1 /* 2 * This file and its contents are supplied under the terms of the 3 * Common Development and Distribution License ("CDDL"), version 1.0. 4 * You may only use this file in accordance with the terms of version 5 * 1.0 of the CDDL. 6 * 7 * A full copy of the text of the CDDL should have accompanied this 8 * source. A copy of the CDDL is also available via the Internet at 9 * http://www.illumos.org/license/CDDL. 10 */ 11 12 /* 13 * This file is part of the Chelsio T4 support code. 14 * 15 * Copyright (C) 2010-2013 Chelsio Communications. All rights reserved. 16 * 17 * This program is distributed in the hope that it will be useful, but WITHOUT 18 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or 19 * FITNESS FOR A PARTICULAR PURPOSE. See the LICENSE file included in this 20 * release for licensing terms and conditions. 21 */ 22 23 #include <sys/ddi.h> 24 #include <sys/sunddi.h> 25 #include <sys/sunndi.h> 26 #include <sys/atomic.h> 27 #include <sys/dlpi.h> 28 #include <sys/pattr.h> 29 #include <sys/strsubr.h> 30 #include <sys/stream.h> 31 #include <sys/strsun.h> 32 #include <sys/ethernet.h> 33 #include <inet/ip.h> 34 #include <inet/ipclassifier.h> 35 #include <inet/tcp.h> 36 37 #include "common/common.h" 38 #include "common/t4_msg.h" 39 #include "common/t4_regs.h" 40 #include "common/t4_regs_values.h" 41 #include "t4_l2t.h" 42 43 /* identifies sync vs async L2T_WRITE_REQs */ 44 #define S_SYNC_WR 12 45 #define V_SYNC_WR(x) ((x) << S_SYNC_WR) 46 #define F_SYNC_WR V_SYNC_WR(1) 47 #define VLAN_NONE 0xfff 48 49 /* 50 * jhash.h: Jenkins hash support. 51 * 52 * Copyright (C) 1996 Bob Jenkins (bob_jenkins@burtleburtle.net) 53 * 54 * http://burtleburtle.net/bob/hash/ 55 * 56 * These are the credits from Bob's sources: 57 * 58 * lookup2.c, by Bob Jenkins, December 1996, Public Domain. 59 * hash(), hash2(), hash3, and mix() are externally useful functions. 60 * Routines to test the hash are included if SELF_TEST is defined. 61 * You can use this free for any purpose. It has no warranty. 62 */ 63 64 /* NOTE: Arguments are modified. */ 65 #define __jhash_mix(a, b, c) \ 66 { \ 67 a -= b; a -= c; a ^= (c>>13); \ 68 b -= c; b -= a; b ^= (a<<8); \ 69 c -= a; c -= b; c ^= (b>>13); \ 70 a -= b; a -= c; a ^= (c>>12); \ 71 b -= c; b -= a; b ^= (a<<16); \ 72 c -= a; c -= b; c ^= (b>>5); \ 73 a -= b; a -= c; a ^= (c>>3); \ 74 b -= c; b -= a; b ^= (a<<10); \ 75 c -= a; c -= b; c ^= (b>>15); \ 76 } 77 78 /* The golden ration: an arbitrary value */ 79 #define JHASH_GOLDEN_RATIO 0x9e3779b9 80 81 /* 82 * A special ultra-optimized versions that knows they are hashing exactly 83 * 3, 2 or 1 word(s). 