xref: /illumos-gate/usr/src/uts/common/io/cpudrv.c (revision 129b3e6c5b0ac55b5021a4c38db6387b6acdaaf1)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 /*
22  * Copyright 2009 Sun Microsystems, Inc.  All rights reserved.
23  * Use is subject to license terms.
24  */
25 
26 /*
27  * CPU Device driver. The driver is not DDI-compliant.
28  *
29  * The driver supports following features:
30  *	- Power management.
31  */
32 
33 #include <sys/types.h>
34 #include <sys/param.h>
35 #include <sys/errno.h>
36 #include <sys/modctl.h>
37 #include <sys/kmem.h>
38 #include <sys/conf.h>
39 #include <sys/cmn_err.h>
40 #include <sys/stat.h>
41 #include <sys/debug.h>
42 #include <sys/systm.h>
43 #include <sys/ddi.h>
44 #include <sys/sunddi.h>
45 #include <sys/sdt.h>
46 #include <sys/epm.h>
47 #include <sys/machsystm.h>
48 #include <sys/x_call.h>
49 #include <sys/cpudrv_mach.h>
50 #include <sys/msacct.h>
51 
52 /*
53  * CPU power management
54  *
55  * The supported power saving model is to slow down the CPU (on SPARC by
56  * dividing the CPU clock and on x86 by dropping down a P-state).
57  * Periodically we determine the amount of time the CPU is running
58  * idle thread and threads in user mode during the last quantum.  If the idle
59  * thread was running less than its low water mark for current speed for
60  * number of consecutive sampling periods, or number of running threads in
61  * user mode are above its high water mark, we arrange to go to the higher
62  * speed.  If the idle thread was running more than its high water mark without
63  * dropping a number of consecutive times below the mark, and number of threads
64  * running in user mode are below its low water mark, we arrange to go to the
65  * next lower speed.  While going down, we go through all the speeds.  While
66  * going up we go to the maximum speed to minimize impact on the user, but have
67  * provisions in the driver to go to other speeds.
68  *
69  * The driver does not have knowledge of a particular implementation of this
70  * scheme and will work with all CPUs supporting this model. On SPARC, the
71  * driver determines supported speeds by looking at 'clock-divisors' property
72  * created by OBP. On x86, the driver retrieves the supported speeds from
73  * ACPI.
74  */
75 
76 /*
77  * Configuration function prototypes and data structures
78  */
79 static int cpudrv_attach(dev_info_t *dip, ddi_attach_cmd_t cmd);
80 static int cpudrv_detach(dev_info_t *dip, ddi_detach_cmd_t cmd);
81 static int cpudrv_power(dev_info_t *dip, int comp, int level);
82 
83 struct dev_ops cpudrv_ops = {
84 	DEVO_REV,		/* rev */
85 	0,			/* refcnt */
86 	nodev,			/* getinfo */
87 	nulldev,		/* identify */
88 	nulldev,		/* probe */
89 	cpudrv_attach,		/* attach */
90 	cpudrv_detach,		/* detach */
91 	nodev,			/* reset */
92 	(struct cb_ops *)NULL,	/* cb_ops */
93 	(struct bus_ops *)NULL,	/* bus_ops */
94 	cpudrv_power,		/* power */
95 	ddi_quiesce_not_needed,		/* quiesce */
96 };
97 
98 static struct modldrv modldrv = {
99 	&mod_driverops,			/* modops */
100 	"CPU Driver",			/* linkinfo */
101 	&cpudrv_ops,			/* dev_ops */
102 };
103 
104 static struct modlinkage modlinkage = {
105 	MODREV_1,		/* rev */
106 	&modldrv,		/* linkage */
107 	NULL
108 };
109 
110 /*
111  * Function prototypes
112  */
113 static int cpudrv_init(cpudrv_devstate_t *cpudsp);
114 static void cpudrv_free(cpudrv_devstate_t *cpudsp);
115 static int cpudrv_comp_create(cpudrv_devstate_t *cpudsp);
116 static void cpudrv_monitor_disp(void *arg);
117 static void cpudrv_monitor(void *arg);
118 
119 /*
120  * Driver global variables
121  */
122 uint_t cpudrv_debug = 0;
123 void *cpudrv_state;
124 static uint_t cpudrv_idle_hwm = CPUDRV_IDLE_HWM;
125 static uint_t cpudrv_idle_lwm = CPUDRV_IDLE_LWM;
126 static uint_t cpudrv_idle_buf_zone = CPUDRV_IDLE_BUF_ZONE;
127 static uint_t cpudrv_idle_bhwm_cnt_max = CPUDRV_IDLE_BHWM_CNT_MAX;
128 static uint_t cpudrv_idle_blwm_cnt_max = CPUDRV_IDLE_BLWM_CNT_MAX;
129 static uint_t cpudrv_user_hwm = CPUDRV_USER_HWM;
130 
131 boolean_t cpudrv_enabled = B_TRUE;
132 
133 /*
134  * cpudrv_direct_pm allows user applications to directly control the
135  * power state transitions (direct pm) without following the normal
136  * direct pm protocol. This is needed because the normal protocol
137  * requires that a device only be lowered when it is idle, and be
138  * brought up when it request to do so by calling pm_raise_power().
139  * Ignoring this protocol is harmless for CPU (other than speed).
140  * Moreover it might be the case that CPU is never idle or wants
141  * to be at higher speed because of the addition CPU cycles required
142  * to run the user application.
143  *
144  * The driver will still report idle/busy status to the framework. Although
145  * framework will ignore this information for direct pm devices and not
146  * try to bring them down when idle, user applications can still use this
147  * information if they wants.
148  *
149  * In the future, provide an ioctl to control setting of this mode. In
150  * that case, this variable should move to the state structure and
151  * be protected by the lock in the state structure.
152  */
153 int cpudrv_direct_pm = 0;
154 
155 /*
156  * Arranges for the handler function to be called at the interval suitable
157  * for current speed.
158  */
159 #define	CPUDRV_MONITOR_INIT(cpudsp) { \
160     if (cpudrv_is_enabled(cpudsp)) {	      \
161 		ASSERT(mutex_owned(&(cpudsp)->lock)); \
162 		(cpudsp)->cpudrv_pm.timeout_id = \
163 		    timeout(cpudrv_monitor_disp, \
164 		    (cpudsp), (((cpudsp)->cpudrv_pm.cur_spd == NULL) ? \
165 		    CPUDRV_QUANT_CNT_OTHR : \
166 		    (cpudsp)->cpudrv_pm.cur_spd->quant_cnt)); \
167 	} \
168 }
169 
170 /*
171  * Arranges for the handler function not to be called back.
