xref: /illumos-gate/usr/src/uts/common/io/chxge/com/mc4.c (revision 20a7641f9918de8574b8b3b47dbe35c4bfc78df1)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 
22 /*
23  * This file is part of the Chelsio T1 Ethernet driver.
24  *
25  * Copyright (C) 2003-2005 Chelsio Communications.  All rights reserved.
26  */
27 
28 #include "common.h"
29 #include "regs.h"
30 #include "mc4.h"
31 
32 struct pemc4 {
33 	adapter_t *adapter;
34 	unsigned int size;
35 	unsigned int nwords;           /* MC4 width in terms of 32-bit words */
36 	struct pemc4_intr_counts intr_cnt;
37 };
38 
39 void t1_mc4_destroy(struct pemc4 *mc4)
40 {
41 	t1_os_free((void *)mc4, sizeof(*mc4));
42 }
43 
44 #define is_MC4A(adapter) (!t1_is_T1B(adapter))
45 
46 /* Calculate amount of MC4 memory. */
47 static unsigned int __devinit mc4_calc_size(adapter_t *adapter)
48 {
49 	u32 mc4_cfg = t1_read_reg_4(adapter, A_MC4_CFG);
50 	unsigned int width = is_MC4A(adapter) ? G_MC4A_WIDTH(mc4_cfg) :
51 		                                !!(mc4_cfg & F_MC4_NARROW);
52 
53 	return (256 * 1024 * 1024) >> width;
54 }
55 
56 /*
57  * Write a value to a register and check that the write completed.  These
58  * writes normally complete in a cycle or two, so one read should suffice but
59  * just in case we give them a bit of grace period.  Note that the very first
60  * read exists to flush the posted write to the device.
61  */
62 static int wrreg_wait(adapter_t *adapter, unsigned int addr, u32 val)
63 {
64 	int attempts = 2;
65 
66 	t1_write_reg_4(adapter,	addr, val);
67 	val = t1_read_reg_4(adapter, addr);                   /* flush */
68 	while (attempts--) {
69 		if (!(t1_read_reg_4(adapter, addr) & F_BUSY))
70 			return 0;
71 		if (attempts)
72 			DELAY_US(1);
73 	}
74 	CH_ERR("%s: write to MC4 register 0x%x timed out\n",
75 	       adapter_name(adapter), addr);
76 	return -EIO;
77 }
78 
79 #define MC4_DLL_DONE (F_MASTER_DLL_LOCKED | F_MASTER_DLL_MAX_TAP_COUNT)
80 
81 int t1_mc4_init(struct pemc4 *mc4, unsigned int mc4_clock)
82 {
83 	int attempts;
84 	u32 val;
85 	unsigned int width, ext_mode, slow_mode;
86 	adapter_t *adapter = mc4->adapter;
87 
88 	/* Power up the FCRAMs. */
89 	val = t1_read_reg_4(adapter, A_MC4_CFG);
90 	t1_write_reg_4(adapter, A_MC4_CFG, val | F_POWER_UP);
91 	val = t1_read_reg_4(adapter, A_MC4_CFG);               /* flush */
92 
93 	if (is_MC4A(adapter)) {
94 		slow_mode = val & F_MC4A_SLOW;
95 		width = G_MC4A_WIDTH(val);
96 
97 		/* If we're not in slow mode, we are using the DLLs */
98 		if (!slow_mode) {
99 			/* Clear Reset */
100 			val = t1_read_reg_4(adapter, A_MC4_STROBE);
101 			t1_write_reg_4(adapter, A_MC4_STROBE,
102 				       val & ~F_SLAVE_DLL_RESET);
103 
104 			/* Wait for slave DLLs to lock */
105 			DELAY_US(2 * 512 / (mc4_clock / 1000000) + 1);
106 		}
107 	} else {
108 		slow_mode = val & F_MC4_SLOW;
109 		width = !!(val & F_MC4_NARROW);
110 
111 		/* Initializes the master DLL and slave delay lines. */
112 		if (t1_is_asic(adapter) && !slow_mode) {
113 			val = t1_read_reg_4(adapter, A_MC4_STROBE);
114 			t1_write_reg_4(adapter, A_MC4_STROBE,
115 				       val & ~F_MASTER_DLL_RESET);
116 
117 			/* Wait for the master DLL to lock. */
118 			attempts = 100;
119 			do {
120 				DELAY_US(1);
121 				val = t1_read_reg_4(adapter, A_MC4_STROBE);
