xref: /illumos-gate/usr/src/uts/common/io/blkdev/blkdev.c (revision 2833423dc59f4c35fe4713dbb942950c82df0437)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 /*
22  * Copyright (c) 2009, 2010, Oracle and/or its affiliates. All rights reserved.
23  * Copyright 2012 Garrett D'Amore <garrett@damore.org>.  All rights reserved.
24  * Copyright 2012 Alexey Zaytsev <alexey.zaytsev@gmail.com> All rights reserved.
25  * Copyright 2017 The MathWorks, Inc.  All rights reserved.
26  * Copyright 2020 Joyent, Inc.
27  * Copyright 2022 OmniOS Community Edition (OmniOSce) Association.
28  * Copyright 2022 Tintri by DDN, Inc. All rights reserved.
29  * Copyright 2023 Oxide Computer Company
30  */
31 
32 #include <sys/types.h>
33 #include <sys/ksynch.h>
34 #include <sys/kmem.h>
35 #include <sys/file.h>
36 #include <sys/errno.h>
37 #include <sys/open.h>
38 #include <sys/buf.h>
39 #include <sys/uio.h>
40 #include <sys/aio_req.h>
41 #include <sys/cred.h>
42 #include <sys/modctl.h>
43 #include <sys/cmlb.h>
44 #include <sys/conf.h>
45 #include <sys/devops.h>
46 #include <sys/list.h>
47 #include <sys/sysmacros.h>
48 #include <sys/dkio.h>
49 #include <sys/dkioc_free_util.h>
50 #include <sys/vtoc.h>
51 #include <sys/scsi/scsi.h>	/* for DTYPE_DIRECT */
52 #include <sys/kstat.h>
53 #include <sys/fs/dv_node.h>
54 #include <sys/ddi.h>
55 #include <sys/sunddi.h>
56 #include <sys/note.h>
57 #include <sys/blkdev.h>
58 #include <sys/scsi/impl/inquiry.h>
59 #include <sys/taskq.h>
60 #include <sys/taskq_impl.h>
61 #include <sys/disp.h>
62 #include <sys/sysevent/eventdefs.h>
63 #include <sys/sysevent/dev.h>
64 
65 /*
66  * blkdev is a driver which provides a lot of the common functionality
67  * a block device driver may need and helps by removing code which
68  * is frequently duplicated in block device drivers.
69  *
70  * Within this driver all the struct cb_ops functions required for a
71  * block device driver are written with appropriate call back functions
72  * to be provided by the parent driver.
73  *
74  * To use blkdev, a driver needs to:
75  *	1. Create a bd_ops_t structure which has the call back operations
76  *	   blkdev will use.
77  *	2. Create a handle by calling bd_alloc_handle(). One of the
78  *	   arguments to this function is the bd_ops_t.
79  *	3. Call bd_attach_handle(). This will instantiate a blkdev device
80  *	   as a child device node of the calling driver.
81  *
82  * A parent driver is not restricted to just allocating and attaching a
83  * single instance, it may attach as many as it wishes. For each handle
84  * attached, appropriate entries in /dev/[r]dsk are created.
85  *
86  * The bd_ops_t routines that a parent of blkdev need to provide are:
87  *
88  * o_drive_info: Provide information to blkdev such as how many I/O queues
89  *		 to create and the size of those queues. Also some device
90  *		 specifics such as EUI, vendor, product, model, serial
91  *		 number ....
92  *
93  * o_media_info: Provide information about the media. Eg size and block size.
94  *
95  * o_devid_init: Creates and initializes the device id. Typically calls
96  *		 ddi_devid_init().
97  *
98  * o_sync_cache: Issues a device appropriate command to flush any write
99  *		 caches.
100  *
101  * o_read:	 Read data as described by bd_xfer_t argument.
102  *
103  * o_write:	 Write data as described by bd_xfer_t argument.
104  *
105  * o_free_space: Free the space described by bd_xfer_t argument (optional).
106  *
107  * Queues
108  * ------
109  * Part of the drive_info data is a queue count. blkdev will create
110  * "queue count" number of waitq/runq pairs. Each waitq/runq pair
111  * operates independently. As an I/O is scheduled up to the parent
112  * driver via o_read or o_write its queue number is given. If the
113  * parent driver supports multiple hardware queues it can then select
114  * where to submit the I/O request.
115  *
116  * Currently blkdev uses a simplistic round-robin queue selection method.
117  * It has the advantage that it is lockless. In the future it will be
118  * worthwhile reviewing this strategy for something which prioritizes queues
119  * depending on how busy they are.
120  *
121  * Each waitq/runq pair is protected by its mutex (q_iomutex). Incoming
122  * I/O requests are initially added to the waitq. They are taken off the
123  * waitq, added to the runq and submitted, providing the runq is less
124  * than the qsize as specified in the drive_info. As an I/O request
125  * completes, the parent driver is required to call bd_xfer_done(), which
126  * will remove the I/O request from the runq and pass I/O completion
127  * status up the stack.
128  *
129  * Locks
130  * -----
131  * There are 5 instance global locks d_ocmutex, d_ksmutex, d_errmutex,
132  * d_statemutex and d_dle_mutex. As well a q_iomutex per waitq/runq pair.
133  *
134  * Lock Hierarchy
135  * --------------
136  * The only two locks which may be held simultaneously are q_iomutex and
137  * d_ksmutex. In all cases q_iomutex must be acquired before d_ksmutex.
