don't need another flush (we don't have
988 	 * any descriptor for a flush WR anyway, duh).
989 	 */
990 	if (frame && eq->avail > 0)
991 		write_txqflush_wr(txq);
992 
993 	if (eq->pending != 0)
994 		ring_tx_db(sc, eq);
995 
996 	(void) reclaim_tx_descs(txq, eq->qsize);
997 	TXQ_UNLOCK(txq);
998 
999 	return (frame);
1000 }
1001 
1002 static inline void
1003 init_iq(struct sge_iq *iq, struct adapter *sc, int tmr_idx, int8_t pktc_idx,
1004 	int qsize, uint8_t esize)
1005 {
1006 	ASSERT(tmr_idx >= 0 && tmr_idx < SGE_NTIMERS);
1007 	ASSERT(pktc_idx < SGE_NCOUNTERS);	/* -ve is ok, means don't use */
1008 
1009 	iq->flags = 0;
1010 	iq->adapter = sc;
1011 	iq->intr_params = V_QINTR_TIMER_IDX(tmr_idx);
1012 	iq->intr_pktc_idx = SGE_NCOUNTERS - 1;
1013 	if (pktc_idx >= 0) {
1014 		iq->intr_params |= F_QINTR_CNT_EN;
1015 		iq->intr_pktc_idx = pktc_idx;
1016 	}
1017 	iq->qsize = roundup(qsize, 16);		/* See FW_IQ_CMD/iqsize */
1018 	iq->esize = max(esize, 16);		/* See FW_IQ_CMD/iqesize */
1019 }
1020 
1021 static inline void
1022 init_fl(struct sge_fl *fl, uint16_t qsize)
1023 {
1024 
1025 	fl->qsize = qsize;
1026 	fl->allocb_fail = 0;
1027 }
1028 
1029 static inline void
1030 init_eq(struct adapter *sc, struct sge_eq *eq, uint16_t eqtype, uint16_t qsize,
1031     uint8_t tx_chan, uint16_t iqid)
1032 {
1033 	struct sge *s = &sc->sge;
1034 	uint32_t r;
1035 
1036 	ASSERT(tx_chan < NCHAN);
1037 	ASSERT(eqtype <= EQ_TYPEMASK);
1038 
1039 	if (is_t5(sc->params.chip)) {
1040 		r = t4_read_reg(sc, A_SGE_EGRESS_QUEUES_PER_PAGE_PF);
1041 		r >>= S_QUEUESPERPAGEPF0 +
1042 		    (S_QUEUESPERPAGEPF1 - S_QUEUESPERPAGEPF0) * sc->pf;
1043 		s->s_qpp = r & M_QUEUESPERPAGEPF0;
1044 	}
1045 
1046 	eq->flags = eqtype & EQ_TYPEMASK;
1047 	eq->tx_chan = tx_chan;
1048 	eq->iqid = iqid;
1049 	eq->qsize = qsize;
1050 }
1051 
1052 /*
1053  * Allocates the ring for an ingress queue and an optional freelist.  If the
1054  * freelist is specified it will be allocated and then associated with the
1055  * ingress queue.
1056  *
1057  * Returns errno on failure.  Resources allocated up to that point may still be
1058  * allocated.  Caller is responsible for cleanup in case this function fails.
1059  *
1060  * If the ingress queue will take interrupts directly (iq->flags & IQ_INTR) then
1061  * the intr_idx specifies the vector, starting from 0.  Otherwise it specifies
1062  * the index of the queue to which its interrupts will be forwarded.
1063  */
1064 static int
1065 alloc_iq_fl(struct port_info *pi, struct sge_iq *iq, struct sge_fl *fl,
1066     int intr_idx, int cong)
1067 {
1068 	int rc, i, cntxt_id;
1069 	size_t len;
1070 	struct fw_iq_cmd c;
1071 	struct adapter *sc = iq->adapter;
1072 	uint32_t v = 0;
1073 
1074 	len = iq->qsize * iq->esize;
1075 	rc = alloc_desc_ring(sc, len, DDI_DMA_READ, &iq->dhdl, &iq->ahdl,
1076 	    &iq->ba, (caddr_t *)&iq->desc);
1077 	if (rc != 0)
1078 		return (rc);
1079 
1080 	bzero(&c, sizeof (c));
1081 	c.op_to_vfn = cpu_to_be32(V_FW_CMD_OP(FW_IQ_CMD) | F_FW_CMD_REQUEST |
1082 	    F_FW_CMD_WRITE | F_FW_CMD_EXEC | V_FW_IQ_CMD_PFN(sc->pf) |
1083 	    V_FW_IQ_CMD_VFN(0));
1084 
1085 	c.alloc_to_len16 = cpu_to_be32(F_FW_IQ_CMD_ALLOC | F_FW_IQ_CMD_IQSTART |
1086 	    FW_LEN16(c));
1087 
1088 	/* Special handling for firmware event queue */
1089 	if (iq == &sc->sge.fwq)
1090 		v |= F_FW_IQ_CMD_IQASYNCH;
1091 
1092 	if (iq->flags & IQ_INTR)
1093 		ASSERT(intr_idx < sc->intr_count);
1094 	else
1095 		v |= F_FW_IQ_CMD_IQANDST;
1096 	v |= V_FW_IQ_CMD_IQANDSTINDEX(intr_idx);
1097 
1098 	c.type_to_iqandstindex = cpu_to_be32(v |
1099 	    V_FW_IQ_CMD_TYPE(FW_IQ_TYPE_FL_INT_CAP) |
1100 	    V_FW_IQ_CMD_VIID(pi->viid) |
1101 	    V_FW_IQ_CMD_IQANUD(X_UPDATEDELIVERY_INTERRUPT));
1102 	c.iqdroprss_to_iqesize = cpu_to_be16(V_FW_IQ_CMD_IQPCIECH(pi->tx_chan) |
1103 	    F_FW_IQ_CMD_IQGTSMODE |
1104 	    V_FW_IQ_CMD_IQINTCNTTHRESH(iq->intr_pktc_idx) |
1105 	    V_FW_IQ_CMD_IQESIZE(ilog2(iq->esize) - 4));
1106 	c.iqsize = cpu_to_be16(iq->qsize);
1107 	c.iqaddr = cpu_to_be64(iq->ba);
1108 	if (cong >= 0)
1109 		c.iqns_to_fl0congen = BE_32(F_FW_IQ_CMD_IQFLINTCONGEN |
1110 					V_FW_IQ_CMD_IQTYPE(cong ?
1111 					FW_IQ_IQTYPE_NIC : FW_IQ_IQTYPE_OFLD));
1112 
1113 	if (fl != NULL) {
1114 		unsigned int chip_ver = CHELSIO_CHIP_VERSION(sc->params.chip);
1115 
1116 		mutex_init(&fl->lock, NULL, MUTEX_DRIVER,
1117 		    DDI_INTR_PRI(sc->intr_pri));
1118 		fl->flags |= FL_MTX;
1119 
1120 		len = fl->qsize * RX_FL_ESIZE;
1121 		rc = alloc_desc_ring(sc, len, DDI_DMA_WRITE, &fl->dhdl,
1122 		    &fl->ahdl, &fl->ba, (caddr_t *)&fl->desc);
1123 		if (rc != 0)
1124 			return (rc);
1125 
1126 		/* Allocate space for one software descriptor per buffer. */
1127 		fl->cap = (fl->qsize - sc->sge.stat_len / RX_FL_ESIZE) * 8;
1128 		fl->sdesc = kmem_zalloc(sizeof (struct fl_sdesc) * fl->cap,
1129 		    KM_SLEEP);
1130 		fl->needed = fl->cap;
1131 		fl->lowat = roundup(sc->sge.fl_starve_threshold, 8);
1132 
1133 		c.iqns_to_fl0congen |=
1134 		    cpu_to_be32(V_FW_IQ_CMD_FL0HOSTFCMODE(X_HOSTFCMODE_NONE) |
1135 		    F_FW_IQ_CMD_FL0PACKEN | F_FW_IQ_CMD_FL0PADEN);
1136 		if (cong >= 0) {
1137 			c.iqns_to_fl0congen |=
1138 			    BE_32(V_FW_IQ_CMD_FL0CNGCHMAP(cong) |
1139 			    F_FW_IQ_CMD_FL0CONGCIF |
1140 			    F_FW_IQ_CMD_FL0CONGEN);
1141 		}
1142 
1143 		/* In T6, for egress queue type FL there is internal overhead
1144 		 * of 16B for header going into FLM module.  Hence the maximum
1145 		 * allowed burst size is 448 bytes.  For T4/T5, the hardware
1146 		 * doesn't coalesce fetch requests if more than 64 bytes of
1147 		 * Free List pointers are provided, so we use a 128-byte Fetch
1148 		 * Burst Minimum there (T6 implements coalescing so we can use
1149 		 * the smaller 64-byte value there).
1150 		 */
1151 
1152 		c.fl0dcaen_to_fl0cidxfthresh =
1153 		    cpu_to_be16(V_FW_IQ_CMD_FL0FBMIN(chip_ver <= CHELSIO_T5
1154 						     ? X_FETCHBURSTMIN_128B
1155 						     : X_FETCHBURSTMIN_64B) |
1156 		    V_FW_IQ_CMD_FL0FBMAX(chip_ver <= CHELSIO_T5
1157 					 ? X_FETCHBURSTMAX_512B
1158 					 : X_FETCHBURSTMAX_256B));
1159 		c.fl0size = cpu_to_be16(fl->qsize);
1160 		c.fl0addr = cpu_to_be64(fl->ba);
1161 	}
1162 
1163 	rc = -t4_wr_mbox(sc, sc->mbox, &c, sizeof (c), &c);
1164 	if (rc != 0) {
1165 		cxgb_printf(sc->dip, CE_WARN,
1166 		    "failed to create ingress queue: %d", rc);
1167 		return (rc);
1168 	}
1169 
1170 	iq->cdesc = iq->desc;
1171 	iq->cidx = 0;
1172 	iq->gen = 1;
1173 	iq->intr_next = iq->intr_params;
1174 	iq->adapter = sc;
1175 	iq->cntxt_id = be16_to_cpu(c.iqid);
1176 	iq->abs_id = be16_to_cpu(c.physiqid);
1177 	iq->flags |= IQ_ALLOCATED;
1178 	mutex_init(&iq->lock, NULL,
1179 		    MUTEX_DRIVER, DDI_INTR_PRI(DDI_INTR_PRI(sc->intr_pri)));
1180 	iq->polling = 0;
1181 
1182 	cntxt_id = iq->cntxt_id - sc->sge.iq_start;
1183 	if (cntxt_id >= sc->sge.iqmap_sz) {
1184 		panic("%s: iq->cntxt_id (%d) more than the max (%d)", __func__,
1185 		      cntxt_id, sc->sge.iqmap_sz - 1);
1186 	}
1187 	sc->sge.iqmap[cntxt_id] = iq;
1188 
1189 	if (fl != NULL) {
1190 		fl->cntxt_id = be16_to_cpu(c.fl0id);
1191 		fl->pidx = fl->cidx = 0;
1192 		fl->copy_threshold = rx_copy_threshold;
1193 
1194 		cntxt_id = fl->cntxt_id - sc->sge.eq_start;
1195 		if (cntxt_id >= sc->sge.eqmap_sz) {
1196 			panic("%s: fl->cntxt_id (%d) more than the max (%d)",
1197 			      __func__, cntxt_id, sc->sge.eqmap_sz - 1);
1198 		}
1199 		sc->sge.eqmap[cntxt_id] = (void *)fl;
1200 
1201 		FL_LOCK(fl);
1202 		(void) refill_fl(sc, fl, fl->lowat);
1203 		FL_UNLOCK(fl);
1204 
1205 		iq->flags |= IQ_HAS_FL;
1206 	}
1207 
1208 	if (is_t5(sc->params.chip) && cong >= 0) {
1209 		uint32_t param, val;
1210 
1211 		param = V_FW_PARAMS_MNEM(FW_PARAMS_MNEM_DMAQ) |
1212 			V_FW_PARAMS_PARAM_X(FW_PARAMS_PARAM_DMAQ_CONM_CTXT) |
1213 			V_FW_PARAMS_PARAM_YZ(iq->cntxt_id);
1214 		if (cong == 0)
1215 			val = 1 << 19;
1216 		else {
1217 			val = 2 << 19;
1218 			for (i = 0; i < 4; i++) {
1219 				if (cong & (1 << i))
1220 					val |= 1 << (i << 2);
1221 			}
1222 		}
1223 
1224 		rc = -t4_set_params(sc, sc->mbox, sc->pf, 0, 1, &param, &val);
1225 		if (rc != 0) {
1226 			/* report error but carry on */
1227 			cxgb_printf(sc->dip, CE_WARN,
1228 			    "failed to set congestion manager context for "
1229 			    "ingress queue %d: %d", iq->cntxt_id, rc);
1230 		}
1231 	}
1232 
1233 	/* Enable IQ interrupts */
1234 	iq->state = IQS_IDLE;
1235 	t4_write_reg(sc, MYPF_REG(A_SGE_PF_GTS), V_SEINTARM(iq->intr_params) |
1236 	    V_INGRESSQID(iq->cntxt_id));
1237 
1238 	return (0);
1239 }
1240 
1241 static int
1242 free_iq_fl(struct port_info *pi, struct sge_iq *iq, struct sge_fl *fl)
1243 {
1244 	int rc;
1245 
1246 	if (iq != NULL) {
1247 		struct adapter *sc = iq->adapter;
1248 		dev_info_t *dip;
1249 
1250 		dip = pi ? pi->dip : sc->dip;
1251 		if (iq->flags & IQ_ALLOCATED) {
1252 			rc = -t4_iq_free(sc, sc->mbox, sc->pf, 0,
1253 			    FW_IQ_TYPE_FL_INT_CAP, iq->cntxt_id,
1254 			    fl ? fl->cntxt_id : 0xffff, 0xffff);
1255 			if (rc != 0) {
1256 				cxgb_printf(dip, CE_WARN,
1257 				    "failed to free queue %p: %d", iq, rc);
1258 				return (rc);
1259 			}
1260 			mutex_destroy(&iq->lock);
1261 			iq->flags &= ~IQ_ALLOCATED;
1262 		}
1263 
1264 		if (iq->desc != NULL) {
1265 			(void) free_desc_ring(&iq->dhdl, &iq->ahdl);
