xref: /illumos-gate/usr/src/uts/common/io/cryptmod.c (revision c5749750a3e052f1194f65a303456224c51dea63)
1 /*
2  * Copyright 2010 Sun Microsystems, Inc.  All rights reserved.
3  * Use is subject to license terms.
4  *
5  * STREAMS Crypto Module
6  *
7  * This module is used to facilitate Kerberos encryption
8  * operations for the telnet daemon and rlogin daemon.
9  * Because the Solaris telnet and rlogin daemons run mostly
10  * in-kernel via 'telmod' and 'rlmod', this module must be
11  * pushed on the STREAM *below* telmod or rlmod.
12  *
13  * Parts of the 3DES key derivation code are covered by the
14  * following copyright.
15  *
16  * Copyright (C) 1998 by the FundsXpress, INC.
17  *
18  * All rights reserved.
19  *
20  * Export of this software from the United States of America may require
21  * a specific license from the United States Government.  It is the
22  * responsibility of any person or organization contemplating export to
23  * obtain such a license before exporting.
24  *
25  * WITHIN THAT CONSTRAINT, permission to use, copy, modify, and
26  * distribute this software and its documentation for any purpose and
27  * without fee is hereby granted, provided that the above copyright
28  * notice appear in all copies and that both that copyright notice and
29  * this permission notice appear in supporting documentation, and that
30  * the name of FundsXpress. not be used in advertising or publicity pertaining
31  * to distribution of the software without specific, written prior
32  * permission.  FundsXpress makes no representations about the suitability of
33  * this software for any purpose.  It is provided "as is" without express
34  * or implied warranty.
35  *
36  * THIS SOFTWARE IS PROVIDED ``AS IS'' AND WITHOUT ANY EXPRESS OR
37  * IMPLIED WARRANTIES, INCLUDING, WITHOUT LIMITATION, THE IMPLIED
38  * WARRANTIES OF MERCHANTIBILITY AND FITNESS FOR A PARTICULAR PURPOSE.
39  */
40 
41 #include <sys/types.h>
42 #include <sys/sysmacros.h>
43 #include <sys/errno.h>
44 #include <sys/debug.h>
45 #include <sys/time.h>
46 #include <sys/stropts.h>
47 #include <sys/stream.h>
48 #include <sys/strsubr.h>
49 #include <sys/strlog.h>
50 #include <sys/cmn_err.h>
51 #include <sys/conf.h>
52 #include <sys/sunddi.h>
53 #include <sys/kmem.h>
54 #include <sys/strsun.h>
55 #include <sys/random.h>
56 #include <sys/types.h>
57 #include <sys/byteorder.h>
58 #include <sys/cryptmod.h>
59 #include <sys/crc32.h>
60 #include <sys/policy.h>
61 
62 #include <sys/crypto/api.h>
63 
64 /*
65  * Function prototypes.
66  */
67 static	int	cryptmodopen(queue_t *, dev_t *, int, int, cred_t *);
68 static  void	cryptmodrput(queue_t *, mblk_t *);
69 static  void	cryptmodwput(queue_t *, mblk_t *);
70 static	int	cryptmodclose(queue_t *, int, cred_t *);
71 static	int	cryptmodwsrv(queue_t *);
72 static	int	cryptmodrsrv(queue_t *);
73 
74 static mblk_t *do_encrypt(queue_t *q, mblk_t *mp);
75 static mblk_t *do_decrypt(queue_t *q, mblk_t *mp);
76 
77 #define	CRYPTMOD_ID 5150
78 
79 #define	CFB_BLKSZ 8
80 
81 #define	K5CLENGTH 5
82 
83 static struct module_info	cryptmod_minfo = {
84 	CRYPTMOD_ID,	/* mi_idnum */
85 	"cryptmod",	/* mi_idname */
86 	0,		/* mi_minpsz */
87 	INFPSZ,		/* mi_maxpsz */
88 	65536,		/* mi_hiwat */
89 	1024		/* mi_lowat */
90 };
91 
92 static struct qinit	cryptmod_rinit = {
93 	(int (*)())cryptmodrput,	/* qi_putp */
94 	cryptmodrsrv,	/* qi_svc */
95 	cryptmodopen,	/* qi_qopen */
96 	cryptmodclose,	/* qi_qclose */
97 	NULL,		/* qi_qadmin */
98 	&cryptmod_minfo,	/* qi_minfo */
99 	NULL		/* qi_mstat */
100 };
101 
102 static struct qinit	cryptmod_winit = {
103 	(int (*)())cryptmodwput,	/* qi_putp */
104 	cryptmodwsrv,	/* qi_srvp */
105 	NULL,		/* qi_qopen */
106 	NULL,		/* qi_qclose */
107 	NULL,		/* qi_qadmin */
108 	&cryptmod_minfo,	/* qi_minfo */
109 	NULL		/* qi_mstat */
110 };
111 
112 static struct streamtab	cryptmod_info = {
113 	&cryptmod_rinit,	/* st_rdinit */
114 	&cryptmod_winit,	/* st_wrinit */
115 	NULL,	/* st_muxrinit */
116 	NULL	/* st_muxwinit */
117 };
118 
119 typedef struct {
120 	uint_t hash_len;
121 	uint_t confound_len;
122 	int (*hashfunc)();
123 } hash_info_t;
124 
125 #define	MAX_CKSUM_LEN 20
126 #define	CONFOUNDER_LEN 8
127 
128 #define	SHA1_HASHSIZE 20
129 #define	MD5_HASHSIZE 16
130 #define	CRC32_HASHSIZE 4
131 #define	MSGBUF_SIZE 4096
132 #define	CONFOUNDER_BYTES 128
133 
134 
135 static int crc32_calc(uchar_t *, uchar_t *, uint_t);
136 static int md5_calc(uchar_t *, uchar_t *, uint_t);
137 static int sha1_calc(uchar_t *, uchar_t *, uint_t);
138 
139 static hash_info_t null_hash = {0, 0, NULL};
140 static hash_info_t crc32_hash = {CRC32_HASHSIZE, CONFOUNDER_LEN, crc32_calc};
141 static hash_info_t md5_hash = {MD5_HASHSIZE, CONFOUNDER_LEN, md5_calc};
142 static hash_info_t sha1_hash = {SHA1_HASHSIZE, CONFOUNDER_LEN, sha1_calc};
143 
144 static crypto_mech_type_t sha1_hmac_mech = CRYPTO_MECH_INVALID;
145 static crypto_mech_type_t md5_hmac_mech = CRYPTO_MECH_INVALID;
146 static crypto_mech_type_t sha1_hash_mech = CRYPTO_MECH_INVALID;
147 static crypto_mech_type_t md5_hash_mech = CRYPTO_MECH_INVALID;
148 
149 static int kef_crypt(struct cipher_data_t *, void *,
150 		    crypto_data_format_t, size_t, int);
151 static mblk_t *
152 arcfour_hmac_md5_encrypt(queue_t *, struct tmodinfo *,
153 		mblk_t *, hash_info_t *);
154 static mblk_t *
155 arcfour_hmac_md5_decrypt(queue_t *, struct tmodinfo *,
156 		mblk_t *, hash_info_t *);
157 
158 static int
159 do_hmac(crypto_mech_type_t, crypto_key_t *, char *, int, char *, int);
160 
161 /*
162  * This is the loadable module wrapper.
163  */
164 #include <sys/modctl.h>
165 
166 static struct fmodsw fsw = {
167 	"cryptmod",
168 	&cryptmod_info,
169 	D_MP | D_MTQPAIR
170 };
171 
172 /*
173  * Module linkage information for the kernel.
174  */
175 static struct modlstrmod modlstrmod = {
176 	&mod_strmodops,
177 	"STREAMS encryption module",
178 	&fsw
179 };
180 
181 static struct modlinkage modlinkage = {
182 	MODREV_1,
183 	&modlstrmod,
184 	NULL
185 };
186 
187 int
188 _init(void)
189 {
190 	return (mod_install(&modlinkage));
191 }
192 
193 int
194 _fini(void)
195 {
196 	return (mod_remove(&modlinkage));
197 }
198 
199 int
200 _info(struct modinfo *modinfop)
201 {
202 	return (mod_info(&modlinkage, modinfop));
203 }
204 
205 static void
206 cleanup(struct cipher_data_t *cd)
207 {
208 	if (cd->key != NULL) {
209 		bzero(cd->key, cd->keylen);
210 		kmem_free(cd->key, cd->keylen);
211 		cd->key = NULL;
212 	}
213 
214 	if (cd->ckey != NULL) {
215 		/*
216 		 * ckey is a crypto_key_t structure which references
217 		 * "cd->key" for its raw key data.  Since that was already
218 		 * cleared out, we don't need another "bzero" here.
219 		 */
220 		kmem_free(cd->ckey, sizeof (crypto_key_t));
221 		cd->ckey = NULL;
222 	}
223 
224 	if (cd->block != NULL) {
225 		kmem_free(cd->block, cd->blocklen);
226 		cd->block = NULL;
227 	}
228 
229 	if (cd->saveblock != NULL) {
230 		kmem_free(cd->saveblock, cd->blocklen);
231 		cd->saveblock = NULL;
232 	}
233 
234 	if (cd->ivec != NULL) {
235 		kmem_free(cd->ivec, cd->ivlen);
236 		cd->ivec = NULL;
237 	}
238 
239 	if (cd->d_encr_key.ck_data != NULL) {
240 		bzero(cd->d_encr_key.ck_data, cd->keylen);
241 		kmem_free(cd->d_encr_key.ck_data, cd->keylen);
242 	}
243 
244 	if (cd->d_hmac_key.ck_data != NULL) {
245 		bzero(cd->d_hmac_key.ck_data, cd->keylen);
246 		kmem_free(cd->d_hmac_key.ck_data, cd->keylen);
247 	}
248 
249 	if (cd->enc_tmpl != NULL)
250 		(void) crypto_destroy_ctx_template(cd->enc_tmpl);
251 
252 	if (cd->hmac_tmpl != NULL)
253 		(void) crypto_destroy_ctx_template(cd->hmac_tmpl);
254 
255 	if (cd->ctx != NULL) {
256 		crypto_cancel_ctx(cd->ctx);
257 		cd->ctx = NULL;
258 	}
259 }
260 
261 /* ARGSUSED */
262 static int
263 cryptmodopen(queue_t *rq, dev_t *dev, int oflag, int sflag, cred_t *crp)
264 {
265 	struct tmodinfo	*tmi;
266 	ASSERT(rq);
267 
268 	if (sflag != MODOPEN)
269 		return (EINVAL);
270 
271 	(void) (STRLOG(CRYPTMOD_ID, 0, 5, SL_TRACE|SL_NOTE,
272 			"cryptmodopen: opening module(PID %d)",
273 			ddi_get_pid()));
274 
275 	if (rq->q_ptr != NULL) {
276 		cmn_err(CE_WARN, "cryptmodopen: already opened");
277 		return (0);
278 	}
279 
280 	/*
281 	 * Allocate and initialize per-Stream structure.
282 	 */
283 	tmi = (struct tmodinfo *)kmem_zalloc(sizeof (struct tmodinfo),
284 						KM_SLEEP);
285 
286 	tmi->enc_data.method = CRYPT_METHOD_NONE;
287 	tmi->dec_data.method = CRYPT_METHOD_NONE;
288 
289 	tmi->ready = (CRYPT_READ_READY | CRYPT_WRITE_READY);
290 
291 	rq->q_ptr = WR(rq)->q_ptr = tmi;
292 
293 	sha1_hmac_mech = crypto_mech2id(SUN_CKM_SHA1_HMAC);
294 	md5_hmac_mech = crypto_mech2id(SUN_CKM_MD5_HMAC);
295 	sha1_hash_mech = crypto_mech2id(SUN_CKM_SHA1);
296 	md5_hash_mech = crypto_mech2id(SUN_CKM_MD5);
297 
298 	qprocson(rq);
299 
300 	return (0);
301 }
302 
303 /* ARGSUSED */
304 static int
305 cryptmodclose(queue_t *rq, int flags __unused, cred_t *credp __unused)
306 {
307 	struct tmodinfo *tmi = (struct tmodinfo *)rq->q_ptr;
308 	ASSERT(tmi);
309 
310 	qprocsoff(rq);
311 
312 	cleanup(&tmi->enc_data);
313 	cleanup(&tmi->dec_data);
314 
315 	kmem_free(tmi, sizeof (struct tmodinfo));
316 	rq->q_ptr = WR(rq)->q_ptr = NULL;
317 
318 	return (0);
319 }
320 
321 /*
322  * plaintext_offset
323  *
324  * Calculate exactly how much space is needed in front
325  * of the "plaintext" in an mbuf so it can be positioned
326  * 1 time instead of potentially moving the data multiple
327  * times.
328  */
329 static int
330 plaintext_offset(struct cipher_data_t *cd)
331 {
332 	int headspace = 0;
333 
334 	/* 4 byte length prepended to all RCMD msgs */
335 	if (ANY_RCMD_MODE(cd->option_mask))
336 		headspace += RCMD_LEN_SZ;
337 
338 	/* RCMD V2 mode adds an additional 4 byte plaintext length */
339 	if (cd->option_mask & CRYPTOPT_RCMD_MODE_V2)
340 		headspace += RCMD_LEN_SZ;
341 
342 	/* Need extra space for hash and counfounder */
343 	switch (cd->method) {
344 	case CRYPT_METHOD_DES_CBC_NULL:
345 		headspace += null_hash.hash_len + null_hash.confound_len;
346 		break;
347 	case CRYPT_METHOD_DES_CBC_CRC:
348 		headspace += crc32_hash.hash_len + crc32_hash.confound_len;
349 		break;
350 	case CRYPT_METHOD_DES_CBC_MD5:
351 		headspace += md5_hash.hash_len + md5_hash.confound_len;
352 		break;
353 	case CRYPT_METHOD_DES3_CBC_SHA1:
354 		headspace += sha1_hash.confound_len;
355 		break;
356 	case CRYPT_METHOD_ARCFOUR_HMAC_MD5:
357 		headspace += md5_hash.hash_len + md5_hash.confound_len;
358 		break;
359 	case CRYPT_METHOD_AES128:
360 	case CRYPT_METHOD_AES256:
361 		headspace += DEFAULT_AES_BLOCKLEN;
362 		break;
363 	case CRYPT_METHOD_DES_CFB:
364 	case CRYPT_METHOD_NONE:
365 		break;
366 	}
367 
368 	return (headspace);
369 }
370 /*
371  * encrypt_size
372  *
373  * Calculate the resulting size when encrypting 'plainlen' bytes
374  * of data.
375  */
376 static size_t
377 encrypt_size(struct cipher_data_t *cd, size_t plainlen)
378 {
379 	size_t cipherlen;
380 
381 	switch (cd->method) {
382 	case CRYPT_METHOD_DES_CBC_NULL:
383 		cipherlen = (size_t)P2ROUNDUP(null_hash.hash_len +
384 					    plainlen, 8);
385 		break;
386 	case CRYPT_METHOD_DES_CBC_MD5:
387 		cipherlen = (size_t)P2ROUNDUP(md5_hash.hash_len +
388 					    md5_hash.confound_len +
389 					    plainlen, 8);
390 		break;
391 	case CRYPT_METHOD_DES_CBC_CRC:
392 		cipherlen = (size_t)P2ROUNDUP(crc32_hash.hash_len +
393 					    crc32_hash.confound_len +
394 					    plainlen, 8);
395 		break;
396 	case CRYPT_METHOD_DES3_CBC_SHA1:
397 		cipherlen = (size_t)P2ROUNDUP(sha1_hash.confound_len +
398 					    plainlen, 8) +
399 					    sha1_hash.hash_len;
400 		break;
401 	case CRYPT_METHOD_ARCFOUR_HMAC_MD5:
402 		cipherlen = (size_t)P2ROUNDUP(md5_hash.confound_len +
403 				plainlen, 1) + md5_hash.hash_len;
404 		break;
405 	case CRYPT_METHOD_AES128:
406 	case CRYPT_METHOD_AES256:
407 		/* No roundup for AES-CBC-CTS */
408 		cipherlen = DEFAULT_AES_BLOCKLEN + plainlen +
409 			AES_TRUNCATED_HMAC_LEN;
410 		break;
411 	case CRYPT_METHOD_DES_CFB:
412 	case CRYPT_METHOD_NONE:
413 		cipherlen = plainlen;
414 		break;
415 	}
416 
417 	return (cipherlen);
418 }
419 
420 /*
421  * des_cfb_encrypt
422  *
423  * Encrypt the mblk data using DES with cipher feedback.
424  *
425  * Given that V[i] is the initial 64 bit vector, V[n] is the nth 64 bit
426  * vector, D[n] is the nth chunk of 64 bits of data to encrypt
427  * (decrypt), and O[n] is the nth chunk of 64 bits of encrypted
428  * (decrypted) data, then:
429  *
430  *  V[0] = DES(V[i], key)
431  *  O[n] = D[n] <exclusive or > V[n]
432  *  V[n+1] = DES(O[n], key)
433  *
434  * The size of the message being encrypted does not change in this
435  * algorithm, num_bytes in == num_bytes out.
436  */
437 static mblk_t *
438 des_cfb_encrypt(queue_t *q, struct tmodinfo *tmi, mblk_t *mp)
439 {
440 	int savedbytes;
441 	char *iptr, *optr, *lastoutput;
442 
443 	lastoutput = optr = (char *)mp->b_rptr;
444 	iptr = (char *)mp->b_rptr;
445 	savedbytes = tmi->enc_data.bytes % CFB_BLKSZ;
446 
447 	while (iptr < (char *)mp->b_wptr) {
448 		/*
449 		 * Do DES-ECB.
450 		 * The first time this runs, the 'tmi->enc_data.block' will
451 		 * contain the initialization vector that should have been
452 		 * passed in with the SETUP ioctl.
453 		 *
454 		 * V[n] = DES(V[n-1], key)
455 		 */
456 		if (!(tmi->enc_data.bytes % CFB_BLKSZ)) {
457 			int retval = 0;
458 			retval = kef_crypt(&tmi->enc_data,
459 					tmi->enc_data.block,
460 					CRYPTO_DATA_RAW,
461 					tmi->enc_data.blocklen,
462 					CRYPT_ENCRYPT);
463 
464 			if (retval != CRYPTO_SUCCESS) {
465 #ifdef DEBUG
466 				cmn_err(CE_WARN, "des_cfb_encrypt: kef_crypt "
467 					"failed - error 0x%0x", retval);
468 #endif
469 				mp->b_datap->db_type = M_ERROR;
470 				mp->b_rptr = mp->b_datap->db_base;
471 				*mp->b_rptr = EIO;
472 				mp->b_wptr = mp->b_rptr + sizeof (char);
473 				freemsg(mp->b_cont);
474 				mp->b_cont = NULL;
475 				qreply(WR(q), mp);
476 				return (NULL);
477 			}
478 		}
479 
480 		/* O[n] = I[n] ^ V[n] */
481 		*(optr++) = *(iptr++) ^
482 		    tmi->enc_data.block[tmi->enc_data.bytes % CFB_BLKSZ];
483 
484 		tmi->enc_data.bytes++;
485 		/*
486 		 * Feedback the encrypted output as the input to next DES call.
487 		 */
488 		if (!(tmi->enc_data.bytes % CFB_BLKSZ)) {
489 			char *dbptr = tmi->enc_data.block;
490 			/*
491 			 * Get the last bits of input from the previous
492 			 * msg block that we haven't yet used as feedback input.