172  */
173 #define	CPUDRV_MONITOR_FINI(cpudsp) { \
174 	timeout_id_t tmp_tid; \
175 	ASSERT(mutex_owned(&(cpudsp)->lock)); \
176 	tmp_tid = (cpudsp)->cpudrv_pm.timeout_id; \
177 	(cpudsp)->cpudrv_pm.timeout_id = 0; \
178 	mutex_exit(&(cpudsp)->lock); \
179 	if (tmp_tid != 0) { \
180 		(void) untimeout(tmp_tid); \
181 		mutex_enter(&(cpudsp)->cpudrv_pm.timeout_lock); \
182 		while ((cpudsp)->cpudrv_pm.timeout_count != 0) \
183 			cv_wait(&(cpudsp)->cpudrv_pm.timeout_cv, \
184 			    &(cpudsp)->cpudrv_pm.timeout_lock); \
185 		mutex_exit(&(cpudsp)->cpudrv_pm.timeout_lock); \
186 	} \
187 	mutex_enter(&(cpudsp)->lock); \
188 }
189 
190 int
191 _init(void)
192 {
193 	int	error;
194 
195 	DPRINTF(D_INIT, (" _init: function called\n"));
196 	if ((error = ddi_soft_state_init(&cpudrv_state,
197 	    sizeof (cpudrv_devstate_t), 0)) != 0) {
198 		return (error);
199 	}
200 
201 	if ((error = mod_install(&modlinkage)) != 0)  {
202 		ddi_soft_state_fini(&cpudrv_state);
203 	}
204 
205 	/*
206 	 * Callbacks used by the PPM driver.
207 	 */
208 	CPUDRV_SET_PPM_CALLBACKS();
209 	return (error);
210 }
211 
212 int
213 _fini(void)
214 {
215 	int	error;
216 
217 	DPRINTF(D_FINI, (" _fini: function called\n"));
218 	if ((error = mod_remove(&modlinkage)) == 0) {
219 		ddi_soft_state_fini(&cpudrv_state);
220 	}
221 
222 	return (error);
223 }
224 
225 int
226 _info(struct modinfo *modinfop)
227 {
228 	return (mod_info(&modlinkage, modinfop));
229 }
230 
231 /*
232  * Driver attach(9e) entry point.
233  */
234 static int
235 cpudrv_attach(dev_info_t *dip, ddi_attach_cmd_t cmd)
236 {
237 	int			instance;
238 	cpudrv_devstate_t	*cpudsp;
239 	extern pri_t		maxclsyspri;
240 
241 	instance = ddi_get_instance(dip);
242 
243 	switch (cmd) {
244 	case DDI_ATTACH:
245 		DPRINTF(D_ATTACH, ("cpudrv_attach: instance %d: "
246 		    "DDI_ATTACH called\n", instance));
247 		if (!cpudrv_is_enabled(NULL))
248 			return (DDI_FAILURE);
249 		if (ddi_soft_state_zalloc(cpudrv_state, instance) !=
250 		    DDI_SUCCESS) {
251 			cmn_err(CE_WARN, "cpudrv_attach: instance %d: "
252 			    "can't allocate state", instance);
253 			cpudrv_enabled = B_FALSE;
254 			return (DDI_FAILURE);
255 		}
256 		if ((cpudsp = ddi_get_soft_state(cpudrv_state, instance)) ==
257 		    NULL) {
258 			cmn_err(CE_WARN, "cpudrv_attach: instance %d: "
259 			    "can't get state", instance);
260 			ddi_soft_state_free(cpudrv_state, instance);
261 			cpudrv_enabled = B_FALSE;
262 			return (DDI_FAILURE);
263 		}
264 		cpudsp->dip = dip;
265 
266 		/*
267 		 * Find CPU number for this dev_info node.
268 		 */
269 		if (!cpudrv_get_cpu_id(dip, &(cpudsp->cpu_id))) {
270 			cmn_err(CE_WARN, "cpudrv_attach: instance %d: "
271 			    "can't convert dip to cpu_id", instance);
272 			ddi_soft_state_free(cpudrv_state, instance);
273 			cpudrv_enabled = B_FALSE;
274 			return (DDI_FAILURE);
275 		}
276 		if (!cpudrv_mach_init(cpudsp)) {
277 			cpudrv_enabled = B_FALSE;
278 			return (DDI_FAILURE);
279 		}
280 
281 		mutex_init(&cpudsp->lock, NULL, MUTEX_DRIVER, NULL);
282 		if (cpudrv_is_enabled(cpudsp)) {
283 			if (cpudrv_init(cpudsp) != DDI_SUCCESS) {
284 				cpudrv_enabled = B_FALSE;
285 				cpudrv_free(cpudsp);
286 				ddi_soft_state_free(cpudrv_state, instance);
287 				return (DDI_FAILURE);
288 			}
289 			if (cpudrv_comp_create(cpudsp) != DDI_SUCCESS) {
290 				cpudrv_enabled = B_FALSE;
291 				cpudrv_free(cpudsp);
292 				ddi_soft_state_free(cpudrv_state, instance);
293 				return (DDI_FAILURE);
294 			}
295 			if (ddi_prop_update_string(DDI_DEV_T_NONE,
296 			    dip, "pm-class", "CPU") != DDI_PROP_SUCCESS) {
297 				cpudrv_enabled = B_FALSE;
298 				cpudrv_free(cpudsp);
299 				ddi_soft_state_free(cpudrv_state, instance);
300 				return (DDI_FAILURE);
301 			}
302 
303 			/*
304 			 * Taskq is used to dispatch routine to monitor CPU
305 			 * activities.
306 			 */
307 			cpudsp->cpudrv_pm.tq = taskq_create_instance(
308 			    "cpudrv_monitor",
309 			    ddi_get_instance(dip), CPUDRV_TASKQ_THREADS,
310 			    (maxclsyspri - 1), CPUDRV_TASKQ_MIN,
311 			    CPUDRV_TASKQ_MAX,
312 			    TASKQ_PREPOPULATE|TASKQ_CPR_SAFE);
313 
314 			mutex_init(&cpudsp->cpudrv_pm.timeout_lock, NULL,
315 			    MUTEX_DRIVER, NULL);
316 			cv_init(&cpudsp->cpudrv_pm.timeout_cv, NULL,
317 			    CV_DEFAULT, NULL);
318 
319 			/*
320 			 * Driver needs to assume that CPU is running at
321 			 * unknown speed at DDI_ATTACH and switch it to the
322 			 * needed speed. We assume that initial needed speed
323 			 * is full speed for us.