122 			} while (!(val & MC4_DLL_DONE) && --attempts);
123 			if (!(val & MC4_DLL_DONE)) {
124 				CH_ERR("%s: MC4 DLL lock failed\n",
125 				       adapter_name(adapter));
126 				goto out_fail;
127 			}
128 		}
129 	}
130 
131 	mc4->nwords = 4 >> width;
132 
133 	/* Set the FCRAM output drive strength and enable DLLs if needed */
134 	ext_mode = t1_is_asic(adapter) && !slow_mode ? 0 : 1;
135 	if (wrreg_wait(adapter, A_MC4_EXT_MODE, ext_mode))
136 		goto out_fail;
137 
138 	/* Specify the FCRAM operating parameters */
139 	if (wrreg_wait(adapter, A_MC4_MODE, 0x32))
140 		goto out_fail;
141 
142 	/* Initiate an immediate refresh and wait for the write to complete. */
143 	val = t1_read_reg_4(adapter, A_MC4_REFRESH);
144 	if (wrreg_wait(adapter, A_MC4_REFRESH, val & ~F_REFRESH_ENABLE))
145 		goto out_fail;
146 
147 	/* 2nd immediate refresh as before */
148 	if (wrreg_wait(adapter, A_MC4_REFRESH, val & ~F_REFRESH_ENABLE))
149 		goto out_fail;
150 
151 	/* Convert to KHz first to avoid 64-bit division. */
152 	mc4_clock /= 1000;                            /* Hz->KHz */
153 	mc4_clock = mc4_clock * 7812 + mc4_clock / 2; /* ns */
154 	mc4_clock /= 1000000;                         /* KHz->MHz, ns->us */
155 
156 	/* Enable periodic refresh. */
157 	t1_write_reg_4(adapter, A_MC4_REFRESH,
158 		       F_REFRESH_ENABLE | V_REFRESH_DIVISOR(mc4_clock));
159 	(void) t1_read_reg_4(adapter, A_MC4_REFRESH);    /* flush */
160 
161 	t1_write_reg_4(adapter, A_MC4_ECC_CNTL,
162 		       F_ECC_GENERATION_ENABLE | F_ECC_CHECK_ENABLE);
163 
164 	/* Use the BIST engine to clear all of the MC4 memory. */
165 	t1_write_reg_4(adapter, A_MC4_BIST_ADDR_BEG, 0);
166 	t1_write_reg_4(adapter, A_MC4_BIST_ADDR_END, (mc4->size << width) - 1);
167 	t1_write_reg_4(adapter, A_MC4_BIST_DATA, 0);
168 	t1_write_reg_4(adapter, A_MC4_BIST_OP, V_OP(1) | 0x1f0);
169 	(void) t1_read_reg_4(adapter, A_MC4_BIST_OP);              /* flush */
170 
171 	attempts = 100;
172 	do {
173 		DELAY_MS(100);
174 		val = t1_read_reg_4(adapter, A_MC4_BIST_OP);
175 	} while ((val & F_BUSY) && --attempts);
176 	if (val & F_BUSY) {
177 		CH_ERR("%s: MC4 BIST timed out\n", adapter_name(adapter));
178 		goto out_fail;
179 	}
180 
181 	/* Enable normal memory accesses. */
182 	val = t1_read_reg_4(adapter, A_MC4_CFG);
183 	t1_write_reg_4(adapter, A_MC4_CFG, val | F_READY);
184 	val = t1_read_reg_4(adapter, A_MC4_CFG);               /* flush */
185 	return 0;
186 
187  out_fail:
188 	return -1;
189 }
190 
191 struct pemc4 * __devinit t1_mc4_create(adapter_t *adapter)
192 {
193 	struct pemc4 *mc4 = t1_os_malloc_wait_zero(sizeof(*mc4));
194 
195 	if (mc4) {
196 		mc4->adapter = adapter;
197 		mc4->size = mc4_calc_size(adapter);
198 	}
199 	return mc4;
200 }
201 
202 unsigned int t1_mc4_get_size(struct pemc4 *mc4)
203 {
204 	return mc4->size;
205 }
206 
207 #define MC4_INT_MASK (F_MC4_CORR_ERR | F_MC4_UNCORR_ERR | F_MC4_ADDR_ERR)
208 #define MC4_INT_FATAL (F_MC4_UNCORR_ERR | F_MC4_ADDR_ERR)
209 
210 void t1_mc4_intr_enable(struct pemc4 *mc4)
211 {
212 	u32 pl_intr;
213 
214 	if (t1_is_asic(mc4->adapter)) {
215 		t1_write_reg_4(mc4->adapter, A_MC4_INT_ENABLE, MC4_INT_MASK);
216 
217 		pl_intr = t1_read_reg_4(mc4->adapter, A_PL_ENABLE);
218 		t1_write_reg_4(mc4->adapter, A_PL_ENABLE,
219 			       pl_intr | F_PL_INTR_MC4);
220 	}
221 }
222 