1266 			iq->desc = NULL;
1267 		}
1268 
1269 		bzero(iq, sizeof (*iq));
1270 	}
1271 
1272 	if (fl != NULL) {
1273 		if (fl->sdesc != NULL) {
1274 			FL_LOCK(fl);
1275 			free_fl_bufs(fl);
1276 			FL_UNLOCK(fl);
1277 
1278 			kmem_free(fl->sdesc, sizeof (struct fl_sdesc) *
1279 			    fl->cap);
1280 			fl->sdesc = NULL;
1281 		}
1282 
1283 		if (fl->desc != NULL) {
1284 			(void) free_desc_ring(&fl->dhdl, &fl->ahdl);
1285 			fl->desc = NULL;
1286 		}
1287 
1288 		if (fl->flags & FL_MTX) {
1289 			mutex_destroy(&fl->lock);
1290 			fl->flags &= ~FL_MTX;
1291 		}
1292 
1293 		bzero(fl, sizeof (struct sge_fl));
1294 	}
1295 
1296 	return (0);
1297 }
1298 
1299 static int
1300 alloc_fwq(struct adapter *sc)
1301 {
1302 	int rc, intr_idx;
1303 	struct sge_iq *fwq = &sc->sge.fwq;
1304 
1305 	init_iq(fwq, sc, 0, 0, FW_IQ_QSIZE, FW_IQ_ESIZE);
1306 	fwq->flags |= IQ_INTR;	/* always */
1307 	intr_idx = sc->intr_count > 1 ? 1 : 0;
1308 	rc = alloc_iq_fl(sc->port[0], fwq, NULL, intr_idx, -1);
1309 	if (rc != 0) {
1310 		cxgb_printf(sc->dip, CE_WARN,
1311 		    "failed to create firmware event queue: %d.", rc);
1312 		return (rc);
1313 	}
1314 
1315 	return (0);
1316 }
1317 
1318 static int
1319 free_fwq(struct adapter *sc)
1320 {
1321 
1322 	return (free_iq_fl(NULL, &sc->sge.fwq, NULL));
1323 }
1324 
1325 static int
1326 alloc_rxq(struct port_info *pi, struct sge_rxq *rxq, int intr_idx, int i)
1327 {
1328 	int rc;
1329 
1330 	rxq->port = pi;
1331 	rc = alloc_iq_fl(pi, &rxq->iq, &rxq->fl, intr_idx,
1332 			 t4_get_tp_ch_map(pi->adapter, pi->tx_chan));
1333 	if (rc != 0)
1334 		return (rc);
1335 
1336 	rxq->ksp = setup_rxq_kstats(pi, rxq, i);
1337 
1338 	return (rc);
1339 }
1340 
1341 static int
1342 free_rxq(struct port_info *pi, struct sge_rxq *rxq)
1343 {
1344 	int rc;
1345 
1346 	if (rxq->ksp != NULL) {
1347 		kstat_delete(rxq->ksp);
1348 		rxq->ksp = NULL;
1349 	}
1350 
1351 	rc = free_iq_fl(pi, &rxq->iq, &rxq->fl);
1352 	if (rc == 0)
1353 		bzero(&rxq->fl, sizeof (*rxq) - offsetof(struct sge_rxq, fl));
1354 
1355 	return (rc);
1356 }
1357 
1358 static int
1359 ctrl_eq_alloc(struct adapter *sc, struct sge_eq *eq)
1360 {
1361 	int rc, cntxt_id;
1362 	struct fw_eq_ctrl_cmd c;
1363 
1364 	bzero(&c, sizeof (c));
1365 
1366 	c.op_to_vfn = BE_32(V_FW_CMD_OP(FW_EQ_CTRL_CMD) | F_FW_CMD_REQUEST |
1367 	    F_FW_CMD_WRITE | F_FW_CMD_EXEC | V_FW_EQ_CTRL_CMD_PFN(sc->pf) |
1368 	    V_FW_EQ_CTRL_CMD_VFN(0));
1369 	c.alloc_to_len16 = BE_32(F_FW_EQ_CTRL_CMD_ALLOC |
1370 	    F_FW_EQ_CTRL_CMD_EQSTART | FW_LEN16(c));
1371 	c.cmpliqid_eqid = htonl(V_FW_EQ_CTRL_CMD_CMPLIQID(eq->iqid)); /* TODO */
1372 	c.physeqid_pkd = BE_32(0);
1373 	c.fetchszm_to_iqid =
1374 	    BE_32(V_FW_EQ_CTRL_CMD_HOSTFCMODE(X_HOSTFCMODE_STATUS_PAGE) |
1375 	    V_FW_EQ_CTRL_CMD_PCIECHN(eq->tx_chan) |
1376 	    F_FW_EQ_CTRL_CMD_FETCHRO | V_FW_EQ_CTRL_CMD_IQID(eq->iqid));
1377 	c.dcaen_to_eqsize =
1378 	    BE_32(V_FW_EQ_CTRL_CMD_FBMIN(X_FETCHBURSTMIN_64B) |
1379 	    V_FW_EQ_CTRL_CMD_FBMAX(X_FETCHBURSTMAX_512B) |
1380 	    V_FW_EQ_CTRL_CMD_CIDXFTHRESH(X_CIDXFLUSHTHRESH_32) |
1381 	    V_FW_EQ_CTRL_CMD_EQSIZE(eq->qsize));
1382 	c.eqaddr = BE_64(eq->ba);
1383 
1384 	rc = -t4_wr_mbox(sc, sc->mbox, &c, sizeof (c), &c);
1385 	if (rc != 0) {
1386 		cxgb_printf(sc->dip, CE_WARN,
1387 		    "failed to create control queue %d: %d", eq->tx_chan, rc);
1388 		return (rc);
1389 	}
1390 	eq->flags |= EQ_ALLOCATED;
1391 
1392 	eq->cntxt_id = G_FW_EQ_CTRL_CMD_EQID(BE_32(c.cmpliqid_eqid));
1393 	cntxt_id = eq->cntxt_id - sc->sge.eq_start;
1394 	if (cntxt_id >= sc->sge.eqmap_sz)
1395 		panic("%s: eq->cntxt_id (%d) more than the max (%d)", __func__,
1396 		      cntxt_id, sc->sge.eqmap_sz - 1);
1397 	sc->sge.eqmap[cntxt_id] = eq;
1398 
1399 	return (rc);
1400 }
1401 
1402 static int
1403 eth_eq_alloc(struct adapter *sc, struct port_info *pi, struct sge_eq *eq)
1404 {
1405 	int rc, cntxt_id;
1406 	struct fw_eq_eth_cmd c;
1407 
1408 	bzero(&c, sizeof (c));
1409 
1410 	c.op_to_vfn = BE_32(V_FW_CMD_OP(FW_EQ_ETH_CMD) | F_FW_CMD_REQUEST |
1411 	    F_FW_CMD_WRITE | F_FW_CMD_EXEC | V_FW_EQ_ETH_CMD_PFN(sc->pf) |
1412 	    V_FW_EQ_ETH_CMD_VFN(0));
1413 	c.alloc_to_len16 = BE_32(F_FW_EQ_ETH_CMD_ALLOC |
1414 	    F_FW_EQ_ETH_CMD_EQSTART | FW_LEN16(c));
1415 	c.autoequiqe_to_viid = BE_32(F_FW_EQ_ETH_CMD_AUTOEQUIQE |
1416 	    F_FW_EQ_ETH_CMD_AUTOEQUEQE | V_FW_EQ_ETH_CMD_VIID(pi->viid));
1417 	c.fetchszm_to_iqid =
1418 	    BE_32(V_FW_EQ_ETH_CMD_HOSTFCMODE(X_HOSTFCMODE_STATUS_PAGE) |
1419 	    V_FW_EQ_ETH_CMD_PCIECHN(eq->tx_chan) | F_FW_EQ_ETH_CMD_FETCHRO |
1420 	    V_FW_EQ_ETH_CMD_IQID(eq->iqid));
1421 	c.dcaen_to_eqsize = BE_32(V_FW_EQ_ETH_CMD_FBMIN(X_FETCHBURSTMIN_64B) |
1422 	    V_FW_EQ_ETH_CMD_FBMAX(X_FETCHBURSTMAX_512B) |
1423 	    V_FW_EQ_ETH_CMD_CIDXFTHRESH(X_CIDXFLUSHTHRESH_32) |
1424 	    V_FW_EQ_ETH_CMD_EQSIZE(eq->qsize));
1425 	c.eqaddr = BE_64(eq->ba);
1426 
1427 	rc = -t4_wr_mbox(sc, sc->mbox, &c, sizeof (c), &c);
1428 	if (rc != 0) {
1429 		cxgb_printf(pi->dip, CE_WARN,
1430 		    "failed to create Ethernet egress queue: %d", rc);
1431 		return (rc);
1432 	}
1433 	eq->flags |= EQ_ALLOCATED;
1434 
1435 	eq->cntxt_id = G_FW_EQ_ETH_CMD_EQID(BE_32(c.eqid_pkd));
1436 	cntxt_id = eq->cntxt_id - sc->sge.eq_start;
1437 	if (cntxt_id >= sc->sge.eqmap_sz)
1438 		panic("%s: eq->cntxt_id (%d) more than the max (%d)", __func__,
1439 		      cntxt_id, sc->sge.eqmap_sz - 1);
1440 	sc->sge.eqmap[cntxt_id] = eq;
1441 
1442 	return (rc);
1443 }
1444 
1445 static int
1446 alloc_eq(struct adapter *sc, struct port_info *pi, struct sge_eq *eq)
1447 {
1448 	int rc;
1449 	size_t len;
1450 
1451 	mutex_init(&eq->lock, NULL, MUTEX_DRIVER, DDI_INTR_PRI(sc->intr_pri));
1452 	eq->flags |= EQ_MTX;
1453 
1454 	len = eq->qsize * EQ_ESIZE;
1455 	rc = alloc_desc_ring(sc, len, DDI_DMA_WRITE, &eq->desc_dhdl,
1456 	    &eq->desc_ahdl, &eq->ba, (caddr_t *)&eq->desc);
1457 	if (rc != 0)
1458 		return (rc);
1459 
1460 	eq->cap = eq->qsize - sc->sge.stat_len / EQ_ESIZE;
1461 	eq->spg = (void *)&eq->desc[eq->cap];
1462 	eq->avail = eq->cap - 1;	/* one less to avoid cidx = pidx */
1463 	eq->pidx = eq->cidx = 0;
1464 	eq->doorbells = sc->doorbells;
1465 
1466 	switch (eq->flags & EQ_TYPEMASK) {
1467 	case EQ_CTRL:
1468 		rc = ctrl_eq_alloc(sc, eq);
1469 		break;
1470 
1471 	case EQ_ETH:
1472 		rc = eth_eq_alloc(sc, pi, eq);
1473 		break;
1474 
1475 	default:
1476 		panic("%s: invalid eq type %d.", __func__,
1477 		    eq->flags & EQ_TYPEMASK);
1478 	}
1479 
1480 	if (eq->doorbells &
1481 		(DOORBELL_UDB | DOORBELL_UDBWC | DOORBELL_WCWR)) {
1482 		uint32_t s_qpp = sc->sge.s_qpp;
1483 		uint32_t mask = (1 << s_qpp) - 1;
1484 		volatile uint8_t *udb;
1485 
1486 		udb = (volatile uint8_t *)sc->reg1p + UDBS_DB_OFFSET;
1487 		udb += (eq->cntxt_id >> s_qpp) << PAGE_SHIFT;   /* pg offset */
1488 		eq->udb_qid = eq->cntxt_id & mask;              /* id in page */
1489 		if (eq->udb_qid > PAGE_SIZE / UDBS_SEG_SIZE)
1490 			eq->doorbells &= ~DOORBELL_WCWR;
1491 		else {
1492 			udb += eq->udb_qid << UDBS_SEG_SHIFT;   /* seg offset */
1493 			eq->udb_qid = 0;
1494 		}
1495 		eq->udb = (volatile void *)udb;
1496 	}
1497 
1498 	if (rc != 0) {
1499 		cxgb_printf(sc->dip, CE_WARN,
1500 		    "failed to allocate egress queue(%d): %d",
1501 		    eq->flags & EQ_TYPEMASK, rc);
1502 	}
1503 
1504 	return (rc);
1505 }
1506 
1507 static int
1508 free_eq(struct adapter *sc, struct sge_eq *eq)
1509 {
1510 	int rc;
1511 
1512 	if (eq->flags & EQ_ALLOCATED) {
1513 		switch (eq->flags & EQ_TYPEMASK) {
1514 		case EQ_CTRL:
1515 			rc = -t4_ctrl_eq_free(sc, sc->mbox, sc->pf, 0,
1516 			    eq->cntxt_id);
1517 			break;
1518 
1519 		case EQ_ETH:
1520 			rc = -t4_eth_eq_free(sc, sc->mbox, sc->pf, 0,
1521 			    eq->cntxt_id);
1522 			break;
1523 		default:
1524 			panic("%s: invalid eq type %d.", __func__,
1525 			    eq->flags & EQ_TYPEMASK);
1526 		}
1527 		if (rc != 0) {
1528 			cxgb_printf(sc->dip, CE_WARN,
1529 			    "failed to free egress queue (%d): %d",
1530 			    eq->flags & EQ_TYPEMASK, rc);
1531 			return (rc);
1532 		}
1533 		eq->flags &= ~EQ_ALLOCATED;
1534 	}
1535 
1536 	if (eq->desc != NULL) {
1537 		(void) free_desc_ring(&eq->desc_dhdl, &eq->desc_ahdl);
1538 		eq->desc = NULL;
1539 	}
1540 
1541 	if (eq->flags & EQ_MTX)
1542 		mutex_destroy(&eq->lock);
1543 
1544 	bzero(eq, sizeof (*eq));
1545 	return (0);
1546 }
1547 
1548 static int
1549 alloc_txq(struct port_info *pi, struct sge_txq *txq, int idx)
1550 {
1551 	int rc, i;
1552 	struct adapter *sc = pi->adapter;
1553 	struct sge_eq *eq = &txq->eq;
1554 
1555 	rc = alloc_eq(sc, pi, eq);
1556 	if (rc != 0)
1557 		return (rc);
1558 
1559 	txq->port = pi;
1560 	txq->sdesc = kmem_zalloc(sizeof (struct tx_sdesc) * eq->cap, KM_SLEEP);
1561 	txq->txb_size = eq->qsize * tx_copy_threshold;
1562 	rc = alloc_tx_copybuffer(sc, txq->txb_size, &txq->txb_dhdl,
1563 	    &txq->txb_ahdl, &txq->txb_ba, &txq->txb_va);
1564 	if (rc == 0)
1565 		txq->txb_avail = txq->txb_size;
1566 	else
1567 		txq->txb_avail = txq->txb_size = 0;
1568 
1569 	/*
1570 	 * TODO: is this too low?  Worst case would need around 4 times qsize
1571 	 * (all tx descriptors filled to the brim with SGLs, with each entry in
1572 	 * the SGL coming from a distinct DMA handle).  Increase tx_dhdl_total
1573 	 * if you see too many dma_hdl_failed.