324 			 */
325 			/*
326 			 * We need to take the lock because cpudrv_monitor()
327 			 * will start running in parallel with attach().
328 			 */
329 			mutex_enter(&cpudsp->lock);
330 			cpudsp->cpudrv_pm.cur_spd = NULL;
331 			cpudsp->cpudrv_pm.pm_started = B_FALSE;
332 			/*
333 			 * We don't call pm_raise_power() directly from attach
334 			 * because driver attach for a slave CPU node can
335 			 * happen before the CPU is even initialized. We just
336 			 * start the monitoring system which understands
337 			 * unknown speed and moves CPU to top speed when it
338 			 * has been initialized.
339 			 */
340 			CPUDRV_MONITOR_INIT(cpudsp);
341 			mutex_exit(&cpudsp->lock);
342 
343 		}
344 
345 		CPUDRV_INSTALL_MAX_CHANGE_HANDLER(cpudsp);
346 
347 		ddi_report_dev(dip);
348 		return (DDI_SUCCESS);
349 
350 	case DDI_RESUME:
351 		DPRINTF(D_ATTACH, ("cpudrv_attach: instance %d: "
352 		    "DDI_RESUME called\n", instance));
353 
354 		cpudsp = ddi_get_soft_state(cpudrv_state, instance);
355 		ASSERT(cpudsp != NULL);
356 
357 		/*
358 		 * Nothing to do for resume, if not doing active PM.
359 		 */
360 		if (!cpudrv_is_enabled(cpudsp))
361 			return (DDI_SUCCESS);
362 
363 		mutex_enter(&cpudsp->lock);
364 		/*
365 		 * Driver needs to assume that CPU is running at unknown speed
366 		 * at DDI_RESUME and switch it to the needed speed. We assume
367 		 * that the needed speed is full speed for us.
368 		 */
369 		cpudsp->cpudrv_pm.cur_spd = NULL;
370 		CPUDRV_MONITOR_INIT(cpudsp);
371 		mutex_exit(&cpudsp->lock);
372 		CPUDRV_REDEFINE_TOPSPEED(dip);
373 		return (DDI_SUCCESS);
374 
375 	default:
376 		return (DDI_FAILURE);
377 	}
378 }
379 
380 /*
381  * Driver detach(9e) entry point.
382  */
383 static int
384 cpudrv_detach(dev_info_t *dip, ddi_detach_cmd_t cmd)
385 {
386 	int			instance;
387 	cpudrv_devstate_t	*cpudsp;
388 	cpudrv_pm_t		*cpupm;
389 
390 	instance = ddi_get_instance(dip);
391 
392 	switch (cmd) {
393 	case DDI_DETACH:
394 		DPRINTF(D_DETACH, ("cpudrv_detach: instance %d: "
395 		    "DDI_DETACH called\n", instance));
396 		/*
397 		 * If the only thing supported by the driver is power
398 		 * management, we can in future enhance the driver and
399 		 * framework that loads it to unload the driver when
400 		 * user has disabled CPU power management.
401 		 */
402 		return (DDI_FAILURE);
403 
404 	case DDI_SUSPEND:
405 		DPRINTF(D_DETACH, ("cpudrv_detach: instance %d: "
406 		    "DDI_SUSPEND called\n", instance));
407 
408 		cpudsp = ddi_get_soft_state(cpudrv_state, instance);
409 		ASSERT(cpudsp != NULL);
410 
411 		/*
412 		 * Nothing to do for suspend, if not doing active PM.
413 		 */
414 		if (!cpudrv_is_enabled(cpudsp))
415 			return (DDI_SUCCESS);
416 
417 		/*
418 		 * During a checkpoint-resume sequence, framework will
419 		 * stop interrupts to quiesce kernel activity. This will
420 		 * leave our monitoring system ineffective. Handle this
421 		 * by stopping our monitoring system and bringing CPU
422 		 * to full speed. In case we are in special direct pm
423 		 * mode, we leave the CPU at whatever speed it is. This
424 		 * is harmless other than speed.
425 		 */
426 		mutex_enter(&cpudsp->lock);
427 		cpupm = &(cpudsp->cpudrv_pm);
428 
429 		DPRINTF(D_DETACH, ("cpudrv_detach: instance %d: DDI_SUSPEND - "
430 		    "cur_spd %d, topspeed %d\n", instance,
431 		    cpupm->cur_spd->pm_level,
432 		    CPUDRV_TOPSPEED(cpupm)->pm_level));
433 
434 		CPUDRV_MONITOR_FINI(cpudsp);
435 
436 		if (!cpudrv_direct_pm && (cpupm->cur_spd !=
437 		    CPUDRV_TOPSPEED(cpupm))) {
438 			if (cpupm->pm_busycnt < 1) {
439 				if ((pm_busy_component(dip, CPUDRV_COMP_NUM)
440 				    == DDI_SUCCESS)) {
441 					cpupm->pm_busycnt++;
442 				} else {
443 					CPUDRV_MONITOR_INIT(cpudsp);
444 					mutex_exit(&cpudsp->lock);
445 					cmn_err(CE_WARN, "cpudrv_detach: "
446 					    "instance %d: can't busy CPU "
447 					    "component", instance);
448 					return (DDI_FAILURE);
449 				}
450 			}
451 			mutex_exit(&cpudsp->lock);
452 			if (pm_raise_power(dip, CPUDRV_COMP_NUM,
453 			    CPUDRV_TOPSPEED(cpupm)->pm_level) !=
454 			    DDI_SUCCESS) {
455 				mutex_enter(&cpudsp->lock);
456 				CPUDRV_MONITOR_INIT(cpudsp);
457 				mutex_exit(&cpudsp->lock);
458 				cmn_err(CE_WARN, "cpudrv_detach: instance %d: "
459 				    "can't raise CPU power level to %d",
460 				    instance,
461 				    CPUDRV_TOPSPEED(cpupm)->pm_level);
462 				return (DDI_FAILURE);
463 			} else {
464 				return (DDI_SUCCESS);
465 			}
466 		} else {
467 			mutex_exit(&cpudsp->lock);
468 			return (DDI_SUCCESS);
469 		}
470 
471 	default:
472 		return (DDI_FAILURE);
473 	}
474 }
475 
476 /*
477  * Driver power(9e) entry point.
