xref: /illumos-gate/usr/src/uts/common/io/cpudrv.c (revision b6c3f7863936abeae522e48a13887dddeb691a45)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 /*
22  * Copyright 2008 Sun Microsystems, Inc.  All rights reserved.
23  * Use is subject to license terms.
24  */
25 
26 #pragma ident	"%Z%%M%	%I%	%E% SMI"
27 
28 /*
29  * CPU Device driver. The driver is not DDI-compliant.
30  *
31  * The driver supports following features:
32  *	- Power management.
33  */
34 
35 #include <sys/types.h>
36 #include <sys/param.h>
37 #include <sys/errno.h>
38 #include <sys/modctl.h>
39 #include <sys/kmem.h>
40 #include <sys/conf.h>
41 #include <sys/cmn_err.h>
42 #include <sys/stat.h>
43 #include <sys/debug.h>
44 #include <sys/systm.h>
45 #include <sys/ddi.h>
46 #include <sys/sunddi.h>
47 #include <sys/sdt.h>
48 
49 #include <sys/machsystm.h>
50 #include <sys/x_call.h>
51 #include <sys/cpudrv.h>
52 #include <sys/cpudrv_plat.h>
53 #include <sys/msacct.h>
54 
55 /*
56  * CPU power management
57  *
58  * The supported power saving model is to slow down the CPU (on SPARC by
59  * dividing the CPU clock and on x86 by dropping down a P-state).
60  * Periodically we determine the amount of time the CPU is running
61  * idle thread and threads in user mode during the last quantum.  If the idle
62  * thread was running less than its low water mark for current speed for
63  * number of consecutive sampling periods, or number of running threads in
64  * user mode are above its high water mark, we arrange to go to the higher
65  * speed.  If the idle thread was running more than its high water mark without
66  * dropping a number of consecutive times below the mark, and number of threads
67  * running in user mode are below its low water mark, we arrange to go to the
68  * next lower speed.  While going down, we go through all the speeds.  While
69  * going up we go to the maximum speed to minimize impact on the user, but have
70  * provisions in the driver to go to other speeds.
71  *
72  * The driver does not have knowledge of a particular implementation of this
73  * scheme and will work with all CPUs supporting this model. On SPARC, the
74  * driver determines supported speeds by looking at 'clock-divisors' property
75  * created by OBP. On x86, the driver retrieves the supported speeds from
76  * ACPI.
77  */
78 
79 /*
80  * Configuration function prototypes and data structures
81  */
82 static int cpudrv_attach(dev_info_t *dip, ddi_attach_cmd_t cmd);
83 static int cpudrv_detach(dev_info_t *dip, ddi_detach_cmd_t cmd);
84 static int cpudrv_power(dev_info_t *dip, int comp, int level);
85 
86 struct dev_ops cpudrv_ops = {
87 	DEVO_REV,		/* rev */
88 	0,			/* refcnt */
89 	nodev,			/* getinfo */
90 	nulldev,		/* identify */
91 	nulldev,		/* probe */
92 	cpudrv_attach,		/* attach */
93 	cpudrv_detach,		/* detach */
94 	nodev,			/* reset */
95 	(struct cb_ops *)NULL,	/* cb_ops */
96 	(struct bus_ops *)NULL,	/* bus_ops */
97 	cpudrv_power		/* power */
98 };
99 
100 static struct modldrv modldrv = {
101 	&mod_driverops,			/* modops */
102 	"CPU Driver %I%",		/* linkinfo */
103 	&cpudrv_ops,			/* dev_ops */
104 };
105 
106 static struct modlinkage modlinkage = {
107 	MODREV_1,		/* rev */
108 	&modldrv,		/* linkage */
109 	NULL
110 };
111 
112 /*
113  * Function prototypes
114  */
115 static int cpudrv_pm_init(cpudrv_devstate_t *cpudsp);
116 static void cpudrv_pm_free(cpudrv_devstate_t *cpudsp);
117 static int cpudrv_pm_comp_create(cpudrv_devstate_t *cpudsp);
118 static void cpudrv_pm_monitor_disp(void *arg);
119 static void cpudrv_pm_monitor(void *arg);
120 
121 /*
122  * Driver global variables
123  */
124 uint_t cpudrv_debug = 0;
125 void *cpudrv_state;
126 static uint_t cpudrv_pm_idle_hwm = CPUDRV_PM_IDLE_HWM;
127 static uint_t cpudrv_pm_idle_lwm = CPUDRV_PM_IDLE_LWM;
128 static uint_t cpudrv_pm_idle_buf_zone = CPUDRV_PM_IDLE_BUF_ZONE;
129 static uint_t cpudrv_pm_idle_bhwm_cnt_max = CPUDRV_PM_IDLE_BHWM_CNT_MAX;
130 static uint_t cpudrv_pm_idle_blwm_cnt_max = CPUDRV_PM_IDLE_BLWM_CNT_MAX;
131 static uint_t cpudrv_pm_user_hwm = CPUDRV_PM_USER_HWM;
132 
133 /*
134  * cpudrv_direct_pm allows user applications to directly control the
135  * power state transitions (direct pm) without following the normal
136  * direct pm protocol. This is needed because the normal protocol
137  * requires that a device only be lowered when it is idle, and be
138  * brought up when it request to do so by calling pm_raise_power().
139  * Ignoring this protocol is harmless for CPU (other than speed).
140  * Moreover it might be the case that CPU is never idle or wants
141  * to be at higher speed because of the addition CPU cycles required
142  * to run the user application.
143  *
144  * The driver will still report idle/busy status to the framework. Although
145  * framework will ignore this information for direct pm devices and not
146  * try to bring them down when idle, user applications can still use this
147  * information if they wants.
148  *
149  * In the future, provide an ioctl to control setting of this mode. In
150  * that case, this variable should move to the state structure and
151  * be protected by the lock in the state structure.
152  */
153 int cpudrv_direct_pm = 0;
154 
155 /*
156  * Arranges for the handler function to be called at the interval suitable
157  * for current speed.
158  */
159 #define	CPUDRV_PM_MONITOR_INIT(cpudsp) { \
160 	ASSERT(mutex_owned(&(cpudsp)->lock)); \
161 	(cpudsp)->cpudrv_pm.timeout_id = timeout(cpudrv_pm_monitor_disp, \
162 	    (cpudsp), (((cpudsp)->cpudrv_pm.cur_spd == NULL) ? \
163 	    CPUDRV_PM_QUANT_CNT_OTHR : \
164 	    (cpudsp)->cpudrv_pm.cur_spd->quant_cnt)); \
165 }
166 
167 /*
168  * Arranges for the handler function not to be called back.