1574 	 */
1575 	txq->tx_dhdl_total = eq->qsize * 2;
1576 	txq->tx_dhdl = kmem_zalloc(sizeof (ddi_dma_handle_t) *
1577 	    txq->tx_dhdl_total, KM_SLEEP);
1578 	for (i = 0; i < txq->tx_dhdl_total; i++) {
1579 		rc = ddi_dma_alloc_handle(sc->dip, &sc->sge.dma_attr_tx,
1580 		    DDI_DMA_SLEEP, 0, &txq->tx_dhdl[i]);
1581 		if (rc != DDI_SUCCESS) {
1582 			cxgb_printf(sc->dip, CE_WARN,
1583 			    "%s: failed to allocate DMA handle (%d)",
1584 			    __func__, rc);
1585 			return (rc == DDI_DMA_NORESOURCES ? ENOMEM : EINVAL);
1586 		}
1587 		txq->tx_dhdl_avail++;
1588 	}
1589 
1590 	txq->ksp = setup_txq_kstats(pi, txq, idx);
1591 
1592 	return (rc);
1593 }
1594 
1595 static int
1596 free_txq(struct port_info *pi, struct sge_txq *txq)
1597 {
1598 	int i;
1599 	struct adapter *sc = pi->adapter;
1600 	struct sge_eq *eq = &txq->eq;
1601 
1602 	if (txq->ksp != NULL) {
1603 		kstat_delete(txq->ksp);
1604 		txq->ksp = NULL;
1605 	}
1606 
1607 	if (txq->txb_va != NULL) {
1608 		(void) free_desc_ring(&txq->txb_dhdl, &txq->txb_ahdl);
1609 		txq->txb_va = NULL;
1610 	}
1611 
1612 	if (txq->sdesc != NULL) {
1613 		struct tx_sdesc *sd;
1614 		ddi_dma_handle_t hdl;
1615 
1616 		TXQ_LOCK(txq);
1617 		while (eq->cidx != eq->pidx) {
1618 			sd = &txq->sdesc[eq->cidx];
1619 
1620 			for (i = sd->hdls_used; i; i--) {
1621 				hdl = txq->tx_dhdl[txq->tx_dhdl_cidx];
1622 				(void) ddi_dma_unbind_handle(hdl);
1623 				if (++txq->tx_dhdl_cidx == txq->tx_dhdl_total)
1624 					txq->tx_dhdl_cidx = 0;
1625 			}
1626 
1627 			ASSERT(sd->m);
1628 			freemsgchain(sd->m);
1629 
1630 			eq->cidx += sd->desc_used;
1631 			if (eq->cidx >= eq->cap)
1632 				eq->cidx -= eq->cap;
1633 
1634 			txq->txb_avail += txq->txb_used;
1635 		}
1636 		ASSERT(txq->tx_dhdl_cidx == txq->tx_dhdl_pidx);
1637 		ASSERT(txq->txb_avail == txq->txb_size);
1638 		TXQ_UNLOCK(txq);
1639 
1640 		kmem_free(txq->sdesc, sizeof (struct tx_sdesc) * eq->cap);
1641 		txq->sdesc = NULL;
1642 	}
1643 
1644 	if (txq->tx_dhdl != NULL) {
1645 		for (i = 0; i < txq->tx_dhdl_total; i++) {
1646 			if (txq->tx_dhdl[i] != NULL)
1647 				ddi_dma_free_handle(&txq->tx_dhdl[i]);
1648 		}
1649 	}
1650 
1651 	(void) free_eq(sc, &txq->eq);
1652 
1653 	bzero(txq, sizeof (*txq));
1654 	return (0);
1655 }
1656 
1657 /*
1658  * Allocates a block of contiguous memory for DMA.  Can be used to allocate
1659  * memory for descriptor rings or for tx/rx copy buffers.
1660  *
1661  * Caller does not have to clean up anything if this function fails, it cleans
1662  * up after itself.
1663  *
1664  * Caller provides the following:
1665  * len		length of the block of memory to allocate.
1666  * flags	DDI_DMA_* flags to use (CONSISTENT/STREAMING, READ/WRITE/RDWR)
1667  * acc_attr	device access attributes for the allocation.
1668  * dma_attr	DMA attributes for the allocation
1669  *
1670  * If the function is successful it fills up this information:
1671  * dma_hdl	DMA handle for the allocated memory
1672  * acc_hdl	access handle for the allocated memory
1673  * ba		bus address of the allocated memory
1674  * va		KVA of the allocated memory.
1675  */
1676 static int
1677 alloc_dma_memory(struct adapter *sc, size_t len, int flags,
1678     ddi_device_acc_attr_t *acc_attr, ddi_dma_attr_t *dma_attr,
1679     ddi_dma_handle_t *dma_hdl, ddi_acc_handle_t *acc_hdl,
1680     uint64_t *pba, caddr_t *pva)
1681 {
1682 	int rc;
1683 	ddi_dma_handle_t dhdl;
1684 	ddi_acc_handle_t ahdl;
1685 	ddi_dma_cookie_t cookie;
1686 	uint_t ccount;
1687 	caddr_t va;
1688 	size_t real_len;
1689 
1690 	*pva = NULL;
1691 
1692 	/*
1693 	 * DMA handle.
1694 	 */
1695 	rc = ddi_dma_alloc_handle(sc->dip, dma_attr, DDI_DMA_SLEEP, 0, &dhdl);
1696 	if (rc != DDI_SUCCESS) {
1697 		cxgb_printf(sc->dip, CE_WARN,
1698 		    "failed to allocate DMA handle: %d", rc);
1699 
1700 		return (rc == DDI_DMA_NORESOURCES ? ENOMEM : EINVAL);
1701 	}
1702 
1703 	/*
1704 	 * Memory suitable for DMA.
1705 	 */
1706 	rc = ddi_dma_mem_alloc(dhdl, len, acc_attr,
1707 	    flags & DDI_DMA_CONSISTENT ? DDI_DMA_CONSISTENT : DDI_DMA_STREAMING,
1708 	    DDI_DMA_SLEEP, 0, &va, &real_len, &ahdl);
1709 	if (rc != DDI_SUCCESS) {
1710 		cxgb_printf(sc->dip, CE_WARN,
1711 		    "failed to allocate DMA memory: %d", rc);
1712 
1713 		ddi_dma_free_handle(&dhdl);
1714 		return (ENOMEM);
1715 	}
1716 
1717 	if (len != real_len) {
1718 		cxgb_printf(sc->dip, CE_WARN,
1719 		    "%s: len (%u) != real_len (%u)\n", len, real_len);
1720 	}
1721 
1722 	/*
1723 	 * DMA bindings.
1724 	 */
1725 	rc = ddi_dma_addr_bind_handle(dhdl, NULL, va, real_len, flags, NULL,
1726 	    NULL, &cookie, &ccount);
1727 	if (rc != DDI_DMA_MAPPED) {
1728 		cxgb_printf(sc->dip, CE_WARN,
1729 		    "failed to map DMA memory: %d", rc);
1730 
1731 		ddi_dma_mem_free(&ahdl);
1732 		ddi_dma_free_handle(&dhdl);
1733 		return (ENOMEM);
1734 	}
1735 	if (ccount != 1) {
1736 		cxgb_printf(sc->dip, CE_WARN,
1737 		    "unusable DMA mapping (%d segments)", ccount);
1738 		(void) free_desc_ring(&dhdl, &ahdl);
1739 	}
1740 
1741 	bzero(va, real_len);
1742 	*dma_hdl = dhdl;
1743 	*acc_hdl = ahdl;
1744 	*pba = cookie.dmac_laddress;
1745 	*pva = va;
1746 
1747 	return (0);
1748 }
1749 
1750 static int
1751 free_dma_memory(ddi_dma_handle_t *dhdl, ddi_acc_handle_t *ahdl)
1752 {
1753 	(void) ddi_dma_unbind_handle(*dhdl);
1754 	ddi_dma_mem_free(ahdl);
1755 	ddi_dma_free_handle(dhdl);
1756 
1757 	return (0);
1758 }
1759 
1760 static int
1761 alloc_desc_ring(struct adapter *sc, size_t len, int rw,
1762     ddi_dma_handle_t *dma_hdl, ddi_acc_handle_t *acc_hdl,
1763     uint64_t *pba, caddr_t *pva)
1764 {
1765 	ddi_device_acc_attr_t *acc_attr = &sc->sge.acc_attr_desc;
1766 	ddi_dma_attr_t *dma_attr = &sc->sge.dma_attr_desc;
1767 
1768 	return (alloc_dma_memory(sc, len, DDI_DMA_CONSISTENT | rw, acc_attr,
1769 	    dma_attr, dma_hdl, acc_hdl, pba, pva));
1770 }
1771 
1772 static int
1773 free_desc_ring(ddi_dma_handle_t *dhdl, ddi_acc_handle_t *ahdl)
1774 {
1775 	return (free_dma_memory(dhdl, ahdl));
1776 }
1777 
1778 static int
1779 alloc_tx_copybuffer(struct adapter *sc, size_t len,
1780     ddi_dma_handle_t *dma_hdl, ddi_acc_handle_t *acc_hdl,
1781     uint64_t *pba, caddr_t *pva)
1782 {
1783 	ddi_device_acc_attr_t *acc_attr = &sc->sge.acc_attr_tx;
1784 	ddi_dma_attr_t *dma_attr = &sc->sge.dma_attr_desc; /* NOT dma_attr_tx */
1785 
1786 	return (alloc_dma_memory(sc, len, DDI_DMA_STREAMING | DDI_DMA_WRITE,
1787 	    acc_attr, dma_attr, dma_hdl, acc_hdl, pba, pva));
1788 }
1789 
1790 static inline bool
1791 is_new_response(const struct sge_iq *iq, struct rsp_ctrl **ctrl)
1792 {
1793 	(void) ddi_dma_sync(iq->dhdl, (uintptr_t)iq->cdesc -
1794 	    (uintptr_t)iq->desc, iq->esize, DDI_DMA_SYNC_FORKERNEL);
1795 
1796 	*ctrl = (void *)((uintptr_t)iq->cdesc +
1797 	    (iq->esize - sizeof (struct rsp_ctrl)));
1798 
1799 	return ((((*ctrl)->u.type_gen >> S_RSPD_GEN) == iq->gen));
1800 }
1801 
1802 static inline void
1803 iq_next(struct sge_iq *iq)
1804 {
1805 	iq->cdesc = (void *) ((uintptr_t)iq->cdesc + iq->esize);
1806 	if (++iq->cidx == iq->qsize - 1) {
1807 		iq->cidx = 0;
1808 		iq->gen ^= 1;
1809 		iq->cdesc = iq->desc;
1810 	}
1811 }
1812 
1813 /*
1814  * Fill up the freelist by upto nbufs and maybe ring its doorbell.
1815  *
1816  * Returns non-zero to indicate that it should be added to the list of starving
1817  * freelists.
1818  */
1819 static int
1820 refill_fl(struct adapter *sc, struct sge_fl *fl, int nbufs)
1821 {
1822 	uint64_t *d = &fl->desc[fl->pidx];
1823 	struct fl_sdesc *sd = &fl->sdesc[fl->pidx];
1824 
1825 	FL_LOCK_ASSERT_OWNED(fl);
1826 	ASSERT(nbufs >= 0);
1827 
1828 	if (nbufs > fl->needed)
1829 		nbufs = fl->needed;
1830 
1831 	while (nbufs--) {
1832 		if (sd->rxb != NULL) {
1833 			if (sd->rxb->ref_cnt == 1) {
1834 				/*
1835 				 * Buffer is available for recycling.  Two ways
1836 				 * this can happen:
1837 				 *
1838 				 * a) All the packets DMA'd into it last time
1839 				 *    around were within the rx_copy_threshold
1840 				 *    and no part of the buffer was ever passed
1841 				 *    up (ref_cnt never went over 1).
1842 				 *
1843 				 * b) Packets DMA'd into the buffer were passed
1844 				 *    up but have all been freed by the upper
1845 				 *    layers by now (ref_cnt went over 1 but is
1846 				 *    now back to 1).
1847 				 *
1848 				 * Either way the bus address in the descriptor
1849 				 * ring is already valid.
1850 				 */
1851 				ASSERT(*d == cpu_to_be64(sd->rxb->ba));
1852 				d++;
1853 				goto recycled;
1854 			} else {
1855 				/*
1856 				 * Buffer still in use and we need a
1857 				 * replacement. But first release our reference
1858 				 * on the existing buffer.
1859 				 */
1860 				rxbuf_free(sd->rxb);
1861 			}
1862 		}
1863 
1864 		sd->rxb = rxbuf_alloc(sc->sge.rxbuf_cache, KM_NOSLEEP, 1);
1865 		if (sd->rxb == NULL)
1866 			break;
1867 		*d++ = cpu_to_be64(sd->rxb->ba);
1868 
1869 recycled:	fl->pending++;
1870 		sd++;
1871 		fl->needed--;
1872 		if (++fl->pidx == fl->cap) {
1873 			fl->pidx = 0;
1874 			sd = fl->sdesc;
1875 			d = fl->desc;
1876 		}
1877 	}
1878 
1879 	if (fl->pending >= 8)
1880 		ring_fl_db(sc, fl);
1881 
1882 	return (FL_RUNNING_LOW(fl) && !(fl->flags & FL_STARVING));
1883 }
1884 
1885 #ifndef TAILQ_FOREACH_SAFE
1886 #define	TAILQ_FOREACH_SAFE(var, head, field, tvar)			\
1887 	for ((var) = TAILQ_FIRST((head));				\
1888 	    (var) && ((tvar) = TAILQ_NEXT((var), field), 1);		\
1889 	    (var) = (tvar))
1890 #endif
1891 
1892 /*
1893  * Attempt to refill all starving freelists.
