1 /* 2 * This file and its contents are supplied under the terms of the 3 * Common Development and Distribution License ("CDDL"), version 1.0. 4 * You may only use this file in accordance with the terms of version 5 * 1.0 of the CDDL. 6 * 7 * A full copy of the text of the CDDL should have accompanied this 8 * source. A copy of the CDDL is also available via the Internet at 9 * http://www.illumos.org/license/CDDL. 10 */ 11 12 /* 13 * This file is part of the Chelsio T4 support code. 14 * 15 * Copyright (C) 2010-2013 Chelsio Communications. All rights reserved. 16 * 17 * This program is distributed in the hope that it will be useful, but WITHOUT 18 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or 19 * FITNESS FOR A PARTICULAR PURPOSE. See the LICENSE file included in this 20 * release for licensing terms and conditions. 21 */ 22 23 #include <sys/ddi.h> 24 #include <sys/sunddi.h> 25 #include <sys/sunndi.h> 26 #include <sys/atomic.h> 27 #include <sys/dlpi.h> 28 #include <sys/pattr.h> 29 #include <sys/strsubr.h> 30 #include <sys/stream.h> 31 #include <sys/strsun.h> 32 #include <inet/ip.h> 33 #include <inet/tcp.h> 34 35 #include "version.h" 36 #include "common/common.h" 37 #include "common/t4_msg.h" 38 #include "common/t4_regs.h" 39 #include "common/t4_regs_values.h" 40 41 /* TODO: Tune. */ 42 int rx_buf_size = 8192; 43 int tx_copy_threshold = 256; 44 uint16_t rx_copy_threshold = 256; 45 46 /* Used to track coalesced tx work request */ 47 struct txpkts { 48 mblk_t *tail; /* head is in the software descriptor */ 49 uint64_t *flitp; /* ptr to flit where next pkt should start */ 50 uint8_t npkt; /* # of packets in this work request */ 51 uint8_t nflits; /* # of flits used by this work request */ 52 uint16_t plen; /* total payload (sum of all packets) */ 53 }; 54 55 /* All information needed to tx a frame */ 56 struct txinfo { 57 uint32_t len; /* Total length of frame */ 58 uint32_t flags; /* Checksum and LSO flags */ 59 uint32_t mss; /* MSS for LSO */ 60 uint8_t nsegs; /* # of segments in the SGL, 0 means imm. tx */ 61 uint8_t nflits; /* # of flits needed for the SGL */ 62 uint8_t hdls_used; /* # of DMA handles used */ 63 uint32_t txb_used; /* txb_space used */ 64 struct ulptx_sgl sgl __attribute__((aligned(8))); 65 struct ulptx_sge_pair reserved[TX_SGL_SEGS / 2]; 66 }; 67 68 static int service_iq(struct sge_iq *iq, int budget); 69 static inline void init_iq(struct sge_iq *iq, struct adapter *sc, int tmr_idx, 70 int8_t pktc_idx, int qsize, uint8_t esize); 71 static inline void init_fl(struct sge_fl *fl, uint16_t qsize); 72 static inline void init_eq(struct adapter *sc, struct sge_eq *eq, 73 uint16_t eqtype, uint16_t qsize,uint8_t tx_chan, uint16_t iqid); 74 static int alloc_iq_fl(struct port_info *pi, struct sge_iq *iq, 75 struct sge_fl *fl, int intr_idx, int cong); 76 static int free_iq_fl(struct port_info *pi, struct sge_iq *iq, 77 struct sge_fl *fl); 78 static int alloc_fwq(struct adapter *sc); 79 static int free_fwq(struct adapter *sc); 80 #ifdef TCP_OFFLOAD_ENABLE 81 static int alloc_mgmtq(struct adapter *sc); 82 #endif 83 static int alloc_rxq(struct port_info *pi, struct sge_rxq *rxq, int intr_idx, 84 int i); 85 static int free_rxq(struct port_info *pi, struct sge_rxq *rxq); 86 #ifdef TCP_OFFLOAD_ENABLE 87 static int alloc_ofld_rxq(struct port_info *pi, struct sge_ofld_rxq *ofld_rxq, 88 int intr_idx); 89 static int free_ofld_rxq(struct port_info *pi, struct sge_ofld_rxq *ofld_rxq); 90 #endif 91 static int ctrl_eq_alloc(struct adapter *sc, struct sge_eq *eq); 92 static int eth_eq_alloc(struct adapter *sc, struct port_info *pi, 93 struct sge_eq *eq); 94 #ifdef TCP_OFFLOAD_ENABLE 95 static int ofld_eq_alloc(struct adapter *sc, struct port_info *pi, 96 struct sge_eq *eq); 97 #endif 98 static int alloc_eq(struct adapter *sc, struct port_info *pi, 99 struct sge_eq *eq); 100 static int free_eq(struct adapter *sc, struct sge_eq *eq); 101 #ifdef TCP_OFFLOAD_ENABLE 102 static int alloc_wrq(struct adapter *sc, struct port_info *pi, 103 struct sge_wrq *wrq, int idx); 104 static int free_wrq(struct adapter *sc, struct sge_wrq *wrq); 105 #endif 106 static int alloc_txq(struct port_info *pi, struct sge_txq *txq, int idx); 107 static int free_txq(struct port_info *pi, struct sge_txq *txq); 108 static int alloc_dma_memory(struct adapter *sc, size_t len, int flags, 109 ddi_device_acc_attr_t *acc_attr, ddi_dma_attr_t *dma_attr, 110 ddi_dma_handle_t *dma_hdl, ddi_acc_handle_t *acc_hdl, uint64_t *pba, 111 caddr_t *pva); 112 static int free_dma_memory(ddi_dma_handle_t *dhdl, ddi_acc_handle_t *ahdl); 113 static int alloc_desc_ring(struct adapter *sc, size_t len, int rw, 114 ddi_dma_handle_t *dma_hdl, ddi_acc_handle_t *acc_hdl, uint64_t *pba, 115 caddr_t *pva); 116 static int free_desc_ring(ddi_dma_handle_t *dhdl, ddi_acc_handle_t *ahdl); 117 static int alloc_tx_copybuffer(struct adapter *sc, size_t len, 118 ddi_dma_handle_t *dma_hdl, ddi_acc_handle_t *acc_hdl, uint64_t *pba, 119 caddr_t *pva); 120 static inline bool is_new_response(const struct sge_iq *iq, 121 struct rsp_ctrl **ctrl); 122 static inline void iq_next(struct sge_iq *iq); 123 static int refill_fl(struct adapter *sc, struct sge_fl *fl, int nbufs); 124 static void refill_sfl(void *arg); 125 static void add_fl_to_sfl(struct adapter *sc, struct sge_fl *fl); 126 static void free_fl_bufs(struct sge_fl *fl); 127 static mblk_t *get_fl_payload(struct adapter *sc, struct sge_fl *fl, 128 uint32_t len_newbuf, int *fl_bufs_used); 129 static int get_frame_txinfo(struct sge_txq *txq, mblk_t **fp, 130 struct txinfo *txinfo, int sgl_only); 131 static inline int fits_in_txb(struct sge_txq *txq, int len, int *waste); 132 static inline int copy_into_txb(struct sge_txq *txq, mblk_t *m, int len, 133 struct txinfo *txinfo); 134 static inline void add_seg(struct txinfo *txinfo, uint64_t ba, uint32_t len); 135 static inline int add_mblk(struct sge_txq *txq, struct txinfo *txinfo, 136 mblk_t *m, int len); 137 static void free_txinfo_resources(struct sge_txq *txq, struct txinfo *txinfo); 138 static int add_to_txpkts(struct sge_txq *txq, struct txpkts *txpkts, mblk_t *m, 139 struct txinfo *txinfo); 140 static void write_txpkts_wr(struct sge_txq *txq, struct txpkts *txpkts); 141 static int write_txpkt_wr(struct port_info *pi, struct sge_txq *txq, mblk_t *m, 142 struct txinfo *txinfo); 143 static inline void write_ulp_cpl_sgl(struct port_info *pi, struct sge_txq *txq, 144 struct txpkts *txpkts, struct txinfo *txinfo); 145 static inline void copy_to_txd(struct sge_eq *eq, caddr_t from, caddr_t *to, 146 int len); 147 static inline void ring_tx_db(struct adapter *sc, struct sge_eq *eq); 148 static int reclaim_tx_descs(struct sge_txq *txq, int howmany); 149 static void write_txqflush_wr(struct sge_txq *txq); 150 static int t4_eth_rx(struct sge_iq *iq, const struct rss_header *rss, 151 mblk_t *m); 152 static inline void ring_fl_db(struct adapter *sc, struct sge_fl *fl); 153 static kstat_t *setup_port_config_kstats(struct port_info *pi); 154 static kstat_t *setup_port_info_kstats(struct port_info *pi); 155 static kstat_t *setup_rxq_kstats(struct port_info *pi, struct sge_rxq *rxq, 156 int idx); 157 static int update_rxq_kstats(kstat_t *ksp, int rw); 158 static int update_port_info_kstats(kstat_t *ksp, int rw); 159 static kstat_t *setup_txq_kstats(struct port_info *pi, struct sge_txq *txq, 160 int idx); 161 static int update_txq_kstats(kstat_t *ksp, int rw); 162 static int handle_sge_egr_update(struct sge_iq *, const struct rss_header *, 163 mblk_t *); 164 static int handle_fw_rpl(struct sge_iq *iq, const struct rss_header *rss, 165 mblk_t *m); 166 167 static inline int 168 reclaimable(struct sge_eq *eq) 169 { 170 unsigned int cidx; 171 172 cidx = eq->spg->cidx; /* stable snapshot */ 173 cidx = be16_to_cpu(cidx); 174 175 if (cidx >= eq->cidx) 176 return (cidx - eq->cidx); 177 else 178 return (cidx + eq->cap - eq->cidx); 179 } 180 181 void 182 t4_sge_init(struct adapter *sc) 183 { 184 struct driver_properties *p = &sc->props; 185 ddi_dma_attr_t *dma_attr; 186 ddi_device_acc_attr_t *acc_attr; 187 uint32_t sge_control, sge_conm_ctrl; 188 int egress_threshold; 189 190 /* 191 * Device access and DMA attributes for descriptor rings 192 */ 193 acc_attr = &sc->sge.acc_attr_desc; 194 acc_attr->devacc_attr_version = DDI_DEVICE_ATTR_V0; 195 acc_attr->devacc_attr_endian_flags = DDI_NEVERSWAP_ACC; 196 acc_attr->devacc_attr_dataorder = DDI_STRICTORDER_ACC; 197 198 dma_attr = &sc->sge.dma_attr_desc; 199 dma_attr->dma_attr_version = DMA_ATTR_V0; 200 dma_attr->dma_attr_addr_lo = 0; 201 dma_attr->dma_attr_addr_hi = UINT64_MAX; 202 dma_attr->dma_attr_count_max = UINT64_MAX; 203 dma_attr->dma_attr_align = 512; 204 dma_attr->dma_attr_burstsizes = 0xfff; 205 dma_attr->dma_attr_minxfer = 1; 206 dma_attr->dma_attr_maxxfer = UINT64_MAX; 207 dma_attr->dma_attr_seg = UINT64_MAX; 208 dma_attr->dma_attr_sgllen = 1; 209 dma_attr->dma_attr_granular = 1; 210 dma_attr->dma_attr_flags = 0; 211 212 /* 213 * Device access and DMA attributes for tx buffers 214 */ 215 acc_attr = &sc->sge.acc_attr_tx; 216 acc_attr->devacc_attr_version = DDI_DEVICE_ATTR_V0; 217 acc_attr->devacc_attr_endian_flags = DDI_NEVERSWAP_ACC; 218 219 dma_attr = &sc->sge.dma_attr_tx; 220 dma_attr->dma_attr_version = DMA_ATTR_V0; 221 dma_attr->dma_attr_addr_lo = 0; 222 dma_attr->dma_attr_addr_hi = UINT64_MAX; 223 dma_attr->dma_attr_count_max = UINT64_MAX; 224 dma_attr->dma_attr_align = 1; 225 dma_attr->dma_attr_burstsizes = 0xfff; 226 dma_attr->dma_attr_minxfer = 1; 227 dma_attr->dma_attr_maxxfer = UINT64_MAX; 228 dma_attr->dma_attr_seg = UINT64_MAX; 229 dma_attr->dma_attr_sgllen = TX_SGL_SEGS; 230 dma_attr->dma_attr_granular = 1; 231 dma_attr->dma_attr_flags = 0; 232 233 /* 234 * Ingress Padding Boundary and Egress Status Page Size are set up by 235 * t4_fixup_host_params(). 236 */ 237 sge_control = t4_read_reg(sc, A_SGE_CONTROL); 238 sc->sge.pktshift = G_PKTSHIFT(sge_control); 239 sc->sge.stat_len = (sge_control & F_EGRSTATUSPAGESIZE) ? 128 : 64; 240 241 /* t4_nex uses FLM packed mode */ 242 sc->sge.fl_align = t4_fl_pkt_align(sc, true); 243 244 /* 245 * Device access and DMA attributes for rx buffers 246 */ 247 sc->sge.rxb_params.dip = sc->dip; 248 sc->sge.rxb_params.buf_size = rx_buf_size; 249 250 acc_attr = &sc->sge.rxb_params.acc_attr_rx; 251 acc_attr->devacc_attr_version = DDI_DEVICE_ATTR_V0; 252 acc_attr->devacc_attr_endian_flags = DDI_NEVERSWAP_ACC; 253 254 dma_attr = &sc->sge.rxb_params.dma_attr_rx; 255 dma_attr->dma_attr_version = DMA_ATTR_V0; 256 dma_attr->dma_attr_addr_lo = 0; 257 dma_attr->dma_attr_addr_hi = UINT64_MAX; 258 dma_attr->dma_attr_count_max = UINT64_MAX; 259 /* 260 * Low 4 bits of an rx buffer address have a special meaning to the SGE 261 * and an rx buf cannot have an address with any of these bits set. 262 * FL_ALIGN is >= 32 so we're sure things are ok. 263 */ 264 dma_attr->dma_attr_align = sc->sge.fl_align; 265 dma_attr->dma_attr_burstsizes = 0xfff; 266 dma_attr->dma_attr_minxfer = 1; 267 dma_attr->dma_attr_maxxfer = UINT64_MAX; 268 dma_attr->dma_attr_seg = UINT64_MAX; 269 dma_attr->dma_attr_sgllen = 1; 270 dma_attr->dma_attr_granular = 1; 271 dma_attr->dma_attr_flags = 0; 272 273 sc->sge.rxbuf_cache = rxbuf_cache_create(&sc->sge.rxb_params); 274 275 /* 276 * A FL with <= fl_starve_thres buffers is starving and a periodic 277 * timer will attempt to refill it. This needs to be larger than the 278 * SGE's Egress Congestion Threshold. If it isn't, then we can get 279 * stuck waiting for new packets while the SGE is waiting for us to 280 * give it more Free List entries. (Note that the SGE's Egress 281 * Congestion Threshold is in units of 2 Free List pointers.) For T4, 282 * there was only a single field to control this. For T5 there's the 283 * original field which now only applies to Unpacked Mode Free List 284 * buffers and a new field which only applies to Packed Mode Free List 285 * buffers. 286 */ 287 288 sge_conm_ctrl = t4_read_reg(sc, A_SGE_CONM_CTRL); 289 switch (CHELSIO_CHIP_VERSION(sc->params.chip)) { 290 case CHELSIO_T4: 291 egress_threshold = G_EGRTHRESHOLD(sge_conm_ctrl); 292 break; 293 case CHELSIO_T5: 294 egress_threshold = G_EGRTHRESHOLDPACKING(sge_conm_ctrl); 295 break; 296 case CHELSIO_T6: 297 default: 298 egress_threshold = G_T6_EGRTHRESHOLDPACKING(sge_conm_ctrl); 299 } 300 sc->sge.fl_starve_threshold = 2*egress_threshold + 1; 301 302 t4_write_reg(sc, A_SGE_FL_BUFFER_SIZE0, rx_buf_size); 303 304 t4_write_reg(sc, A_SGE_INGRESS_RX_THRESHOLD, 305 V_THRESHOLD_0(p->counter_val[0]) | 306 V_THRESHOLD_1(p->counter_val[1]) | 307 V_THRESHOLD_2(p->counter_val[2]) | 308 V_THRESHOLD_3(p->counter_val[3])); 309 310 t4_write_reg(sc, A_SGE_TIMER_VALUE_0_AND_1, 311 V_TIMERVALUE0(us_to_core_ticks(sc, p->timer_val[0])) | 312 V_TIMERVALUE1(us_to_core_ticks(sc, p->timer_val[1]))); 313 t4_write_reg(sc, A_SGE_TIMER_VALUE_2_AND_3, 314 V_TIMERVALUE2(us_to_core_ticks(sc, p->timer_val[2])) | 315 V_TIMERVALUE3(us_to_core_ticks(sc, p->timer_val[3]))); 316 t4_write_reg(sc, A_SGE_TIMER_VALUE_4_AND_5, 317 V_TIMERVALUE4(us_to_core_ticks(sc, p->timer_val[4])) | 318 V_TIMERVALUE5(us_to_core_ticks(sc, p->timer_val[5]))); 319 320 (void) t4_register_cpl_handler(sc, CPL_FW4_MSG, handle_fw_rpl); 321 (void) t4_register_cpl_handler(sc, CPL_FW6_MSG, handle_fw_rpl); 322 (void) t4_register_cpl_handler(sc, CPL_SGE_EGR_UPDATE, handle_sge_egr_update); 323 (void) t4_register_cpl_handler(sc, CPL_RX_PKT, t4_eth_rx); 324 (void) t4_register_fw_msg_handler(sc, FW6_TYPE_CMD_RPL, 325 t4_handle_fw_rpl); 326 } 327 328 /* 329 * Allocate and initialize the firmware event queue and the forwarded interrupt 330 * queues, if any. The adapter owns all these queues as they are not associated 331 * with any particular port. 332 * 333 * Returns errno on failure. Resources allocated up to that point may still be 334 * allocated. Caller is responsible for cleanup in case this function fails. 