493 			 */
494 			if (savedbytes > 0) {
495 				bcopy(tmi->enc_data.saveblock,
496 				    dbptr, (size_t)savedbytes);
497 				dbptr += savedbytes;
498 			}
499 
500 			/*
501 			 * Now copy the correct bytes from the current input
502 			 * stream and update the 'lastoutput' ptr
503 			 */
504 			bcopy(lastoutput, dbptr,
505 				(size_t)(CFB_BLKSZ - savedbytes));
506 
507 			lastoutput += (CFB_BLKSZ - savedbytes);
508 			savedbytes = 0;
509 		}
510 	}
511 	/*
512 	 * If there are bytes of input here that we need in the next
513 	 * block to build an ivec, save them off here.
514 	 */
515 	if (lastoutput < optr) {
516 		bcopy(lastoutput,
517 		    tmi->enc_data.saveblock + savedbytes,
518 		    (uint_t)(optr - lastoutput));
519 	}
520 	return (mp);
521 }
522 
523 /*
524  * des_cfb_decrypt
525  *
526  * Decrypt the data in the mblk using DES in Cipher Feedback mode
527  *
528  * # bytes in == # bytes out, no padding, confounding, or hashing
529  * is added.
530  *
531  */
532 static mblk_t *
533 des_cfb_decrypt(queue_t *q, struct tmodinfo *tmi, mblk_t *mp)
534 {
535 	uint_t len;
536 	uint_t savedbytes;
537 	char *iptr;
538 	char *lastinput;
539 	uint_t cp;
540 
541 	len = MBLKL(mp);
542 
543 	/* decrypted output goes into the new data buffer */
544 	lastinput = iptr = (char *)mp->b_rptr;
545 
546 	savedbytes = tmi->dec_data.bytes % tmi->dec_data.blocklen;
547 
548 	/*
549 	 * Save the input CFB_BLKSZ bytes at a time.
550 	 * We are trying to decrypt in-place, but need to keep
551 	 * a small sliding window of encrypted text to be
552 	 * used to construct the feedback buffer.
553 	 */
554 	cp = ((tmi->dec_data.blocklen - savedbytes) > len ? len :
555 		tmi->dec_data.blocklen - savedbytes);
556 
557 	bcopy(lastinput, tmi->dec_data.saveblock + savedbytes, cp);
558 	savedbytes += cp;
559 
560 	lastinput += cp;
561 
562 	while (iptr < (char *)mp->b_wptr) {
563 		/*
564 		 * Do DES-ECB.
565 		 * The first time this runs, the 'tmi->dec_data.block' will
566 		 * contain the initialization vector that should have been
567 		 * passed in with the SETUP ioctl.
568 		 */
569 		if (!(tmi->dec_data.bytes % CFB_BLKSZ)) {
570 			int retval;
571 			retval = kef_crypt(&tmi->dec_data,
572 					tmi->dec_data.block,
573 					CRYPTO_DATA_RAW,
574 					tmi->dec_data.blocklen,
575 					CRYPT_ENCRYPT);
576 
577 			if (retval != CRYPTO_SUCCESS) {
578 #ifdef DEBUG
579 				cmn_err(CE_WARN, "des_cfb_decrypt: kef_crypt "
580 					"failed - status 0x%0x", retval);
581 #endif
582 				mp->b_datap->db_type = M_ERROR;
583 				mp->b_rptr = mp->b_datap->db_base;
584 				*mp->b_rptr = EIO;
585 				mp->b_wptr = mp->b_rptr + sizeof (char);
586 				freemsg(mp->b_cont);
587 				mp->b_cont = NULL;
588 				qreply(WR(q), mp);
589 				return (NULL);
590 			}
591 		}
592 
593 		/*
594 		 * To decrypt, XOR the input with the output from the DES call
595 		 */
596 		*(iptr++) ^= tmi->dec_data.block[tmi->dec_data.bytes %
597 				CFB_BLKSZ];
598 
599 		tmi->dec_data.bytes++;
600 
601 		/*
602 		 * Feedback the encrypted input for next DES call.
603 		 */
604 		if (!(tmi->dec_data.bytes % tmi->dec_data.blocklen)) {
605 			char *dbptr = tmi->dec_data.block;
606 			/*
607 			 * Get the last bits of input from the previous block
608 			 * that we haven't yet processed.
609 			 */
610 			if (savedbytes > 0) {
611 				bcopy(tmi->dec_data.saveblock,
612 				    dbptr, savedbytes);
613 				dbptr += savedbytes;
614 			}
615 
616 			savedbytes = 0;
617 
618 			/*
619 			 * This block makes sure that our local
620 			 * buffer of input data is full and can
621 			 * be accessed from the beginning.
622 			 */
623 			if (lastinput < (char *)mp->b_wptr) {
624 
625 				/* How many bytes are left in the mblk? */
626 				cp = (((char *)mp->b_wptr - lastinput) >
627 					tmi->dec_data.blocklen ?
628 					tmi->dec_data.blocklen :
629 					(char *)mp->b_wptr - lastinput);
630 
631 				/* copy what we need */
632 				bcopy(lastinput, tmi->dec_data.saveblock,
633 					cp);
634 
635 				lastinput += cp;
636 				savedbytes = cp;
637 			}
638 		}
639 	}
640 
641 	return (mp);
642 }
643 
644 /*
645  * crc32_calc
646  *
647  * Compute a CRC32 checksum on the input
648  */
649 static int
650 crc32_calc(uchar_t *buf, uchar_t *input, uint_t len)
651 {
652 	uint32_t crc;
653 
654 	CRC32(crc, input, len, 0, crc32_table);
655 
656 	buf[0] = (uchar_t)(crc & 0xff);
657 	buf[1] = (uchar_t)((crc >> 8) & 0xff);
658 	buf[2] = (uchar_t)((crc >> 16) & 0xff);
659 	buf[3] = (uchar_t)((crc >> 24) & 0xff);
660 
661 	return (CRYPTO_SUCCESS);
662 }
663 
664 static int
665 kef_digest(crypto_mech_type_t digest_type,
666 	uchar_t *input, uint_t inlen,
667 	uchar_t *output, uint_t hashlen)
668 {
669 	iovec_t v1, v2;
670 	crypto_data_t d1, d2;
671 	crypto_mechanism_t mech;
672 	int rv;
673 
674 	mech.cm_type = digest_type;
675 	mech.cm_param = 0;
676 	mech.cm_param_len = 0;
677 
678 	v1.iov_base = (void *)input;
679 	v1.iov_len = inlen;
680 
681 	d1.cd_format = CRYPTO_DATA_RAW;
682 	d1.cd_offset = 0;
683 	d1.cd_length = v1.iov_len;
684 	d1.cd_raw = v1;
685 
686 	v2.iov_base = (void *)output;
687 	v2.iov_len = hashlen;
688 
689 	d2.cd_format = CRYPTO_DATA_RAW;
690 	d2.cd_offset = 0;
691 	d2.cd_length = v2.iov_len;
692 	d2.cd_raw = v2;
693 
694 	rv = crypto_digest(&mech, &d1, &d2, NULL);
695 
696 	return (rv);
697 }
698 
699 /*
700  * sha1_calc
701  *
702  * Get a SHA1 hash on the input data.
703  */
704 static int
705 sha1_calc(uchar_t *output, uchar_t *input, uint_t inlen)
706 {
707 	int rv;
708 
709 	rv = kef_digest(sha1_hash_mech, input, inlen, output, SHA1_HASHSIZE);
710 
711 	return (rv);
712 }
713 
714 /*
715  * Get an MD5 hash on the input data.
716  * md5_calc
717  *
718  */
719 static int
720 md5_calc(uchar_t *output, uchar_t *input, uint_t inlen)
721 {
722 	int rv;
723 
724 	rv = kef_digest(md5_hash_mech, input, inlen, output, MD5_HASHSIZE);
725 
726 	return (rv);
727 }
728 
729 /*
730  * nfold
731  * duplicate the functionality of the krb5_nfold function from
732  * the userland kerberos mech.
733  * This is needed to derive keys for use with 3DES/SHA1-HMAC
734  * ciphers.
735  */
736 static void
737 nfold(int inbits, uchar_t *in, int outbits, uchar_t *out)
738 {
739 	int a, b, c, lcm;
740 	int byte, i, msbit;
741 
742 	inbits >>= 3;
743 	outbits >>= 3;
744 
745 	/* first compute lcm(n,k) */
746 	a = outbits;
747 	b = inbits;
748 
749 	while (b != 0) {
750 		c = b;
751 		b = a%b;
752 		a = c;
753 	}
754 
755 	lcm = outbits*inbits/a;
756 
757 	/* now do the real work */
758 
759 	bzero(out, outbits);
760 	byte = 0;
761 
762 	/*
763 	 * Compute the msbit in k which gets added into this byte
764 	 * first, start with the msbit in the first, unrotated byte
765 	 * then, for each byte, shift to the right for each repetition
766 	 * last, pick out the correct byte within that shifted repetition
767 	 */
768 	for (i = lcm-1; i >= 0; i--) {
769 		msbit = (((inbits<<3)-1)
770 			+(((inbits<<3)+13)*(i/inbits))
771 			+((inbits-(i%inbits))<<3)) %(inbits<<3);
772 
773 		/* pull out the byte value itself */
774 		byte += (((in[((inbits-1)-(msbit>>3))%inbits]<<8)|
775 			(in[((inbits)-(msbit>>3))%inbits]))
776 			>>((msbit&7)+1))&0xff;
777 
778 		/* do the addition */
779 		byte += out[i%outbits];
780 		out[i%outbits] = byte&0xff;
781 
782 		byte >>= 8;
783 	}
784 
785 	/* if there's a carry bit left over, add it back in */
786 	if (byte) {
787 		for (i = outbits-1; i >= 0; i--) {
788 			/* do the addition */
789 			byte += out[i];
790 			out[i] = byte&0xff;
791 
792 			/* keep around the carry bit, if any */
793 			byte >>= 8;
794 		}
795 	}
796 }
797 
798 #define	smask(step) ((1<<step)-1)
799 #define	pstep(x, step) (((x)&smask(step))^(((x)>>step)&smask(step)))
800 #define	parity_char(x) pstep(pstep(pstep((x), 4), 2), 1)
801 
802 /*
803  * Duplicate the functionality of the "dk_derive_key" function
804  * in the Kerberos mechanism.
805  */
806 static int
807 derive_key(struct cipher_data_t *cdata, uchar_t *constdata,
808 	int constlen, char *dkey, int keybytes,
809 	int blocklen)
810 {
811 	int rv = 0;
812 	int n = 0, i;
813 	char *inblock;
814 	char *rawkey;
815 	char *zeroblock;
816 	char *saveblock;
817 
818 	inblock = kmem_zalloc(blocklen, KM_SLEEP);
819 	rawkey = kmem_zalloc(keybytes, KM_SLEEP);
820 	zeroblock = kmem_zalloc(blocklen, KM_SLEEP);
821 
822 	if (constlen == blocklen)
823 		bcopy(constdata, inblock, blocklen);
824 	else
825 		nfold(constlen * 8, constdata,
826 			blocklen * 8, (uchar_t *)inblock);
827 
828 	/*
829 	 * zeroblock is an IV of all 0's.
830 	 *
831 	 * The "block" section of the cdata record is used as the
832 	 * IV for crypto operations in the kef_crypt function.
833 	 *
834 	 * We use 'block' as a generic IV data buffer because it
835 	 * is attached to the stream state data and thus can
836 	 * be used to hold information that must carry over
837 	 * from processing of one mblk to another.
838 	 *
839 	 * Here, we save the current IV and replace it with
840 	 * and empty IV (all 0's) for use when deriving the
841 	 * keys.  Once the key derivation is done, we swap the
842 	 * old IV back into place.
843 	 */
844 	saveblock = cdata->block;
845 	cdata->block = zeroblock;
846 
847 	while (n < keybytes) {
848 		rv = kef_crypt(cdata, inblock, CRYPTO_DATA_RAW,
849 				blocklen, CRYPT_ENCRYPT);
850 		if (rv != CRYPTO_SUCCESS) {
851 			/* put the original IV block back in place */
852 			cdata->block = saveblock;
853 			cmn_err(CE_WARN, "failed to derive a key: %0x", rv);
854 			goto cleanup;
855 		}
856 
857 		if (keybytes - n < blocklen) {
858 			bcopy(inblock, rawkey+n, (keybytes-n));
859 			break;
860 		}
861 		bcopy(inblock, rawkey+n, blocklen);
862 		n += blocklen;
863 	}
864 	/* put the original IV block back in place */
865 	cdata->block = saveblock;
866 
867 	/* finally, make the key */
868 	if (cdata->method == CRYPT_METHOD_DES3_CBC_SHA1) {
869 		/*
870 		 * 3DES key derivation requires that we make sure the
871 		 * key has the proper parity.
872 		 */
873 		for (i = 0; i < 3; i++) {
874 			bcopy(rawkey+(i*7), dkey+(i*8), 7);
875 
876 			/* 'dkey' is our derived key output buffer */
877 			dkey[i*8+7] = (((dkey[i*8]&1)<<1) |
878 					((dkey[i*8+1]&1)<<2) |
879 					((dkey[i*8+2]&1)<<3) |
880 					((dkey[i*8+3]&1)<<4) |
881 					((dkey[i*8+4]&1)<<5) |
882 					((dkey[i*8+5]&1)<<6) |
883 					((dkey[i*8+6]&1)<<7));
884 
885 			for (n = 0; n < 8; n++) {
886 				dkey[i*8 + n] &=  0xfe;
887 				dkey[i*8 + n] |= 1^parity_char(dkey[i*8 + n]);
888 			}
889 		}
890 	} else if (IS_AES_METHOD(cdata->method)) {
891 		bcopy(rawkey, dkey, keybytes);
892 	}
893 cleanup:
894 	kmem_free(inblock, blocklen);
895 	kmem_free(zeroblock, blocklen);
896 	kmem_free(rawkey, keybytes);
897 	return (rv);
898 }
899 
900 /*
901  * create_derived_keys
902  *
903  * Algorithm for deriving a new key and an HMAC key
904  * before computing the 3DES-SHA1-HMAC operation on the plaintext
905  * This algorithm matches the work done by Kerberos mechanism
906  * in userland.
907  */
908 static int
909 create_derived_keys(struct cipher_data_t *cdata, uint32_t usage,
910 		crypto_key_t *enckey, crypto_key_t *hmackey)
911 {
912 	uchar_t constdata[K5CLENGTH];
913 	int keybytes;
914 	int rv;
915 
916 	constdata[0] = (usage>>24)&0xff;
917 	constdata[1] = (usage>>16)&0xff;
918 	constdata[2] = (usage>>8)&0xff;
919 	constdata[3] = usage & 0xff;
920 	/* Use "0xAA" for deriving encryption key */
921 	constdata[4] = 0xAA; /* from MIT Kerberos code */
922 
923 	enckey->ck_length = cdata->keylen * 8;
924 	enckey->ck_format = CRYPTO_KEY_RAW;
925 	enckey->ck_data = kmem_zalloc(cdata->keylen, KM_SLEEP);
926 
927 	switch (cdata->method) {
928 		case CRYPT_METHOD_DES_CFB:
929 		case CRYPT_METHOD_DES_CBC_NULL:
930 		case CRYPT_METHOD_DES_CBC_MD5:
931 		case CRYPT_METHOD_DES_CBC_CRC:
932 			keybytes = 8;
933 			break;
934 		case CRYPT_METHOD_DES3_CBC_SHA1:
935 			keybytes = CRYPT_DES3_KEYBYTES;
936 			break;
937 		case CRYPT_METHOD_ARCFOUR_HMAC_MD5:
938 		case CRYPT_METHOD_ARCFOUR_HMAC_MD5_EXP:
939 			keybytes = CRYPT_ARCFOUR_KEYBYTES;
940 			break;
941 		case CRYPT_METHOD_AES128:
942 			keybytes = CRYPT_AES128_KEYBYTES;
943 			break;
944 		case CRYPT_METHOD_AES256:
945 			keybytes = CRYPT_AES256_KEYBYTES;
946 			break;
947 	}
948 
949 	/* derive main crypto key */
950 	rv = derive_key(cdata, constdata, sizeof (constdata),
951 		enckey->ck_data, keybytes, cdata->blocklen);
952 
953 	if (rv == CRYPTO_SUCCESS) {
954 
955 		/* Use "0x55" for deriving mac key */
956 		constdata[4] = 0x55;
957 
958 		hmackey->ck_length = cdata->keylen * 8;
959 		hmackey->ck_format = CRYPTO_KEY_RAW;
960 		hmackey->ck_data = kmem_zalloc(cdata->keylen, KM_SLEEP);
961 
962 		rv = derive_key(cdata, constdata, sizeof (constdata),
963 				hmackey->ck_data, keybytes,
964 				cdata->blocklen);
965 	} else {
966 		cmn_err(CE_WARN, "failed to derive crypto key: %02x", rv);
967 	}
968 
969 	return (rv);
970 }
971 
972 /*
973  * Compute 3-DES crypto and HMAC.
974  */
975 static int
976 kef_decr_hmac(struct cipher_data_t *cdata,
977 	mblk_t *mp, int length,
978 	char *hmac, int hmaclen)
979 {
980 	int rv = CRYPTO_FAILED;
981 
982 	crypto_mechanism_t encr_mech;
983 	crypto_mechanism_t mac_mech;
984 	crypto_data_t dd;
985 	crypto_data_t mac;
986 	iovec_t v1;
987 
988 	ASSERT(cdata != NULL);
989 	ASSERT(mp != NULL);
990 	ASSERT(hmac != NULL);
991 
992 	bzero(&dd, sizeof (dd));
993 	dd.cd_format = CRYPTO_DATA_MBLK;
994 	dd.cd_offset = 0;
995 	dd.cd_length = length;
996 	dd.cd_mp = mp;
997 
998 	v1.iov_base = hmac;
999 	v1.iov_len = hmaclen;
1000 
1001 	mac.cd_format = CRYPTO_DATA_RAW;
1002 	mac.cd_offset = 0;
1003 	mac.cd_length = hmaclen;
1004 	mac.cd_raw = v1;
1005 
1006 	/*
1007 	 * cdata->block holds the IVEC
1008 	 */
1009 	encr_mech.cm_type = cdata->mech_type;
1010 	encr_mech.cm_param = cdata->block;
1011 
1012 	if (cdata->block != NULL)
1013 		encr_mech.cm_param_len = cdata->blocklen;
1014 	else
1015 		encr_mech.cm_param_len = 0;
1016 
1017 	rv = crypto_decrypt(&encr_mech, &dd, &cdata->d_encr_key,
1018 			cdata->enc_tmpl, NULL, NULL);
1019 	if (rv != CRYPTO_SUCCESS) {
1020 		cmn_err(CE_WARN, "crypto_decrypt failed: %0x", rv);
1021 		return (rv);
1022 	}
1023 
1024 	mac_mech.cm_type = sha1_hmac_mech;
1025 	mac_mech.cm_param = NULL;
1026 	mac_mech.cm_param_len = 0;
1027 
1028 	/*
1029 	 * Compute MAC of the plaintext decrypted above.
1030 	 */
1031 	rv = crypto_mac(&mac_mech, &dd, &cdata->d_hmac_key,
1032 			cdata->hmac_tmpl, &mac, NULL);
1033 
1034 	if (rv != CRYPTO_SUCCESS) {
1035 		cmn_err(CE_WARN, "crypto_mac failed: %0x", rv);
1036 	}
1037 
1038 	return (rv);
1039 }
1040 
1041 /*
1042  * Compute 3-DES crypto and HMAC.