1894  */
1895 static void
1896 refill_sfl(void *arg)
1897 {
1898 	struct adapter *sc = arg;
1899 	struct sge_fl *fl, *fl_temp;
1900 
1901 	mutex_enter(&sc->sfl_lock);
1902 	TAILQ_FOREACH_SAFE(fl, &sc->sfl, link, fl_temp) {
1903 		FL_LOCK(fl);
1904 		(void) refill_fl(sc, fl, 64);
1905 		if (FL_NOT_RUNNING_LOW(fl) || fl->flags & FL_DOOMED) {
1906 			TAILQ_REMOVE(&sc->sfl, fl, link);
1907 			fl->flags &= ~FL_STARVING;
1908 		}
1909 		FL_UNLOCK(fl);
1910 	}
1911 
1912 	if (!TAILQ_EMPTY(&sc->sfl) != 0)
1913 		sc->sfl_timer =  timeout(refill_sfl, sc, drv_usectohz(100000));
1914 	mutex_exit(&sc->sfl_lock);
1915 }
1916 
1917 static void
1918 add_fl_to_sfl(struct adapter *sc, struct sge_fl *fl)
1919 {
1920 	mutex_enter(&sc->sfl_lock);
1921 	FL_LOCK(fl);
1922 	if ((fl->flags & FL_DOOMED) == 0) {
1923 		if (TAILQ_EMPTY(&sc->sfl) != 0) {
1924 			sc->sfl_timer = timeout(refill_sfl, sc,
1925 			    drv_usectohz(100000));
1926 		}
1927 		fl->flags |= FL_STARVING;
1928 		TAILQ_INSERT_TAIL(&sc->sfl, fl, link);
1929 	}
1930 	FL_UNLOCK(fl);
1931 	mutex_exit(&sc->sfl_lock);
1932 }
1933 
1934 static void
1935 free_fl_bufs(struct sge_fl *fl)
1936 {
1937 	struct fl_sdesc *sd;
1938 	unsigned int i;
1939 
1940 	FL_LOCK_ASSERT_OWNED(fl);
1941 
1942 	for (i = 0; i < fl->cap; i++) {
1943 		sd = &fl->sdesc[i];
1944 
1945 		if (sd->rxb != NULL) {
1946 			rxbuf_free(sd->rxb);
1947 			sd->rxb = NULL;
1948 		}
1949 	}
1950 }
1951 
1952 /*
1953  * Note that fl->cidx and fl->offset are left unchanged in case of failure.
1954  */
1955 static mblk_t *
1956 get_fl_payload(struct adapter *sc, struct sge_fl *fl,
1957 	       uint32_t len_newbuf, int *fl_bufs_used)
1958 {
1959 	struct mblk_pair frame = {0};
1960 	struct rxbuf *rxb;
1961 	mblk_t *m = NULL;
1962 	uint_t nbuf = 0, len, copy, n;
1963 	uint32_t cidx, offset, rcidx, roffset;
1964 
1965 	/*
1966 	 * The SGE won't pack a new frame into the current buffer if the entire
1967 	 * payload doesn't fit in the remaining space.  Move on to the next buf
1968 	 * in that case.
1969 	 */
1970 	rcidx = fl->cidx;
1971 	roffset = fl->offset;
1972 	if (fl->offset > 0 && len_newbuf & F_RSPD_NEWBUF) {
1973 		fl->offset = 0;
1974 		if (++fl->cidx == fl->cap)
1975 			fl->cidx = 0;
1976 		nbuf++;
1977 	}
1978 	cidx = fl->cidx;
1979 	offset = fl->offset;
1980 
1981 	len = G_RSPD_LEN(len_newbuf);	/* pktshift + payload length */
1982 	copy = (len <= fl->copy_threshold);
1983 	if (copy != 0) {
1984 		frame.head = m = allocb(len, BPRI_HI);
1985 		if (m == NULL) {
1986 			fl->allocb_fail++;
1987 			cmn_err(CE_WARN,"%s: mbuf allocation failure "
1988 					"count = %llu", __func__,
1989 					(unsigned long long)fl->allocb_fail);
1990 			fl->cidx = rcidx;
1991 			fl->offset = roffset;
1992 			return (NULL);
1993 		}
1994 	}
1995 
1996 	while (len) {
1997 		rxb = fl->sdesc[cidx].rxb;
1998 		n = min(len, rxb->buf_size - offset);
1999 
2000 		(void) ddi_dma_sync(rxb->dhdl, offset, n,
2001 		    DDI_DMA_SYNC_FORKERNEL);
2002 
2003 		if (copy != 0)
2004 			bcopy(rxb->va + offset, m->b_wptr, n);
2005 		else {
2006 			m = desballoc((unsigned char *)rxb->va + offset, n,
2007 			    BPRI_HI, &rxb->freefunc);
2008 			if (m == NULL) {
2009 				fl->allocb_fail++;
2010 				cmn_err(CE_WARN,
2011 					"%s: mbuf allocation failure "
2012 					"count = %llu", __func__,
2013 					(unsigned long long)fl->allocb_fail);
2014 				if (frame.head)
2015 					freemsgchain(frame.head);
2016 				fl->cidx = rcidx;
2017 				fl->offset = roffset;
2018 				return (NULL);
2019 			}
2020 			atomic_inc_uint(&rxb->ref_cnt);
2021 			if (frame.head != NULL)
2022 				frame.tail->b_cont = m;
2023 			else
2024 				frame.head = m;
2025 			frame.tail = m;
2026 		}
2027 		m->b_wptr += n;
2028 		len -= n;
2029 		offset += roundup(n, sc->sge.fl_align);
2030 		ASSERT(offset <= rxb->buf_size);
2031 		if (offset == rxb->buf_size) {
2032 			offset = 0;
2033 			if (++cidx == fl->cap)
2034 				cidx = 0;
2035 			nbuf++;
2036 		}
2037 	}
2038 
2039 	fl->cidx = cidx;
2040 	fl->offset = offset;
2041 	(*fl_bufs_used) += nbuf;
2042 
2043 	ASSERT(frame.head != NULL);
2044 	return (frame.head);
2045 }
2046 
2047 /*
2048  * We'll do immediate data tx for non-LSO, but only when not coalescing.  We're
2049  * willing to use upto 2 hardware descriptors which means a maximum of 96 bytes
2050  * of immediate data.
2051  */
2052 #define	IMM_LEN ( \
2053 	2 * EQ_ESIZE \
2054 	- sizeof (struct fw_eth_tx_pkt_wr) \
2055 	- sizeof (struct cpl_tx_pkt_core))
2056 
2057 /*
2058  * Returns non-zero on failure, no need to cleanup anything in that case.
2059  *
2060  * Note 1: We always try to pull up the mblk if required and return E2BIG only
2061  * if this fails.
2062  *
2063  * Note 2: We'll also pullup incoming mblk if HW_LSO is set and the first mblk
2064  * does not have the TCP header in it.
2065  */
2066 static int
2067 get_frame_txinfo(struct sge_txq *txq, mblk_t **fp, struct txinfo *txinfo,
2068     int sgl_only)
2069 {
2070 	uint32_t flags = 0, len, n;
2071 	mblk_t *m = *fp;
2072 	int rc;
2073 
2074 	TXQ_LOCK_ASSERT_OWNED(txq);	/* will manipulate txb and dma_hdls */
2075 
2076 	mac_hcksum_get(m, NULL, NULL, NULL, NULL, &flags);
2077 	txinfo->flags = (flags & HCK_TX_FLAGS);
2078 
2079 	mac_lso_get(m, &txinfo->mss, &flags);
2080 	txinfo->flags |= (flags & HW_LSO_FLAGS);
2081 
2082 	if (flags & HW_LSO)
2083 		sgl_only = 1;	/* Do not allow immediate data with LSO */
2084 
2085 	/*
2086 	 * If checksum or segmentation offloads are requested, gather
2087 	 * information about the sizes and types of headers in the packet.
2088 	 */
2089 	if (txinfo->flags != 0) {
2090 		/*
2091 		 * Even if this fails, the meoi_flags field will be capable of
2092 		 * communicating the lack of useful packet information.
2093 		 */
2094 		(void) mac_ether_offload_info(m, &txinfo->meoi);
2095 	} else {
2096 		bzero(&txinfo->meoi, sizeof (txinfo->meoi));
2097 	}
2098 
2099 start:	txinfo->nsegs = 0;
2100 	txinfo->hdls_used = 0;
2101 	txinfo->txb_used = 0;
2102 	txinfo->len = 0;
2103 
2104 	/* total length and a rough estimate of # of segments */
2105 	n = 0;
2106 	for (; m; m = m->b_cont) {
2107 		len = MBLKL(m);
2108 		n += (len / PAGE_SIZE) + 1;
2109 		txinfo->len += len;
2110 	}
2111 	m = *fp;
2112 
2113 	if (n >= TX_SGL_SEGS || (flags & HW_LSO && MBLKL(m) < 50)) {
2114 		txq->pullup_early++;
2115 		m = msgpullup(*fp, -1);
2116 		if (m == NULL) {
2117 			txq->pullup_failed++;
2118 			return (E2BIG);	/* (*fp) left as it was */
2119 		}
2120 		freemsg(*fp);
2121 		*fp = m;
2122 		mac_hcksum_set(m, 0, 0, 0, 0, txinfo->flags);
2123 	}
2124 
2125 	if (txinfo->len <= IMM_LEN && !sgl_only)
2126 		return (0);	/* nsegs = 0 tells caller to use imm. tx */
2127 
2128 	if (txinfo->len <= txq->copy_threshold &&
2129 	    copy_into_txb(txq, m, txinfo->len, txinfo) == 0)
2130 		goto done;
2131 
2132 	for (; m; m = m->b_cont) {
2133 
2134 		len = MBLKL(m);
2135 
2136 		/* Use tx copy buffer if this mblk is small enough */
2137 		if (len <= txq->copy_threshold &&
2138 		    copy_into_txb(txq, m, len, txinfo) == 0)
2139 			continue;
2140 
2141 		/* Add DMA bindings for this mblk to the SGL */
2142 		rc = add_mblk(txq, txinfo, m, len);
2143 
2144 		if (rc == E2BIG ||
2145 		    (txinfo->nsegs == TX_SGL_SEGS && m->b_cont)) {
2146 
2147 			txq->pullup_late++;
2148 			m = msgpullup(*fp, -1);
2149 			if (m != NULL) {
2150 				free_txinfo_resources(txq, txinfo);
2151 				freemsg(*fp);
2152 				*fp = m;
2153 				mac_hcksum_set(m, 0, 0, 0, 0, txinfo->flags);
2154 				goto start;
2155 			}
2156 
2157 			txq->pullup_failed++;
2158 			rc = E2BIG;
2159 		}
2160 
2161 		if (rc != 0) {
2162 			free_txinfo_resources(txq, txinfo);
2163 			return (rc);
2164 		}
2165 	}
2166 
2167 	ASSERT(txinfo->nsegs > 0 && txinfo->nsegs <= TX_SGL_SEGS);
2168 
2169 done:
2170 
2171 	/*
2172 	 * Store the # of flits required to hold this frame's SGL in nflits.  An
2173 	 * SGL has a (ULPTX header + len0, addr0) tuple optionally followed by
2174 	 * multiple (len0 + len1, addr0, addr1) tuples.  If addr1 is not used
2175 	 * then len1 must be set to 0.
2176 	 */
2177 	n = txinfo->nsegs - 1;
2178 	txinfo->nflits = (3 * n) / 2 + (n & 1) + 2;
2179 	if (n & 1)
2180 		txinfo->sgl.sge[n / 2].len[1] = cpu_to_be32(0);
2181 
2182 	txinfo->sgl.cmd_nsge = cpu_to_be32(V_ULPTX_CMD((u32)ULP_TX_SC_DSGL) |
2183 	    V_ULPTX_NSGE(txinfo->nsegs));
2184 
2185 	return (0);
2186 }
2187 
2188 static inline int
2189 fits_in_txb(struct sge_txq *txq, int len, int *waste)
2190 {
2191 	if (txq->txb_avail < len)
2192 		return (0);
2193 
2194 	if (txq->txb_next + len <= txq->txb_size) {
2195 		*waste = 0;
2196 		return (1);
2197 	}
2198 
2199 	*waste = txq->txb_size - txq->txb_next;
2200 
2201 	return (txq->txb_avail - *waste < len ? 0 : 1);
2202 }
2203 
2204 #define	TXB_CHUNK	64
2205 
2206 /*
2207  * Copies the specified # of bytes into txq's tx copy buffer and updates txinfo
2208  * and txq to indicate resources used.  Caller has to make sure that those many
2209  * bytes are available in the mblk chain (b_cont linked).
2210  */
2211 static inline int
2212 copy_into_txb(struct sge_txq *txq, mblk_t *m, int len, struct txinfo *txinfo)
2213 {
2214 	int waste, n;
2215 
2216 	TXQ_LOCK_ASSERT_OWNED(txq);	/* will manipulate txb */
2217 
2218 	if (!fits_in_txb(txq, len, &waste)) {
2219 		txq->txb_full++;
2220 		return (ENOMEM);
2221 	}
2222 
2223 	if (waste != 0) {
2224 		ASSERT((waste & (TXB_CHUNK - 1)) == 0);
2225 		txinfo->txb_used += waste;
2226 		txq->txb_avail -= waste;
2227 		txq->txb_next = 0;
2228 	}
2229 
2230 	for (n = 0; n < len; m = m->b_cont) {
2231 		bcopy(m->b_rptr, txq->txb_va + txq->txb_next + n, MBLKL(m));
2232 		n += MBLKL(m);
2233 	}
2234 
2235 	add_seg(txinfo, txq->txb_ba + txq->txb_next, len);
2236 
2237 	n = roundup(len, TXB_CHUNK);
2238 	txinfo->txb_used += n;
2239 	txq->txb_avail -= n;
2240 	txq->txb_next += n;
2241 	ASSERT(txq->txb_next <= txq->txb_size);
2242 	if (txq->txb_next == txq->txb_size)
2243 		txq->txb_next = 0;
2244 
2245 	return (0);
2246 }
2247 
2248 static inline void
2249 add_seg(struct txinfo *txinfo, uint64_t ba, uint32_t len)
2250 {
2251 	ASSERT(txinfo->nsegs < TX_SGL_SEGS);	/* must have room */
2252 
2253 	if (txinfo->nsegs != 0) {
2254 		int idx = txinfo->nsegs - 1;
2255 		txinfo->sgl.sge[idx / 2].len[idx & 1] = cpu_to_be32(len);
2256 		txinfo->sgl.sge[idx / 2].addr[idx & 1] = cpu_to_be64(ba);
2257 	} else {
2258 		txinfo->sgl.len0 = cpu_to_be32(len);
2259 		txinfo->sgl.addr0 = cpu_to_be64(ba);
2260 	}
2261 	txinfo->nsegs++;
2262 }
2263 
2264 /*
2265  * This function cleans up any partially allocated resources when it fails so
2266  * there's nothing for the caller to clean up in that case.