478  *
479  * Driver's notion of current power is set *only* in power(9e) entry point
480  * after actual power change operation has been successfully completed.
481  */
482 /* ARGSUSED */
483 static int
484 cpudrv_power(dev_info_t *dip, int comp, int level)
485 {
486 	int			instance;
487 	cpudrv_devstate_t	*cpudsp;
488 	cpudrv_pm_t 		*cpudrvpm;
489 	cpudrv_pm_spd_t		*new_spd;
490 	boolean_t		is_ready;
491 	int			ret;
492 
493 	instance = ddi_get_instance(dip);
494 
495 	DPRINTF(D_POWER, ("cpudrv_power: instance %d: level %d\n",
496 	    instance, level));
497 
498 	if ((cpudsp = ddi_get_soft_state(cpudrv_state, instance)) == NULL) {
499 		cmn_err(CE_WARN, "cpudrv_power: instance %d: can't "
500 		    "get state", instance);
501 		return (DDI_FAILURE);
502 	}
503 
504 	mutex_enter(&cpudsp->lock);
505 	cpudrvpm = &(cpudsp->cpudrv_pm);
506 
507 	/*
508 	 * In normal operation, we fail if we are busy and request is
509 	 * to lower the power level. We let this go through if the driver
510 	 * is in special direct pm mode. On x86, we also let this through
511 	 * if the change is due to a request to govern the max speed.
512 	 */
513 	if (!cpudrv_direct_pm && (cpudrvpm->pm_busycnt >= 1) &&
514 	    !cpudrv_is_governor_thread(cpudrvpm)) {
515 		if ((cpudrvpm->cur_spd != NULL) &&
516 		    (level < cpudrvpm->cur_spd->pm_level)) {
517 			mutex_exit(&cpudsp->lock);
518 			return (DDI_FAILURE);
519 		}
520 	}
521 
522 	for (new_spd = cpudrvpm->head_spd; new_spd; new_spd =
523 	    new_spd->down_spd) {
524 		if (new_spd->pm_level == level)
525 			break;
526 	}
527 	if (!new_spd) {
528 		CPUDRV_RESET_GOVERNOR_THREAD(cpudrvpm);
529 		mutex_exit(&cpudsp->lock);
530 		cmn_err(CE_WARN, "cpudrv_power: instance %d: "
531 		    "can't locate new CPU speed", instance);
532 		return (DDI_FAILURE);
533 	}
534 
535 	/*
536 	 * We currently refuse to power manage if the CPU is not ready to
537 	 * take cross calls (cross calls fail silently if CPU is not ready
538 	 * for it).
539 	 *
540 	 * Additionally, for x86 platforms we cannot power manage
541 	 * any one instance, until all instances have been initialized.
542 	 * That's because we don't know what the CPU domains look like
543 	 * until all instances have been initialized.
544 	 */
545 	is_ready = CPUDRV_XCALL_IS_READY(cpudsp->cpu_id);
546 	if (!is_ready) {
547 		DPRINTF(D_POWER, ("cpudrv_power: instance %d: "
548 		    "CPU not ready for x-calls\n", instance));
549 	} else if (!(is_ready = cpudrv_power_ready())) {
550 		DPRINTF(D_POWER, ("cpudrv_power: instance %d: "
551 		    "waiting for all CPUs to be power manageable\n",
552 		    instance));
553 	}
554 	if (!is_ready) {
555 		CPUDRV_RESET_GOVERNOR_THREAD(cpudrvpm);
556 		mutex_exit(&cpudsp->lock);
557 		return (DDI_FAILURE);
558 	}
559 
560 	/*
561 	 * Execute CPU specific routine on the requested CPU to
562 	 * change its speed to normal-speed/divisor.
563 	 */
564 	if ((ret = cpudrv_change_speed(cpudsp, new_spd)) != DDI_SUCCESS) {
565 		cmn_err(CE_WARN, "cpudrv_power: "
566 		    "cpudrv_change_speed() return = %d", ret);
567 		mutex_exit(&cpudsp->lock);
568 		return (DDI_FAILURE);
569 	}
570 
571 	/*
572 	 * Reset idle threshold time for the new power level.
573 	 */
574 	if ((cpudrvpm->cur_spd != NULL) && (level <
575 	    cpudrvpm->cur_spd->pm_level)) {
576 		if (pm_idle_component(dip, CPUDRV_COMP_NUM) ==
577 		    DDI_SUCCESS) {
578 			if (cpudrvpm->pm_busycnt >= 1)
579 				cpudrvpm->pm_busycnt--;
580 		} else {
581 			cmn_err(CE_WARN, "cpudrv_power: instance %d: "
582 			    "can't idle CPU component",
583 			    ddi_get_instance(dip));
584 		}
585 	}
586 	/*
587 	 * Reset various parameters because we are now running at new speed.
588 	 */
589 	cpudrvpm->lastquan_mstate[CMS_IDLE] = 0;
590 	cpudrvpm->lastquan_mstate[CMS_SYSTEM] = 0;
591 	cpudrvpm->lastquan_mstate[CMS_USER] = 0;
592 	cpudrvpm->lastquan_ticks = 0;
593 	cpudrvpm->cur_spd = new_spd;
594 	CPUDRV_RESET_GOVERNOR_THREAD(cpudrvpm);
595 	mutex_exit(&cpudsp->lock);
596 
597 	return (DDI_SUCCESS);
598 }
599 
600 /*
601  * Initialize power management data.
602  */
603 static int
604 cpudrv_init(cpudrv_devstate_t *cpudsp)
605 {
606 	cpudrv_pm_t 	*cpupm = &(cpudsp->cpudrv_pm);
607 	cpudrv_pm_spd_t	*cur_spd;
608 	cpudrv_pm_spd_t	*prev_spd = NULL;
609 	int		*speeds;
610 	uint_t		nspeeds;
611 	int		idle_cnt_percent;
612 	int		user_cnt_percent;
613 	int		i;
614 
615 	CPUDRV_GET_SPEEDS(cpudsp, speeds, nspeeds);
616 	if (nspeeds < 2) {
617 		/* Need at least two speeds to power manage */
618 		CPUDRV_FREE_SPEEDS(speeds, nspeeds);
619 		return (DDI_FAILURE);
620 	}
621 	cpupm->num_spd = nspeeds;
622 
623 	/*
624 	 * Calculate the watermarks and other parameters based on the
625 	 * supplied speeds.