1043  */
1044 static int
1045 kef_encr_hmac(struct cipher_data_t *cdata,
1046 	mblk_t *mp, int length,
1047 	char *hmac, int hmaclen)
1048 {
1049 	int rv = CRYPTO_FAILED;
1050 
1051 	crypto_mechanism_t encr_mech;
1052 	crypto_mechanism_t mac_mech;
1053 	crypto_data_t dd;
1054 	crypto_data_t mac;
1055 	iovec_t v1;
1056 
1057 	ASSERT(cdata != NULL);
1058 	ASSERT(mp != NULL);
1059 	ASSERT(hmac != NULL);
1060 
1061 	bzero(&dd, sizeof (dd));
1062 	dd.cd_format = CRYPTO_DATA_MBLK;
1063 	dd.cd_offset = 0;
1064 	dd.cd_length = length;
1065 	dd.cd_mp = mp;
1066 
1067 	v1.iov_base = hmac;
1068 	v1.iov_len = hmaclen;
1069 
1070 	mac.cd_format = CRYPTO_DATA_RAW;
1071 	mac.cd_offset = 0;
1072 	mac.cd_length = hmaclen;
1073 	mac.cd_raw = v1;
1074 
1075 	/*
1076 	 * cdata->block holds the IVEC
1077 	 */
1078 	encr_mech.cm_type = cdata->mech_type;
1079 	encr_mech.cm_param = cdata->block;
1080 
1081 	if (cdata->block != NULL)
1082 		encr_mech.cm_param_len = cdata->blocklen;
1083 	else
1084 		encr_mech.cm_param_len = 0;
1085 
1086 	mac_mech.cm_type = sha1_hmac_mech;
1087 	mac_mech.cm_param = NULL;
1088 	mac_mech.cm_param_len = 0;
1089 
1090 	rv = crypto_mac(&mac_mech, &dd, &cdata->d_hmac_key,
1091 			cdata->hmac_tmpl, &mac, NULL);
1092 
1093 	if (rv != CRYPTO_SUCCESS) {
1094 		cmn_err(CE_WARN, "crypto_mac failed: %0x", rv);
1095 		return (rv);
1096 	}
1097 
1098 	rv = crypto_encrypt(&encr_mech, &dd, &cdata->d_encr_key,
1099 			cdata->enc_tmpl, NULL, NULL);
1100 	if (rv != CRYPTO_SUCCESS) {
1101 		cmn_err(CE_WARN, "crypto_encrypt failed: %0x", rv);
1102 	}
1103 
1104 	return (rv);
1105 }
1106 
1107 /*
1108  * kef_crypt
1109  *
1110  * Use the Kernel encryption framework to provide the
1111  * crypto operations for the indicated data.
1112  */
1113 static int
1114 kef_crypt(struct cipher_data_t *cdata,
1115 	void *indata, crypto_data_format_t fmt,
1116 	size_t length, int mode)
1117 {
1118 	int rv = CRYPTO_FAILED;
1119 
1120 	crypto_mechanism_t mech;
1121 	crypto_key_t crkey;
1122 	iovec_t v1;
1123 	crypto_data_t d1;
1124 
1125 	ASSERT(cdata != NULL);
1126 	ASSERT(indata != NULL);
1127 	ASSERT(fmt == CRYPTO_DATA_RAW || fmt == CRYPTO_DATA_MBLK);
1128 
1129 	bzero(&crkey, sizeof (crkey));
1130 	bzero(&d1, sizeof (d1));
1131 
1132 	crkey.ck_format = CRYPTO_KEY_RAW;
1133 	crkey.ck_data =  cdata->key;
1134 
1135 	/* keys are measured in bits, not bytes, so multiply by 8 */
1136 	crkey.ck_length = cdata->keylen * 8;
1137 
1138 	if (fmt == CRYPTO_DATA_RAW) {
1139 		v1.iov_base = (char *)indata;
1140 		v1.iov_len = length;
1141 	}
1142 
1143 	d1.cd_format = fmt;
1144 	d1.cd_offset = 0;
1145 	d1.cd_length = length;
1146 	if (fmt == CRYPTO_DATA_RAW)
1147 		d1.cd_raw = v1;
1148 	else if (fmt == CRYPTO_DATA_MBLK)
1149 		d1.cd_mp = (mblk_t *)indata;
1150 
1151 	mech.cm_type = cdata->mech_type;
1152 	mech.cm_param = cdata->block;
1153 	/*
1154 	 * cdata->block holds the IVEC
1155 	 */
1156 	if (cdata->block != NULL)
1157 		mech.cm_param_len = cdata->blocklen;
1158 	else
1159 		mech.cm_param_len = 0;
1160 
1161 	/*
1162 	 * encrypt and decrypt in-place
1163 	 */
1164 	if (mode == CRYPT_ENCRYPT)
1165 		rv = crypto_encrypt(&mech, &d1, &crkey, NULL, NULL, NULL);
1166 	else
1167 		rv = crypto_decrypt(&mech, &d1, &crkey, NULL, NULL, NULL);
1168 
1169 	if (rv != CRYPTO_SUCCESS) {
1170 		cmn_err(CE_WARN, "%s returned error %08x",
1171 			(mode == CRYPT_ENCRYPT ? "crypto_encrypt" :
1172 				"crypto_decrypt"), rv);
1173 		return (CRYPTO_FAILED);
1174 	}
1175 
1176 	return (rv);
1177 }
1178 
1179 static int
1180 do_hmac(crypto_mech_type_t mech,
1181 	crypto_key_t *key,
1182 	char *data, int datalen,
1183 	char *hmac, int hmaclen)
1184 {
1185 	int rv = 0;
1186 	crypto_mechanism_t mac_mech;
1187 	crypto_data_t dd;
1188 	crypto_data_t mac;
1189 	iovec_t vdata, vmac;
1190 
1191 	mac_mech.cm_type = mech;
1192 	mac_mech.cm_param = NULL;
1193 	mac_mech.cm_param_len = 0;
1194 
1195 	vdata.iov_base = data;
1196 	vdata.iov_len = datalen;
1197 
1198 	bzero(&dd, sizeof (dd));
1199 	dd.cd_format = CRYPTO_DATA_RAW;
1200 	dd.cd_offset = 0;
1201 	dd.cd_length = datalen;
1202 	dd.cd_raw = vdata;
1203 
1204 	vmac.iov_base = hmac;
1205 	vmac.iov_len = hmaclen;
1206 
1207 	mac.cd_format = CRYPTO_DATA_RAW;
1208 	mac.cd_offset = 0;
1209 	mac.cd_length = hmaclen;
1210 	mac.cd_raw = vmac;
1211 
1212 	/*
1213 	 * Compute MAC of the plaintext decrypted above.
1214 	 */
1215 	rv = crypto_mac(&mac_mech, &dd, key, NULL, &mac, NULL);
1216 
1217 	if (rv != CRYPTO_SUCCESS) {
1218 		cmn_err(CE_WARN, "crypto_mac failed: %0x", rv);
1219 	}
1220 
1221 	return (rv);
1222 }
1223 
1224 #define	XOR_BLOCK(src, dst) \
1225 	(dst)[0] ^= (src)[0]; \
1226 	(dst)[1] ^= (src)[1]; \
1227 	(dst)[2] ^= (src)[2]; \
1228 	(dst)[3] ^= (src)[3]; \
1229 	(dst)[4] ^= (src)[4]; \
1230 	(dst)[5] ^= (src)[5]; \
1231 	(dst)[6] ^= (src)[6]; \
1232 	(dst)[7] ^= (src)[7]; \
1233 	(dst)[8] ^= (src)[8]; \
1234 	(dst)[9] ^= (src)[9]; \
1235 	(dst)[10] ^= (src)[10]; \
1236 	(dst)[11] ^= (src)[11]; \
1237 	(dst)[12] ^= (src)[12]; \
1238 	(dst)[13] ^= (src)[13]; \
1239 	(dst)[14] ^= (src)[14]; \
1240 	(dst)[15] ^= (src)[15]
1241 
1242 #define	xorblock(x, y) XOR_BLOCK(y, x)
1243 
1244 static int
1245 aes_cbc_cts_encrypt(struct tmodinfo *tmi, uchar_t *plain, size_t length)
1246 {
1247 	int result = CRYPTO_SUCCESS;
1248 	unsigned char tmp[DEFAULT_AES_BLOCKLEN];
1249 	unsigned char tmp2[DEFAULT_AES_BLOCKLEN];
1250 	unsigned char tmp3[DEFAULT_AES_BLOCKLEN];
1251 	int nblocks = 0, blockno;
1252 	crypto_data_t ct, pt;
1253 	crypto_mechanism_t mech;
1254 
1255 	mech.cm_type = tmi->enc_data.mech_type;
1256 	if (tmi->enc_data.ivlen > 0 && tmi->enc_data.ivec != NULL) {
1257 		bcopy(tmi->enc_data.ivec, tmp, DEFAULT_AES_BLOCKLEN);
1258 	} else {
1259 		bzero(tmp, sizeof (tmp));
1260 	}
1261 	mech.cm_param = NULL;
1262 	mech.cm_param_len = 0;
1263 
1264 	nblocks = (length + DEFAULT_AES_BLOCKLEN - 1) / DEFAULT_AES_BLOCKLEN;
1265 
1266 	bzero(&ct, sizeof (crypto_data_t));
1267 	bzero(&pt, sizeof (crypto_data_t));
1268 
1269 	if (nblocks == 1) {
1270 		pt.cd_format = CRYPTO_DATA_RAW;
1271 		pt.cd_length = length;
1272 		pt.cd_raw.iov_base = (char *)plain;
1273 		pt.cd_raw.iov_len = length;
1274 
1275 		result = crypto_encrypt(&mech, &pt,
1276 			&tmi->enc_data.d_encr_key, NULL, NULL, NULL);
1277 
1278 		if (result != CRYPTO_SUCCESS) {
1279 			cmn_err(CE_WARN, "aes_cbc_cts_encrypt: "
1280 				"crypto_encrypt failed: %0x", result);
1281 		}
1282 	} else {
1283 		size_t nleft;
1284 
1285 		ct.cd_format = CRYPTO_DATA_RAW;
1286 		ct.cd_offset = 0;
1287 		ct.cd_length = DEFAULT_AES_BLOCKLEN;
1288 
1289 		pt.cd_format = CRYPTO_DATA_RAW;
1290 		pt.cd_offset = 0;
1291 		pt.cd_length = DEFAULT_AES_BLOCKLEN;
1292 
1293 		result = crypto_encrypt_init(&mech,
1294 				&tmi->enc_data.d_encr_key,
1295 				tmi->enc_data.enc_tmpl,
1296 				&tmi->enc_data.ctx, NULL);
1297 
1298 		if (result != CRYPTO_SUCCESS) {
1299 			cmn_err(CE_WARN, "aes_cbc_cts_encrypt: "
1300 				"crypto_encrypt_init failed: %0x", result);
1301 			goto cleanup;
1302 		}
1303 
1304 		for (blockno = 0; blockno < nblocks - 2; blockno++) {
1305 			xorblock(tmp, plain + blockno * DEFAULT_AES_BLOCKLEN);
1306 
1307 			pt.cd_raw.iov_base = (char *)tmp;
1308 			pt.cd_raw.iov_len = DEFAULT_AES_BLOCKLEN;
1309 
1310 			ct.cd_raw.iov_base = (char *)plain +
1311 				blockno * DEFAULT_AES_BLOCKLEN;
1312 			ct.cd_raw.iov_len = DEFAULT_AES_BLOCKLEN;
1313 
1314 			result = crypto_encrypt_update(tmi->enc_data.ctx,
1315 					&pt, &ct, NULL);
1316 
1317 			if (result != CRYPTO_SUCCESS) {
1318 				cmn_err(CE_WARN, "aes_cbc_cts_encrypt: "
1319 					"crypto_encrypt_update failed: %0x",
1320 					result);
1321 				goto cleanup;
1322 			}
1323 			/* copy result over original bytes */
1324 			/* make another copy for the next XOR step */
1325 			bcopy(plain + blockno * DEFAULT_AES_BLOCKLEN,
1326 				tmp, DEFAULT_AES_BLOCKLEN);
1327 		}
1328 		/* XOR cipher text from n-3 with plain text from n-2 */
1329 		xorblock(tmp, plain + (nblocks - 2) * DEFAULT_AES_BLOCKLEN);
1330 
1331 		pt.cd_raw.iov_base = (char *)tmp;
1332 		pt.cd_raw.iov_len = DEFAULT_AES_BLOCKLEN;
1333 
1334 		ct.cd_raw.iov_base = (char *)tmp2;
1335 		ct.cd_raw.iov_len = DEFAULT_AES_BLOCKLEN;
1336 
1337 		/* encrypt XOR-ed block N-2 */
1338 		result = crypto_encrypt_update(tmi->enc_data.ctx,
1339 				&pt, &ct, NULL);
1340 		if (result != CRYPTO_SUCCESS) {
1341 			cmn_err(CE_WARN, "aes_cbc_cts_encrypt: "
1342 				"crypto_encrypt_update(2) failed: %0x",
1343 				result);
1344 			goto cleanup;
1345 		}
1346 		nleft = length - (nblocks - 1) * DEFAULT_AES_BLOCKLEN;
1347 
1348 		bzero(tmp3, sizeof (tmp3));
1349 		/* Save final plaintext bytes from n-1 */
1350 		bcopy(plain + (nblocks - 1) * DEFAULT_AES_BLOCKLEN, tmp3,
1351 			nleft);
1352 
1353 		/* Overwrite n-1 with cipher text from n-2 */
1354 		bcopy(tmp2, plain + (nblocks - 1) * DEFAULT_AES_BLOCKLEN,
1355 			nleft);
1356 
1357 		bcopy(tmp2, tmp, DEFAULT_AES_BLOCKLEN);
1358 		/* XOR cipher text from n-1 with plain text from n-1 */
1359 		xorblock(tmp, tmp3);
1360 
1361 		pt.cd_raw.iov_base = (char *)tmp;
1362 		pt.cd_raw.iov_len = DEFAULT_AES_BLOCKLEN;
1363 
1364 		ct.cd_raw.iov_base = (char *)tmp2;
1365 		ct.cd_raw.iov_len = DEFAULT_AES_BLOCKLEN;
1366 
1367 		/* encrypt block N-2 */
1368 		result = crypto_encrypt_update(tmi->enc_data.ctx,
1369 			&pt, &ct, NULL);
1370 
1371 		if (result != CRYPTO_SUCCESS) {
1372 			cmn_err(CE_WARN, "aes_cbc_cts_encrypt: "
1373 				"crypto_encrypt_update(3) failed: %0x",
1374 				result);
1375 			goto cleanup;
1376 		}
1377 
1378 		bcopy(tmp2, plain + (nblocks - 2) * DEFAULT_AES_BLOCKLEN,
1379 			DEFAULT_AES_BLOCKLEN);
1380 
1381 
1382 		ct.cd_raw.iov_base = (char *)tmp2;
1383 		ct.cd_raw.iov_len = DEFAULT_AES_BLOCKLEN;
1384 
1385 		/*
1386 		 * Ignore the output on the final step.
1387 		 */
1388 		result = crypto_encrypt_final(tmi->enc_data.ctx, &ct, NULL);
1389 		if (result != CRYPTO_SUCCESS) {
1390 			cmn_err(CE_WARN, "aes_cbc_cts_encrypt: "
1391 				"crypto_encrypt_final(3) failed: %0x",
1392 				result);
1393 		}
1394 		tmi->enc_data.ctx = NULL;
1395 	}
1396 cleanup:
1397 	bzero(tmp, sizeof (tmp));
1398 	bzero(tmp2, sizeof (tmp));
1399 	bzero(tmp3, sizeof (tmp));
1400 	bzero(tmi->enc_data.block, tmi->enc_data.blocklen);
1401 	return (result);
1402 }
1403 
1404 static int
1405 aes_cbc_cts_decrypt(struct tmodinfo *tmi, uchar_t *buff, size_t length)
1406 {
1407 	int result = CRYPTO_SUCCESS;
1408 	unsigned char tmp[DEFAULT_AES_BLOCKLEN];
1409 	unsigned char tmp2[DEFAULT_AES_BLOCKLEN];
1410 	unsigned char tmp3[DEFAULT_AES_BLOCKLEN];
1411 	int nblocks = 0, blockno;
1412 	crypto_data_t ct, pt;
1413 	crypto_mechanism_t mech;
1414 
1415 	mech.cm_type = tmi->enc_data.mech_type;
1416 
1417 	if (tmi->dec_data.ivec_usage != IVEC_NEVER &&
1418 	    tmi->dec_data.ivlen > 0 && tmi->dec_data.ivec != NULL) {
1419 		bcopy(tmi->dec_data.ivec, tmp, DEFAULT_AES_BLOCKLEN);
1420 	} else {
1421 		bzero(tmp, sizeof (tmp));
1422 	}
1423 	mech.cm_param_len = 0;
1424 	mech.cm_param = NULL;
1425 
1426 	nblocks = (length + DEFAULT_AES_BLOCKLEN - 1) / DEFAULT_AES_BLOCKLEN;
1427 
1428 	bzero(&pt, sizeof (pt));
1429 	bzero(&ct, sizeof (ct));
1430 
1431 	if (nblocks == 1) {
1432 		ct.cd_format = CRYPTO_DATA_RAW;
1433 		ct.cd_length = length;
1434 		ct.cd_raw.iov_base = (char *)buff;
1435 		ct.cd_raw.iov_len = length;
1436 
1437 		result = crypto_decrypt(&mech, &ct,
1438 			&tmi->dec_data.d_encr_key, NULL, NULL, NULL);
1439 
1440 		if (result != CRYPTO_SUCCESS) {
1441 			cmn_err(CE_WARN, "aes_cbc_cts_decrypt: "
1442 				"crypto_decrypt failed: %0x", result);
1443 			goto cleanup;
1444 		}
1445 	} else {
1446 		ct.cd_format = CRYPTO_DATA_RAW;
1447 		ct.cd_offset = 0;
1448 		ct.cd_length = DEFAULT_AES_BLOCKLEN;
1449 
1450 		pt.cd_format = CRYPTO_DATA_RAW;
1451 		pt.cd_offset = 0;
1452 		pt.cd_length = DEFAULT_AES_BLOCKLEN;
1453 
1454 		result = crypto_decrypt_init(&mech,
1455 				&tmi->dec_data.d_encr_key,
1456 				tmi->dec_data.enc_tmpl,
1457 				&tmi->dec_data.ctx, NULL);
1458 
1459 		if (result != CRYPTO_SUCCESS) {
1460 			cmn_err(CE_WARN, "aes_cbc_cts_decrypt: "
1461 				"crypto_decrypt_init failed: %0x", result);
1462 			goto cleanup;
1463 		}
1464 		for (blockno = 0; blockno < nblocks - 2; blockno++) {
1465 			ct.cd_raw.iov_base = (char *)buff +
1466 				(blockno * DEFAULT_AES_BLOCKLEN);
1467 			ct.cd_raw.iov_len = DEFAULT_AES_BLOCKLEN;
1468 
1469 			pt.cd_raw.iov_base = (char *)tmp2;
1470 			pt.cd_raw.iov_len = DEFAULT_AES_BLOCKLEN;
1471 
1472 			/*
1473 			 * Save the input to the decrypt so it can
1474 			 * be used later for an XOR operation
1475 			 */
1476 			bcopy(buff + (blockno * DEFAULT_AES_BLOCKLEN),
1477 				tmi->dec_data.block, DEFAULT_AES_BLOCKLEN);
1478 
1479 			result = crypto_decrypt_update(tmi->dec_data.ctx,
1480 					&ct, &pt, NULL);
1481 			if (result != CRYPTO_SUCCESS) {
1482 				cmn_err(CE_WARN, "aes_cbc_cts_decrypt: "
1483 					"crypto_decrypt_update(1) error - "
1484 					"result = 0x%08x", result);
1485 				goto cleanup;
1486 			}
1487 			xorblock(tmp2, tmp);
1488 			bcopy(tmp2, buff + blockno * DEFAULT_AES_BLOCKLEN,
1489 				DEFAULT_AES_BLOCKLEN);
1490 			/*
1491 			 * The original cipher text is used as the xor
1492 			 * for the next block, save it here.