2267  *
2268  * EIO indicates permanent failure.  Caller should drop the frame containing
2269  * this mblk and continue.
2270  *
2271  * E2BIG indicates that the SGL length for this mblk exceeds the hardware
2272  * limit.  Caller should pull up the frame before trying to send it out.
2273  * (This error means our pullup_early heuristic did not work for this frame)
2274  *
2275  * ENOMEM indicates a temporary shortage of resources (DMA handles, other DMA
2276  * resources, etc.).  Caller should suspend the tx queue and wait for reclaim to
2277  * free up resources.
2278  */
2279 static inline int
2280 add_mblk(struct sge_txq *txq, struct txinfo *txinfo, mblk_t *m, int len)
2281 {
2282 	ddi_dma_handle_t dhdl;
2283 	ddi_dma_cookie_t cookie;
2284 	uint_t ccount = 0;
2285 	int rc;
2286 
2287 	TXQ_LOCK_ASSERT_OWNED(txq);	/* will manipulate dhdls */
2288 
2289 	if (txq->tx_dhdl_avail == 0) {
2290 		txq->dma_hdl_failed++;
2291 		return (ENOMEM);
2292 	}
2293 
2294 	dhdl = txq->tx_dhdl[txq->tx_dhdl_pidx];
2295 	rc = ddi_dma_addr_bind_handle(dhdl, NULL, (caddr_t)m->b_rptr, len,
2296 	    DDI_DMA_WRITE | DDI_DMA_STREAMING, DDI_DMA_DONTWAIT, NULL, &cookie,
2297 	    &ccount);
2298 	if (rc != DDI_DMA_MAPPED) {
2299 		txq->dma_map_failed++;
2300 
2301 		ASSERT(rc != DDI_DMA_INUSE && rc != DDI_DMA_PARTIAL_MAP);
2302 
2303 		return (rc == DDI_DMA_NORESOURCES ? ENOMEM : EIO);
2304 	}
2305 
2306 	if (ccount + txinfo->nsegs > TX_SGL_SEGS) {
2307 		(void) ddi_dma_unbind_handle(dhdl);
2308 		return (E2BIG);
2309 	}
2310 
2311 	add_seg(txinfo, cookie.dmac_laddress, cookie.dmac_size);
2312 	while (--ccount) {
2313 		ddi_dma_nextcookie(dhdl, &cookie);
2314 		add_seg(txinfo, cookie.dmac_laddress, cookie.dmac_size);
2315 	}
2316 
2317 	if (++txq->tx_dhdl_pidx == txq->tx_dhdl_total)
2318 		txq->tx_dhdl_pidx = 0;
2319 	txq->tx_dhdl_avail--;
2320 	txinfo->hdls_used++;
2321 
2322 	return (0);
2323 }
2324 
2325 /*
2326  * Releases all the txq resources used up in the specified txinfo.
2327  */
2328 static void
2329 free_txinfo_resources(struct sge_txq *txq, struct txinfo *txinfo)
2330 {
2331 	int n;
2332 
2333 	TXQ_LOCK_ASSERT_OWNED(txq);	/* dhdls, txb */
2334 
2335 	n = txinfo->txb_used;
2336 	if (n > 0) {
2337 		txq->txb_avail += n;
2338 		if (n <= txq->txb_next)
2339 			txq->txb_next -= n;
2340 		else {
2341 			n -= txq->txb_next;
2342 			txq->txb_next = txq->txb_size - n;
2343 		}
2344 	}
2345 
2346 	for (n = txinfo->hdls_used; n > 0; n--) {
2347 		if (txq->tx_dhdl_pidx > 0)
2348 			txq->tx_dhdl_pidx--;
2349 		else
2350 			txq->tx_dhdl_pidx = txq->tx_dhdl_total - 1;
2351 		txq->tx_dhdl_avail++;
2352 		(void) ddi_dma_unbind_handle(txq->tx_dhdl[txq->tx_dhdl_pidx]);
2353 	}
2354 }
2355 
2356 /*
2357  * Returns 0 to indicate that m has been accepted into a coalesced tx work
2358  * request.  It has either been folded into txpkts or txpkts was flushed and m
2359  * has started a new coalesced work request (as the first frame in a fresh
2360  * txpkts).
2361  *
2362  * Returns non-zero to indicate a failure - caller is responsible for
2363  * transmitting m, if there was anything in txpkts it has been flushed.
2364  */
2365 static int
2366 add_to_txpkts(struct sge_txq *txq, struct txpkts *txpkts, mblk_t *m,
2367     struct txinfo *txinfo)
2368 {
2369 	struct sge_eq *eq = &txq->eq;
2370 	int can_coalesce;
2371 	struct tx_sdesc *txsd;
2372 	uint8_t flits;
2373 
2374 	TXQ_LOCK_ASSERT_OWNED(txq);
2375 
2376 	if (txpkts->npkt > 0) {
2377 		flits = TXPKTS_PKT_HDR + txinfo->nflits;
2378 		can_coalesce = (txinfo->flags & HW_LSO) == 0 &&
2379 		    txpkts->nflits + flits <= TX_WR_FLITS &&
2380 		    txpkts->nflits + flits <= eq->avail * 8 &&
2381 		    txpkts->plen + txinfo->len < 65536;
2382 
2383 		if (can_coalesce != 0) {
2384 			txpkts->tail->b_next = m;
2385 			txpkts->tail = m;
2386 			txpkts->npkt++;
2387 			txpkts->nflits += flits;
2388 			txpkts->plen += txinfo->len;
2389 
2390 			txsd = &txq->sdesc[eq->pidx];
2391 			txsd->txb_used += txinfo->txb_used;
2392 			txsd->hdls_used += txinfo->hdls_used;
2393 
2394 			return (0);
2395 		}
2396 
2397 		/*
2398 		 * Couldn't coalesce m into txpkts.  The first order of business
2399 		 * is to send txpkts on its way.  Then we'll revisit m.
2400 		 */
2401 		write_txpkts_wr(txq, txpkts);
2402 	}
2403 
2404 	/*
2405 	 * Check if we can start a new coalesced tx work request with m as
2406 	 * the first packet in it.
2407 	 */
2408 
2409 	ASSERT(txpkts->npkt == 0);
2410 	ASSERT(txinfo->len < 65536);
2411 
2412 	flits = TXPKTS_WR_HDR + txinfo->nflits;
2413 	can_coalesce = (txinfo->flags & HW_LSO) == 0 &&
2414 	    flits <= eq->avail * 8 && flits <= TX_WR_FLITS;
2415 
2416 	if (can_coalesce == 0)
2417 		return (EINVAL);
2418 
2419 	/*
2420 	 * Start a fresh coalesced tx WR with m as the first frame in it.
2421 	 */
2422 	txpkts->tail = m;
2423 	txpkts->npkt = 1;
2424 	txpkts->nflits = flits;
2425 	txpkts->flitp = &eq->desc[eq->pidx].flit[2];
2426 	txpkts->plen = txinfo->len;
2427 
2428 	txsd = &txq->sdesc[eq->pidx];
2429 	txsd->m = m;
2430 	txsd->txb_used = txinfo->txb_used;
2431 	txsd->hdls_used = txinfo->hdls_used;
2432 
2433 	return (0);
2434 }
2435 
2436 /*
2437  * Note that write_txpkts_wr can never run out of hardware descriptors (but
2438  * write_txpkt_wr can).  add_to_txpkts ensures that a frame is accepted for
2439  * coalescing only if sufficient hardware descriptors are available.
2440  */
2441 static void
2442 write_txpkts_wr(struct sge_txq *txq, struct txpkts *txpkts)
2443 {
2444 	struct sge_eq *eq = &txq->eq;
2445 	struct fw_eth_tx_pkts_wr *wr;
2446 	struct tx_sdesc *txsd;
2447 	uint32_t ctrl;
2448 	uint16_t ndesc;
2449 
2450 	TXQ_LOCK_ASSERT_OWNED(txq);	/* pidx, avail */
2451 
2452 	ndesc = howmany(txpkts->nflits, 8);
2453 
2454 	wr = (void *)&eq->desc[eq->pidx];
2455 	wr->op_pkd = cpu_to_be32(V_FW_WR_OP(FW_ETH_TX_PKTS_WR) |
2456 	    V_FW_WR_IMMDLEN(0)); /* immdlen does not matter in this WR */
2457 	ctrl = V_FW_WR_LEN16(howmany(txpkts->nflits, 2));
2458 	if (eq->avail == ndesc)
2459 		ctrl |= F_FW_WR_EQUEQ | F_FW_WR_EQUIQ;
2460 	wr->equiq_to_len16 = cpu_to_be32(ctrl);
2461 	wr->plen = cpu_to_be16(txpkts->plen);
2462 	wr->npkt = txpkts->npkt;
2463 	wr->r3 = wr->type = 0;
2464 
2465 	/* Everything else already written */
2466 
2467 	txsd = &txq->sdesc[eq->pidx];
2468 	txsd->desc_used = ndesc;
2469 
2470 	txq->txb_used += txsd->txb_used / TXB_CHUNK;
2471 	txq->hdl_used += txsd->hdls_used;
2472 
2473 	ASSERT(eq->avail >= ndesc);
2474 
2475 	eq->pending += ndesc;
2476 	eq->avail -= ndesc;
2477 	eq->pidx += ndesc;
2478 	if (eq->pidx >= eq->cap)
2479 		eq->pidx -= eq->cap;
2480 
2481 	txq->txpkts_pkts += txpkts->npkt;
2482 	txq->txpkts_wrs++;
2483 	txpkts->npkt = 0;	/* emptied */
2484 }
2485 
2486 typedef enum {
2487 	COS_SUCCESS,	/* ctrl flit contains proper bits for csum offload */
2488 	COS_IGNORE,	/* no csum offload requested */
2489 	COS_FAIL,	/* csum offload requested, but pkt data missing */
2490 } csum_offload_status_t;
2491 /*
2492  * Build a ctrl1 flit for checksum offload in CPL_TX_PKT_XT command
2493  */
2494 static csum_offload_status_t
2495 csum_to_ctrl(const struct txinfo *txinfo, uint32_t chip_version,
2496     uint64_t *ctrlp)
2497 {
2498 	const mac_ether_offload_info_t *meoi = &txinfo->meoi;
2499 	const uint32_t tx_flags = txinfo->flags;
2500 	const boolean_t needs_l3_csum = (tx_flags & HW_LSO) != 0 ||
2501 	    (tx_flags & HCK_IPV4_HDRCKSUM) != 0;
2502 	const boolean_t needs_l4_csum = (tx_flags & HW_LSO) != 0 ||
2503 	    (tx_flags & (HCK_FULLCKSUM | HCK_PARTIALCKSUM)) != 0;
2504 
2505 	/*
2506 	 * Default to disabling any checksumming both for cases where it is not
2507 	 * requested, but also if we cannot appropriately interrogate the
2508 	 * required information from the packet.
2509 	 */
2510 	uint64_t ctrl = F_TXPKT_L4CSUM_DIS | F_TXPKT_IPCSUM_DIS;
2511 	if (!needs_l3_csum && !needs_l4_csum) {
2512 		*ctrlp = ctrl;
2513 		return (COS_IGNORE);
2514 	}
2515 
2516 	if (needs_l3_csum) {
2517 		/* Only IPv4 checksums are supported (for L3) */
2518 		if ((meoi->meoi_flags & MEOI_L3INFO_SET) == 0 ||
2519 		    meoi->meoi_l3proto != ETHERTYPE_IP) {
2520 			*ctrlp = ctrl;
2521 			return (COS_FAIL);
2522 		}
2523 		ctrl &= ~F_TXPKT_IPCSUM_DIS;
2524 	}
2525 
2526 	if (needs_l4_csum) {
2527 		/*
2528 		 * We need at least all of the L3 header to make decisions about
2529 		 * the contained L4 protocol.  If not all of the L4 information
2530 		 * is present, we will leave it to the NIC to checksum all it is
2531 		 * able to.
2532 		 */
2533 		if ((meoi->meoi_flags & MEOI_L3INFO_SET) == 0) {
2534 			*ctrlp = ctrl;
2535 			return (COS_FAIL);
2536 		}
2537 
2538 		/*
2539 		 * Since we are parsing the packet anyways, make the checksum
2540 		 * decision based on the L4 protocol, rather than using the
2541 		 * Generic TCP/UDP checksum using start & end offsets in the
2542 		 * packet (like requested with PARTIALCKSUM).
2543 		 */
2544 		int csum_type = -1;
2545 		if (meoi->meoi_l3proto == ETHERTYPE_IP &&
2546 		    meoi->meoi_l4proto == IPPROTO_TCP) {
2547 			csum_type = TX_CSUM_TCPIP;
2548 		} else if (meoi->meoi_l3proto == ETHERTYPE_IPV6 &&
2549 		    meoi->meoi_l4proto == IPPROTO_TCP) {
2550 			csum_type = TX_CSUM_TCPIP6;
2551 		} else if (meoi->meoi_l3proto == ETHERTYPE_IP &&
2552 		    meoi->meoi_l4proto == IPPROTO_UDP) {
2553 			csum_type = TX_CSUM_UDPIP;
2554 		} else if (meoi->meoi_l3proto == ETHERTYPE_IPV6 &&
2555 		    meoi->meoi_l4proto == IPPROTO_UDP) {
2556 			csum_type = TX_CSUM_UDPIP6;
2557 		} else {
2558 			*ctrlp = ctrl;
2559 			return (COS_FAIL);
2560 		}
2561 
2562 		ASSERT(csum_type != -1);
2563 		ctrl &= ~F_TXPKT_L4CSUM_DIS;
2564 		ctrl |= V_TXPKT_CSUM_TYPE(csum_type);
2565 	}
2566 
2567 	if ((ctrl & F_TXPKT_IPCSUM_DIS) == 0 &&
2568 	    (ctrl & F_TXPKT_L4CSUM_DIS) != 0) {
2569 		/*
2570 		 * If only the IPv4 checksum is requested, we need to set an
2571 		 * appropriate type in the command for it.
2572 		 */
2573 		ctrl |= V_TXPKT_CSUM_TYPE(TX_CSUM_IP);
2574 	}
2575 
2576 	ASSERT(ctrl != (F_TXPKT_L4CSUM_DIS | F_TXPKT_IPCSUM_DIS));
2577 
2578 	/*
2579 	 * Fill in the requisite L2/L3 header length data.
