1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 /* 22 * Copyright (c) 2009, 2010, Oracle and/or its affiliates. All rights reserved. 23 * Copyright 2012 Garrett D'Amore <garrett@damore.org>. All rights reserved. 24 * Copyright 2012 Alexey Zaytsev <alexey.zaytsev@gmail.com> All rights reserved. 25 * Copyright 2016 Nexenta Systems, Inc. All rights reserved. 26 * Copyright 2017 The MathWorks, Inc. All rights reserved. 27 * Copyright 2019 Western Digital Corporation. 28 */ 29 30 #include <sys/types.h> 31 #include <sys/ksynch.h> 32 #include <sys/kmem.h> 33 #include <sys/file.h> 34 #include <sys/errno.h> 35 #include <sys/open.h> 36 #include <sys/buf.h> 37 #include <sys/uio.h> 38 #include <sys/aio_req.h> 39 #include <sys/cred.h> 40 #include <sys/modctl.h> 41 #include <sys/cmlb.h> 42 #include <sys/conf.h> 43 #include <sys/devops.h> 44 #include <sys/list.h> 45 #include <sys/sysmacros.h> 46 #include <sys/dkio.h> 47 #include <sys/vtoc.h> 48 #include <sys/scsi/scsi.h> /* for DTYPE_DIRECT */ 49 #include <sys/kstat.h> 50 #include <sys/fs/dv_node.h> 51 #include <sys/ddi.h> 52 #include <sys/sunddi.h> 53 #include <sys/note.h> 54 #include <sys/blkdev.h> 55 #include <sys/scsi/impl/inquiry.h> 56 57 /* 58 * blkdev is a driver which provides a lot of the common functionality 59 * a block device driver may need and helps by removing code which 60 * is frequently duplicated in block device drivers. 61 * 62 * Within this driver all the struct cb_ops functions required for a 63 * block device driver are written with appropriate call back functions 64 * to be provided by the parent driver. 65 * 66 * To use blkdev, a driver needs to: 67 * 1. Create a bd_ops_t structure which has the call back operations 68 * blkdev will use. 69 * 2. Create a handle by calling bd_alloc_handle(). One of the 70 * arguments to this function is the bd_ops_t. 71 * 3. Call bd_attach_handle(). This will instantiate a blkdev device 72 * as a child device node of the calling driver. 73 * 74 * A parent driver is not restricted to just allocating and attaching a 75 * single instance, it may attach as many as it wishes. For each handle 76 * attached, appropriate entries in /dev/[r]dsk are created. 77 * 78 * The bd_ops_t routines that a parent of blkdev need to provide are: 79 * 80 * o_drive_info: Provide information to blkdev such as how many I/O queues 81 * to create and the size of those queues. Also some device 82 * specifics such as EUI, vendor, product, model, serial 83 * number .... 84 * 85 * o_media_info: Provide information about the media. Eg size and block size. 86 * 87 * o_devid_init: Creates and initializes the device id. Typically calls 88 * ddi_devid_init(). 89 * 90 * o_sync_cache: Issues a device appropriate command to flush any write 91 * caches. 92 * 93 * o_read: Read data as described by bd_xfer_t argument. 94 * 95 * o_write: Write data as described by bd_xfer_t argument. 96 * 97 * 98 * Queues 99 * ------ 100 * Part of the drive_info data is a queue count. blkdev will create 101 * "queue count" number of waitq/runq pairs. Each waitq/runq pair 102 * operates independently. As an I/O is scheduled up to the parent 103 * driver via o_read or o_write its queue number is given. If the 104 * parent driver supports multiple hardware queues it can then select 105 * where to submit the I/O request. 106 * 107 * Currently blkdev uses a simplistic round-robin queue selection method. 108 * It has the advantage that it is lockless. In the future it will be 109 * worthwhile reviewing this strategy for something which prioritizes queues 110 * depending on how busy they are. 111 * 112 * Each waitq/runq pair is protected by its mutex (q_iomutex). Incoming 113 * I/O requests are initially added to the waitq. They are taken off the 114 * waitq, added to the runq and submitted, providing the runq is less 115 * than the qsize as specified in the drive_info. As an I/O request 116 * completes, the parent driver is required to call bd_xfer_done(), which 117 * will remove the I/O request from the runq and pass I/O completion 118 * status up the stack. 119 * 120 * Locks 121 * ----- 122 * There are 4 instance global locks d_ocmutex, d_ksmutex, d_errmutex and 123 * d_statemutex. As well a q_iomutex per waitq/runq pair. 124 * 125 * Currently, there is no lock hierarchy. Nowhere do we ever own more than 126 * one lock, any change needs to be documented here with a defined 127 * hierarchy. 128 */ 129 130 #define BD_MAXPART 64 131 #define BDINST(dev) (getminor(dev) / BD_MAXPART) 132 #define BDPART(dev) (getminor(dev) % BD_MAXPART) 133 134 typedef struct bd bd_t; 135 typedef struct bd_xfer_impl bd_xfer_impl_t; 136 typedef struct bd_queue bd_queue_t; 137 138 struct bd { 139 void *d_private; 140 dev_info_t *d_dip; 141 kmutex_t d_ocmutex; 142 kmutex_t d_ksmutex; 143 kmutex_t d_errmutex; 144 kmutex_t d_statemutex; 145 kcondvar_t d_statecv; 146 enum dkio_state d_state; 147 cmlb_handle_t d_cmlbh; 148 unsigned d_open_lyr[BD_MAXPART]; /* open count */ 149 uint64_t d_open_excl; /* bit mask indexed by partition */ 150 uint64_t d_open_reg[OTYPCNT]; /* bit mask */ 151 uint64_t d_io_counter; 152 153 uint32_t d_qcount; 154 uint32_t d_qactive; 155 uint32_t d_maxxfer; 156 uint32_t d_blkshift; 157 uint32_t d_pblkshift; 158 uint64_t d_numblks; 159 ddi_devid_t d_devid; 160 161 kmem_cache_t *d_cache; 162 bd_queue_t *d_queues; 163 kstat_t *d_ksp; 164 kstat_io_t *d_kiop; 165 kstat_t *d_errstats; 166 struct bd_errstats *d_kerr; 167 168 boolean_t d_rdonly; 169 boolean_t d_ssd; 170 boolean_t d_removable; 171 boolean_t d_hotpluggable; 172 boolean_t d_use_dma; 173 174 ddi_dma_attr_t d_dma; 175 bd_ops_t d_ops; 176 bd_handle_t d_handle; 177 }; 178 179 struct bd_handle { 180 bd_ops_t h_ops; 181 ddi_dma_attr_t *h_dma; 182 dev_info_t *h_parent; 183 dev_info_t *h_child; 184 void *h_private; 185 bd_t *h_bd; 186 char *h_name; 187 char h_addr[30]; /* enough for w%0.16x,%X */ 188 }; 189 190 struct bd_xfer_impl { 191 bd_xfer_t i_public; 192 list_node_t i_linkage; 193 bd_t *i_bd; 194 buf_t *i_bp; 195 bd_queue_t *i_bq; 196 uint_t i_num_win; 197 uint_t i_cur_win; 198 off_t i_offset; 199 int (*i_func)(void *, bd_xfer_t *); 200 uint32_t i_blkshift; 201 size_t i_len; 202 size_t i_resid; 203 }; 204 205 struct bd_queue { 206 kmutex_t q_iomutex; 207 uint32_t q_qsize; 208 uint32_t q_qactive; 209 list_t q_runq; 210 list_t q_waitq; 211 }; 212 213 #define i_dmah i_public.x_dmah 214 #define i_dmac i_public.x_dmac 215 #define i_ndmac i_public.x_ndmac 216 #define i_kaddr i_public.x_kaddr 217 #define i_nblks i_public.x_nblks 218 #define i_blkno i_public.x_blkno 219 #define i_flags i_public.x_flags 220 #define i_qnum i_public.x_qnum 221 222 223 /* 224 * Private prototypes. 