1493 			 */
1494 			bcopy(tmi->dec_data.block, tmp, DEFAULT_AES_BLOCKLEN);
1495 		}
1496 		ct.cd_raw.iov_base = (char *)buff +
1497 			((nblocks - 2) * DEFAULT_AES_BLOCKLEN);
1498 		ct.cd_raw.iov_len = DEFAULT_AES_BLOCKLEN;
1499 		pt.cd_raw.iov_base = (char *)tmp2;
1500 		pt.cd_raw.iov_len = DEFAULT_AES_BLOCKLEN;
1501 
1502 		result = crypto_decrypt_update(tmi->dec_data.ctx,
1503 				&ct, &pt, NULL);
1504 		if (result != CRYPTO_SUCCESS) {
1505 			cmn_err(CE_WARN,
1506 				"aes_cbc_cts_decrypt: "
1507 				"crypto_decrypt_update(2) error -"
1508 				" result = 0x%08x", result);
1509 			goto cleanup;
1510 		}
1511 		bzero(tmp3, sizeof (tmp3));
1512 		bcopy(buff + (nblocks - 1) * DEFAULT_AES_BLOCKLEN, tmp3,
1513 			length - ((nblocks - 1) * DEFAULT_AES_BLOCKLEN));
1514 
1515 		xorblock(tmp2, tmp3);
1516 		bcopy(tmp2, buff + (nblocks - 1) * DEFAULT_AES_BLOCKLEN,
1517 			length - ((nblocks - 1) * DEFAULT_AES_BLOCKLEN));
1518 
1519 		/* 2nd to last block ... */
1520 		bcopy(tmp3, tmp2,
1521 			length - ((nblocks - 1) * DEFAULT_AES_BLOCKLEN));
1522 
1523 		ct.cd_raw.iov_base = (char *)tmp2;
1524 		ct.cd_raw.iov_len = DEFAULT_AES_BLOCKLEN;
1525 		pt.cd_raw.iov_base = (char *)tmp3;
1526 		pt.cd_raw.iov_len = DEFAULT_AES_BLOCKLEN;
1527 
1528 		result = crypto_decrypt_update(tmi->dec_data.ctx,
1529 				&ct, &pt, NULL);
1530 		if (result != CRYPTO_SUCCESS) {
1531 			cmn_err(CE_WARN,
1532 				"aes_cbc_cts_decrypt: "
1533 				"crypto_decrypt_update(3) error - "
1534 				"result = 0x%08x", result);
1535 			goto cleanup;
1536 		}
1537 		xorblock(tmp3, tmp);
1538 
1539 
1540 		/* Finally, update the 2nd to last block and we are done. */
1541 		bcopy(tmp3, buff + (nblocks - 2) * DEFAULT_AES_BLOCKLEN,
1542 			DEFAULT_AES_BLOCKLEN);
1543 
1544 		/* Do Final step, but ignore output */
1545 		pt.cd_raw.iov_base = (char *)tmp2;
1546 		pt.cd_raw.iov_len = DEFAULT_AES_BLOCKLEN;
1547 		result = crypto_decrypt_final(tmi->dec_data.ctx, &pt, NULL);
1548 		if (result != CRYPTO_SUCCESS) {
1549 			cmn_err(CE_WARN, "aes_cbc_cts_decrypt: "
1550 				"crypto_decrypt_final error - "
1551 				"result = 0x%0x", result);
1552 		}
1553 		tmi->dec_data.ctx = NULL;
1554 	}
1555 
1556 cleanup:
1557 	bzero(tmp, sizeof (tmp));
1558 	bzero(tmp2, sizeof (tmp));
1559 	bzero(tmp3, sizeof (tmp));
1560 	bzero(tmi->dec_data.block, tmi->dec_data.blocklen);
1561 	return (result);
1562 }
1563 
1564 /*
1565  * AES decrypt
1566  *
1567  * format of ciphertext when using AES
1568  *  +-------------+------------+------------+
1569  *  |  confounder | msg-data   |  hmac      |
1570  *  +-------------+------------+------------+
1571  */
1572 static mblk_t *
1573 aes_decrypt(queue_t *q, struct tmodinfo *tmi, mblk_t *mp,
1574 	hash_info_t *hash)
1575 {
1576 	int result;
1577 	size_t enclen;
1578 	size_t inlen;
1579 	uchar_t hmacbuff[64];
1580 	uchar_t tmpiv[DEFAULT_AES_BLOCKLEN];
1581 
1582 	inlen = (size_t)MBLKL(mp);
1583 
1584 	enclen = inlen - AES_TRUNCATED_HMAC_LEN;
1585 	if (tmi->dec_data.ivec_usage != IVEC_NEVER &&
1586 		tmi->dec_data.ivec != NULL && tmi->dec_data.ivlen > 0) {
1587 		int nblocks = (enclen + DEFAULT_AES_BLOCKLEN - 1) /
1588 				DEFAULT_AES_BLOCKLEN;
1589 		bcopy(mp->b_rptr + DEFAULT_AES_BLOCKLEN * (nblocks - 2),
1590 			tmpiv, DEFAULT_AES_BLOCKLEN);
1591 	}
1592 
1593 	/* AES Decrypt */
1594 	result = aes_cbc_cts_decrypt(tmi, mp->b_rptr, enclen);
1595 
1596 	if (result != CRYPTO_SUCCESS) {
1597 		cmn_err(CE_WARN,
1598 			"aes_decrypt:  aes_cbc_cts_decrypt "
1599 			"failed - error %0x", result);
1600 		goto cleanup;
1601 	}
1602 
1603 	/* Verify the HMAC */
1604 	result = do_hmac(sha1_hmac_mech,
1605 			&tmi->dec_data.d_hmac_key,
1606 			(char *)mp->b_rptr, enclen,
1607 			(char *)hmacbuff, hash->hash_len);
1608 
1609 	if (result != CRYPTO_SUCCESS) {
1610 		cmn_err(CE_WARN,
1611 			"aes_decrypt:  do_hmac failed - error %0x", result);
1612 		goto cleanup;
1613 	}
1614 
1615 	if (bcmp(hmacbuff, mp->b_rptr + enclen,
1616 		AES_TRUNCATED_HMAC_LEN) != 0) {
1617 		result = -1;
1618 		cmn_err(CE_WARN, "aes_decrypt: checksum verification failed");
1619 		goto cleanup;
1620 	}
1621 
1622 	/* truncate the mblk at the end of the decrypted text */
1623 	mp->b_wptr = mp->b_rptr + enclen;
1624 
1625 	/* Adjust the beginning of the buffer to skip the confounder */
1626 	mp->b_rptr += DEFAULT_AES_BLOCKLEN;
1627 
1628 	if (tmi->dec_data.ivec_usage != IVEC_NEVER &&
1629 		tmi->dec_data.ivec != NULL && tmi->dec_data.ivlen > 0)
1630 		bcopy(tmpiv, tmi->dec_data.ivec, DEFAULT_AES_BLOCKLEN);
1631 
1632 cleanup:
1633 	if (result != CRYPTO_SUCCESS) {
1634 		mp->b_datap->db_type = M_ERROR;
1635 		mp->b_rptr = mp->b_datap->db_base;
1636 		*mp->b_rptr = EIO;
1637 		mp->b_wptr = mp->b_rptr + sizeof (char);
1638 		freemsg(mp->b_cont);
1639 		mp->b_cont = NULL;
1640 		qreply(WR(q), mp);
1641 		return (NULL);
1642 	}
1643 	return (mp);
1644 }
1645 
1646 /*
1647  * AES encrypt
1648  *
1649  * format of ciphertext when using AES
1650  *  +-------------+------------+------------+
1651  *  |  confounder | msg-data   |  hmac      |
1652  *  +-------------+------------+------------+
1653  */
1654 static mblk_t *
1655 aes_encrypt(queue_t *q, struct tmodinfo *tmi, mblk_t *mp,
1656 	hash_info_t *hash)
1657 {
1658 	int result;
1659 	size_t cipherlen;
1660 	size_t inlen;
1661 	uchar_t hmacbuff[64];
1662 
1663 	inlen = (size_t)MBLKL(mp);
1664 
1665 	cipherlen = encrypt_size(&tmi->enc_data, inlen);
1666 
1667 	ASSERT(MBLKSIZE(mp) >= cipherlen);
1668 
1669 	/*
1670 	 * Shift the rptr back enough to insert the confounder.
1671 	 */
1672 	mp->b_rptr -= DEFAULT_AES_BLOCKLEN;
1673 
1674 	/* Get random data for confounder */
1675 	(void) random_get_pseudo_bytes((uint8_t *)mp->b_rptr,
1676 		DEFAULT_AES_BLOCKLEN);
1677 
1678 	/*
1679 	 * Because we encrypt in-place, we need to calculate
1680 	 * the HMAC of the plaintext now, then stick it on
1681 	 * the end of the ciphertext down below.
1682 	 */
1683 	result = do_hmac(sha1_hmac_mech,
1684 			&tmi->enc_data.d_hmac_key,
1685 			(char *)mp->b_rptr, DEFAULT_AES_BLOCKLEN + inlen,
1686 			(char *)hmacbuff, hash->hash_len);
1687 
1688 	if (result != CRYPTO_SUCCESS) {
1689 		cmn_err(CE_WARN, "aes_encrypt:  do_hmac failed - error %0x",
1690 			result);
1691 		goto cleanup;
1692 	}
1693 	/* Encrypt using AES-CBC-CTS */
1694 	result = aes_cbc_cts_encrypt(tmi, mp->b_rptr,
1695 		inlen + DEFAULT_AES_BLOCKLEN);
1696 
1697 	if (result != CRYPTO_SUCCESS) {
1698 		cmn_err(CE_WARN, "aes_encrypt:  aes_cbc_cts_encrypt "
1699 			"failed - error %0x", result);
1700 		goto cleanup;
1701 	}
1702 
1703 	/* copy the truncated HMAC to the end of the mblk */
1704 	bcopy(hmacbuff, mp->b_rptr + DEFAULT_AES_BLOCKLEN + inlen,
1705 		AES_TRUNCATED_HMAC_LEN);
1706 
1707 	mp->b_wptr = mp->b_rptr + cipherlen;
1708 
1709 	/*
1710 	 * The final block of cipher text (not the HMAC) is used
1711 	 * as the next IV.
1712 	 */
1713 	if (tmi->enc_data.ivec_usage != IVEC_NEVER &&
1714 	    tmi->enc_data.ivec != NULL) {
1715 		int nblocks = (inlen + 2 * DEFAULT_AES_BLOCKLEN - 1) /
1716 			DEFAULT_AES_BLOCKLEN;
1717 
1718 		bcopy(mp->b_rptr + (nblocks - 2) * DEFAULT_AES_BLOCKLEN,
1719 			tmi->enc_data.ivec, DEFAULT_AES_BLOCKLEN);
1720 	}
1721 
1722 cleanup:
1723 	if (result != CRYPTO_SUCCESS) {
1724 		mp->b_datap->db_type = M_ERROR;
1725 		mp->b_rptr = mp->b_datap->db_base;
1726 		*mp->b_rptr = EIO;
1727 		mp->b_wptr = mp->b_rptr + sizeof (char);
1728 		freemsg(mp->b_cont);
1729 		mp->b_cont = NULL;
1730 		qreply(WR(q), mp);
1731 		return (NULL);
1732 	}
1733 	return (mp);
1734 }
1735 
1736 /*
1737  * ARCFOUR-HMAC-MD5 decrypt
1738  *
1739  * format of ciphertext when using ARCFOUR-HMAC-MD5
1740  *  +-----------+------------+------------+
1741  *  |  hmac     | confounder |  msg-data  |
1742  *  +-----------+------------+------------+
1743  *
1744  */
1745 static mblk_t *
1746 arcfour_hmac_md5_decrypt(queue_t *q, struct tmodinfo *tmi, mblk_t *mp,
1747 			hash_info_t *hash)
1748 {
1749 	int result;
1750 	size_t cipherlen;
1751 	size_t inlen;
1752 	size_t saltlen;
1753 	crypto_key_t k1, k2;
1754 	crypto_data_t indata;
1755 	iovec_t v1;
1756 	uchar_t ms_exp[9] = {0xab, 0xab, 0xab, 0xab, 0xab,
1757 				0xab, 0xab, 0xab, 0xab };
1758 	uchar_t k1data[CRYPT_ARCFOUR_KEYBYTES];
1759 	uchar_t k2data[CRYPT_ARCFOUR_KEYBYTES];
1760 	uchar_t cksum[MD5_HASHSIZE];
1761 	uchar_t saltdata[CRYPT_ARCFOUR_KEYBYTES];
1762 	crypto_mechanism_t mech;
1763 	int usage;
1764 
1765 	bzero(&indata, sizeof (indata));
1766 
1767 	/* The usage constant is 1026 for all "old" rcmd mode operations */
1768 	if (tmi->dec_data.option_mask & CRYPTOPT_RCMD_MODE_V1)
1769 		usage = RCMDV1_USAGE;
1770 	else
1771 		usage = ARCFOUR_DECRYPT_USAGE;
1772 
1773 	/*
1774 	 * The size at this point should be the size of
1775 	 * all the plaintext plus the optional plaintext length
1776 	 * needed for RCMD V2 mode.  There should also be room
1777 	 * at the head of the mblk for the confounder and hash info.
1778 	 */
1779 	inlen = (size_t)MBLKL(mp);
1780 
1781 	/*
1782 	 * The cipherlen does not include the HMAC at the
1783 	 * head of the buffer.
1784 	 */
1785 	cipherlen = inlen - hash->hash_len;
1786 
1787 	ASSERT(MBLKSIZE(mp) >= cipherlen);
1788 	if (tmi->dec_data.method == CRYPT_METHOD_ARCFOUR_HMAC_MD5_EXP) {
1789 		bcopy(ARCFOUR_EXP_SALT, saltdata, strlen(ARCFOUR_EXP_SALT));
1790 		saltdata[9] = 0;
1791 		saltdata[10] = usage & 0xff;
1792 		saltdata[11] = (usage >> 8) & 0xff;
1793 		saltdata[12] = (usage >> 16) & 0xff;
1794 		saltdata[13] = (usage >> 24) & 0xff;
1795 		saltlen = 14;
1796 	} else {
1797 		saltdata[0] = usage & 0xff;
1798 		saltdata[1] = (usage >> 8) & 0xff;
1799 		saltdata[2] = (usage >> 16) & 0xff;
1800 		saltdata[3] = (usage >> 24) & 0xff;
1801 		saltlen = 4;
1802 	}
1803 	/*
1804 	 * Use the salt value to create a key to be used
1805 	 * for subsequent HMAC operations.
1806 	 */
1807 	result = do_hmac(md5_hmac_mech,
1808 			tmi->dec_data.ckey,
1809 			(char *)saltdata, saltlen,
1810 			(char *)k1data, sizeof (k1data));
1811 	if (result != CRYPTO_SUCCESS) {
1812 		cmn_err(CE_WARN,
1813 			"arcfour_hmac_md5_decrypt:  do_hmac(k1)"
1814 			"failed - error %0x", result);
1815 		goto cleanup;
1816 	}
1817 	bcopy(k1data, k2data, sizeof (k1data));
1818 
1819 	/*
1820 	 * For the neutered MS RC4 encryption type,
1821 	 * set the trailing 9 bytes to 0xab per the
1822 	 * RC4-HMAC spec.
1823 	 */
1824 	if (tmi->dec_data.method == CRYPT_METHOD_ARCFOUR_HMAC_MD5_EXP) {
1825 		bcopy((void *)&k1data[7], ms_exp, sizeof (ms_exp));
1826 	}
1827 
1828 	mech.cm_type = tmi->dec_data.mech_type;
1829 	mech.cm_param = NULL;
1830 	mech.cm_param_len = 0;
1831 
1832 	/*
1833 	 * If we have not yet initialized the decryption key,
1834 	 * context, and template, do it now.
1835 	 */
1836 	if (tmi->dec_data.ctx == NULL ||
1837 	    (tmi->dec_data.option_mask & CRYPTOPT_RCMD_MODE_V1)) {
1838 		k1.ck_format = CRYPTO_KEY_RAW;
1839 		k1.ck_length = CRYPT_ARCFOUR_KEYBYTES * 8;
1840 		k1.ck_data = k1data;
1841 
1842 		tmi->dec_data.d_encr_key.ck_format = CRYPTO_KEY_RAW;
1843 		tmi->dec_data.d_encr_key.ck_length = k1.ck_length;
1844 		if (tmi->dec_data.d_encr_key.ck_data == NULL)
1845 			tmi->dec_data.d_encr_key.ck_data = kmem_zalloc(
1846 				CRYPT_ARCFOUR_KEYBYTES, KM_SLEEP);
1847 
1848 		/*
1849 		 * HMAC operation creates the encryption
1850 		 * key to be used for the decrypt operations.
1851 		 */
1852 		result = do_hmac(md5_hmac_mech, &k1,
1853 			(char *)mp->b_rptr, hash->hash_len,
1854 			(char *)tmi->dec_data.d_encr_key.ck_data,
1855 			CRYPT_ARCFOUR_KEYBYTES);
1856 
1857 
1858 		if (result != CRYPTO_SUCCESS) {
1859 			cmn_err(CE_WARN,
1860 				"arcfour_hmac_md5_decrypt:  do_hmac(k3)"
1861 				"failed - error %0x", result);
1862 			goto cleanup;
1863 		}
1864 	}
1865 
1866 	tmi->dec_data.enc_tmpl = NULL;
1867 
1868 	if (tmi->dec_data.ctx == NULL &&
1869 	    (tmi->dec_data.option_mask & CRYPTOPT_RCMD_MODE_V2)) {
1870 		/*
1871 		 * Only create a template if we are doing
1872 		 * chaining from block to block.
1873 		 */
1874 		result = crypto_create_ctx_template(&mech,
1875 			&tmi->dec_data.d_encr_key,
1876 			&tmi->dec_data.enc_tmpl,
1877 			KM_SLEEP);
1878 		if (result == CRYPTO_NOT_SUPPORTED) {
1879 			tmi->dec_data.enc_tmpl = NULL;
1880 		} else if (result != CRYPTO_SUCCESS) {
1881 			cmn_err(CE_WARN,
1882 				"arcfour_hmac_md5_decrypt:  "
1883 				"failed to create dec template "
1884 				"for RC4 encrypt: %0x", result);
1885 			goto cleanup;
1886 		}
1887 
1888 		result = crypto_decrypt_init(&mech,
1889 			&tmi->dec_data.d_encr_key,
1890 			tmi->dec_data.enc_tmpl,
1891 			&tmi->dec_data.ctx, NULL);
1892 
1893 		if (result != CRYPTO_SUCCESS) {
1894 			cmn_err(CE_WARN, "crypto_decrypt_init failed:"
1895 				" %0x", result);
1896 			goto cleanup;
1897 		}
1898 	}
1899 
1900 	/* adjust the rptr so we don't decrypt the original hmac field */
1901 
1902 	v1.iov_base = (char *)mp->b_rptr + hash->hash_len;
1903 	v1.iov_len = cipherlen;
1904 
1905 	indata.cd_format = CRYPTO_DATA_RAW;
1906 	indata.cd_offset = 0;
1907 	indata.cd_length = cipherlen;
1908 	indata.cd_raw = v1;
1909 
1910 	if (tmi->dec_data.option_mask & CRYPTOPT_RCMD_MODE_V2)
1911 		result = crypto_decrypt_update(tmi->dec_data.ctx,
1912 			&indata, NULL, NULL);
1913 	else
1914 		result = crypto_decrypt(&mech, &indata,
1915 			&tmi->dec_data.d_encr_key, NULL, NULL, NULL);
1916 
1917 	if (result != CRYPTO_SUCCESS) {
1918 		cmn_err(CE_WARN, "crypto_decrypt_update failed:"
1919 			" %0x", result);
1920 		goto cleanup;
1921 	}
1922 
1923 	k2.ck_format = CRYPTO_KEY_RAW;
1924 	k2.ck_length = sizeof (k2data) * 8;
1925 	k2.ck_data = k2data;
1926 
1927 	result = do_hmac(md5_hmac_mech,
1928 			&k2,
1929 			(char *)mp->b_rptr + hash->hash_len, cipherlen,
1930 			(char *)cksum, hash->hash_len);
1931 
1932 	if (result != CRYPTO_SUCCESS) {
1933 		cmn_err(CE_WARN,
1934 			"arcfour_hmac_md5_decrypt:  do_hmac(k2)"
1935 			"failed - error %0x", result);
1936 		goto cleanup;
1937 	}
1938 
1939 	if (bcmp(cksum, mp->b_rptr, hash->hash_len) != 0) {
1940 		cmn_err(CE_WARN, "arcfour_decrypt HMAC comparison failed");
1941 		result = -1;
1942 		goto cleanup;
1943 	}
1944 
1945 	/*
1946 	 * adjust the start of the mblk to skip over the
1947 	 * hash and confounder.