138  */
139 
140 #define	BD_MAXPART	64
141 #define	BDINST(dev)	(getminor(dev) / BD_MAXPART)
142 #define	BDPART(dev)	(getminor(dev) % BD_MAXPART)
143 
144 typedef struct bd bd_t;
145 typedef struct bd_xfer_impl bd_xfer_impl_t;
146 typedef struct bd_queue bd_queue_t;
147 
148 typedef enum {
149 	BD_DLE_PENDING	= 1 << 0,
150 	BD_DLE_RUNNING	= 1 << 1
151 } bd_dle_state_t;
152 
153 struct bd {
154 	void		*d_private;
155 	dev_info_t	*d_dip;
156 	kmutex_t	d_ocmutex;	/* open/close */
157 	kmutex_t	d_ksmutex;	/* kstat */
158 	kmutex_t	d_errmutex;
159 	kmutex_t	d_statemutex;
160 	kcondvar_t	d_statecv;
161 	enum dkio_state	d_state;
162 	cmlb_handle_t	d_cmlbh;
163 	unsigned	d_open_lyr[BD_MAXPART];	/* open count */
164 	uint64_t	d_open_excl;	/* bit mask indexed by partition */
165 	uint64_t	d_open_reg[OTYPCNT];		/* bit mask */
166 	uint64_t	d_io_counter;
167 
168 	uint32_t	d_qcount;
169 	uint32_t	d_maxxfer;
170 	uint32_t	d_blkshift;
171 	uint32_t	d_pblkshift;
172 	uint64_t	d_numblks;
173 	ddi_devid_t	d_devid;
174 
175 	uint64_t	d_max_free_seg;
176 	uint64_t	d_max_free_blks;
177 	uint64_t	d_max_free_seg_blks;
178 	uint64_t	d_free_align;
179 
180 	kmem_cache_t	*d_cache;
181 	bd_queue_t	*d_queues;
182 	kstat_t		*d_ksp;
183 	kstat_io_t	*d_kiop;
184 	kstat_t		*d_errstats;
185 	struct bd_errstats *d_kerr;
186 
187 	boolean_t	d_rdonly;
188 	boolean_t	d_ssd;
189 	boolean_t	d_removable;
190 	boolean_t	d_hotpluggable;
191 	boolean_t	d_use_dma;
192 
193 	ddi_dma_attr_t	d_dma;
194 	bd_ops_t	d_ops;
195 	bd_handle_t	d_handle;
196 
197 	kmutex_t	d_dle_mutex;
198 	taskq_ent_t	d_dle_ent;
199 	bd_dle_state_t	d_dle_state;
200 };
201 
202 struct bd_handle {
203 	bd_ops_t	h_ops;
204 	ddi_dma_attr_t	*h_dma;
205 	dev_info_t	*h_parent;
206 	dev_info_t	*h_child;
207 	void		*h_private;
208 	bd_t		*h_bd;
209 	char		*h_name;
210 	char		h_addr[50];	/* enough for w%0.32x,%X */
211 };
212 
213 struct bd_xfer_impl {
214 	bd_xfer_t	i_public;
215 	list_node_t	i_linkage;
216 	bd_t		*i_bd;
217 	buf_t		*i_bp;
218 	bd_queue_t	*i_bq;
219 	uint_t		i_num_win;
220 	uint_t		i_cur_win;
221 	off_t		i_offset;
222 	int		(*i_func)(void *, bd_xfer_t *);
223 	uint32_t	i_blkshift;
224 	size_t		i_len;
225 	size_t		i_resid;
226 };
227 
228 struct bd_queue {
229 	kmutex_t	q_iomutex;
230 	uint32_t	q_qsize;
231 	uint32_t	q_qactive;
232 	list_t		q_runq;
233 	list_t		q_waitq;
234 };
235 
236 #define	i_dmah		i_public.x_dmah
237 #define	i_dmac		i_public.x_dmac
238 #define	i_ndmac		i_public.x_ndmac
239 #define	i_kaddr		i_public.x_kaddr
240 #define	i_nblks		i_public.x_nblks
241 #define	i_blkno		i_public.x_blkno
242 #define	i_flags		i_public.x_flags
243 #define	i_qnum		i_public.x_qnum
244 #define	i_dfl		i_public.x_dfl
245 
246 #define	CAN_FREESPACE(bd) \
247 	(((bd)->d_ops.o_free_space == NULL) ? B_FALSE : B_TRUE)
248 
249 /*
250  * Private prototypes.
251  */
252 
253 static void bd_prop_update_inqstring(dev_info_t *, char *, char *, size_t);
254 static void bd_create_inquiry_props(dev_info_t *, bd_drive_t *);
255 static void bd_create_errstats(bd_t *, int, bd_drive_t *);
256 static void bd_destroy_errstats(bd_t *);
257 static void bd_errstats_setstr(kstat_named_t *, char *, size_t, char *);
258 static void bd_init_errstats(bd_t *, bd_drive_t *);
259 static void bd_fini_errstats(bd_t *);
260 
261 static int bd_getinfo(dev_info_t *, ddi_info_cmd_t, void *, void **);
262 static int bd_attach(dev_info_t *, ddi_attach_cmd_t);
263 static int bd_detach(dev_info_t *, ddi_detach_cmd_t);
264 
265 static int bd_open(dev_t *, int, int, cred_t *);
266 static int bd_close(dev_t, int, int, cred_t *);
267 static int bd_strategy(struct buf *);
268 static int bd_ioctl(dev_t, int, intptr_t, int, cred_t *, int *);
269 static int bd_dump(dev_t, caddr_t, daddr_t, int);
270 static int bd_read(dev_t, struct uio *, cred_t *);
271 static int bd_write(dev_t, struct uio *, cred_t *);
272 static int bd_aread(dev_t, struct aio_req *, cred_t *);
273 static int bd_awrite(dev_t, struct aio_req *, cred_t *);
274 static int bd_prop_op(dev_t, dev_info_t *, ddi_prop_op_t, int, char *,
275     caddr_t, int *);
276 
277 static int bd_tg_rdwr(dev_info_t *, uchar_t, void *, diskaddr_t, size_t,
278     void *);
279 static int bd_tg_getinfo(dev_info_t *, int, void *, void *);
280 static int bd_xfer_ctor(void *, void *, int);
281 static void bd_xfer_dtor(void *, void *);