626 	 *
627 	 * One of the basic assumption is that for X amount of CPU work,
628 	 * if CPU is slowed down by a factor of N, the time it takes to
629 	 * do the same work will be N * X.
630 	 *
631 	 * The driver declares that a CPU is idle and ready for slowed down,
632 	 * if amount of idle thread is more than the current speed idle_hwm
633 	 * without dropping below idle_hwm a number of consecutive sampling
634 	 * intervals and number of running threads in user mode are below
635 	 * user_lwm.  We want to set the current user_lwm such that if we
636 	 * just switched to the next slower speed with no change in real work
637 	 * load, the amount of user threads at the slower speed will be such
638 	 * that it falls below the slower speed's user_hwm.  If we didn't do
639 	 * that then we will just come back to the higher speed as soon as we
640 	 * go down even with no change in work load.
641 	 * The user_hwm is a fixed precentage and not calculated dynamically.
642 	 *
643 	 * We bring the CPU up if idle thread at current speed is less than
644 	 * the current speed idle_lwm for a number of consecutive sampling
645 	 * intervals or user threads are above the user_hwm for the current
646 	 * speed.
647 	 */
648 	for (i = 0; i < nspeeds; i++) {
649 		cur_spd = kmem_zalloc(sizeof (cpudrv_pm_spd_t), KM_SLEEP);
650 		cur_spd->speed = speeds[i];
651 		if (i == 0) {	/* normal speed */
652 			cpupm->head_spd = cur_spd;
653 			CPUDRV_TOPSPEED(cpupm) = cur_spd;
654 			cur_spd->quant_cnt = CPUDRV_QUANT_CNT_NORMAL;
655 			cur_spd->idle_hwm =
656 			    (cpudrv_idle_hwm * cur_spd->quant_cnt) / 100;
657 			/* can't speed anymore */
658 			cur_spd->idle_lwm = 0;
659 			cur_spd->user_hwm = UINT_MAX;
660 		} else {
661 			cur_spd->quant_cnt = CPUDRV_QUANT_CNT_OTHR;
662 			ASSERT(prev_spd != NULL);
663 			prev_spd->down_spd = cur_spd;
664 			cur_spd->up_spd = cpupm->head_spd;
665 
666 			/*
667 			 * Let's assume CPU is considered idle at full speed
668 			 * when it is spending I% of time in running the idle
669 			 * thread.  At full speed, CPU will be busy (100 - I) %
670 			 * of times.  This % of busyness increases by factor of
671 			 * N as CPU slows down.  CPU that is idle I% of times
672 			 * in full speed, it is idle (100 - ((100 - I) * N)) %
673 			 * of times in N speed.  The idle_lwm is a fixed
674 			 * percentage.  A large value of N may result in
675 			 * idle_hwm to go below idle_lwm.  We need to make sure
676 			 * that there is at least a buffer zone seperation
677 			 * between the idle_lwm and idle_hwm values.
678 			 */
679 			idle_cnt_percent = CPUDRV_IDLE_CNT_PERCENT(
680 			    cpudrv_idle_hwm, speeds, i);
681 			idle_cnt_percent = max(idle_cnt_percent,
682 			    (cpudrv_idle_lwm + cpudrv_idle_buf_zone));
683 			cur_spd->idle_hwm =
684 			    (idle_cnt_percent * cur_spd->quant_cnt) / 100;
685 			cur_spd->idle_lwm =
686 			    (cpudrv_idle_lwm * cur_spd->quant_cnt) / 100;
687 
688 			/*
689 			 * The lwm for user threads are determined such that
690 			 * if CPU slows down, the load of work in the
691 			 * new speed would still keep the CPU at or below the
692 			 * user_hwm in the new speed.  This is to prevent
693 			 * the quick jump back up to higher speed.
694 			 */
695 			cur_spd->user_hwm = (cpudrv_user_hwm *
696 			    cur_spd->quant_cnt) / 100;
697 			user_cnt_percent = CPUDRV_USER_CNT_PERCENT(
698 			    cpudrv_user_hwm, speeds, i);
699 			prev_spd->user_lwm =
700 			    (user_cnt_percent * prev_spd->quant_cnt) / 100;
701 		}
702 		prev_spd = cur_spd;
703 	}
704 	/* Slowest speed. Can't slow down anymore */
705 	cur_spd->idle_hwm = UINT_MAX;
706 	cur_spd->user_lwm = -1;
707 #ifdef	DEBUG
708 	DPRINTF(D_PM_INIT, ("cpudrv_init: instance %d: head_spd spd %d, "
709 	    "num_spd %d\n", ddi_get_instance(cpudsp->dip),
710 	    cpupm->head_spd->speed, cpupm->num_spd));
711 	for (cur_spd = cpupm->head_spd; cur_spd; cur_spd = cur_spd->down_spd) {
712 		DPRINTF(D_PM_INIT, ("cpudrv_init: instance %d: speed %d, "
713 		    "down_spd spd %d, idle_hwm %d, user_lwm %d, "
714 		    "up_spd spd %d, idle_lwm %d, user_hwm %d, "
715 		    "quant_cnt %d\n", ddi_get_instance(cpudsp->dip),
716 		    cur_spd->speed,
717 		    (cur_spd->down_spd ? cur_spd->down_spd->speed : 0),
718 		    cur_spd->idle_hwm, cur_spd->user_lwm,
719 		    (cur_spd->up_spd ? cur_spd->up_spd->speed : 0),
720 		    cur_spd->idle_lwm, cur_spd->user_hwm,
721 		    cur_spd->quant_cnt));
722 	}
723 #endif	/* DEBUG */
724 	CPUDRV_FREE_SPEEDS(speeds, nspeeds);
725 	return (DDI_SUCCESS);
726 }
727 
728 /*
729  * Free CPU power management data.
730  */
731 static void
732 cpudrv_free(cpudrv_devstate_t *cpudsp)
733 {
734 	cpudrv_pm_t 	*cpupm = &(cpudsp->cpudrv_pm);
735 	cpudrv_pm_spd_t	*cur_spd, *next_spd;
736 
737 	cur_spd = cpupm->head_spd;
738 	while (cur_spd) {
739 		next_spd = cur_spd->down_spd;
740 		kmem_free(cur_spd, sizeof (cpudrv_pm_spd_t));
741 		cur_spd = next_spd;
742 	}
743 	bzero(cpupm, sizeof (cpudrv_pm_t));
744 }
745 
746 /*
747  * Create pm-components property.