2580 	 *
2581 	 * The Ethernet header length is recorded as 'size - 14 bytes'
2582 	 */
2583 	const uint8_t eth_len = meoi->meoi_l2hlen - 14;
2584 	if (chip_version >= CHELSIO_T6) {
2585 		ctrl |= V_T6_TXPKT_ETHHDR_LEN(eth_len);
2586 	} else {
2587 		ctrl |= V_TXPKT_ETHHDR_LEN(eth_len);
2588 	}
2589 	ctrl |= V_TXPKT_IPHDR_LEN(meoi->meoi_l3hlen);
2590 
2591 	*ctrlp = ctrl;
2592 	return (COS_SUCCESS);
2593 }
2594 
2595 static int
2596 write_txpkt_wr(struct port_info *pi, struct sge_txq *txq, mblk_t *m,
2597     struct txinfo *txinfo)
2598 {
2599 	struct sge_eq *eq = &txq->eq;
2600 	struct fw_eth_tx_pkt_wr *wr;
2601 	struct cpl_tx_pkt_core *cpl;
2602 	uint32_t ctrl;	/* used in many unrelated places */
2603 	uint64_t ctrl1;
2604 	int nflits, ndesc;
2605 	struct tx_sdesc *txsd;
2606 	caddr_t dst;
2607 	const mac_ether_offload_info_t *meoi = &txinfo->meoi;
2608 
2609 	TXQ_LOCK_ASSERT_OWNED(txq);	/* pidx, avail */
2610 
2611 	/*
2612 	 * Do we have enough flits to send this frame out?
2613 	 */
2614 	ctrl = sizeof (struct cpl_tx_pkt_core);
2615 	if (txinfo->flags & HW_LSO) {
2616 		nflits = TXPKT_LSO_WR_HDR;
2617 		ctrl += sizeof(struct cpl_tx_pkt_lso_core);
2618 	} else
2619 		nflits = TXPKT_WR_HDR;
2620 	if (txinfo->nsegs > 0)
2621 		nflits += txinfo->nflits;
2622 	else {
2623 		nflits += howmany(txinfo->len, 8);
2624 		ctrl += txinfo->len;
2625 	}
2626 	ndesc = howmany(nflits, 8);
2627 	if (ndesc > eq->avail)
2628 		return (ENOMEM);
2629 
2630 	/* Firmware work request header */
2631 	wr = (void *)&eq->desc[eq->pidx];
2632 	wr->op_immdlen = cpu_to_be32(V_FW_WR_OP(FW_ETH_TX_PKT_WR) |
2633 	    V_FW_WR_IMMDLEN(ctrl));
2634 	ctrl = V_FW_WR_LEN16(howmany(nflits, 2));
2635 	if (eq->avail == ndesc)
2636 		ctrl |= F_FW_WR_EQUEQ | F_FW_WR_EQUIQ;
2637 	wr->equiq_to_len16 = cpu_to_be32(ctrl);
2638 	wr->r3 = 0;
2639 
2640 	if (txinfo->flags & HW_LSO &&
2641 	    (meoi->meoi_flags & MEOI_L4INFO_SET) != 0 &&
2642 	    meoi->meoi_l4proto == IPPROTO_TCP) {
2643 		struct cpl_tx_pkt_lso_core *lso = (void *)(wr + 1);
2644 
2645 		ctrl = V_LSO_OPCODE((u32)CPL_TX_PKT_LSO) | F_LSO_FIRST_SLICE |
2646 		    F_LSO_LAST_SLICE;
2647 
2648 		if (meoi->meoi_l2hlen > sizeof (struct ether_header)) {
2649 			/*
2650 			 * This presently assumes a standard VLAN header,
2651 			 * without support for Q-in-Q.
2652 			 */
2653 			ctrl |= V_LSO_ETHHDR_LEN(1);
2654 		}
2655 
2656 		switch (meoi->meoi_l3proto) {
2657 		case ETHERTYPE_IPV6:
2658 			ctrl |= F_LSO_IPV6;
2659 			/* FALLTHROUGH */
2660 		case ETHERTYPE_IP:
2661 			ctrl |= V_LSO_IPHDR_LEN(meoi->meoi_l3hlen / 4);
2662 			break;
2663 		default:
2664 			break;
2665 		}
2666 
2667 		ctrl |= V_LSO_TCPHDR_LEN(meoi->meoi_l4hlen / 4);
2668 
2669 		lso->lso_ctrl = cpu_to_be32(ctrl);
2670 		lso->ipid_ofst = cpu_to_be16(0);
2671 		lso->mss = cpu_to_be16(txinfo->mss);
2672 		lso->seqno_offset = cpu_to_be32(0);
2673 		if (is_t4(pi->adapter->params.chip))
2674 			lso->len = cpu_to_be32(txinfo->len);
2675 		else
2676 			lso->len = cpu_to_be32(V_LSO_T5_XFER_SIZE(txinfo->len));
2677 
2678 		cpl = (void *)(lso + 1);
2679 
2680 		txq->tso_wrs++;
2681 	} else {
2682 		cpl = (void *)(wr + 1);
2683 	}
2684 
2685 	/* Checksum offload */
2686 	switch (csum_to_ctrl(txinfo,
2687 	    CHELSIO_CHIP_VERSION(pi->adapter->params.chip), &ctrl1)) {
2688 	case COS_SUCCESS:
2689 		txq->txcsum++;
2690 		break;
2691 	case COS_FAIL:
2692 		/*
2693 		 * Packet will be going out with checksums which are probably
2694 		 * wrong but there is little we can do now.
2695 		 */
2696 		txq->csum_failed++;
2697 		break;
2698 	default:
2699 		break;
2700 	}
2701 
2702 	/* CPL header */
2703 	cpl->ctrl0 = cpu_to_be32(V_TXPKT_OPCODE(CPL_TX_PKT_XT) |
2704 	    V_TXPKT_INTF(pi->tx_chan) | V_TXPKT_PF(pi->adapter->pf));
2705 	cpl->pack = 0;
2706 	cpl->len = cpu_to_be16(txinfo->len);
2707 	cpl->ctrl1 = cpu_to_be64(ctrl1);
2708 
2709 	/* Software descriptor */
2710 	txsd = &txq->sdesc[eq->pidx];
2711 	txsd->m = m;
2712 	txsd->txb_used = txinfo->txb_used;
2713 	txsd->hdls_used = txinfo->hdls_used;
2714 	/* LINTED: E_ASSIGN_NARROW_CONV */
2715 	txsd->desc_used = ndesc;
2716 
2717 	txq->txb_used += txinfo->txb_used / TXB_CHUNK;
2718 	txq->hdl_used += txinfo->hdls_used;
2719 
2720 	eq->pending += ndesc;
2721 	eq->avail -= ndesc;
2722 	eq->pidx += ndesc;
2723 	if (eq->pidx >= eq->cap)
2724 		eq->pidx -= eq->cap;
2725 
2726 	/* SGL */
2727 	dst = (void *)(cpl + 1);
2728 	if (txinfo->nsegs > 0) {
2729 		txq->sgl_wrs++;
2730 		copy_to_txd(eq, (void *)&txinfo->sgl, &dst, txinfo->nflits * 8);
2731 
2732 		/* Need to zero-pad to a 16 byte boundary if not on one */
2733 		if ((uintptr_t)dst & 0xf)
2734 			/* LINTED: E_BAD_PTR_CAST_ALIGN */
2735 			*(uint64_t *)dst = 0;
2736 
2737 	} else {
2738 		txq->imm_wrs++;
2739 #ifdef DEBUG
2740 		ctrl = txinfo->len;
2741 #endif
2742 		for (; m; m = m->b_cont) {
2743 			copy_to_txd(eq, (void *)m->b_rptr, &dst, MBLKL(m));
2744 #ifdef DEBUG
2745 			ctrl -= MBLKL(m);
2746 #endif
2747 		}
2748 		ASSERT(ctrl == 0);
2749 	}
2750 
2751 	txq->txpkt_wrs++;
2752 	return (0);
2753 }
2754 
2755 static inline void
2756 write_ulp_cpl_sgl(struct port_info *pi, struct sge_txq *txq,
2757     struct txpkts *txpkts, struct txinfo *txinfo)
2758 {
2759 	struct ulp_txpkt *ulpmc;
2760 	struct ulptx_idata *ulpsc;
2761 	struct cpl_tx_pkt_core *cpl;
2762 	uintptr_t flitp, start, end;
2763 	uint64_t ctrl;
2764 	caddr_t dst;
2765 
2766 	ASSERT(txpkts->npkt > 0);
2767 
2768 	start = (uintptr_t)txq->eq.desc;
2769 	end = (uintptr_t)txq->eq.spg;
2770 
2771 	/* Checksum offload */
2772 	switch (csum_to_ctrl(txinfo,
2773 	    CHELSIO_CHIP_VERSION(pi->adapter->params.chip), &ctrl)) {
2774 	case COS_SUCCESS:
2775 		txq->txcsum++;
2776 		break;
2777 	case COS_FAIL:
2778 		/*
2779 		 * Packet will be going out with checksums which are probably
2780 		 * wrong but there is little we can do now.
2781 		 */
2782 		txq->csum_failed++;
2783 		break;
2784 	default:
2785 		break;
2786 	}
2787 
2788 	/*
2789 	 * The previous packet's SGL must have ended at a 16 byte boundary (this
2790 	 * is required by the firmware/hardware).  It follows that flitp cannot
2791 	 * wrap around between the ULPTX master command and ULPTX subcommand (8
2792 	 * bytes each), and that it can not wrap around in the middle of the
2793 	 * cpl_tx_pkt_core either.
2794 	 */
2795 	flitp = (uintptr_t)txpkts->flitp;
2796 	ASSERT((flitp & 0xf) == 0);
2797 
2798 	/* ULP master command */
2799 	ulpmc = (void *)flitp;
2800 	ulpmc->cmd_dest = htonl(V_ULPTX_CMD(ULP_TX_PKT) | V_ULP_TXPKT_DEST(0));
2801 	ulpmc->len = htonl(howmany(sizeof (*ulpmc) + sizeof (*ulpsc) +
2802 	    sizeof (*cpl) + 8 * txinfo->nflits, 16));
2803 
2804 	/* ULP subcommand */
2805 	ulpsc = (void *)(ulpmc + 1);
2806 	ulpsc->cmd_more = cpu_to_be32(V_ULPTX_CMD((u32)ULP_TX_SC_IMM) |
2807 	    F_ULP_TX_SC_MORE);
2808 	ulpsc->len = cpu_to_be32(sizeof (struct cpl_tx_pkt_core));
2809 
2810 	flitp += sizeof (*ulpmc) + sizeof (*ulpsc);
2811 	if (flitp == end)
2812 		flitp = start;
2813 
2814 	/* CPL_TX_PKT_XT */
2815 	cpl = (void *)flitp;
2816 	cpl->ctrl0 = cpu_to_be32(V_TXPKT_OPCODE(CPL_TX_PKT_XT) |
2817 	    V_TXPKT_INTF(pi->tx_chan) | V_TXPKT_PF(pi->adapter->pf));
2818 	cpl->pack = 0;
2819 	cpl->len = cpu_to_be16(txinfo->len);
2820 	cpl->ctrl1 = cpu_to_be64(ctrl);
2821 
2822 	flitp += sizeof (*cpl);
2823 	if (flitp == end)
2824 		flitp = start;
2825 
2826 	/* SGL for this frame */
2827 	dst = (caddr_t)flitp;
2828 	copy_to_txd(&txq->eq, (void *)&txinfo->sgl, &dst, txinfo->nflits * 8);
2829 	flitp = (uintptr_t)dst;
2830 
2831 	/* Zero pad and advance to a 16 byte boundary if not already at one. */
2832 	if (flitp & 0xf) {
2833 
2834 		/* no matter what, flitp should be on an 8 byte boundary */
2835 		ASSERT((flitp & 0x7) == 0);
2836 
2837 		*(uint64_t *)flitp = 0;
2838 		flitp += sizeof (uint64_t);
2839 		txpkts->nflits++;
2840 	}
2841 
2842 	if (flitp == end)
2843 		flitp = start;
2844 
2845 	txpkts->flitp = (void *)flitp;
2846 }
2847 
2848 static inline void
2849 copy_to_txd(struct sge_eq *eq, caddr_t from, caddr_t *to, int len)
2850 {
2851 	if ((uintptr_t)(*to) + len <= (uintptr_t)eq->spg) {
2852 		bcopy(from, *to, len);
2853 		(*to) += len;
2854 	} else {
2855 		int portion = (uintptr_t)eq->spg - (uintptr_t)(*to);
2856 
2857 		bcopy(from, *to, portion);
2858 		from += portion;
2859 		portion = len - portion;	/* remaining */
2860 		bcopy(from, (void *)eq->desc, portion);
2861 		(*to) = (caddr_t)eq->desc + portion;
2862 	}
2863 }
2864 
2865 static inline void
2866 ring_tx_db(struct adapter *sc, struct sge_eq *eq)
2867 {
2868 	int val, db_mode;
2869 	u_int db = eq->doorbells;
2870 
2871 	if (eq->pending > 1)
2872 		db &= ~DOORBELL_WCWR;
2873 
2874 	if (eq->pending > eq->pidx) {
2875 		int offset = eq->cap - (eq->pending - eq->pidx);
2876 
2877 		/* pidx has wrapped around since last doorbell */
2878 
2879 		(void) ddi_dma_sync(eq->desc_dhdl,
2880 		    offset * sizeof (struct tx_desc), 0,
2881 		    DDI_DMA_SYNC_FORDEV);
2882 		(void) ddi_dma_sync(eq->desc_dhdl,
2883 		    0, eq->pidx * sizeof (struct tx_desc),
2884 		    DDI_DMA_SYNC_FORDEV);
2885 	} else if (eq->pending > 0) {
2886 		(void) ddi_dma_sync(eq->desc_dhdl,
2887 		    (eq->pidx - eq->pending) * sizeof (struct tx_desc),
2888 		    eq->pending * sizeof (struct tx_desc),
2889 		    DDI_DMA_SYNC_FORDEV);
2890 	}
2891 
2892 	membar_producer();
2893 
2894 	if (is_t4(sc->params.chip))
2895 		val = V_PIDX(eq->pending);
2896 	else
2897 		val = V_PIDX_T5(eq->pending);
2898 
2899 	db_mode = (1 << (ffs(db) - 1));
2900 	switch (db_mode) {
2901 		case DOORBELL_UDB:
2902 			*eq->udb = LE_32(V_QID(eq->udb_qid) | val);
2903 			break;
2904 
2905 		case DOORBELL_WCWR:
2906 			{
2907 				volatile uint64_t *dst, *src;
2908 				int i;
2909 				/*
2910 				 * Queues whose 128B doorbell segment fits in
2911 				 * the page do not use relative qid
2912 				 * (udb_qid is always 0).  Only queues with
2913 				 * doorbell segments can do WCWR.