282 static void bd_sched(bd_t *, bd_queue_t *);
283 static void bd_submit(bd_t *, bd_xfer_impl_t *);
284 static void bd_runq_exit(bd_xfer_impl_t *, int);
285 static void bd_update_state(bd_t *);
286 static int bd_check_state(bd_t *, enum dkio_state *);
287 static int bd_flush_write_cache(bd_t *, struct dk_callback *);
288 static int bd_check_uio(dev_t, struct uio *);
289 static int bd_free_space(dev_t, bd_t *, dkioc_free_list_t *);
290 
291 struct cmlb_tg_ops bd_tg_ops = {
292 	TG_DK_OPS_VERSION_1,
293 	bd_tg_rdwr,
294 	bd_tg_getinfo,
295 };
296 
297 static struct cb_ops bd_cb_ops = {
298 	bd_open,		/* open */
299 	bd_close,		/* close */
300 	bd_strategy,		/* strategy */
301 	nodev,			/* print */
302 	bd_dump,		/* dump */
303 	bd_read,		/* read */
304 	bd_write,		/* write */
305 	bd_ioctl,		/* ioctl */
306 	nodev,			/* devmap */
307 	nodev,			/* mmap */
308 	nodev,			/* segmap */
309 	nochpoll,		/* poll */
310 	bd_prop_op,		/* cb_prop_op */
311 	0,			/* streamtab  */
312 	D_64BIT | D_MP,		/* Driver comaptibility flag */
313 	CB_REV,			/* cb_rev */
314 	bd_aread,		/* async read */
315 	bd_awrite		/* async write */
316 };
317 
318 struct dev_ops bd_dev_ops = {
319 	DEVO_REV,		/* devo_rev, */
320 	0,			/* refcnt  */
321 	bd_getinfo,		/* getinfo */
322 	nulldev,		/* identify */
323 	nulldev,		/* probe */
324 	bd_attach,		/* attach */
325 	bd_detach,		/* detach */
326 	nodev,			/* reset */
327 	&bd_cb_ops,		/* driver operations */
328 	NULL,			/* bus operations */
329 	NULL,			/* power */
330 	ddi_quiesce_not_needed,	/* quiesce */
331 };
332 
333 static struct modldrv modldrv = {
334 	&mod_driverops,
335 	"Generic Block Device",
336 	&bd_dev_ops,
337 };
338 
339 static struct modlinkage modlinkage = {
340 	MODREV_1, { &modldrv, NULL }
341 };
342 
343 static void *bd_state;
344 static krwlock_t bd_lock;
345 static taskq_t *bd_taskq;
346 
347 int
348 _init(void)
349 {
350 	char taskq_name[TASKQ_NAMELEN];
351 	const char *name;
352 	int rv;
353 
354 	rv = ddi_soft_state_init(&bd_state, sizeof (struct bd), 2);
355 	if (rv != DDI_SUCCESS)
356 		return (rv);
357 
358 	name = mod_modname(&modlinkage);
359 	(void) snprintf(taskq_name, sizeof (taskq_name), "%s_taskq", name);
360 	bd_taskq = taskq_create(taskq_name, 1, minclsyspri, 0, 0, 0);
361 	if (bd_taskq == NULL) {
362 		cmn_err(CE_WARN, "%s: unable to create %s", name, taskq_name);
363 		ddi_soft_state_fini(&bd_state);
364 		return (DDI_FAILURE);
365 	}
366 
367 	rw_init(&bd_lock, NULL, RW_DRIVER, NULL);
368 
369 	rv = mod_install(&modlinkage);
370 	if (rv != DDI_SUCCESS) {
371 		rw_destroy(&bd_lock);
372 		taskq_destroy(bd_taskq);
373 		ddi_soft_state_fini(&bd_state);
374 	}
375 	return (rv);
376 }
377 
378 int
379 _fini(void)
380 {
381 	int	rv;
382 
383 	rv = mod_remove(&modlinkage);
384 	if (rv == DDI_SUCCESS) {
385 		rw_destroy(&bd_lock);
386 		taskq_destroy(bd_taskq);
387 		ddi_soft_state_fini(&bd_state);
388 	}
389 	return (rv);
390 }
391 
392 int
393 _info(struct modinfo *modinfop)
394 {
395 	return (mod_info(&modlinkage, modinfop));
396 }
397 
398 static int
399 bd_getinfo(dev_info_t *dip, ddi_info_cmd_t cmd, void *arg, void **resultp)
400 {
401 	bd_t	*bd;
402 	minor_t	inst;
403 
404 	_NOTE(ARGUNUSED(dip));
405 
406 	inst = BDINST((dev_t)arg);
407 
408 	switch (cmd) {
409 	case DDI_INFO_DEVT2DEVINFO:
410 		bd = ddi_get_soft_state(bd_state, inst);
411 		if (bd == NULL) {
412 			return (DDI_FAILURE);
413 		}
414 		*resultp = (void *)bd->d_dip;
415 		break;
416 
417 	case DDI_INFO_DEVT2INSTANCE:
418 		*resultp = (void *)(intptr_t)inst;
419 		break;
420 
421 	default:
422 		return (DDI_FAILURE);
423 	}
424 	return (DDI_SUCCESS);
425 }
426 
427 static void
428 bd_prop_update_inqstring(dev_info_t *dip, char *name, char *data, size_t len)
429 {
430 	int	ilen;
431 	char	*data_string;
432 
433 	ilen = scsi_ascii_inquiry_len(data, len);
434 	ASSERT3U(ilen, <=, len);
435 	if (ilen <= 0)
436 		return;
437 	/* ensure null termination */
438 	data_string = kmem_zalloc(ilen + 1, KM_SLEEP);
439 	bcopy(data, data_string, ilen);
440 	(void) ndi_prop_update_string(DDI_DEV_T_NONE, dip, name, data_string);
441 	kmem_free(data_string, ilen + 1);
442 }
443 
444 static void
445 bd_create_inquiry_props(dev_info_t *dip, bd_drive_t *drive)
446 {
447 	if (drive->d_vendor_len > 0)