748  */
749 static int
750 cpudrv_comp_create(cpudrv_devstate_t *cpudsp)
751 {
752 	cpudrv_pm_t 	*cpupm = &(cpudsp->cpudrv_pm);
753 	cpudrv_pm_spd_t	*cur_spd;
754 	char		**pmc;
755 	int		size;
756 	char		name[] = "NAME=CPU Speed";
757 	int		i, j;
758 	uint_t		comp_spd;
759 	int		result = DDI_FAILURE;
760 
761 	pmc = kmem_zalloc((cpupm->num_spd + 1) * sizeof (char *), KM_SLEEP);
762 	size = CPUDRV_COMP_SIZE();
763 	if (cpupm->num_spd > CPUDRV_COMP_MAX_VAL) {
764 		cmn_err(CE_WARN, "cpudrv_comp_create: instance %d: "
765 		    "number of speeds exceeded limits",
766 		    ddi_get_instance(cpudsp->dip));
767 		kmem_free(pmc, (cpupm->num_spd + 1) * sizeof (char *));
768 		return (result);
769 	}
770 
771 	for (i = cpupm->num_spd, cur_spd = cpupm->head_spd; i > 0;
772 	    i--, cur_spd = cur_spd->down_spd) {
773 		cur_spd->pm_level = i;
774 		pmc[i] = kmem_zalloc((size * sizeof (char)), KM_SLEEP);
775 		comp_spd = CPUDRV_COMP_SPEED(cpupm, cur_spd);
776 		if (comp_spd > CPUDRV_COMP_MAX_VAL) {
777 			cmn_err(CE_WARN, "cpudrv_comp_create: "
778 			    "instance %d: speed exceeded limits",
779 			    ddi_get_instance(cpudsp->dip));
780 			for (j = cpupm->num_spd; j >= i; j--) {
781 				kmem_free(pmc[j], size * sizeof (char));
782 			}
783 			kmem_free(pmc, (cpupm->num_spd + 1) *
784 			    sizeof (char *));
785 			return (result);
786 		}
787 		CPUDRV_COMP_SPRINT(pmc[i], cpupm, cur_spd, comp_spd)
788 		DPRINTF(D_PM_COMP_CREATE, ("cpudrv_comp_create: "
789 		    "instance %d: pm-components power level %d string '%s'\n",
790 		    ddi_get_instance(cpudsp->dip), i, pmc[i]));
791 	}
792 	pmc[0] = kmem_zalloc(sizeof (name), KM_SLEEP);
793 	(void) strcat(pmc[0], name);
794 	DPRINTF(D_PM_COMP_CREATE, ("cpudrv_comp_create: instance %d: "
795 	    "pm-components component name '%s'\n",
796 	    ddi_get_instance(cpudsp->dip), pmc[0]));
797 
798 	if (ddi_prop_update_string_array(DDI_DEV_T_NONE, cpudsp->dip,
799 	    "pm-components", pmc, cpupm->num_spd + 1) == DDI_PROP_SUCCESS) {
800 		result = DDI_SUCCESS;
801 	} else {
802 		cmn_err(CE_WARN, "cpudrv_comp_create: instance %d: "
803 		    "can't create pm-components property",
804 		    ddi_get_instance(cpudsp->dip));
805 	}
806 
807 	for (i = cpupm->num_spd; i > 0; i--) {
808 		kmem_free(pmc[i], size * sizeof (char));
809 	}
810 	kmem_free(pmc[0], sizeof (name));
811 	kmem_free(pmc, (cpupm->num_spd + 1) * sizeof (char *));
812 	return (result);
813 }
814 
815 /*
816  * Mark a component idle.
817  */
818 #define	CPUDRV_MONITOR_PM_IDLE_COMP(dip, cpupm) { \
819 	if ((cpupm)->pm_busycnt >= 1) { \
820 		if (pm_idle_component((dip), CPUDRV_COMP_NUM) == \
821 		    DDI_SUCCESS) { \
822 			DPRINTF(D_PM_MONITOR, ("cpudrv_monitor: " \
823 			    "instance %d: pm_idle_component called\n", \
824 			    ddi_get_instance((dip)))); \
825 			(cpupm)->pm_busycnt--; \
826 		} else { \
827 			cmn_err(CE_WARN, "cpudrv_monitor: instance %d: " \
828 			    "can't idle CPU component", \
829 			    ddi_get_instance((dip))); \
830 		} \
831 	} \
832 }
833 
834 /*
835  * Marks a component busy in both PM framework and driver state structure.
836  */
837 #define	CPUDRV_MONITOR_PM_BUSY_COMP(dip, cpupm) { \
838 	if ((cpupm)->pm_busycnt < 1) { \
839 		if (pm_busy_component((dip), CPUDRV_COMP_NUM) == \
840 		    DDI_SUCCESS) { \
841 			DPRINTF(D_PM_MONITOR, ("cpudrv_monitor: " \
842 			    "instance %d: pm_busy_component called\n", \
843 			    ddi_get_instance((dip)))); \
844 			(cpupm)->pm_busycnt++; \
845 		} else { \
846 			cmn_err(CE_WARN, "cpudrv_monitor: instance %d: " \
847 			    "can't busy CPU component", \
848 			    ddi_get_instance((dip))); \
849 		} \
850 	} \
851 }
852 
853 /*
854  * Marks a component busy and calls pm_raise_power().
855  */
856 #define	CPUDRV_MONITOR_PM_BUSY_AND_RAISE(dip, cpudsp, cpupm, new_spd) { \
857 	int ret; \
858 	/* \
859 	 * Mark driver and PM framework busy first so framework doesn't try \
860 	 * to bring CPU to lower speed when we need to be at higher speed. \
861 	 */ \
862 	CPUDRV_MONITOR_PM_BUSY_COMP((dip), (cpupm)); \
863 	mutex_exit(&(cpudsp)->lock); \
864 	DPRINTF(D_PM_MONITOR, ("cpudrv_monitor: instance %d: " \
865 	    "pm_raise_power called to %d\n", ddi_get_instance((dip)), \
866 		(new_spd->pm_level))); \
867 	ret = pm_raise_power((dip), CPUDRV_COMP_NUM, (new_spd->pm_level)); \
868 	if (ret != DDI_SUCCESS) { \
869 		cmn_err(CE_WARN, "cpudrv_monitor: instance %d: can't " \
870 		    "raise CPU power level", ddi_get_instance((dip))); \
871 	} \
872 	mutex_enter(&(cpudsp)->lock); \
873 	if (ret == DDI_SUCCESS && cpudsp->cpudrv_pm.cur_spd == NULL) { \
874 		cpudsp->cpudrv_pm.cur_spd = new_spd; \
875 	} \
876 }
877 
878 /*
879  * In order to monitor a CPU, we need to hold cpu_lock to access CPU
880  * statistics. Holding cpu_lock is not allowed from a callout routine.