1948 	 */
1949 	mp->b_rptr += hash->hash_len + hash->confound_len;
1950 
1951 cleanup:
1952 	bzero(k1data, sizeof (k1data));
1953 	bzero(k2data, sizeof (k2data));
1954 	bzero(cksum, sizeof (cksum));
1955 	bzero(saltdata, sizeof (saltdata));
1956 	if (result != CRYPTO_SUCCESS) {
1957 		mp->b_datap->db_type = M_ERROR;
1958 		mp->b_rptr = mp->b_datap->db_base;
1959 		*mp->b_rptr = EIO;
1960 		mp->b_wptr = mp->b_rptr + sizeof (char);
1961 		freemsg(mp->b_cont);
1962 		mp->b_cont = NULL;
1963 		qreply(WR(q), mp);
1964 		return (NULL);
1965 	}
1966 	return (mp);
1967 }
1968 
1969 /*
1970  * ARCFOUR-HMAC-MD5 encrypt
1971  *
1972  * format of ciphertext when using ARCFOUR-HMAC-MD5
1973  *  +-----------+------------+------------+
1974  *  |  hmac     | confounder |  msg-data  |
1975  *  +-----------+------------+------------+
1976  *
1977  */
1978 static mblk_t *
1979 arcfour_hmac_md5_encrypt(queue_t *q, struct tmodinfo *tmi, mblk_t *mp,
1980 			hash_info_t *hash)
1981 {
1982 	int result;
1983 	size_t cipherlen;
1984 	size_t inlen;
1985 	size_t saltlen;
1986 	crypto_key_t k1, k2;
1987 	crypto_data_t indata;
1988 	iovec_t v1;
1989 	uchar_t ms_exp[9] = {0xab, 0xab, 0xab, 0xab, 0xab,
1990 				0xab, 0xab, 0xab, 0xab };
1991 	uchar_t k1data[CRYPT_ARCFOUR_KEYBYTES];
1992 	uchar_t k2data[CRYPT_ARCFOUR_KEYBYTES];
1993 	uchar_t saltdata[CRYPT_ARCFOUR_KEYBYTES];
1994 	crypto_mechanism_t mech;
1995 	int usage;
1996 
1997 	bzero(&indata, sizeof (indata));
1998 
1999 	/* The usage constant is 1026 for all "old" rcmd mode operations */
2000 	if (tmi->enc_data.option_mask & CRYPTOPT_RCMD_MODE_V1)
2001 		usage = RCMDV1_USAGE;
2002 	else
2003 		usage = ARCFOUR_ENCRYPT_USAGE;
2004 
2005 	mech.cm_type = tmi->enc_data.mech_type;
2006 	mech.cm_param = NULL;
2007 	mech.cm_param_len = 0;
2008 
2009 	/*
2010 	 * The size at this point should be the size of
2011 	 * all the plaintext plus the optional plaintext length
2012 	 * needed for RCMD V2 mode.  There should also be room
2013 	 * at the head of the mblk for the confounder and hash info.
2014 	 */
2015 	inlen = (size_t)MBLKL(mp);
2016 
2017 	cipherlen = encrypt_size(&tmi->enc_data, inlen);
2018 
2019 	ASSERT(MBLKSIZE(mp) >= cipherlen);
2020 
2021 	/*
2022 	 * Shift the rptr back enough to insert
2023 	 * the confounder and hash.
2024 	 */
2025 	mp->b_rptr -= (hash->confound_len + hash->hash_len);
2026 
2027 	/* zero out the hash area */
2028 	bzero(mp->b_rptr, (size_t)hash->hash_len);
2029 
2030 	if (cipherlen > inlen) {
2031 		bzero(mp->b_wptr, MBLKTAIL(mp));
2032 	}
2033 
2034 	if (tmi->enc_data.method == CRYPT_METHOD_ARCFOUR_HMAC_MD5_EXP) {
2035 		bcopy(ARCFOUR_EXP_SALT, saltdata, strlen(ARCFOUR_EXP_SALT));
2036 		saltdata[9] = 0;
2037 		saltdata[10] = usage & 0xff;
2038 		saltdata[11] = (usage >> 8) & 0xff;
2039 		saltdata[12] = (usage >> 16) & 0xff;
2040 		saltdata[13] = (usage >> 24) & 0xff;
2041 		saltlen = 14;
2042 	} else {
2043 		saltdata[0] = usage & 0xff;
2044 		saltdata[1] = (usage >> 8) & 0xff;
2045 		saltdata[2] = (usage >> 16) & 0xff;
2046 		saltdata[3] = (usage >> 24) & 0xff;
2047 		saltlen = 4;
2048 	}
2049 	/*
2050 	 * Use the salt value to create a key to be used
2051 	 * for subsequent HMAC operations.
2052 	 */
2053 	result = do_hmac(md5_hmac_mech,
2054 			tmi->enc_data.ckey,
2055 			(char *)saltdata, saltlen,
2056 			(char *)k1data, sizeof (k1data));
2057 	if (result != CRYPTO_SUCCESS) {
2058 		cmn_err(CE_WARN,
2059 			"arcfour_hmac_md5_encrypt:  do_hmac(k1)"
2060 			"failed - error %0x", result);
2061 		goto cleanup;
2062 	}
2063 
2064 	bcopy(k1data, k2data, sizeof (k2data));
2065 
2066 	/*
2067 	 * For the neutered MS RC4 encryption type,
2068 	 * set the trailing 9 bytes to 0xab per the
2069 	 * RC4-HMAC spec.
2070 	 */
2071 	if (tmi->enc_data.method == CRYPT_METHOD_ARCFOUR_HMAC_MD5_EXP) {
2072 		bcopy((void *)&k1data[7], ms_exp, sizeof (ms_exp));
2073 	}
2074 
2075 	/*
2076 	 * Get the confounder bytes.
2077 	 */
2078 	(void) random_get_pseudo_bytes(
2079 			(uint8_t *)(mp->b_rptr + hash->hash_len),
2080 			(size_t)hash->confound_len);
2081 
2082 	k2.ck_data = k2data;
2083 	k2.ck_format = CRYPTO_KEY_RAW;
2084 	k2.ck_length = sizeof (k2data) * 8;
2085 
2086 	/*
2087 	 * This writes the HMAC to the hash area in the
2088 	 * mblk.  The key used is the one just created by
2089 	 * the previous HMAC operation.
2090 	 * The data being processed is the confounder bytes
2091 	 * PLUS the input plaintext.
2092 	 */
2093 	result = do_hmac(md5_hmac_mech, &k2,
2094 			(char *)mp->b_rptr + hash->hash_len,
2095 			hash->confound_len + inlen,
2096 			(char *)mp->b_rptr, hash->hash_len);
2097 	if (result != CRYPTO_SUCCESS) {
2098 		cmn_err(CE_WARN,
2099 			"arcfour_hmac_md5_encrypt:  do_hmac(k2)"
2100 			"failed - error %0x", result);
2101 		goto cleanup;
2102 	}
2103 	/*
2104 	 * Because of the odd way that MIT uses RC4 keys
2105 	 * on the rlogin stream, we only need to create
2106 	 * this key once.
2107 	 * However, if using "old" rcmd mode, we need to do
2108 	 * it every time.
2109 	 */
2110 	if (tmi->enc_data.ctx == NULL ||
2111 	    (tmi->enc_data.option_mask & CRYPTOPT_RCMD_MODE_V1)) {
2112 		crypto_key_t *key = &tmi->enc_data.d_encr_key;
2113 
2114 		k1.ck_data = k1data;
2115 		k1.ck_format = CRYPTO_KEY_RAW;
2116 		k1.ck_length = sizeof (k1data) * 8;
2117 
2118 		key->ck_format = CRYPTO_KEY_RAW;
2119 		key->ck_length = k1.ck_length;
2120 		if (key->ck_data == NULL)
2121 			key->ck_data = kmem_zalloc(
2122 				CRYPT_ARCFOUR_KEYBYTES, KM_SLEEP);
2123 
2124 		/*
2125 		 * The final HMAC operation creates the encryption
2126 		 * key to be used for the encrypt operation.
2127 		 */
2128 		result = do_hmac(md5_hmac_mech, &k1,
2129 			(char *)mp->b_rptr, hash->hash_len,
2130 			(char *)key->ck_data, CRYPT_ARCFOUR_KEYBYTES);
2131 
2132 		if (result != CRYPTO_SUCCESS) {
2133 			cmn_err(CE_WARN,
2134 				"arcfour_hmac_md5_encrypt:  do_hmac(k3)"
2135 				"failed - error %0x", result);
2136 			goto cleanup;
2137 		}
2138 	}
2139 
2140 	/*
2141 	 * If the context has not been initialized, do it now.
2142 	 */
2143 	if (tmi->enc_data.ctx == NULL &&
2144 	    (tmi->enc_data.option_mask & CRYPTOPT_RCMD_MODE_V2)) {
2145 		/*
2146 		 * Only create a template if we are doing
2147 		 * chaining from block to block.
2148 		 */
2149 		result = crypto_create_ctx_template(&mech,
2150 				&tmi->enc_data.d_encr_key,
2151 				&tmi->enc_data.enc_tmpl,
2152 				KM_SLEEP);
2153 		if (result == CRYPTO_NOT_SUPPORTED) {
2154 			tmi->enc_data.enc_tmpl = NULL;
2155 		} else if (result != CRYPTO_SUCCESS) {
2156 			cmn_err(CE_WARN, "failed to create enc template "
2157 				"for RC4 encrypt: %0x", result);
2158 			goto cleanup;
2159 		}
2160 
2161 		result = crypto_encrypt_init(&mech,
2162 					&tmi->enc_data.d_encr_key,
2163 					tmi->enc_data.enc_tmpl,
2164 					&tmi->enc_data.ctx, NULL);
2165 		if (result != CRYPTO_SUCCESS) {
2166 			cmn_err(CE_WARN, "crypto_encrypt_init failed:"
2167 				" %0x", result);
2168 			goto cleanup;
2169 		}
2170 	}
2171 	v1.iov_base = (char *)mp->b_rptr + hash->hash_len;
2172 	v1.iov_len = hash->confound_len + inlen;
2173 
2174 	indata.cd_format = CRYPTO_DATA_RAW;
2175 	indata.cd_offset = 0;
2176 	indata.cd_length = hash->confound_len + inlen;
2177 	indata.cd_raw = v1;
2178 
2179 	if (tmi->enc_data.option_mask & CRYPTOPT_RCMD_MODE_V2)
2180 		result = crypto_encrypt_update(tmi->enc_data.ctx,
2181 			&indata, NULL, NULL);
2182 	else
2183 		result = crypto_encrypt(&mech, &indata,
2184 			&tmi->enc_data.d_encr_key, NULL,
2185 			NULL, NULL);
2186 
2187 	if (result != CRYPTO_SUCCESS) {
2188 		cmn_err(CE_WARN, "crypto_encrypt_update failed: 0x%0x",
2189 			result);
2190 	}
2191 
2192 cleanup:
2193 	bzero(k1data, sizeof (k1data));
2194 	bzero(k2data, sizeof (k2data));
2195 	bzero(saltdata, sizeof (saltdata));
2196 	if (result != CRYPTO_SUCCESS) {
2197 		mp->b_datap->db_type = M_ERROR;
2198 		mp->b_rptr = mp->b_datap->db_base;
2199 		*mp->b_rptr = EIO;
2200 		mp->b_wptr = mp->b_rptr + sizeof (char);
2201 		freemsg(mp->b_cont);
2202 		mp->b_cont = NULL;
2203 		qreply(WR(q), mp);
2204 		return (NULL);
2205 	}
2206 	return (mp);
2207 }
2208 
2209 /*
2210  * DES-CBC-[HASH] encrypt
2211  *
2212  * Needed to support userland apps that must support Kerberos V5
2213  * encryption DES-CBC encryption modes.
2214  *
2215  * The HASH values supported are RAW(NULL), MD5, CRC32, and SHA1
2216  *
2217  * format of ciphertext for DES-CBC functions, per RFC1510 is:
2218  *  +-----------+----------+-------------+-----+
2219  *  |confounder |  cksum   |   msg-data  | pad |
2220  *  +-----------+----------+-------------+-----+
2221  *
2222  * format of ciphertext when using DES3-SHA1-HMAC
2223  *  +-----------+----------+-------------+-----+
2224  *  |confounder |  msg-data  |   hmac    | pad |
2225  *  +-----------+----------+-------------+-----+
2226  *
2227  *  The confounder is 8 bytes of random data.
2228  *  The cksum depends on the hash being used.
2229  *   4 bytes for CRC32
2230  *  16 bytes for MD5
2231  *  20 bytes for SHA1
2232  *   0 bytes for RAW
2233  *
2234  */
2235 static mblk_t *
2236 des_cbc_encrypt(queue_t *q, struct tmodinfo *tmi, mblk_t *mp, hash_info_t *hash)
2237 {
2238 	int result;
2239 	size_t cipherlen;
2240 	size_t inlen;
2241 	size_t plainlen;
2242 
2243 	/*
2244 	 * The size at this point should be the size of
2245 	 * all the plaintext plus the optional plaintext length
2246 	 * needed for RCMD V2 mode.  There should also be room
2247 	 * at the head of the mblk for the confounder and hash info.
2248 	 */
2249 	inlen = (size_t)MBLKL(mp);
2250 
2251 	/*
2252 	 * The output size will be a multiple of 8 because this algorithm
2253 	 * only works on 8 byte chunks.
2254 	 */
2255 	cipherlen = encrypt_size(&tmi->enc_data, inlen);
2256 
2257 	ASSERT(MBLKSIZE(mp) >= cipherlen);
2258 
2259 	if (cipherlen > inlen) {
2260 		bzero(mp->b_wptr, MBLKTAIL(mp));
2261 	}
2262 
2263 	/*
2264 	 * Shift the rptr back enough to insert
2265 	 * the confounder and hash.
2266 	 */
2267 	if (tmi->enc_data.method == CRYPT_METHOD_DES3_CBC_SHA1) {
2268 		mp->b_rptr -= hash->confound_len;
2269 	} else {
2270 		mp->b_rptr -= (hash->confound_len + hash->hash_len);
2271 
2272 		/* zero out the hash area */
2273 		bzero(mp->b_rptr + hash->confound_len, (size_t)hash->hash_len);
2274 	}
2275 
2276 	/* get random confounder from our friend, the 'random' module */
2277 	if (hash->confound_len > 0) {
2278 		(void) random_get_pseudo_bytes((uint8_t *)mp->b_rptr,
2279 				    (size_t)hash->confound_len);
2280 	}
2281 
2282 	/*
2283 	 * For 3DES we calculate an HMAC later.
2284 	 */
2285 	if (tmi->enc_data.method != CRYPT_METHOD_DES3_CBC_SHA1) {
2286 		/* calculate chksum of confounder + input */
2287 		if (hash->hash_len > 0 && hash->hashfunc != NULL) {
2288 			uchar_t cksum[MAX_CKSUM_LEN];
2289 
2290 			result = hash->hashfunc(cksum, mp->b_rptr,
2291 				cipherlen);
2292 			if (result != CRYPTO_SUCCESS) {
2293 				goto failure;
2294 			}
2295 
2296 			/* put hash in place right after the confounder */
2297 			bcopy(cksum, (mp->b_rptr + hash->confound_len),
2298 			    (size_t)hash->hash_len);
2299 		}
2300 	}
2301 	/*
2302 	 * In order to support the "old" Kerberos RCMD protocol,
2303 	 * we must use the IVEC 3 different ways:
2304 	 *   IVEC_REUSE = keep using the same IV each time, this is
2305 	 *		ugly and insecure, but necessary for
2306 	 *		backwards compatibility with existing MIT code.
2307 	 *   IVEC_ONETIME = Use the ivec as initialized when the crypto
2308 	 *		was setup (see setup_crypto routine).
2309 	 *   IVEC_NEVER = never use an IVEC, use a bunch of 0's as the IV (yuk).
2310 	 */
2311 	if (tmi->enc_data.ivec_usage == IVEC_NEVER) {
2312 		bzero(tmi->enc_data.block, tmi->enc_data.blocklen);
2313 	} else if (tmi->enc_data.ivec_usage == IVEC_REUSE) {
2314 		bcopy(tmi->enc_data.ivec, tmi->enc_data.block,
2315 		    tmi->enc_data.blocklen);
2316 	}
2317 
2318 	if (tmi->enc_data.method == CRYPT_METHOD_DES3_CBC_SHA1) {
2319 		/*
2320 		 * The input length already included the hash size,
2321 		 * don't include this in the plaintext length
2322 		 * calculations.
2323 		 */
2324 		plainlen = cipherlen - hash->hash_len;
2325 
2326 		mp->b_wptr = mp->b_rptr + plainlen;
2327 
2328 		result = kef_encr_hmac(&tmi->enc_data,
2329 			(void *)mp, (size_t)plainlen,
2330 			(char *)(mp->b_rptr + plainlen),
2331 			hash->hash_len);
2332 	} else {
2333 		ASSERT(mp->b_rptr + cipherlen <= DB_LIM(mp));
2334 		mp->b_wptr = mp->b_rptr + cipherlen;
2335 		result = kef_crypt(&tmi->enc_data, (void *)mp,
2336 			CRYPTO_DATA_MBLK, (size_t)cipherlen,
2337 			CRYPT_ENCRYPT);
2338 	}
2339 failure:
2340 	if (result != CRYPTO_SUCCESS) {
2341 #ifdef DEBUG
2342 		cmn_err(CE_WARN,
2343 			"des_cbc_encrypt: kef_crypt encrypt "
2344 			"failed (len: %ld) - error %0x",
2345 			cipherlen, result);
2346 #endif
2347 		mp->b_datap->db_type = M_ERROR;
2348 		mp->b_rptr = mp->b_datap->db_base;
2349 		*mp->b_rptr = EIO;
2350 		mp->b_wptr = mp->b_rptr + sizeof (char);
2351 		freemsg(mp->b_cont);
2352 		mp->b_cont = NULL;
2353 		qreply(WR(q), mp);
2354 		return (NULL);
2355 	} else if (tmi->enc_data.ivec_usage == IVEC_ONETIME) {
2356 		/*
2357 		 * Because we are using KEF, we must manually
2358 		 * update our IV.
2359 		 */
2360 		bcopy(mp->b_wptr - tmi->enc_data.ivlen,
2361 			tmi->enc_data.block, tmi->enc_data.ivlen);
2362 	}
2363 	if (tmi->enc_data.method == CRYPT_METHOD_DES3_CBC_SHA1) {
2364 		mp->b_wptr = mp->b_rptr + cipherlen;
2365 	}
2366 
2367 	return (mp);
2368 }
2369 
2370 /*
2371  * des_cbc_decrypt
2372  *
2373  *
2374  * Needed to support userland apps that must support Kerberos V5
2375  * encryption DES-CBC decryption modes.