169  */
170 #define	CPUDRV_PM_MONITOR_FINI(cpudsp) { \
171 	timeout_id_t tmp_tid; \
172 	ASSERT(mutex_owned(&(cpudsp)->lock)); \
173 	ASSERT((cpudsp)->cpudrv_pm.timeout_id); \
174 	tmp_tid = (cpudsp)->cpudrv_pm.timeout_id; \
175 	(cpudsp)->cpudrv_pm.timeout_id = 0; \
176 	mutex_exit(&(cpudsp)->lock); \
177 	(void) untimeout(tmp_tid); \
178 	mutex_enter(&(cpudsp)->cpudrv_pm.timeout_lock); \
179 	while ((cpudsp)->cpudrv_pm.timeout_count != 0) \
180 		cv_wait(&(cpudsp)->cpudrv_pm.timeout_cv, \
181 		    &(cpudsp)->cpudrv_pm.timeout_lock); \
182 	mutex_exit(&(cpudsp)->cpudrv_pm.timeout_lock); \
183 	mutex_enter(&(cpudsp)->lock); \
184 }
185 
186 int
187 _init(void)
188 {
189 	int	error;
190 
191 	DPRINTF(D_INIT, (" _init: function called\n"));
192 	if ((error = ddi_soft_state_init(&cpudrv_state,
193 	    sizeof (cpudrv_devstate_t), 0)) != 0) {
194 		return (error);
195 	}
196 
197 	if ((error = mod_install(&modlinkage)) != 0)  {
198 		ddi_soft_state_fini(&cpudrv_state);
199 	}
200 
201 	/*
202 	 * Callbacks used by the PPM driver.
203 	 */
204 	CPUDRV_PM_SET_PPM_CALLBACKS();
205 	return (error);
206 }
207 
208 int
209 _fini(void)
210 {
211 	int	error;
212 
213 	DPRINTF(D_FINI, (" _fini: function called\n"));
214 	if ((error = mod_remove(&modlinkage)) == 0) {
215 		ddi_soft_state_fini(&cpudrv_state);
216 	}
217 
218 	return (error);
219 }
220 
221 int
222 _info(struct modinfo *modinfop)
223 {
224 	return (mod_info(&modlinkage, modinfop));
225 }
226 
227 /*
228  * Driver attach(9e) entry point.
229  */
230 static int
231 cpudrv_attach(dev_info_t *dip, ddi_attach_cmd_t cmd)
232 {
233 	int			instance;
234 	cpudrv_devstate_t	*cpudsp;
235 	extern pri_t		maxclsyspri;
236 
237 	instance = ddi_get_instance(dip);
238 
239 	switch (cmd) {
240 	case DDI_ATTACH:
241 		DPRINTF(D_ATTACH, ("cpudrv_attach: instance %d: "
242 		    "DDI_ATTACH called\n", instance));
243 		if (ddi_soft_state_zalloc(cpudrv_state, instance) !=
244 		    DDI_SUCCESS) {
245 			cmn_err(CE_WARN, "cpudrv_attach: instance %d: "
246 			    "can't allocate state", instance);
247 			CPUDRV_PM_DISABLE();
248 			return (DDI_FAILURE);
249 		}
250 		if ((cpudsp = ddi_get_soft_state(cpudrv_state, instance)) ==
251 		    NULL) {
252 			cmn_err(CE_WARN, "cpudrv_attach: instance %d: "
253 			    "can't get state", instance);
254 			ddi_soft_state_free(cpudrv_state, instance);
255 			CPUDRV_PM_DISABLE();
256 			return (DDI_FAILURE);
257 		}
258 		cpudsp->dip = dip;
259 
260 		/*
261 		 * Find CPU number for this dev_info node.
262 		 */
263 		if (!cpudrv_pm_get_cpu_id(dip, &(cpudsp->cpu_id))) {
264 			cmn_err(CE_WARN, "cpudrv_attach: instance %d: "
265 			    "can't convert dip to cpu_id", instance);
266 			ddi_soft_state_free(cpudrv_state, instance);
267 			CPUDRV_PM_DISABLE();
268 			return (DDI_FAILURE);
269 		}
270 		if (cpudrv_pm_init(cpudsp) != DDI_SUCCESS) {
271 			ddi_soft_state_free(cpudrv_state, instance);
272 			CPUDRV_PM_DISABLE();
273 			return (DDI_FAILURE);
274 		}
275 		if (cpudrv_pm_comp_create(cpudsp) != DDI_SUCCESS) {
276 			ddi_soft_state_free(cpudrv_state, instance);
277 			CPUDRV_PM_DISABLE();
278 			cpudrv_pm_free(cpudsp);
279 			return (DDI_FAILURE);
280 		}
281 		if (ddi_prop_update_string(DDI_DEV_T_NONE,
282 		    dip, "pm-class", "CPU") != DDI_PROP_SUCCESS) {
283 			ddi_soft_state_free(cpudrv_state, instance);
284 			CPUDRV_PM_DISABLE();
285 			cpudrv_pm_free(cpudsp);
286 			return (DDI_FAILURE);
287 		}
288 
289 		/*
290 		 * Taskq is used to dispatch routine to monitor CPU activities.
291 		 */
292 		cpudsp->cpudrv_pm.tq = taskq_create_instance(
293 		    "cpudrv_pm_monitor",
294 		    ddi_get_instance(dip), CPUDRV_PM_TASKQ_THREADS,
295 		    (maxclsyspri - 1), CPUDRV_PM_TASKQ_MIN,
296 		    CPUDRV_PM_TASKQ_MAX, TASKQ_PREPOPULATE|TASKQ_CPR_SAFE);
297 
298 		mutex_init(&cpudsp->lock, NULL, MUTEX_DRIVER, NULL);
299 		mutex_init(&cpudsp->cpudrv_pm.timeout_lock, NULL, MUTEX_DRIVER,
300 		    NULL);
301 		cv_init(&cpudsp->cpudrv_pm.timeout_cv, NULL, CV_DEFAULT, NULL);
302 
303 		/*
304 		 * Driver needs to assume that CPU is running at unknown speed
305 		 * at DDI_ATTACH and switch it to the needed speed. We assume
306 		 * that initial needed speed is full speed for us.
307 		 */
308 		/*
309 		 * We need to take the lock because cpudrv_pm_monitor()
310 		 * will start running in parallel with attach().
311 		 */
312 		mutex_enter(&cpudsp->lock);
313 		cpudsp->cpudrv_pm.cur_spd = NULL;
314 		cpudsp->cpudrv_pm.targ_spd = cpudsp->cpudrv_pm.head_spd;
315 		cpudsp->cpudrv_pm.pm_started = B_FALSE;
316 		/*
317 		 * We don't call pm_raise_power() directly from attach because
318 		 * driver attach for a slave CPU node can happen before the
319 		 * CPU is even initialized. We just start the monitoring
320 		 * system which understands unknown speed and moves CPU
321 		 * to targ_spd when it have been initialized.
