1 /* 2 * This file and its contents are supplied under the terms of the 3 * Common Development and Distribution License ("CDDL"), version 1.0. 4 * You may only use this file in accordance with the terms of version 5 * 1.0 of the CDDL. 6 * 7 * A full copy of the text of the CDDL should have accompanied this 8 * source. A copy of the CDDL is also available via the Internet at 9 * http://www.illumos.org/license/CDDL. 10 */ 11 12 /* 13 * This file is part of the Chelsio T4 support code. 14 * 15 * Copyright (C) 2010-2013 Chelsio Communications. All rights reserved. 16 * 17 * This program is distributed in the hope that it will be useful, but WITHOUT 18 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or 19 * FITNESS FOR A PARTICULAR PURPOSE. See the LICENSE file included in this 20 * release for licensing terms and conditions. 21 */ 22 23 #include <sys/ddi.h> 24 #include <sys/sunddi.h> 25 #include <sys/sunndi.h> 26 #include <sys/atomic.h> 27 #include <sys/dlpi.h> 28 #include <sys/pattr.h> 29 #include <sys/strsubr.h> 30 #include <sys/stream.h> 31 #include <sys/strsun.h> 32 #include <sys/ethernet.h> 33 #include <sys/containerof.h> 34 #include <inet/ip.h> 35 #include <inet/ipclassifier.h> 36 #include <inet/tcp.h> 37 38 #include "common/common.h" 39 #include "common/t4_msg.h" 40 #include "common/t4_regs.h" 41 #include "common/t4_regs_values.h" 42 #include "t4_l2t.h" 43 44 /* identifies sync vs async L2T_WRITE_REQs */ 45 #define S_SYNC_WR 12 46 #define V_SYNC_WR(x) ((x) << S_SYNC_WR) 47 #define F_SYNC_WR V_SYNC_WR(1) 48 #define VLAN_NONE 0xfff 49 50 /* 51 * jhash.h: Jenkins hash support. 52 * 53 * Copyright (C) 1996 Bob Jenkins (bob_jenkins@burtleburtle.net) 54 * 55 * http://burtleburtle.net/bob/hash/ 56 * 57 * These are the credits from Bob's sources: 58 * 59 * lookup2.c, by Bob Jenkins, December 1996, Public Domain. 60 * hash(), hash2(), hash3, and mix() are externally useful functions. 61 * Routines to test the hash are included if SELF_TEST is defined. 62 * You can use this free for any purpose. It has no warranty. 63 */ 64 65 /* NOTE: Arguments are modified. */ 66 #define __jhash_mix(a, b, c) \ 67 { \ 68 a -= b; a -= c; a ^= (c>>13); \ 69 b -= c; b -= a; b ^= (a<<8); \ 70 c -= a; c -= b; c ^= (b>>13); \ 71 a -= b; a -= c; a ^= (c>>12); \ 72 b -= c; b -= a; b ^= (a<<16); \ 73 c -= a; c -= b; c ^= (b>>5); \ 74 a -= b; a -= c; a ^= (c>>3); \ 75 b -= c; b -= a; b ^= (a<<10); \ 76 c -= a; c -= b; c ^= (b>>15); \ 77 } 78 79 /* The golden ration: an arbitrary value */ 80 #define JHASH_GOLDEN_RATIO 0x9e3779b9 81 82 /* 83 * A special ultra-optimized versions that knows they are hashing exactly 84 * 3, 2 or 1 word(s). 