225 */ 226 227 static void bd_prop_update_inqstring(dev_info_t *, char *, char *, size_t); 228 static void bd_create_inquiry_props(dev_info_t *, bd_drive_t *); 229 static void bd_create_errstats(bd_t *, int, bd_drive_t *); 230 static void bd_errstats_setstr(kstat_named_t *, char *, size_t, char *); 231 static void bd_init_errstats(bd_t *, bd_drive_t *); 232 233 static int bd_getinfo(dev_info_t *, ddi_info_cmd_t, void *, void **); 234 static int bd_attach(dev_info_t *, ddi_attach_cmd_t); 235 static int bd_detach(dev_info_t *, ddi_detach_cmd_t); 236 237 static int bd_open(dev_t *, int, int, cred_t *); 238 static int bd_close(dev_t, int, int, cred_t *); 239 static int bd_strategy(struct buf *); 240 static int bd_ioctl(dev_t, int, intptr_t, int, cred_t *, int *); 241 static int bd_dump(dev_t, caddr_t, daddr_t, int); 242 static int bd_read(dev_t, struct uio *, cred_t *); 243 static int bd_write(dev_t, struct uio *, cred_t *); 244 static int bd_aread(dev_t, struct aio_req *, cred_t *); 245 static int bd_awrite(dev_t, struct aio_req *, cred_t *); 246 static int bd_prop_op(dev_t, dev_info_t *, ddi_prop_op_t, int, char *, 247 caddr_t, int *); 248 249 static int bd_tg_rdwr(dev_info_t *, uchar_t, void *, diskaddr_t, size_t, 250 void *); 251 static int bd_tg_getinfo(dev_info_t *, int, void *, void *); 252 static int bd_xfer_ctor(void *, void *, int); 253 static void bd_xfer_dtor(void *, void *); 254 static void bd_sched(bd_t *, bd_queue_t *); 255 static void bd_submit(bd_t *, bd_xfer_impl_t *); 256 static void bd_runq_exit(bd_xfer_impl_t *, int); 257 static void bd_update_state(bd_t *); 258 static int bd_check_state(bd_t *, enum dkio_state *); 259 static int bd_flush_write_cache(bd_t *, struct dk_callback *); 260 static int bd_check_uio(dev_t, struct uio *); 261 262 struct cmlb_tg_ops bd_tg_ops = { 263 TG_DK_OPS_VERSION_1, 264 bd_tg_rdwr, 265 bd_tg_getinfo, 266 }; 267 268 static struct cb_ops bd_cb_ops = { 269 bd_open, /* open */ 270 bd_close, /* close */ 271 bd_strategy, /* strategy */ 272 nodev, /* print */ 273 bd_dump, /* dump */ 274 bd_read, /* read */ 275 bd_write, /* write */ 276 bd_ioctl, /* ioctl */ 277 nodev, /* devmap */ 278 nodev, /* mmap */ 279 nodev, /* segmap */ 280 nochpoll, /* poll */ 281 bd_prop_op, /* cb_prop_op */ 282 0, /* streamtab */ 283 D_64BIT | D_MP, /* Driver comaptibility flag */ 284 CB_REV, /* cb_rev */ 285 bd_aread, /* async read */ 286 bd_awrite /* async write */ 287 }; 288 289 struct dev_ops bd_dev_ops = { 290 DEVO_REV, /* devo_rev, */ 291 0, /* refcnt */ 292 bd_getinfo, /* getinfo */ 293 nulldev, /* identify */ 294 nulldev, /* probe */ 295 bd_attach, /* attach */ 296 bd_detach, /* detach */ 297 nodev, /* reset */ 298 &bd_cb_ops, /* driver operations */ 299 NULL, /* bus operations */ 300 NULL, /* power */ 301 ddi_quiesce_not_needed, /* quiesce */ 302 }; 303 304 static struct modldrv modldrv = { 305 &mod_driverops, 306 "Generic Block Device", 307 &bd_dev_ops, 308 }; 309 310 static struct modlinkage modlinkage = { 311 MODREV_1, { &modldrv, NULL } 312 }; 313 314 static void *bd_state; 315 static krwlock_t bd_lock; 316 317 int 318 _init(void) 319 { 320 int rv; 321 322 rv = ddi_soft_state_init(&bd_state, sizeof (struct bd), 2); 323 if (rv != DDI_SUCCESS) { 324 return (rv); 325 } 326 rw_init(&bd_lock, NULL, RW_DRIVER, NULL); 327 rv = mod_install(&modlinkage); 328 if (rv != DDI_SUCCESS) { 329 rw_destroy(&bd_lock); 330 ddi_soft_state_fini(&bd_state); 331 } 332 return (rv); 333 } 334 335 int 336 _fini(void) 337 { 338 int rv; 339 340 rv = mod_remove(&modlinkage); 341 if (rv == DDI_SUCCESS) { 342 rw_destroy(&bd_lock); 343 ddi_soft_state_fini(&bd_state); 344 } 345 return (rv); 346 } 347 348 int 349 _info(struct modinfo *modinfop) 350 { 351 return (mod_info(&modlinkage, modinfop)); 352 } 353 354 static int 355 bd_getinfo(dev_info_t *dip, ddi_info_cmd_t cmd, void *arg, void **resultp) 356 { 357 bd_t *bd; 358 minor_t inst; 359 360 _NOTE(ARGUNUSED(dip)); 361 362 inst = BDINST((dev_t)arg); 363 364 switch (cmd) { 365 case DDI_INFO_DEVT2DEVINFO: 366 bd = ddi_get_soft_state(bd_state, inst); 367 if (bd == NULL) { 368 return (DDI_FAILURE); 369 } 370 *resultp = (void *)bd->d_dip; 371 break; 372 373 case DDI_INFO_DEVT2INSTANCE: 374 *resultp = (void *)(intptr_t)inst; 375 break; 376 377 default: 378 return (DDI_FAILURE); 379 } 380 return (DDI_SUCCESS); 381 } 382 383 static void 384 bd_prop_update_inqstring(dev_info_t *dip, char *name, char *data, size_t len) 385 { 386 int ilen; 387 char *data_string; 388 389 ilen = scsi_ascii_inquiry_len(data, len); 390 ASSERT3U(ilen, <=, len); 391 if (ilen <= 0) 392 return; 393 /* ensure null termination */ 394 data_string = kmem_zalloc(ilen + 1, KM_SLEEP); 395 bcopy(data, data_string, ilen); 396 (void) ndi_prop_update_string(DDI_DEV_T_NONE, dip, name, data_string); 397 kmem_free(data_string, ilen + 1); 398 } 399 400 static void 401 bd_create_inquiry_props(dev_info_t *dip, bd_drive_t *drive) 402 { 403 if (drive->d_vendor_len > 0) 404 bd_prop_update_inqstring(dip, INQUIRY_VENDOR_ID, 405 drive->d_vendor, drive->d_vendor_len); 406 407 if (drive->d_product_len > 0) 408 bd_prop_update_inqstring(dip, INQUIRY_PRODUCT_ID, 409 drive->d_product, drive->d_product_len); 410 411 if (drive->d_serial_len > 0) 412 bd_prop_update_inqstring(dip, INQUIRY_SERIAL_NO, 413 drive->d_serial, drive->d_serial_len); 414 415 if (drive->d_revision_len > 0) 416 bd_prop_update_inqstring(dip, INQUIRY_REVISION_ID, 417 drive->d_revision, drive->d_revision_len); 418 } 419 420 static void 421 bd_create_errstats(bd_t *bd, int inst, bd_drive_t *drive) 422 { 423 char ks_module[KSTAT_STRLEN]; 424 char ks_name[KSTAT_STRLEN]; 425 int ndata = sizeof (struct bd_errstats) / sizeof (kstat_named_t); 426 427 if (bd->d_errstats != NULL) 428 return; 429 430 (void) snprintf(ks_module, sizeof (ks_module), "%serr", 431 ddi_driver_name(bd->d_dip)); 432 (void) snprintf(ks_name, sizeof (ks_name), "%s%d,err", 433 ddi_driver_name(bd->d_dip), inst); 434 435 bd->d_errstats = kstat_create(ks_module, inst, ks_name, "device_error", 436 KSTAT_TYPE_NAMED, ndata, KSTAT_FLAG_PERSISTENT); 437 438 mutex_init(&bd->d_errmutex, NULL, MUTEX_DRIVER, NULL); 439 if (bd->d_errstats == NULL) { 440 /* 441 * Even if we cannot create the kstat, we create a 442 * scratch kstat. The reason for this is to ensure 443 * that we can update the kstat all of the time, 444 * without adding an extra branch instruction. 445 */ 446 bd->d_kerr = kmem_zalloc(sizeof (struct bd_errstats), 447 KM_SLEEP); 448 } else { 449 bd->d_errstats->ks_lock = &bd->d_errmutex; 450 bd->d_kerr = (struct bd_errstats *)bd->d_errstats->ks_data; 451 } 452 453 kstat_named_init(&bd->d_kerr->bd_softerrs, "Soft Errors", 454 KSTAT_DATA_UINT32); 455 kstat_named_init(&bd->d_kerr->bd_harderrs, "Hard Errors", 456 KSTAT_DATA_UINT32); 457 kstat_named_init(&bd->d_kerr->bd_transerrs, "Transport Errors", 458 KSTAT_DATA_UINT32); 459 460 if (drive->d_model_len > 0) { 461 kstat_named_init(&bd->d_kerr->bd_model, "Model", 462 KSTAT_DATA_STRING); 463 } else { 464 kstat_named_init(&bd->d_kerr->bd_vid, "Vendor", 465 KSTAT_DATA_STRING); 466 kstat_named_init(&bd->d_kerr->bd_pid, "Product", 467 KSTAT_DATA_STRING); 468 } 469 470 kstat_named_init(&bd->d_kerr->bd_revision, "Revision", 471 KSTAT_DATA_STRING); 472 kstat_named_init(&bd->d_kerr->bd_serial, "Serial No", 473 KSTAT_DATA_STRING); 474 kstat_named_init(&bd->d_kerr->bd_capacity, "Size", 475 KSTAT_DATA_ULONGLONG); 476 kstat_named_init(&bd->d_kerr->bd_rq_media_err, "Media Error", 477 KSTAT_DATA_UINT32); 478 kstat_named_init(&bd->d_kerr->bd_rq_ntrdy_err, "Device Not Ready", 479 KSTAT_DATA_UINT32); 480 kstat_named_init(&bd->d_kerr->bd_rq_nodev_err, "No Device", 481 KSTAT_DATA_UINT32); 482 kstat_named_init(&bd->d_kerr->bd_rq_recov_err, "Recoverable", 483 KSTAT_DATA_UINT32); 484 kstat_named_init(&bd->d_kerr->bd_rq_illrq_err, "Illegal Request", 485 KSTAT_DATA_UINT32); 486 kstat_named_init(&bd->d_kerr->bd_rq_pfa_err, 487 "Predictive Failure Analysis", KSTAT_DATA_UINT32); 488 489 