322 		 */
323 		CPUDRV_PM_MONITOR_INIT(cpudsp);
324 		mutex_exit(&cpudsp->lock);
325 
326 		CPUDRV_PM_INSTALL_TOPSPEED_CHANGE_HANDLER(cpudsp, dip);
327 
328 		ddi_report_dev(dip);
329 		return (DDI_SUCCESS);
330 
331 	case DDI_RESUME:
332 		DPRINTF(D_ATTACH, ("cpudrv_attach: instance %d: "
333 		    "DDI_RESUME called\n", instance));
334 		if ((cpudsp = ddi_get_soft_state(cpudrv_state, instance)) ==
335 		    NULL) {
336 			cmn_err(CE_WARN, "cpudrv_attach: instance %d: "
337 			    "can't get state", instance);
338 			return (DDI_FAILURE);
339 		}
340 		mutex_enter(&cpudsp->lock);
341 		/*
342 		 * Driver needs to assume that CPU is running at unknown speed
343 		 * at DDI_RESUME and switch it to the needed speed. We assume
344 		 * that the needed speed is full speed for us.
345 		 */
346 		cpudsp->cpudrv_pm.cur_spd = NULL;
347 		cpudsp->cpudrv_pm.targ_spd = cpudsp->cpudrv_pm.head_spd;
348 		CPUDRV_PM_MONITOR_INIT(cpudsp);
349 		mutex_exit(&cpudsp->lock);
350 		CPUDRV_PM_REDEFINE_TOPSPEED(dip);
351 		return (DDI_SUCCESS);
352 
353 	default:
354 		return (DDI_FAILURE);
355 	}
356 }
357 
358 /*
359  * Driver detach(9e) entry point.
360  */
361 static int
362 cpudrv_detach(dev_info_t *dip, ddi_detach_cmd_t cmd)
363 {
364 	int			instance;
365 	cpudrv_devstate_t	*cpudsp;
366 	cpudrv_pm_t		*cpupm;
367 
368 	instance = ddi_get_instance(dip);
369 
370 	switch (cmd) {
371 	case DDI_DETACH:
372 		DPRINTF(D_DETACH, ("cpudrv_detach: instance %d: "
373 		    "DDI_DETACH called\n", instance));
374 		/*
375 		 * If the only thing supported by the driver is power
376 		 * management, we can in future enhance the driver and
377 		 * framework that loads it to unload the driver when
378 		 * user has disabled CPU power management.
379 		 */
380 		return (DDI_FAILURE);
381 
382 	case DDI_SUSPEND:
383 		DPRINTF(D_DETACH, ("cpudrv_detach: instance %d: "
384 		    "DDI_SUSPEND called\n", instance));
385 		if ((cpudsp = ddi_get_soft_state(cpudrv_state, instance)) ==
386 		    NULL) {
387 			cmn_err(CE_WARN, "cpudrv_detach: instance %d: "
388 			    "can't get state", instance);
389 			return (DDI_FAILURE);
390 		}
391 		/*
392 		 * During a checkpoint-resume sequence, framework will
393 		 * stop interrupts to quiesce kernel activity. This will
394 		 * leave our monitoring system ineffective. Handle this
395 		 * by stopping our monitoring system and bringing CPU
396 		 * to full speed. In case we are in special direct pm
397 		 * mode, we leave the CPU at whatever speed it is. This
398 		 * is harmless other than speed.
399 		 */
400 		mutex_enter(&cpudsp->lock);
401 		cpupm = &(cpudsp->cpudrv_pm);
402 
403 		DPRINTF(D_DETACH, ("cpudrv_detach: instance %d: DDI_SUSPEND - "
404 		    "cur_spd %d, head_spd %d\n", instance,
405 		    cpupm->cur_spd->pm_level, cpupm->head_spd->pm_level));
406 
407 		CPUDRV_PM_MONITOR_FINI(cpudsp);
408 
409 		if (!cpudrv_direct_pm && (cpupm->cur_spd != cpupm->head_spd)) {
410 			if (cpupm->pm_busycnt < 1) {
411 				if ((pm_busy_component(dip, CPUDRV_PM_COMP_NUM)
412 				    == DDI_SUCCESS)) {
413 					cpupm->pm_busycnt++;
414 				} else {
415 					CPUDRV_PM_MONITOR_INIT(cpudsp);
416 					mutex_exit(&cpudsp->lock);
417 					cmn_err(CE_WARN, "cpudrv_detach: "
418 					    "instance %d: can't busy CPU "
419 					    "component", instance);
420 					return (DDI_FAILURE);
421 				}
422 			}
423 			mutex_exit(&cpudsp->lock);
424 			if (pm_raise_power(dip, CPUDRV_PM_COMP_NUM,
425 			    cpupm->head_spd->pm_level) != DDI_SUCCESS) {
426 				mutex_enter(&cpudsp->lock);
427 				CPUDRV_PM_MONITOR_INIT(cpudsp);
428 				mutex_exit(&cpudsp->lock);
429 				cmn_err(CE_WARN, "cpudrv_detach: instance %d: "
430 				    "can't raise CPU power level", instance);
431 				return (DDI_FAILURE);
432 			} else {
433 				return (DDI_SUCCESS);
434 			}
435 		} else {
436 			mutex_exit(&cpudsp->lock);
437 			return (DDI_SUCCESS);
438 		}
439 
440 	default:
441 		return (DDI_FAILURE);
442 	}
443 }
444 
445 /*
446  * Driver power(9e) entry point.
447  *
448  * Driver's notion of current power is set *only* in power(9e) entry point
449  * after actual power change operation has been successfully completed.
450  */
451 /* ARGSUSED */
452 static int
453 cpudrv_power(dev_info_t *dip, int comp, int level)
454 {
455 	int			instance;
456 	cpudrv_devstate_t	*cpudsp;
457 	cpudrv_pm_t 		*cpupm;
458 	cpudrv_pm_spd_t		*new_spd;
459 	boolean_t		is_ready;
460 	int			ret;
461 
462 	instance = ddi_get_instance(dip);
463 
464 	DPRINTF(D_POWER, ("cpudrv_power: instance %d: level %d\n",
465 	    instance, level));
466 	if ((cpudsp = ddi_get_soft_state(cpudrv_state, instance)) == NULL) {
467 		cmn_err(CE_WARN, "cpudrv_power: instance %d: can't get state",
468 		    instance);
469 		return (DDI_FAILURE);
470 	}
471 
472 	mutex_enter(&cpudsp->lock);
473 	cpupm = &(cpudsp->cpudrv_pm);
474 
475 	/*
476 	 * In normal operation, we fail if we are busy and request is
477 	 * to lower the power level. We let this go through if the driver
478 	 * is in special direct pm mode. On x86, we also let this through
479 	 * if the change is due to a request to throttle the max speed.