2376  *
2377  * The HASH values supported are RAW(NULL), MD5, CRC32, and SHA1
2378  *
2379  * format of ciphertext for DES-CBC functions, per RFC1510 is:
2380  *  +-----------+----------+-------------+-----+
2381  *  |confounder |  cksum   |   msg-data  | pad |
2382  *  +-----------+----------+-------------+-----+
2383  *
2384  * format of ciphertext when using DES3-SHA1-HMAC
2385  *  +-----------+----------+-------------+-----+
2386  *  |confounder |  msg-data  |   hmac    | pad |
2387  *  +-----------+----------+-------------+-----+
2388  *
2389  *  The confounder is 8 bytes of random data.
2390  *  The cksum depends on the hash being used.
2391  *   4 bytes for CRC32
2392  *  16 bytes for MD5
2393  *  20 bytes for SHA1
2394  *   0 bytes for RAW
2395  *
2396  */
2397 static mblk_t *
2398 des_cbc_decrypt(queue_t *q, struct tmodinfo *tmi, mblk_t *mp, hash_info_t *hash)
2399 {
2400 	uint_t inlen, datalen;
2401 	int result = 0;
2402 	uchar_t *optr = NULL;
2403 	uchar_t cksum[MAX_CKSUM_LEN], newcksum[MAX_CKSUM_LEN];
2404 	uchar_t nextiv[DEFAULT_DES_BLOCKLEN];
2405 
2406 	/* Compute adjusted size */
2407 	inlen = MBLKL(mp);
2408 
2409 	optr = mp->b_rptr;
2410 
2411 	/*
2412 	 * In order to support the "old" Kerberos RCMD protocol,
2413 	 * we must use the IVEC 3 different ways:
2414 	 *   IVEC_REUSE = keep using the same IV each time, this is
2415 	 *		ugly and insecure, but necessary for
2416 	 *		backwards compatibility with existing MIT code.
2417 	 *   IVEC_ONETIME = Use the ivec as initialized when the crypto
2418 	 *		was setup (see setup_crypto routine).
2419 	 *   IVEC_NEVER = never use an IVEC, use a bunch of 0's as the IV (yuk).
2420 	 */
2421 	if (tmi->dec_data.ivec_usage == IVEC_NEVER)
2422 		bzero(tmi->dec_data.block, tmi->dec_data.blocklen);
2423 	else if (tmi->dec_data.ivec_usage == IVEC_REUSE)
2424 		bcopy(tmi->dec_data.ivec, tmi->dec_data.block,
2425 		    tmi->dec_data.blocklen);
2426 
2427 	if (tmi->dec_data.method == CRYPT_METHOD_DES3_CBC_SHA1) {
2428 		/*
2429 		 * Do not decrypt the HMAC at the end
2430 		 */
2431 		int decrypt_len = inlen - hash->hash_len;
2432 
2433 		/*
2434 		 * Move the wptr so the mblk appears to end
2435 		 * BEFORE the HMAC section.
2436 		 */
2437 		mp->b_wptr = mp->b_rptr + decrypt_len;
2438 
2439 		/*
2440 		 * Because we are using KEF, we must manually update our
2441 		 * IV.
2442 		 */
2443 		if (tmi->dec_data.ivec_usage == IVEC_ONETIME) {
2444 			bcopy(mp->b_rptr + decrypt_len - tmi->dec_data.ivlen,
2445 				nextiv, tmi->dec_data.ivlen);
2446 		}
2447 
2448 		result = kef_decr_hmac(&tmi->dec_data, mp, decrypt_len,
2449 			(char *)newcksum, hash->hash_len);
2450 	} else {
2451 		/*
2452 		 * Because we are using KEF, we must manually update our
2453 		 * IV.
2454 		 */
2455 		if (tmi->dec_data.ivec_usage == IVEC_ONETIME) {
2456 			bcopy(mp->b_wptr - tmi->enc_data.ivlen, nextiv,
2457 				tmi->dec_data.ivlen);
2458 		}
2459 		result = kef_crypt(&tmi->dec_data, (void *)mp,
2460 			CRYPTO_DATA_MBLK, (size_t)inlen, CRYPT_DECRYPT);
2461 	}
2462 	if (result != CRYPTO_SUCCESS) {
2463 #ifdef DEBUG
2464 		cmn_err(CE_WARN,
2465 			"des_cbc_decrypt: kef_crypt decrypt "
2466 			"failed - error %0x", result);
2467 #endif
2468 		mp->b_datap->db_type = M_ERROR;
2469 		mp->b_rptr = mp->b_datap->db_base;
2470 		*mp->b_rptr = EIO;
2471 		mp->b_wptr = mp->b_rptr + sizeof (char);
2472 		freemsg(mp->b_cont);
2473 		mp->b_cont = NULL;
2474 		qreply(WR(q), mp);
2475 		return (NULL);
2476 	}
2477 
2478 	/*
2479 	 * Manually update the IV, KEF does not track this for us.
2480 	 */
2481 	if (tmi->dec_data.ivec_usage == IVEC_ONETIME) {
2482 		bcopy(nextiv, tmi->dec_data.block, tmi->dec_data.ivlen);
2483 	}
2484 
2485 	/* Verify the checksum(if necessary) */
2486 	if (hash->hash_len > 0) {
2487 		if (tmi->dec_data.method == CRYPT_METHOD_DES3_CBC_SHA1) {
2488 			bcopy(mp->b_rptr + inlen - hash->hash_len, cksum,
2489 				hash->hash_len);
2490 		} else {
2491 			bcopy(optr + hash->confound_len, cksum, hash->hash_len);
2492 
2493 			/* zero the cksum in the buffer */
2494 			ASSERT(optr + hash->confound_len + hash->hash_len <=
2495 				DB_LIM(mp));
2496 			bzero(optr + hash->confound_len, hash->hash_len);
2497 
2498 			/* calculate MD5 chksum of confounder + input */
2499 			if (hash->hashfunc) {
2500 				(void) hash->hashfunc(newcksum, optr, inlen);
2501 			}
2502 		}
2503 
2504 		if (bcmp(cksum, newcksum, hash->hash_len)) {
2505 #ifdef DEBUG
2506 			cmn_err(CE_WARN, "des_cbc_decrypt: checksum "
2507 				"verification failed");
2508 #endif
2509 			mp->b_datap->db_type = M_ERROR;
2510 			mp->b_rptr = mp->b_datap->db_base;
2511 			*mp->b_rptr = EIO;
2512 			mp->b_wptr = mp->b_rptr + sizeof (char);
2513 			freemsg(mp->b_cont);
2514 			mp->b_cont = NULL;
2515 			qreply(WR(q), mp);
2516 			return (NULL);
2517 		}
2518 	}
2519 
2520 	datalen = inlen - hash->confound_len - hash->hash_len;
2521 
2522 	/* Move just the decrypted input into place if necessary */
2523 	if (hash->confound_len > 0 || hash->hash_len > 0) {
2524 		if (tmi->dec_data.method == CRYPT_METHOD_DES3_CBC_SHA1)
2525 			mp->b_rptr += hash->confound_len;
2526 		else
2527 			mp->b_rptr += hash->confound_len + hash->hash_len;
2528 	}
2529 
2530 	ASSERT(mp->b_rptr + datalen <= DB_LIM(mp));
2531 	mp->b_wptr = mp->b_rptr + datalen;
2532 
2533 	return (mp);
2534 }
2535 
2536 static mblk_t *
2537 do_decrypt(queue_t *q, mblk_t *mp)
2538 {
2539 	struct tmodinfo *tmi = (struct tmodinfo *)q->q_ptr;
2540 	mblk_t *outmp;
2541 
2542 	switch (tmi->dec_data.method) {
2543 	case CRYPT_METHOD_DES_CFB:
2544 		outmp = des_cfb_decrypt(q, tmi, mp);
2545 		break;
2546 	case CRYPT_METHOD_NONE:
2547 		outmp = mp;
2548 		break;
2549 	case CRYPT_METHOD_DES_CBC_NULL:
2550 		outmp = des_cbc_decrypt(q, tmi, mp, &null_hash);
2551 		break;
2552 	case CRYPT_METHOD_DES_CBC_MD5:
2553 		outmp = des_cbc_decrypt(q, tmi, mp, &md5_hash);
2554 		break;
2555 	case CRYPT_METHOD_DES_CBC_CRC:
2556 		outmp = des_cbc_decrypt(q, tmi, mp, &crc32_hash);
2557 		break;
2558 	case CRYPT_METHOD_DES3_CBC_SHA1:
2559 		outmp = des_cbc_decrypt(q, tmi, mp, &sha1_hash);
2560 		break;
2561 	case CRYPT_METHOD_ARCFOUR_HMAC_MD5:
2562 	case CRYPT_METHOD_ARCFOUR_HMAC_MD5_EXP:
2563 		outmp = arcfour_hmac_md5_decrypt(q, tmi, mp, &md5_hash);
2564 		break;
2565 	case CRYPT_METHOD_AES128:
2566 	case CRYPT_METHOD_AES256:
2567 		outmp = aes_decrypt(q, tmi, mp, &sha1_hash);
2568 		break;
2569 	}
2570 	return (outmp);
2571 }
2572 
2573 /*
2574  * do_encrypt
2575  *
2576  * Generic encryption routine for a single message block.
2577  * The input mblk may be replaced by some encrypt routines
2578  * because they add extra data in some cases that may exceed
2579  * the input mblk_t size limit.
2580  */
2581 static mblk_t *
2582 do_encrypt(queue_t *q, mblk_t *mp)
2583 {
2584 	struct tmodinfo *tmi = (struct tmodinfo *)q->q_ptr;
2585 	mblk_t *outmp;
2586 
2587 	switch (tmi->enc_data.method) {
2588 	case CRYPT_METHOD_DES_CFB:
2589 		outmp = des_cfb_encrypt(q, tmi, mp);
2590 		break;
2591 	case CRYPT_METHOD_DES_CBC_NULL:
2592 		outmp = des_cbc_encrypt(q, tmi, mp, &null_hash);
2593 		break;
2594 	case CRYPT_METHOD_DES_CBC_MD5:
2595 		outmp = des_cbc_encrypt(q, tmi, mp, &md5_hash);
2596 		break;
2597 	case CRYPT_METHOD_DES_CBC_CRC:
2598 		outmp = des_cbc_encrypt(q, tmi, mp, &crc32_hash);
2599 		break;
2600 	case CRYPT_METHOD_DES3_CBC_SHA1:
2601 		outmp = des_cbc_encrypt(q, tmi, mp, &sha1_hash);
2602 		break;
2603 	case CRYPT_METHOD_ARCFOUR_HMAC_MD5:
2604 	case CRYPT_METHOD_ARCFOUR_HMAC_MD5_EXP:
2605 		outmp = arcfour_hmac_md5_encrypt(q, tmi, mp, &md5_hash);
2606 		break;
2607 	case CRYPT_METHOD_AES128:
2608 	case CRYPT_METHOD_AES256:
2609 		outmp = aes_encrypt(q, tmi, mp, &sha1_hash);
2610 		break;
2611 	case CRYPT_METHOD_NONE:
2612 		outmp = mp;
2613 		break;
2614 	}
2615 	return (outmp);
2616 }
2617 
2618 /*
2619  * setup_crypto
2620  *
2621  * This takes the data from the CRYPTIOCSETUP ioctl
2622  * and sets up a cipher_data_t structure for either
2623  * encryption or decryption.  This is where the
2624  * key and initialization vector data get stored
2625  * prior to beginning any crypto functions.
2626  *
2627  * Special note:
2628  *   Some applications(e.g. telnetd) have ability to switch
2629  * crypto on/off periodically.  Thus, the application may call
2630  * the CRYPTIOCSETUP ioctl many times for the same stream.
2631  * If the CRYPTIOCSETUP is called with 0 length key or ivec fields
2632  * assume that the key, block, and saveblock fields that are already
2633  * set from a previous CRIOCSETUP call are still valid.  This helps avoid
2634  * a rekeying error that could occur if we overwrite these fields
2635  * with each CRYPTIOCSETUP call.
2636  *   In short, sometimes, CRYPTIOCSETUP is used to simply toggle on/off
2637  * without resetting the original crypto parameters.
2638  *
2639  */
2640 static int
2641 setup_crypto(struct cr_info_t *ci, struct cipher_data_t *cd, int encrypt)
2642 {
2643 	uint_t newblocklen;
2644 	uint32_t enc_usage = 0, dec_usage = 0;
2645 	int rv;
2646 
2647 	/*
2648 	 * Initial sanity checks
2649 	 */
2650 	if (!CR_METHOD_OK(ci->crypto_method)) {
2651 		cmn_err(CE_WARN, "Illegal crypto method (%d)",
2652 			ci->crypto_method);
2653 		return (EINVAL);
2654 	}
2655 	if (!CR_OPTIONS_OK(ci->option_mask)) {
2656 		cmn_err(CE_WARN, "Illegal crypto options (%d)",
2657 			ci->option_mask);
2658 		return (EINVAL);
2659 	}
2660 	if (!CR_IVUSAGE_OK(ci->ivec_usage)) {
2661 		cmn_err(CE_WARN, "Illegal ivec usage value (%d)",
2662 			ci->ivec_usage);
2663 		return (EINVAL);
2664 	}
2665 
2666 	cd->method = ci->crypto_method;
2667 	cd->bytes = 0;
2668 
2669 	if (ci->keylen > 0) {
2670 		if (cd->key != NULL) {
2671 			kmem_free(cd->key, cd->keylen);
2672 			cd->key = NULL;
2673 			cd->keylen = 0;
2674 		}
2675 		/*
2676 		 * cd->key holds the copy of the raw key bytes passed in
2677 		 * from the userland app.
2678 		 */
2679 		cd->key = (char *)kmem_alloc((size_t)ci->keylen, KM_SLEEP);
2680 
2681 		cd->keylen = ci->keylen;
2682 		bcopy(ci->key, cd->key, (size_t)ci->keylen);
2683 	}
2684 
2685 	/*
2686 	 * Configure the block size based on the type of cipher.
2687 	 */
2688 	switch (cd->method) {
2689 		case CRYPT_METHOD_NONE:
2690 			newblocklen = 0;
2691 			break;
2692 		case CRYPT_METHOD_DES_CFB:
2693 			newblocklen = DEFAULT_DES_BLOCKLEN;
2694 			cd->mech_type = crypto_mech2id(SUN_CKM_DES_ECB);
2695 			break;
2696 		case CRYPT_METHOD_DES_CBC_NULL:
2697 		case CRYPT_METHOD_DES_CBC_MD5:
2698 		case CRYPT_METHOD_DES_CBC_CRC:
2699 			newblocklen = DEFAULT_DES_BLOCKLEN;
2700 			cd->mech_type = crypto_mech2id(SUN_CKM_DES_CBC);
2701 			break;
2702 		case CRYPT_METHOD_DES3_CBC_SHA1:
2703 			newblocklen = DEFAULT_DES_BLOCKLEN;
2704 			cd->mech_type = crypto_mech2id(SUN_CKM_DES3_CBC);
2705 			/* 3DES always uses the old usage constant */
2706 			enc_usage = RCMDV1_USAGE;
2707 			dec_usage = RCMDV1_USAGE;
2708 			break;
2709 		case CRYPT_METHOD_ARCFOUR_HMAC_MD5:
2710 		case CRYPT_METHOD_ARCFOUR_HMAC_MD5_EXP:
2711 			newblocklen = 0;
2712 			cd->mech_type = crypto_mech2id(SUN_CKM_RC4);
2713 			break;
2714 		case CRYPT_METHOD_AES128:
2715 		case CRYPT_METHOD_AES256:
2716 			newblocklen = DEFAULT_AES_BLOCKLEN;
2717 			cd->mech_type = crypto_mech2id(SUN_CKM_AES_ECB);
2718 			enc_usage = AES_ENCRYPT_USAGE;
2719 			dec_usage = AES_DECRYPT_USAGE;
2720 			break;
2721 	}
2722 	if (cd->mech_type == CRYPTO_MECH_INVALID) {
2723 		return (CRYPTO_FAILED);
2724 	}
2725 
2726 	/*
2727 	 * If RC4, initialize the master crypto key used by
2728 	 * the RC4 algorithm to derive the final encrypt and decrypt keys.
2729 	 */
2730 	if (cd->keylen > 0 && IS_RC4_METHOD(cd->method)) {
2731 		/*
2732 		 * cd->ckey is a kernel crypto key structure used as the
2733 		 * master key in the RC4-HMAC crypto operations.
2734 		 */
2735 		if (cd->ckey == NULL) {
2736 			cd->ckey = (crypto_key_t *)kmem_zalloc(
2737 				sizeof (crypto_key_t), KM_SLEEP);
2738 		}
2739 
2740 		cd->ckey->ck_format = CRYPTO_KEY_RAW;
2741 		cd->ckey->ck_data = cd->key;
2742 
2743 		/* key length for EF is measured in bits */
2744 		cd->ckey->ck_length = cd->keylen * 8;
2745 	}
2746 
2747 	/*
2748 	 * cd->block and cd->saveblock are used as temporary storage for
2749 	 * data that must be carried over between encrypt/decrypt operations
2750 	 * in some of the "feedback" modes.
2751 	 */
2752 	if (newblocklen != cd->blocklen) {
2753 		if (cd->block != NULL) {
2754 			kmem_free(cd->block, cd->blocklen);
2755 			cd->block = NULL;
2756 		}
2757 
2758 		if (cd->saveblock != NULL) {
2759 			kmem_free(cd->saveblock, cd->blocklen);
2760 			cd->saveblock = NULL;
2761 		}
2762 
2763 		cd->blocklen = newblocklen;
2764 		if (cd->blocklen) {
2765 			cd->block = (char *)kmem_zalloc((size_t)cd->blocklen,
2766 				KM_SLEEP);
2767 		}
2768 
2769 		if (cd->method == CRYPT_METHOD_DES_CFB)
2770 			cd->saveblock = (char *)kmem_zalloc(cd->blocklen,
2771 						KM_SLEEP);
2772 		else
2773 			cd->saveblock = NULL;
2774 	}
2775 
2776 	if (ci->iveclen != cd->ivlen) {
2777 		if (cd->ivec != NULL) {
2778 			kmem_free(cd->ivec, cd->ivlen);
2779 			cd->ivec = NULL;
2780 		}
2781 		if (ci->ivec_usage != IVEC_NEVER && ci->iveclen > 0) {
2782 			cd->ivec = (char *)kmem_zalloc((size_t)ci->iveclen,
2783 						KM_SLEEP);
2784 			cd->ivlen = ci->iveclen;
2785 		} else {
2786 			cd->ivlen = 0;
2787 			cd->ivec = NULL;
2788 		}
2789 	}
2790 	cd->option_mask = ci->option_mask;
2791 
2792 	/*
2793 	 * Old protocol requires a static 'usage' value for
2794 	 * deriving keys.  Yuk.
2795 	 */
2796 	if (cd->option_mask & CRYPTOPT_RCMD_MODE_V1) {
2797 		enc_usage = dec_usage = RCMDV1_USAGE;
2798 	}
2799 
2800 	if (cd->ivlen > cd->blocklen) {
2801 		cmn_err(CE_WARN, "setup_crypto: IV longer than block size");
2802 		return (EINVAL);
2803 	}
2804 
2805 	/*
2806 	 * If we are using an IVEC "correctly" (i.e. set it once)
2807 	 * copy it here.