85 * 86 * NOTE: In partilar the "c += length; __jhash_mix(a,b,c);" normally 87 * done at the end is not done here. 88 */ 89 static inline u32 90 jhash_3words(u32 a, u32 b, u32 c, u32 initval) 91 { 92 a += JHASH_GOLDEN_RATIO; 93 b += JHASH_GOLDEN_RATIO; 94 c += initval; 95 96 __jhash_mix(a, b, c); 97 98 return (c); 99 } 100 101 static inline u32 102 jhash_2words(u32 a, u32 b, u32 initval) 103 { 104 return (jhash_3words(a, b, 0, initval)); 105 } 106 107 #if defined(__GNUC__) 108 #define likely(x) __builtin_expect((x), 1) 109 #define unlikely(x) __builtin_expect((x), 0) 110 #else 111 #define likely(x) (x) 112 #define unlikely(x) (x) 113 #endif /* defined(__GNUC__) */ 114 115 enum { 116 L2T_STATE_VALID, /* entry is up to date */ 117 L2T_STATE_STALE, /* entry may be used but needs revalidation */ 118 L2T_STATE_RESOLVING, /* entry needs address resolution */ 119 L2T_STATE_SYNC_WRITE, /* synchronous write of entry underway */ 120 121 /* when state is one of the below the entry is not hashed */ 122 L2T_STATE_SWITCHING, /* entry is being used by a switching filter */ 123 L2T_STATE_UNUSED /* entry not in use */ 124 }; 125 126 struct l2t_data { 127 krwlock_t lock; 128 u_int l2t_size; 129 volatile uint_t nfree; /* number of free entries */ 130 struct l2t_entry *rover; /* starting point for next allocation */ 131 struct l2t_entry l2tab[]; 132 }; 133 134 #define VLAN_NONE 0xfff 135 #define SA(x) ((struct sockaddr *)(x)) 136 #define SIN(x) ((struct sockaddr_in *)(x)) 137 #define SINADDR(x) (SIN(x)->sin_addr.s_addr) 138 #define atomic_read(x) atomic_add_int_nv(x, 0) 139 140 #ifdef TCP_OFFLOAD_ENABLE 141 /* 142 * Allocate a free L2T entry. 143 * Must be called with l2t_data.lockatomic_load_acq_int held. 144 */ 145 static struct l2t_entry * 146 alloc_l2e(struct l2t_data *d) 147 { 148 struct l2t_entry *end, *e, **p; 149 150 ASSERT(rw_write_held(&d->lock)); 151 152 if (!atomic_read(&d->nfree)) 153 return (NULL); 154 155 /* there's definitely a free entry */ 156 for (e = d->rover, end = &d->l2tab[d->l2t_size]; e != end; ++e) 157 if (atomic_read(&e->refcnt) == 0) 158 goto found; 159 160 for (e = d->l2tab; atomic_read(&e->refcnt); ++e) 161 /* */; 162 found: 163 d->rover = e + 1; 164 atomic_dec_uint(&d->nfree); 165 166 /* 167 * The entry we found may be an inactive entry that is 168 * presently in the hash table. We need to remove it. 169 */ 170 if (e->state < L2T_STATE_SWITCHING) { 171 for (p = &d->l2tab[e->hash].first; *p; p = &(*p)->next) { 172 if (*p == e) { 173 *p = e->next; 174 e->next = NULL; 175 break; 176 } 177 } 178 } 179 180 e->state = L2T_STATE_UNUSED; 181 return (e); 182 } 183 184 /* 185 * Write an L2T entry. Must be called with the entry locked. 186 * The write may be synchronous or asynchronous. 187 */ 188 static int 189 write_l2e(adapter_t *sc, struct l2t_entry *e, int sync) 190 { 191 mblk_t *m; 192 struct cpl_l2t_write_req *req; 193 int idx = e->idx + sc->vres.l2t.start; 194 195 ASSERT(MUTEX_HELD(&e->lock)); 196 197 if ((m = allocb(sizeof (*req), BPRI_HI)) == NULL) 198 return (ENOMEM); 199 200 /* LINTED: E_BAD_PTR_CAST_ALIGN */ 201 req = (struct cpl_l2t_write_req *)m->b_wptr; 202 203 /* LINTED: E_CONSTANT_CONDITION */ 204 INIT_TP_WR(req, 0); 205 OPCODE_TID(req) = htonl(MK_OPCODE_TID(CPL_L2T_WRITE_REQ, idx | 206 V_SYNC_WR(sync) | V_TID_QID(sc->sge.fwq.abs_id))); 207 req->params = htons(V_L2T_W_PORT(e->lport) | V_L2T_W_NOREPLY(!sync)); 208 req->l2t_idx = htons(idx); 209 req->vlan = htons(e->vlan); 210 (void) memcpy(req->dst_mac, e->dmac, sizeof (req->dst_mac)); 211 212 m->b_wptr += sizeof (*req); 213 214 (void) t4_mgmt_tx(sc, m); 215 216 if (sync && e->state != L2T_STATE_SWITCHING) 217 e->state = L2T_STATE_SYNC_WRITE; 218 219 return (0); 220 } 221 #endif 222 223 struct l2t_data * 224 t4_init_l2t(struct adapter *sc) 225 { 226 int i, l2t_size; 227 struct l2t_data *d; 228 229 l2t_size = sc->vres.l2t.size; 230 if(l2t_size < 1) 231 return (NULL); 232 233 d = kmem_zalloc(sizeof(*d) + l2t_size * sizeof (struct l2t_entry), KM_SLEEP); 234 if (!d) 235 return (NULL); 236 237 d->l2t_size = l2t_size; 238 239 d->rover = d->l2tab; 240 (void) atomic_swap_uint(&d->nfree, l2t_size); 241 rw_init(&d->lock, NULL, RW_DRIVER, NULL); 242 243 for (i = 0; i < l2t_size; i++) { 244 /* LINTED: E_ASSIGN_NARROW_CONV */ 245 d->l2tab[i].idx = i; 246 d->l2tab[i].state = L2T_STATE_UNUSED; 247 mutex_init(&d->l2tab[i].lock, NULL, MUTEX_DRIVER, NULL); 248 (void) atomic_swap_uint(&d->l2tab[i].refcnt, 0); 249 } 250 251 #ifdef TCP_OFFLOAD_ENABLE 252 (void) t4_register_cpl_handler(sc, CPL_L2T_WRITE_RPL, do_l2t_write_rpl); 253 #endif 254 255 return (d); 256 } 257 258 int 259 t4_free_l2t(struct l2t_data *d) 260 { 261 int i; 262 263 for (i = 0; i < L2T_SIZE; i++) 264 mutex_destroy(&d->l2tab[i].lock); 265 rw_destroy(&d->lock); 266 kmem_free(d, sizeof (*d)); 267 268 return (0); 269 } 270 271 #ifdef TCP_OFFLOAD_ENABLE 272 static inline void 273 l2t_hold(struct l2t_data *d, struct l2t_entry *e) 274 { 275 if (atomic_inc_uint_nv(&e->refcnt) == 1) /* 0 -> 1 transition */ 276 atomic_dec_uint(&d->nfree); 277 } 278 279 /* 280 * To avoid having to check address families we do not allow v4 and v6 281 * neighbors to be on the same hash chain. We keep v4 entries in the first 282 * half of available hash buckets and v6 in the second. 283 */ 284 enum { 285 L2T_SZ_HALF = L2T_SIZE / 2, 286 L2T_HASH_MASK = L2T_SZ_HALF - 1 287 }; 288 289 static inline unsigned int 290 arp_hash(const uint32_t *key, int ifindex) 291 { 292 return (jhash_2words(*key, ifindex, 0) & L2T_HASH_MASK); 293 } 294 295 static inline unsigned int 296 ipv6_hash(const uint32_t *key, int ifindex) 297 { 298 uint32_t xor = key[0] ^ key[1] ^ key[2] ^ key[3]; 299 300 return (L2T_SZ_HALF + (jhash_2words(xor, ifindex, 0) & L2T_HASH_MASK)); 301 } 302 303 static inline unsigned int 304 addr_hash(const uint32_t *addr, int addr_len, int ifindex) 305 { 306 return (addr_len == 4 ? arp_hash(addr, ifindex) : 307 ipv6_hash(addr, ifindex)); 308 } 309 310 /* 311 * Checks if an L2T entry is for the given IP/IPv6 address. It does not check 312 * whether the L2T entry and the address are of the same address family. 313 * Callers ensure an address is only checked against L2T entries of the same 314 * family, something made trivial by the separation of IP and IPv6 hash chains 315 * mentioned above. Returns 0 if there's a match, 316 */ 317 static inline int 318 addreq(const struct l2t_entry *e, const uint32_t *addr) 319 { 320 if (e->v6 != 0) 321 return ((e->addr[0] ^ addr[0]) | (e->addr[1] ^ addr[1]) | 322 (e->addr[2] ^ addr[2]) | (e->addr[3] ^ addr[3])); 323 return (e->addr[0] ^ addr[0]); 324 } 325 326 /* 327 * Add a packet to an L2T entry's queue of packets awaiting resolution. 