bd->d_errstats->ks_private = bd; 490 491 kstat_install(bd->d_errstats); 492 } 493 494 static void 495 bd_errstats_setstr(kstat_named_t *k, char *str, size_t len, char *alt) 496 { 497 char *tmp; 498 499 if (KSTAT_NAMED_STR_PTR(k) == NULL) { 500 if (len > 0) { 501 tmp = kmem_alloc(len + 1, KM_SLEEP); 502 (void) strlcpy(tmp, str, len + 1); 503 } else { 504 tmp = alt; 505 } 506 507 kstat_named_setstr(k, tmp); 508 } 509 } 510 511 static void 512 bd_init_errstats(bd_t *bd, bd_drive_t *drive) 513 { 514 struct bd_errstats *est = bd->d_kerr; 515 516 mutex_enter(&bd->d_errmutex); 517 518 if (drive->d_model_len > 0 && 519 KSTAT_NAMED_STR_PTR(&est->bd_model) == NULL) { 520 bd_errstats_setstr(&est->bd_model, drive->d_model, 521 drive->d_model_len, NULL); 522 } else { 523 bd_errstats_setstr(&est->bd_vid, drive->d_vendor, 524 drive->d_vendor_len, "Unknown "); 525 bd_errstats_setstr(&est->bd_pid, drive->d_product, 526 drive->d_product_len, "Unknown "); 527 } 528 529 bd_errstats_setstr(&est->bd_revision, drive->d_revision, 530 drive->d_revision_len, "0001"); 531 bd_errstats_setstr(&est->bd_serial, drive->d_serial, 532 drive->d_serial_len, "0 "); 533 534 mutex_exit(&bd->d_errmutex); 535 } 536 537 static void 538 bd_queues_free(bd_t *bd) 539 { 540 uint32_t i; 541 542 for (i = 0; i < bd->d_qcount; i++) { 543 bd_queue_t *bq = &bd->d_queues[i]; 544 545 mutex_destroy(&bq->q_iomutex); 546 list_destroy(&bq->q_waitq); 547 list_destroy(&bq->q_runq); 548 } 549 550 kmem_free(bd->d_queues, sizeof (*bd->d_queues) * bd->d_qcount); 551 } 552 553 static int 554 bd_attach(dev_info_t *dip, ddi_attach_cmd_t cmd) 555 { 556 int inst; 557 bd_handle_t hdl; 558 bd_t *bd; 559 bd_drive_t drive; 560 uint32_t i; 561 int rv; 562 char name[16]; 563 char kcache[32]; 564 565 switch (cmd) { 566 case DDI_ATTACH: 567 break; 568 case DDI_RESUME: 569 /* We don't do anything native for suspend/resume */ 570 return (DDI_SUCCESS); 571 default: 572 return (DDI_FAILURE); 573 } 574 575 inst = ddi_get_instance(dip); 576 hdl = ddi_get_parent_data(dip); 577 578 (void) snprintf(name, sizeof (name), "%s%d", 579 ddi_driver_name(dip), ddi_get_instance(dip)); 580 (void) snprintf(kcache, sizeof (kcache), "%s_xfer", name); 581 582 if (hdl == NULL) { 583 cmn_err(CE_WARN, "%s: missing parent data!", name); 584 return (DDI_FAILURE); 585 } 586 587 if (ddi_soft_state_zalloc(bd_state, inst) != DDI_SUCCESS) { 588 cmn_err(CE_WARN, "%s: unable to zalloc soft state!", name); 589 return (DDI_FAILURE); 590 } 591 bd = ddi_get_soft_state(bd_state, inst); 592 593 if (hdl->h_dma) { 594 bd->d_dma = *(hdl->h_dma); 595 bd->d_dma.dma_attr_granular = 596 max(DEV_BSIZE, bd->d_dma.dma_attr_granular); 597 bd->d_use_dma = B_TRUE; 598 599 if (bd->d_maxxfer && 600 (bd->d_maxxfer != bd->d_dma.dma_attr_maxxfer)) { 601 cmn_err(CE_WARN, 602 "%s: inconsistent maximum transfer size!", 603 name); 604 /* We force it */ 605 bd->d_maxxfer = bd->d_dma.dma_attr_maxxfer; 606 } else { 607 bd->d_maxxfer = bd->d_dma.dma_attr_maxxfer; 608 } 609 } else { 610 bd->d_use_dma = B_FALSE; 611 if (bd->d_maxxfer == 0) { 612 bd->d_maxxfer = 1024 * 1024; 613 } 614 } 615 bd->d_ops = hdl->h_ops; 616 bd->d_private = hdl->h_private; 617 bd->d_blkshift = 9; /* 512 bytes, to start */ 618 619 if (bd->d_maxxfer % DEV_BSIZE) { 620 cmn_err(CE_WARN, "%s: maximum transfer misaligned!", name); 621 bd->d_maxxfer &= ~(DEV_BSIZE - 1); 622 } 623 if (bd->d_maxxfer < DEV_BSIZE) { 624 cmn_err(CE_WARN, "%s: maximum transfer size too small!", name); 625 ddi_soft_state_free(bd_state, inst); 626 return (DDI_FAILURE); 627 } 628 629 bd->d_dip = dip; 630 bd->d_handle = hdl; 631 hdl->h_bd = bd; 632 ddi_set_driver_private(dip, bd); 633 634 mutex_init(&bd->d_ksmutex, NULL, MUTEX_DRIVER, NULL); 635 mutex_init(&bd->d_ocmutex, NULL, MUTEX_DRIVER, NULL); 636 mutex_init(&bd->d_statemutex, NULL, MUTEX_DRIVER, NULL); 637 cv_init(&bd->d_statecv, NULL, CV_DRIVER, NULL); 638 639 bd->d_cache = kmem_cache_create(kcache, sizeof (bd_xfer_impl_t), 8, 640 bd_xfer_ctor, bd_xfer_dtor, NULL, bd, NULL, 0); 641 642 bd->d_ksp = kstat_create(ddi_driver_name(dip), inst, NULL, "disk", 643 KSTAT_TYPE_IO, 1, KSTAT_FLAG_PERSISTENT); 644 if (bd->d_ksp != NULL) { 645 bd->d_ksp->ks_lock = &bd->d_ksmutex; 646 kstat_install(bd->d_ksp); 647 bd->d_kiop = bd->d_ksp->ks_data; 648 } else { 649 /* 650 * Even if we cannot create the kstat, we create a 651 * scratch kstat. The reason for this is to ensure 652 * that we can update the kstat all of the time, 653 * without adding an extra branch instruction. 654 */ 655 bd->d_kiop = kmem_zalloc(sizeof (kstat_io_t), KM_SLEEP); 656 } 657 658 cmlb_alloc_handle(&bd->d_cmlbh); 659 660 bd->d_state = DKIO_NONE; 661 662 bzero(&drive, sizeof (drive)); 663 /* 664 * Default to one queue, parent driver can override. 665 */ 666 drive.d_qcount = 1; 667 bd->d_ops.o_drive_info(bd->d_private, &drive); 668 bd->d_qcount = drive.d_qcount; 669 bd->d_removable = drive.d_removable; 670 bd->d_hotpluggable = drive.d_hotpluggable; 671 672 if (drive.d_maxxfer && drive.d_maxxfer < bd->d_maxxfer) 673 bd->d_maxxfer = drive.d_maxxfer; 674 675 bd_create_inquiry_props(dip, &drive); 676 677 bd_create_errstats(bd, inst, &drive); 678 bd_init_errstats(bd, &drive); 679 bd_update_state(bd); 680 681 bd->d_queues = kmem_alloc(sizeof (*bd->d_queues) * bd->d_qcount, 682 KM_SLEEP); 683 for (i = 0; i < bd->d_qcount; i++) { 684 bd_queue_t *bq = &bd->d_queues[i]; 685 686 bq->q_qsize = drive.d_qsize; 687 bq->q_qactive = 0; 688 mutex_init(&bq->q_iomutex, NULL, MUTEX_DRIVER, NULL); 689 690 list_create(&bq->q_waitq, sizeof (bd_xfer_impl_t), 691 offsetof(struct bd_xfer_impl, i_linkage)); 692 list_create(&bq->q_runq, sizeof (bd_xfer_impl_t), 693 offsetof(struct bd_xfer_impl, i_linkage)); 694 } 695 696 rv = cmlb_attach(dip, &bd_tg_ops, DTYPE_DIRECT, 697 bd->d_removable, bd->d_hotpluggable, 698 /*LINTED: E_BAD_PTR_CAST_ALIGN*/ 699 *(uint64_t *)drive.d_eui64 != 0 ? DDI_NT_BLOCK_BLKDEV : 700 drive.d_lun >= 0 ? DDI_NT_BLOCK_CHAN : DDI_NT_BLOCK, 701 CMLB_FAKE_LABEL_ONE_PARTITION, bd->d_cmlbh, 0); 702 if (rv != 0) { 703 cmlb_free_handle(&bd->d_cmlbh); 704 kmem_cache_destroy(bd->d_cache); 705 mutex_destroy(&bd->d_ksmutex); 706 mutex_destroy(&bd->d_ocmutex); 707 mutex_destroy(&bd->d_statemutex); 708 cv_destroy(&bd->d_statecv); 709 bd_queues_free(bd); 710 if (bd->d_ksp != NULL) { 711 kstat_delete(bd->d_ksp); 712 bd->d_ksp = NULL; 713 } else { 714 kmem_free(bd->d_kiop, sizeof (kstat_io_t)); 715 } 716 ddi_soft_state_free(bd_state, inst); 717 return (DDI_FAILURE); 718 } 719 720 if (bd->d_ops.o_devid_init != NULL) { 721 rv = bd->d_ops.o_devid_init(bd->d_private, dip, &bd->d_devid); 722 if (rv == DDI_SUCCESS) { 723 if (ddi_devid_register(dip, bd->d_devid) != 724 DDI_SUCCESS) { 725 cmn_err(CE_WARN, 726 "%s: unable to register devid", name); 727 } 728 } 729 } 730 731 /* 732 * Add a zero-length attribute to tell the world we support 733 * kernel ioctls (for layered drivers). Also set up properties 734 * used by HAL to identify removable media. 