448 		bd_prop_update_inqstring(dip, INQUIRY_VENDOR_ID,
449 		    drive->d_vendor, drive->d_vendor_len);
450 
451 	if (drive->d_product_len > 0)
452 		bd_prop_update_inqstring(dip, INQUIRY_PRODUCT_ID,
453 		    drive->d_product, drive->d_product_len);
454 
455 	if (drive->d_serial_len > 0)
456 		bd_prop_update_inqstring(dip, INQUIRY_SERIAL_NO,
457 		    drive->d_serial, drive->d_serial_len);
458 
459 	if (drive->d_revision_len > 0)
460 		bd_prop_update_inqstring(dip, INQUIRY_REVISION_ID,
461 		    drive->d_revision, drive->d_revision_len);
462 }
463 
464 static void
465 bd_create_errstats(bd_t *bd, int inst, bd_drive_t *drive)
466 {
467 	char	ks_module[KSTAT_STRLEN];
468 	char	ks_name[KSTAT_STRLEN];
469 	int	ndata = sizeof (struct bd_errstats) / sizeof (kstat_named_t);
470 
471 	if (bd->d_errstats != NULL)
472 		return;
473 
474 	(void) snprintf(ks_module, sizeof (ks_module), "%serr",
475 	    ddi_driver_name(bd->d_dip));
476 	(void) snprintf(ks_name, sizeof (ks_name), "%s%d,err",
477 	    ddi_driver_name(bd->d_dip), inst);
478 
479 	bd->d_errstats = kstat_create(ks_module, inst, ks_name, "device_error",
480 	    KSTAT_TYPE_NAMED, ndata, KSTAT_FLAG_PERSISTENT);
481 
482 	mutex_init(&bd->d_errmutex, NULL, MUTEX_DRIVER, NULL);
483 	if (bd->d_errstats == NULL) {
484 		/*
485 		 * Even if we cannot create the kstat, we create a
486 		 * scratch kstat.  The reason for this is to ensure
487 		 * that we can update the kstat all of the time,
488 		 * without adding an extra branch instruction.
489 		 */
490 		bd->d_kerr = kmem_zalloc(sizeof (struct bd_errstats),
491 		    KM_SLEEP);
492 	} else {
493 		bd->d_errstats->ks_lock = &bd->d_errmutex;
494 		bd->d_kerr = (struct bd_errstats *)bd->d_errstats->ks_data;
495 	}
496 
497 	kstat_named_init(&bd->d_kerr->bd_softerrs,	"Soft Errors",
498 	    KSTAT_DATA_UINT32);
499 	kstat_named_init(&bd->d_kerr->bd_harderrs,	"Hard Errors",
500 	    KSTAT_DATA_UINT32);
501 	kstat_named_init(&bd->d_kerr->bd_transerrs,	"Transport Errors",
502 	    KSTAT_DATA_UINT32);
503 
504 	if (drive->d_model_len > 0) {
505 		kstat_named_init(&bd->d_kerr->bd_model,	"Model",
506 		    KSTAT_DATA_STRING);
507 	} else {
508 		kstat_named_init(&bd->d_kerr->bd_vid,	"Vendor",
509 		    KSTAT_DATA_STRING);
510 		kstat_named_init(&bd->d_kerr->bd_pid,	"Product",
511 		    KSTAT_DATA_STRING);
512 	}
513 
514 	kstat_named_init(&bd->d_kerr->bd_revision,	"Revision",
515 	    KSTAT_DATA_STRING);
516 	kstat_named_init(&bd->d_kerr->bd_serial,	"Serial No",
517 	    KSTAT_DATA_STRING);
518 	kstat_named_init(&bd->d_kerr->bd_capacity,	"Size",
519 	    KSTAT_DATA_ULONGLONG);
520 	kstat_named_init(&bd->d_kerr->bd_rq_media_err,	"Media Error",
521 	    KSTAT_DATA_UINT32);
522 	kstat_named_init(&bd->d_kerr->bd_rq_ntrdy_err,	"Device Not Ready",
523 	    KSTAT_DATA_UINT32);
524 	kstat_named_init(&bd->d_kerr->bd_rq_nodev_err,	"No Device",
525 	    KSTAT_DATA_UINT32);
526 	kstat_named_init(&bd->d_kerr->bd_rq_recov_err,	"Recoverable",
527 	    KSTAT_DATA_UINT32);
528 	kstat_named_init(&bd->d_kerr->bd_rq_illrq_err,	"Illegal Request",
529 	    KSTAT_DATA_UINT32);
530 	kstat_named_init(&bd->d_kerr->bd_rq_pfa_err,
531 	    "Predictive Failure Analysis", KSTAT_DATA_UINT32);
532 
533 	bd->d_errstats->ks_private = bd;
534 
535 	kstat_install(bd->d_errstats);
536 	bd_init_errstats(bd, drive);
537 }
538 
539 static void
540 bd_destroy_errstats(bd_t *bd)
541 {
542 	if (bd->d_errstats != NULL) {
543 		bd_fini_errstats(bd);
544 		kstat_delete(bd->d_errstats);
545 		bd->d_errstats = NULL;
546 	} else {
547 		kmem_free(bd->d_kerr, sizeof (struct bd_errstats));
548 		bd->d_kerr = NULL;
549 		mutex_destroy(&bd->d_errmutex);
550 	}
551 }
552 
553 static void
554 bd_errstats_setstr(kstat_named_t *k, char *str, size_t len, char *alt)
555 {
556 	char	*tmp;
557 	size_t	km_len;
558 
559 	if (KSTAT_NAMED_STR_PTR(k) == NULL) {
560 		if (len > 0)
561 			km_len = strnlen(str, len);
562 		else if (alt != NULL)
563 			km_len = strlen(alt);
564 		else
565 			return;
566 
567 		tmp = kmem_alloc(km_len + 1, KM_SLEEP);
568 		bcopy(len > 0 ? str : alt, tmp, km_len);
569 		tmp[km_len] = '\0';
570 
571 		kstat_named_setstr(k, tmp);
572 	}
573 }
574 
575 static void
576 bd_errstats_clrstr(kstat_named_t *k)
577 {
578 	if (KSTAT_NAMED_STR_PTR(k) == NULL)
579 		return;
580 
581 	kmem_free(KSTAT_NAMED_STR_PTR(k), KSTAT_NAMED_STR_BUFLEN(k));