84 * 85 * NOTE: In partilar the "c += length; __jhash_mix(a,b,c);" normally 86 * done at the end is not done here. 87 */ 88 static inline u32 89 jhash_3words(u32 a, u32 b, u32 c, u32 initval) 90 { 91 a += JHASH_GOLDEN_RATIO; 92 b += JHASH_GOLDEN_RATIO; 93 c += initval; 94 95 __jhash_mix(a, b, c); 96 97 return (c); 98 } 99 100 static inline u32 101 jhash_2words(u32 a, u32 b, u32 initval) 102 { 103 return (jhash_3words(a, b, 0, initval)); 104 } 105 106 #ifndef container_of 107 #define container_of(p, s, f) ((s *)(((uint8_t *)(p)) - offsetof(s, f))) 108 #endif 109 110 #if defined(__GNUC__) 111 #define likely(x) __builtin_expect((x), 1) 112 #define unlikely(x) __builtin_expect((x), 0) 113 #else 114 #define likely(x) (x) 115 #define unlikely(x) (x) 116 #endif /* defined(__GNUC__) */ 117 118 enum { 119 L2T_STATE_VALID, /* entry is up to date */ 120 L2T_STATE_STALE, /* entry may be used but needs revalidation */ 121 L2T_STATE_RESOLVING, /* entry needs address resolution */ 122 L2T_STATE_SYNC_WRITE, /* synchronous write of entry underway */ 123 124 /* when state is one of the below the entry is not hashed */ 125 L2T_STATE_SWITCHING, /* entry is being used by a switching filter */ 126 L2T_STATE_UNUSED /* entry not in use */ 127 }; 128 129 struct l2t_data { 130 krwlock_t lock; 131 u_int l2t_size; 132 volatile uint_t nfree; /* number of free entries */ 133 struct l2t_entry *rover; /* starting point for next allocation */ 134 struct l2t_entry l2tab[]; 135 }; 136 137 #define VLAN_NONE 0xfff 138 #define SA(x) ((struct sockaddr *)(x)) 139 #define SIN(x) ((struct sockaddr_in *)(x)) 140 #define SINADDR(x) (SIN(x)->sin_addr.s_addr) 141 #define atomic_read(x) atomic_add_int_nv(x, 0) 142 /* 143 * Allocate a free L2T entry. 144 * Must be called with l2t_data.lockatomic_load_acq_int held. 145 */ 146 static struct l2t_entry * 147 alloc_l2e(struct l2t_data *d) 148 { 149 struct l2t_entry *end, *e, **p; 150 151 ASSERT(rw_write_held(&d->lock)); 152 153 if (!atomic_read(&d->nfree)) 154 return (NULL); 155 156 /* there's definitely a free entry */ 157 for (e = d->rover, end = &d->l2tab[d->l2t_size]; e != end; ++e) 158 if (atomic_read(&e->refcnt) == 0) 159 goto found; 160 161 for (e = d->l2tab; atomic_read(&e->refcnt); ++e) 162 /* */; 163 found: 164 d->rover = e + 1; 165 atomic_dec_uint(&d->nfree); 166 167 /* 168 * The entry we found may be an inactive entry that is 169 * presently in the hash table. We need to remove it. 170 */ 171 if (e->state < L2T_STATE_SWITCHING) { 172 for (p = &d->l2tab[e->hash].first; *p; p = &(*p)->next) { 173 if (*p == e) { 174 *p = e->next; 175 e->next = NULL; 176 break; 177 } 178 } 179 } 180 181 e->state = L2T_STATE_UNUSED; 182 return (e); 183 } 184 185 /* 186 * Write an L2T entry. Must be called with the entry locked. 187 * The write may be synchronous or asynchronous. 188 */ 189 static int 190 write_l2e(adapter_t *sc, struct l2t_entry *e, int sync) 191 { 192 mblk_t *m; 193 struct cpl_l2t_write_req *req; 194 int idx = e->idx + sc->vres.l2t.start; 195 196 ASSERT(MUTEX_HELD(&e->lock)); 197 198 if ((m = allocb(sizeof (*req), BPRI_HI)) == NULL) 199 return (ENOMEM); 200 201 /* LINTED: E_BAD_PTR_CAST_ALIGN */ 202 req = (struct cpl_l2t_write_req *)m->b_wptr; 203 204 /* LINTED: E_CONSTANT_CONDITION */ 205 INIT_TP_WR(req, 0); 206 OPCODE_TID(req) = htonl(MK_OPCODE_TID(CPL_L2T_WRITE_REQ, idx | 207 V_SYNC_WR(sync) | V_TID_QID(sc->sge.fwq.abs_id))); 208 req->params = htons(V_L2T_W_PORT(e->lport) | V_L2T_W_NOREPLY(!sync)); 209 req->l2t_idx = htons(idx); 210 