881  * We dispatch a taskq to do that job.
882  */
883 static void
884 cpudrv_monitor_disp(void *arg)
885 {
886 	cpudrv_devstate_t	*cpudsp = (cpudrv_devstate_t *)arg;
887 
888 	/*
889 	 * We are here because the last task has scheduled a timeout.
890 	 * The queue should be empty at this time.
891 	 */
892 	mutex_enter(&cpudsp->cpudrv_pm.timeout_lock);
893 	if (!taskq_dispatch(cpudsp->cpudrv_pm.tq, cpudrv_monitor, arg,
894 	    TQ_NOSLEEP)) {
895 		mutex_exit(&cpudsp->cpudrv_pm.timeout_lock);
896 		DPRINTF(D_PM_MONITOR, ("cpudrv_monitor_disp: failed to "
897 		    "dispatch the cpudrv_monitor taskq\n"));
898 		mutex_enter(&cpudsp->lock);
899 		CPUDRV_MONITOR_INIT(cpudsp);
900 		mutex_exit(&cpudsp->lock);
901 		return;
902 	}
903 	cpudsp->cpudrv_pm.timeout_count++;
904 	mutex_exit(&cpudsp->cpudrv_pm.timeout_lock);
905 }
906 
907 /*
908  * Monitors each CPU for the amount of time idle thread was running in the
909  * last quantum and arranges for the CPU to go to the lower or higher speed.
910  * Called at the time interval appropriate for the current speed. The
911  * time interval for normal speed is CPUDRV_QUANT_CNT_NORMAL. The time
912  * interval for other speeds (including unknown speed) is
913  * CPUDRV_QUANT_CNT_OTHR.
914  */
915 static void
916 cpudrv_monitor(void *arg)
917 {
918 	cpudrv_devstate_t	*cpudsp = (cpudrv_devstate_t *)arg;
919 	cpudrv_pm_t		*cpupm;
920 	cpudrv_pm_spd_t		*cur_spd, *new_spd;
921 	dev_info_t		*dip;
922 	uint_t			idle_cnt, user_cnt, system_cnt;
923 	clock_t			ticks;
924 	uint_t			tick_cnt;
925 	hrtime_t		msnsecs[NCMSTATES];
926 	boolean_t		is_ready;
927 
928 #define	GET_CPU_MSTATE_CNT(state, cnt) \
929 	msnsecs[state] = NSEC_TO_TICK(msnsecs[state]); \
930 	if (cpupm->lastquan_mstate[state] > msnsecs[state]) \
931 		msnsecs[state] = cpupm->lastquan_mstate[state]; \
932 	cnt = msnsecs[state] - cpupm->lastquan_mstate[state]; \
933 	cpupm->lastquan_mstate[state] = msnsecs[state]
934 
935 	mutex_enter(&cpudsp->lock);
936 	cpupm = &(cpudsp->cpudrv_pm);
937 	if (cpupm->timeout_id == 0) {
938 		mutex_exit(&cpudsp->lock);
939 		goto do_return;
940 	}
941 	cur_spd = cpupm->cur_spd;
942 	dip = cpudsp->dip;
943 
944 	/*
945 	 * We assume that a CPU is initialized and has a valid cpu_t
946 	 * structure, if it is ready for cross calls. If this changes,
947 	 * additional checks might be needed.
948 	 *
949 	 * Additionally, for x86 platforms we cannot power manage
950 	 * any one instance, until all instances have been initialized.
951 	 * That's because we don't know what the CPU domains look like
952 	 * until all instances have been initialized.
953 	 */
954 	is_ready = CPUDRV_XCALL_IS_READY(cpudsp->cpu_id);
955 	if (!is_ready) {
956 		DPRINTF(D_PM_MONITOR, ("cpudrv_monitor: instance %d: "
957 		    "CPU not ready for x-calls\n", ddi_get_instance(dip)));
958 	} else if (!(is_ready = cpudrv_power_ready())) {
959 		DPRINTF(D_PM_MONITOR, ("cpudrv_monitor: instance %d: "
960 		    "waiting for all CPUs to be power manageable\n",
961 		    ddi_get_instance(dip)));
962 	}
963 	if (!is_ready) {
964 		/*
965 		 * Make sure that we are busy so that framework doesn't
966 		 * try to bring us down in this situation.
967 		 */
968 		CPUDRV_MONITOR_PM_BUSY_COMP(dip, cpupm);
969 		CPUDRV_MONITOR_INIT(cpudsp);
970 		mutex_exit(&cpudsp->lock);
971 		goto do_return;
972 	}
973 
974 	/*
975 	 * Make sure that we are still not at unknown power level.
976 	 */
977 	if (cur_spd == NULL) {
978 		DPRINTF(D_PM_MONITOR, ("cpudrv_monitor: instance %d: "
979 		    "cur_spd is unknown\n", ddi_get_instance(dip)));
980 		CPUDRV_MONITOR_PM_BUSY_AND_RAISE(dip, cpudsp, cpupm,
981 		    CPUDRV_TOPSPEED(cpupm));
982 		/*
983 		 * We just changed the speed. Wait till at least next
984 		 * call to this routine before proceeding ahead.
985 		 */
986 		CPUDRV_MONITOR_INIT(cpudsp);
987 		mutex_exit(&cpudsp->lock);
988 		goto do_return;
989 	}
990 
991 	mutex_enter(&cpu_lock);
992 	if (cpudsp->cp == NULL &&
993 	    (cpudsp->cp = cpu_get(cpudsp->cpu_id)) == NULL) {
994 		mutex_exit(&cpu_lock);
995 		CPUDRV_MONITOR_INIT(cpudsp);
996 		mutex_exit(&cpudsp->lock);
997 		cmn_err(CE_WARN, "cpudrv_monitor: instance %d: can't get "
998 		    "cpu_t", ddi_get_instance(dip));
999 		goto do_return;
1000 	}
1001 
1002 	if (!cpupm->pm_started) {
1003 		cpupm->pm_started = B_TRUE;
1004 		cpudrv_set_supp_freqs(cpudsp);
1005 	}
1006 
1007 	get_cpu_mstate(cpudsp->cp, msnsecs);
1008 	GET_CPU_MSTATE_CNT(CMS_IDLE, idle_cnt);
1009 	GET_CPU_MSTATE_CNT(CMS_USER, user_cnt);
1010 	GET_CPU_MSTATE_CNT(CMS_SYSTEM, system_cnt);
1011 
1012 	/*
1013 	 * We can't do anything when we have just switched to a state
1014 	 * because there is no valid timestamp.