480 	 */
481 	if (!cpudrv_direct_pm && (cpupm->pm_busycnt >= 1) &&
482 	    !cpudrv_pm_is_throttle_thread(cpupm)) {
483 		if ((cpupm->cur_spd != NULL) &&
484 		    (level < cpupm->cur_spd->pm_level)) {
485 			mutex_exit(&cpudsp->lock);
486 			return (DDI_FAILURE);
487 		}
488 	}
489 
490 	for (new_spd = cpupm->head_spd; new_spd; new_spd = new_spd->down_spd) {
491 		if (new_spd->pm_level == level)
492 			break;
493 	}
494 	if (!new_spd) {
495 		CPUDRV_PM_RESET_THROTTLE_THREAD(cpupm);
496 		mutex_exit(&cpudsp->lock);
497 		cmn_err(CE_WARN, "cpudrv_power: instance %d: "
498 		    "can't locate new CPU speed", instance);
499 		return (DDI_FAILURE);
500 	}
501 
502 	/*
503 	 * We currently refuse to power manage if the CPU is not ready to
504 	 * take cross calls (cross calls fail silently if CPU is not ready
505 	 * for it).
506 	 *
507 	 * Additionally, for x86 platforms we cannot power manage
508 	 * any one instance, until all instances have been initialized.
509 	 * That's because we don't know what the CPU domains look like
510 	 * until all instances have been initialized.
511 	 */
512 	is_ready = CPUDRV_PM_XCALL_IS_READY(cpudsp->cpu_id);
513 	if (!is_ready) {
514 		DPRINTF(D_POWER, ("cpudrv_power: instance %d: "
515 		    "CPU not ready for x-calls\n", instance));
516 	} else if (!(is_ready = cpudrv_pm_all_instances_ready())) {
517 		DPRINTF(D_POWER, ("cpudrv_power: instance %d: "
518 		    "waiting for all CPUs to be ready\n", instance));
519 	}
520 	if (!is_ready) {
521 		CPUDRV_PM_RESET_THROTTLE_THREAD(cpupm);
522 		mutex_exit(&cpudsp->lock);
523 		return (DDI_FAILURE);
524 	}
525 
526 	/*
527 	 * Execute CPU specific routine on the requested CPU to change its
528 	 * speed to normal-speed/divisor.
529 	 */
530 	if ((ret = cpudrv_pm_change_speed(cpudsp, new_spd)) != DDI_SUCCESS) {
531 		cmn_err(CE_WARN, "cpudrv_power: cpudrv_pm_change_speed() "
532 		    "return = %d", ret);
533 		mutex_exit(&cpudsp->lock);
534 		return (DDI_FAILURE);
535 	}
536 
537 	/*
538 	 * DTrace probe point for CPU speed change transition
539 	 */
540 	DTRACE_PROBE3(cpu__change__speed, cpudrv_devstate_t *, cpudsp,
541 	    cpudrv_pm_t *, cpupm, cpudrv_pm_spd_t *, new_spd);
542 
543 	/*
544 	 * Reset idle threshold time for the new power level.
545 	 */
546 	if ((cpupm->cur_spd != NULL) && (level < cpupm->cur_spd->pm_level)) {
547 		if (pm_idle_component(dip, CPUDRV_PM_COMP_NUM) ==
548 		    DDI_SUCCESS) {
549 			if (cpupm->pm_busycnt >= 1)
550 				cpupm->pm_busycnt--;
551 		} else
552 			cmn_err(CE_WARN, "cpudrv_power: instance %d: can't "
553 			    "idle CPU component", ddi_get_instance(dip));
554 	}
555 	/*
556 	 * Reset various parameters because we are now running at new speed.
557 	 */
558 	cpupm->lastquan_mstate[CMS_IDLE] = 0;
559 	cpupm->lastquan_mstate[CMS_SYSTEM] = 0;
560 	cpupm->lastquan_mstate[CMS_USER] = 0;
561 	cpupm->lastquan_lbolt = 0;
562 	cpupm->cur_spd = new_spd;
563 	CPUDRV_PM_RESET_THROTTLE_THREAD(cpupm);
564 	mutex_exit(&cpudsp->lock);
565 
566 	return (DDI_SUCCESS);
567 }
568 
569 /*
570  * Initialize the field that will be used for reporting
571  * the supported_frequencies_Hz cpu_info kstat.
572  */
573 static void
574 set_supp_freqs(cpu_t *cp, cpudrv_pm_t *cpupm)
575 {
576 	char		*supp_freqs;
577 	char		*sfptr;
578 	uint64_t	*speeds;
579 	cpudrv_pm_spd_t	*spd;
580 	int		i;
581 #define	UINT64_MAX_STRING (sizeof ("18446744073709551615"))
582 
583 	speeds = kmem_zalloc(cpupm->num_spd * sizeof (uint64_t), KM_SLEEP);
584 	for (i = cpupm->num_spd - 1, spd = cpupm->head_spd; spd;
585 	    i--, spd = spd->down_spd) {
586 		speeds[i] =
587 		    CPUDRV_PM_SPEED_HZ(cp->cpu_type_info.pi_clock, spd->speed);
588 	}
589 
590 	supp_freqs = kmem_zalloc((UINT64_MAX_STRING * cpupm->num_spd),
591 	    KM_SLEEP);
592 	sfptr = supp_freqs;
593 	for (i = 0; i < cpupm->num_spd; i++) {
594 		if (i == cpupm->num_spd - 1) {
595 			(void) sprintf(sfptr, "%"PRIu64, speeds[i]);
596 		} else {
597 			(void) sprintf(sfptr, "%"PRIu64":", speeds[i]);
598 			sfptr = supp_freqs + strlen(supp_freqs);
599 		}
600 	}
601 	cpu_set_supp_freqs(cp, supp_freqs);
602 	kmem_free(supp_freqs, (UINT64_MAX_STRING * cpupm->num_spd));
603 	kmem_free(speeds, cpupm->num_spd * sizeof (uint64_t));
604 }
605 
606 /*
607  * Initialize power management data.