735 */ 736 (void) ddi_prop_create(DDI_DEV_T_NONE, dip, DDI_PROP_CANSLEEP, 737 DDI_KERNEL_IOCTL, NULL, 0); 738 if (bd->d_removable) { 739 (void) ddi_prop_create(DDI_DEV_T_NONE, dip, DDI_PROP_CANSLEEP, 740 "removable-media", NULL, 0); 741 } 742 if (bd->d_hotpluggable) { 743 (void) ddi_prop_create(DDI_DEV_T_NONE, dip, DDI_PROP_CANSLEEP, 744 "hotpluggable", NULL, 0); 745 } 746 747 ddi_report_dev(dip); 748 749 return (DDI_SUCCESS); 750 } 751 752 static int 753 bd_detach(dev_info_t *dip, ddi_detach_cmd_t cmd) 754 { 755 bd_t *bd; 756 757 bd = ddi_get_driver_private(dip); 758 759 switch (cmd) { 760 case DDI_DETACH: 761 break; 762 case DDI_SUSPEND: 763 /* We don't suspend, but our parent does */ 764 return (DDI_SUCCESS); 765 default: 766 return (DDI_FAILURE); 767 } 768 if (bd->d_ksp != NULL) { 769 kstat_delete(bd->d_ksp); 770 bd->d_ksp = NULL; 771 } else { 772 kmem_free(bd->d_kiop, sizeof (kstat_io_t)); 773 } 774 775 if (bd->d_errstats != NULL) { 776 kstat_delete(bd->d_errstats); 777 bd->d_errstats = NULL; 778 } else { 779 kmem_free(bd->d_kerr, sizeof (struct bd_errstats)); 780 mutex_destroy(&bd->d_errmutex); 781 } 782 783 cmlb_detach(bd->d_cmlbh, 0); 784 cmlb_free_handle(&bd->d_cmlbh); 785 if (bd->d_devid) 786 ddi_devid_free(bd->d_devid); 787 kmem_cache_destroy(bd->d_cache); 788 mutex_destroy(&bd->d_ksmutex); 789 mutex_destroy(&bd->d_ocmutex); 790 mutex_destroy(&bd->d_statemutex); 791 cv_destroy(&bd->d_statecv); 792 bd_queues_free(bd); 793 ddi_soft_state_free(bd_state, ddi_get_instance(dip)); 794 return (DDI_SUCCESS); 795 } 796 797 static int 798 bd_xfer_ctor(void *buf, void *arg, int kmflag) 799 { 800 bd_xfer_impl_t *xi; 801 bd_t *bd = arg; 802 int (*dcb)(caddr_t); 803 804 if (kmflag == KM_PUSHPAGE || kmflag == KM_SLEEP) { 805 dcb = DDI_DMA_SLEEP; 806 } else { 807 dcb = DDI_DMA_DONTWAIT; 808 } 809 810 xi = buf; 811 bzero(xi, sizeof (*xi)); 812 xi->i_bd = bd; 813 814 if (bd->d_use_dma) { 815 if (ddi_dma_alloc_handle(bd->d_dip, &bd->d_dma, dcb, NULL, 816 &xi->i_dmah) != DDI_SUCCESS) { 817 return (-1); 818 } 819 } 820 821 return (0); 822 } 823 824 static void 825 bd_xfer_dtor(void *buf, void *arg) 826 { 827 bd_xfer_impl_t *xi = buf; 828 829 _NOTE(ARGUNUSED(arg)); 830 831 if (xi->i_dmah) 832 ddi_dma_free_handle(&xi->i_dmah); 833 xi->i_dmah = NULL; 834 } 835 836 static bd_xfer_impl_t * 837 bd_xfer_alloc(bd_t *bd, struct buf *bp, int (*func)(void *, bd_xfer_t *), 838 int kmflag) 839 { 840 bd_xfer_impl_t *xi; 841 int rv = 0; 842 int status; 843 unsigned dir; 844 int (*cb)(caddr_t); 845 size_t len; 846 uint32_t shift; 847 848 if (kmflag == KM_SLEEP) { 849 cb = DDI_DMA_SLEEP; 850 } else { 851 cb = DDI_DMA_DONTWAIT; 852 } 853 854 xi = kmem_cache_alloc(bd->d_cache, kmflag); 855 if (xi == NULL) { 856 bioerror(bp, ENOMEM); 857 return (NULL); 858 } 859 860 ASSERT(bp); 861 862 xi->i_bp = bp; 863 xi->i_func = func; 864 xi->i_blkno = bp->b_lblkno >> (bd->d_blkshift - DEV_BSHIFT); 865 866 if (bp->b_bcount == 0) { 867 xi->i_len = 0; 868 xi->i_nblks = 0; 869 xi->i_kaddr = NULL; 870 xi->i_resid = 0; 871 xi->i_num_win = 0; 872 goto done; 873 } 874 875 if (bp->b_flags & B_READ) { 876 dir = DDI_DMA_READ; 877 xi->i_func = bd->d_ops.o_read; 878 } else { 879 dir = DDI_DMA_WRITE; 880 xi->i_func = bd->d_ops.o_write; 881 } 882 883 shift = bd->d_blkshift; 884 xi->i_blkshift = shift; 885 886 if (!bd->d_use_dma) { 887 bp_mapin(bp); 888 rv = 0; 889 xi->i_offset = 0; 890 xi->i_num_win = 891 (bp->b_bcount + (bd->d_maxxfer - 1)) / bd->d_maxxfer; 892 xi->i_cur_win = 0; 893 xi->i_len = min(bp->b_bcount, bd->d_maxxfer); 894 xi->i_nblks = xi->i_len >> shift; 895 xi->i_kaddr = bp->b_un.b_addr; 896 xi->i_resid = bp->b_bcount; 897 } else { 898 899 /* 900 * We have to use consistent DMA if the address is misaligned. 901 */ 902 if (((bp->b_flags & (B_PAGEIO | B_REMAPPED)) != B_PAGEIO) && 903 ((uintptr_t)bp->b_un.b_addr & 0x7)) { 904 dir |= DDI_DMA_CONSISTENT | DDI_DMA_PARTIAL; 905 } else { 906 dir |= DDI_DMA_STREAMING | DDI_DMA_PARTIAL; 907 } 908 909 status = ddi_dma_buf_bind_handle(xi->i_dmah, bp, dir, cb, 910 NULL, &xi->i_dmac, &xi->i_ndmac); 911 switch (status) { 912 case DDI_DMA_MAPPED: 913 xi->i_num_win = 1; 914 xi->i_cur_win = 0; 915 xi->i_offset = 0; 916 xi->i_len = bp->b_bcount; 917 xi->i_nblks = xi->i_len >> shift; 918 xi->i_resid = bp->b_bcount; 919 rv = 0; 920 break; 921 case DDI_DMA_PARTIAL_MAP: 922 xi->i_cur_win = 0; 923 924 if ((ddi_dma_numwin(xi->i_dmah, &xi->i_num_win) != 925 DDI_SUCCESS) || 926 (ddi_dma_getwin(xi->i_dmah, 0, &xi->i_offset, 927 &len, &xi->i_dmac, &xi->i_ndmac) != 928 DDI_SUCCESS) || 929 (P2PHASE(len, (1U << shift)) != 0)) { 930 (void) ddi_dma_unbind_handle(xi->i_dmah); 931 rv = EFAULT; 932 goto done; 933 } 934 xi->i_len = len; 935 xi->i_nblks = xi->i_len >> shift; 936 xi->i_resid = bp->b_bcount; 937 rv = 0; 938 break; 939 case DDI_DMA_NORESOURCES: 940 rv = EAGAIN; 941 goto done; 942 case DDI_DMA_TOOBIG: 943 rv = EINVAL; 944 goto done; 945 case DDI_DMA_NOMAPPING: 946 case DDI_DMA_INUSE: 947 default: 948 rv = EFAULT; 949 goto done; 950 } 951 } 952 953 done: 954 if (rv != 0) { 955 kmem_cache_free(bd->d_cache, xi); 956 bioerror(bp, rv); 957 return (NULL); 958 } 959 960 return (xi); 961 } 962 963 static void 964 bd_xfer_free(bd_xfer_impl_t *xi) 965 { 966 if (xi->i_dmah) { 967 (void) ddi_dma_unbind_handle(xi->i_dmah); 968 } 969 kmem_cache_free(xi->i_bd->d_cache, xi); 970 } 971 972 static int 973 bd_open(dev_t *devp, int flag, int otyp, cred_t *credp) 974 { 975 dev_t dev = *devp; 976 bd_t *bd; 977 minor_t part; 978 minor_t inst; 979 uint64_t mask; 980 boolean_t ndelay; 981 int rv; 982 diskaddr_t nblks; 983 diskaddr_t lba; 984 985 _NOTE(ARGUNUSED(credp)); 986 987 part = BDPART(dev); 988 inst = BDINST(dev); 989 990 if (otyp >= OTYPCNT) 991 return (EINVAL); 992 993 ndelay = (flag & (FNDELAY | FNONBLOCK)) ? B_TRUE : B_FALSE; 994 995 /* 996 * Block any DR events from changing the set of registered 997 * devices while we function. 998 */ 999 rw_enter(&bd_lock, RW_READER); 1000 if ((bd = ddi_get_soft_state(bd_state, inst)) == NULL) { 1001 rw_exit(&bd_lock); 1002 return (ENXIO); 1003 } 1004 1005 mutex_enter(&bd->d_ocmutex); 1006 1007 ASSERT(part < 64); 1008 mask = (1U << part); 1009 1010 bd_update_state(bd); 1011 1012 if (cmlb_validate(bd->d_cmlbh, 0, 0) != 0) { 1013 1014 /* non-blocking opens are allowed to succeed */ 1015 if (!ndelay) { 1016 rv = ENXIO; 1017 goto done; 1018 } 1019 } else if (cmlb_partinfo(bd->d_cmlbh, part, &nblks, &lba, 1020 NULL, NULL, 0) == 0) { 1021 1022 /* 1023 * We read the partinfo, verify valid ranges. If the 1024 * partition is invalid, and we aren't blocking or 1025 * doing a raw access, then fail. (Non-blocking and 1026 * raw accesses can still succeed to allow a disk with 1027 * bad partition data to opened by format and fdisk.) 1028 */ 1029 if ((!nblks) && ((!ndelay) || (otyp != OTYP_CHR))) { 1030 rv = ENXIO; 1031 goto done; 1032 } 1033 } else if (!ndelay) { 1034 /* 1035 * cmlb_partinfo failed -- invalid partition or no 1036 * disk label. 