328 * Must be called with the entry's lock held. 329 */ 330 static inline void 331 arpq_enqueue(struct l2t_entry *e, mblk_t *m) 332 { 333 ASSERT(MUTEX_HELD(&e->lock)); 334 335 ASSERT(m->b_next == NULL); 336 if (e->arpq_head != NULL) 337 e->arpq_tail->b_next = m; 338 else 339 e->arpq_head = m; 340 e->arpq_tail = m; 341 } 342 343 int 344 t4_l2t_send(struct adapter *sc, mblk_t *m, struct l2t_entry *e) 345 { 346 sin_t *sin; 347 ip2mac_t ip2m; 348 349 if (e->v6 != 0) 350 ASSERT(0); 351 again: 352 switch (e->state) { 353 case L2T_STATE_STALE: /* entry is stale, kick off revalidation */ 354 355 /* Fall through */ 356 case L2T_STATE_VALID: /* fast-path, send the packet on */ 357 (void) t4_wrq_tx(sc, MBUF_EQ(m), m); 358 return (0); 359 360 case L2T_STATE_RESOLVING: 361 case L2T_STATE_SYNC_WRITE: 362 mutex_enter(&e->lock); 363 if (e->state != L2T_STATE_SYNC_WRITE && 364 e->state != L2T_STATE_RESOLVING) { 365 /* state changed by the time we got here */ 366 mutex_exit(&e->lock); 367 goto again; 368 } 369 arpq_enqueue(e, m); 370 mutex_exit(&e->lock); 371 372 bzero(&ip2m, sizeof (ip2m)); 373 sin = (sin_t *)&ip2m.ip2mac_pa; 374 sin->sin_family = AF_INET; 375 sin->sin_addr.s_addr = e->in_addr; 376 ip2m.ip2mac_ifindex = e->ifindex; 377 378 if (e->state == L2T_STATE_RESOLVING) { 379 (void) ip2mac(IP2MAC_RESOLVE, &ip2m, t4_l2t_update, e, 380 0); 381 if (ip2m.ip2mac_err == EINPROGRESS) 382 ASSERT(0); 383 else if (ip2m.ip2mac_err == 0) 384 t4_l2t_update(&ip2m, e); 385 else 386 ASSERT(0); 387 } 388 } 389 390 return (0); 391 } 392 393 /* 394 * Called when an L2T entry has no more users. The entry is left in the hash 395 * table since it is likely to be reused but we also bump nfree to indicate 396 * that the entry can be reallocated for a different neighbor. We also drop 397 * the existing neighbor reference in case the neighbor is going away and is 398 * waiting on our reference. 399 * 400 * Because entries can be reallocated to other neighbors once their ref count 401 * drops to 0 we need to take the entry's lock to avoid races with a new 402 * incarnation. 403 */ 404 static void 405 t4_l2e_free(struct l2t_entry *e) 406 { 407 struct l2t_data *d; 408 409 mutex_enter(&e->lock); 410 /* LINTED: E_NOP_IF_STMT */ 411 if (atomic_read(&e->refcnt) == 0) { /* hasn't been recycled */ 412 /* 413 * Don't need to worry about the arpq, an L2T entry can't be 414 * released if any packets are waiting for resolution as we 415 * need to be able to communicate with the device to close a 416 * connection. 