1015 	 */
1016 	if (cpupm->lastquan_ticks == 0) {
1017 		cpupm->lastquan_ticks = NSEC_TO_TICK(gethrtime());
1018 		mutex_exit(&cpu_lock);
1019 		CPUDRV_MONITOR_INIT(cpudsp);
1020 		mutex_exit(&cpudsp->lock);
1021 		goto do_return;
1022 	}
1023 
1024 	/*
1025 	 * Various watermarks are based on this routine being called back
1026 	 * exactly at the requested period. This is not guaranteed
1027 	 * because this routine is called from a taskq that is dispatched
1028 	 * from a timeout routine.  Handle this by finding out how many
1029 	 * ticks have elapsed since the last call and adjusting
1030 	 * the idle_cnt based on the delay added to the requested period
1031 	 * by timeout and taskq.
1032 	 */
1033 	ticks = NSEC_TO_TICK(gethrtime());
1034 	tick_cnt = ticks - cpupm->lastquan_ticks;
1035 	ASSERT(tick_cnt != 0);
1036 	cpupm->lastquan_ticks = ticks;
1037 	mutex_exit(&cpu_lock);
1038 	/*
1039 	 * Time taken between recording the current counts and
1040 	 * arranging the next call of this routine is an error in our
1041 	 * calculation. We minimize the error by calling
1042 	 * CPUDRV_MONITOR_INIT() here instead of end of this routine.
1043 	 */
1044 	CPUDRV_MONITOR_INIT(cpudsp);
1045 	DPRINTF(D_PM_MONITOR_VERBOSE, ("cpudrv_monitor: instance %d: "
1046 	    "idle count %d, user count %d, system count %d, pm_level %d, "
1047 	    "pm_busycnt %d\n", ddi_get_instance(dip), idle_cnt, user_cnt,
1048 	    system_cnt, cur_spd->pm_level, cpupm->pm_busycnt));
1049 
1050 #ifdef	DEBUG
1051 	/*
1052 	 * Notify that timeout and taskq has caused delays and we need to
1053 	 * scale our parameters accordingly.
1054 	 *
1055 	 * To get accurate result, don't turn on other DPRINTFs with
1056 	 * the following DPRINTF. PROM calls generated by other
1057 	 * DPRINTFs changes the timing.
1058 	 */
1059 	if (tick_cnt > cur_spd->quant_cnt) {
1060 		DPRINTF(D_PM_MONITOR_DELAY, ("cpudrv_monitor: instance %d: "
1061 		    "tick count %d > quantum_count %u\n",
1062 		    ddi_get_instance(dip), tick_cnt, cur_spd->quant_cnt));
1063 	}
1064 #endif	/* DEBUG */
1065 
1066 	/*
1067 	 * Adjust counts based on the delay added by timeout and taskq.
1068 	 */
1069 	idle_cnt = (idle_cnt * cur_spd->quant_cnt) / tick_cnt;
1070 	user_cnt = (user_cnt * cur_spd->quant_cnt) / tick_cnt;
1071 
1072 	if ((user_cnt > cur_spd->user_hwm) || (idle_cnt < cur_spd->idle_lwm &&
1073 	    cur_spd->idle_blwm_cnt >= cpudrv_idle_blwm_cnt_max)) {
1074 		cur_spd->idle_blwm_cnt = 0;
1075 		cur_spd->idle_bhwm_cnt = 0;
1076 		/*
1077 		 * In normal situation, arrange to go to next higher speed.
1078 		 * If we are running in special direct pm mode, we just stay
1079 		 * at the current speed.
1080 		 */
1081 		if (cur_spd == cur_spd->up_spd || cpudrv_direct_pm) {
1082 			CPUDRV_MONITOR_PM_BUSY_COMP(dip, cpupm);
1083 		} else {
1084 			new_spd = cur_spd->up_spd;
1085 			CPUDRV_MONITOR_PM_BUSY_AND_RAISE(dip, cpudsp, cpupm,
1086 			    new_spd);
1087 		}
1088 	} else if ((user_cnt <= cur_spd->user_lwm) &&
1089 	    (idle_cnt >= cur_spd->idle_hwm) || !CPU_ACTIVE(cpudsp->cp)) {
1090 		cur_spd->idle_blwm_cnt = 0;
1091 		cur_spd->idle_bhwm_cnt = 0;
1092 		/*
1093 		 * Arrange to go to next lower speed by informing our idle
1094 		 * status to the power management framework.
1095 		 */
1096 		CPUDRV_MONITOR_PM_IDLE_COMP(dip, cpupm);
1097 	} else {
1098 		/*
1099 		 * If we are between the idle water marks and have not
1100 		 * been here enough consecutive times to be considered
1101 		 * busy, just increment the count and return.
1102 		 */
1103 		if ((idle_cnt < cur_spd->idle_hwm) &&
1104 		    (idle_cnt >= cur_spd->idle_lwm) &&
1105 		    (cur_spd->idle_bhwm_cnt < cpudrv_idle_bhwm_cnt_max)) {
1106 			cur_spd->idle_blwm_cnt = 0;
1107 			cur_spd->idle_bhwm_cnt++;
1108 			mutex_exit(&cpudsp->lock);
1109 			goto do_return;
1110 		}
1111 		if (idle_cnt < cur_spd->idle_lwm) {
1112 			cur_spd->idle_blwm_cnt++;
1113 			cur_spd->idle_bhwm_cnt = 0;
1114 		}
1115 		/*
1116 		 * Arranges to stay at the current speed.
1117 		 */
1118 		CPUDRV_MONITOR_PM_BUSY_COMP(dip, cpupm);
1119 	}
1120 	mutex_exit(&cpudsp->lock);
1121 do_return:
1122 	mutex_enter(&cpupm->timeout_lock);
1123 	ASSERT(cpupm->timeout_count > 0);
1124 	cpupm->timeout_count--;
1125 	cv_signal(&cpupm->timeout_cv);
1126 	mutex_exit(&cpupm->timeout_lock);
1127 }
1128