1037 */ 1038 rv = ENXIO; 1039 goto done; 1040 } 1041 1042 if ((flag & FWRITE) && bd->d_rdonly) { 1043 rv = EROFS; 1044 goto done; 1045 } 1046 1047 if ((bd->d_open_excl) & (mask)) { 1048 rv = EBUSY; 1049 goto done; 1050 } 1051 if (flag & FEXCL) { 1052 if (bd->d_open_lyr[part]) { 1053 rv = EBUSY; 1054 goto done; 1055 } 1056 for (int i = 0; i < OTYP_LYR; i++) { 1057 if (bd->d_open_reg[i] & mask) { 1058 rv = EBUSY; 1059 goto done; 1060 } 1061 } 1062 } 1063 1064 if (otyp == OTYP_LYR) { 1065 bd->d_open_lyr[part]++; 1066 } else { 1067 bd->d_open_reg[otyp] |= mask; 1068 } 1069 if (flag & FEXCL) { 1070 bd->d_open_excl |= mask; 1071 } 1072 1073 rv = 0; 1074 done: 1075 mutex_exit(&bd->d_ocmutex); 1076 rw_exit(&bd_lock); 1077 1078 return (rv); 1079 } 1080 1081 static int 1082 bd_close(dev_t dev, int flag, int otyp, cred_t *credp) 1083 { 1084 bd_t *bd; 1085 minor_t inst; 1086 minor_t part; 1087 uint64_t mask; 1088 boolean_t last = B_TRUE; 1089 1090 _NOTE(ARGUNUSED(flag)); 1091 _NOTE(ARGUNUSED(credp)); 1092 1093 part = BDPART(dev); 1094 inst = BDINST(dev); 1095 1096 ASSERT(part < 64); 1097 mask = (1U << part); 1098 1099 rw_enter(&bd_lock, RW_READER); 1100 1101 if ((bd = ddi_get_soft_state(bd_state, inst)) == NULL) { 1102 rw_exit(&bd_lock); 1103 return (ENXIO); 1104 } 1105 1106 mutex_enter(&bd->d_ocmutex); 1107 if (bd->d_open_excl & mask) { 1108 bd->d_open_excl &= ~mask; 1109 } 1110 if (otyp == OTYP_LYR) { 1111 bd->d_open_lyr[part]--; 1112 } else { 1113 bd->d_open_reg[otyp] &= ~mask; 1114 } 1115 for (int i = 0; i < 64; i++) { 1116 if (bd->d_open_lyr[part]) { 1117 last = B_FALSE; 1118 } 1119 } 1120 for (int i = 0; last && (i < OTYP_LYR); i++) { 1121 if (bd->d_open_reg[i]) { 1122 last = B_FALSE; 1123 } 1124 } 1125 mutex_exit(&bd->d_ocmutex); 1126 1127 if (last) { 1128 cmlb_invalidate(bd->d_cmlbh, 0); 1129 } 1130 rw_exit(&bd_lock); 1131 1132 return (0); 1133 } 1134 1135 static int 1136 bd_dump(dev_t dev, caddr_t caddr, daddr_t blkno, int nblk) 1137 { 1138 minor_t inst; 1139 minor_t part; 1140 diskaddr_t pstart; 1141 diskaddr_t psize; 1142 bd_t *bd; 1143 bd_xfer_impl_t *xi; 1144 buf_t *bp; 1145 int rv; 1146 uint32_t shift; 1147 daddr_t d_blkno; 1148 int d_nblk; 1149 1150 rw_enter(&bd_lock, RW_READER); 1151 1152 part = BDPART(dev); 1153 inst = BDINST(dev); 1154 1155 if ((bd = ddi_get_soft_state(bd_state, inst)) == NULL) { 1156 rw_exit(&bd_lock); 1157 return (ENXIO); 1158 } 1159 shift = bd->d_blkshift; 1160 d_blkno = blkno >> (shift - DEV_BSHIFT); 1161 d_nblk = nblk >> (shift - DEV_BSHIFT); 1162 /* 1163 * do cmlb, but do it synchronously unless we already have the 1164 * partition (which we probably should.) 1165 */ 1166 if (cmlb_partinfo(bd->d_cmlbh, part, &psize, &pstart, NULL, NULL, 1167 (void *)1)) { 1168 rw_exit(&bd_lock); 1169 return (ENXIO); 1170 } 1171 1172 if ((d_blkno + d_nblk) > psize) { 1173 rw_exit(&bd_lock); 1174 return (EINVAL); 1175 } 1176 bp = getrbuf(KM_NOSLEEP); 1177 if (bp == NULL) { 1178 rw_exit(&bd_lock); 1179 return (ENOMEM); 1180 } 1181 1182 bp->b_bcount = nblk << DEV_BSHIFT; 1183 bp->b_resid = bp->b_bcount; 1184 bp->b_lblkno = blkno; 1185 bp->b_un.b_addr = caddr; 1186 1187 xi = bd_xfer_alloc(bd, bp, bd->d_ops.o_write, KM_NOSLEEP); 1188 if (xi == NULL) { 1189 rw_exit(&bd_lock); 1190 freerbuf(bp); 1191 return (ENOMEM); 1192 } 1193 xi->i_blkno = d_blkno + pstart; 1194 xi->i_flags = BD_XFER_POLL; 1195 bd_submit(bd, xi); 1196 rw_exit(&bd_lock); 1197 1198 /* 1199 * Generally, we should have run this entirely synchronously 1200 * at this point and the biowait call should be a no-op. If 1201 * it didn't happen this way, it's a bug in the underlying 1202 * driver not honoring BD_XFER_POLL. 1203 */ 1204 (void) biowait(bp); 1205 rv = geterror(bp); 1206 freerbuf(bp); 1207 return (rv); 1208 } 1209 1210 void 1211 bd_minphys(struct buf *bp) 1212 { 1213 minor_t inst; 1214 bd_t *bd; 1215 inst = BDINST(bp->b_edev); 1216 1217 bd = ddi_get_soft_state(bd_state, inst); 1218 1219 /* 1220 * In a non-debug kernel, bd_strategy will catch !bd as 1221 * well, and will fail nicely. 1222 */ 1223 ASSERT(bd); 1224 1225 if (bp->b_bcount > bd->d_maxxfer) 1226 bp->b_bcount = bd->d_maxxfer; 1227 } 1228 1229 static int 1230 bd_check_uio(dev_t dev, struct uio *uio) 1231 { 1232 bd_t *bd; 1233 uint32_t shift; 1234 1235 if ((bd = ddi_get_soft_state(bd_state, BDINST(dev))) == NULL) { 1236 return (ENXIO); 1237 } 1238 1239 shift = bd->d_blkshift; 1240 if ((P2PHASE(uio->uio_loffset, (1U << shift)) != 0) || 1241 (P2PHASE(uio->uio_iov->iov_len, (1U << shift)) != 0)) { 1242 return (EINVAL); 1243 } 1244 1245 return (0); 1246 } 1247 1248 static int 1249 bd_read(dev_t dev, struct uio *uio, cred_t *credp) 1250 { 1251 _NOTE(ARGUNUSED(credp)); 1252 int ret = bd_check_uio(dev, uio); 1253 if (ret != 0) { 1254 return (ret); 1255 } 1256 return (physio(bd_strategy, NULL, dev, B_READ, bd_minphys, uio)); 1257 } 1258 1259 static int 1260 bd_write(dev_t dev, struct uio *uio, cred_t *credp) 1261 { 1262 _NOTE(ARGUNUSED(credp)); 1263 int ret = bd_check_uio(dev, uio); 1264 if (ret != 0) { 1265 return (ret); 1266 } 1267 return (physio(bd_strategy, NULL, dev, B_WRITE, bd_minphys, uio)); 1268 } 1269 1270 static int 1271 bd_aread(dev_t dev, struct aio_req *aio, cred_t *credp) 1272 { 1273 _NOTE(ARGUNUSED(credp)); 1274 int ret = bd_check_uio(dev, aio->aio_uio); 1275 if (ret != 0) { 1276 return (ret); 1277 } 1278 return (aphysio(bd_strategy, anocancel, dev, B_READ, bd_minphys, aio)); 1279 } 1280 1281 static int 1282 bd_awrite(dev_t dev, struct aio_req *aio, cred_t *credp) 1283 { 1284 _NOTE(ARGUNUSED(credp)); 1285 int ret = bd_check_uio(dev, aio->aio_uio); 1286 if (ret != 0) { 1287 return (ret); 1288 } 1289 return (aphysio(bd_strategy, anocancel, dev, B_WRITE, bd_minphys, aio)); 1290 } 1291 1292 static int 1293 bd_strategy(struct buf *bp) 1294 { 1295 minor_t inst; 1296 minor_t part; 1297 bd_t *bd; 1298 diskaddr_t p_lba; 1299 diskaddr_t p_nblks; 1300 diskaddr_t b_nblks; 1301 bd_xfer_impl_t *xi; 1302 uint32_t shift; 1303 int (*func)(void *, bd_xfer_t *); 1304 diskaddr_t lblkno; 1305 1306 part = BDPART(bp->b_edev); 1307 inst = BDINST(bp->b_edev); 1308 1309 ASSERT(bp); 1310 1311 bp->b_resid = bp->b_bcount; 1312 1313 if ((bd = ddi_get_soft_state(bd_state, inst)) == NULL) { 1314 bioerror(bp, ENXIO); 1315 biodone(bp); 1316 return (0); 1317 } 1318 1319 if (cmlb_partinfo(bd->d_cmlbh, part, &p_nblks, &p_lba, 1320 NULL, NULL, 0)) { 1321 bioerror(bp, ENXIO); 1322 biodone(bp); 1323 return (0); 1324 } 1325 1326 shift = bd->d_blkshift; 1327 lblkno = bp->b_lblkno >> (shift - DEV_BSHIFT); 1328 if ((P2PHASE(bp->b_lblkno, (1U << (shift - DEV_BSHIFT))) != 0) || 1329 (P2PHASE(bp->b_bcount, (1U << shift)) != 0) || 1330 (lblkno > p_nblks)) { 1331 bioerror(bp, EINVAL); 1332 biodone(bp); 1333 return (0); 1334 } 1335 b_nblks = bp->b_bcount >> shift; 1336 if ((lblkno == p_nblks) || (bp->b_bcount == 0)) { 1337 biodone(bp); 1338 return (0); 1339 } 1340 1341 if ((b_nblks + lblkno) > p_nblks) { 1342 bp->b_resid = ((lblkno + b_nblks - p_nblks) << shift); 1343 bp->b_bcount -= bp->b_resid; 1344 } else { 1345 bp->b_resid = 0; 1346 } 1347 func = (bp->b_flags & B_READ) ? bd->d_ops.o_read : bd->d_ops.o_write; 1348 1349 xi = bd_xfer_alloc(bd, bp, func, KM_NOSLEEP); 1350 if (xi == NULL) { 1351 xi = bd_xfer_alloc(bd, bp, func, KM_PUSHPAGE); 1352 } 1353 if (xi == NULL) { 1354 /* bd_request_alloc will have done bioerror */ 1355 biodone(bp); 1356 return (0); 1357 } 1358 xi->i_blkno = lblkno + p_lba; 1359 1360 bd_submit(bd, xi); 1361 1362 return (0); 1363 } 1364 1365 static int 1366 bd_ioctl(dev_t dev, int cmd, intptr_t arg, int flag, cred_t *credp, int *rvalp) 1367 { 1368 minor_t inst; 1369 uint16_t part; 1370 bd_t *bd; 1371 void *ptr = (void *)arg; 1372 int rv; 1373 1374 part = BDPART(dev); 1375 inst = BDINST(dev); 1376 1377 if ((bd = ddi_get_soft_state(bd_state, inst)) == NULL) { 1378 return (ENXIO); 1379 } 1380 1381 rv = cmlb_ioctl(bd->d_cmlbh, dev, cmd, arg, flag, credp, rvalp, 0); 1382 if (rv != ENOTTY) 1383 return (rv); 1384 1385 if (rvalp != NULL) { 1386 /* the return value of the ioctl is 0 by