2808 	 */
2809 	if (ci->ivec_usage == IVEC_ONETIME && cd->block != NULL)
2810 		bcopy(ci->ivec, cd->block, (size_t)cd->ivlen);
2811 
2812 	cd->ivec_usage = ci->ivec_usage;
2813 	if (cd->ivec != NULL) {
2814 		/* Save the original IVEC in case we need it later */
2815 		bcopy(ci->ivec, cd->ivec, (size_t)cd->ivlen);
2816 	}
2817 	/*
2818 	 * Special handling for 3DES-SHA1-HMAC and AES crypto:
2819 	 * generate derived keys and context templates
2820 	 * for better performance.
2821 	 */
2822 	if (cd->method == CRYPT_METHOD_DES3_CBC_SHA1 ||
2823 	    IS_AES_METHOD(cd->method)) {
2824 		crypto_mechanism_t enc_mech;
2825 		crypto_mechanism_t hmac_mech;
2826 
2827 		if (cd->d_encr_key.ck_data != NULL) {
2828 			bzero(cd->d_encr_key.ck_data, cd->keylen);
2829 			kmem_free(cd->d_encr_key.ck_data, cd->keylen);
2830 		}
2831 
2832 		if (cd->d_hmac_key.ck_data != NULL) {
2833 			bzero(cd->d_hmac_key.ck_data, cd->keylen);
2834 			kmem_free(cd->d_hmac_key.ck_data, cd->keylen);
2835 		}
2836 
2837 		if (cd->enc_tmpl != NULL)
2838 			(void) crypto_destroy_ctx_template(cd->enc_tmpl);
2839 
2840 		if (cd->hmac_tmpl != NULL)
2841 			(void) crypto_destroy_ctx_template(cd->hmac_tmpl);
2842 
2843 		enc_mech.cm_type = cd->mech_type;
2844 		enc_mech.cm_param = cd->ivec;
2845 		enc_mech.cm_param_len = cd->ivlen;
2846 
2847 		hmac_mech.cm_type = sha1_hmac_mech;
2848 		hmac_mech.cm_param = NULL;
2849 		hmac_mech.cm_param_len = 0;
2850 
2851 		/*
2852 		 * Create the derived keys.
2853 		 */
2854 		rv = create_derived_keys(cd,
2855 			(encrypt ? enc_usage : dec_usage),
2856 			&cd->d_encr_key, &cd->d_hmac_key);
2857 
2858 		if (rv != CRYPTO_SUCCESS) {
2859 			cmn_err(CE_WARN, "failed to create derived "
2860 				"keys: %0x", rv);
2861 			return (CRYPTO_FAILED);
2862 		}
2863 
2864 		rv = crypto_create_ctx_template(&enc_mech,
2865 					&cd->d_encr_key,
2866 					&cd->enc_tmpl, KM_SLEEP);
2867 		if (rv == CRYPTO_MECH_NOT_SUPPORTED) {
2868 			cd->enc_tmpl = NULL;
2869 		} else if (rv != CRYPTO_SUCCESS) {
2870 			cmn_err(CE_WARN, "failed to create enc template "
2871 				"for d_encr_key: %0x", rv);
2872 			return (CRYPTO_FAILED);
2873 		}
2874 
2875 		rv = crypto_create_ctx_template(&hmac_mech,
2876 				&cd->d_hmac_key,
2877 				&cd->hmac_tmpl, KM_SLEEP);
2878 		if (rv == CRYPTO_MECH_NOT_SUPPORTED) {
2879 			cd->hmac_tmpl = NULL;
2880 		} else if (rv != CRYPTO_SUCCESS) {
2881 			cmn_err(CE_WARN, "failed to create hmac template:"
2882 				" %0x", rv);
2883 			return (CRYPTO_FAILED);
2884 		}
2885 	} else if (IS_RC4_METHOD(cd->method)) {
2886 		bzero(&cd->d_encr_key, sizeof (crypto_key_t));
2887 		bzero(&cd->d_hmac_key, sizeof (crypto_key_t));
2888 		cd->ctx = NULL;
2889 		cd->enc_tmpl = NULL;
2890 		cd->hmac_tmpl = NULL;
2891 	}
2892 
2893 	/* Final sanity checks, make sure no fields are NULL */
2894 	if (cd->method != CRYPT_METHOD_NONE) {
2895 		if (cd->block == NULL && cd->blocklen > 0) {
2896 #ifdef DEBUG
2897 			cmn_err(CE_WARN,
2898 				"setup_crypto: IV block not allocated");
2899 #endif
2900 			return (ENOMEM);
2901 		}
2902 		if (cd->key == NULL && cd->keylen > 0) {
2903 #ifdef DEBUG
2904 			cmn_err(CE_WARN,
2905 				"setup_crypto: key block not allocated");
2906 #endif
2907 			return (ENOMEM);
2908 		}
2909 		if (cd->method == CRYPT_METHOD_DES_CFB &&
2910 		    cd->saveblock == NULL && cd->blocklen > 0) {
2911 #ifdef DEBUG
2912 			cmn_err(CE_WARN,
2913 				"setup_crypto: save block not allocated");
2914 #endif
2915 			return (ENOMEM);
2916 		}
2917 		if (cd->ivec == NULL && cd->ivlen > 0) {
2918 #ifdef DEBUG
2919 			cmn_err(CE_WARN,
2920 				"setup_crypto: IV not allocated");
2921 #endif
2922 			return (ENOMEM);
2923 		}
2924 	}
2925 	return (0);
2926 }
2927 
2928 /*
2929  * RCMDS require a 4 byte, clear text
2930  * length field before each message.
2931  * Add it now.
2932  */
2933 static mblk_t *
2934 mklenmp(mblk_t *bp, uint32_t len)
2935 {
2936 	mblk_t *lenmp;
2937 	uchar_t *ucp;
2938 
2939 	if (bp->b_rptr - 4 < DB_BASE(bp) || DB_REF(bp) > 1) {
2940 		lenmp = allocb(4, BPRI_MED);
2941 		if (lenmp != NULL) {
2942 			lenmp->b_rptr = lenmp->b_wptr = DB_LIM(lenmp);
2943 			linkb(lenmp, bp);
2944 			bp = lenmp;
2945 		}
2946 	}
2947 	ucp = bp->b_rptr;
2948 	*--ucp = len;
2949 	*--ucp = len >> 8;
2950 	*--ucp = len >> 16;
2951 	*--ucp = len >> 24;
2952 
2953 	bp->b_rptr = ucp;
2954 
2955 	return (bp);
2956 }
2957 
2958 static mblk_t *
2959 encrypt_block(queue_t *q, struct tmodinfo *tmi, mblk_t *mp, size_t plainlen)
2960 {
2961 	mblk_t *newmp;
2962 	size_t headspace;
2963 
2964 	mblk_t *cbp;
2965 	size_t cipherlen;
2966 	size_t extra = 0;
2967 	uint32_t ptlen = (uint32_t)plainlen;
2968 	/*
2969 	 * If we are using the "NEW" RCMD mode,
2970 	 * add 4 bytes to the plaintext for the
2971 	 * plaintext length that gets prepended
2972 	 * before encrypting.
2973 	 */
2974 	if (tmi->enc_data.option_mask & CRYPTOPT_RCMD_MODE_V2)
2975 		ptlen += 4;
2976 
2977 	cipherlen = encrypt_size(&tmi->enc_data, (size_t)ptlen);
2978 
2979 	/*
2980 	 * if we must allocb, then make sure its enough
2981 	 * to hold the length field so we dont have to allocb
2982 	 * again down below in 'mklenmp'
2983 	 */
2984 	if (ANY_RCMD_MODE(tmi->enc_data.option_mask)) {
2985 		extra = sizeof (uint32_t);
2986 	}
2987 
2988 	/*
2989 	 * Calculate how much space is needed in front of
2990 	 * the data.
2991 	 */
2992 	headspace = plaintext_offset(&tmi->enc_data);
2993 
2994 	/*
2995 	 * If the current block is too small, reallocate
2996 	 * one large enough to hold the hdr, tail, and
2997 	 * ciphertext.
2998 	 */
2999 	if ((cipherlen + extra >= MBLKSIZE(mp)) || DB_REF(mp) > 1) {
3000 		int sz = P2ROUNDUP(cipherlen+extra, 8);
3001 
3002 		cbp = allocb_tmpl(sz, mp);
3003 		if (cbp == NULL) {
3004 			cmn_err(CE_WARN,
3005 				"allocb (%d bytes) failed", sz);
3006 				return (NULL);
3007 		}
3008 
3009 		cbp->b_cont = mp->b_cont;
3010 
3011 		/*
3012 		 * headspace includes the length fields needed
3013 		 * for the RCMD modes (v1 == 4 bytes, V2 = 8)
3014 		 */
3015 		ASSERT(cbp->b_rptr + P2ROUNDUP(plainlen+headspace, 8)
3016 			<= DB_LIM(cbp));
3017 
3018 		cbp->b_rptr = DB_BASE(cbp) + headspace;
3019 		bcopy(mp->b_rptr, cbp->b_rptr, plainlen);
3020 		cbp->b_wptr = cbp->b_rptr + plainlen;
3021 
3022 		freeb(mp);
3023 	} else {
3024 		size_t extra = 0;
3025 		cbp = mp;
3026 
3027 		/*
3028 		 * Some ciphers add HMAC after the final block
3029 		 * of the ciphertext, not at the beginning like the
3030 		 * 1-DES ciphers.
3031 		 */
3032 		if (tmi->enc_data.method ==
3033 			CRYPT_METHOD_DES3_CBC_SHA1 ||
3034 		    IS_AES_METHOD(tmi->enc_data.method)) {
3035 			extra = sha1_hash.hash_len;
3036 		}
3037 
3038 		/*
3039 		 * Make sure the rptr is positioned correctly so that
3040 		 * routines later do not have to shift this data around
3041 		 */
3042 		if ((cbp->b_rptr + P2ROUNDUP(cipherlen + extra, 8) >
3043 			DB_LIM(cbp)) ||
3044 			(cbp->b_rptr - headspace < DB_BASE(cbp))) {
3045 			ovbcopy(cbp->b_rptr, DB_BASE(cbp) + headspace,
3046 				plainlen);
3047 			cbp->b_rptr = DB_BASE(cbp) + headspace;
3048 			cbp->b_wptr = cbp->b_rptr + plainlen;
3049 		}
3050 	}
3051 
3052 	ASSERT(cbp->b_rptr - headspace >= DB_BASE(cbp));
3053 	ASSERT(cbp->b_wptr <= DB_LIM(cbp));
3054 
3055 	/*
3056 	 * If using RCMD_MODE_V2 (new rcmd mode), prepend
3057 	 * the plaintext length before the actual plaintext.
3058 	 */
3059 	if (tmi->enc_data.option_mask & CRYPTOPT_RCMD_MODE_V2) {
3060 		cbp->b_rptr -= RCMD_LEN_SZ;
3061 
3062 		/* put plaintext length at head of buffer */
3063 		*(cbp->b_rptr + 3) = (uchar_t)(plainlen & 0xff);
3064 		*(cbp->b_rptr + 2) = (uchar_t)((plainlen >> 8) & 0xff);
3065 		*(cbp->b_rptr + 1) = (uchar_t)((plainlen >> 16) & 0xff);
3066 		*(cbp->b_rptr) = (uchar_t)((plainlen >> 24) & 0xff);
3067 	}
3068 
3069 	newmp = do_encrypt(q, cbp);
3070 
3071 	if (newmp != NULL &&
3072 	    (tmi->enc_data.option_mask &
3073 	    (CRYPTOPT_RCMD_MODE_V1 | CRYPTOPT_RCMD_MODE_V2))) {
3074 		mblk_t *lp;
3075 		/*
3076 		 * Add length field, required when this is
3077 		 * used to encrypt "r*" commands(rlogin, rsh)
3078 		 * with Kerberos.
3079 		 */
3080 		lp = mklenmp(newmp, plainlen);
3081 
3082 		if (lp == NULL) {
3083 			freeb(newmp);
3084 			return (NULL);
3085 		} else {
3086 			newmp = lp;
3087 		}
3088 	}
3089 	return (newmp);
3090 }
3091 
3092 /*
3093  * encrypt_msgb
3094  *
3095  * encrypt a single message. This routine adds the
3096  * RCMD overhead bytes when necessary.
3097  */
3098 static mblk_t *
3099 encrypt_msgb(queue_t *q, struct tmodinfo *tmi, mblk_t *mp)
3100 {
3101 	size_t plainlen, outlen;
3102 	mblk_t *newmp = NULL;
3103 
3104 	/* If not encrypting, do nothing */
3105 	if (tmi->enc_data.method == CRYPT_METHOD_NONE) {
3106 		return (mp);
3107 	}
3108 
3109 	plainlen = MBLKL(mp);
3110 	if (plainlen == 0)
3111 		return (NULL);
3112 
3113 	/*
3114 	 * If the block is too big, we encrypt in 4K chunks so that
3115 	 * older rlogin clients do not choke on the larger buffers.
3116 	 */
3117 	while ((plainlen = MBLKL(mp)) > MSGBUF_SIZE) {
3118 		mblk_t *mp1 = NULL;
3119 		outlen = MSGBUF_SIZE;
3120 		/*
3121 		 * Allocate a new buffer that is only 4K bytes, the
3122 		 * extra bytes are for crypto overhead.
3123 		 */
3124 		mp1 = allocb(outlen + CONFOUNDER_BYTES, BPRI_MED);
3125 		if (mp1 == NULL) {
3126 			cmn_err(CE_WARN,
3127 				"allocb (%d bytes) failed",
3128 				(int)(outlen + CONFOUNDER_BYTES));
3129 			return (NULL);
3130 		}
3131 		/* Copy the next 4K bytes from the old block. */
3132 		bcopy(mp->b_rptr, mp1->b_rptr, outlen);
3133 		mp1->b_wptr = mp1->b_rptr + outlen;
3134 		/* Advance the old block. */
3135 		mp->b_rptr += outlen;
3136 
3137 		/* encrypt the new block */
3138 		newmp = encrypt_block(q, tmi, mp1, outlen);
3139 		if (newmp == NULL)
3140 			return (NULL);
3141 
3142 		putnext(q, newmp);
3143 	}
3144 	newmp = NULL;
3145 	/* If there is data left (< MSGBUF_SIZE), encrypt it. */
3146 	if ((plainlen = MBLKL(mp)) > 0)
3147 		newmp = encrypt_block(q, tmi, mp, plainlen);
3148 
3149 	return (newmp);
3150 }
3151 
3152 /*
3153  * cryptmodwsrv
3154  *
3155  * Service routine for the write queue.
3156  *
3157  * Because data may be placed in the queue to hold between
3158  * the CRYPTIOCSTOP and CRYPTIOCSTART ioctls, the service routine is needed.
3159  */
3160 static int
3161 cryptmodwsrv(queue_t *q)
3162 {
3163 	mblk_t *mp;
3164 	struct tmodinfo *tmi = (struct tmodinfo *)q->q_ptr;
3165 
3166 	while ((mp = getq(q)) != NULL) {
3167 		switch (mp->b_datap->db_type) {
3168 		default:
3169 			/*
3170 			 * wput does not queue anything > QPCTL
3171 			 */
3172 			if (!canputnext(q) ||
3173 			    !(tmi->ready & CRYPT_WRITE_READY)) {
3174 				if (!putbq(q, mp)) {
3175 					freemsg(mp);
3176 				}
3177 				return (0);
3178 			}
3179 			putnext(q, mp);
3180 			break;
3181 		case M_DATA:
3182 			if (canputnext(q) && (tmi->ready & CRYPT_WRITE_READY)) {
3183 				mblk_t *bp;
3184 				mblk_t *newmsg = NULL;
3185 
3186 				/*
3187 				 * If multiple msgs, concat into 1
3188 				 * to minimize crypto operations later.
3189 				 */
3190 				if (mp->b_cont != NULL) {
3191 					bp = msgpullup(mp, -1);
3192 					if (bp != NULL) {
3193 						freemsg(mp);
3194 						mp = bp;
3195 					}
3196 				}
3197 				newmsg = encrypt_msgb(q, tmi, mp);
3198 				if (newmsg != NULL)
3199 					putnext(q, newmsg);
3200 			} else {
3201 				if (!putbq(q, mp)) {
3202 					freemsg(mp);
3203 				}
3204 				return (0);
3205 			}
3206 			break;
3207 		}
3208 	}
3209 	return (0);
3210 }
3211 
3212 static void
3213 start_stream(queue_t *wq, mblk_t *mp, uchar_t dir)
3214 {
3215 	mblk_t *newmp = NULL;
3216 	struct tmodinfo *tmi = (struct tmodinfo *)wq->q_ptr;
3217 
3218 	if (dir == CRYPT_ENCRYPT) {
3219 		tmi->ready |= CRYPT_WRITE_READY;
3220 		(void) (STRLOG(CRYPTMOD_ID, 0, 5, SL_TRACE|SL_NOTE,
3221 				"start_stream: restart ENCRYPT/WRITE q"));
3222 
3223 		enableok(wq);
3224 		qenable(wq);
3225 	} else if (dir == CRYPT_DECRYPT) {
3226 		/*
3227 		 * put any extra data in the RD
3228 		 * queue to be processed and
3229 		 * sent back up.
3230 		 */
3231 		newmp = mp->b_cont;
3232 		mp->b_cont = NULL;
3233 
3234 		tmi->ready |= CRYPT_READ_READY;
3235 		(void) (STRLOG(CRYPTMOD_ID, 0, 5,
3236 				SL_TRACE|SL_NOTE,
3237 				"start_stream: restart "
3238 				"DECRYPT/READ q"));
3239 
3240 		if (newmp != NULL)
3241 			if (!putbq(RD(wq), newmp))
3242 				freemsg(newmp);
3243 
3244 		enableok(RD(wq));
3245 		qenable(RD(wq));
3246 	}
3247 
3248 	miocack(wq, mp, 0, 0);
3249 }
3250 
3251 /*
3252  * Write-side put procedure.  Its main task is to detect ioctls and
3253  * FLUSH operations.  Other message types are passed on through.