req->vlan = htons(e->vlan); 211 (void) memcpy(req->dst_mac, e->dmac, sizeof (req->dst_mac)); 212 213 m->b_wptr += sizeof (*req); 214 215 (void) t4_mgmt_tx(sc, m); 216 217 if (sync && e->state != L2T_STATE_SWITCHING) 218 e->state = L2T_STATE_SYNC_WRITE; 219 220 return (0); 221 } 222 223 struct l2t_data * 224 t4_init_l2t(struct adapter *sc) 225 { 226 int i, l2t_size; 227 struct l2t_data *d; 228 229 l2t_size = sc->vres.l2t.size; 230 if(l2t_size < 1) 231 return (NULL); 232 233 d = kmem_zalloc(sizeof(*d) + l2t_size * sizeof (struct l2t_entry), KM_SLEEP); 234 if (!d) 235 return (NULL); 236 237 d->l2t_size = l2t_size; 238 239 d->rover = d->l2tab; 240 (void) atomic_swap_uint(&d->nfree, l2t_size); 241 rw_init(&d->lock, NULL, RW_DRIVER, NULL); 242 243 for (i = 0; i < l2t_size; i++) { 244 /* LINTED: E_ASSIGN_NARROW_CONV */ 245 d->l2tab[i].idx = i; 246 d->l2tab[i].state = L2T_STATE_UNUSED; 247 mutex_init(&d->l2tab[i].lock, NULL, MUTEX_DRIVER, NULL); 248 (void) atomic_swap_uint(&d->l2tab[i].refcnt, 0); 249 } 250 251 (void) t4_register_cpl_handler(sc, CPL_L2T_WRITE_RPL, do_l2t_write_rpl); 252 253 return (d); 254 } 255 256 int 257 t4_free_l2t(struct l2t_data *d) 258 { 259 int i; 260 261 for (i = 0; i < L2T_SIZE; i++) 262 mutex_destroy(&d->l2tab[i].lock); 263 rw_destroy(&d->lock); 264 kmem_free(d, sizeof (*d)); 265 266 return (0); 267 } 268 269 #ifndef TCP_OFFLOAD_DISABLE 270 static inline void 271 l2t_hold(struct l2t_data *d, struct l2t_entry *e) 272 { 273 if (atomic_inc_uint_nv(&e->refcnt) == 1) /* 0 -> 1 transition */ 274 atomic_dec_uint(&d->nfree); 275 } 276 277 /* 278 * To avoid having to check address families we do not allow v4 and v6 279 * neighbors to be on the same hash chain. We keep v4 entries in the first 280 * half of available hash buckets and v6 in the second. 281 */ 282 enum { 283 L2T_SZ_HALF = L2T_SIZE / 2, 284 L2T_HASH_MASK = L2T_SZ_HALF - 1 285 }; 286 287 static inline unsigned int 288 arp_hash(const uint32_t *key, int ifindex) 289 { 290 return (jhash_2words(*key, ifindex, 0) & L2T_HASH_MASK); 291 } 292 293 static inline unsigned int 294 ipv6_hash(const uint32_t *key, int ifindex) 295 { 296 uint32_t xor = key[0] ^ key[1] ^ key[2] ^ key[3]; 297 298 return (L2T_SZ_HALF + (jhash_2words(xor, ifindex, 0) & L2T_HASH_MASK)); 299 } 300 301 static inline unsigned int 302 addr_hash(const uint32_t *addr, int addr_len, int ifindex) 303 { 304 return (addr_len == 4 ? arp_hash(addr, ifindex) : 305 ipv6_hash(addr, ifindex)); 306 } 307 308 /* 309 * Checks if an L2T entry is for the given IP/IPv6 address. It does not check 310 * whether the L2T entry and the address are of the same address family. 311 * Callers ensure an address is only checked against L2T entries of the same 312 * family, something made trivial by the separation of IP and IPv6 hash chains 313 * mentioned above. Returns 0 if there's a match, 314 */ 315 static inline int 316 addreq(const struct l2t_entry *e, const uint32_t *addr) 317 { 318 if (e->v6 != 0) 319 return ((e->addr[0] ^ addr[0]) | (e->addr[1] ^ addr[1]) | 320 (e->addr[2] ^ addr[2]) | (e->addr[3] ^ addr[3])); 321 return (e->addr[0] ^ addr[0]); 322 } 323 324 /* 325 * Add a packet to an L2T entry's queue of packets awaiting resolution. 