417 */ 418 } 419 mutex_exit(&e->lock); 420 421 d = __containerof(e, struct l2t_data, l2tab[e->idx]); 422 atomic_inc_uint(&d->nfree); 423 424 } 425 426 void 427 t4_l2t_release(struct l2t_entry *e) 428 { 429 if (atomic_dec_uint_nv(&e->refcnt) == 0) 430 t4_l2e_free(e); 431 } 432 433 /* ARGSUSED */ 434 int 435 do_l2t_write_rpl(struct sge_iq *iq, const struct rss_header *rss, mblk_t *m) 436 { 437 struct adapter *sc = iq->adapter; 438 const struct cpl_l2t_write_rpl *rpl = (const void *)(rss + 1); 439 unsigned int tid = GET_TID(rpl); 440 unsigned int idx = tid % L2T_SIZE; 441 442 if (likely(rpl->status != CPL_ERR_NONE)) { 443 cxgb_printf(sc->dip, CE_WARN, 444 "Unexpected L2T_WRITE_RPL status %u for entry %u", 445 rpl->status, idx); 446 return (-EINVAL); 447 } 448 449 return (0); 450 } 451 452 /* 453 * The TOE wants an L2 table entry that it can use to reach the next hop over 454 * the specified port. Produce such an entry - create one if needed. 455 * 456 * Note that the ifnet could be a pseudo-device like if_vlan, if_lagg, etc. on 457 * top of the real cxgbe interface. 458 */ 459 struct l2t_entry * 460 t4_l2t_get(struct port_info *pi, conn_t *connp) 461 { 462 struct l2t_entry *e; 463 struct l2t_data *d = pi->adapter->l2t; 464 int addr_len; 465 uint32_t *addr; 466 int hash; 467 int index = \ 468 connp->conn_ixa->ixa_ire->ire_ill->ill_phyint->phyint_ifindex; 469 unsigned int smt_idx = pi->port_id; 470 addr = (uint32_t *)&connp->conn_faddr_v4; 471 addr_len = sizeof (connp->conn_faddr_v4); 472 473 hash = addr_hash(addr, addr_len, index); 474 475 rw_enter(&d->lock, RW_WRITER); 476 for (e = d->l2tab[hash].first; e; e = e->next) { 477 if (!addreq(e, addr) && e->smt_idx == smt_idx) { 478 l2t_hold(d, e); 479 goto done; 480 } 481 } 482 483 /* Need to allocate a new entry */ 484 e = alloc_l2e(d); 485 if (e != NULL) { 486 mutex_enter(&e->lock); /* avoid race with t4_l2t_free */ 487 e->state = L2T_STATE_RESOLVING; 488 (void) memcpy(e->addr, addr, addr_len); 489 e->in_addr = connp->conn_faddr_v4; 490 e->ifindex = index; 491 /* LINTED: E_ASSIGN_NARROW_CONV */ 492 e->smt_idx = smt_idx; 493 /* LINTED: E_ASSIGN_NARROW_CONV */ 494 e->hash = hash; 495 e->lport = pi->lport; 496 e->arpq_head = e->arpq_tail = NULL; 497 e->v6 = (addr_len == 16); 498 e->sc = pi->adapter; 499 (void) atomic_swap_uint(&e->refcnt, 1); 500 e->vlan = VLAN_NONE; 501 e->next = d->l2tab[hash].first; 502 d->l2tab[hash].first = e; 503 mutex_exit(&e->lock); 504 } else { 505 ASSERT(0); 506 } 507 508 done: 509 rw_exit(&d->lock); 510 return (e); 511 } 512 513 /* 514 * Called when the host's neighbor layer makes a change to some entry that is 515 * loaded into the HW L2 table. 516 */ 517 void 518 t4_l2t_update(ip2mac_t *ip2macp, void *arg) 519 { 520 struct l2t_entry *e = (struct l2t_entry *)arg; 521 struct adapter *sc = e->sc; 522 uchar_t *cp; 523 524 if (ip2macp->ip2mac_err != 0) { 525 ASSERT(0); /* Don't know what to do. Needs to be investigated */ 526 } 527 528 mutex_enter(&e->lock); 529 if (atomic_read(&e->refcnt) != 0) 530 goto found; 531 e->state = L2T_STATE_STALE; 532 mutex_exit(&e->lock); 533 534 /* The TOE has no interest in this LLE */ 535 return; 536 537 found: 538 if (atomic_read(&e->refcnt) != 0) { 539 540 /* Entry is referenced by at least 1 offloaded connection. */ 541 542 cp = (uchar_t *)LLADDR(&ip2macp->ip2mac_ha); 543 bcopy(cp, e->dmac, 6); 544 (void) write_l2e(sc, e, 1); 545 e->state = L2T_STATE_VALID; 546 547 } 548 mutex_exit(&e->lock); 549 } 550 #endif 551