335 */ 336 int 337 t4_setup_adapter_queues(struct adapter *sc) 338 { 339 int rc; 340 341 ADAPTER_LOCK_ASSERT_NOTOWNED(sc); 342 343 /* 344 * Firmware event queue 345 */ 346 rc = alloc_fwq(sc); 347 if (rc != 0) 348 return (rc); 349 350 #ifdef TCP_OFFLOAD_ENABLE 351 /* 352 * Management queue. This is just a control queue that uses the fwq as 353 * its associated iq. 354 */ 355 rc = alloc_mgmtq(sc); 356 #endif 357 358 return (rc); 359 } 360 361 /* 362 * Idempotent 363 */ 364 int 365 t4_teardown_adapter_queues(struct adapter *sc) 366 { 367 368 ADAPTER_LOCK_ASSERT_NOTOWNED(sc); 369 370 (void) free_fwq(sc); 371 372 return (0); 373 } 374 375 static inline int 376 first_vector(struct port_info *pi) 377 { 378 struct adapter *sc = pi->adapter; 379 int rc = T4_EXTRA_INTR, i; 380 381 if (sc->intr_count == 1) 382 return (0); 383 384 for_each_port(sc, i) { 385 struct port_info *p = sc->port[i]; 386 387 if (i == pi->port_id) 388 break; 389 390 #ifdef TCP_OFFLOAD_ENABLE 391 if (!(sc->flags & INTR_FWD)) 392 rc += p->nrxq + p->nofldrxq; 393 else 394 rc += max(p->nrxq, p->nofldrxq); 395 #else 396 /* 397 * Not compiled with offload support and intr_count > 1. Only 398 * NIC queues exist and they'd better be taking direct 399 * interrupts. 400 */ 401 ASSERT(!(sc->flags & INTR_FWD)); 402 rc += p->nrxq; 403 #endif 404 } 405 return (rc); 406 } 407 408 /* 409 * Given an arbitrary "index," come up with an iq that can be used by other 410 * queues (of this port) for interrupt forwarding, SGE egress updates, etc. 411 * The iq returned is guaranteed to be something that takes direct interrupts. 412 */ 413 static struct sge_iq * 414 port_intr_iq(struct port_info *pi, int idx) 415 { 416 struct adapter *sc = pi->adapter; 417 struct sge *s = &sc->sge; 418 struct sge_iq *iq = NULL; 419 420 if (sc->intr_count == 1) 421 return (&sc->sge.fwq); 422 423 #ifdef TCP_OFFLOAD_ENABLE 424 if (!(sc->flags & INTR_FWD)) { 425 idx %= pi->nrxq + pi->nofldrxq; 426 427 if (idx >= pi->nrxq) { 428 idx -= pi->nrxq; 429 iq = &s->ofld_rxq[pi->first_ofld_rxq + idx].iq; 430 } else 431 iq = &s->rxq[pi->first_rxq + idx].iq; 432 433 } else { 434 idx %= max(pi->nrxq, pi->nofldrxq); 435 436 if (pi->nrxq >= pi->nofldrxq) 437 iq = &s->rxq[pi->first_rxq + idx].iq; 438 else 439 iq = &s->ofld_rxq[pi->first_ofld_rxq + idx].iq; 440 } 441 #else 442 /* 443 * Not compiled with offload support and intr_count > 1. Only NIC 444 * queues exist and they'd better be taking direct interrupts. 445 */ 446 ASSERT(!(sc->flags & INTR_FWD)); 447 448 idx %= pi->nrxq; 449 iq = &s->rxq[pi->first_rxq + idx].iq; 450 #endif 451 452 return (iq); 453 } 454 455 int 456 t4_setup_port_queues(struct port_info *pi) 457 { 458 int rc = 0, i, intr_idx, j; 459 struct sge_rxq *rxq; 460 struct sge_txq *txq; 461 #ifdef TCP_OFFLOAD_ENABLE 462 int iqid; 463 struct sge_wrq *ctrlq; 464 struct sge_ofld_rxq *ofld_rxq; 465 struct sge_wrq *ofld_txq; 466 #endif 467 struct adapter *sc = pi->adapter; 468 struct driver_properties *p = &sc->props; 469 470 pi->ksp_config = setup_port_config_kstats(pi); 471 pi->ksp_info = setup_port_info_kstats(pi); 472 473 /* Interrupt vector to start from (when using multiple vectors) */ 474 intr_idx = first_vector(pi); 475 476 /* 477 * First pass over all rx queues (NIC and TOE): 478 * a) initialize iq and fl 479 * b) allocate queue iff it will take direct interrupts. 480 */ 481 482 for_each_rxq(pi, i, rxq) { 483 484 init_iq(&rxq->iq, sc, pi->tmr_idx, pi->pktc_idx, p->qsize_rxq, 485 RX_IQ_ESIZE); 486 487 init_fl(&rxq->fl, p->qsize_rxq / 8); /* 8 bufs in each entry */ 488 489 if ((!(sc->flags & INTR_FWD)) 490 #ifdef TCP_OFFLOAD_ENABLE 491 || (sc->intr_count > 1 && pi->nrxq >= pi->nofldrxq) 492 #else 493 || (sc->intr_count > 1 && pi->nrxq) 494 #endif 495 ) { 496 rxq->iq.flags |= IQ_INTR; 497 rc = alloc_rxq(pi, rxq, intr_idx, i); 498 if (rc != 0) 499 goto done; 500 intr_idx++; 501 } 502 503 } 504 505 #ifdef TCP_OFFLOAD_ENABLE 506 for_each_ofld_rxq(pi, i, ofld_rxq) { 507 508 init_iq(&ofld_rxq->iq, sc, pi->tmr_idx, pi->pktc_idx, 509 p->qsize_rxq, RX_IQ_ESIZE); 510 511 init_fl(&ofld_rxq->fl, p->qsize_rxq / 8); 512 513 if (!(sc->flags & INTR_FWD) || 514 (sc->intr_count > 1 && pi->nofldrxq > pi->nrxq)) { 515 ofld_rxq->iq.flags = IQ_INTR; 516 rc = alloc_ofld_rxq(pi, ofld_rxq, intr_idx); 517 if (rc != 0) 518 goto done; 519 520 intr_idx++; 521 } 522 } 523 #endif 524 525 /* 526 * Second pass over all rx queues (NIC and TOE). The queues forwarding 527 * their interrupts are allocated now. 528 */ 529 j = 0; 530 for_each_rxq(pi, i, rxq) { 531 if (rxq->iq.flags & IQ_INTR) 532 continue; 533 534 intr_idx = port_intr_iq(pi, j)->abs_id; 535 536 rc = alloc_rxq(pi, rxq, intr_idx, i); 537 if (rc != 0) 538 goto done; 539 j++; 540 } 541 542 #ifdef TCP_OFFLOAD_ENABLE 543 for_each_ofld_rxq(pi, i, ofld_rxq) { 544 if (ofld_rxq->iq.flags & IQ_INTR) 545 continue; 546 547 intr_idx = port_intr_iq(pi, j)->abs_id; 548 rc = alloc_ofld_rxq(pi, ofld_rxq, intr_idx); 549 if (rc != 0) 550 goto done; 551 j++; 552 } 553 #endif 554 /* 555 * Now the tx queues. Only one pass needed. 556 */ 557 j = 0; 558 for_each_txq(pi, i, txq) { 559 uint16_t iqid; 560 561 iqid = port_intr_iq(pi, j)->cntxt_id; 562 init_eq(sc, &txq->eq, EQ_ETH, p->qsize_txq, pi->tx_chan, iqid); 563 rc = alloc_txq(pi, txq, i); 564 if (rc != 0) 565 goto done; 566 } 567 568 #ifdef TCP_OFFLOAD_ENABLE 569 for_each_ofld_txq(pi, i, ofld_txq) { 570 uint16_t iqid; 571 572 iqid = port_intr_iq(pi, j)->cntxt_id; 573 init_eq(sc, &ofld_txq->eq, EQ_OFLD, p->qsize_txq, pi->tx_chan, 574 iqid); 575 rc = alloc_wrq(sc, pi, ofld_txq, i); 576 if (rc != 0) 577 goto done; 578 } 579 580 /* 581 * Finally, the control queue. 582 */ 583 ctrlq = &sc->sge.ctrlq[pi->port_id]; 584 iqid = port_intr_iq(pi, 0)->cntxt_id; 585 init_eq(sc, &ctrlq->eq, EQ_CTRL, CTRL_EQ_QSIZE, pi->tx_chan, iqid); 586 rc = alloc_wrq(sc, pi, ctrlq, 0); 587 #endif 588 589 done: 590 if (rc != 0) 591 (void) t4_teardown_port_queues(pi); 592 593 return (rc); 594 } 595 596 /* 597 * Idempotent 598 */ 599 int 600 t4_teardown_port_queues(struct port_info *pi) 601 { 602 int i; 603 struct sge_rxq *rxq; 604 struct sge_txq *txq; 605 #ifdef TCP_OFFLOAD_ENABLE 606 struct adapter *sc = pi->adapter; 607 struct sge_ofld_rxq *ofld_rxq; 608 struct sge_wrq *ofld_txq; 609 #endif 610 611 if (pi->ksp_config != NULL) { 612 kstat_delete(pi->ksp_config); 613 pi->ksp_config = NULL; 614 } 615 if (pi->ksp_info != NULL) { 616 kstat_delete(pi->ksp_info); 617 pi->ksp_info = NULL; 618 } 619 620 #ifdef TCP_OFFLOAD_ENABLE 621 (void) free_wrq(sc, &sc->sge.ctrlq[pi->port_id]); 622 #endif 623 624 for_each_txq(pi, i, txq) { 625 (void) free_txq(pi, txq); 626 } 627 628 #ifdef TCP_OFFLOAD_ENABLE 629 for_each_ofld_txq(pi, i, ofld_txq) { 630 (void) free_wrq(sc, ofld_txq); 631 } 632 633 for_each_ofld_rxq(pi, i, ofld_rxq) { 634 if ((ofld_rxq->iq.flags & IQ_INTR) == 0) 635 (void) free_ofld_rxq(pi, ofld_rxq); 636 } 637 #endif 638 639 for_each_rxq(pi, i, rxq) { 640 if ((rxq->iq.flags & IQ_INTR) == 0) 641 (void) free_rxq(pi, rxq); 642 } 643 644 /* 645 * Then take down the rx queues that take direct interrupts. 646 */ 647 648 for_each_rxq(pi, i, rxq) { 649 if (rxq->iq.flags & IQ_INTR) 650 (void) free_rxq(pi, rxq); 651 } 652 653 #ifdef TCP_OFFLOAD_ENABLE 654 for_each_ofld_rxq(pi, i, ofld_rxq) { 655 if (ofld_rxq->iq.flags & IQ_INTR) 656 (void) free_ofld_rxq(pi, ofld_rxq); 657 } 658 #endif 659 660 return (0); 661 } 662 663 /* Deals with errors and forwarded interrupts */ 664 uint_t 665 t4_intr_all(caddr_t arg1, caddr_t arg2) 666 { 667 668 (void) t4_intr_err(arg1, arg2); 669 (void) t4_intr(arg1, arg2); 670 671 return (DDI_INTR_CLAIMED); 672 } 673 674 static void 675 t4_intr_rx_work(struct sge_iq *iq) 676 { 677 mblk_t *mp = NULL; 678 struct sge_rxq *rxq = iq_to_rxq(iq); /* Use iff iq is part of rxq */ 679 RXQ_LOCK(rxq); 680 if (!iq->polling) { 681 mp = t4_ring_rx(rxq, iq->qsize/8); 682 t4_write_reg(iq->adapter, MYPF_REG(A_SGE_PF_GTS), 683 V_INGRESSQID((u32)iq->cntxt_id) | V_SEINTARM(iq->intr_next)); 684 } 685 RXQ_UNLOCK(rxq); 686 if (mp != NULL) 687 mac_rx_ring(rxq->port->mh, rxq->ring_handle, mp, 688 rxq->ring_gen_num); 689 } 690 691 /* Deals with interrupts on the given ingress queue */ 692 /* ARGSUSED */ 693 uint_t 694 t4_intr(caddr_t arg1, caddr_t arg2) 695 { 696 struct sge_iq *iq = (struct sge_iq *)arg2; 697 int state; 698 699 /* Right now receive polling is only enabled for MSI-X and 700 * when we have enough msi-x vectors i.e no interrupt forwarding. 701 */ 702 if (iq->adapter->props.multi_rings) { 703 t4_intr_rx_work(iq); 704 } else { 705 state = atomic_cas_uint(&iq->state, IQS_IDLE, IQS_BUSY); 706 if (state == IQS_IDLE) { 707 (void) service_iq(iq, 0); 708 (void) atomic_cas_uint(&iq->state, IQS_BUSY, IQS_IDLE); 709 } 710 } 711 return (DDI_INTR_CLAIMED); 712 } 713 714 /* Deals with error interrupts */ 715 /* ARGSUSED */ 716 uint_t 717 t4_intr_err(caddr_t arg1, caddr_t arg2) 718 { 719 /* LINTED: E_BAD_PTR_CAST_ALIGN */ 720 struct adapter *sc = (struct adapter *)arg1; 721 722 t4_write_reg(sc, MYPF_REG(A_PCIE_PF_CLI), 0); 723 (void) t4_slow_intr_handler(sc); 724 725 return (DDI_INTR_CLAIMED); 726 } 727 728 /* 729 * t4_ring_rx - Process responses from an SGE response queue. 730 * 731 * This function processes responses from an SGE response queue up to the supplied budget. 732 * Responses include received packets as well as control messages from FW 733 * or HW. 734 * It returns a chain of mblks containing the received data, to be 735 * passed up to mac_ring_rx(). 736 */ 737 mblk_t * 738 t4_ring_rx(struct sge_rxq *rxq, int budget) 739 { 740 struct sge_iq *iq = &rxq->iq; 741 struct sge_fl *fl = &rxq->fl; /* Use iff IQ_HAS_FL */ 742 struct adapter *sc = iq->adapter; 743 struct rsp_ctrl *ctrl; 744 const struct rss_header *rss; 745 int ndescs = 0, fl_bufs_used = 0; 746 int rsp_type; 747 uint32_t lq; 748 mblk_t *mblk_head = NULL, **mblk_tail, *m; 749 struct cpl_rx_pkt *cpl; 750 uint32_t received_bytes = 0, pkt_len = 0; 751 bool csum_ok; 752 uint16_t err_vec; 753 754 mblk_tail = &mblk_head; 755 756 while (is_new_response(iq, &ctrl)) { 757 758 membar_consumer(); 759 760 m = NULL; 761 rsp_type = G_RSPD_TYPE(ctrl->u.type_gen); 762 lq = be32_to_cpu(ctrl->pldbuflen_qid); 763 rss = (const void *)iq->cdesc; 764 765 switch (rsp_type) { 766 case X_RSPD_TYPE_FLBUF: 767 768 ASSERT(iq->flags & IQ_HAS_FL); 769 770 if (CPL_RX_PKT == rss->opcode) { 771 cpl = (void *)(rss + 1); 772 pkt_len = be16_to_cpu(cpl->len); 773 774 if (iq->polling && ((received_bytes + pkt_len) > budget)) 775 goto done; 776 777 m = get_fl_payload(sc, fl, lq, &fl_bufs_used); 778 if (m == NULL) 779 goto done; 780 781 iq->intr_next = iq->intr_params; 782 m->b_rptr += sc->sge.pktshift; 783 if (sc->params.tp.rx_pkt_encap) 784 /* It is enabled only in T6 config file */ 785 err_vec = G_T6_COMPR_RXERR_VEC(ntohs(cpl->err_vec)); 786 else 787 err_vec = ntohs(cpl->err_vec); 788 789 csum_ok = cpl->csum_calc && !err_vec; 790 791 /* TODO: what about cpl->ip_frag? */ 792 if (csum_ok && !cpl->ip_frag) { 793 mac_hcksum_set(m, 0, 0, 0, 0xffff, 794 HCK_FULLCKSUM_OK | HCK_FULLCKSUM | 795 HCK_IPV4_HDRCKSUM_OK); 796 rxq->rxcsum++; 797 } 798 rxq->rxpkts++; 799 rxq->rxbytes += pkt_len; 800 received_bytes += pkt_len; 801 802 *mblk_tail = m; 803 mblk_tail = &m->b_next; 804 805 break; 806 } 807 808 m = get_fl_payload(sc, fl, lq, &fl_bufs_used); 809 if (m == NULL) 810 goto done; 811 /* FALLTHROUGH */ 812 813 case X_RSPD_TYPE_CPL: 814 ASSERT(rss->opcode < NUM_CPL_CMDS); 815 sc->cpl_handler[rss->opcode](iq, rss, m); 816 break; 817 818 default: 819 break; 820 } 821 iq_next(iq); 822 ++ndescs; 823 if (!iq->polling && (ndescs == budget)) 824 break; 825 } 826 827 done: 828 829 t4_write_reg(sc, MYPF_REG(A_SGE_PF_GTS), 830 V_CIDXINC(ndescs) | V_INGRESSQID(iq->cntxt_id) | 831 V_SEINTARM(V_QINTR_TIMER_IDX(X_TIMERREG_UPDATE_CIDX))); 832 833 if ((fl_bufs_used > 0) || (iq->flags & IQ_HAS_FL)) { 834 int starved; 835 FL_LOCK(fl); 836 fl->needed += fl_bufs_used; 837 starved = refill_fl(sc, fl, fl->cap / 8); 838 FL_UNLOCK(fl); 839 if (starved) 840 add_fl_to_sfl(sc, fl); 841 } 842 return (mblk_head); 843 } 844 845 /* 846 * Deals with anything and everything on the given ingress queue. 847 */ 848 static int 849 service_iq(struct sge_iq *iq, int budget) 850 { 851 struct sge_iq *q; 852 struct sge_rxq *rxq = iq_to_rxq(iq); /* Use iff iq is part of rxq */ 853 struct sge_fl *fl = &rxq->fl; /* Use iff IQ_HAS_FL */ 854 struct adapter *sc = iq->adapter; 855 struct rsp_ctrl *ctrl; 856 const struct rss_header *rss; 857 int ndescs = 0, limit, fl_bufs_used = 0; 858 int rsp_type; 859 uint32_t lq; 860 int starved; 861 mblk_t *m; 862 STAILQ_HEAD(, sge_iq) iql = STAILQ_HEAD_INITIALIZER(iql); 863 864 limit = budget ? budget : iq->qsize / 8; 865 866 /* 867 * We always come back and check the descriptor ring for new indirect 868 * interrupts and other responses after running a single handler. 