2914 				 */
2915 				ASSERT(eq->udb_qid == 0 && eq->pending == 1);
2916 
2917 				dst = (volatile void *)((uintptr_t)eq->udb +
2918 				    UDBS_WR_OFFSET - UDBS_DB_OFFSET);
2919 				i = eq->pidx ? eq->pidx - 1 : eq->cap - 1;
2920 				src = (void *)&eq->desc[i];
2921 				while (src != (void *)&eq->desc[i + 1])
2922 				        *dst++ = *src++;
2923 				membar_producer();
2924 				break;
2925 			}
2926 
2927 		case DOORBELL_UDBWC:
2928 			*eq->udb = LE_32(V_QID(eq->udb_qid) | val);
2929 			membar_producer();
2930 			break;
2931 
2932 		case DOORBELL_KDB:
2933 			t4_write_reg(sc, MYPF_REG(A_SGE_PF_KDOORBELL),
2934 			    V_QID(eq->cntxt_id) | val);
2935 			break;
2936 	}
2937 
2938 	eq->pending = 0;
2939 }
2940 
2941 static int
2942 reclaim_tx_descs(struct sge_txq *txq, int howmany)
2943 {
2944 	struct tx_sdesc *txsd;
2945 	uint_t cidx, can_reclaim, reclaimed, txb_freed, hdls_freed;
2946 	struct sge_eq *eq = &txq->eq;
2947 
2948 	EQ_LOCK_ASSERT_OWNED(eq);
2949 
2950 	cidx = eq->spg->cidx;	/* stable snapshot */
2951 	cidx = be16_to_cpu(cidx);
2952 
2953 	if (cidx >= eq->cidx)
2954 		can_reclaim = cidx - eq->cidx;
2955 	else
2956 		can_reclaim = cidx + eq->cap - eq->cidx;
2957 
2958 	if (can_reclaim == 0)
2959 		return (0);
2960 
2961 	txb_freed = hdls_freed = reclaimed = 0;
2962 	do {
2963 		int ndesc;
2964 
2965 		txsd = &txq->sdesc[eq->cidx];
2966 		ndesc = txsd->desc_used;
2967 
2968 		/* Firmware doesn't return "partial" credits. */
2969 		ASSERT(can_reclaim >= ndesc);
2970 
2971 		/*
2972 		 * We always keep mblk around, even for immediate data.  If mblk
2973 		 * is NULL, this has to be the software descriptor for a credit
2974 		 * flush work request.
2975 		 */
2976 		if (txsd->m != NULL)
2977 			freemsgchain(txsd->m);
2978 #ifdef DEBUG
2979 		else {
2980 			ASSERT(txsd->txb_used == 0);
2981 			ASSERT(txsd->hdls_used == 0);
2982 			ASSERT(ndesc == 1);
2983 		}
2984 #endif
2985 
2986 		txb_freed += txsd->txb_used;
2987 		hdls_freed += txsd->hdls_used;
2988 		reclaimed += ndesc;
2989 
2990 		eq->cidx += ndesc;
2991 		if (eq->cidx >= eq->cap)
2992 			eq->cidx -= eq->cap;
2993 
2994 		can_reclaim -= ndesc;
2995 
2996 	} while (can_reclaim && reclaimed < howmany);
2997 
2998 	eq->avail += reclaimed;
2999 	ASSERT(eq->avail < eq->cap);	/* avail tops out at (cap - 1) */
3000 
3001 	txq->txb_avail += txb_freed;
3002 
3003 	txq->tx_dhdl_avail += hdls_freed;
3004 	ASSERT(txq->tx_dhdl_avail <= txq->tx_dhdl_total);
3005 	for (; hdls_freed; hdls_freed--) {
3006 		(void) ddi_dma_unbind_handle(txq->tx_dhdl[txq->tx_dhdl_cidx]);
3007 		if (++txq->tx_dhdl_cidx == txq->tx_dhdl_total)
3008 			txq->tx_dhdl_cidx = 0;
3009 	}
3010 
3011 	return (reclaimed);
3012 }
3013 
3014 static void
3015 write_txqflush_wr(struct sge_txq *txq)
3016 {
3017 	struct sge_eq *eq = &txq->eq;
3018 	struct fw_eq_flush_wr *wr;
3019 	struct tx_sdesc *txsd;
3020 
3021 	EQ_LOCK_ASSERT_OWNED(eq);
3022 	ASSERT(eq->avail > 0);
3023 
3024 	wr = (void *)&eq->desc[eq->pidx];
3025 	bzero(wr, sizeof (*wr));
3026 	wr->opcode = FW_EQ_FLUSH_WR;
3027 	wr->equiq_to_len16 = cpu_to_be32(V_FW_WR_LEN16(sizeof (*wr) / 16) |
3028 	    F_FW_WR_EQUEQ | F_FW_WR_EQUIQ);
3029 
3030 	txsd = &txq->sdesc[eq->pidx];
3031 	txsd->m = NULL;
3032 	txsd->txb_used = 0;
3033 	txsd->hdls_used = 0;
3034 	txsd->desc_used = 1;
3035 
3036 	eq->pending++;
3037 	eq->avail--;
3038 	if (++eq->pidx == eq->cap)
3039 		eq->pidx = 0;
3040 }
3041 
3042 static int
3043 t4_eth_rx(struct sge_iq *iq, const struct rss_header *rss, mblk_t *m)
3044 {
3045 	bool csum_ok;
3046 	uint16_t err_vec;
3047 	struct sge_rxq *rxq = (void *)iq;
3048 	struct mblk_pair chain = {0};
3049 	struct adapter *sc = iq->adapter;
3050 	const struct cpl_rx_pkt *cpl = (const void *)(rss + 1);
3051 
3052 	iq->intr_next = iq->intr_params;
3053 
3054 	m->b_rptr += sc->sge.pktshift;
3055 
3056 	/* Compressed error vector is enabled for T6 only */
3057 	if (sc->params.tp.rx_pkt_encap)
3058 		/* It is enabled only in T6 config file */
3059 		err_vec = G_T6_COMPR_RXERR_VEC(ntohs(cpl->err_vec));
3060 	else
3061 		err_vec = ntohs(cpl->err_vec);
3062 
3063 	csum_ok = cpl->csum_calc && !err_vec;
3064 	/* TODO: what about cpl->ip_frag? */
3065 	if (csum_ok && !cpl->ip_frag) {
3066 		mac_hcksum_set(m, 0, 0, 0, 0xffff,
3067 		    HCK_FULLCKSUM_OK | HCK_FULLCKSUM |
3068 		    HCK_IPV4_HDRCKSUM_OK);
3069 		rxq->rxcsum++;
3070 	}
3071 
3072 	/* Add to the chain that we'll send up */
3073 	if (chain.head != NULL)
3074 		chain.tail->b_next = m;
3075 	else
3076 		chain.head = m;
3077 	chain.tail = m;
3078 
3079 	t4_mac_rx(rxq->port, rxq, chain.head);
3080 
3081 	rxq->rxpkts++;
3082 	rxq->rxbytes  += be16_to_cpu(cpl->len);
3083 	return (0);
3084 }
3085 
3086 #define	FL_HW_IDX(idx)	((idx) >> 3)
3087 
3088 static inline void
3089 ring_fl_db(struct adapter *sc, struct sge_fl *fl)
3090 {
3091 	int desc_start, desc_last, ndesc;
3092 	uint32_t v = sc->params.arch.sge_fl_db ;
3093 
3094 	ndesc = FL_HW_IDX(fl->pending);
3095 
3096 	/* Hold back one credit if pidx = cidx */
3097 	if (FL_HW_IDX(fl->pidx) == FL_HW_IDX(fl->cidx))
3098 		ndesc--;
3099 
3100 	/*
3101 	 * There are chances of ndesc modified above (to avoid pidx = cidx).
3102 	 * If there is nothing to post, return.
3103 	 */
3104 	if (ndesc <= 0)
3105 		return;
3106 
3107 	desc_last = FL_HW_IDX(fl->pidx);
3108 
3109 	if (fl->pidx < fl->pending) {
3110 		/* There was a wrap */
3111 		desc_start = FL_HW_IDX(fl->pidx + fl->cap - fl->pending);
3112 
3113 		/* From desc_start to the end of list */
3114 		(void) ddi_dma_sync(fl->dhdl, desc_start * RX_FL_ESIZE, 0,
3115 		    DDI_DMA_SYNC_FORDEV);
3116 
3117 		/* From start of list to the desc_last */
3118 		if (desc_last != 0)
3119 			(void) ddi_dma_sync(fl->dhdl, 0, desc_last *
3120 			    RX_FL_ESIZE, DDI_DMA_SYNC_FORDEV);
3121 	} else {
3122 		/* There was no wrap, sync from start_desc to last_desc */
3123 		desc_start = FL_HW_IDX(fl->pidx - fl->pending);
3124 		(void) ddi_dma_sync(fl->dhdl, desc_start * RX_FL_ESIZE,
3125 		    ndesc * RX_FL_ESIZE, DDI_DMA_SYNC_FORDEV);
3126 	}
3127 
3128 	if (is_t4(sc->params.chip))
3129 		v |= V_PIDX(ndesc);
3130 	else
3131 		v |= V_PIDX_T5(ndesc);
3132 	v |= V_QID(fl->cntxt_id) | V_PIDX(ndesc);
3133 
3134 	membar_producer();
3135 
3136 	t4_write_reg(sc, MYPF_REG(A_SGE_PF_KDOORBELL), v);
3137 
3138 	/*
3139 	 * Update pending count:
3140 	 * Deduct the number of descriptors posted
3141 	 */
3142 	fl->pending -= ndesc * 8;
3143 }
3144 
3145 static void
3146 tx_reclaim_task(void *arg)
3147 {
3148 	struct sge_txq *txq = arg;
3149 
3150 	TXQ_LOCK(txq);
3151 	reclaim_tx_descs(txq, txq->eq.qsize);
3152 	TXQ_UNLOCK(txq);
3153 }
3154 
3155 /* ARGSUSED */
3156 static int
3157 handle_sge_egr_update(struct sge_iq *iq, const struct rss_header *rss,
3158                 mblk_t *m)
3159 {
3160 	const struct cpl_sge_egr_update *cpl = (const void *)(rss + 1);
3161 	unsigned int qid = G_EGR_QID(ntohl(cpl->opcode_qid));
3162 	struct adapter *sc = iq->adapter;
3163 	struct sge *s = &sc->sge;
3164 	struct sge_eq *eq;
3165 	struct sge_txq *txq;
3166 
3167 	txq = (void *)s->eqmap[qid - s->eq_start];
3168 	eq = &txq->eq;
3169 	txq->qflush++;
3170 	t4_mac_tx_update(txq->port, txq);
3171 
3172 	ddi_taskq_dispatch(sc->tq[eq->tx_chan], tx_reclaim_task,
3173 		(void *)txq, DDI_NOSLEEP);
3174 
3175 	return (0);
3176 }
3177 
3178 static int
3179 handle_fw_rpl(struct sge_iq *iq, const struct rss_header *rss, mblk_t *m)
3180 {
3181 	struct adapter *sc = iq->adapter;
3182 	const struct cpl_fw6_msg *cpl = (const void *)(rss + 1);
3183 
3184 	ASSERT(m == NULL);
3185 
3186 	if (cpl->type == FW_TYPE_RSSCPL || cpl->type == FW6_TYPE_RSSCPL) {
3187 		const struct rss_header *rss2;
3188 
3189 		rss2 = (const struct rss_header *)&cpl->data[0];
3190 		return (sc->cpl_handler[rss2->opcode](iq, rss2, m));
3191 	}
3192 	return (sc->fw_msg_handler[cpl->type](sc, &cpl->data[0]));
3193 }
3194 
3195 int
3196 t4_alloc_tx_maps(struct adapter *sc, struct tx_maps *txmaps, int count,
3197     int flags)
3198 {
3199 	int i, rc;
3200 
3201 	txmaps->map_total =  count;
3202 	txmaps->map_avail = txmaps->map_cidx = txmaps->map_pidx = 0;
3203 
3204 	txmaps->map =  kmem_zalloc(sizeof (ddi_dma_handle_t) *
3205 	    txmaps->map_total, flags);
3206 
3207 	for (i = 0; i < count; i++) {
3208 		rc = ddi_dma_alloc_handle(sc->dip, &sc->sge.dma_attr_tx,
3209 		    DDI_DMA_SLEEP, 0, &txmaps->map[i]);
3210 		if (rc != DDI_SUCCESS) {
3211 			cxgb_printf(sc->dip, CE_WARN,
3212 			    "%s: failed to allocate DMA handle (%d)",
3213 			    __func__, rc);
3214 			return (rc == DDI_DMA_NORESOURCES ? ENOMEM : EINVAL);
3215 		}
3216 		txmaps->map_avail++;
3217 	}
3218 
3219 	return (0);
3220 }
3221 
3222 #define	KS_UINIT(x)	kstat_named_init(&kstatp->x, #x, KSTAT_DATA_ULONG)
3223 #define	KS_CINIT(x)	kstat_named_init(&kstatp->x, #x, KSTAT_DATA_CHAR)
3224 #define	KS_U_SET(x, y)	kstatp->x.value.ul = (y)
3225 #define	KS_U_FROM(x, y)	kstatp->x.value.ul = (y)->x
3226 #define	KS_C_SET(x, ...)	\
3227 			(void) snprintf(kstatp->x.value.c, 16,  __VA_ARGS__)
3228 
3229 /*
3230  * cxgbe:X:config
3231  */
3232 struct cxgbe_port_config_kstats {
3233 	kstat_named_t idx;
3234 	kstat_named_t nrxq;
3235 	kstat_named_t ntxq;
3236 	kstat_named_t first_rxq;
3237 	kstat_named_t first_txq;
3238 	kstat_named_t controller;
3239 	kstat_named_t factory_mac_address;
3240 };
3241 
3242 /*
3243  * cxgbe:X:info
3244  */
3245 struct cxgbe_port_info_kstats {
3246 	kstat_named_t transceiver;
3247 	kstat_named_t rx_ovflow0;