608  */
609 static int
610 cpudrv_pm_init(cpudrv_devstate_t *cpudsp)
611 {
612 	cpudrv_pm_t 	*cpupm = &(cpudsp->cpudrv_pm);
613 	cpudrv_pm_spd_t	*cur_spd;
614 	cpudrv_pm_spd_t	*prev_spd = NULL;
615 	int		*speeds;
616 	uint_t		nspeeds;
617 	int		idle_cnt_percent;
618 	int		user_cnt_percent;
619 	int		i;
620 
621 	if (!cpudrv_pm_init_module(cpudsp))
622 		return (DDI_FAILURE);
623 
624 	CPUDRV_PM_GET_SPEEDS(cpudsp, speeds, nspeeds);
625 	if (nspeeds < 2) {
626 		/* Need at least two speeds to power manage */
627 		CPUDRV_PM_FREE_SPEEDS(speeds, nspeeds);
628 		cpudrv_pm_free_module(cpudsp);
629 		return (DDI_FAILURE);
630 	}
631 	cpupm->num_spd = nspeeds;
632 
633 	/*
634 	 * Calculate the watermarks and other parameters based on the
635 	 * supplied speeds.
636 	 *
637 	 * One of the basic assumption is that for X amount of CPU work,
638 	 * if CPU is slowed down by a factor of N, the time it takes to
639 	 * do the same work will be N * X.
640 	 *
641 	 * The driver declares that a CPU is idle and ready for slowed down,
642 	 * if amount of idle thread is more than the current speed idle_hwm
643 	 * without dropping below idle_hwm a number of consecutive sampling
644 	 * intervals and number of running threads in user mode are below
645 	 * user_lwm.  We want to set the current user_lwm such that if we
646 	 * just switched to the next slower speed with no change in real work
647 	 * load, the amount of user threads at the slower speed will be such
648 	 * that it falls below the slower speed's user_hwm.  If we didn't do
649 	 * that then we will just come back to the higher speed as soon as we
650 	 * go down even with no change in work load.
651 	 * The user_hwm is a fixed precentage and not calculated dynamically.
652 	 *
653 	 * We bring the CPU up if idle thread at current speed is less than
654 	 * the current speed idle_lwm for a number of consecutive sampling
655 	 * intervals or user threads are above the user_hwm for the current
656 	 * speed.
657 	 */
658 	for (i = 0; i < nspeeds; i++) {
659 		cur_spd = kmem_zalloc(sizeof (cpudrv_pm_spd_t), KM_SLEEP);
660 		cur_spd->speed = speeds[i];
661 		if (i == 0) {	/* normal speed */
662 			cpupm->head_spd = cur_spd;
663 			cur_spd->quant_cnt = CPUDRV_PM_QUANT_CNT_NORMAL;
664 			cur_spd->idle_hwm =
665 			    (cpudrv_pm_idle_hwm * cur_spd->quant_cnt) / 100;
666 			/* can't speed anymore */
667 			cur_spd->idle_lwm = 0;
668 			cur_spd->user_hwm = UINT_MAX;
669 		} else {
670 			cur_spd->quant_cnt = CPUDRV_PM_QUANT_CNT_OTHR;
671 			ASSERT(prev_spd != NULL);
672 			prev_spd->down_spd = cur_spd;
673 			cur_spd->up_spd = cpupm->head_spd;
674 
675 			/*
676 			 * Let's assume CPU is considered idle at full speed
677 			 * when it is spending I% of time in running the idle
678 			 * thread.  At full speed, CPU will be busy (100 - I) %
679 			 * of times.  This % of busyness increases by factor of
680 			 * N as CPU slows down.  CPU that is idle I% of times
681 			 * in full speed, it is idle (100 - ((100 - I) * N)) %
682 			 * of times in N speed.  The idle_lwm is a fixed
683 			 * percentage.  A large value of N may result in
684 			 * idle_hwm to go below idle_lwm.  We need to make sure
685 			 * that there is at least a buffer zone seperation
686 			 * between the idle_lwm and idle_hwm values.
687 			 */
688 			idle_cnt_percent = CPUDRV_PM_IDLE_CNT_PERCENT(
689 			    cpudrv_pm_idle_hwm, speeds, i);
690 			idle_cnt_percent = max(idle_cnt_percent,
691 			    (cpudrv_pm_idle_lwm + cpudrv_pm_idle_buf_zone));
692 			cur_spd->idle_hwm =
693 			    (idle_cnt_percent * cur_spd->quant_cnt) / 100;
694 			cur_spd->idle_lwm =
695 			    (cpudrv_pm_idle_lwm * cur_spd->quant_cnt) / 100;
696 
697 			/*
698 			 * The lwm for user threads are determined such that
699 			 * if CPU slows down, the load of work in the
700 			 * new speed would still keep the CPU at or below the
701 			 * user_hwm in the new speed.  This is to prevent
702 			 * the quick jump back up to higher speed.
703 			 */
704 			cur_spd->user_hwm = (cpudrv_pm_user_hwm *
705 			    cur_spd->quant_cnt) / 100;
706 			user_cnt_percent = CPUDRV_PM_USER_CNT_PERCENT(
707 			    cpudrv_pm_user_hwm, speeds, i);
708 			prev_spd->user_lwm =
709 			    (user_cnt_percent * prev_spd->quant_cnt) / 100;
710 		}
711 		prev_spd = cur_spd;
712 	}
713 	/* Slowest speed. Can't slow down anymore */
714 	cur_spd->idle_hwm = UINT_MAX;
715 	cur_spd->user_lwm = -1;
716 #ifdef	DEBUG
717 	DPRINTF(D_PM_INIT, ("cpudrv_pm_init: instance %d: head_spd spd %d, "
718 	    "num_spd %d\n", ddi_get_instance(cpudsp->dip),
719 	    cpupm->head_spd->speed, cpupm->num_spd));
720 	for (cur_spd = cpupm->head_spd; cur_spd; cur_spd = cur_spd->down_spd) {
721 		DPRINTF(D_PM_INIT, ("cpudrv_pm_init: instance %d: speed %d, "
722 		    "down_spd spd %d, idle_hwm %d, user_lwm %d, "
723 		    "up_spd spd %d, idle_lwm %d, user_hwm %d, "
724 		    "quant_cnt %d\n", ddi_get_instance(cpudsp->dip),
725 		    cur_spd->speed,
726 		    (cur_spd->down_spd ? cur_spd->down_spd->speed : 0),
727 		    cur_spd->idle_hwm, cur_spd->user_lwm,
728 		    (cur_spd->up_spd ? cur_spd->up_spd->speed : 0),
729 		    cur_spd->idle_lwm, cur_spd->user_hwm,
730 		    cur_spd->quant_cnt));
731 	}
732 #endif	/* DEBUG */
733 	CPUDRV_PM_FREE_SPEEDS(speeds, nspeeds);
734 	return (DDI_SUCCESS);
735 }
736 
737 /*
738  * Free CPU power management data.