869 */ 870 for (;;) { 871 while (is_new_response(iq, &ctrl)) { 872 873 membar_consumer(); 874 875 m = NULL; 876 rsp_type = G_RSPD_TYPE(ctrl->u.type_gen); 877 lq = be32_to_cpu(ctrl->pldbuflen_qid); 878 rss = (const void *)iq->cdesc; 879 880 switch (rsp_type) { 881 case X_RSPD_TYPE_FLBUF: 882 883 ASSERT(iq->flags & IQ_HAS_FL); 884 885 m = get_fl_payload(sc, fl, lq, &fl_bufs_used); 886 if (m == NULL) { 887 /* 888 * Rearm the iq with a 889 * longer-than-default timer 890 */ 891 t4_write_reg(sc, MYPF_REG(A_SGE_PF_GTS), V_CIDXINC(ndescs) | 892 V_INGRESSQID((u32)iq->cntxt_id) | 893 V_SEINTARM(V_QINTR_TIMER_IDX(SGE_NTIMERS-1))); 894 if (fl_bufs_used > 0) { 895 ASSERT(iq->flags & IQ_HAS_FL); 896 FL_LOCK(fl); 897 fl->needed += fl_bufs_used; 898 starved = refill_fl(sc, fl, fl->cap / 8); 899 FL_UNLOCK(fl); 900 if (starved) 901 add_fl_to_sfl(sc, fl); 902 } 903 return (0); 904 } 905 906 /* FALLTHRU */ 907 case X_RSPD_TYPE_CPL: 908 909 ASSERT(rss->opcode < NUM_CPL_CMDS); 910 sc->cpl_handler[rss->opcode](iq, rss, m); 911 break; 912 913 case X_RSPD_TYPE_INTR: 914 915 /* 916 * Interrupts should be forwarded only to queues 917 * that are not forwarding their interrupts. 918 * This means service_iq can recurse but only 1 919 * level deep. 920 */ 921 ASSERT(budget == 0); 922 923 q = sc->sge.iqmap[lq - sc->sge.iq_start]; 924 if (atomic_cas_uint(&q->state, IQS_IDLE, 925 IQS_BUSY) == IQS_IDLE) { 926 if (service_iq(q, q->qsize / 8) == 0) { 927 (void) atomic_cas_uint( 928 &q->state, IQS_BUSY, 929 IQS_IDLE); 930 } else { 931 STAILQ_INSERT_TAIL(&iql, q, 932 link); 933 } 934 } 935 break; 936 937 default: 938 break; 939 } 940 941 iq_next(iq); 942 if (++ndescs == limit) { 943 t4_write_reg(sc, MYPF_REG(A_SGE_PF_GTS), 944 V_CIDXINC(ndescs) | 945 V_INGRESSQID(iq->cntxt_id) | 946 V_SEINTARM(V_QINTR_TIMER_IDX( 947 X_TIMERREG_UPDATE_CIDX))); 948 ndescs = 0; 949 950 if (fl_bufs_used > 0) { 951 ASSERT(iq->flags & IQ_HAS_FL); 952 FL_LOCK(fl); 953 fl->needed += fl_bufs_used; 954 (void) refill_fl(sc, fl, fl->cap / 8); 955 FL_UNLOCK(fl); 956 fl_bufs_used = 0; 957 } 958 959 if (budget != 0) 960 return (EINPROGRESS); 961 } 962 } 963 964 if (STAILQ_EMPTY(&iql) != 0) 965 break; 966 967 /* 968 * Process the head only, and send it to the back of the list if 969 * it's still not done. 970 */ 971 q = STAILQ_FIRST(&iql); 972 STAILQ_REMOVE_HEAD(&iql, link); 973 if (service_iq(q, q->qsize / 8) == 0) 974 (void) atomic_cas_uint(&q->state, IQS_BUSY, IQS_IDLE); 975 else 976 STAILQ_INSERT_TAIL(&iql, q, link); 977 } 978 979 t4_write_reg(sc, MYPF_REG(A_SGE_PF_GTS), V_CIDXINC(ndescs) | 980 V_INGRESSQID((u32)iq->cntxt_id) | V_SEINTARM(iq->intr_next)); 981 982 if (iq->flags & IQ_HAS_FL) { 983 984 FL_LOCK(fl); 985 fl->needed += fl_bufs_used; 986 starved = refill_fl(sc, fl, fl->cap / 4); 987 FL_UNLOCK(fl); 988 if (starved != 0) 989 add_fl_to_sfl(sc, fl); 990 } 991 992 return (0); 993 } 994 995 #ifdef TCP_OFFLOAD_ENABLE 996 int 997 t4_mgmt_tx(struct adapter *sc, mblk_t *m) 998 { 999 return (t4_wrq_tx(sc, &sc->sge.mgmtq, m)); 1000 } 1001 1002 /* 1003 * Doesn't fail. Holds on to work requests it can't send right away. 1004 */ 1005 int 1006 t4_wrq_tx_locked(struct adapter *sc, struct sge_wrq *wrq, mblk_t *m0) 1007 { 1008 struct sge_eq *eq = &wrq->eq; 1009 struct mblk_pair *wr_list = &wrq->wr_list; 1010 int can_reclaim; 1011 caddr_t dst; 1012 mblk_t *wr, *next; 1013 1014 TXQ_LOCK_ASSERT_OWNED(wrq); 1015 #ifdef TCP_OFFLOAD_ENABLE 1016 ASSERT((eq->flags & EQ_TYPEMASK) == EQ_OFLD || 1017 (eq->flags & EQ_TYPEMASK) == EQ_CTRL); 1018 #else 1019 ASSERT((eq->flags & EQ_TYPEMASK) == EQ_CTRL); 1020 #endif 1021 1022 if (m0 != NULL) { 1023 if (wr_list->head != NULL) 1024 wr_list->tail->b_next = m0; 1025 else 1026 wr_list->head = m0; 1027 while (m0->b_next) 1028 m0 = m0->b_next; 1029 wr_list->tail = m0; 1030 } 1031 1032 can_reclaim = reclaimable(eq); 1033 eq->cidx += can_reclaim; 1034 eq->avail += can_reclaim; 1035 if (eq->cidx >= eq->cap) 1036 eq->cidx -= eq->cap; 1037 1038 for (wr = wr_list->head; wr; wr = next) { 1039 int ndesc, len = 0; 1040 mblk_t *m; 1041 1042 next = wr->b_next; 1043 wr->b_next = NULL; 1044 1045 for (m = wr; m; m = m->b_cont) 1046 len += MBLKL(m); 1047 1048 ASSERT(len > 0 && (len & 0x7) == 0); 1049 ASSERT(len <= SGE_MAX_WR_LEN); 1050 1051 ndesc = howmany(len, EQ_ESIZE); 1052 if (eq->avail < ndesc) { 1053 wr->b_next = next; 1054 wrq->no_desc++; 1055 break; 1056 } 1057 1058 dst = (void *)&eq->desc[eq->pidx]; 1059 for (m = wr; m; m = m->b_cont) 1060 copy_to_txd(eq, (void *)m->b_rptr, &dst, MBLKL(m)); 1061 1062 eq->pidx += ndesc; 1063 eq->avail -= ndesc; 1064 if (eq->pidx >= eq->cap) 1065 eq->pidx -= eq->cap; 1066 1067 eq->pending += ndesc; 1068 if (eq->pending > 16) 1069 ring_tx_db(sc, eq); 1070 1071 wrq->tx_wrs++; 1072 freemsg(wr); 1073 1074 if (eq->avail < 8) { 1075 can_reclaim = reclaimable(eq); 1076 eq->cidx += can_reclaim; 1077 eq->avail += can_reclaim; 1078 if (eq->cidx >= eq->cap) 1079 eq->cidx -= eq->cap; 1080 } 1081 } 1082 1083 if (eq->pending != 0) 1084 ring_tx_db(sc, eq); 1085 1086 if (wr == NULL) 1087 wr_list->head = wr_list->tail = NULL; 1088 else { 1089 wr_list->head = wr; 1090 1091 ASSERT(wr_list->tail->b_next == NULL); 1092 } 1093 1094 return (0); 1095 } 1096 #endif 1097 1098 /* Per-packet header in a coalesced tx WR, before the SGL starts (in flits) */ 1099 #define TXPKTS_PKT_HDR ((\ 1100 sizeof (struct ulp_txpkt) + \ 1101 sizeof (struct ulptx_idata) + \ 1102 sizeof (struct cpl_tx_pkt_core)) / 8) 1103 1104 /* Header of a coalesced tx WR, before SGL of first packet (in flits) */ 1105 #define TXPKTS_WR_HDR (\ 1106 sizeof (struct fw_eth_tx_pkts_wr) / 8 + \ 1107 TXPKTS_PKT_HDR) 1108 1109 /* Header of a tx WR, before SGL of first packet (in flits) */ 1110 #define TXPKT_WR_HDR ((\ 1111 sizeof (struct fw_eth_tx_pkt_wr) + \ 1112 sizeof (struct cpl_tx_pkt_core)) / 8) 1113 1114 /* Header of a tx LSO WR, before SGL of first packet (in flits) */ 1115 #define TXPKT_LSO_WR_HDR ((\ 1116 sizeof (struct fw_eth_tx_pkt_wr) + \ 1117 sizeof(struct cpl_tx_pkt_lso_core) + \ 1118 sizeof (struct cpl_tx_pkt_core)) / 8) 1119 1120 mblk_t * 1121 t4_eth_tx(void *arg, mblk_t *frame) 1122 { 1123 struct sge_txq *txq = (struct sge_txq *) arg; 1124 struct port_info *pi = txq->port; 1125 struct adapter *sc = pi->adapter; 1126 struct sge_eq *eq = &txq->eq; 1127 mblk_t *next_frame; 1128 int rc, coalescing; 1129 struct txpkts txpkts; 1130 struct txinfo txinfo; 1131 1132 txpkts.npkt = 0; /* indicates there's nothing in txpkts */ 1133 coalescing = 0; 1134 1135 TXQ_LOCK(txq); 1136 if (eq->avail < 8) 1137 (void) reclaim_tx_descs(txq, 8); 1138 for (; frame; frame = next_frame) { 1139 1140 if (eq->avail < 8) 1141 break; 1142 1143 next_frame = frame->b_next; 1144 frame->b_next = NULL; 1145 1146 if (next_frame != NULL) 1147 coalescing = 1; 1148 1149 rc = get_frame_txinfo(txq, &frame, &txinfo, coalescing); 1150 if (rc != 0) { 1151 if (rc == ENOMEM) { 1152 1153 /* Short of resources, suspend tx */ 1154 1155 frame->b_next = next_frame; 1156 break; 1157 } 1158 1159 /* 1160 * Unrecoverable error for this frame, throw it 1161 * away and move on to the next. 1162 */ 1163 1164 freemsg(frame); 1165 continue; 1166 } 1167 1168 if (coalescing != 0 && 1169 add_to_txpkts(txq, &txpkts, frame, &txinfo) == 0) { 1170 1171 /* Successfully absorbed into txpkts */ 1172 1173 write_ulp_cpl_sgl(pi, txq, &txpkts, &txinfo); 1174 goto doorbell; 1175 } 1176 1177 /* 1178 * We weren't coalescing to begin with, or current frame could 1179 * not be coalesced (add_to_txpkts flushes txpkts if a frame 1180 * given to it can't be coalesced). Either way there should be 1181 * nothing in txpkts. 1182 */ 1183 ASSERT(txpkts.npkt == 0); 1184 1185 /* We're sending out individual frames now */ 1186 coalescing = 0; 1187 1188 if (eq->avail < 8) 1189 (void) reclaim_tx_descs(txq, 8); 1190 rc = write_txpkt_wr(pi, txq, frame, &txinfo); 1191 if (rc != 0) { 1192 1193 /* Short of hardware descriptors, suspend tx */ 1194 1195 /* 1196 * This is an unlikely but expensive failure. We've 1197 * done all the hard work (DMA bindings etc.) and now we 1198 * can't send out the frame. What's worse, we have to 1199 * spend even more time freeing up everything in txinfo. 1200 */ 1201 txq->qfull++; 1202 free_txinfo_resources(txq, &txinfo); 1203 1204 frame->b_next = next_frame; 1205 break; 1206 } 1207 1208 doorbell: 1209 /* Fewer and fewer doorbells as the queue fills up */ 1210 if (eq->pending >= (1 << (fls(eq->qsize - eq->avail) / 2))) { 1211 txq->txbytes += txinfo.len; 1212 txq->txpkts++; 1213 ring_tx_db(sc, eq); 1214 } 1215 (void) reclaim_tx_descs(txq, 32); 1216 } 1217 1218 if (txpkts.npkt > 0) 1219 write_txpkts_wr(txq, &txpkts); 1220 1221 /* 1222 * frame not NULL means there was an error but we haven't thrown it 1223 * away. This can happen when we're short of tx descriptors (qfull) or 1224 * maybe even DMA handles (dma_hdl_failed). Either way, a credit flush 1225 * and reclaim will get things going again. 1226 * 1227 * If eq->avail is already 0 we know a credit flush was requested in the 1228 * WR that reduced it to 0 so we don't need another flush (we don't have 1229 * any descriptor for a flush WR anyway, duh). 1230 */ 1231 if (frame && eq->avail > 0) 1232 write_txqflush_wr(txq); 1233 1234 if (eq->pending != 0) 1235 ring_tx_db(sc, eq); 1236 1237 (void) reclaim_tx_descs(txq, eq->qsize); 1238 TXQ_UNLOCK(txq); 1239 1240 return (frame); 1241 } 1242 1243 static inline void 1244 init_iq(struct sge_iq *iq, struct adapter *sc, int tmr_idx, int8_t pktc_idx, 1245 int qsize, uint8_t esize) 1246 { 1247 ASSERT(tmr_idx >= 0 && tmr_idx < SGE_NTIMERS); 1248 ASSERT(pktc_idx < SGE_NCOUNTERS); /* -ve is ok, means don't use */ 1249 1250 iq->flags = 0; 1251 iq->adapter = sc; 1252 iq->intr_params = V_QINTR_TIMER_IDX(tmr_idx); 1253 iq->intr_pktc_idx = SGE_NCOUNTERS - 1; 1254 if (pktc_idx >= 0) { 1255 iq->intr_params |= F_QINTR_CNT_EN; 1256 iq->intr_pktc_idx = pktc_idx; 1257 } 1258 iq->qsize = roundup(qsize, 16); /* See FW_IQ_CMD/iqsize */ 1259 iq->esize = max(esize, 16); /* See FW_IQ_CMD/iqesize */ 1260 } 1261 1262 static inline void 1263 init_fl(struct sge_fl *fl, uint16_t qsize) 1264 { 1265 1266 fl->qsize = qsize; 1267 fl->allocb_fail = 0; 1268 } 1269 1270 static inline void 1271 init_eq(struct adapter *sc, struct sge_eq *eq, uint16_t eqtype, uint16_t qsize, 1272 uint8_t tx_chan, uint16_t iqid) 1273 { 1274 struct sge *s = &sc->sge; 1275 uint32_t r; 1276 1277 ASSERT(tx_chan < NCHAN); 1278 ASSERT(eqtype <= EQ_TYPEMASK); 1279 1280 if (is_t5(sc->params.chip)) { 1281 r = t4_read_reg(sc, A_SGE_EGRESS_QUEUES_PER_PAGE_PF); 1282 r >>= S_QUEUESPERPAGEPF0 + 1283 (S_QUEUESPERPAGEPF1 - S_QUEUESPERPAGEPF0) * sc->pf; 1284 s->s_qpp = r & M_QUEUESPERPAGEPF0; 1285 } 1286 1287 eq->flags = eqtype & EQ_TYPEMASK; 1288 eq->tx_chan = tx_chan; 1289 eq->iqid = iqid; 1290 eq->qsize = qsize; 1291 } 1292 1293 /* 1294 * Allocates the ring for an ingress queue and an optional freelist. If the 1295 * freelist is specified it will be allocated and then associated with the 1296 * ingress queue. 1297 * 1298 * Returns errno on failure. Resources allocated up to that point may still be 1299 * allocated. Caller is responsible for cleanup in case this function fails. 1300 * 1301 * If the ingress queue will take interrupts directly (iq->flags & IQ_INTR) then 1302 * the intr_idx specifies the vector, starting from 0. Otherwise it specifies 1303 * the index of the queue to which its interrupts will be forwarded. 1304 */ 1305 static int 1306 alloc_iq_fl(struct port_info *pi, struct sge_iq *iq, struct sge_fl *fl, 1307 int intr_idx, int cong) 1308 { 1309 int rc, i, cntxt_id; 1310 size_t len; 1311 struct fw_iq_cmd c; 1312 struct adapter *sc = iq->adapter; 1313 uint32_t v = 0; 1314 1315 len = iq->qsize * iq->esize; 1316 rc = alloc_desc_ring(sc, len, DDI_DMA_READ, &iq->dhdl, &iq->ahdl, 1317 &iq->ba, (caddr_t *)&iq->desc); 1318 if (rc != 0) 1319 return (rc); 1320 1321 bzero(&c, sizeof (c)); 1322 c.op_to_vfn = cpu_to_be32(V_FW_CMD_OP(FW_IQ_CMD) | F_FW_CMD_REQUEST | 1323 F_FW_CMD_WRITE | F_FW_CMD_EXEC | V_FW_IQ_CMD_PFN(sc->pf) | 1324 V_FW_IQ_CMD_VFN(0)); 1325 1326 c.alloc_to_len16 = cpu_to_be32(F_FW_IQ_CMD_ALLOC | F_FW_IQ_CMD_IQSTART | 1327 FW_LEN16(c)); 1328 1329 /* Special handling for firmware event queue */ 1330 if (iq == &sc->sge.fwq) 1331 v |= F_FW_IQ_CMD_IQASYNCH; 1332 1333 if (iq->flags & IQ_INTR) 1334 ASSERT(intr_idx < sc->intr_count); 1335 else 1336 v |= F_FW_IQ_CMD_IQANDST; 1337 v |= V_FW_IQ_CMD_IQANDSTINDEX(intr_idx); 1338 1339 c.type_to_iqandstindex = cpu_to_be32(v | 1340 V_FW_IQ_CMD_TYPE(FW_IQ_TYPE_FL_INT_CAP) | 1341 V_FW_IQ_CMD_VIID(pi->viid) | 1342 V_FW_IQ_CMD_IQANUD(X_UPDATEDELIVERY_INTERRUPT)); 1343 c.iqdroprss_to_iqesize = cpu_to_be16(V_FW_IQ_CMD_IQPCIECH(pi->tx_chan) | 1344 F_FW_IQ_CMD_IQGTSMODE | 1345 V_FW_IQ_CMD_IQINTCNTTHRESH(iq->intr_pktc_idx) | 1346 V_FW_IQ_CMD_IQESIZE(ilog2(iq->esize) - 4)); 1347 c.iqsize = cpu_to_be16(iq->qsize); 1348 c.iqaddr = cpu_to_be64(iq->ba); 1349 if (cong >= 0) 1350 c.iqns_to_fl0congen = BE_32(F_FW_IQ_CMD_IQFLINTCONGEN); 1351 1352 if (fl != NULL) { 1353 unsigned int chip_ver = CHELSIO_CHIP_VERSION(sc->params.chip); 1354 1355 mutex_init(&fl->lock, NULL, MUTEX_DRIVER, 1356 DDI_INTR_PRI(sc->intr_pri)); 1357 fl->flags |= FL_MTX; 1358 1359 len = fl->qsize * RX_FL_ESIZE; 1360 rc = alloc_desc_ring(sc, len, DDI_DMA_WRITE, &fl->dhdl, 1361 &fl->ahdl, &fl->ba, (caddr_t *)&fl->desc); 1362 if (rc != 0) 1363 return (rc); 1364 1365 /* Allocate space for one software descriptor per buffer. */ 1366 fl->cap = (fl->qsize - sc->sge.stat_len / RX_FL_ESIZE) * 8; 1367 fl->sdesc = kmem_zalloc(sizeof (struct fl_sdesc) * fl->cap, 1368 KM_SLEEP); 1369 fl->needed = fl->cap; 1370 fl->lowat = roundup(sc->sge.fl_starve_threshold, 8); 1371 1372 c.iqns_to_fl0congen |= 1373 cpu_to_be32(V_FW_IQ_CMD_FL0HOSTFCMODE(X_HOSTFCMODE_NONE) | 1374 F_FW_IQ_CMD_FL0PACKEN | F_FW_IQ_CMD_FL0PADEN); 1375 if (cong >= 0) { 1376 c.iqns_to_fl0congen |= 1377 BE_32(V_FW_IQ_CMD_FL0CNGCHMAP(cong) | 1378 F_FW_IQ_CMD_FL0CONGCIF | 1379 F_FW_IQ_CMD_FL0CONGEN); 1380 } 1381 1382 /* In T6, for egress queue type FL there is internal overhead 1383 * of 16B for header going into FLM module. Hence the maximum 1384 * allowed burst size is 448 bytes. For T4/T5, the hardware 1385 * doesn't coalesce fetch requests if more than 64 bytes of 1386 * Free List pointers are provided, so we use a 128-byte Fetch 1387 * Burst Minimum there (T6 implements coalescing so we can use 1388 * the smaller 64-byte value there). 