582 	kstat_named_setstr(k, NULL);
583 }
584 
585 static void
586 bd_init_errstats(bd_t *bd, bd_drive_t *drive)
587 {
588 	struct bd_errstats	*est = bd->d_kerr;
589 
590 	mutex_enter(&bd->d_errmutex);
591 
592 	if (drive->d_model_len > 0 &&
593 	    KSTAT_NAMED_STR_PTR(&est->bd_model) == NULL) {
594 		bd_errstats_setstr(&est->bd_model, drive->d_model,
595 		    drive->d_model_len, NULL);
596 	} else {
597 		bd_errstats_setstr(&est->bd_vid, drive->d_vendor,
598 		    drive->d_vendor_len, "Unknown ");
599 		bd_errstats_setstr(&est->bd_pid, drive->d_product,
600 		    drive->d_product_len, "Unknown         ");
601 	}
602 
603 	bd_errstats_setstr(&est->bd_revision, drive->d_revision,
604 	    drive->d_revision_len, "0001");
605 	bd_errstats_setstr(&est->bd_serial, drive->d_serial,
606 	    drive->d_serial_len, "0               ");
607 
608 	mutex_exit(&bd->d_errmutex);
609 }
610 
611 static void
612 bd_fini_errstats(bd_t *bd)
613 {
614 	struct bd_errstats	*est = bd->d_kerr;
615 
616 	mutex_enter(&bd->d_errmutex);
617 
618 	bd_errstats_clrstr(&est->bd_model);
619 	bd_errstats_clrstr(&est->bd_vid);
620 	bd_errstats_clrstr(&est->bd_pid);
621 	bd_errstats_clrstr(&est->bd_revision);
622 	bd_errstats_clrstr(&est->bd_serial);
623 
624 	mutex_exit(&bd->d_errmutex);
625 }
626 
627 static void
628 bd_queues_free(bd_t *bd)
629 {
630 	uint32_t i;
631 
632 	for (i = 0; i < bd->d_qcount; i++) {
633 		bd_queue_t *bq = &bd->d_queues[i];
634 
635 		mutex_destroy(&bq->q_iomutex);
636 		list_destroy(&bq->q_waitq);
637 		list_destroy(&bq->q_runq);
638 	}
639 
640 	kmem_free(bd->d_queues, sizeof (*bd->d_queues) * bd->d_qcount);
641 }
642 
643 static int
644 bd_attach(dev_info_t *dip, ddi_attach_cmd_t cmd)
645 {
646 	int		inst;
647 	bd_handle_t	hdl;
648 	bd_t		*bd;
649 	bd_drive_t	drive;
650 	uint32_t	i;
651 	int		rv;
652 	char		name[16];
653 	char		kcache[32];
654 	char		*node_type;
655 
656 	switch (cmd) {
657 	case DDI_ATTACH:
658 		break;
659 	case DDI_RESUME:
660 		/* We don't do anything native for suspend/resume */
661 		return (DDI_SUCCESS);
662 	default:
663 		return (DDI_FAILURE);
664 	}
665 
666 	inst = ddi_get_instance(dip);
667 	hdl = ddi_get_parent_data(dip);
668 
669 	(void) snprintf(name, sizeof (name), "%s%d",
670 	    ddi_driver_name(dip), ddi_get_instance(dip));
671 	(void) snprintf(kcache, sizeof (kcache), "%s_xfer", name);
672 
673 	if (hdl == NULL) {
674 		cmn_err(CE_WARN, "%s: missing parent data!", name);
675 		return (DDI_FAILURE);
676 	}
677 
678 	if (ddi_soft_state_zalloc(bd_state, inst) != DDI_SUCCESS) {
679 		cmn_err(CE_WARN, "%s: unable to zalloc soft state!", name);
680 		return (DDI_FAILURE);
681 	}
682 	bd = ddi_get_soft_state(bd_state, inst);
683 
684 	if (hdl->h_dma) {
685 		bd->d_dma = *(hdl->h_dma);
686 		bd->d_dma.dma_attr_granular =
687 		    max(DEV_BSIZE, bd->d_dma.dma_attr_granular);
688 		bd->d_use_dma = B_TRUE;
689 
690 		if (bd->d_maxxfer &&
691 		    (bd->d_maxxfer != bd->d_dma.dma_attr_maxxfer)) {
692 			cmn_err(CE_WARN,
693 			    "%s: inconsistent maximum transfer size!",
694 			    name);
695 			/* We force it */
696 			bd->d_maxxfer = bd->d_dma.dma_attr_maxxfer;
697 		} else {
698 			bd->d_maxxfer = bd->d_dma.dma_attr_maxxfer;
699 		}
700 	} else {
701 		bd->d_use_dma = B_FALSE;
702 		if (bd->d_maxxfer == 0) {
703 			bd->d_maxxfer = 1024 * 1024;
704 		}
705 	}
706 	bd->d_ops = hdl->h_ops;
707 	bd->d_private = hdl->h_private;
708 	bd->d_blkshift = DEV_BSHIFT;	/* 512 bytes, to start */
709 
710 	if (bd->d_maxxfer % DEV_BSIZE) {
711 		cmn_err(CE_WARN, "%s: maximum transfer misaligned!", name);
712 		bd->d_maxxfer &= ~(DEV_BSIZE - 1);
713 	}
714 	if (bd->d_maxxfer < DEV_BSIZE) {
715 		cmn_err(CE_WARN, "%s: maximum transfer size too small!", name);
716 		ddi_soft_state_free(bd_state, inst);
717 		return (DDI_FAILURE);
718 	}
719 
720 	bd->d_dip = dip;
721 	bd->d_handle = hdl;
722 	ddi_set_driver_private(dip, bd);
723 
724 	mutex_init(&bd->d_ksmutex, NULL, MUTEX_DRIVER, NULL);
725 	mutex_init(&bd->d_ocmutex, NULL, MUTEX_DRIVER, NULL);
726 	mutex_init(&bd->d_statemutex, NULL, MUTEX_DRIVER, NULL);
727 	cv_init(&bd->d_statecv, NULL, CV_DRIVER, NULL);
728 	mutex_init(&bd->d_dle_mutex, NULL, MUTEX_DRIVER, NULL);
729 	bd->d_dle_state = 0;
730 
731 	bd->d_cache = kmem_cache_create(kcache, sizeof (bd_xfer_impl_t), 8,