739  */
740 static void
741 cpudrv_pm_free(cpudrv_devstate_t *cpudsp)
742 {
743 	cpudrv_pm_t 	*cpupm = &(cpudsp->cpudrv_pm);
744 	cpudrv_pm_spd_t	*cur_spd, *next_spd;
745 
746 	cur_spd = cpupm->head_spd;
747 	while (cur_spd) {
748 		next_spd = cur_spd->down_spd;
749 		kmem_free(cur_spd, sizeof (cpudrv_pm_spd_t));
750 		cur_spd = next_spd;
751 	}
752 	bzero(cpupm, sizeof (cpudrv_pm_t));
753 	cpudrv_pm_free_module(cpudsp);
754 }
755 
756 /*
757  * Create pm-components property.
758  */
759 static int
760 cpudrv_pm_comp_create(cpudrv_devstate_t *cpudsp)
761 {
762 	cpudrv_pm_t 	*cpupm = &(cpudsp->cpudrv_pm);
763 	cpudrv_pm_spd_t	*cur_spd;
764 	char		**pmc;
765 	int		size;
766 	char		name[] = "NAME=CPU Speed";
767 	int		i, j;
768 	uint_t		comp_spd;
769 	int		result = DDI_FAILURE;
770 
771 	pmc = kmem_zalloc((cpupm->num_spd + 1) * sizeof (char *), KM_SLEEP);
772 	size = CPUDRV_PM_COMP_SIZE();
773 	if (cpupm->num_spd > CPUDRV_PM_COMP_MAX_VAL) {
774 		cmn_err(CE_WARN, "cpudrv_pm_comp_create: instance %d: "
775 		    "number of speeds exceeded limits",
776 		    ddi_get_instance(cpudsp->dip));
777 		kmem_free(pmc, (cpupm->num_spd + 1) * sizeof (char *));
778 		return (result);
779 	}
780 
781 	for (i = cpupm->num_spd, cur_spd = cpupm->head_spd; i > 0;
782 	    i--, cur_spd = cur_spd->down_spd) {
783 		cur_spd->pm_level = i;
784 		pmc[i] = kmem_zalloc((size * sizeof (char)), KM_SLEEP);
785 		comp_spd = CPUDRV_PM_COMP_SPEED(cpupm, cur_spd);
786 		if (comp_spd > CPUDRV_PM_COMP_MAX_VAL) {
787 			cmn_err(CE_WARN, "cpudrv_pm_comp_create: "
788 			    "instance %d: speed exceeded limits",
789 			    ddi_get_instance(cpudsp->dip));
790 			for (j = cpupm->num_spd; j >= i; j--) {
791 				kmem_free(pmc[j], size * sizeof (char));
792 			}
793 			kmem_free(pmc, (cpupm->num_spd + 1) *
794 			    sizeof (char *));
795 			return (result);
796 		}
797 		CPUDRV_PM_COMP_SPRINT(pmc[i], cpupm, cur_spd, comp_spd)
798 		DPRINTF(D_PM_COMP_CREATE, ("cpudrv_pm_comp_create: "
799 		    "instance %d: pm-components power level %d string '%s'\n",
800 		    ddi_get_instance(cpudsp->dip), i, pmc[i]));
801 	}
802 	pmc[0] = kmem_zalloc(sizeof (name), KM_SLEEP);
803 	(void) strcat(pmc[0], name);
804 	DPRINTF(D_PM_COMP_CREATE, ("cpudrv_pm_comp_create: instance %d: "
805 	    "pm-components component name '%s'\n",
806 	    ddi_get_instance(cpudsp->dip), pmc[0]));
807 
808 	if (ddi_prop_update_string_array(DDI_DEV_T_NONE, cpudsp->dip,
809 	    "pm-components", pmc, cpupm->num_spd + 1) == DDI_PROP_SUCCESS) {
810 		result = DDI_SUCCESS;
811 	} else {
812 		cmn_err(CE_WARN, "cpudrv_pm_comp_create: instance %d: "
813 		    "can't create pm-components property",
814 		    ddi_get_instance(cpudsp->dip));
815 	}
816 
817 	for (i = cpupm->num_spd; i > 0; i--) {
818 		kmem_free(pmc[i], size * sizeof (char));
819 	}
820 	kmem_free(pmc[0], sizeof (name));
821 	kmem_free(pmc, (cpupm->num_spd + 1) * sizeof (char *));
822 	return (result);
823 }
824 
825 /*
826  * Mark a component idle.
827  */
828 #define	CPUDRV_PM_MONITOR_PM_IDLE_COMP(dip, cpupm) { \
829 	if ((cpupm)->pm_busycnt >= 1) { \
830 		if (pm_idle_component((dip), CPUDRV_PM_COMP_NUM) == \
831 		    DDI_SUCCESS) { \
832 			DPRINTF(D_PM_MONITOR, ("cpudrv_pm_monitor: " \
833 			    "instance %d: pm_idle_component called\n", \
834 			    ddi_get_instance((dip)))); \
835 			(cpupm)->pm_busycnt--; \
836 		} else { \
837 			cmn_err(CE_WARN, "cpudrv_pm_monitor: instance %d: " \
838 			    "can't idle CPU component", \
839 			    ddi_get_instance((dip))); \
840 		} \
841 	} \
842 }
843 
844 /*
845  * Marks a component busy in both PM framework and driver state structure.
846  */
847 #define	CPUDRV_PM_MONITOR_PM_BUSY_COMP(dip, cpupm) { \
848 	if ((cpupm)->pm_busycnt < 1) { \
849 		if (pm_busy_component((dip), CPUDRV_PM_COMP_NUM) == \
850 		    DDI_SUCCESS) { \
851 			DPRINTF(D_PM_MONITOR, ("cpudrv_pm_monitor: " \
852 			    "instance %d: pm_busy_component called\n", \
853 			    ddi_get_instance((dip)))); \
854 			(cpupm)->pm_busycnt++; \
855 		} else { \
856 			cmn_err(CE_WARN, "cpudrv_pm_monitor: instance %d: " \
857 			    "can't busy CPU component", \
858 			    ddi_get_instance((dip))); \
859 		} \
860 	} \
861 }
862 
863 /*
864  * Marks a component busy and calls pm_raise_power().