1389 */ 1390 1391 c.fl0dcaen_to_fl0cidxfthresh = 1392 cpu_to_be16(V_FW_IQ_CMD_FL0FBMIN(chip_ver <= CHELSIO_T5 1393 ? X_FETCHBURSTMIN_128B 1394 : X_FETCHBURSTMIN_64B) | 1395 V_FW_IQ_CMD_FL0FBMAX(chip_ver <= CHELSIO_T5 1396 ? X_FETCHBURSTMAX_512B 1397 : X_FETCHBURSTMAX_256B)); 1398 c.fl0size = cpu_to_be16(fl->qsize); 1399 c.fl0addr = cpu_to_be64(fl->ba); 1400 } 1401 1402 rc = -t4_wr_mbox(sc, sc->mbox, &c, sizeof (c), &c); 1403 if (rc != 0) { 1404 cxgb_printf(sc->dip, CE_WARN, 1405 "failed to create ingress queue: %d", rc); 1406 return (rc); 1407 } 1408 1409 iq->cdesc = iq->desc; 1410 iq->cidx = 0; 1411 iq->gen = 1; 1412 iq->intr_next = iq->intr_params; 1413 iq->adapter = sc; 1414 iq->cntxt_id = be16_to_cpu(c.iqid); 1415 iq->abs_id = be16_to_cpu(c.physiqid); 1416 iq->flags |= IQ_ALLOCATED; 1417 mutex_init(&iq->lock, NULL, 1418 MUTEX_DRIVER, DDI_INTR_PRI(DDI_INTR_PRI(sc->intr_pri))); 1419 iq->polling = 0; 1420 1421 cntxt_id = iq->cntxt_id - sc->sge.iq_start; 1422 if (cntxt_id >= sc->sge.niq) { 1423 panic("%s: iq->cntxt_id (%d) more than the max (%d)", __func__, 1424 cntxt_id, sc->sge.niq - 1); 1425 } 1426 sc->sge.iqmap[cntxt_id] = iq; 1427 1428 if (fl != NULL) { 1429 fl->cntxt_id = be16_to_cpu(c.fl0id); 1430 fl->pidx = fl->cidx = 0; 1431 fl->copy_threshold = rx_copy_threshold; 1432 1433 cntxt_id = fl->cntxt_id - sc->sge.eq_start; 1434 if (cntxt_id >= sc->sge.neq) { 1435 panic("%s: fl->cntxt_id (%d) more than the max (%d)", 1436 __func__, cntxt_id, sc->sge.neq - 1); 1437 } 1438 sc->sge.eqmap[cntxt_id] = (void *)fl; 1439 1440 FL_LOCK(fl); 1441 (void) refill_fl(sc, fl, fl->lowat); 1442 FL_UNLOCK(fl); 1443 1444 iq->flags |= IQ_HAS_FL; 1445 } 1446 1447 if (is_t5(sc->params.chip) && cong >= 0) { 1448 uint32_t param, val; 1449 1450 param = V_FW_PARAMS_MNEM(FW_PARAMS_MNEM_DMAQ) | 1451 V_FW_PARAMS_PARAM_X(FW_PARAMS_PARAM_DMAQ_CONM_CTXT) | 1452 V_FW_PARAMS_PARAM_YZ(iq->cntxt_id); 1453 if (cong == 0) 1454 val = 1 << 19; 1455 else { 1456 val = 2 << 19; 1457 for (i = 0; i < 4; i++) { 1458 if (cong & (1 << i)) 1459 val |= 1 << (i << 2); 1460 } 1461 } 1462 1463 rc = -t4_set_params(sc, sc->mbox, sc->pf, 0, 1, ¶m, &val); 1464 if (rc != 0) { 1465 /* report error but carry on */ 1466 cxgb_printf(sc->dip, CE_WARN, 1467 "failed to set congestion manager context for " 1468 "ingress queue %d: %d", iq->cntxt_id, rc); 1469 } 1470 } 1471 1472 /* Enable IQ interrupts */ 1473 iq->state = IQS_IDLE; 1474 t4_write_reg(sc, MYPF_REG(A_SGE_PF_GTS), V_SEINTARM(iq->intr_params) | 1475 V_INGRESSQID(iq->cntxt_id)); 1476 1477 return (0); 1478 } 1479 1480 static int 1481 free_iq_fl(struct port_info *pi, struct sge_iq *iq, struct sge_fl *fl) 1482 { 1483 int rc; 1484 struct adapter *sc = iq->adapter; 1485 dev_info_t *dip; 1486 1487 dip = pi ? pi->dip : sc->dip; 1488 1489 if (iq != NULL) { 1490 if (iq->flags & IQ_ALLOCATED) { 1491 rc = -t4_iq_free(sc, sc->mbox, sc->pf, 0, 1492 FW_IQ_TYPE_FL_INT_CAP, iq->cntxt_id, 1493 fl ? fl->cntxt_id : 0xffff, 0xffff); 1494 if (rc != 0) { 1495 cxgb_printf(dip, CE_WARN, 1496 "failed to free queue %p: %d", iq, rc); 1497 return (rc); 1498 } 1499 mutex_destroy(&iq->lock); 1500 iq->flags &= ~IQ_ALLOCATED; 1501 } 1502 1503 if (iq->desc != NULL) { 1504 (void) free_desc_ring(&iq->dhdl, &iq->ahdl); 1505 iq->desc = NULL; 1506 } 1507 1508 bzero(iq, sizeof (*iq)); 1509 } 1510 1511 if (fl != NULL) { 1512 if (fl->sdesc != NULL) { 1513 FL_LOCK(fl); 1514 free_fl_bufs(fl); 1515 FL_UNLOCK(fl); 1516 1517 kmem_free(fl->sdesc, sizeof (struct fl_sdesc) * 1518 fl->cap); 1519 fl->sdesc = NULL; 1520 } 1521 1522 if (fl->desc != NULL) { 1523 (void) free_desc_ring(&fl->dhdl, &fl->ahdl); 1524 fl->desc = NULL; 1525 } 1526 1527 if (fl->flags & FL_MTX) { 1528 mutex_destroy(&fl->lock); 1529 fl->flags &= ~FL_MTX; 1530 } 1531 1532 bzero(fl, sizeof (struct sge_fl)); 1533 } 1534 1535 return (0); 1536 } 1537 1538 static int 1539 alloc_fwq(struct adapter *sc) 1540 { 1541 int rc, intr_idx; 1542 struct sge_iq *fwq = &sc->sge.fwq; 1543 1544 init_iq(fwq, sc, 0, 0, FW_IQ_QSIZE, FW_IQ_ESIZE); 1545 fwq->flags |= IQ_INTR; /* always */ 1546 intr_idx = sc->intr_count > 1 ? 1 : 0; 1547 rc = alloc_iq_fl(sc->port[0], fwq, NULL, intr_idx, -1); 1548 if (rc != 0) { 1549 cxgb_printf(sc->dip, CE_WARN, 1550 "failed to create firmware event queue: %d.", rc); 1551 return (rc); 1552 } 1553 1554 return (0); 1555 } 1556 1557 static int 1558 free_fwq(struct adapter *sc) 1559 { 1560 1561 return (free_iq_fl(NULL, &sc->sge.fwq, NULL)); 1562 } 1563 1564 #ifdef TCP_OFFLOAD_ENABLE 1565 static int 1566 alloc_mgmtq(struct adapter *sc) 1567 { 1568 int rc; 1569 struct sge_wrq *mgmtq = &sc->sge.mgmtq; 1570 1571 init_eq(sc, &mgmtq->eq, EQ_CTRL, CTRL_EQ_QSIZE, sc->port[0]->tx_chan, 1572 sc->sge.fwq.cntxt_id); 1573 rc = alloc_wrq(sc, NULL, mgmtq, 0); 1574 if (rc != 0) { 1575 cxgb_printf(sc->dip, CE_WARN, 1576 "failed to create management queue: %d\n", rc); 1577 return (rc); 1578 } 1579 1580 return (0); 1581 } 1582 #endif 1583 1584 static int 1585 alloc_rxq(struct port_info *pi, struct sge_rxq *rxq, int intr_idx, int i) 1586 { 1587 int rc; 1588 1589 rxq->port = pi; 1590 rc = alloc_iq_fl(pi, &rxq->iq, &rxq->fl, intr_idx, 1 << pi->tx_chan); 1591 if (rc != 0) 1592 return (rc); 1593 1594 rxq->ksp = setup_rxq_kstats(pi, rxq, i); 1595 1596 return (rc); 1597 } 1598 1599 static int 1600 free_rxq(struct port_info *pi, struct sge_rxq *rxq) 1601 { 1602 int rc; 1603 1604 if (rxq->ksp != NULL) { 1605 kstat_delete(rxq->ksp); 1606 rxq->ksp = NULL; 1607 } 1608 1609 rc = free_iq_fl(pi, &rxq->iq, &rxq->fl); 1610 if (rc == 0) 1611 bzero(&rxq->fl, sizeof (*rxq) - offsetof(struct sge_rxq, fl)); 1612 1613 return (rc); 1614 } 1615 1616 #ifdef TCP_OFFLOAD_ENABLE 1617 static int 1618 alloc_ofld_rxq(struct port_info *pi, struct sge_ofld_rxq *ofld_rxq, 1619 int intr_idx) 1620 { 1621 int rc; 1622 1623 rc = alloc_iq_fl(pi, &ofld_rxq->iq, &ofld_rxq->fl, intr_idx, 1624 1 << pi->tx_chan); 1625 if (rc != 0) 1626 return (rc); 1627 1628 return (rc); 1629 } 1630 1631 static int 1632 free_ofld_rxq(struct port_info *pi, struct sge_ofld_rxq *ofld_rxq) 1633 { 1634 int rc; 1635 1636 rc = free_iq_fl(pi, &ofld_rxq->iq, &ofld_rxq->fl); 1637 if (rc == 0) 1638 bzero(&ofld_rxq->fl, sizeof (*ofld_rxq) - 1639 offsetof(struct sge_ofld_rxq, fl)); 1640 1641 return (rc); 1642 } 1643 #endif 1644 1645 static int 1646 ctrl_eq_alloc(struct adapter *sc, struct sge_eq *eq) 1647 { 1648 int rc, cntxt_id; 1649 struct fw_eq_ctrl_cmd c; 1650 1651 bzero(&c, sizeof (c)); 1652 1653 c.op_to_vfn = BE_32(V_FW_CMD_OP(FW_EQ_CTRL_CMD) | F_FW_CMD_REQUEST | 1654 F_FW_CMD_WRITE | F_FW_CMD_EXEC | V_FW_EQ_CTRL_CMD_PFN(sc->pf) | 1655 V_FW_EQ_CTRL_CMD_VFN(0)); 1656 c.alloc_to_len16 = BE_32(F_FW_EQ_CTRL_CMD_ALLOC | 1657 F_FW_EQ_CTRL_CMD_EQSTART | FW_LEN16(c)); 1658 c.cmpliqid_eqid = htonl(V_FW_EQ_CTRL_CMD_CMPLIQID(eq->iqid)); /* TODO */ 1659 c.physeqid_pkd = BE_32(0); 1660 c.fetchszm_to_iqid = 1661 BE_32(V_FW_EQ_CTRL_CMD_HOSTFCMODE(X_HOSTFCMODE_STATUS_PAGE) | 1662 V_FW_EQ_CTRL_CMD_PCIECHN(eq->tx_chan) | 1663 F_FW_EQ_CTRL_CMD_FETCHRO | V_FW_EQ_CTRL_CMD_IQID(eq->iqid)); 1664 c.dcaen_to_eqsize = 1665 BE_32(V_FW_EQ_CTRL_CMD_FBMIN(X_FETCHBURSTMIN_64B) | 1666 V_FW_EQ_CTRL_CMD_FBMAX(X_FETCHBURSTMAX_512B) | 1667 V_FW_EQ_CTRL_CMD_CIDXFTHRESH(X_CIDXFLUSHTHRESH_32) | 1668 V_FW_EQ_CTRL_CMD_EQSIZE(eq->qsize)); 1669 c.eqaddr = BE_64(eq->ba); 1670 1671 rc = -t4_wr_mbox(sc, sc->mbox, &c, sizeof (c), &c); 1672 if (rc != 0) { 1673 cxgb_printf(sc->dip, CE_WARN, 1674 "failed to create control queue %d: %d", eq->tx_chan, rc); 1675 return (rc); 1676 } 1677 eq->flags |= EQ_ALLOCATED; 1678 1679 eq->cntxt_id = G_FW_EQ_CTRL_CMD_EQID(BE_32(c.cmpliqid_eqid)); 1680 cntxt_id = eq->cntxt_id - sc->sge.eq_start; 1681 if (cntxt_id >= sc->sge.neq) 1682 panic("%s: eq->cntxt_id (%d) more than the max (%d)", __func__, 1683 cntxt_id, sc->sge.neq - 1); 1684 sc->sge.eqmap[cntxt_id] = eq; 1685 1686 return (rc); 1687 } 1688 1689 static int 1690 eth_eq_alloc(struct adapter *sc, struct port_info *pi, struct sge_eq *eq) 1691 { 1692 int rc, cntxt_id; 1693 struct fw_eq_eth_cmd c; 1694 1695 bzero(&c, sizeof (c)); 1696 1697 c.op_to_vfn = BE_32(V_FW_CMD_OP(FW_EQ_ETH_CMD) | F_FW_CMD_REQUEST | 1698 F_FW_CMD_WRITE | F_FW_CMD_EXEC | V_FW_EQ_ETH_CMD_PFN(sc->pf) | 1699 V_FW_EQ_ETH_CMD_VFN(0)); 1700 c.alloc_to_len16 = BE_32(F_FW_EQ_ETH_CMD_ALLOC | 1701 F_FW_EQ_ETH_CMD_EQSTART | FW_LEN16(c)); 1702 c.autoequiqe_to_viid = BE_32(F_FW_EQ_ETH_CMD_AUTOEQUIQE | 1703 F_FW_EQ_ETH_CMD_AUTOEQUEQE | V_FW_EQ_ETH_CMD_VIID(pi->viid)); 1704 c.fetchszm_to_iqid = 1705 BE_32(V_FW_EQ_ETH_CMD_HOSTFCMODE(X_HOSTFCMODE_STATUS_PAGE) | 1706 V_FW_EQ_ETH_CMD_PCIECHN(eq->tx_chan) | F_FW_EQ_ETH_CMD_FETCHRO | 1707 V_FW_EQ_ETH_CMD_IQID(eq->iqid)); 1708 c.dcaen_to_eqsize = BE_32(V_FW_EQ_ETH_CMD_FBMIN(X_FETCHBURSTMIN_64B) | 1709 V_FW_EQ_ETH_CMD_FBMAX(X_FETCHBURSTMAX_512B) | 1710 V_FW_EQ_ETH_CMD_CIDXFTHRESH(X_CIDXFLUSHTHRESH_32) | 1711 V_FW_EQ_ETH_CMD_EQSIZE(eq->qsize)); 1712 c.eqaddr = BE_64(eq->ba); 1713 1714 rc = -t4_wr_mbox(sc, sc->mbox, &c, sizeof (c), &c); 1715 if (rc != 0) { 1716 cxgb_printf(pi->dip, CE_WARN, 1717 "failed to create Ethernet egress queue: %d", rc); 1718 return (rc); 1719 } 1720 eq->flags |= EQ_ALLOCATED; 1721 1722 eq->cntxt_id = G_FW_EQ_ETH_CMD_EQID(BE_32(c.eqid_pkd)); 1723 cntxt_id = eq->cntxt_id - sc->sge.eq_start; 1724 if (cntxt_id >= sc->sge.neq) 1725 panic("%s: eq->cntxt_id (%d) more than the max (%d)", __func__, 1726 cntxt_id, sc->sge.neq - 1); 1727 sc->sge.eqmap[cntxt_id] = eq; 1728 1729 return (rc); 1730 } 1731 1732 #ifdef TCP_OFFLOAD_ENABLE 1733 static int 1734 ofld_eq_alloc(struct adapter *sc, struct port_info *pi, struct sge_eq *eq) 1735 { 1736 int rc, cntxt_id; 1737 struct fw_eq_ofld_cmd c; 1738 1739 bzero(&c, sizeof (c)); 1740 1741 c.op_to_vfn = htonl(V_FW_CMD_OP(FW_EQ_OFLD_CMD) | F_FW_CMD_REQUEST | 1742 F_FW_CMD_WRITE | F_FW_CMD_EXEC | V_FW_EQ_OFLD_CMD_PFN(sc->pf) | 1743 V_FW_EQ_OFLD_CMD_VFN(0)); 1744 c.alloc_to_len16 = htonl(F_FW_EQ_OFLD_CMD_ALLOC | 1745 F_FW_EQ_OFLD_CMD_EQSTART | FW_LEN16(c)); 1746 c.fetchszm_to_iqid = 1747 htonl(V_FW_EQ_OFLD_CMD_HOSTFCMODE(X_HOSTFCMODE_STATUS_PAGE) | 1748 V_FW_EQ_OFLD_CMD_PCIECHN(eq->tx_chan) | 1749 F_FW_EQ_OFLD_CMD_FETCHRO | V_FW_EQ_OFLD_CMD_IQID(eq->iqid)); 1750 c.dcaen_to_eqsize = 1751 BE_32(V_FW_EQ_OFLD_CMD_FBMIN(X_FETCHBURSTMIN_64B) | 1752 V_FW_EQ_OFLD_CMD_FBMAX(X_FETCHBURSTMAX_512B) | 1753 V_FW_EQ_OFLD_CMD_CIDXFTHRESH(X_CIDXFLUSHTHRESH_32) | 1754 V_FW_EQ_OFLD_CMD_EQSIZE(eq->qsize)); 1755 c.eqaddr = BE_64(eq->ba); 1756 1757 rc = -t4_wr_mbox(sc, sc->mbox, &c, sizeof (c), &c); 1758 if (rc != 0) { 1759 cxgb_printf(pi->dip, CE_WARN, 1760 "failed to create egress queue for TCP offload: %d", rc); 1761 return (rc); 1762 } 1763 eq->flags |= EQ_ALLOCATED; 1764 1765 eq->cntxt_id = G_FW_EQ_OFLD_CMD_EQID(BE_32(c.eqid_pkd)); 1766 cntxt_id = eq->cntxt_id - sc->sge.eq_start; 1767 if (cntxt_id >= sc->sge.neq) 1768 panic("%s: eq->cntxt_id (%d) more than the max (%d)", __func__, 1769 cntxt_id, sc->sge.neq - 1); 1770 sc->sge.eqmap[cntxt_id] = eq; 1771 1772 return (rc); 1773 } 1774 #endif 1775 1776 static int 1777 alloc_eq(struct adapter *sc, struct port_info *pi, struct sge_eq *eq) 1778 { 1779 int rc; 1780 size_t len; 1781 1782 mutex_init(&eq->lock, NULL, MUTEX_DRIVER, DDI_INTR_PRI(sc->intr_pri)); 1783 eq->flags |= EQ_MTX; 1784 1785 len = eq->qsize * EQ_ESIZE; 1786 rc = alloc_desc_ring(sc, len, DDI_DMA_WRITE, &eq->desc_dhdl, 1787 &eq->desc_ahdl, &eq->ba, (caddr_t *)&eq->desc); 1788 if (rc != 0) 1789 return (rc); 1790 1791 eq->cap = eq->qsize - sc->sge.stat_len / EQ_ESIZE; 1792 eq->spg = (void *)&eq->desc[eq->cap]; 1793 eq->avail = eq->cap - 1; /* one less to avoid cidx = pidx */ 1794 eq->pidx = eq->cidx = 0; 1795 eq->doorbells = sc->doorbells; 1796 1797 switch (eq->flags & EQ_TYPEMASK) { 1798 case EQ_CTRL: 1799 rc = ctrl_eq_alloc(sc, eq); 1800 break; 1801 1802 case EQ_ETH: 1803 rc = eth_eq_alloc(sc, pi, eq); 1804 break; 1805 1806 #ifdef TCP_OFFLOAD_ENABLE 1807 case EQ_OFLD: 1808 rc = ofld_eq_alloc(sc, pi, eq); 1809 break; 1810 #endif 1811 1812 default: 1813 panic("%s: invalid eq type %d.", __func__, 1814 eq->flags & EQ_TYPEMASK); 1815 } 1816 1817 if (eq->doorbells & 1818 (DOORBELL_UDB | DOORBELL_UDBWC | DOORBELL_WCWR)) { 1819 uint32_t s_qpp = sc->sge.s_qpp; 1820 uint32_t mask = (1 << s_qpp) - 1; 1821 volatile uint8_t *udb; 1822 1823 udb = (volatile uint8_t *)sc->reg1p + UDBS_DB_OFFSET; 1824 udb += (eq->cntxt_id >> s_qpp) << PAGE_SHIFT; /* pg offset */ 1825 eq->udb_qid = eq->cntxt_id & mask; /* id in page */ 1826 if (eq->udb_qid > PAGE_SIZE / UDBS_SEG_SIZE) 1827 eq->doorbells &= ~DOORBELL_WCWR; 1828 else { 1829 udb += eq->udb_qid << UDBS_SEG_SHIFT; /* seg offset */ 1830 eq->udb_qid = 0; 1831 } 1832 eq->udb = (volatile void *)udb; 1833 } 1834 1835 if (rc != 0) { 1836 cxgb_printf(sc->dip, CE_WARN, 1837 "failed to allocate egress queue(%d): %d", 1838 eq->flags & EQ_TYPEMASK, rc); 1839 } 1840 1841 return (rc); 1842 } 1843 1844 static int 1845 free_eq(struct adapter *sc, struct sge_eq *eq) 1846 { 1847 int rc; 1848 1849 if (eq->flags & EQ_ALLOCATED) { 1850 switch (eq->flags & EQ_TYPEMASK) { 1851 case EQ_CTRL: 1852 rc = -t4_ctrl_eq_free(sc, sc->mbox, sc->pf, 0, 1853 eq->cntxt_id); 1854 break; 1855 1856 case EQ_ETH: 1857 rc = -t4_eth_eq_free(sc, sc->mbox, sc->pf, 0, 1858 eq->cntxt_id); 1859 break; 1860 1861 #ifdef TCP_OFFLOAD_ENABLE 1862 case EQ_OFLD: 1863 rc = -t4_ofld_eq_free(sc, sc->mbox, sc->pf, 0, 1864 eq->cntxt_id); 1865 break; 1866 #endif 1867 1868 default: 1869 panic("%s: invalid eq type %d.", __func__, 1870 eq->flags & EQ_TYPEMASK); 1871 } 1872 if (rc != 0) { 1873 cxgb_printf(sc->dip, CE_WARN, 1874 "failed to free egress queue (%d): %d", 1875 eq->flags & EQ_TYPEMASK, rc); 1876 return (rc); 1877 } 1878 eq->flags &= ~EQ_ALLOCATED; 1879 } 1880 1881 if (eq->desc != NULL) { 1882 (void) free_desc_ring(&eq->desc_dhdl, &eq->desc_ahdl); 1883 eq->desc = NULL; 1884 } 1885 1886 if (eq->flags & EQ_MTX) 1887 mutex_destroy(&eq->lock); 1888 1889 bzero(eq, sizeof (*eq)); 1890 return (0); 1891 } 1892 1893 #ifdef TCP_OFFLOAD_ENABLE 1894 /* ARGSUSED */ 1895 static int 1896 alloc_wrq(struct adapter *sc, struct port_info *pi, struct sge_wrq *wrq, 1897 int idx) 1898 { 1899 int rc; 1900 1901 rc = alloc_eq(sc, pi, &wrq->eq); 1902 if (rc != 0) 1903 return (rc); 1904 1905 wrq->adapter = sc; 1906 wrq->wr_list.head = NULL; 1907 wrq->wr_list.tail = NULL; 1908 1909 /* 1910 * TODO: use idx to figure out what kind of wrq this is and install 1911 * useful kstats for it. 1912 */ 1913 1914 return (rc); 1915 } 1916 1917 static int 1918 free_wrq(struct adapter *sc, struct sge_wrq *wrq) 1919 { 1920 int rc; 1921 1922 rc = free_eq(sc, &wrq->eq); 1923 if (rc != 0) 1924 return (rc); 1925 1926 bzero(wrq, sizeof (*wrq)); 1927 return (0); 1928 } 1929 #endif 1930 1931 static int 1932 alloc_txq(struct port_info *pi, struct sge_txq *txq, int idx) 1933 { 1934 int rc, i; 1935 struct adapter *sc = pi->adapter; 1936 struct sge_eq *eq = &txq->eq; 1937 1938 rc = alloc_eq(sc, pi, eq); 1939 if (rc != 0) 1940 return (rc); 1941 1942 txq->port = pi; 1943 txq->sdesc = kmem_zalloc(sizeof (struct tx_sdesc) * eq->cap, KM_SLEEP); 1944 txq->txb_size = eq->qsize * tx_copy_threshold; 1945 rc = alloc_tx_copybuffer(sc, txq->txb_size, &txq->txb_dhdl, 1946 &txq->txb_ahdl, &txq->txb_ba, &txq->txb_va); 1947 if (rc == 0) 1948 txq->txb_avail = txq->txb_size; 1949 else 1950 txq->txb_avail = txq->txb_size = 0; 1951 1952 /* 1953 * TODO: is this too low? Worst case would need around 4 times qsize 1954 * (all tx descriptors filled to the brim with SGLs, with each entry in 1955 * the SGL coming from a distinct DMA handle). Increase tx_dhdl_total 1956 * if you see too many dma_hdl_failed. 1957 */ 1958 txq->tx_dhdl_total = eq->qsize * 2; 1959 txq->tx_dhdl = kmem_zalloc(sizeof (ddi_dma_handle_t) * 1960 txq->tx_dhdl_total, KM_SLEEP); 1961 for (i = 0; i < txq->tx_dhdl_total; i++) { 1962 rc = ddi_dma_alloc_handle(sc->dip, &sc->sge.dma_attr_tx, 1963 DDI_DMA_SLEEP, 0, &txq->tx_dhdl[i]); 1964 if (rc != DDI_SUCCESS) { 1965 cxgb_printf(sc->dip, CE_WARN, 1966 "%s: failed to allocate DMA handle (%d)", 1967 __func__, rc); 1968 return (rc == DDI_DMA_NORESOURCES ? ENOMEM : EINVAL); 1969 } 1970 txq->tx_dhdl_avail++; 1971 } 1972 1973 txq->ksp = setup_txq_kstats(pi, txq, idx); 1974 1975 return (rc); 1976 } 1977 1978 static int 1979 free_txq(struct port_info *pi, struct sge_txq *txq) 1980 { 1981 int i; 1982 struct adapter *sc = pi->adapter; 1983 struct sge_eq *eq = &txq->eq; 1984 1985 if (txq->ksp != NULL) { 1986 kstat_delete(txq->ksp); 1987 txq->ksp = NULL; 1988 } 1989 1990 if (txq->txb_va != NULL) { 1991 (void) free_desc_ring(&txq->txb_dhdl, &txq->txb_ahdl); 1992 txq->txb_va = NULL; 1993 } 1994 1995 if (txq->sdesc != NULL) { 1996 struct tx_sdesc *sd; 1997 ddi_dma_handle_t hdl; 1998 1999 TXQ_LOCK(txq); 2000 while (eq->cidx != eq->pidx) { 2001 sd = &txq->sdesc[eq->cidx]; 2002 2003 for (i = sd->hdls_used; i; i--) { 2004 hdl = txq->tx_dhdl[txq->tx_dhdl_cidx]; 2005 (void) ddi_dma_unbind_handle(hdl); 2006 if (++txq->tx_dhdl_cidx == txq->tx_dhdl_total) 2007 txq->tx_dhdl_cidx = 0; 2008 } 2009 2010 ASSERT(sd->m); 2011 freemsgchain(sd->m); 2012 2013 eq->cidx += sd->desc_used; 2014 if (eq->cidx >= eq->cap) 2015 eq->cidx -= eq->cap; 2016 2017 txq->txb_avail += txq->txb_used; 2018 } 2019 ASSERT(txq->tx_dhdl_cidx == txq->tx_dhdl_pidx); 2020 ASSERT(txq->txb_avail == txq->txb_size); 2021 TXQ_UNLOCK(txq); 2022 2023 kmem_free(txq->sdesc, sizeof (struct tx_sdesc) * eq->cap); 2024 txq->sdesc = NULL; 2025 } 2026 2027 if (txq->tx_dhdl != NULL) { 2028 for (i = 0; i < txq->tx_dhdl_total; i++) { 2029 if (txq->tx_dhdl[i] != NULL) 2030 ddi_dma_free_handle(&txq->tx_dhdl[i]); 2031 } 2032 } 2033 2034 (void) free_eq(sc, &txq->eq); 2035 2036 bzero(txq, sizeof (*txq)); 2037 return (0); 2038 } 2039 2040 /* 2041 * Allocates a block of contiguous memory for DMA. Can be used to allocate 2042 * memory for descriptor rings or for tx/rx copy buffers. 2043 * 2044 * Caller does not have to clean up anything if this function fails, it cleans 2045 * up after itself. 2046 * 2047 * Caller provides the following: 2048 * len length of the block of memory to allocate. 2049 * flags DDI_DMA_* flags to use (CONSISTENT/STREAMING, READ/WRITE/RDWR) 2050 * acc_attr device access attributes for the allocation. 2051 * dma_attr DMA attributes for the allocation 2052 * 2053 * If the function is successful it fills up this information: 2054 * dma_hdl DMA handle for the allocated memory 2055 * acc_hdl access handle for the allocated memory 2056 * ba bus address of the allocated memory 2057 * va KVA of the allocated memory. 2058 */ 2059 static int 2060 alloc_dma_memory(struct adapter *sc, size_t len, int flags, 2061 ddi_device_acc_attr_t *acc_attr, ddi_dma_attr_t *dma_attr, 2062 ddi_dma_handle_t *dma_hdl, ddi_acc_handle_t *acc_hdl, 2063 uint64_t *pba, caddr_t *pva) 2064 { 2065 int rc; 2066 ddi_dma_handle_t dhdl; 2067 ddi_acc_handle_t ahdl; 2068 ddi_dma_cookie_t cookie; 2069 uint_t ccount; 2070 caddr_t va; 2071 size_t real_len; 2072 2073 *pva = NULL; 2074 2075 /* 2076 * DMA handle. 2077 */ 2078 rc = ddi_dma_alloc_handle(sc->dip, dma_attr, DDI_DMA_SLEEP, 0, &dhdl); 2079 if (rc != DDI_SUCCESS) { 2080 cxgb_printf(sc->dip, CE_WARN, 2081 "failed to allocate DMA handle: %d", rc); 2082 2083 return (rc == DDI_DMA_NORESOURCES ? ENOMEM : EINVAL); 2084 } 2085 2086 /* 2087 * Memory suitable for DMA. 2088 */ 2089 rc = ddi_dma_mem_alloc(dhdl, len, acc_attr, 2090 flags & DDI_DMA_CONSISTENT ? DDI_DMA_CONSISTENT : DDI_DMA_STREAMING, 2091 DDI_DMA_SLEEP, 0, &va, &real_len, &ahdl); 2092 if (rc != DDI_SUCCESS) { 2093 cxgb_printf(sc->dip, CE_WARN, 2094 "failed to allocate DMA memory: %d", rc); 2095 2096 ddi_dma_free_handle(&dhdl); 2097 return (ENOMEM); 2098 } 2099 2100 if (len != real_len) { 2101 cxgb_printf(sc->dip, CE_WARN, 2102 "%s: len (%u) != real_len (%u)\n", len, real_len); 2103 } 2104 2105 /* 2106 * DMA bindings. 2107 */ 2108 rc = ddi_dma_addr_bind_handle(dhdl, NULL, va, real_len, flags, NULL, 2109 NULL, &cookie, &ccount); 2110 if (rc != DDI_DMA_MAPPED) { 2111 cxgb_printf(sc->dip, CE_WARN, 2112 "failed to map DMA memory: %d", rc); 2113 2114 ddi_dma_mem_free(&ahdl); 2115 ddi_dma_free_handle(&dhdl); 2116 return (ENOMEM); 2117 } 2118 if (ccount != 1) { 2119 cxgb_printf(sc->dip, CE_WARN, 2120 "unusable DMA mapping (%d segments)", ccount); 2121 (void) free_desc_ring(&dhdl, &ahdl); 2122 } 2123 2124 bzero(va, real_len); 2125 *dma_hdl = dhdl; 2126 *acc_hdl = ahdl; 2127 *pba = cookie.dmac_laddress; 2128 *pva = va; 2129 2130 return (0); 2131 } 2132 2133 static int 2134 free_dma_memory(ddi_dma_handle_t *dhdl, ddi_acc_handle_t *ahdl) 2135 { 2136 (void) ddi_dma_unbind_handle(*dhdl); 2137 ddi_dma_mem_free(ahdl); 2138 ddi_dma_free_handle(dhdl); 2139 2140 return (0); 2141 } 2142 2143 static int 2144 alloc_desc_ring(struct adapter *sc, size_t len, int rw, 2145 ddi_dma_handle_t *dma_hdl, ddi_acc_handle_t *acc_hdl, 2146 uint64_t *pba, caddr_t *pva) 2147 { 2148 ddi_device_acc_attr_t *acc_attr = &sc->sge.acc_attr_desc; 2149 ddi_dma_attr_t *dma_attr = &sc->sge.dma_attr_desc; 2150 2151 return (alloc_dma_memory(sc, len, DDI_DMA_CONSISTENT | rw, acc_attr, 2152 dma_attr, dma_hdl, acc_hdl, pba, pva)); 2153 } 2154 2155 static int 2156 free_desc_ring(ddi_dma_handle_t *dhdl, ddi_acc_handle_t *ahdl) 2157 { 2158 return (free_dma_memory(dhdl, ahdl)); 2159 } 2160 2161 static int 2162 alloc_tx_copybuffer(struct adapter *sc, size_t len, 2163 ddi_dma_handle_t *dma_hdl, ddi_acc_handle_t *acc_hdl, 2164 uint64_t *pba, caddr_t *pva) 2165 { 2166 ddi_device_acc_attr_t *acc_attr = &sc->sge.acc_attr_tx; 2167 ddi_dma_attr_t *dma_attr = &sc->sge.dma_attr_desc; /* NOT dma_attr_tx */ 2168 2169 return (alloc_dma_memory(sc, len, DDI_DMA_STREAMING | DDI_DMA_WRITE, 2170 acc_attr, dma_attr, dma_hdl, acc_hdl, pba, pva)); 2171 } 2172 2173 static inline bool 2174 is_new_response(const struct sge_iq *iq, struct rsp_ctrl **ctrl) 2175 { 2176 (void) ddi_dma_sync(iq->dhdl, (uintptr_t)iq->cdesc - 2177 (uintptr_t)iq->desc, iq->esize, DDI_DMA_SYNC_FORKERNEL); 2178 2179 *ctrl = (void *)((uintptr_t)iq->cdesc + 2180 (iq->esize - sizeof (struct rsp_ctrl))); 2181 2182 return ((((*ctrl)->u.type_gen >> S_RSPD_GEN) == iq->gen)); 2183 } 2184 2185 static inline void 2186 iq_next(struct sge_iq *iq) 2187 { 2188 iq->cdesc = (void *) ((uintptr_t)iq->cdesc + iq->esize); 2189 if (++iq->cidx == iq->qsize - 1) { 2190 iq->cidx = 0; 2191 iq->gen ^= 1; 2192 iq->cdesc = iq->desc; 2193 } 2194 } 2195 2196 /* 2197 * Fill up the freelist by upto nbufs and maybe ring its doorbell. 2198 * 2199 * Returns non-zero to indicate that it should be added to the list of starving 2200 * freelists. 2201 */ 2202 static int 2203 refill_fl(struct adapter *sc, struct sge_fl *fl, int nbufs) 2204 { 2205 uint64_t *d = &fl->desc[fl->pidx]; 2206 struct fl_sdesc *sd = &fl->sdesc[fl->pidx]; 2207 2208 FL_LOCK_ASSERT_OWNED(fl); 2209 ASSERT(nbufs >= 0); 2210 2211 if (nbufs > fl->needed) 2212 nbufs = fl->needed; 2213 2214 while (nbufs--) { 2215 if (sd->rxb != NULL) { 2216 if (sd->rxb->ref_cnt == 1) { 2217 /* 2218 * Buffer is available for recycling. Two ways 2219 * this can happen: 2220 * 2221 * a) All the packets DMA'd into it last time 2222 * around were within the rx_copy_threshold 2223 * and no part of the buffer was ever passed 2224 * up (ref_cnt never went over 1). 2225 * 2226 * b) Packets DMA'd into the buffer were passed 2227 * up but have all been freed by the upper 2228 * layers by now (ref_cnt went over 1 but is 2229 * now back to 1). 2230 * 2231 * Either way the bus address in the descriptor 2232 * ring is already valid. 2233 */ 2234 ASSERT(*d == cpu_to_be64(sd->rxb->ba)); 2235 d++; 2236 goto recycled; 2237 } else { 2238 /* 2239 * Buffer still in use and we need a 2240 * replacement. But first release our reference 2241 * on the existing buffer. 2242 */ 2243 rxbuf_free(sd->rxb); 2244 } 2245 } 2246 2247 sd->rxb = rxbuf_alloc(sc->sge.rxbuf_cache, KM_NOSLEEP, 1); 2248 if (sd->rxb == NULL) 2249 break; 2250 *d++ = cpu_to_be64(sd->rxb->ba); 2251 2252 recycled: fl->pending++; 2253 sd++; 2254 fl->needed--; 2255 if (++fl->pidx == fl->cap) { 2256 fl->pidx = 0; 2257 sd = fl->sdesc; 2258 d = fl->desc; 2259 } 2260 } 2261 2262 if (fl->pending >= 8) 2263 ring_fl_db(sc, fl); 2264 2265 return (FL_RUNNING_LOW(fl) && !(fl->flags & FL_STARVING)); 2266 } 2267 2268 #ifndef TAILQ_FOREACH_SAFE 2269 #define TAILQ_FOREACH_SAFE(var, head, field, tvar) \ 2270 for ((var) = TAILQ_FIRST((head)); \ 2271 (var) && ((tvar) = TAILQ_NEXT((var), field), 1); \ 2272 (var) = (tvar)) 2273 #endif 2274 2275 /* 2276 * Attempt to refill all starving freelists. 2277 */ 2278 static void 2279 refill_sfl(void *arg) 2280 { 2281 struct adapter *sc = arg; 2282 struct sge_fl *fl, *fl_temp; 2283 2284 mutex_enter(&sc->sfl_lock); 2285 TAILQ_FOREACH_SAFE(fl, &sc->sfl, link, fl_temp) { 2286 FL_LOCK(fl); 2287 (void) refill_fl(sc, fl, 64); 2288 if (FL_NOT_RUNNING_LOW(fl) || fl->flags & FL_DOOMED) { 2289 TAILQ_REMOVE(&sc->sfl, fl, link); 2290 fl->flags &= ~FL_STARVING; 2291 } 2292 FL_UNLOCK(fl); 2293 } 2294 2295 if (!TAILQ_EMPTY(&sc->sfl) != 0) 2296 sc->sfl_timer = timeout(refill_sfl, sc, drv_usectohz(100000)); 2297 mutex_exit(&sc->sfl_lock); 2298 } 2299 2300 static void 2301 add_fl_to_sfl(struct adapter *sc, struct sge_fl *fl) 2302 { 2303 mutex_enter(&sc->sfl_lock); 2304 FL_LOCK(fl); 2305 if ((fl->flags & FL_DOOMED) == 0) { 2306 if (TAILQ_EMPTY(&sc->sfl) != 0) { 2307 sc->sfl_timer = timeout(refill_sfl, sc, 2308 drv_usectohz(100000)); 2309 } 2310 fl->flags |= FL_STARVING; 2311 TAILQ_INSERT_TAIL(&sc->sfl, fl, link); 2312 } 2313 FL_UNLOCK(fl); 2314 mutex_exit(&sc->sfl_lock); 2315 } 2316 2317 static void 2318 free_fl_bufs(struct sge_fl *fl) 2319 { 2320 struct fl_sdesc *sd; 2321 unsigned int i; 2322 2323 FL_LOCK_ASSERT_OWNED(fl); 2324 2325 for (i = 0; i < fl->cap; i++) { 2326 sd = &fl->sdesc[i]; 2327 2328 if (sd->rxb != NULL) { 2329 rxbuf_free(sd->rxb); 2330 sd->rxb = NULL; 2331 } 2332 } 2333 } 2334 2335 /* 2336 * Note that fl->cidx and fl->offset are left unchanged in case of failure. 