732 	    bd_xfer_ctor, bd_xfer_dtor, NULL, bd, NULL, 0);
733 
734 	bd->d_ksp = kstat_create(ddi_driver_name(dip), inst, NULL, "disk",
735 	    KSTAT_TYPE_IO, 1, KSTAT_FLAG_PERSISTENT);
736 	if (bd->d_ksp != NULL) {
737 		bd->d_ksp->ks_lock = &bd->d_ksmutex;
738 		kstat_install(bd->d_ksp);
739 		bd->d_kiop = bd->d_ksp->ks_data;
740 	} else {
741 		/*
742 		 * Even if we cannot create the kstat, we create a
743 		 * scratch kstat.  The reason for this is to ensure
744 		 * that we can update the kstat all of the time,
745 		 * without adding an extra branch instruction.
746 		 */
747 		bd->d_kiop = kmem_zalloc(sizeof (kstat_io_t), KM_SLEEP);
748 	}
749 
750 	cmlb_alloc_handle(&bd->d_cmlbh);
751 
752 	bd->d_state = DKIO_NONE;
753 
754 	bzero(&drive, sizeof (drive));
755 	/*
756 	 * Default to one queue, and no restrictions on free space requests
757 	 * (if driver provides method) parent driver can override.
758 	 */
759 	drive.d_qcount = 1;
760 	drive.d_free_align = 1;
761 	bd->d_ops.o_drive_info(bd->d_private, &drive);
762 
763 	/*
764 	 * Several checks to make sure o_drive_info() didn't return bad
765 	 * values:
766 	 *
767 	 * There must be at least one queue
768 	 */
769 	if (drive.d_qcount == 0)
770 		goto fail_drive_info;
771 
772 	/* FREE/UNMAP/TRIM alignment needs to be at least 1 block */
773 	if (drive.d_free_align == 0)
774 		goto fail_drive_info;
775 
776 	/*
777 	 * If d_max_free_blks is not unlimited (not 0), then we cannot allow
778 	 * an unlimited segment size. It is however permissible to not impose
779 	 * a limit on the total number of blocks freed while limiting the
780 	 * amount allowed in an individual segment.
781 	 */
782 	if ((drive.d_max_free_blks > 0 && drive.d_max_free_seg_blks == 0))
783 		goto fail_drive_info;
784 
785 	/*
786 	 * If a limit is set on d_max_free_blks (by the above check, we know
787 	 * if there's a limit on d_max_free_blks, d_max_free_seg_blks cannot
788 	 * be unlimited), it cannot be smaller than the limit on an individual
789 	 * segment.
790 	 */
791 	if ((drive.d_max_free_blks > 0 &&
792 	    drive.d_max_free_seg_blks > drive.d_max_free_blks)) {
793 		goto fail_drive_info;
794 	}
795 
796 	bd->d_qcount = drive.d_qcount;
797 	bd->d_removable = drive.d_removable;
798 	bd->d_hotpluggable = drive.d_hotpluggable;
799 
800 	if (drive.d_maxxfer && drive.d_maxxfer < bd->d_maxxfer)
801 		bd->d_maxxfer = drive.d_maxxfer;
802 
803 	bd->d_free_align = drive.d_free_align;
804 	bd->d_max_free_seg = drive.d_max_free_seg;
805 	bd->d_max_free_blks = drive.d_max_free_blks;
806 	bd->d_max_free_seg_blks = drive.d_max_free_seg_blks;
807 
808 	bd_create_inquiry_props(dip, &drive);
809 	bd_create_errstats(bd, inst, &drive);
810 	bd_update_state(bd);
811 
812 	bd->d_queues = kmem_alloc(sizeof (*bd->d_queues) * bd->d_qcount,
813 	    KM_SLEEP);
814 	for (i = 0; i < bd->d_qcount; i++) {
815 		bd_queue_t *bq = &bd->d_queues[i];
816 
817 		bq->q_qsize = drive.d_qsize;
818 		bq->q_qactive = 0;
819 		mutex_init(&bq->q_iomutex, NULL, MUTEX_DRIVER, NULL);
820 
821 		list_create(&bq->q_waitq, sizeof (bd_xfer_impl_t),
822 		    offsetof(struct bd_xfer_impl, i_linkage));
823 		list_create(&bq->q_runq, sizeof (bd_xfer_impl_t),
824 		    offsetof(struct bd_xfer_impl, i_linkage));
825 	}
826 
827 	if (*(uint64_t *)drive.d_eui64 != 0 ||
828 	    *(uint64_t *)drive.d_guid != 0 ||
829 	    *((uint64_t *)drive.d_guid + 1) != 0)
830 		node_type = DDI_NT_BLOCK_BLKDEV;
831 	else if (drive.d_lun >= 0)
832 		node_type = DDI_NT_BLOCK_CHAN;
833 	else
834 		node_type = DDI_NT_BLOCK;
835 
836 	rv = cmlb_attach(dip, &bd_tg_ops, DTYPE_DIRECT,
837 	    bd->d_removable, bd->d_hotpluggable, node_type,
838 	    CMLB_FAKE_LABEL_ONE_PARTITION, bd->d_cmlbh, 0);
839 	if (rv != 0) {
840 		goto fail_cmlb_attach;
841 	}
842 
843 	if (bd->d_ops.o_devid_init != NULL) {
844 		rv = bd->d_ops.o_devid_init(bd->d_private, dip, &bd->d_devid);
845 		if (rv == DDI_SUCCESS) {
846 			if (ddi_devid_register(dip, bd->d_devid) !=
847 			    DDI_SUCCESS) {
848 				cmn_err(CE_WARN,
849 				    "%s: unable to register devid", name);
850 			}
851 		}
852 	}
853 
854 	/*
855 	 * Add a zero-length attribute to tell the world we support
856 	 * kernel ioctls (for layered drivers).  Also set up properties
857 	 * used by HAL to identify removable media.