3248 	kstat_named_t rx_ovflow1;
3249 	kstat_named_t rx_ovflow2;
3250 	kstat_named_t rx_ovflow3;
3251 	kstat_named_t rx_trunc0;
3252 	kstat_named_t rx_trunc1;
3253 	kstat_named_t rx_trunc2;
3254 	kstat_named_t rx_trunc3;
3255 	kstat_named_t tx_pause;
3256 	kstat_named_t rx_pause;
3257 };
3258 
3259 static kstat_t *
3260 setup_port_config_kstats(struct port_info *pi)
3261 {
3262 	kstat_t *ksp;
3263 	struct cxgbe_port_config_kstats *kstatp;
3264 	int ndata;
3265 	dev_info_t *pdip = ddi_get_parent(pi->dip);
3266 	uint8_t *ma = &pi->hw_addr[0];
3267 
3268 	ndata = sizeof (struct cxgbe_port_config_kstats) /
3269 	    sizeof (kstat_named_t);
3270 
3271 	ksp = kstat_create(T4_PORT_NAME, ddi_get_instance(pi->dip), "config",
3272 	    "net", KSTAT_TYPE_NAMED, ndata, 0);
3273 	if (ksp == NULL) {
3274 		cxgb_printf(pi->dip, CE_WARN, "failed to initialize kstats.");
3275 		return (NULL);
3276 	}
3277 
3278 	kstatp = (struct cxgbe_port_config_kstats *)ksp->ks_data;
3279 
3280 	KS_UINIT(idx);
3281 	KS_UINIT(nrxq);
3282 	KS_UINIT(ntxq);
3283 	KS_UINIT(first_rxq);
3284 	KS_UINIT(first_txq);
3285 	KS_CINIT(controller);
3286 	KS_CINIT(factory_mac_address);
3287 
3288 	KS_U_SET(idx, pi->port_id);
3289 	KS_U_SET(nrxq, pi->nrxq);
3290 	KS_U_SET(ntxq, pi->ntxq);
3291 	KS_U_SET(first_rxq, pi->first_rxq);
3292 	KS_U_SET(first_txq, pi->first_txq);
3293 	KS_C_SET(controller, "%s%d", ddi_driver_name(pdip),
3294 	    ddi_get_instance(pdip));
3295 	KS_C_SET(factory_mac_address, "%02X%02X%02X%02X%02X%02X",
3296 	    ma[0], ma[1], ma[2], ma[3], ma[4], ma[5]);
3297 
3298 	/* Do NOT set ksp->ks_update.  These kstats do not change. */
3299 
3300 	/* Install the kstat */
3301 	ksp->ks_private = (void *)pi;
3302 	kstat_install(ksp);
3303 
3304 	return (ksp);
3305 }
3306 
3307 static kstat_t *
3308 setup_port_info_kstats(struct port_info *pi)
3309 {
3310 	kstat_t *ksp;
3311 	struct cxgbe_port_info_kstats *kstatp;
3312 	int ndata;
3313 
3314 	ndata = sizeof (struct cxgbe_port_info_kstats) / sizeof (kstat_named_t);
3315 
3316 	ksp = kstat_create(T4_PORT_NAME, ddi_get_instance(pi->dip), "info",
3317 	    "net", KSTAT_TYPE_NAMED, ndata, 0);
3318 	if (ksp == NULL) {
3319 		cxgb_printf(pi->dip, CE_WARN, "failed to initialize kstats.");
3320 		return (NULL);
3321 	}
3322 
3323 	kstatp = (struct cxgbe_port_info_kstats *)ksp->ks_data;
3324 
3325 	KS_CINIT(transceiver);
3326 	KS_UINIT(rx_ovflow0);
3327 	KS_UINIT(rx_ovflow1);
3328 	KS_UINIT(rx_ovflow2);
3329 	KS_UINIT(rx_ovflow3);
3330 	KS_UINIT(rx_trunc0);
3331 	KS_UINIT(rx_trunc1);
3332 	KS_UINIT(rx_trunc2);
3333 	KS_UINIT(rx_trunc3);
3334 	KS_UINIT(tx_pause);
3335 	KS_UINIT(rx_pause);
3336 
3337 	/* Install the kstat */
3338 	ksp->ks_update = update_port_info_kstats;
3339 	ksp->ks_private = (void *)pi;
3340 	kstat_install(ksp);
3341 
3342 	return (ksp);
3343 }
3344 
3345 static int
3346 update_port_info_kstats(kstat_t *ksp, int rw)
3347 {
3348 	struct cxgbe_port_info_kstats *kstatp =
3349 	    (struct cxgbe_port_info_kstats *)ksp->ks_data;
3350 	struct port_info *pi = ksp->ks_private;
3351 	static const char *mod_str[] = { NULL, "LR", "SR", "ER", "TWINAX",
3352 	    "active TWINAX", "LRM" };
3353 	uint32_t bgmap;
3354 
3355 	if (rw == KSTAT_WRITE)
3356 		return (0);
3357 
3358 	if (pi->mod_type == FW_PORT_MOD_TYPE_NONE)
3359 		KS_C_SET(transceiver, "unplugged");
3360 	else if (pi->mod_type == FW_PORT_MOD_TYPE_UNKNOWN)
3361 		KS_C_SET(transceiver, "unknown");
3362 	else if (pi->mod_type == FW_PORT_MOD_TYPE_NOTSUPPORTED)
3363 		KS_C_SET(transceiver, "unsupported");
3364 	else if (pi->mod_type > 0 && pi->mod_type < ARRAY_SIZE(mod_str))
3365 		KS_C_SET(transceiver, "%s", mod_str[pi->mod_type]);
3366 	else
3367 		KS_C_SET(transceiver, "type %d", pi->mod_type);
3368 
3369 #define	GET_STAT(name) t4_read_reg64(pi->adapter, \
3370 	    PORT_REG(pi->port_id, A_MPS_PORT_STAT_##name##_L))
3371 #define	GET_STAT_COM(name) t4_read_reg64(pi->adapter, \
3372 	    A_MPS_STAT_##name##_L)
3373 
3374 	bgmap = G_NUMPORTS(t4_read_reg(pi->adapter, A_MPS_CMN_CTL));
3375 	if (bgmap == 0)
3376 		bgmap = (pi->port_id == 0) ? 0xf : 0;
3377 	else if (bgmap == 1)
3378 		bgmap = (pi->port_id < 2) ? (3 << (2 * pi->port_id)) : 0;
3379 	else
3380 		bgmap = 1;
3381 
3382 	KS_U_SET(rx_ovflow0, (bgmap & 1) ?
3383 	    GET_STAT_COM(RX_BG_0_MAC_DROP_FRAME) : 0);
3384 	KS_U_SET(rx_ovflow1, (bgmap & 2) ?
3385 	    GET_STAT_COM(RX_BG_1_MAC_DROP_FRAME) : 0);
3386 	KS_U_SET(rx_ovflow2, (bgmap & 4) ?
3387 	    GET_STAT_COM(RX_BG_2_MAC_DROP_FRAME) : 0);
3388 	KS_U_SET(rx_ovflow3, (bgmap & 8) ?
3389 	    GET_STAT_COM(RX_BG_3_MAC_DROP_FRAME) : 0);
3390 	KS_U_SET(rx_trunc0,  (bgmap & 1) ?
3391 	    GET_STAT_COM(RX_BG_0_MAC_TRUNC_FRAME) : 0);
3392 	KS_U_SET(rx_trunc1,  (bgmap & 2) ?
3393 	    GET_STAT_COM(RX_BG_1_MAC_TRUNC_FRAME) : 0);
3394 	KS_U_SET(rx_trunc2,  (bgmap & 4) ?
3395 	    GET_STAT_COM(RX_BG_2_MAC_TRUNC_FRAME) : 0);
3396 	KS_U_SET(rx_trunc3,  (bgmap & 8) ?
3397 	    GET_STAT_COM(RX_BG_3_MAC_TRUNC_FRAME) : 0);
3398 
3399 	KS_U_SET(tx_pause, GET_STAT(TX_PORT_PAUSE));
3400 	KS_U_SET(rx_pause, GET_STAT(RX_PORT_PAUSE));
3401 
3402 	return (0);
3403 
3404 }
3405 
3406 /*
3407  * cxgbe:X:rxqY
3408  */
3409 struct rxq_kstats {
3410 	kstat_named_t rxcsum;
3411 	kstat_named_t rxpkts;
3412 	kstat_named_t rxbytes;
3413 	kstat_named_t nomem;
3414 };
3415 
3416 static kstat_t *
3417 setup_rxq_kstats(struct port_info *pi, struct sge_rxq *rxq, int idx)
3418 {
3419 	struct kstat *ksp;
3420 	struct rxq_kstats *kstatp;
3421 	int ndata;
3422 	char str[16];
3423 
3424 	ndata = sizeof (struct rxq_kstats) / sizeof (kstat_named_t);
3425 	(void) snprintf(str, sizeof (str), "rxq%u", idx);
3426 
3427 	ksp = kstat_create(T4_PORT_NAME, ddi_get_instance(pi->dip), str, "rxq",
3428 	    KSTAT_TYPE_NAMED, ndata, 0);
3429 	if (ksp == NULL) {
3430 		cxgb_printf(pi->dip, CE_WARN,
3431 		    "%s: failed to initialize rxq kstats for queue %d.",
3432 		    __func__, idx);
3433 		return (NULL);
3434 	}
3435 
3436 	kstatp = (struct rxq_kstats *)ksp->ks_data;
3437 
3438 	KS_UINIT(rxcsum);
3439 	KS_UINIT(rxpkts);
3440 	KS_UINIT(rxbytes);
3441 	KS_UINIT(nomem);
3442 
3443 	ksp->ks_update = update_rxq_kstats;
3444 	ksp->ks_private = (void *)rxq;
3445 	kstat_install(ksp);
3446 
3447 	return (ksp);
3448 }
3449 
3450 static int
3451 update_rxq_kstats(kstat_t *ksp, int rw)
3452 {
3453 	struct rxq_kstats *kstatp = (struct rxq_kstats *)ksp->ks_data;
3454 	struct sge_rxq *rxq = ksp->ks_private;
3455 
3456 	if (rw == KSTAT_WRITE)
3457 		return (0);
3458 
3459 	KS_U_FROM(rxcsum, rxq);
3460 	KS_U_FROM(rxpkts, rxq);
3461 	KS_U_FROM(rxbytes, rxq);
3462 	KS_U_FROM(nomem, rxq);
3463 
3464 	return (0);
3465 }
3466 
3467 /*
3468  * cxgbe:X:txqY
3469  */
3470 struct txq_kstats {
3471 	kstat_named_t txcsum;
3472 	kstat_named_t tso_wrs;
3473 	kstat_named_t imm_wrs;
3474 	kstat_named_t sgl_wrs;
3475 	kstat_named_t txpkt_wrs;
3476 	kstat_named_t txpkts_wrs;
3477 	kstat_named_t txpkts_pkts;
3478 	kstat_named_t txb_used;
3479 	kstat_named_t hdl_used;
3480 	kstat_named_t txb_full;
3481 	kstat_named_t dma_hdl_failed;
3482 	kstat_named_t dma_map_failed;
3483 	kstat_named_t qfull;
3484 	kstat_named_t qflush;
3485 	kstat_named_t pullup_early;
3486 	kstat_named_t pullup_late;
3487 	kstat_named_t pullup_failed;
3488 	kstat_named_t csum_failed;
3489 };
3490 
3491 static kstat_t *
3492 setup_txq_kstats(struct port_info *pi, struct sge_txq *txq, int idx)
3493 {
3494 	struct kstat *ksp;
3495 	struct txq_kstats *kstatp;
3496 	int ndata;
3497 	char str[16];
3498 
3499 	ndata = sizeof (struct txq_kstats) / sizeof (kstat_named_t);
3500 	(void) snprintf(str, sizeof (str), "txq%u", idx);
3501 
3502 	ksp = kstat_create(T4_PORT_NAME, ddi_get_instance(pi->dip), str, "txq",
3503 	    KSTAT_TYPE_NAMED, ndata, 0);
3504 	if (ksp == NULL) {
3505 		cxgb_printf(pi->dip, CE_WARN,
3506 		    "%s: failed to initialize txq kstats for queue %d.",
3507 		    __func__, idx);
3508 		return (NULL);
3509 	}
3510 
3511 	kstatp = (struct txq_kstats *)ksp->ks_data;
3512 
3513 	KS_UINIT(txcsum);
3514 	KS_UINIT(tso_wrs);
3515 	KS_UINIT(imm_wrs);
3516 	KS_UINIT(sgl_wrs);
3517 	KS_UINIT(txpkt_wrs);
3518 	KS_UINIT(txpkts_wrs);
3519 	KS_UINIT(txpkts_pkts);
3520 	KS_UINIT(txb_used);
3521 	KS_UINIT(hdl_used);
3522 	KS_UINIT(txb_full);
3523 	KS_UINIT(dma_hdl_failed);
3524 	KS_UINIT(dma_map_failed);
3525 	KS_UINIT(qfull);
3526 	KS_UINIT(qflush);
3527 	KS_UINIT(pullup_early);
3528 	KS_UINIT(pullup_late);
3529 	KS_UINIT(pullup_failed);
3530 	KS_UINIT(csum_failed);
3531 
3532 	ksp->ks_update = update_txq_kstats;
3533 	ksp->ks_private = (void *)txq;
3534 	kstat_install(ksp);
3535 
3536 	return (ksp);
3537 }
3538 
3539 static int
3540 update_txq_kstats(kstat_t *ksp, int rw)
3541 {
3542 	struct txq_kstats *kstatp = (struct txq_kstats *)ksp->ks_data;
3543 	struct sge_txq *txq = ksp->ks_private;
3544 
3545 	if (rw == KSTAT_WRITE)
3546 		return (0);
3547 
3548 	KS_U_FROM(txcsum, txq);
3549 	KS_U_FROM(tso_wrs, txq);
3550 	KS_U_FROM(imm_wrs, txq);
3551 	KS_U_FROM(sgl_wrs, txq);
3552 	KS_U_FROM(txpkt_wrs, txq);
3553 	KS_U_FROM(txpkts_wrs, txq);
3554 	KS_U_FROM(txpkts_pkts, txq);
3555 	KS_U_FROM(txb_used, txq);
3556 	KS_U_FROM(hdl_used, txq);
3557 	KS_U_FROM(txb_full, txq);
3558 	KS_U_FROM(dma_hdl_failed, txq);
3559 	KS_U_FROM(dma_map_failed, txq);
3560 	KS_U_FROM(qfull, txq);
3561 	KS_U_FROM(qflush, txq);
3562 	KS_U_FROM(pullup_early, txq);
3563 	KS_U_FROM(pullup_late, txq);
3564 	KS_U_FROM(pullup_failed, txq);
3565 	KS_U_FROM(csum_failed, txq);
3566 
3567 	return (0);
3568 }
3569