default */ 1387 *rvalp = 0; 1388 } 1389 1390 switch (cmd) { 1391 case DKIOCGMEDIAINFO: { 1392 struct dk_minfo minfo; 1393 1394 /* make sure our state information is current */ 1395 bd_update_state(bd); 1396 bzero(&minfo, sizeof (minfo)); 1397 minfo.dki_media_type = DK_FIXED_DISK; 1398 minfo.dki_lbsize = (1U << bd->d_blkshift); 1399 minfo.dki_capacity = bd->d_numblks; 1400 if (ddi_copyout(&minfo, ptr, sizeof (minfo), flag)) { 1401 return (EFAULT); 1402 } 1403 return (0); 1404 } 1405 case DKIOCGMEDIAINFOEXT: { 1406 struct dk_minfo_ext miext; 1407 1408 /* make sure our state information is current */ 1409 bd_update_state(bd); 1410 bzero(&miext, sizeof (miext)); 1411 miext.dki_media_type = DK_FIXED_DISK; 1412 miext.dki_lbsize = (1U << bd->d_blkshift); 1413 miext.dki_pbsize = (1U << bd->d_pblkshift); 1414 miext.dki_capacity = bd->d_numblks; 1415 if (ddi_copyout(&miext, ptr, sizeof (miext), flag)) { 1416 return (EFAULT); 1417 } 1418 return (0); 1419 } 1420 case DKIOCINFO: { 1421 struct dk_cinfo cinfo; 1422 bzero(&cinfo, sizeof (cinfo)); 1423 cinfo.dki_ctype = DKC_BLKDEV; 1424 cinfo.dki_cnum = ddi_get_instance(ddi_get_parent(bd->d_dip)); 1425 (void) snprintf(cinfo.dki_cname, sizeof (cinfo.dki_cname), 1426 "%s", ddi_driver_name(ddi_get_parent(bd->d_dip))); 1427 (void) snprintf(cinfo.dki_dname, sizeof (cinfo.dki_dname), 1428 "%s", ddi_driver_name(bd->d_dip)); 1429 cinfo.dki_unit = inst; 1430 cinfo.dki_flags = DKI_FMTVOL; 1431 cinfo.dki_partition = part; 1432 cinfo.dki_maxtransfer = bd->d_maxxfer / DEV_BSIZE; 1433 cinfo.dki_addr = 0; 1434 cinfo.dki_slave = 0; 1435 cinfo.dki_space = 0; 1436 cinfo.dki_prio = 0; 1437 cinfo.dki_vec = 0; 1438 if (ddi_copyout(&cinfo, ptr, sizeof (cinfo), flag)) { 1439 return (EFAULT); 1440 } 1441 return (0); 1442 } 1443 case DKIOCREMOVABLE: { 1444 int i; 1445 i = bd->d_removable ? 1 : 0; 1446 if (ddi_copyout(&i, ptr, sizeof (i), flag)) { 1447 return (EFAULT); 1448 } 1449 return (0); 1450 } 1451 case DKIOCHOTPLUGGABLE: { 1452 int i; 1453 i = bd->d_hotpluggable ? 1 : 0; 1454 if (ddi_copyout(&i, ptr, sizeof (i), flag)) { 1455 return (EFAULT); 1456 } 1457 return (0); 1458 } 1459 case DKIOCREADONLY: { 1460 int i; 1461 i = bd->d_rdonly ? 1 : 0; 1462 if (ddi_copyout(&i, ptr, sizeof (i), flag)) { 1463 return (EFAULT); 1464 } 1465 return (0); 1466 } 1467 case DKIOCSOLIDSTATE: { 1468 int i; 1469 i = bd->d_ssd ? 1 : 0; 1470 if (ddi_copyout(&i, ptr, sizeof (i), flag)) { 1471 return (EFAULT); 1472 } 1473 return (0); 1474 } 1475 case DKIOCSTATE: { 1476 enum dkio_state state; 1477 if (ddi_copyin(ptr, &state, sizeof (state), flag)) { 1478 return (EFAULT); 1479 } 1480 if ((rv = bd_check_state(bd, &state)) != 0) { 1481 return (rv); 1482 } 1483 if (ddi_copyout(&state, ptr, sizeof (state), flag)) { 1484 return (EFAULT); 1485 } 1486 return (0); 1487 } 1488 case DKIOCFLUSHWRITECACHE: { 1489 struct dk_callback *dkc = NULL; 1490 1491 if (flag & FKIOCTL) 1492 dkc = (void *)arg; 1493 1494 rv = bd_flush_write_cache(bd, dkc); 1495 return (rv); 1496 } 1497 1498 default: 1499 break; 1500 1501 } 1502 return (ENOTTY); 1503 } 1504 1505 static int 1506 bd_prop_op(dev_t dev, dev_info_t *dip, ddi_prop_op_t prop_op, int mod_flags, 1507 char *name, caddr_t valuep, int *lengthp) 1508 { 1509 bd_t *bd; 1510 1511 bd = ddi_get_soft_state(bd_state, ddi_get_instance(dip)); 1512 if (bd == NULL) 1513 return (ddi_prop_op(dev, dip, prop_op, mod_flags, 1514 name, valuep, lengthp)); 1515 1516 return (cmlb_prop_op(bd->d_cmlbh, dev, dip, prop_op, mod_flags, name, 1517 valuep, lengthp, BDPART(dev), 0)); 1518 } 1519 1520 1521 static int 1522 bd_tg_rdwr(dev_info_t *dip, uchar_t cmd, void *bufaddr, diskaddr_t start, 1523 size_t length, void *tg_cookie) 1524 { 1525 bd_t *bd; 1526 buf_t *bp; 1527 bd_xfer_impl_t *xi; 1528 int rv; 1529 int (*func)(void *, bd_xfer_t *); 1530 int kmflag; 1531 1532 /* 1533 * If we are running in polled mode (such as during dump(9e) 1534 * execution), then we cannot sleep for kernel allocations. 1535 */ 1536 kmflag = tg_cookie ? KM_NOSLEEP : KM_SLEEP; 1537 1538 bd = ddi_get_soft_state(bd_state, ddi_get_instance(dip)); 1539 1540 if (P2PHASE(length, (1U << bd->d_blkshift)) != 0) { 1541 /* We can only transfer whole blocks at a time! */ 1542 return (EINVAL); 1543 } 1544 1545 if ((bp = getrbuf(kmflag)) == NULL) { 1546 return (ENOMEM); 1547 } 1548 1549 switch (cmd) { 1550 case TG_READ: 1551 bp->b_flags = B_READ; 1552 func = bd->d_ops.o_read; 1553 break; 1554 case TG_WRITE: 1555 bp->b_flags = B_WRITE; 1556 func = bd->d_ops.o_write; 1557 break; 1558 default: 1559 freerbuf(bp); 1560 return (EINVAL); 1561 } 1562 1563 bp->b_un.b_addr = bufaddr; 1564 bp->b_bcount = length; 1565 xi = bd_xfer_alloc(bd, bp, func, kmflag); 1566 if (xi == NULL) { 1567 rv = geterror(bp); 1568 freerbuf(bp); 1569 return (rv); 1570 } 1571 xi->i_flags = tg_cookie ? BD_XFER_POLL : 0; 1572 xi->i_blkno = start; 1573 bd_submit(bd, xi); 1574 (void) biowait(bp); 1575 rv = geterror(bp); 1576 freerbuf(bp); 1577 1578 return (rv); 1579 } 1580 1581 static int 1582 bd_tg_getinfo(dev_info_t *dip, int cmd, void *arg, void *tg_cookie) 1583 { 1584 bd_t *bd; 1585 1586 _NOTE(ARGUNUSED(tg_cookie)); 1587 bd = ddi_get_soft_state(bd_state, ddi_get_instance(dip)); 1588 1589 switch (cmd) { 1590 case TG_GETPHYGEOM: 1591 case TG_GETVIRTGEOM: 1592 /* 1593 * We don't have any "geometry" as such, let cmlb 1594 * fabricate something. 1595 */ 1596 return (ENOTTY); 1597 1598 case TG_GETCAPACITY: 1599 bd_update_state(bd); 1600 *(diskaddr_t *)arg = bd->d_numblks; 1601 return (0); 1602 1603 case TG_GETBLOCKSIZE: 1604 *(uint32_t *)arg = (1U << bd->d_blkshift); 1605 return (0); 1606 1607 case TG_GETATTR: 1608 /* 1609 * It turns out that cmlb really doesn't do much for 1610 * non-writable media, but lets make the information 1611 * available for it in case it does more in the 1612 * future. (The value is currently used for 1613 * triggering special behavior for CD-ROMs.) 1614 */ 1615 bd_update_state(bd); 1616 ((tg_attribute_t *)arg)->media_is_writable = 1617 bd->d_rdonly ? B_FALSE : B_TRUE; 1618 ((tg_attribute_t *)arg)->media_is_solid_state = bd->d_ssd; 1619 ((tg_attribute_t *)arg)->media_is_rotational = B_FALSE; 1620 return (0); 1621 1622 default: 1623 return (EINVAL); 1624 } 1625 } 1626 1627 1628 static void 1629 bd_sched(bd_t *bd, bd_queue_t *bq) 1630 { 1631 bd_xfer_impl_t *xi; 1632 struct buf *bp; 1633 int rv; 1634 1635 mutex_enter(&bq->q_iomutex); 1636 1637 while ((bq->q_qactive < bq->q_qsize) && 1638 ((xi = list_remove_head(&bq->q_waitq)) != NULL)) { 1639 bq->q_qactive++; 1640 list_insert_tail(&bq->q_runq, xi); 1641 1642 /* 1643 * Submit the job to the driver. We drop the I/O mutex 1644 * so that we can deal with the case where the driver 1645 * completion routine calls back into us synchronously. 