3254  */
3255 static void
3256 cryptmodwput(queue_t *wq, mblk_t *mp)
3257 {
3258 	struct iocblk *iocp;
3259 	struct tmodinfo *tmi = (struct tmodinfo *)wq->q_ptr;
3260 	int ret, err;
3261 
3262 	switch (mp->b_datap->db_type) {
3263 	case M_DATA:
3264 		if (wq->q_first == NULL && canputnext(wq) &&
3265 		    (tmi->ready & CRYPT_WRITE_READY) &&
3266 		    tmi->enc_data.method == CRYPT_METHOD_NONE) {
3267 			putnext(wq, mp);
3268 			return;
3269 		}
3270 		/* else, put it in the service queue */
3271 		if (!putq(wq, mp)) {
3272 			freemsg(mp);
3273 		}
3274 		break;
3275 	case M_FLUSH:
3276 		if (*mp->b_rptr & FLUSHW) {
3277 			flushq(wq, FLUSHDATA);
3278 		}
3279 		putnext(wq, mp);
3280 		break;
3281 	case M_IOCTL:
3282 		iocp = (struct iocblk *)mp->b_rptr;
3283 		switch (iocp->ioc_cmd) {
3284 		case CRYPTIOCSETUP:
3285 			ret = 0;
3286 			(void) (STRLOG(CRYPTMOD_ID, 0, 5,
3287 					SL_TRACE | SL_NOTE,
3288 					"wput: got CRYPTIOCSETUP "
3289 					"ioctl(%d)", iocp->ioc_cmd));
3290 
3291 			if ((err = miocpullup(mp,
3292 					sizeof (struct cr_info_t))) != 0) {
3293 				cmn_err(CE_WARN,
3294 				"wput: miocpullup failed for cr_info_t");
3295 				miocnak(wq, mp, 0, err);
3296 			} else {
3297 				struct cr_info_t *ci;
3298 				ci = (struct cr_info_t *)mp->b_cont->b_rptr;
3299 
3300 				if (ci->direction_mask & CRYPT_ENCRYPT) {
3301 				    ret = setup_crypto(ci, &tmi->enc_data, 1);
3302 				}
3303 
3304 				if (ret == 0 &&
3305 				    (ci->direction_mask & CRYPT_DECRYPT)) {
3306 				    ret = setup_crypto(ci, &tmi->dec_data, 0);
3307 				}
3308 				if (ret == 0 &&
3309 				    (ci->direction_mask & CRYPT_DECRYPT) &&
3310 				    ANY_RCMD_MODE(tmi->dec_data.option_mask)) {
3311 					bzero(&tmi->rcmd_state,
3312 					    sizeof (tmi->rcmd_state));
3313 				}
3314 				if (ret == 0) {
3315 					miocack(wq, mp, 0, 0);
3316 				} else {
3317 					cmn_err(CE_WARN,
3318 						"wput: setup_crypto failed");
3319 					miocnak(wq, mp, 0, ret);
3320 				}
3321 				(void) (STRLOG(CRYPTMOD_ID, 0, 5,
3322 						SL_TRACE|SL_NOTE,
3323 						"wput: done with SETUP "
3324 						"ioctl"));
3325 			}
3326 			break;
3327 		case CRYPTIOCSTOP:
3328 			(void) (STRLOG(CRYPTMOD_ID, 0, 5,
3329 					SL_TRACE|SL_NOTE,
3330 					"wput: got CRYPTIOCSTOP "
3331 					"ioctl(%d)", iocp->ioc_cmd));
3332 
3333 			if ((err = miocpullup(mp, sizeof (uint32_t))) != 0) {
3334 				cmn_err(CE_WARN,
3335 					"wput: CRYPTIOCSTOP ioctl wrong "
3336 					"size (%d should be %d)",
3337 					(int)iocp->ioc_count,
3338 					(int)sizeof (uint32_t));
3339 				miocnak(wq, mp, 0, err);
3340 			} else {
3341 				uint32_t *stopdir;
3342 
3343 				stopdir = (uint32_t *)mp->b_cont->b_rptr;
3344 				if (!CR_DIRECTION_OK(*stopdir)) {
3345 					miocnak(wq, mp, 0, EINVAL);
3346 					return;
3347 				}
3348 
3349 				/* disable the queues until further notice */
3350 				if (*stopdir & CRYPT_ENCRYPT) {
3351 					noenable(wq);
3352 					tmi->ready &= ~CRYPT_WRITE_READY;
3353 				}
3354 				if (*stopdir & CRYPT_DECRYPT) {
3355 					noenable(RD(wq));
3356 					tmi->ready &= ~CRYPT_READ_READY;
3357 				}
3358 
3359 				miocack(wq, mp, 0, 0);
3360 			}
3361 			break;
3362 		case CRYPTIOCSTARTDEC:
3363 			(void) (STRLOG(CRYPTMOD_ID, 0, 5,
3364 					SL_TRACE|SL_NOTE,
3365 					"wput: got CRYPTIOCSTARTDEC "
3366 					"ioctl(%d)", iocp->ioc_cmd));
3367 
3368 			start_stream(wq, mp, CRYPT_DECRYPT);
3369 			break;
3370 		case CRYPTIOCSTARTENC:
3371 			(void) (STRLOG(CRYPTMOD_ID, 0, 5,
3372 					SL_TRACE|SL_NOTE,
3373 					"wput: got CRYPTIOCSTARTENC "
3374 					"ioctl(%d)", iocp->ioc_cmd));
3375 
3376 			start_stream(wq, mp, CRYPT_ENCRYPT);
3377 			break;
3378 		default:
3379 			putnext(wq, mp);
3380 			break;
3381 		}
3382 		break;
3383 	default:
3384 		if (queclass(mp) < QPCTL) {
3385 			if (wq->q_first != NULL || !canputnext(wq)) {
3386 				if (!putq(wq, mp))
3387 					freemsg(mp);
3388 				return;
3389 			}
3390 		}
3391 		putnext(wq, mp);
3392 		break;
3393 	}
3394 }
3395 
3396 /*
3397  * decrypt_rcmd_mblks
3398  *
3399  * Because kerberized r* commands(rsh, rlogin, etc)
3400  * use a 4 byte length field to indicate the # of
3401  * PLAINTEXT bytes that are encrypted in the field
3402  * that follows, we must parse out each message and
3403  * break out the length fields prior to sending them
3404  * upstream to our Solaris r* clients/servers which do
3405  * NOT understand this format.
3406  *
3407  * Kerberized/encrypted message format:
3408  * -------------------------------
3409  * | XXXX | N bytes of ciphertext|
3410  * -------------------------------
3411  *
3412  * Where: XXXX = number of plaintext bytes that were encrypted in
3413  *               to make the ciphertext field.  This is done
3414  *               because we are using a cipher that pads out to
3415  *               an 8 byte boundary.  We only want the application
3416  *               layer to see the correct number of plain text bytes,
3417  *               not plaintext + pad.  So, after we decrypt, we
3418  *               must trim the output block down to the intended
3419  *               plaintext length and eliminate the pad bytes.
3420  *
3421  * This routine takes the entire input message, breaks it into
3422  * a new message that does not contain these length fields and
3423  * returns a message consisting of mblks filled with just ciphertext.
3424  *
3425  */
3426 static mblk_t *
3427 decrypt_rcmd_mblks(queue_t *q, mblk_t *mp)
3428 {
3429 	mblk_t *newmp = NULL;
3430 	size_t msglen;
3431 	struct tmodinfo *tmi = (struct tmodinfo *)q->q_ptr;
3432 
3433 	msglen = msgsize(mp);
3434 
3435 	/*
3436 	 * If we need the length field, get it here.
3437 	 * Test the "plaintext length" indicator.
3438 	 */
3439 	if (tmi->rcmd_state.pt_len == 0) {
3440 		uint32_t elen;
3441 		int tocopy;
3442 		mblk_t *nextp;
3443 
3444 		/*
3445 		 * Make sure we have recieved all 4 bytes of the
3446 		 * length field.
3447 		 */
3448 		while (mp != NULL) {
3449 			ASSERT(tmi->rcmd_state.cd_len < sizeof (uint32_t));
3450 
3451 			tocopy = sizeof (uint32_t) -
3452 				tmi->rcmd_state.cd_len;
3453 			if (tocopy > msglen)
3454 				tocopy = msglen;
3455 
3456 			ASSERT(mp->b_rptr + tocopy <= DB_LIM(mp));
3457 			bcopy(mp->b_rptr,
3458 				(char *)(&tmi->rcmd_state.next_len +
3459 					tmi->rcmd_state.cd_len), tocopy);
3460 
3461 			tmi->rcmd_state.cd_len += tocopy;
3462 
3463 			if (tmi->rcmd_state.cd_len >= sizeof (uint32_t)) {
3464 				tmi->rcmd_state.next_len =
3465 					ntohl(tmi->rcmd_state.next_len);
3466 				break;
3467 			}
3468 
3469 			nextp = mp->b_cont;
3470 			mp->b_cont = NULL;
3471 			freeb(mp);
3472 			mp = nextp;
3473 		}
3474 
3475 		if (mp == NULL) {
3476 			return (NULL);
3477 		}
3478 		/*
3479 		 * recalculate the msglen now that we've read the
3480 		 * length and adjusted the bufptr (b_rptr).
3481 		 */
3482 		msglen -= tocopy;
3483 		mp->b_rptr += tocopy;
3484 
3485 		tmi->rcmd_state.pt_len = tmi->rcmd_state.next_len;
3486 
3487 		if (tmi->rcmd_state.pt_len <= 0) {
3488 			/*
3489 			 * Return an IO error to break the connection. there
3490 			 * is no way to recover from this.  Usually it means
3491 			 * the app has incorrectly requested decryption on
3492 			 * a non-encrypted stream, thus the "pt_len" field
3493 			 * is negative.
3494 			 */
3495 			mp->b_datap->db_type = M_ERROR;
3496 			mp->b_rptr = mp->b_datap->db_base;
3497 			*mp->b_rptr = EIO;
3498 			mp->b_wptr = mp->b_rptr + sizeof (char);
3499 
3500 			freemsg(mp->b_cont);
3501 			mp->b_cont = NULL;
3502 			qreply(WR(q), mp);
3503 			tmi->rcmd_state.cd_len = tmi->rcmd_state.pt_len = 0;
3504 			return (NULL);
3505 		}
3506 
3507 		/*
3508 		 * If this is V2 mode, then the encrypted data is actually
3509 		 * 4 bytes bigger than the indicated len because the plaintext
3510 		 * length is encrypted for an additional security check, but
3511 		 * its not counted as part of the overall length we just read.
3512 		 * Strange and confusing, but true.
3513 		 */
3514 
3515 		if (tmi->dec_data.option_mask & CRYPTOPT_RCMD_MODE_V2)
3516 			elen = tmi->rcmd_state.pt_len + 4;
3517 		else
3518 			elen = tmi->rcmd_state.pt_len;
3519 
3520 		tmi->rcmd_state.cd_len  = encrypt_size(&tmi->dec_data, elen);
3521 
3522 		/*
3523 		 * Allocate an mblk to hold the cipher text until it is
3524 		 * all ready to be processed.
3525 		 */
3526 		tmi->rcmd_state.c_msg = allocb(tmi->rcmd_state.cd_len,
3527 						BPRI_HI);
3528 		if (tmi->rcmd_state.c_msg == NULL) {
3529 #ifdef DEBUG
3530 			cmn_err(CE_WARN, "decrypt_rcmd_msgb: allocb failed "
3531 				"for %d bytes",
3532 				(int)tmi->rcmd_state.cd_len);
3533 #endif
3534 			/*
3535 			 * Return an IO error to break the connection.
3536 			 */
3537 			mp->b_datap->db_type = M_ERROR;
3538 			mp->b_rptr = mp->b_datap->db_base;
3539 			*mp->b_rptr = EIO;
3540 			mp->b_wptr = mp->b_rptr + sizeof (char);
3541 			freemsg(mp->b_cont);
3542 			mp->b_cont = NULL;
3543 			tmi->rcmd_state.cd_len = tmi->rcmd_state.pt_len = 0;
3544 			qreply(WR(q), mp);
3545 			return (NULL);
3546 		}
3547 	}
3548 
3549 	/*
3550 	 * If this entire message was just the length field,
3551 	 * free and return.  The actual data will probably be next.
3552 	 */
3553 	if (msglen == 0) {
3554 		freemsg(mp);
3555 		return (NULL);
3556 	}
3557 
3558 	/*
3559 	 * Copy as much of the cipher text as possible into
3560 	 * the new msgb (c_msg).
3561 	 *
3562 	 * Logic:  if we got some bytes (msglen) and we still
3563 	 * 	"need" some bytes (len-rcvd), get them here.
3564 	 */
3565 	ASSERT(tmi->rcmd_state.c_msg != NULL);
3566 	if (msglen > 0 &&
3567 	    (tmi->rcmd_state.cd_len > MBLKL(tmi->rcmd_state.c_msg))) {
3568 		mblk_t *bp, *nextp;
3569 		size_t n;
3570 
3571 		/*
3572 		 * Walk the mblks and copy just as many bytes as we need
3573 		 * for this particular block of cipher text.
3574 		 */
3575 		bp = mp;
3576 		while (bp != NULL) {
3577 			size_t needed;
3578 			size_t tocopy;
3579 			n = MBLKL(bp);
3580 
3581 			needed = tmi->rcmd_state.cd_len -
3582 				MBLKL(tmi->rcmd_state.c_msg);
3583 
3584 			tocopy = (needed >= n ? n : needed);
3585 
3586 			ASSERT(bp->b_rptr + tocopy <= DB_LIM(bp));
3587 			ASSERT(tmi->rcmd_state.c_msg->b_wptr + tocopy <=
3588 				DB_LIM(tmi->rcmd_state.c_msg));
3589 
3590 			/* Copy to end of new mblk */
3591 			bcopy(bp->b_rptr, tmi->rcmd_state.c_msg->b_wptr,
3592 				tocopy);
3593 
3594 			tmi->rcmd_state.c_msg->b_wptr += tocopy;
3595 
3596 			bp->b_rptr += tocopy;
3597 
3598 			nextp = bp->b_cont;
3599 
3600 			/*
3601 			 * If we used this whole block, free it and
3602 			 * move on.
3603 			 */
3604 			if (!MBLKL(bp)) {
3605 				freeb(bp);
3606 				bp = NULL;
3607 			}
3608 
3609 			/* If we got what we needed, stop the loop */
3610 			if (MBLKL(tmi->rcmd_state.c_msg) ==
3611 			    tmi->rcmd_state.cd_len) {
3612 				/*
3613 				 * If there is more data in the message,
3614 				 * its for another block of cipher text,
3615 				 * put it back in the queue for next time.
3616 				 */
3617 				if (bp) {
3618 					if (!putbq(q, bp))
3619 						freemsg(bp);
3620 				} else if (nextp != NULL) {
3621 					/*
3622 					 * If there is more, put it back in the
3623 					 * queue for another pass thru.
3624 					 */
3625 					if (!putbq(q, nextp))
3626 						freemsg(nextp);
3627 				}
3628 				break;
3629 			}
3630 			bp = nextp;
3631 		}
3632 	}
3633 	/*
3634 	 * Finally, if we received all the cipher text data for
3635 	 * this message, decrypt it into a new msg and send it up
3636 	 * to the app.
3637 	 */
3638 	if (tmi->rcmd_state.pt_len > 0 &&
3639 	    MBLKL(tmi->rcmd_state.c_msg) == tmi->rcmd_state.cd_len) {
3640 		mblk_t *bp;
3641 		mblk_t *newbp;
3642 
3643 		/*
3644 		 * Now we can use our msg that we created when the
3645 		 * initial message boundary was detected.
3646 		 */
3647 		bp = tmi->rcmd_state.c_msg;
3648 		tmi->rcmd_state.c_msg = NULL;
3649 
3650 		newbp = do_decrypt(q, bp);
3651 		if (newbp != NULL) {
3652 			bp = newbp;
3653 			/*
3654 			 * If using RCMD_MODE_V2 ("new" mode),
3655 			 * look at the 4 byte plaintext length that
3656 			 * was just decrypted and compare with the
3657 			 * original pt_len value that was received.
3658 			 */
3659 			if (tmi->dec_data.option_mask &
3660 			    CRYPTOPT_RCMD_MODE_V2) {
3661 				uint32_t pt_len2;
3662 
3663 				pt_len2 = *(uint32_t *)bp->b_rptr;
3664 				pt_len2 = ntohl(pt_len2);
3665 				/*
3666 				 * Make sure the 2 pt len fields agree.
3667 				 */
3668 				if (pt_len2 != tmi->rcmd_state.pt_len) {
3669 					cmn_err(CE_WARN,
3670 						"Inconsistent length fields"
3671 						" received %d != %d",
3672 						(int)tmi->rcmd_state.pt_len,
3673 						(int)pt_len2);
3674 					bp->b_datap->db_type = M_ERROR;
3675 					bp->b_rptr = bp->b_datap->db_base;
3676 					*bp->b_rptr = EIO;
3677 					bp->b_wptr = bp->b_rptr + sizeof (char);
3678 					freemsg(bp->b_cont);
3679 					bp->b_cont = NULL;
3680 					tmi->rcmd_state.cd_len = 0;
3681 					qreply(WR(q), bp);
3682 					return (NULL);
3683 				}
3684 				bp->b_rptr += sizeof (uint32_t);
3685 			}
3686 
3687 			/*
3688 			 * Trim the decrypted block the length originally
3689 			 * indicated by the sender.  This is to remove any
3690 			 * padding bytes that the sender added to satisfy
3691 			 * requirements of the crypto algorithm.
3692 			 */
3693 			bp->b_wptr = bp->b_rptr + tmi->rcmd_state.pt_len;
3694 
3695 			newmp = bp;
3696 
3697 			/*
3698 			 * Reset our state to indicate we are ready
3699 			 * for a new message.
3700 			 */
3701 			tmi->rcmd_state.pt_len = 0;
3702 			tmi->rcmd_state.cd_len = 0;
3703 		} else {
3704 #ifdef DEBUG
3705 			cmn_err(CE_WARN,
3706 				"decrypt_rcmd: do_decrypt on %d bytes failed",
3707 				(int)tmi->rcmd_state.cd_len);
3708 #endif
3709 			/*
3710 			 * do_decrypt already handled failures, just
3711 			 * return NULL.
3712 			 */
3713 			tmi->rcmd_state.pt_len = 0;
3714 			tmi->rcmd_state.cd_len = 0;
3715 			return (NULL);
3716 		}
3717 	}
3718 
3719 	/*
3720 	 * return the new message with the 'length' fields removed
3721 	 */
3722 	return (newmp);
3723 }
3724 
3725 /*
3726  * cryptmodrsrv
3727  *
3728  * Read queue service routine
3729  * Necessary because if the ready flag is not set
3730  * (via CRYPTIOCSTOP/CRYPTIOCSTART ioctls) then the data
3731  * must remain on queue and not be passed along.
3732  */
3733 static int
3734 cryptmodrsrv(queue_t *q)
3735 {
3736 	mblk_t *mp, *bp;
3737 	struct tmodinfo *tmi = (struct tmodinfo *)q->q_ptr;
3738 
3739 	while ((mp = getq(q)) != NULL) {
3740 		switch (mp->b_datap->db_type) {
3741 		case M_DATA:
3742 			if (canputnext(q) && tmi->ready & CRYPT_READ_READY) {
3743 				/*
3744 				 * Process "rcmd" messages differently because
3745 				 * they contain a 4 byte plaintext length
3746 				 * id that needs to be removed.
3747 				 */
3748 				if (tmi->dec_data.method != CRYPT_METHOD_NONE &&
3749 				    (tmi->dec_data.option_mask &
3750 				    (CRYPTOPT_RCMD_MODE_V1 |
3751 				    CRYPTOPT_RCMD_MODE_V2))) {
3752 					mp = decrypt_rcmd_mblks(q, mp);
3753 					if (mp)
3754 						putnext(q, mp);
3755 					continue;
3756 				}
3757 				if ((bp = msgpullup(mp, -1)) != NULL) {
3758 					freemsg(mp);
3759 					if (MBLKL(bp) > 0) {
3760 						mp = do_decrypt(q, bp);
3761 						if (mp != NULL)
3762 							putnext(q, mp);
3763 					}
3764 				}
3765 			} else {
3766 				if (!putbq(q, mp)) {
3767 					freemsg(mp);
3768 				}
3769 				return (0);
3770 			}
3771 			break;
3772 		default:
3773 			/*
3774 			 * rput does not queue anything > QPCTL, so we don't
3775 			 * need to check for it here.
3776 			 */
3777 			if (!canputnext(q)) {
3778 				if (!putbq(q, mp))
3779 					freemsg(mp);
3780 				return (0);
3781 			}
3782 			putnext(q, mp);
3783 			break;
3784 		}
3785 	}
3786 	return (0);
3787 }
3788 
3789 
3790 /*
3791  * Read-side put procedure.
3792  */
3793 static void
3794 cryptmodrput(queue_t *rq, mblk_t *mp)
3795 {
3796 	switch (mp->b_datap->db_type) {
3797 	case M_DATA:
3798 		if (!putq(rq, mp)) {
3799 			freemsg(mp);
3800 		}
3801 		break;
3802 	case M_FLUSH:
3803 		if (*mp->b_rptr & FLUSHR) {
3804 			flushq(rq, FLUSHALL);
3805 		}
3806 		putnext(rq, mp);
3807 		break;
3808 	default:
3809 		if (queclass(mp) < QPCTL) {
3810 			if (rq->q_first != NULL || !canputnext(rq)) {
3811 				if (!putq(rq, mp))
3812 					freemsg(mp);
3813 				return;
3814 			}
3815 		}
3816 		putnext(rq, mp);
3817 		break;
3818 	}
3819 }
3820