865  */
866 #define	CPUDRV_PM_MONITOR_PM_BUSY_AND_RAISE(dip, cpudsp, cpupm, new_level) { \
867 	/* \
868 	 * Mark driver and PM framework busy first so framework doesn't try \
869 	 * to bring CPU to lower speed when we need to be at higher speed. \
870 	 */ \
871 	CPUDRV_PM_MONITOR_PM_BUSY_COMP((dip), (cpupm)); \
872 	mutex_exit(&(cpudsp)->lock); \
873 	DPRINTF(D_PM_MONITOR, ("cpudrv_pm_monitor: instance %d: " \
874 	    "pm_raise_power called to %d\n", ddi_get_instance((dip)), \
875 		(new_level))); \
876 	if (pm_raise_power((dip), CPUDRV_PM_COMP_NUM, (new_level)) != \
877 	    DDI_SUCCESS) { \
878 		cmn_err(CE_WARN, "cpudrv_pm_monitor: instance %d: can't " \
879 		    "raise CPU power level", ddi_get_instance((dip))); \
880 	} \
881 	mutex_enter(&(cpudsp)->lock); \
882 }
883 
884 /*
885  * In order to monitor a CPU, we need to hold cpu_lock to access CPU
886  * statistics. Holding cpu_lock is not allowed from a callout routine.
887  * We dispatch a taskq to do that job.
888  */
889 static void
890 cpudrv_pm_monitor_disp(void *arg)
891 {
892 	cpudrv_devstate_t	*cpudsp = (cpudrv_devstate_t *)arg;
893 
894 	/*
895 	 * We are here because the last task has scheduled a timeout.
896 	 * The queue should be empty at this time.
897 	 */
898 	mutex_enter(&cpudsp->cpudrv_pm.timeout_lock);
899 	if (!taskq_dispatch(cpudsp->cpudrv_pm.tq, cpudrv_pm_monitor, arg,
900 	    TQ_NOSLEEP)) {
901 		mutex_exit(&cpudsp->cpudrv_pm.timeout_lock);
902 		DPRINTF(D_PM_MONITOR, ("cpudrv_pm_monitor_disp: failed to "
903 		    "dispatch the cpudrv_pm_monitor taskq\n"));
904 		mutex_enter(&cpudsp->lock);
905 		CPUDRV_PM_MONITOR_INIT(cpudsp);
906 		mutex_exit(&cpudsp->lock);
907 		return;
908 	}
909 	cpudsp->cpudrv_pm.timeout_count++;
910 	mutex_exit(&cpudsp->cpudrv_pm.timeout_lock);
911 }
912 
913 /*
914  * Monitors each CPU for the amount of time idle thread was running in the
915  * last quantum and arranges for the CPU to go to the lower or higher speed.
916  * Called at the time interval appropriate for the current speed. The
917  * time interval for normal speed is CPUDRV_PM_QUANT_CNT_NORMAL. The time
918  * interval for other speeds (including unknown speed) is
919  * CPUDRV_PM_QUANT_CNT_OTHR.
920  */
921 static void
922 cpudrv_pm_monitor(void *arg)
923 {
924 	cpudrv_devstate_t	*cpudsp = (cpudrv_devstate_t *)arg;
925 	cpudrv_pm_t		*cpupm;
926 	cpudrv_pm_spd_t		*cur_spd, *new_spd;
927 	cpu_t			*cp;
928 	dev_info_t		*dip;
929 	uint_t			idle_cnt, user_cnt, system_cnt;
930 	clock_t			lbolt_cnt;
931 	hrtime_t		msnsecs[NCMSTATES];
932 	boolean_t		is_ready;
933 
934 #define	GET_CPU_MSTATE_CNT(state, cnt) \
935 	msnsecs[state] = NSEC_TO_TICK(msnsecs[state]); \
936 	if (cpupm->lastquan_mstate[state] > msnsecs[state]) \
937 		msnsecs[state] = cpupm->lastquan_mstate[state]; \
938 	cnt = msnsecs[state] - cpupm->lastquan_mstate[state]; \
939 	cpupm->lastquan_mstate[state] = msnsecs[state]
940 
941 	mutex_enter(&cpudsp->lock);
942 	cpupm = &(cpudsp->cpudrv_pm);
943 	if (cpupm->timeout_id == 0) {
944 		mutex_exit(&cpudsp->lock);
945 		goto do_return;
946 	}
947 	cur_spd = cpupm->cur_spd;
948 	dip = cpudsp->dip;
949 
950 	/*
951 	 * We assume that a CPU is initialized and has a valid cpu_t
952 	 * structure, if it is ready for cross calls. If this changes,
953 	 * additional checks might be needed.
954 	 *
955 	 * Additionally, for x86 platforms we cannot power manage
956 	 * any one instance, until all instances have been initialized.
957 	 * That's because we don't know what the CPU domains look like
958 	 * until all instances have been initialized.
959 	 */
960 	is_ready = CPUDRV_PM_XCALL_IS_READY(cpudsp->cpu_id);
961 	if (!is_ready) {
962 		DPRINTF(D_PM_MONITOR, ("cpudrv_pm_monitor: instance %d: "
963 		    "CPU not ready for x-calls\n", ddi_get_instance(dip)));
964 	} else if (!(is_ready = cpudrv_pm_all_instances_ready())) {
965 		DPRINTF(D_PM_MONITOR, ("cpudrv_pm_monitor: instance %d: "
966 		    "waiting for all CPUs to be ready\n",
967 		    ddi_get_instance(dip)));
968 	}
969 	if (!is_ready) {
970 		/*
971 		 * Make sure that we are busy so that framework doesn't
972 		 * try to bring us down in this situation.
973 		 */
974 		CPUDRV_PM_MONITOR_PM_BUSY_COMP(dip, cpupm);
975 		CPUDRV_PM_MONITOR_INIT(cpudsp);
976 		mutex_exit(&cpudsp->lock);
977 		goto do_return;
978 	}
979 
980 	/*
981 	 * Make sure that we are still not at unknown power level.
982 	 */
983 	if (cur_spd == NULL) {
984 		DPRINTF(D_PM_MONITOR, ("cpudrv_pm_monitor: instance %d: "
985 		    "cur_spd is unknown\n", ddi_get_instance(dip)));
986 		CPUDRV_PM_MONITOR_PM_BUSY_AND_RAISE(dip, cpudsp, cpupm,
987 		    cpupm->targ_spd->pm_level);
988 		/*
989 		 * We just changed the speed. Wait till at least next
990 		 * call to this routine before proceeding ahead.