1646 */ 1647 1648 mutex_exit(&bq->q_iomutex); 1649 1650 mutex_enter(&bd->d_ksmutex); 1651 kstat_waitq_to_runq(bd->d_kiop); 1652 mutex_exit(&bd->d_ksmutex); 1653 1654 rv = xi->i_func(bd->d_private, &xi->i_public); 1655 if (rv != 0) { 1656 bp = xi->i_bp; 1657 bioerror(bp, rv); 1658 biodone(bp); 1659 1660 atomic_inc_32(&bd->d_kerr->bd_transerrs.value.ui32); 1661 mutex_enter(&bd->d_ksmutex); 1662 kstat_runq_exit(bd->d_kiop); 1663 mutex_exit(&bd->d_ksmutex); 1664 1665 mutex_enter(&bq->q_iomutex); 1666 bq->q_qactive--; 1667 list_remove(&bq->q_runq, xi); 1668 bd_xfer_free(xi); 1669 } else { 1670 mutex_enter(&bq->q_iomutex); 1671 } 1672 } 1673 1674 mutex_exit(&bq->q_iomutex); 1675 } 1676 1677 static void 1678 bd_submit(bd_t *bd, bd_xfer_impl_t *xi) 1679 { 1680 uint64_t nv = atomic_inc_64_nv(&bd->d_io_counter); 1681 unsigned q = nv % bd->d_qcount; 1682 bd_queue_t *bq = &bd->d_queues[q]; 1683 1684 xi->i_bq = bq; 1685 xi->i_qnum = q; 1686 1687 mutex_enter(&bq->q_iomutex); 1688 list_insert_tail(&bq->q_waitq, xi); 1689 mutex_exit(&bq->q_iomutex); 1690 1691 mutex_enter(&bd->d_ksmutex); 1692 kstat_waitq_enter(bd->d_kiop); 1693 mutex_exit(&bd->d_ksmutex); 1694 1695 bd_sched(bd, bq); 1696 } 1697 1698 static void 1699 bd_runq_exit(bd_xfer_impl_t *xi, int err) 1700 { 1701 bd_t *bd = xi->i_bd; 1702 buf_t *bp = xi->i_bp; 1703 bd_queue_t *bq = xi->i_bq; 1704 1705 mutex_enter(&bq->q_iomutex); 1706 bq->q_qactive--; 1707 list_remove(&bq->q_runq, xi); 1708 mutex_exit(&bq->q_iomutex); 1709 1710 mutex_enter(&bd->d_ksmutex); 1711 kstat_runq_exit(bd->d_kiop); 1712 mutex_exit(&bd->d_ksmutex); 1713 1714 if (err == 0) { 1715 if (bp->b_flags & B_READ) { 1716 atomic_inc_uint(&bd->d_kiop->reads); 1717 atomic_add_64((uint64_t *)&bd->d_kiop->nread, 1718 bp->b_bcount - xi->i_resid); 1719 } else { 1720 atomic_inc_uint(&bd->d_kiop->writes); 1721 atomic_add_64((uint64_t *)&bd->d_kiop->nwritten, 1722 bp->b_bcount - xi->i_resid); 1723 } 1724 } 1725 bd_sched(bd, bq); 1726 } 1727 1728 static void 1729 bd_update_state(bd_t *bd) 1730 { 1731 enum dkio_state state = DKIO_INSERTED; 1732 boolean_t docmlb = B_FALSE; 1733 bd_media_t media; 1734 1735 bzero(&media, sizeof (media)); 1736 1737 mutex_enter(&bd->d_statemutex); 1738 if (bd->d_ops.o_media_info(bd->d_private, &media) != 0) { 1739 bd->d_numblks = 0; 1740 state = DKIO_EJECTED; 1741 goto done; 1742 } 1743 1744 if ((media.m_blksize < 512) || 1745 (!ISP2(media.m_blksize)) || 1746 (P2PHASE(bd->d_maxxfer, media.m_blksize))) { 1747 cmn_err(CE_WARN, "%s%d: Invalid media block size (%d)", 1748 ddi_driver_name(bd->d_dip), ddi_get_instance(bd->d_dip), 1749 media.m_blksize); 1750 /* 1751 * We can't use the media, treat it as not present. 1752 */ 1753 state = DKIO_EJECTED; 1754 bd->d_numblks = 0; 1755 goto done; 1756 } 1757 1758 if (((1U << bd->d_blkshift) != media.m_blksize) || 1759 (bd->d_numblks != media.m_nblks)) { 1760 /* Device size changed */ 1761 docmlb = B_TRUE; 1762 } 1763 1764 bd->d_blkshift = ddi_ffs(media.m_blksize) - 1; 1765 bd->d_pblkshift = bd->d_blkshift; 1766 bd->d_numblks = media.m_nblks; 1767 bd->d_rdonly = media.m_readonly; 1768 bd->d_ssd = media.m_solidstate; 1769 1770 /* 1771 * Only use the supplied physical block size if it is non-zero, 1772 * greater or equal to the block size, and a power of 2. Ignore it 1773 * if not, it's just informational and we can still use the media. 1774 */ 1775 if ((media.m_pblksize != 0) && 1776 (media.m_pblksize >= media.m_blksize) && 1777 (ISP2(media.m_pblksize))) 1778 bd->d_pblkshift = ddi_ffs(media.m_pblksize) - 1; 1779 1780 done: 1781 if (state != bd->d_state) { 1782 bd->d_state = state; 1783 cv_broadcast(&bd->d_statecv); 1784 docmlb = B_TRUE; 1785 } 1786 mutex_exit(&bd->d_statemutex); 1787 1788 bd->d_kerr->bd_capacity.value.ui64 = bd->d_numblks << bd->d_blkshift; 1789 1790 if (docmlb) { 1791 if (state == DKIO_INSERTED) { 1792 (void) cmlb_validate(bd->d_cmlbh, 0, 0); 1793 } else { 1794 cmlb_invalidate(bd->d_cmlbh, 0); 1795 } 1796 } 1797 } 1798 1799 static int 1800 bd_check_state(bd_t *bd, enum dkio_state *state) 1801 { 1802 clock_t when; 1803 1804 for (;;) { 1805 1806 bd_update_state(bd); 1807 1808 mutex_enter(&bd->d_statemutex); 1809 1810 if (bd->d_state != *state) { 1811 *state = bd->d_state; 1812 mutex_exit(&bd->d_statemutex); 1813 break; 1814 } 1815 1816 when = drv_usectohz(1000000); 1817 if (cv_reltimedwait_sig(&bd->d_statecv, &bd->d_statemutex, 1818 when, TR_CLOCK_TICK) == 0) { 1819 mutex_exit(&bd->d_statemutex); 1820 return (EINTR); 1821 } 1822 1823 mutex_exit(&bd->d_statemutex); 1824 } 1825 1826 return (0); 1827 } 1828 1829 static int 1830 bd_flush_write_cache_done(struct buf *bp) 1831 { 1832 struct dk_callback *dc = (void *)bp->b_private; 1833 1834 (*dc->dkc_callback)(dc->dkc_cookie, geterror(bp)); 1835 kmem_free(dc, sizeof (*dc)); 1836 freerbuf(bp); 1837 return (0); 1838 } 1839 1840 static int 1841 bd_flush_write_cache(bd_t *bd, struct dk_callback *dkc) 1842 { 1843 buf_t *bp; 1844 struct dk_callback *dc; 1845 bd_xfer_impl_t *xi; 1846 int rv; 1847 1848 if (bd->d_ops.o_sync_cache == NULL) { 1849 return (ENOTSUP); 1850 } 1851 if ((bp = getrbuf(KM_SLEEP)) == NULL) { 1852 return (ENOMEM); 1853 } 1854 bp->b_resid = 0; 1855 bp->b_bcount = 0; 1856 1857 xi = bd_xfer_alloc(bd, bp, bd->d_ops.o_sync_cache, KM_SLEEP); 1858 if (xi == NULL) { 1859 rv = geterror(bp); 1860 freerbuf(bp); 1861 return (rv); 1862 } 1863 1864 /* Make an asynchronous flush, but only if there is a callback */ 1865 if (dkc != NULL && dkc->dkc_callback != NULL) { 1866 /* Make a private copy of the callback structure */ 1867 dc = kmem_alloc(sizeof (*dc), KM_SLEEP); 1868 *dc = *dkc; 1869 bp->b_private = dc; 1870 bp->b_iodone = bd_flush_write_cache_done; 1871 1872 bd_submit(bd, xi); 1873 return (0); 1874 } 1875 1876 /* In case there is no callback, perform a synchronous flush */ 1877 bd_submit(bd, xi); 1878 (void) biowait(bp); 1879 rv = geterror(bp); 1880 freerbuf(bp); 1881 1882 return (rv); 1883 } 1884 1885 /* 1886 * Nexus support. 1887 */ 1888 int 1889 bd_bus_ctl(dev_info_t *dip, dev_info_t *rdip, ddi_ctl_enum_t ctlop, 1890 void *arg, void *result) 1891 { 1892 bd_handle_t hdl; 1893 1894 switch (ctlop) { 1895 case DDI_CTLOPS_REPORTDEV: 1896 cmn_err(CE_CONT, "?Block device: %s@%s, %s%d\n", 1897 ddi_node_name(rdip), ddi_get_name_addr(rdip), 1898 ddi_driver_name(rdip), ddi_get_instance(rdip)); 1899 return (DDI_SUCCESS); 1900 1901 case DDI_CTLOPS_INITCHILD: 1902 hdl = ddi_get_parent_data((dev_info_t *)arg); 1903 if (hdl == NULL) { 1904 return (DDI_NOT_WELL_FORMED); 1905 } 1906 ddi_set_name_addr((dev_info_t *)arg, hdl->h_addr); 1907 return (DDI_SUCCESS); 1908 1909 case DDI_CTLOPS_UNINITCHILD: 1910 ddi_set_name_addr((dev_info_t *)arg, NULL); 1911 ndi_prop_remove_all((dev_info_t *)arg); 1912 return (DDI_SUCCESS); 1913 1914 default: 1915 return (ddi_ctlops(dip, rdip, ctlop, arg, result)); 1916 } 1917 } 1918 1919 /* 1920 * Functions for device drivers. 1921 */ 1922 bd_handle_t 1923 bd_alloc_handle(void *private, bd_ops_t *ops, ddi_dma_attr_t *dma, int kmflag) 1924 { 1925 bd_handle_t hdl; 1926 1927 /* 1928 * There is full compatability between the version 0 API and the 1929 * current version. 1930 */ 1931 switch (ops->o_version) { 1932 case BD_OPS_VERSION_0: 1933 case BD_OPS_CURRENT_VERSION: 1934 break; 1935 1936 default: 1937 return (NULL); 1938 } 1939 1940 hdl = kmem_zalloc(sizeof (*hdl), kmflag); 1941 if (hdl != NULL) { 1942 hdl->h_ops = *ops; 1943 hdl->h_dma = dma; 1944 hdl->h_private = private; 1945 } 1946 1947 return (hdl); 1948 } 1949 1950 void 1951 bd_free_handle(bd_handle_t hdl) 1952 { 1953 kmem_free(hdl, sizeof (*hdl)); 1954 } 1955 1956 int 1957 bd_attach_handle(dev_info_t *dip, bd_handle_t hdl) 1958 { 1959 dev_info_t *child; 1960 bd_drive_t drive = { 0 }; 1961 1962 /* 1963 * It's not an error if bd_attach_handle() is called on a handle that 1964 * already is attached. We just ignore the request to attach and return. 