2337 */ 2338 static mblk_t * 2339 get_fl_payload(struct adapter *sc, struct sge_fl *fl, 2340 uint32_t len_newbuf, int *fl_bufs_used) 2341 { 2342 struct mblk_pair frame = {0}; 2343 struct rxbuf *rxb; 2344 mblk_t *m = NULL; 2345 uint_t nbuf = 0, len, copy, n; 2346 uint32_t cidx, offset, rcidx, roffset; 2347 2348 /* 2349 * The SGE won't pack a new frame into the current buffer if the entire 2350 * payload doesn't fit in the remaining space. Move on to the next buf 2351 * in that case. 2352 */ 2353 rcidx = fl->cidx; 2354 roffset = fl->offset; 2355 if (fl->offset > 0 && len_newbuf & F_RSPD_NEWBUF) { 2356 fl->offset = 0; 2357 if (++fl->cidx == fl->cap) 2358 fl->cidx = 0; 2359 nbuf++; 2360 } 2361 cidx = fl->cidx; 2362 offset = fl->offset; 2363 2364 len = G_RSPD_LEN(len_newbuf); /* pktshift + payload length */ 2365 copy = (len <= fl->copy_threshold); 2366 if (copy != 0) { 2367 frame.head = m = allocb(len, BPRI_HI); 2368 if (m == NULL) { 2369 fl->allocb_fail++; 2370 cmn_err(CE_WARN,"%s: mbuf allocation failure " 2371 "count = %llu", __func__, 2372 (unsigned long long)fl->allocb_fail); 2373 fl->cidx = rcidx; 2374 fl->offset = roffset; 2375 return (NULL); 2376 } 2377 } 2378 2379 while (len) { 2380 rxb = fl->sdesc[cidx].rxb; 2381 n = min(len, rxb->buf_size - offset); 2382 2383 (void) ddi_dma_sync(rxb->dhdl, offset, n, 2384 DDI_DMA_SYNC_FORKERNEL); 2385 2386 if (copy != 0) 2387 bcopy(rxb->va + offset, m->b_wptr, n); 2388 else { 2389 m = desballoc((unsigned char *)rxb->va + offset, n, 2390 BPRI_HI, &rxb->freefunc); 2391 if (m == NULL) { 2392 fl->allocb_fail++; 2393 cmn_err(CE_WARN, 2394 "%s: mbuf allocation failure " 2395 "count = %llu", __func__, 2396 (unsigned long long)fl->allocb_fail); 2397 if (frame.head) 2398 freemsgchain(frame.head); 2399 fl->cidx = rcidx; 2400 fl->offset = roffset; 2401 return (NULL); 2402 } 2403 atomic_inc_uint(&rxb->ref_cnt); 2404 if (frame.head != NULL) 2405 frame.tail->b_cont = m; 2406 else 2407 frame.head = m; 2408 frame.tail = m; 2409 } 2410 m->b_wptr += n; 2411 len -= n; 2412 offset += roundup(n, sc->sge.fl_align); 2413 ASSERT(offset <= rxb->buf_size); 2414 if (offset == rxb->buf_size) { 2415 offset = 0; 2416 if (++cidx == fl->cap) 2417 cidx = 0; 2418 nbuf++; 2419 } 2420 } 2421 2422 fl->cidx = cidx; 2423 fl->offset = offset; 2424 (*fl_bufs_used) += nbuf; 2425 2426 ASSERT(frame.head != NULL); 2427 return (frame.head); 2428 } 2429 2430 /* 2431 * We'll do immediate data tx for non-LSO, but only when not coalescing. We're 2432 * willing to use upto 2 hardware descriptors which means a maximum of 96 bytes 2433 * of immediate data. 2434 */ 2435 #define IMM_LEN ( \ 2436 2 * EQ_ESIZE \ 2437 - sizeof (struct fw_eth_tx_pkt_wr) \ 2438 - sizeof (struct cpl_tx_pkt_core)) 2439 2440 /* 2441 * Returns non-zero on failure, no need to cleanup anything in that case. 2442 * 2443 * Note 1: We always try to pull up the mblk if required and return E2BIG only 2444 * if this fails. 2445 * 2446 * Note 2: We'll also pullup incoming mblk if HW_LSO is set and the first mblk 2447 * does not have the TCP header in it. 2448 */ 2449 static int 2450 get_frame_txinfo(struct sge_txq *txq, mblk_t **fp, struct txinfo *txinfo, 2451 int sgl_only) 2452 { 2453 uint32_t flags = 0, len, n; 2454 mblk_t *m = *fp; 2455 int rc; 2456 2457 TXQ_LOCK_ASSERT_OWNED(txq); /* will manipulate txb and dma_hdls */ 2458 2459 mac_hcksum_get(m, NULL, NULL, NULL, NULL, &flags); 2460 txinfo->flags = flags; 2461 2462 mac_lso_get(m, &txinfo->mss, &flags); 2463 txinfo->flags |= flags; 2464 2465 if (flags & HW_LSO) 2466 sgl_only = 1; /* Do not allow immediate data with LSO */ 2467 2468 start: txinfo->nsegs = 0; 2469 txinfo->hdls_used = 0; 2470 txinfo->txb_used = 0; 2471 txinfo->len = 0; 2472 2473 /* total length and a rough estimate of # of segments */ 2474 n = 0; 2475 for (; m; m = m->b_cont) { 2476 len = MBLKL(m); 2477 n += (len / PAGE_SIZE) + 1; 2478 txinfo->len += len; 2479 } 2480 m = *fp; 2481 2482 if (n >= TX_SGL_SEGS || (flags & HW_LSO && MBLKL(m) < 50)) { 2483 txq->pullup_early++; 2484 m = msgpullup(*fp, -1); 2485 if (m == NULL) { 2486 txq->pullup_failed++; 2487 return (E2BIG); /* (*fp) left as it was */ 2488 } 2489 freemsg(*fp); 2490 *fp = m; 2491 mac_hcksum_set(m, NULL, NULL, NULL, NULL, txinfo->flags); 2492 } 2493 2494 if (txinfo->len <= IMM_LEN && !sgl_only) 2495 return (0); /* nsegs = 0 tells caller to use imm. tx */ 2496 2497 if (txinfo->len <= txq->copy_threshold && 2498 copy_into_txb(txq, m, txinfo->len, txinfo) == 0) 2499 goto done; 2500 2501 for (; m; m = m->b_cont) { 2502 2503 len = MBLKL(m); 2504 2505 /* Use tx copy buffer if this mblk is small enough */ 2506 if (len <= txq->copy_threshold && 2507 copy_into_txb(txq, m, len, txinfo) == 0) 2508 continue; 2509 2510 /* Add DMA bindings for this mblk to the SGL */ 2511 rc = add_mblk(txq, txinfo, m, len); 2512 2513 if (rc == E2BIG || 2514 (txinfo->nsegs == TX_SGL_SEGS && m->b_cont)) { 2515 2516 txq->pullup_late++; 2517 m = msgpullup(*fp, -1); 2518 if (m != NULL) { 2519 free_txinfo_resources(txq, txinfo); 2520 freemsg(*fp); 2521 *fp = m; 2522 mac_hcksum_set(m, NULL, NULL, NULL, NULL, 2523 txinfo->flags); 2524 goto start; 2525 } 2526 2527 txq->pullup_failed++; 2528 rc = E2BIG; 2529 } 2530 2531 if (rc != 0) { 2532 free_txinfo_resources(txq, txinfo); 2533 return (rc); 2534 } 2535 } 2536 2537 ASSERT(txinfo->nsegs > 0 && txinfo->nsegs <= TX_SGL_SEGS); 2538 2539 done: 2540 2541 /* 2542 * Store the # of flits required to hold this frame's SGL in nflits. An 2543 * SGL has a (ULPTX header + len0, addr0) tuple optionally followed by 2544 * multiple (len0 + len1, addr0, addr1) tuples. If addr1 is not used 2545 * then len1 must be set to 0. 2546 */ 2547 n = txinfo->nsegs - 1; 2548 txinfo->nflits = (3 * n) / 2 + (n & 1) + 2; 2549 if (n & 1) 2550 txinfo->sgl.sge[n / 2].len[1] = cpu_to_be32(0); 2551 2552 txinfo->sgl.cmd_nsge = cpu_to_be32(V_ULPTX_CMD((u32)ULP_TX_SC_DSGL) | 2553 V_ULPTX_NSGE(txinfo->nsegs)); 2554 2555 return (0); 2556 } 2557 2558 static inline int 2559 fits_in_txb(struct sge_txq *txq, int len, int *waste) 2560 { 2561 if (txq->txb_avail < len) 2562 return (0); 2563 2564 if (txq->txb_next + len <= txq->txb_size) { 2565 *waste = 0; 2566 return (1); 2567 } 2568 2569 *waste = txq->txb_size - txq->txb_next; 2570 2571 return (txq->txb_avail - *waste < len ? 0 : 1); 2572 } 2573 2574 #define TXB_CHUNK 64 2575 2576 /* 2577 * Copies the specified # of bytes into txq's tx copy buffer and updates txinfo 2578 * and txq to indicate resources used. Caller has to make sure that those many 2579 * bytes are available in the mblk chain (b_cont linked). 2580 */ 2581 static inline int 2582 copy_into_txb(struct sge_txq *txq, mblk_t *m, int len, struct txinfo *txinfo) 2583 { 2584 int waste, n; 2585 2586 TXQ_LOCK_ASSERT_OWNED(txq); /* will manipulate txb */ 2587 2588 if (!fits_in_txb(txq, len, &waste)) { 2589 txq->txb_full++; 2590 return (ENOMEM); 2591 } 2592 2593 if (waste != 0) { 2594 ASSERT((waste & (TXB_CHUNK - 1)) == 0); 2595 txinfo->txb_used += waste; 2596 txq->txb_avail -= waste; 2597 txq->txb_next = 0; 2598 } 2599 2600 for (n = 0; n < len; m = m->b_cont) { 2601 bcopy(m->b_rptr, txq->txb_va + txq->txb_next + n, MBLKL(m)); 2602 n += MBLKL(m); 2603 } 2604 2605 add_seg(txinfo, txq->txb_ba + txq->txb_next, len); 2606 2607 n = roundup(len, TXB_CHUNK); 2608 txinfo->txb_used += n; 2609 txq->txb_avail -= n; 2610 txq->txb_next += n; 2611 ASSERT(txq->txb_next <= txq->txb_size); 2612 if (txq->txb_next == txq->txb_size) 2613 txq->txb_next = 0; 2614 2615 return (0); 2616 } 2617 2618 static inline void 2619 add_seg(struct txinfo *txinfo, uint64_t ba, uint32_t len) 2620 { 2621 ASSERT(txinfo->nsegs < TX_SGL_SEGS); /* must have room */ 2622 2623 if (txinfo->nsegs != 0) { 2624 int idx = txinfo->nsegs - 1; 2625 txinfo->sgl.sge[idx / 2].len[idx & 1] = cpu_to_be32(len); 2626 txinfo->sgl.sge[idx / 2].addr[idx & 1] = cpu_to_be64(ba); 2627 } else { 2628 txinfo->sgl.len0 = cpu_to_be32(len); 2629 txinfo->sgl.addr0 = cpu_to_be64(ba); 2630 } 2631 txinfo->nsegs++; 2632 } 2633 2634 /* 2635 * This function cleans up any partially allocated resources when it fails so 2636 * there's nothing for the caller to clean up in that case. 2637 * 2638 * EIO indicates permanent failure. Caller should drop the frame containing 2639 * this mblk and continue. 2640 * 2641 * E2BIG indicates that the SGL length for this mblk exceeds the hardware 2642 * limit. Caller should pull up the frame before trying to send it out. 2643 * (This error means our pullup_early heuristic did not work for this frame) 2644 * 2645 * ENOMEM indicates a temporary shortage of resources (DMA handles, other DMA 2646 * resources, etc.). Caller should suspend the tx queue and wait for reclaim to 2647 * free up resources. 2648 */ 2649 static inline int 2650 add_mblk(struct sge_txq *txq, struct txinfo *txinfo, mblk_t *m, int len) 2651 { 2652 ddi_dma_handle_t dhdl; 2653 ddi_dma_cookie_t cookie; 2654 uint_t ccount = 0; 2655 int rc; 2656 2657 TXQ_LOCK_ASSERT_OWNED(txq); /* will manipulate dhdls */ 2658 2659 if (txq->tx_dhdl_avail == 0) { 2660 txq->dma_hdl_failed++; 2661 return (ENOMEM); 2662 } 2663 2664 dhdl = txq->tx_dhdl[txq->tx_dhdl_pidx]; 2665 rc = ddi_dma_addr_bind_handle(dhdl, NULL, (caddr_t)m->b_rptr, len, 2666 DDI_DMA_WRITE | DDI_DMA_STREAMING, DDI_DMA_DONTWAIT, NULL, &cookie, 2667 &ccount); 2668 if (rc != DDI_DMA_MAPPED) { 2669 txq->dma_map_failed++; 2670 2671 ASSERT(rc != DDI_DMA_INUSE && rc != DDI_DMA_PARTIAL_MAP); 2672 2673 return (rc == DDI_DMA_NORESOURCES ? ENOMEM : EIO); 2674 } 2675 2676 if (ccount + txinfo->nsegs > TX_SGL_SEGS) { 2677 (void) ddi_dma_unbind_handle(dhdl); 2678 return (E2BIG); 2679 } 2680 2681 add_seg(txinfo, cookie.dmac_laddress, cookie.dmac_size); 2682 while (--ccount) { 2683 ddi_dma_nextcookie(dhdl, &cookie); 2684 add_seg(txinfo, cookie.dmac_laddress, cookie.dmac_size); 2685 } 2686 2687 if (++txq->tx_dhdl_pidx == txq->tx_dhdl_total) 2688 txq->tx_dhdl_pidx = 0; 2689 txq->tx_dhdl_avail--; 2690 txinfo->hdls_used++; 2691 2692 return (0); 2693 } 2694 2695 /* 2696 * Releases all the txq resources used up in the specified txinfo. 2697 */ 2698 static void 2699 free_txinfo_resources(struct sge_txq *txq, struct txinfo *txinfo) 2700 { 2701 int n; 2702 2703 TXQ_LOCK_ASSERT_OWNED(txq); /* dhdls, txb */ 2704 2705 n = txinfo->txb_used; 2706 if (n > 0) { 2707 txq->txb_avail += n; 2708 if (n <= txq->txb_next) 2709 txq->txb_next -= n; 2710 else { 2711 n -= txq->txb_next; 2712 txq->txb_next = txq->txb_size - n; 2713 } 2714 } 2715 2716 for (n = txinfo->hdls_used; n > 0; n--) { 2717 if (txq->tx_dhdl_pidx > 0) 2718 txq->tx_dhdl_pidx--; 2719 else 2720 txq->tx_dhdl_pidx = txq->tx_dhdl_total - 1; 2721 txq->tx_dhdl_avail++; 2722 (void) ddi_dma_unbind_handle(txq->tx_dhdl[txq->tx_dhdl_pidx]); 2723 } 2724 } 2725 2726 /* 2727 * Returns 0 to indicate that m has been accepted into a coalesced tx work 2728 * request. It has either been folded into txpkts or txpkts was flushed and m 2729 * has started a new coalesced work request (as the first frame in a fresh 2730 * txpkts). 2731 * 2732 * Returns non-zero to indicate a failure - caller is responsible for 2733 * transmitting m, if there was anything in txpkts it has been flushed. 2734 */ 2735 static int 2736 add_to_txpkts(struct sge_txq *txq, struct txpkts *txpkts, mblk_t *m, 2737 struct txinfo *txinfo) 2738 { 2739 struct sge_eq *eq = &txq->eq; 2740 int can_coalesce; 2741 struct tx_sdesc *txsd; 2742 uint8_t flits; 2743 2744 TXQ_LOCK_ASSERT_OWNED(txq); 2745 2746 if (txpkts->npkt > 0) { 2747 flits = TXPKTS_PKT_HDR + txinfo->nflits; 2748 can_coalesce = (txinfo->flags & HW_LSO) == 0 && 2749 txpkts->nflits + flits <= TX_WR_FLITS && 2750 txpkts->nflits + flits <= eq->avail * 8 && 2751 txpkts->plen + txinfo->len < 65536; 2752 2753 if (can_coalesce != 0) { 2754 txpkts->tail->b_next = m; 2755 txpkts->tail = m; 2756 txpkts->npkt++; 2757 txpkts->nflits += flits; 2758 txpkts->plen += txinfo->len; 2759 2760 txsd = &txq->sdesc[eq->pidx]; 2761 txsd->txb_used += txinfo->txb_used; 2762 txsd->hdls_used += txinfo->hdls_used; 2763 2764 return (0); 2765 } 2766 2767 /* 2768 * Couldn't coalesce m into txpkts. The first order of business 2769 * is to send txpkts on its way. Then we'll revisit m. 2770 */ 2771 write_txpkts_wr(txq, txpkts); 2772 } 2773 2774 /* 2775 * Check if we can start a new coalesced tx work request with m as 2776 * the first packet in it. 2777 */ 2778 2779 ASSERT(txpkts->npkt == 0); 2780 ASSERT(txinfo->len < 65536); 2781 2782 flits = TXPKTS_WR_HDR + txinfo->nflits; 2783 can_coalesce = (txinfo->flags & HW_LSO) == 0 && 2784 flits <= eq->avail * 8 && flits <= TX_WR_FLITS; 2785 2786 if (can_coalesce == 0) 2787 return (EINVAL); 2788 2789 /* 2790 * Start a fresh coalesced tx WR with m as the first frame in it. 2791 */ 2792 txpkts->tail = m; 2793 txpkts->npkt = 1; 2794 txpkts->nflits = flits; 2795 txpkts->flitp = &eq->desc[eq->pidx].flit[2]; 2796 txpkts->plen = txinfo->len; 2797 2798 txsd = &txq->sdesc[eq->pidx]; 2799 txsd->m = m; 2800 txsd->txb_used = txinfo->txb_used; 2801 txsd->hdls_used = txinfo->hdls_used; 2802 2803 return (0); 2804 } 2805 2806 /* 2807 * Note that write_txpkts_wr can never run out of hardware descriptors (but 2808 * write_txpkt_wr can). add_to_txpkts ensures that a frame is accepted for 2809 * coalescing only if sufficient hardware descriptors are available. 