858 	 */
859 	(void) ddi_prop_create(DDI_DEV_T_NONE, dip, DDI_PROP_CANSLEEP,
860 	    DDI_KERNEL_IOCTL, NULL, 0);
861 	if (bd->d_removable) {
862 		(void) ddi_prop_create(DDI_DEV_T_NONE, dip, DDI_PROP_CANSLEEP,
863 		    "removable-media", NULL, 0);
864 	}
865 	if (bd->d_hotpluggable) {
866 		(void) ddi_prop_create(DDI_DEV_T_NONE, dip, DDI_PROP_CANSLEEP,
867 		    "hotpluggable", NULL, 0);
868 	}
869 
870 	/*
871 	 * Before we proceed, we need to ensure that the geometry and labels on
872 	 * the cmlb disk are reasonable. When cmlb first attaches, it does not
873 	 * perform label validation and creates minor nodes based on the
874 	 * assumption of the size. This may not be correct and the rest of the
875 	 * system assumes that this will have been done before we allow opens
876 	 * to proceed. Otherwise, on first open, this'll all end up changing
877 	 * around on users. We do not care if it succeeds or not. It is totally
878 	 * acceptable for this device to be unlabeled or not to have anything on
879 	 * it.
880 	 */
881 	(void) cmlb_validate(bd->d_cmlbh, 0, 0);
882 
883 	hdl->h_bd = bd;
884 	ddi_report_dev(dip);
885 
886 	return (DDI_SUCCESS);
887 
888 fail_cmlb_attach:
889 	bd_queues_free(bd);
890 	bd_destroy_errstats(bd);
891 
892 fail_drive_info:
893 	cmlb_free_handle(&bd->d_cmlbh);
894 
895 	if (bd->d_ksp != NULL) {
896 		kstat_delete(bd->d_ksp);
897 		bd->d_ksp = NULL;
898 	} else {
899 		kmem_free(bd->d_kiop, sizeof (kstat_io_t));
900 	}
901 
902 	kmem_cache_destroy(bd->d_cache);
903 	cv_destroy(&bd->d_statecv);
904 	mutex_destroy(&bd->d_statemutex);
905 	mutex_destroy(&bd->d_ocmutex);
906 	mutex_destroy(&bd->d_ksmutex);
907 	mutex_destroy(&bd->d_dle_mutex);
908 	ddi_soft_state_free(bd_state, inst);
909 	return (DDI_FAILURE);
910 }
911 
912 static int
913 bd_detach(dev_info_t *dip, ddi_detach_cmd_t cmd)
914 {
915 	bd_handle_t	hdl;
916 	bd_t		*bd;
917 
918 	bd = ddi_get_driver_private(dip);
919 	hdl = ddi_get_parent_data(dip);
920 
921 	switch (cmd) {
922 	case DDI_DETACH:
923 		break;
924 	case DDI_SUSPEND:
925 		/* We don't suspend, but our parent does */
926 		return (DDI_SUCCESS);
927 	default:
928 		return (DDI_FAILURE);
929 	}
930 
931 	hdl->h_bd = NULL;
932 
933 	if (bd->d_ksp != NULL) {
934 		kstat_delete(bd->d_ksp);
935 		bd->d_ksp = NULL;
936 	} else {
937 		kmem_free(bd->d_kiop, sizeof (kstat_io_t));
938 	}
939 
940 	bd_destroy_errstats(bd);
941 	cmlb_detach(bd->d_cmlbh, 0);
942 	cmlb_free_handle(&bd->d_cmlbh);
943 	if (bd->d_devid)
944 		ddi_devid_free(bd->d_devid);
945 	kmem_cache_destroy(bd->d_cache);
946 	mutex_destroy(&bd->d_ksmutex);
947 	mutex_destroy(&bd->d_ocmutex);
948 	mutex_destroy(&bd->d_statemutex);
949 	cv_destroy(&bd->d_statecv);
950 	mutex_destroy(&bd->d_dle_mutex);
951 	bd_queues_free(bd);
952 	ddi_soft_state_free(bd_state, ddi_get_instance(dip));
953 	return (DDI_SUCCESS);
954 }
955 
956 static int
957 bd_xfer_ctor(void *buf, void *arg, int kmflag)
958 {
959 	bd_xfer_impl_t	*xi;
960 	bd_t		*bd = arg;
961 	int		(*dcb)(caddr_t);
962 
963 	if (kmflag == KM_PUSHPAGE || kmflag == KM_SLEEP) {
964 		dcb = DDI_DMA_SLEEP;
965 	} else {
966 		dcb = DDI_DMA_DONTWAIT;
967 	}
968 
969 	xi = buf;
970 	bzero(xi, sizeof (*xi));
971 	xi->i_bd = bd;
972 
973 	if (bd->d_use_dma) {