1965 * This way drivers using blkdev don't have to keep track about blkdev 1966 * state, they can just call this function to make sure it attached. 1967 */ 1968 if (hdl->h_child != NULL) { 1969 return (DDI_SUCCESS); 1970 } 1971 1972 /* if drivers don't override this, make it assume none */ 1973 drive.d_lun = -1; 1974 hdl->h_ops.o_drive_info(hdl->h_private, &drive); 1975 1976 hdl->h_parent = dip; 1977 hdl->h_name = "blkdev"; 1978 1979 /*LINTED: E_BAD_PTR_CAST_ALIGN*/ 1980 if (*(uint64_t *)drive.d_eui64 != 0) { 1981 if (drive.d_lun >= 0) { 1982 (void) snprintf(hdl->h_addr, sizeof (hdl->h_addr), 1983 "w%02X%02X%02X%02X%02X%02X%02X%02X,%X", 1984 drive.d_eui64[0], drive.d_eui64[1], 1985 drive.d_eui64[2], drive.d_eui64[3], 1986 drive.d_eui64[4], drive.d_eui64[5], 1987 drive.d_eui64[6], drive.d_eui64[7], drive.d_lun); 1988 } else { 1989 (void) snprintf(hdl->h_addr, sizeof (hdl->h_addr), 1990 "w%02X%02X%02X%02X%02X%02X%02X%02X", 1991 drive.d_eui64[0], drive.d_eui64[1], 1992 drive.d_eui64[2], drive.d_eui64[3], 1993 drive.d_eui64[4], drive.d_eui64[5], 1994 drive.d_eui64[6], drive.d_eui64[7]); 1995 } 1996 } else { 1997 if (drive.d_lun >= 0) { 1998 (void) snprintf(hdl->h_addr, sizeof (hdl->h_addr), 1999 "%X,%X", drive.d_target, drive.d_lun); 2000 } else { 2001 (void) snprintf(hdl->h_addr, sizeof (hdl->h_addr), 2002 "%X", drive.d_target); 2003 } 2004 } 2005 2006 if (ndi_devi_alloc(dip, hdl->h_name, (pnode_t)DEVI_SID_NODEID, 2007 &child) != NDI_SUCCESS) { 2008 cmn_err(CE_WARN, "%s%d: unable to allocate node %s@%s", 2009 ddi_driver_name(dip), ddi_get_instance(dip), 2010 "blkdev", hdl->h_addr); 2011 return (DDI_FAILURE); 2012 } 2013 2014 ddi_set_parent_data(child, hdl); 2015 hdl->h_child = child; 2016 2017 if (ndi_devi_online(child, 0) == NDI_FAILURE) { 2018 cmn_err(CE_WARN, "%s%d: failed bringing node %s@%s online", 2019 ddi_driver_name(dip), ddi_get_instance(dip), 2020 hdl->h_name, hdl->h_addr); 2021 (void) ndi_devi_free(child); 2022 return (DDI_FAILURE); 2023 } 2024 2025 return (DDI_SUCCESS); 2026 } 2027 2028 int 2029 bd_detach_handle(bd_handle_t hdl) 2030 { 2031 int circ; 2032 int rv; 2033 char *devnm; 2034 2035 /* 2036 * It's not an error if bd_detach_handle() is called on a handle that 2037 * already is detached. We just ignore the request to detach and return. 2038 * This way drivers using blkdev don't have to keep track about blkdev 2039 * state, they can just call this function to make sure it detached. 2040 */ 2041 if (hdl->h_child == NULL) { 2042 return (DDI_SUCCESS); 2043 } 2044 ndi_devi_enter(hdl->h_parent, &circ); 2045 if (i_ddi_node_state(hdl->h_child) < DS_INITIALIZED) { 2046 rv = ddi_remove_child(hdl->h_child, 0); 2047 } else { 2048 devnm = kmem_alloc(MAXNAMELEN + 1, KM_SLEEP); 2049 (void) ddi_deviname(hdl->h_child, devnm); 2050 (void) devfs_clean(hdl->h_parent, devnm + 1, DV_CLEAN_FORCE); 2051 rv = ndi_devi_unconfig_one(hdl->h_parent, devnm + 1, NULL, 2052 NDI_DEVI_REMOVE | NDI_UNCONFIG); 2053 kmem_free(devnm, MAXNAMELEN + 1); 2054 } 2055 if (rv == 0) { 2056 hdl->h_child = NULL; 2057 } 2058 2059 ndi_devi_exit(hdl->h_parent, circ); 2060 return (rv == NDI_SUCCESS ? DDI_SUCCESS : DDI_FAILURE); 2061 } 2062 2063 void 2064 bd_xfer_done(bd_xfer_t *xfer, int err) 2065 { 2066 bd_xfer_impl_t *xi = (void *)xfer; 2067 buf_t *bp = xi->i_bp; 2068 int rv = DDI_SUCCESS; 2069 bd_t *bd = xi->i_bd; 2070 size_t len; 2071 2072 if (err != 0) { 2073 bd_runq_exit(xi, err); 2074 atomic_inc_32(&bd->d_kerr->bd_harderrs.value.ui32); 2075 2076 bp->b_resid += xi->i_resid; 2077 bd_xfer_free(xi); 2078 bioerror(bp, err); 2079 biodone(bp); 2080 return; 2081 } 2082 2083 xi->i_cur_win++; 2084 xi->i_resid -= xi->i_len; 2085 2086 if (xi->i_resid == 0) { 2087 /* Job completed succcessfully! */ 2088 bd_runq_exit(xi, 0); 2089 2090 bd_xfer_free(xi); 2091 biodone(bp); 2092 return; 2093 } 2094 2095 xi->i_blkno += xi->i_nblks; 2096 2097 if (bd->d_use_dma) { 2098 /* More transfer still pending... advance to next DMA window. */ 2099 rv = ddi_dma_getwin(xi->i_dmah, xi->i_cur_win, 2100 &xi->i_offset, &len, &xi->i_dmac, &xi->i_ndmac); 2101 } else { 2102 /* Advance memory window. */ 2103 xi->i_kaddr += xi->i_len; 2104 xi->i_offset += xi->i_len; 2105 len = min(bp->b_bcount - xi->i_offset, bd->d_maxxfer); 2106 } 2107 2108 2109 if ((rv != DDI_SUCCESS) || 2110 (P2PHASE(len, (1U << xi->i_blkshift)) != 0)) { 2111 bd_runq_exit(xi, EFAULT); 2112 2113 bp->b_resid += xi->i_resid; 2114 bd_xfer_free(xi); 2115 bioerror(bp, EFAULT); 2116 biodone(bp); 2117 return; 2118 } 2119 xi->i_len = len; 2120 xi->i_nblks = len >> xi->i_blkshift; 2121 2122 /* Submit next window to hardware. */ 2123 rv = xi->i_func(bd->d_private, &xi->i_public); 2124 if (rv != 0) { 2125 bd_runq_exit(xi, rv); 2126 2127 atomic_inc_32(&bd->d_kerr->bd_transerrs.value.ui32); 2128 2129 bp->b_resid += xi->i_resid; 2130 bd_xfer_free(xi); 2131 bioerror(bp, rv); 2132 biodone(bp); 2133 } 2134 } 2135 2136 void 2137 bd_error(bd_xfer_t *xfer, int error) 2138 { 2139 bd_xfer_impl_t *xi = (void *)xfer; 2140 bd_t *bd = xi->i_bd; 2141 2142 switch (error) { 2143 case BD_ERR_MEDIA: 2144 atomic_inc_32(&bd->d_kerr->bd_rq_media_err.value.ui32); 2145 break; 2146 case BD_ERR_NTRDY: 2147 atomic_inc_32(&bd->d_kerr->bd_rq_ntrdy_err.value.ui32); 2148 break; 2149 case BD_ERR_NODEV: 2150 atomic_inc_32(&bd->d_kerr->bd_rq_nodev_err.value.ui32); 2151 break; 2152 case BD_ERR_RECOV: 2153 atomic_inc_32(&bd->d_kerr->bd_rq_recov_err.value.ui32); 2154 break; 2155 case BD_ERR_ILLRQ: 2156 atomic_inc_32(&bd->d_kerr->bd_rq_illrq_err.value.ui32); 2157 break; 2158 case BD_ERR_PFA: 2159 atomic_inc_32(&bd->d_kerr->bd_rq_pfa_err.value.ui32); 2160 break; 2161 default: 2162 cmn_err(CE_PANIC, "bd_error: unknown error type %d", error); 2163 break; 2164 } 2165 } 2166 2167 void 2168 bd_state_change(bd_handle_t hdl) 2169 { 2170 bd_t *bd; 2171 2172 if ((bd = hdl->h_bd) != NULL) { 2173 bd_update_state(bd); 2174 } 2175 } 2176 2177 void 2178 bd_mod_init(struct dev_ops *devops) 2179 { 2180 static struct bus_ops bd_bus_ops = { 2181 BUSO_REV, /* busops_rev */ 2182 nullbusmap, /* bus_map */ 2183 NULL, /* bus_get_intrspec (OBSOLETE) */ 2184 NULL, /* bus_add_intrspec (OBSOLETE) */ 2185 NULL, /* bus_remove_intrspec (OBSOLETE) */ 2186 i_ddi_map_fault, /* bus_map_fault */ 2187 NULL, /* bus_dma_map (OBSOLETE) */ 2188 ddi_dma_allochdl, /* bus_dma_allochdl */ 2189 ddi_dma_freehdl, /* bus_dma_freehdl */ 2190 ddi_dma_bindhdl, /* bus_dma_bindhdl */ 2191 ddi_dma_unbindhdl, /* bus_dma_unbindhdl */ 2192 ddi_dma_flush, /* bus_dma_flush */ 2193 ddi_dma_win, /* bus_dma_win */ 2194 ddi_dma_mctl, /* bus_dma_ctl */ 2195 bd_bus_ctl, /* bus_ctl */ 2196 ddi_bus_prop_op, /* bus_prop_op */ 2197 NULL, /* bus_get_eventcookie */ 2198 NULL, /* bus_add_eventcall */ 2199 NULL, /* bus_remove_eventcall */ 2200 NULL, /* bus_post_event */ 2201 NULL, /* bus_intr_ctl (OBSOLETE) */ 2202 NULL, /* bus_config */ 2203 NULL, /* bus_unconfig */ 2204 NULL, /* bus_fm_init */ 2205 NULL, /* bus_fm_fini */ 2206 NULL, /* bus_fm_access_enter */ 2207 NULL, /* bus_fm_access_exit */ 2208 NULL, /* bus_power */ 2209 NULL, /* bus_intr_op */ 2210 }; 2211 2212 devops->devo_bus_ops = &bd_bus_ops; 2213 2214 /* 2215 * NB: The device driver is free to supply its own 2216 * character entry device support. 2217 */ 2218 } 2219 2220 void 2221 bd_mod_fini(struct dev_ops *devops) 2222 { 2223 devops->devo_bus_ops = NULL; 2224 } 2225