2810 */ 2811 static void 2812 write_txpkts_wr(struct sge_txq *txq, struct txpkts *txpkts) 2813 { 2814 struct sge_eq *eq = &txq->eq; 2815 struct fw_eth_tx_pkts_wr *wr; 2816 struct tx_sdesc *txsd; 2817 uint32_t ctrl; 2818 uint16_t ndesc; 2819 2820 TXQ_LOCK_ASSERT_OWNED(txq); /* pidx, avail */ 2821 2822 ndesc = howmany(txpkts->nflits, 8); 2823 2824 wr = (void *)&eq->desc[eq->pidx]; 2825 wr->op_pkd = cpu_to_be32(V_FW_WR_OP(FW_ETH_TX_PKTS_WR) | 2826 V_FW_WR_IMMDLEN(0)); /* immdlen does not matter in this WR */ 2827 ctrl = V_FW_WR_LEN16(howmany(txpkts->nflits, 2)); 2828 if (eq->avail == ndesc) 2829 ctrl |= F_FW_WR_EQUEQ | F_FW_WR_EQUIQ; 2830 wr->equiq_to_len16 = cpu_to_be32(ctrl); 2831 wr->plen = cpu_to_be16(txpkts->plen); 2832 wr->npkt = txpkts->npkt; 2833 wr->r3 = wr->type = 0; 2834 2835 /* Everything else already written */ 2836 2837 txsd = &txq->sdesc[eq->pidx]; 2838 txsd->desc_used = ndesc; 2839 2840 txq->txb_used += txsd->txb_used / TXB_CHUNK; 2841 txq->hdl_used += txsd->hdls_used; 2842 2843 ASSERT(eq->avail >= ndesc); 2844 2845 eq->pending += ndesc; 2846 eq->avail -= ndesc; 2847 eq->pidx += ndesc; 2848 if (eq->pidx >= eq->cap) 2849 eq->pidx -= eq->cap; 2850 2851 txq->txpkts_pkts += txpkts->npkt; 2852 txq->txpkts_wrs++; 2853 txpkts->npkt = 0; /* emptied */ 2854 } 2855 2856 static int 2857 write_txpkt_wr(struct port_info *pi, struct sge_txq *txq, mblk_t *m, 2858 struct txinfo *txinfo) 2859 { 2860 struct sge_eq *eq = &txq->eq; 2861 struct fw_eth_tx_pkt_wr *wr; 2862 struct cpl_tx_pkt_core *cpl; 2863 uint32_t ctrl; /* used in many unrelated places */ 2864 uint64_t ctrl1; 2865 int nflits, ndesc; 2866 struct tx_sdesc *txsd; 2867 caddr_t dst; 2868 2869 TXQ_LOCK_ASSERT_OWNED(txq); /* pidx, avail */ 2870 2871 /* 2872 * Do we have enough flits to send this frame out? 2873 */ 2874 ctrl = sizeof (struct cpl_tx_pkt_core); 2875 if (txinfo->flags & HW_LSO) { 2876 nflits = TXPKT_LSO_WR_HDR; 2877 ctrl += sizeof(struct cpl_tx_pkt_lso_core); 2878 } else 2879 nflits = TXPKT_WR_HDR; 2880 if (txinfo->nsegs > 0) 2881 nflits += txinfo->nflits; 2882 else { 2883 nflits += howmany(txinfo->len, 8); 2884 ctrl += txinfo->len; 2885 } 2886 ndesc = howmany(nflits, 8); 2887 if (ndesc > eq->avail) 2888 return (ENOMEM); 2889 2890 /* Firmware work request header */ 2891 wr = (void *)&eq->desc[eq->pidx]; 2892 wr->op_immdlen = cpu_to_be32(V_FW_WR_OP(FW_ETH_TX_PKT_WR) | 2893 V_FW_WR_IMMDLEN(ctrl)); 2894 ctrl = V_FW_WR_LEN16(howmany(nflits, 2)); 2895 if (eq->avail == ndesc) 2896 ctrl |= F_FW_WR_EQUEQ | F_FW_WR_EQUIQ; 2897 wr->equiq_to_len16 = cpu_to_be32(ctrl); 2898 wr->r3 = 0; 2899 2900 if (txinfo->flags & HW_LSO) { 2901 struct cpl_tx_pkt_lso_core *lso = (void *)(wr + 1); 2902 char *p = (void *)m->b_rptr; 2903 ctrl = V_LSO_OPCODE((u32)CPL_TX_PKT_LSO) | F_LSO_FIRST_SLICE | 2904 F_LSO_LAST_SLICE; 2905 2906 /* LINTED: E_BAD_PTR_CAST_ALIGN */ 2907 if (((struct ether_header *)p)->ether_type == 2908 htons(ETHERTYPE_VLAN)) { 2909 ctrl |= V_LSO_ETHHDR_LEN(1); 2910 p += sizeof (struct ether_vlan_header); 2911 } else 2912 p += sizeof (struct ether_header); 2913 2914 /* LINTED: E_BAD_PTR_CAST_ALIGN for IPH_HDR_LENGTH() */ 2915 ctrl |= V_LSO_IPHDR_LEN(IPH_HDR_LENGTH(p) / 4); 2916 /* LINTED: E_BAD_PTR_CAST_ALIGN for IPH_HDR_LENGTH() */ 2917 p += IPH_HDR_LENGTH(p); 2918 ctrl |= V_LSO_TCPHDR_LEN(TCP_HDR_LENGTH((tcph_t *)p) / 4); 2919 2920 lso->lso_ctrl = cpu_to_be32(ctrl); 2921 lso->ipid_ofst = cpu_to_be16(0); 2922 lso->mss = cpu_to_be16(txinfo->mss); 2923 lso->seqno_offset = cpu_to_be32(0); 2924 if (is_t4(pi->adapter->params.chip)) 2925 lso->len = cpu_to_be32(txinfo->len); 2926 else 2927 lso->len = cpu_to_be32(V_LSO_T5_XFER_SIZE(txinfo->len)); 2928 2929 cpl = (void *)(lso + 1); 2930 2931 txq->tso_wrs++; 2932 } else 2933 cpl = (void *)(wr + 1); 2934 2935 /* Checksum offload */ 2936 ctrl1 = 0; 2937 if (!(txinfo->flags & HCK_IPV4_HDRCKSUM)) 2938 ctrl1 |= F_TXPKT_IPCSUM_DIS; 2939 if (!(txinfo->flags & HCK_FULLCKSUM)) 2940 ctrl1 |= F_TXPKT_L4CSUM_DIS; 2941 if (ctrl1 == 0) 2942 txq->txcsum++; /* some hardware assistance provided */ 2943 2944 /* CPL header */ 2945 cpl->ctrl0 = cpu_to_be32(V_TXPKT_OPCODE(CPL_TX_PKT) | 2946 V_TXPKT_INTF(pi->tx_chan) | V_TXPKT_PF(pi->adapter->pf)); 2947 cpl->pack = 0; 2948 cpl->len = cpu_to_be16(txinfo->len); 2949 cpl->ctrl1 = cpu_to_be64(ctrl1); 2950 2951 /* Software descriptor */ 2952 txsd = &txq->sdesc[eq->pidx]; 2953 txsd->m = m; 2954 txsd->txb_used = txinfo->txb_used; 2955 txsd->hdls_used = txinfo->hdls_used; 2956 /* LINTED: E_ASSIGN_NARROW_CONV */ 2957 txsd->desc_used = ndesc; 2958 2959 txq->txb_used += txinfo->txb_used / TXB_CHUNK; 2960 txq->hdl_used += txinfo->hdls_used; 2961 2962 eq->pending += ndesc; 2963 eq->avail -= ndesc; 2964 eq->pidx += ndesc; 2965 if (eq->pidx >= eq->cap) 2966 eq->pidx -= eq->cap; 2967 2968 /* SGL */ 2969 dst = (void *)(cpl + 1); 2970 if (txinfo->nsegs > 0) { 2971 txq->sgl_wrs++; 2972 copy_to_txd(eq, (void *)&txinfo->sgl, &dst, txinfo->nflits * 8); 2973 2974 /* Need to zero-pad to a 16 byte boundary if not on one */ 2975 if ((uintptr_t)dst & 0xf) 2976 /* LINTED: E_BAD_PTR_CAST_ALIGN */ 2977 *(uint64_t *)dst = 0; 2978 2979 } else { 2980 txq->imm_wrs++; 2981 #ifdef DEBUG 2982 ctrl = txinfo->len; 2983 #endif 2984 for (; m; m = m->b_cont) { 2985 copy_to_txd(eq, (void *)m->b_rptr, &dst, MBLKL(m)); 2986 #ifdef DEBUG 2987 ctrl -= MBLKL(m); 2988 #endif 2989 } 2990 ASSERT(ctrl == 0); 2991 } 2992 2993 txq->txpkt_wrs++; 2994 return (0); 2995 } 2996 2997 static inline void 2998 write_ulp_cpl_sgl(struct port_info *pi, struct sge_txq *txq, 2999 struct txpkts *txpkts, struct txinfo *txinfo) 3000 { 3001 struct ulp_txpkt *ulpmc; 3002 struct ulptx_idata *ulpsc; 3003 struct cpl_tx_pkt_core *cpl; 3004 uintptr_t flitp, start, end; 3005 uint64_t ctrl; 3006 caddr_t dst; 3007 3008 ASSERT(txpkts->npkt > 0); 3009 3010 start = (uintptr_t)txq->eq.desc; 3011 end = (uintptr_t)txq->eq.spg; 3012 3013 /* Checksum offload */ 3014 ctrl = 0; 3015 if (!(txinfo->flags & HCK_IPV4_HDRCKSUM)) 3016 ctrl |= F_TXPKT_IPCSUM_DIS; 3017 if (!(txinfo->flags & HCK_FULLCKSUM)) 3018 ctrl |= F_TXPKT_L4CSUM_DIS; 3019 if (ctrl == 0) 3020 txq->txcsum++; /* some hardware assistance provided */ 3021 3022 /* 3023 * The previous packet's SGL must have ended at a 16 byte boundary (this 3024 * is required by the firmware/hardware). It follows that flitp cannot 3025 * wrap around between the ULPTX master command and ULPTX subcommand (8 3026 * bytes each), and that it can not wrap around in the middle of the 3027 * cpl_tx_pkt_core either. 3028 */ 3029 flitp = (uintptr_t)txpkts->flitp; 3030 ASSERT((flitp & 0xf) == 0); 3031 3032 /* ULP master command */ 3033 ulpmc = (void *)flitp; 3034 ulpmc->cmd_dest = htonl(V_ULPTX_CMD(ULP_TX_PKT) | V_ULP_TXPKT_DEST(0)); 3035 ulpmc->len = htonl(howmany(sizeof (*ulpmc) + sizeof (*ulpsc) + 3036 sizeof (*cpl) + 8 * txinfo->nflits, 16)); 3037 3038 /* ULP subcommand */ 3039 ulpsc = (void *)(ulpmc + 1); 3040 ulpsc->cmd_more = cpu_to_be32(V_ULPTX_CMD((u32)ULP_TX_SC_IMM) | 3041 F_ULP_TX_SC_MORE); 3042 ulpsc->len = cpu_to_be32(sizeof (struct cpl_tx_pkt_core)); 3043 3044 flitp += sizeof (*ulpmc) + sizeof (*ulpsc); 3045 if (flitp == end) 3046 flitp = start; 3047 3048 /* CPL_TX_PKT */ 3049 cpl = (void *)flitp; 3050 cpl->ctrl0 = cpu_to_be32(V_TXPKT_OPCODE(CPL_TX_PKT) | 3051 V_TXPKT_INTF(pi->tx_chan) | V_TXPKT_PF(pi->adapter->pf)); 3052 cpl->pack = 0; 3053 cpl->len = cpu_to_be16(txinfo->len); 3054 cpl->ctrl1 = cpu_to_be64(ctrl); 3055 3056 flitp += sizeof (*cpl); 3057 if (flitp == end) 3058 flitp = start; 3059 3060 /* SGL for this frame */ 3061 dst = (caddr_t)flitp; 3062 copy_to_txd(&txq->eq, (void *)&txinfo->sgl, &dst, txinfo->nflits * 8); 3063 flitp = (uintptr_t)dst; 3064 3065 /* Zero pad and advance to a 16 byte boundary if not already at one. */ 3066 if (flitp & 0xf) { 3067 3068 /* no matter what, flitp should be on an 8 byte boundary */ 3069 ASSERT((flitp & 0x7) == 0); 3070 3071 *(uint64_t *)flitp = 0; 3072 flitp += sizeof (uint64_t); 3073 txpkts->nflits++; 3074 } 3075 3076 if (flitp == end) 3077 flitp = start; 3078 3079 txpkts->flitp = (void *)flitp; 3080 } 3081 3082 static inline void 3083 copy_to_txd(struct sge_eq *eq, caddr_t from, caddr_t *to, int len) 3084 { 3085 if ((uintptr_t)(*to) + len <= (uintptr_t)eq->spg) { 3086 bcopy(from, *to, len); 3087 (*to) += len; 3088 } else { 3089 int portion = (uintptr_t)eq->spg - (uintptr_t)(*to); 3090 3091 bcopy(from, *to, portion); 3092 from += portion; 3093 portion = len - portion; /* remaining */ 3094 bcopy(from, (void *)eq->desc, portion); 3095 (*to) = (caddr_t)eq->desc + portion; 3096 } 3097 } 3098 3099 static inline void 3100 ring_tx_db(struct adapter *sc, struct sge_eq *eq) 3101 { 3102 int val, db_mode; 3103 u_int db = eq->doorbells; 3104 3105 if (eq->pending > 1) 3106 db &= ~DOORBELL_WCWR; 3107 3108 if (eq->pending > eq->pidx) { 3109 int offset = eq->cap - (eq->pending - eq->pidx); 3110 3111 /* pidx has wrapped around since last doorbell */ 3112 3113 (void) ddi_dma_sync(eq->desc_dhdl, 3114 offset * sizeof (struct tx_desc), 0, 3115 DDI_DMA_SYNC_FORDEV); 3116 (void) ddi_dma_sync(eq->desc_dhdl, 3117 0, eq->pidx * sizeof (struct tx_desc), 3118 DDI_DMA_SYNC_FORDEV); 3119 } else if (eq->pending > 0) { 3120 (void) ddi_dma_sync(eq->desc_dhdl, 3121 (eq->pidx - eq->pending) * sizeof (struct tx_desc), 3122 eq->pending * sizeof (struct tx_desc), 3123 DDI_DMA_SYNC_FORDEV); 3124 } 3125 3126 membar_producer(); 3127 3128 if (is_t4(sc->params.chip)) 3129 val = V_PIDX(eq->pending); 3130 else 3131 val = V_PIDX_T5(eq->pending); 3132 3133 db_mode = (1 << (ffs(db) - 1)); 3134 switch (db_mode) { 3135 case DOORBELL_UDB: 3136 *eq->udb = LE_32(V_QID(eq->udb_qid) | val); 3137 break; 3138 3139 case DOORBELL_WCWR: 3140 { 3141 volatile uint64_t *dst, *src; 3142 int i; 3143 /* 3144 * Queues whose 128B doorbell segment fits in 3145 * the page do not use relative qid 3146 * (udb_qid is always 0). Only queues with 3147 * doorbell segments can do WCWR. 3148 */ 3149 ASSERT(eq->udb_qid == 0 && eq->pending == 1); 3150 3151 dst = (volatile void *)((uintptr_t)eq->udb + 3152 UDBS_WR_OFFSET - UDBS_DB_OFFSET); 3153 i = eq->pidx ? eq->pidx - 1 : eq->cap - 1; 3154 src = (void *)&eq->desc[i]; 3155 while (src != (void *)&eq->desc[i + 1]) 3156 *dst++ = *src++; 3157 membar_producer(); 3158 break; 3159 } 3160 3161 case DOORBELL_UDBWC: 3162 *eq->udb = LE_32(V_QID(eq->udb_qid) | val); 3163 membar_producer(); 3164 break; 3165 3166 case DOORBELL_KDB: 3167 t4_write_reg(sc, MYPF_REG(A_SGE_PF_KDOORBELL), 3168 V_QID(eq->cntxt_id) | val); 3169 break; 3170 } 3171 3172 eq->pending = 0; 3173 } 3174 3175 static int 3176 reclaim_tx_descs(struct sge_txq *txq, int howmany) 3177 { 3178 struct tx_sdesc *txsd; 3179 uint_t cidx, can_reclaim, reclaimed, txb_freed, hdls_freed; 3180 struct sge_eq *eq = &txq->eq; 3181 3182 EQ_LOCK_ASSERT_OWNED(eq); 3183 3184 cidx = eq->spg->cidx; /* stable snapshot */ 3185 cidx = be16_to_cpu(cidx); 3186 3187 if (cidx >= eq->cidx) 3188 can_reclaim = cidx - eq->cidx; 3189 else 3190 can_reclaim = cidx + eq->cap - eq->cidx; 3191 3192 if (can_reclaim == 0) 3193 return (0); 3194 3195 txb_freed = hdls_freed = reclaimed = 0; 3196 do { 3197 int ndesc; 3198 3199 txsd = &txq->sdesc[eq->cidx]; 3200 ndesc = txsd->desc_used; 3201 3202 /* Firmware doesn't return "partial" credits. */ 3203 ASSERT(can_reclaim >= ndesc); 3204 3205 /* 3206 * We always keep mblk around, even for immediate data. If mblk 3207 * is NULL, this has to be the software descriptor for a credit 3208 * flush work request. 3209 */ 3210 if (txsd->m != NULL) 3211 freemsgchain(txsd->m); 3212 #ifdef DEBUG 3213 else { 3214 ASSERT(txsd->txb_used == 0); 3215 ASSERT(txsd->hdls_used == 0); 3216 ASSERT(ndesc == 1); 3217 } 3218 #endif 3219 3220 txb_freed += txsd->txb_used; 3221 hdls_freed += txsd->hdls_used; 3222 reclaimed += ndesc; 3223 3224 eq->cidx += ndesc; 3225 if (eq->cidx >= eq->cap) 3226 eq->cidx -= eq->cap; 3227 3228 can_reclaim -= ndesc; 3229 3230 } while (can_reclaim && reclaimed < howmany); 3231 3232 eq->avail += reclaimed; 3233 ASSERT(eq->avail < eq->cap); /* avail tops out at (cap - 1) */ 3234 3235 txq->txb_avail += txb_freed; 3236 3237 txq->tx_dhdl_avail += hdls_freed; 3238 ASSERT(txq->tx_dhdl_avail <= txq->tx_dhdl_total); 3239 for (; hdls_freed; hdls_freed--) { 3240 (void) ddi_dma_unbind_handle(txq->tx_dhdl[txq->tx_dhdl_cidx]); 3241 if (++txq->tx_dhdl_cidx == txq->tx_dhdl_total) 3242 txq->tx_dhdl_cidx = 0; 3243 } 3244 3245 return (reclaimed); 3246 } 3247 3248 static void 3249 write_txqflush_wr(struct sge_txq *txq) 3250 { 3251 struct sge_eq *eq = &txq->eq; 3252 struct fw_eq_flush_wr *wr; 3253 struct tx_sdesc *txsd; 3254 3255 EQ_LOCK_ASSERT_OWNED(eq); 3256 ASSERT(eq->avail > 0); 3257 3258 wr = (void *)&eq->desc[eq->pidx]; 3259 bzero(wr, sizeof (*wr)); 3260 wr->opcode = FW_EQ_FLUSH_WR; 3261 wr->equiq_to_len16 = cpu_to_be32(V_FW_WR_LEN16(sizeof (*wr) / 16) | 3262 F_FW_WR_EQUEQ | F_FW_WR_EQUIQ); 3263 3264 txsd = &txq->sdesc[eq->pidx]; 3265 txsd->m = NULL; 3266 txsd->txb_used = 0; 3267 txsd->hdls_used = 0; 3268 txsd->desc_used = 1; 3269 3270 eq->pending++; 3271 eq->avail--; 3272 if (++eq->pidx == eq->cap) 3273 eq->pidx = 0; 3274 } 3275 3276 static int 3277 t4_eth_rx(struct sge_iq *iq, const struct rss_header *rss, mblk_t *m) 3278 { 3279 bool csum_ok; 3280 uint16_t err_vec; 3281 struct sge_rxq *rxq = (void *)iq; 3282 struct mblk_pair chain = {0}; 3283 struct adapter *sc = iq->adapter; 3284 const struct cpl_rx_pkt *cpl = (const void *)(rss + 1); 3285 3286 iq->intr_next = iq->intr_params; 3287 3288 m->b_rptr += sc->sge.pktshift; 3289 3290 /* Compressed error vector is enabled for T6 only */ 3291 if (sc->params.tp.rx_pkt_encap) 3292 /* It is enabled only in T6 config file */ 3293 err_vec = G_T6_COMPR_RXERR_VEC(ntohs(cpl->err_vec)); 3294 else 3295 err_vec = ntohs(cpl->err_vec); 3296 3297 csum_ok = cpl->csum_calc && !err_vec; 3298 /* TODO: what about cpl->ip_frag? */ 3299 if (csum_ok && !cpl->ip_frag) { 3300 mac_hcksum_set(m, 0, 0, 0, 0xffff, 3301 HCK_FULLCKSUM_OK | HCK_FULLCKSUM | 3302 HCK_IPV4_HDRCKSUM_OK); 3303 rxq->rxcsum++; 3304 } 3305 3306 /* Add to the chain that we'll send up */ 3307 if (chain.head != NULL) 3308 chain.tail->b_next = m; 3309 else 3310 chain.head = m; 3311 chain.tail = m; 3312 3313 t4_mac_rx(rxq->port, rxq, chain.head); 3314 3315 rxq->rxpkts++; 3316 rxq->rxbytes += be16_to_cpu(cpl->len); 3317 return (0); 3318 } 3319 3320 #define FL_HW_IDX(idx) ((idx) >> 3) 3321 3322 static inline void 3323 ring_fl_db(struct adapter *sc, struct sge_fl *fl) 3324 { 3325 int desc_start, desc_last, ndesc; 3326 uint32_t v = sc->params.arch.sge_fl_db ; 3327 3328 ndesc = FL_HW_IDX(fl->pending); 3329 3330 /* Hold back one credit if pidx = cidx */ 3331 if (FL_HW_IDX(fl->pidx) == FL_HW_IDX(fl->cidx)) 3332 ndesc--; 3333 3334 /* 3335 * There are chances of ndesc modified above (to avoid pidx = cidx). 