223 void t1_mc4_intr_disable(struct pemc4 *mc4)
224 {
225 	u32 pl_intr;
226 
227 	if (t1_is_asic(mc4->adapter)) {
228 		t1_write_reg_4(mc4->adapter, A_MC4_INT_ENABLE, 0);
229 
230 		pl_intr = t1_read_reg_4(mc4->adapter, A_PL_ENABLE);
231 		t1_write_reg_4(mc4->adapter, A_PL_ENABLE,
232 			       pl_intr & ~F_PL_INTR_MC4);
233 	}
234 }
235 
236 void t1_mc4_intr_clear(struct pemc4 *mc4)
237 {
238 	if (t1_is_asic(mc4->adapter)) {
239 		t1_write_reg_4(mc4->adapter, A_MC4_INT_CAUSE, 0xffffffff);
240 		t1_write_reg_4(mc4->adapter, A_PL_CAUSE, F_PL_INTR_MC4);
241 	}
242 }
243 
244 int t1_mc4_intr_handler(struct pemc4 *mc4)
245 {
246 	adapter_t *adapter = mc4->adapter;
247 	u32 cause = t1_read_reg_4(adapter, A_MC4_INT_CAUSE);
248 
249 	if (cause & F_MC4_CORR_ERR) {
250 		mc4->intr_cnt.corr_err++;
251 		CH_WARN("%s: MC4 correctable error at addr 0x%x, "
252 			"data 0x%x 0x%x 0x%x 0x%x 0x%x\n",
253 			adapter_name(adapter),
254 			G_MC4_CE_ADDR(t1_read_reg_4(adapter, A_MC4_CE_ADDR)),
255 			t1_read_reg_4(adapter, A_MC4_CE_DATA0),
256 			t1_read_reg_4(adapter, A_MC4_CE_DATA1),
257 			t1_read_reg_4(adapter, A_MC4_CE_DATA2),
258 			t1_read_reg_4(adapter, A_MC4_CE_DATA3),
259 			t1_read_reg_4(adapter, A_MC4_CE_DATA4));
260 	}
261 
262 	if (cause & F_MC4_UNCORR_ERR) {
263 		mc4->intr_cnt.uncorr_err++;
264 		CH_ALERT("%s: MC4 uncorrectable error at addr 0x%x, "
265 			 "data 0x%x 0x%x 0x%x 0x%x 0x%x\n",
266 			 adapter_name(adapter),
267 			 G_MC4_UE_ADDR(t1_read_reg_4(adapter, A_MC4_UE_ADDR)),
268 			 t1_read_reg_4(adapter, A_MC4_UE_DATA0),
269 			 t1_read_reg_4(adapter, A_MC4_UE_DATA1),
270 			 t1_read_reg_4(adapter, A_MC4_UE_DATA2),
271 			 t1_read_reg_4(adapter, A_MC4_UE_DATA3),
272 			 t1_read_reg_4(adapter, A_MC4_UE_DATA4));
273 	}
274 
275 	if (cause & F_MC4_ADDR_ERR) {
276 		mc4->intr_cnt.addr_err++;
277 		CH_ALERT("%s: MC4 address error\n", adapter_name(adapter));
278 	}
279 
280 	if (cause & MC4_INT_FATAL)
281 		t1_fatal_err(adapter);
282 
283 	t1_write_reg_4(mc4->adapter, A_MC4_INT_CAUSE, cause);
284 	return 0;
285 }
286 
287 const struct pemc4_intr_counts *t1_mc4_get_intr_counts(struct pemc4 *mc4)
288 {
289 	return &mc4->intr_cnt;
290 }
291 
292 /*
293  * Read n 256-bit words from MC4 starting at word start, using backdoor
294  * accesses.
295  */
296 int t1_mc4_bd_read(struct pemc4 *mc4, unsigned int start, unsigned int n,
297 		   u32 *buf)
298 {
299 	adapter_t *adap = mc4->adapter;
300 	unsigned int size256 = mc4->size / 32, c = 8 / mc4->nwords, i;
301 
302 	if (start >= size256 || start + n > size256)
303 		return -EINVAL;
304 
305 	for (i = 8, start *= 16 * c, n *= c; n; --n, start += 16) {
306 		int attempts = 10;
307 		u32 val;
308 
309 		t1_write_reg_4(adap, A_MC4_BD_ADDR, start);
310 		t1_write_reg_4(adap, A_MC4_BD_OP, 0);
311 		val = t1_read_reg_4(adap, A_MC4_BD_OP);
312 		while ((val & F_BUSY) && attempts--)
313 			val = t1_read_reg_4(adap, A_MC4_BD_OP);
314 
315 		if (val & F_BUSY)
316 			return -EIO;
317 
318 		buf[--i] = t1_read_reg_4(adap, A_MC4_BD_DATA3);
319 		if (mc4->nwords >= 2)
320 			buf[--i] = t1_read_reg_4(adap, A_MC4_BD_DATA2);
321 		if (mc4->nwords == 4) {
322 			buf[--i] = t1_read_reg_4(adap, A_MC4_BD_DATA1);
323 			buf[--i] = t1_read_reg_4(adap, A_MC4_BD_DATA0);
324 		}
325 		if (i == 0) {
326 			i = 8;
327 			buf += 8;
328 		}
329 	}
330 	return 0;
331 }
332