991 		 */
992 		CPUDRV_PM_MONITOR_INIT(cpudsp);
993 		mutex_exit(&cpudsp->lock);
994 		goto do_return;
995 	}
996 
997 	mutex_enter(&cpu_lock);
998 	if ((cp = cpu_get(cpudsp->cpu_id)) == NULL) {
999 		mutex_exit(&cpu_lock);
1000 		CPUDRV_PM_MONITOR_INIT(cpudsp);
1001 		mutex_exit(&cpudsp->lock);
1002 		cmn_err(CE_WARN, "cpudrv_pm_monitor: instance %d: can't get "
1003 		    "cpu_t", ddi_get_instance(dip));
1004 		goto do_return;
1005 	}
1006 
1007 	if (!cpupm->pm_started) {
1008 		cpupm->pm_started = B_TRUE;
1009 		set_supp_freqs(cp, cpupm);
1010 	}
1011 
1012 	get_cpu_mstate(cp, msnsecs);
1013 	GET_CPU_MSTATE_CNT(CMS_IDLE, idle_cnt);
1014 	GET_CPU_MSTATE_CNT(CMS_USER, user_cnt);
1015 	GET_CPU_MSTATE_CNT(CMS_SYSTEM, system_cnt);
1016 
1017 	/*
1018 	 * We can't do anything when we have just switched to a state
1019 	 * because there is no valid timestamp.
1020 	 */
1021 	if (cpupm->lastquan_lbolt == 0) {
1022 		cpupm->lastquan_lbolt = lbolt;
1023 		mutex_exit(&cpu_lock);
1024 		CPUDRV_PM_MONITOR_INIT(cpudsp);
1025 		mutex_exit(&cpudsp->lock);
1026 		goto do_return;
1027 	}
1028 
1029 	/*
1030 	 * Various watermarks are based on this routine being called back
1031 	 * exactly at the requested period. This is not guaranteed
1032 	 * because this routine is called from a taskq that is dispatched
1033 	 * from a timeout routine.  Handle this by finding out how many
1034 	 * ticks have elapsed since the last call (lbolt_cnt) and adjusting
1035 	 * the idle_cnt based on the delay added to the requested period
1036 	 * by timeout and taskq.
1037 	 */
1038 	lbolt_cnt = lbolt - cpupm->lastquan_lbolt;
1039 	cpupm->lastquan_lbolt = lbolt;
1040 	mutex_exit(&cpu_lock);
1041 	/*
1042 	 * Time taken between recording the current counts and
1043 	 * arranging the next call of this routine is an error in our
1044 	 * calculation. We minimize the error by calling
1045 	 * CPUDRV_PM_MONITOR_INIT() here instead of end of this routine.
1046 	 */
1047 	CPUDRV_PM_MONITOR_INIT(cpudsp);
1048 	DPRINTF(D_PM_MONITOR_VERBOSE, ("cpudrv_pm_monitor: instance %d: "
1049 	    "idle count %d, user count %d, system count %d, pm_level %d, "
1050 	    "pm_busycnt %d\n", ddi_get_instance(dip), idle_cnt, user_cnt,
1051 	    system_cnt, cur_spd->pm_level, cpupm->pm_busycnt));
1052 
1053 #ifdef	DEBUG
1054 	/*
1055 	 * Notify that timeout and taskq has caused delays and we need to
1056 	 * scale our parameters accordingly.
1057 	 *
1058 	 * To get accurate result, don't turn on other DPRINTFs with
1059 	 * the following DPRINTF. PROM calls generated by other
1060 	 * DPRINTFs changes the timing.
1061 	 */
1062 	if (lbolt_cnt > cur_spd->quant_cnt) {
1063 		DPRINTF(D_PM_MONITOR_DELAY, ("cpudrv_pm_monitor: instance %d: "
1064 		    "lbolt count %ld > quantum_count %u\n",
1065 		    ddi_get_instance(dip), lbolt_cnt, cur_spd->quant_cnt));
1066 	}
1067 #endif	/* DEBUG */
1068 
1069 	/*
1070 	 * Adjust counts based on the delay added by timeout and taskq.
1071 	 */
1072 	idle_cnt = (idle_cnt * cur_spd->quant_cnt) / lbolt_cnt;
1073 	user_cnt = (user_cnt * cur_spd->quant_cnt) / lbolt_cnt;
1074 	if ((user_cnt > cur_spd->user_hwm) || (idle_cnt < cur_spd->idle_lwm &&
1075 	    cur_spd->idle_blwm_cnt >= cpudrv_pm_idle_blwm_cnt_max)) {
1076 		cur_spd->idle_blwm_cnt = 0;
1077 		cur_spd->idle_bhwm_cnt = 0;
1078 		/*
1079 		 * In normal situation, arrange to go to next higher speed.
1080 		 * If we are running in special direct pm mode, we just stay
1081 		 * at the current speed.
1082 		 */
1083 		if (cur_spd == cur_spd->up_spd || cpudrv_direct_pm) {
1084 			CPUDRV_PM_MONITOR_PM_BUSY_COMP(dip, cpupm);
1085 		} else {
1086 			new_spd = cur_spd->up_spd;
1087 			CPUDRV_PM_MONITOR_PM_BUSY_AND_RAISE(dip, cpudsp, cpupm,
1088 			    new_spd->pm_level);
1089 		}
1090 	} else if ((user_cnt <= cur_spd->user_lwm) &&
1091 	    (idle_cnt >= cur_spd->idle_hwm) || !CPU_ACTIVE(cp)) {
1092 		cur_spd->idle_blwm_cnt = 0;
1093 		cur_spd->idle_bhwm_cnt = 0;
1094 		/*
1095 		 * Arrange to go to next lower speed by informing our idle
1096 		 * status to the power management framework.
1097 		 */
1098 		CPUDRV_PM_MONITOR_PM_IDLE_COMP(dip, cpupm);
1099 	} else {
1100 		/*
1101 		 * If we are between the idle water marks and have not
1102 		 * been here enough consecutive times to be considered
1103 		 * busy, just increment the count and return.
1104 		 */
1105 		if ((idle_cnt < cur_spd->idle_hwm) &&
1106 		    (idle_cnt >= cur_spd->idle_lwm) &&
1107 		    (cur_spd->idle_bhwm_cnt < cpudrv_pm_idle_bhwm_cnt_max)) {
1108 			cur_spd->idle_blwm_cnt = 0;
1109 			cur_spd->idle_bhwm_cnt++;
1110 			mutex_exit(&cpudsp->lock);
1111 			goto do_return;
1112 		}
1113 		if (idle_cnt < cur_spd->idle_lwm) {
1114 			cur_spd->idle_blwm_cnt++;
1115 			cur_spd->idle_bhwm_cnt = 0;
1116 		}
1117 		/*
1118 		 * Arranges to stay at the current speed.
1119 		 */
1120 		CPUDRV_PM_MONITOR_PM_BUSY_COMP(dip, cpupm);
1121 	}
1122 	mutex_exit(&cpudsp->lock);
1123 do_return:
1124 	mutex_enter(&cpupm->timeout_lock);
1125 	ASSERT(cpupm->timeout_count > 0);
1126 	cpupm->timeout_count--;
1127 	cv_signal(&cpupm->timeout_cv);
1128 	mutex_exit(&cpupm->timeout_lock);
1129 }
1130