3336 * If there is nothing to post, return. 3337 */ 3338 if (ndesc <= 0) 3339 return; 3340 3341 desc_last = FL_HW_IDX(fl->pidx); 3342 3343 if (fl->pidx < fl->pending) { 3344 /* There was a wrap */ 3345 desc_start = FL_HW_IDX(fl->pidx + fl->cap - fl->pending); 3346 3347 /* From desc_start to the end of list */ 3348 (void) ddi_dma_sync(fl->dhdl, desc_start * RX_FL_ESIZE, 0, 3349 DDI_DMA_SYNC_FORDEV); 3350 3351 /* From start of list to the desc_last */ 3352 if (desc_last != 0) 3353 (void) ddi_dma_sync(fl->dhdl, 0, desc_last * 3354 RX_FL_ESIZE, DDI_DMA_SYNC_FORDEV); 3355 } else { 3356 /* There was no wrap, sync from start_desc to last_desc */ 3357 desc_start = FL_HW_IDX(fl->pidx - fl->pending); 3358 (void) ddi_dma_sync(fl->dhdl, desc_start * RX_FL_ESIZE, 3359 ndesc * RX_FL_ESIZE, DDI_DMA_SYNC_FORDEV); 3360 } 3361 3362 if (is_t4(sc->params.chip)) 3363 v |= V_PIDX(ndesc); 3364 else 3365 v |= V_PIDX_T5(ndesc); 3366 v |= V_QID(fl->cntxt_id) | V_PIDX(ndesc); 3367 3368 membar_producer(); 3369 3370 t4_write_reg(sc, MYPF_REG(A_SGE_PF_KDOORBELL), v); 3371 3372 /* 3373 * Update pending count: 3374 * Deduct the number of descriptors posted 3375 */ 3376 fl->pending -= ndesc * 8; 3377 } 3378 3379 static void 3380 tx_reclaim_task(void *arg) 3381 { 3382 struct sge_txq *txq = arg; 3383 3384 TXQ_LOCK(txq); 3385 reclaim_tx_descs(txq, txq->eq.qsize); 3386 TXQ_UNLOCK(txq); 3387 } 3388 3389 /* ARGSUSED */ 3390 static int 3391 handle_sge_egr_update(struct sge_iq *iq, const struct rss_header *rss, 3392 mblk_t *m) 3393 { 3394 const struct cpl_sge_egr_update *cpl = (const void *)(rss + 1); 3395 unsigned int qid = G_EGR_QID(ntohl(cpl->opcode_qid)); 3396 struct adapter *sc = iq->adapter; 3397 struct sge *s = &sc->sge; 3398 struct sge_eq *eq; 3399 struct sge_txq *txq; 3400 3401 txq = (void *)s->eqmap[qid - s->eq_start]; 3402 eq = &txq->eq; 3403 txq->qflush++; 3404 t4_mac_tx_update(txq->port, txq); 3405 3406 ddi_taskq_dispatch(sc->tq[eq->tx_chan], tx_reclaim_task, 3407 (void *)txq, DDI_NOSLEEP); 3408 3409 return (0); 3410 } 3411 3412 static int 3413 handle_fw_rpl(struct sge_iq *iq, const struct rss_header *rss, mblk_t *m) 3414 { 3415 struct adapter *sc = iq->adapter; 3416 const struct cpl_fw6_msg *cpl = (const void *)(rss + 1); 3417 3418 ASSERT(m == NULL); 3419 3420 if (cpl->type == FW_TYPE_RSSCPL || cpl->type == FW6_TYPE_RSSCPL) { 3421 const struct rss_header *rss2; 3422 3423 rss2 = (const struct rss_header *)&cpl->data[0]; 3424 return (sc->cpl_handler[rss2->opcode](iq, rss2, m)); 3425 } 3426 return (sc->fw_msg_handler[cpl->type](sc, &cpl->data[0])); 3427 } 3428 3429 int 3430 t4_alloc_tx_maps(struct adapter *sc, struct tx_maps *txmaps, int count, 3431 int flags) 3432 { 3433 int i, rc; 3434 3435 txmaps->map_total = count; 3436 txmaps->map_avail = txmaps->map_cidx = txmaps->map_pidx = 0; 3437 3438 txmaps->map = kmem_zalloc(sizeof (ddi_dma_handle_t) * 3439 txmaps->map_total, flags); 3440 3441 for (i = 0; i < count; i++) { 3442 rc = ddi_dma_alloc_handle(sc->dip, &sc->sge.dma_attr_tx, 3443 DDI_DMA_SLEEP, 0, &txmaps->map[i]); 3444 if (rc != DDI_SUCCESS) { 3445 cxgb_printf(sc->dip, CE_WARN, 3446 "%s: failed to allocate DMA handle (%d)", 3447 __func__, rc); 3448 return (rc == DDI_DMA_NORESOURCES ? ENOMEM : EINVAL); 3449 } 3450 txmaps->map_avail++; 3451 } 3452 3453 return (0); 3454 } 3455 3456 #define KS_UINIT(x) kstat_named_init(&kstatp->x, #x, KSTAT_DATA_ULONG) 3457 #define KS_CINIT(x) kstat_named_init(&kstatp->x, #x, KSTAT_DATA_CHAR) 3458 #define KS_U_SET(x, y) kstatp->x.value.ul = (y) 3459 #define KS_U_FROM(x, y) kstatp->x.value.ul = (y)->x 3460 #define KS_C_SET(x, ...) \ 3461 (void) snprintf(kstatp->x.value.c, 16, __VA_ARGS__) 3462 3463 /* 3464 * cxgbe:X:config 3465 */ 3466 struct cxgbe_port_config_kstats { 3467 kstat_named_t idx; 3468 kstat_named_t nrxq; 3469 kstat_named_t ntxq; 3470 kstat_named_t first_rxq; 3471 kstat_named_t first_txq; 3472 kstat_named_t controller; 3473 kstat_named_t factory_mac_address; 3474 }; 3475 3476 /* 3477 * cxgbe:X:info 3478 */ 3479 struct cxgbe_port_info_kstats { 3480 kstat_named_t transceiver; 3481 kstat_named_t rx_ovflow0; 3482 kstat_named_t rx_ovflow1; 3483 kstat_named_t rx_ovflow2; 3484 kstat_named_t rx_ovflow3; 3485 kstat_named_t rx_trunc0; 3486 kstat_named_t rx_trunc1; 3487 kstat_named_t rx_trunc2; 3488 kstat_named_t rx_trunc3; 3489 kstat_named_t tx_pause; 3490 kstat_named_t rx_pause; 3491 }; 3492 3493 static kstat_t * 3494 setup_port_config_kstats(struct port_info *pi) 3495 { 3496 kstat_t *ksp; 3497 struct cxgbe_port_config_kstats *kstatp; 3498 int ndata; 3499 dev_info_t *pdip = ddi_get_parent(pi->dip); 3500 uint8_t *ma = &pi->hw_addr[0]; 3501 3502 ndata = sizeof (struct cxgbe_port_config_kstats) / 3503 sizeof (kstat_named_t); 3504 3505 ksp = kstat_create(T4_PORT_NAME, ddi_get_instance(pi->dip), "config", 3506 "net", KSTAT_TYPE_NAMED, ndata, 0); 3507 if (ksp == NULL) { 3508 cxgb_printf(pi->dip, CE_WARN, "failed to initialize kstats."); 3509 return (NULL); 3510 } 3511 3512 kstatp = (struct cxgbe_port_config_kstats *)ksp->ks_data; 3513 3514 KS_UINIT(idx); 3515 KS_UINIT(nrxq); 3516 KS_UINIT(ntxq); 3517 KS_UINIT(first_rxq); 3518 KS_UINIT(first_txq); 3519 KS_CINIT(controller); 3520 KS_CINIT(factory_mac_address); 3521 3522 KS_U_SET(idx, pi->port_id); 3523 KS_U_SET(nrxq, pi->nrxq); 3524 KS_U_SET(ntxq, pi->ntxq); 3525 KS_U_SET(first_rxq, pi->first_rxq); 3526 KS_U_SET(first_txq, pi->first_txq); 3527 KS_C_SET(controller, "%s%d", ddi_driver_name(pdip), 3528 ddi_get_instance(pdip)); 3529 KS_C_SET(factory_mac_address, "%02X%02X%02X%02X%02X%02X", 3530 ma[0], ma[1], ma[2], ma[3], ma[4], ma[5]); 3531 3532 /* Do NOT set ksp->ks_update. These kstats do not change. */ 3533 3534 /* Install the kstat */ 3535 ksp->ks_private = (void *)pi; 3536 kstat_install(ksp); 3537 3538 return (ksp); 3539 } 3540 3541 static kstat_t * 3542 setup_port_info_kstats(struct port_info *pi) 3543 { 3544 kstat_t *ksp; 3545 struct cxgbe_port_info_kstats *kstatp; 3546 int ndata; 3547 3548 ndata = sizeof (struct cxgbe_port_info_kstats) / sizeof (kstat_named_t); 3549 3550 ksp = kstat_create(T4_PORT_NAME, ddi_get_instance(pi->dip), "info", 3551 "net", KSTAT_TYPE_NAMED, ndata, 0); 3552 if (ksp == NULL) { 3553 cxgb_printf(pi->dip, CE_WARN, "failed to initialize kstats."); 3554 return (NULL); 3555 } 3556 3557 kstatp = (struct cxgbe_port_info_kstats *)ksp->ks_data; 3558 3559 KS_CINIT(transceiver); 3560 KS_UINIT(rx_ovflow0); 3561 KS_UINIT(rx_ovflow1); 3562 KS_UINIT(rx_ovflow2); 3563 KS_UINIT(rx_ovflow3); 3564 KS_UINIT(rx_trunc0); 3565 KS_UINIT(rx_trunc1); 3566 KS_UINIT(rx_trunc2); 3567 KS_UINIT(rx_trunc3); 3568 KS_UINIT(tx_pause); 3569 KS_UINIT(rx_pause); 3570 3571 /* Install the kstat */ 3572 ksp->ks_update = update_port_info_kstats; 3573 ksp->ks_private = (void *)pi; 3574 kstat_install(ksp); 3575 3576 return (ksp); 3577 } 3578 3579 static int 3580 update_port_info_kstats(kstat_t *ksp, int rw) 3581 { 3582 struct cxgbe_port_info_kstats *kstatp = 3583 (struct cxgbe_port_info_kstats *)ksp->ks_data; 3584 struct port_info *pi = ksp->ks_private; 3585 static const char *mod_str[] = { NULL, "LR", "SR", "ER", "TWINAX", 3586 "active TWINAX", "LRM" }; 3587 uint32_t bgmap; 3588 3589 if (rw == KSTAT_WRITE) 3590 return (0); 3591 3592 if (pi->mod_type == FW_PORT_MOD_TYPE_NONE) 3593 KS_C_SET(transceiver, "unplugged"); 3594 else if (pi->mod_type == FW_PORT_MOD_TYPE_UNKNOWN) 3595 KS_C_SET(transceiver, "unknown"); 3596 else if (pi->mod_type == FW_PORT_MOD_TYPE_NOTSUPPORTED) 3597 KS_C_SET(transceiver, "unsupported"); 3598 else if (pi->mod_type > 0 && pi->mod_type < ARRAY_SIZE(mod_str)) 3599 KS_C_SET(transceiver, "%s", mod_str[pi->mod_type]); 3600 else 3601 KS_C_SET(transceiver, "type %d", pi->mod_type); 3602 3603 #define GET_STAT(name) t4_read_reg64(pi->adapter, \ 3604 PORT_REG(pi->port_id, A_MPS_PORT_STAT_##name##_L)) 3605 #define GET_STAT_COM(name) t4_read_reg64(pi->adapter, \ 3606 A_MPS_STAT_##name##_L) 3607 3608 bgmap = G_NUMPORTS(t4_read_reg(pi->adapter, A_MPS_CMN_CTL)); 3609 if (bgmap == 0) 3610 bgmap = (pi->port_id == 0) ? 0xf : 0; 3611 else if (bgmap == 1) 3612 bgmap = (pi->port_id < 2) ? (3 << (2 * pi->port_id)) : 0; 3613 else 3614 bgmap = 1; 3615 3616 KS_U_SET(rx_ovflow0, (bgmap & 1) ? 3617 GET_STAT_COM(RX_BG_0_MAC_DROP_FRAME) : 0); 3618 KS_U_SET(rx_ovflow1, (bgmap & 2) ? 3619 GET_STAT_COM(RX_BG_1_MAC_DROP_FRAME) : 0); 3620 KS_U_SET(rx_ovflow2, (bgmap & 4) ? 3621 GET_STAT_COM(RX_BG_2_MAC_DROP_FRAME) : 0); 3622 KS_U_SET(rx_ovflow3, (bgmap & 8) ? 3623 GET_STAT_COM(RX_BG_3_MAC_DROP_FRAME) : 0); 3624 KS_U_SET(rx_trunc0, (bgmap & 1) ? 3625 GET_STAT_COM(RX_BG_0_MAC_TRUNC_FRAME) : 0); 3626 KS_U_SET(rx_trunc1, (bgmap & 2) ? 3627 GET_STAT_COM(RX_BG_1_MAC_TRUNC_FRAME) : 0); 3628 KS_U_SET(rx_trunc2, (bgmap & 4) ? 3629 GET_STAT_COM(RX_BG_2_MAC_TRUNC_FRAME) : 0); 3630 KS_U_SET(rx_trunc3, (bgmap & 8) ? 3631 GET_STAT_COM(RX_BG_3_MAC_TRUNC_FRAME) : 0); 3632 3633 KS_U_SET(tx_pause, GET_STAT(TX_PORT_PAUSE)); 3634 KS_U_SET(rx_pause, GET_STAT(RX_PORT_PAUSE)); 3635 3636 return (0); 3637 3638 } 3639 3640 /* 3641 * cxgbe:X:rxqY 3642 */ 3643 struct rxq_kstats { 3644 kstat_named_t rxcsum; 3645 kstat_named_t rxpkts; 3646 kstat_named_t rxbytes; 3647 kstat_named_t nomem; 3648 }; 3649 3650 static kstat_t * 3651 setup_rxq_kstats(struct port_info *pi, struct sge_rxq *rxq, int idx) 3652 { 3653 struct kstat *ksp; 3654 struct rxq_kstats *kstatp; 3655 int ndata; 3656 char str[16]; 3657 3658 ndata = sizeof (struct rxq_kstats) / sizeof (kstat_named_t); 3659 (void) snprintf(str, sizeof (str), "rxq%u", idx); 3660 3661 ksp = kstat_create(T4_PORT_NAME, ddi_get_instance(pi->dip), str, "rxq", 3662 KSTAT_TYPE_NAMED, ndata, 0); 3663 if (ksp == NULL) { 3664 cxgb_printf(pi->dip, CE_WARN, 3665 "%s: failed to initialize rxq kstats for queue %d.", 3666 __func__, idx); 3667 return (NULL); 3668 } 3669 3670 kstatp = (struct rxq_kstats *)ksp->ks_data; 3671 3672 KS_UINIT(rxcsum); 3673 KS_UINIT(rxpkts); 3674 KS_UINIT(rxbytes); 3675 KS_UINIT(nomem); 3676 3677 ksp->ks_update = update_rxq_kstats; 3678 ksp->ks_private = (void *)rxq; 3679 kstat_install(ksp); 3680 3681 return (ksp); 3682 } 3683 3684 static int 3685 update_rxq_kstats(kstat_t *ksp, int rw) 3686 { 3687 struct rxq_kstats *kstatp = (struct rxq_kstats *)ksp->ks_data; 3688 struct sge_rxq *rxq = ksp->ks_private; 3689 3690 if (rw == KSTAT_WRITE) 3691 return (0); 3692 3693 KS_U_FROM(rxcsum, rxq); 3694 KS_U_FROM(rxpkts, rxq); 3695 KS_U_FROM(rxbytes, rxq); 3696 KS_U_FROM(nomem, rxq); 3697 3698 return (0); 3699 } 3700 3701 /* 3702 * cxgbe:X:txqY 3703 */ 3704 struct txq_kstats { 3705 kstat_named_t txcsum; 3706 kstat_named_t tso_wrs; 3707 kstat_named_t imm_wrs; 3708 kstat_named_t sgl_wrs; 3709 kstat_named_t txpkt_wrs; 3710 kstat_named_t txpkts_wrs; 3711 kstat_named_t txpkts_pkts; 3712 kstat_named_t txb_used; 3713 kstat_named_t hdl_used; 3714 kstat_named_t txb_full; 3715 kstat_named_t dma_hdl_failed; 3716 kstat_named_t dma_map_failed; 3717 kstat_named_t qfull; 3718 kstat_named_t qflush; 3719 kstat_named_t pullup_early; 3720 kstat_named_t pullup_late; 3721 kstat_named_t pullup_failed; 3722 }; 3723 3724 static kstat_t * 3725 setup_txq_kstats(struct port_info *pi, struct sge_txq *txq, int idx) 3726 { 3727 struct kstat *ksp; 3728 struct txq_kstats *kstatp; 3729 int ndata; 3730 char str[16]; 3731 3732 ndata = sizeof (struct txq_kstats) / sizeof (kstat_named_t); 3733 (void) snprintf(str, sizeof (str), "txq%u", idx); 3734 3735 ksp = kstat_create(T4_PORT_NAME, ddi_get_instance(pi->dip), str, "txq", 3736 KSTAT_TYPE_NAMED, ndata, 0); 3737 if (ksp == NULL) { 3738 cxgb_printf(pi->dip, CE_WARN, 3739 "%s: failed to initialize txq kstats for queue %d.", 3740 __func__, idx); 3741 return (NULL); 3742 } 3743 3744 kstatp = (struct txq_kstats *)ksp->ks_data; 3745 3746 KS_UINIT(txcsum); 3747 KS_UINIT(tso_wrs); 3748 KS_UINIT(imm_wrs); 3749 KS_UINIT(sgl_wrs); 3750 KS_UINIT(txpkt_wrs); 3751 KS_UINIT(txpkts_wrs); 3752 KS_UINIT(txpkts_pkts); 3753 KS_UINIT(txb_used); 3754 KS_UINIT(hdl_used); 3755 KS_UINIT(txb_full); 3756 KS_UINIT(dma_hdl_failed); 3757 KS_UINIT(dma_map_failed); 3758 KS_UINIT(qfull); 3759 KS_UINIT(qflush); 3760 KS_UINIT(pullup_early); 3761 KS_UINIT(pullup_late); 3762 KS_UINIT(pullup_failed); 3763 3764 ksp->ks_update = update_txq_kstats; 3765 ksp->ks_private = (void *)txq; 3766 kstat_install(ksp); 3767 3768 return (ksp); 3769 } 3770 3771 static int 3772 update_txq_kstats(kstat_t *ksp, int rw) 3773 { 3774 struct txq_kstats *kstatp = (struct txq_kstats *)ksp->ks_data; 3775 struct sge_txq *txq = ksp->ks_private; 3776 3777 if (rw == KSTAT_WRITE) 3778 return (0); 3779 3780 KS_U_FROM(txcsum, txq); 3781 KS_U_FROM(tso_wrs, txq); 3782 KS_U_FROM(imm_wrs, txq); 3783 KS_U_FROM(sgl_wrs, txq); 3784 KS_U_FROM(txpkt_wrs, txq); 3785 KS_U_FROM(txpkts_wrs, txq); 3786 KS_U_FROM(txpkts_pkts, txq); 3787 KS_U_FROM(txb_used, txq); 3788 KS_U_FROM(hdl_used, txq); 3789 KS_U_FROM(txb_full, txq); 3790 KS_U_FROM(dma_hdl_failed, txq); 3791 KS_U_FROM(dma_map_failed, txq); 3792 KS_U_FROM(qfull, txq); 3793 KS_U_FROM(qflush, txq); 3794 KS_U_FROM(pullup_early, txq); 3795 KS_U_FROM(pullup_late, txq); 3796 KS_U_FROM(pullup_failed, txq); 3797 3798 return (0); 3799 } 3800