326 * Must be called with the entry's lock held. 327 */ 328 static inline void 329 arpq_enqueue(struct l2t_entry *e, mblk_t *m) 330 { 331 ASSERT(MUTEX_HELD(&e->lock)); 332 333 ASSERT(m->b_next == NULL); 334 if (e->arpq_head != NULL) 335 e->arpq_tail->b_next = m; 336 else 337 e->arpq_head = m; 338 e->arpq_tail = m; 339 } 340 341 int 342 t4_l2t_send(struct adapter *sc, mblk_t *m, struct l2t_entry *e) 343 { 344 sin_t *sin; 345 ip2mac_t ip2m; 346 347 if (e->v6 != 0) 348 ASSERT(0); 349 again: 350 switch (e->state) { 351 case L2T_STATE_STALE: /* entry is stale, kick off revalidation */ 352 353 /* Fall through */ 354 case L2T_STATE_VALID: /* fast-path, send the packet on */ 355 (void) t4_wrq_tx(sc, MBUF_EQ(m), m); 356 return (0); 357 358 case L2T_STATE_RESOLVING: 359 case L2T_STATE_SYNC_WRITE: 360 mutex_enter(&e->lock); 361 if (e->state != L2T_STATE_SYNC_WRITE && 362 e->state != L2T_STATE_RESOLVING) { 363 /* state changed by the time we got here */ 364 mutex_exit(&e->lock); 365 goto again; 366 } 367 arpq_enqueue(e, m); 368 mutex_exit(&e->lock); 369 370 bzero(&ip2m, sizeof (ip2m)); 371 sin = (sin_t *)&ip2m.ip2mac_pa; 372 sin->sin_family = AF_INET; 373 sin->sin_addr.s_addr = e->in_addr; 374 ip2m.ip2mac_ifindex = e->ifindex; 375 376 if (e->state == L2T_STATE_RESOLVING) { 377 (void) ip2mac(IP2MAC_RESOLVE, &ip2m, t4_l2t_update, e, 378 0); 379 if (ip2m.ip2mac_err == EINPROGRESS) 380 ASSERT(0); 381 else if (ip2m.ip2mac_err == 0) 382 t4_l2t_update(&ip2m, e); 383 else 384 ASSERT(0); 385 } 386 } 387 388 return (0); 389 } 390 391 /* 392 * Called when an L2T entry has no more users. The entry is left in the hash 393 * table since it is likely to be reused but we also bump nfree to indicate 394 * that the entry can be reallocated for a different neighbor. We also drop 395 * the existing neighbor reference in case the neighbor is going away and is 396 * waiting on our reference. 397 * 398 * Because entries can be reallocated to other neighbors once their ref count 399 * drops to 0 we need to take the entry's lock to avoid races with a new 400 * incarnation. 401 */ 402 static void 403 t4_l2e_free(struct l2t_entry *e) 404 { 405 struct l2t_data *d; 406 407 mutex_enter(&e->lock); 408 /* LINTED: E_NOP_IF_STMT */ 409 if (atomic_read(&e->refcnt) == 0) { /* hasn't been recycled */ 410 /* 411 * Don't need to worry about the arpq, an L2T entry can't be 412 * released if any packets are waiting for resolution as we 413 * need to be able to communicate with the device to close a 414 * connection. 415 */ 416 } 417 mutex_exit(&e->lock); 418 419 d = container_of(e, struct l2t_data, l2tab[e->idx]); 420 atomic_inc_uint(&d->nfree); 421 422 } 423 424 void 425 t4_l2t_release(struct l2t_entry *e) 426 { 427 if (atomic_dec_uint_nv(&e->refcnt) == 0) 428 t4_l2e_free(e); 429 } 430 431 /* ARGSUSED */ 432 int 433 do_l2t_write_rpl(struct sge_iq *iq, const struct rss_header *rss, mblk_t *m) 434 { 435 struct adapter *sc = iq->adapter; 436 const struct cpl_l2t_write_rpl *rpl = (const void *)(rss + 1); 437 unsigned int tid = GET_TID(rpl); 438 unsigned int idx = tid % L2T_SIZE; 439 440 if (likely(rpl->status != CPL_ERR_NONE)) { 441 cxgb_printf(sc->dip, CE_WARN, 442 "Unexpected L2T_WRITE_RPL status %u for entry %u", 443 rpl->status, idx); 444 return (-EINVAL); 445 } 446 447 return (0); 448 } 449 450 /* 451 * The TOE wants an L2 table entry that it can use to reach the next hop over 452 * the specified port. Produce such an entry - create one if needed. 453 * 454 * Note that the ifnet could be a pseudo-device like if_vlan, if_lagg, etc. on 455 * top of the real cxgbe interface. 456 */ 457 struct l2t_entry * 458 t4_l2t_get(struct port_info *pi, conn_t *connp) 459 { 460 struct l2t_entry *e; 461 struct l2t_data *d = pi->adapter->l2t; 462 int addr_len; 463 uint32_t *addr; 464 int hash; 465 int index = \ 466 connp->conn_ixa->ixa_ire->ire_ill->ill_phyint->phyint_ifindex; 467 unsigned int smt_idx = pi->port_id; 468 addr = (uint32_t *)&connp->conn_faddr_v4; 469 addr_len = sizeof (connp->conn_faddr_v4); 470 471 hash = addr_hash(addr, addr_len, index); 472 473 rw_enter(&d->lock, RW_WRITER); 474 for (e = d->l2tab[hash].first; e; e = e->next) { 475 if (!addreq(e, addr) && e->smt_idx == smt_idx) { 476 l2t_hold(d, e); 477 goto done; 478 } 479 } 480 481 /* Need to allocate a new entry */ 482 e = alloc_l2e(d); 483 if (e != NULL) { 484 mutex_enter(&e->lock); /* avoid race with t4_l2t_free */ 485 e->state = L2T_STATE_RESOLVING; 486 (void) memcpy(e->addr, addr, addr_len); 487 e->in_addr = connp->conn_faddr_v4; 488 e->ifindex = index; 489 /* LINTED: E_ASSIGN_NARROW_CONV */ 490 e->smt_idx = smt_idx; 491 /* LINTED: E_ASSIGN_NARROW_CONV */ 492 e->hash = hash; 493 e->lport = pi->lport; 494 e->arpq_head = e->arpq_tail = NULL; 495 e->v6 = (addr_len == 16); 496 e->sc = pi->adapter; 497 (void) atomic_swap_uint(&e->refcnt, 1); 498 e->vlan = VLAN_NONE; 499 e->next = d->l2tab[hash].first; 500 d->l2tab[hash].first = e; 501 mutex_exit(&e->lock); 502 } else { 503 ASSERT(0); 504 } 505 506 done: 507 rw_exit(&d->lock); 508 return (e); 509 } 510 511 /* 512 * Called when the host's neighbor layer makes a change to some entry that is 513 * loaded into the HW L2 table. 514 */ 515 void 516 t4_l2t_update(ip2mac_t *ip2macp, void *arg) 517 { 518 struct l2t_entry *e = (struct l2t_entry *)arg; 519 struct adapter *sc = e->sc; 520 uchar_t *cp; 521 522 if (ip2macp->ip2mac_err != 0) { 523 ASSERT(0); /* Don't know what to do. Needs to be investigated */ 524 } 525 526 mutex_enter(&e->lock); 527 if (atomic_read(&e->refcnt) != 0) 528 goto found; 529 e->state = L2T_STATE_STALE; 530 mutex_exit(&e->lock); 531 532 /* The TOE has no interest in this LLE */ 533 return; 534 535 found: 536 if (atomic_read(&e->refcnt) != 0) { 537 538 /* Entry is referenced by at least 1 offloaded connection. */ 539 540 cp = (uchar_t *)LLADDR(&ip2macp->ip2mac_ha); 541 bcopy(cp, e->dmac, 6); 542 (void) write_l2e(sc, e, 1); 543 e->state = L2T_STATE_VALID; 544 545 } 546 mutex_exit(&e->lock); 547 } 548 #endif 549