974 		if (ddi_dma_alloc_handle(bd->d_dip, &bd->d_dma, dcb, NULL,
975 		    &xi->i_dmah) != DDI_SUCCESS) {
976 			return (-1);
977 		}
978 	}
979 
980 	return (0);
981 }
982 
983 static void
984 bd_xfer_dtor(void *buf, void *arg)
985 {
986 	bd_xfer_impl_t	*xi = buf;
987 
988 	_NOTE(ARGUNUSED(arg));
989 
990 	if (xi->i_dmah)
991 		ddi_dma_free_handle(&xi->i_dmah);
992 	xi->i_dmah = NULL;
993 }
994 
995 static bd_xfer_impl_t *
996 bd_xfer_alloc(bd_t *bd, struct buf *bp, int (*func)(void *, bd_xfer_t *),
997     int kmflag)
998 {
999 	bd_xfer_impl_t		*xi;
1000 	int			rv = 0;
1001 	int			status;
1002 	unsigned		dir;
1003 	int			(*cb)(caddr_t);
1004 	size_t			len;
1005 	uint32_t		shift;
1006 
1007 	if (kmflag == KM_SLEEP) {
1008 		cb = DDI_DMA_SLEEP;
1009 	} else {
1010 		cb = DDI_DMA_DONTWAIT;
1011 	}
1012 
1013 	xi = kmem_cache_alloc(bd->d_cache, kmflag);
1014 	if (xi == NULL) {
1015 		bioerror(bp, ENOMEM);
1016 		return (NULL);
1017 	}
1018 
1019 	ASSERT(bp);
1020 
1021 	xi->i_bp = bp;
1022 	xi->i_func = func;
1023 	xi->i_blkno = bp->b_lblkno >> (bd->d_blkshift - DEV_BSHIFT);
1024 
1025 	if (bp->b_bcount == 0) {
1026 		xi->i_len = 0;
1027 		xi->i_nblks = 0;
1028 		xi->i_kaddr = NULL;
1029 		xi->i_resid = 0;
1030 		xi->i_num_win = 0;
1031 		goto done;
1032 	}
1033 
1034 	if (bp->b_flags & B_READ) {
1035 		dir = DDI_DMA_READ;
1036 		xi->i_func = bd->d_ops.o_read;
1037 	} else {
1038 		dir = DDI_DMA_WRITE;
1039 		xi->i_func = bd->d_ops.o_write;
1040 	}
1041 
1042 	shift = bd->d_blkshift;
1043 	xi->i_blkshift = shift;
1044 
1045 	if (!bd->d_use_dma) {
1046 		bp_mapin(bp);
1047 		rv = 0;
1048 		xi->i_offset = 0;
1049 		xi->i_num_win =
1050 		    (bp->b_bcount + (bd->d_maxxfer - 1)) / bd->d_maxxfer;
1051 		xi->i_cur_win = 0;
1052 		xi->i_len = min(bp->b_bcount, bd->d_maxxfer);
1053 		xi->i_nblks = xi->i_len >> shift;
1054 		xi->i_kaddr = bp->b_un.b_addr;
1055 		xi->i_resid = bp->b_bcount;
1056 	} else {
1057 
1058 		/*
1059 		 * We have to use consistent DMA if the address is misaligned.
1060 		 */
1061 		if (((bp->b_flags & (B_PAGEIO | B_REMAPPED)) != B_PAGEIO) &&
1062 		    ((uintptr_t)bp->b_un.b_addr & 0x7)) {
1063 			dir |= DDI_DMA_CONSISTENT | DDI_DMA_PARTIAL;
1064 		} else {
1065 			dir |= DDI_DMA_STREAMING | DDI_DMA_PARTIAL;
1066 		}
1067 
1068 		status = ddi_dma_buf_bind_handle(xi->i_dmah, bp, dir, cb,
1069 		    NULL, &xi->i_dmac, &xi->i_ndmac);
1070 		switch (status) {
1071 		case DDI_DMA_MAPPED:
1072 			xi->i_num_win = 1;
1073 			xi->i_cur_win = 0;
1074 			xi->i_offset = 0;
1075 			xi->i_len = bp->b_bcount;
1076 			xi->i_nblks = xi->i_len >> shift;
1077 			xi->i_resid = bp->b_bcount;
1078 			rv = 0;
1079 			break;
1080 		case DDI_DMA_PARTIAL_MAP:
1081 			xi->i_cur_win = 0;
1082 
1083 			if ((ddi_dma_numwin(xi->i_dmah, &xi->i_num_win) !=
1084 			    DDI_SUCCESS) ||
1085 			    (ddi_dma_getwin(xi->i_dmah, 0, &xi->i_offset,
1086 			    &len, &xi->i_dmac, &xi->i_ndmac) !=
1087 			    DDI_SUCCESS) ||
1088 			    (P2PHASE(len, (1U << shift)) != 0)) {
1089 				(void) ddi_dma_unbind_handle(xi->i_dmah);
1090 				rv = EFAULT;
1091 				goto done;
1092 			}
1093 			xi->i_len = len;
1094 			xi->i_nblks = xi->i_len >> shift;
1095 			xi->i_resid = bp->b_bcount;
1096 			rv = 0;
1097 			break;
1098 		case DDI_DMA_NORESOURCES:
1099 			rv = EAGAIN;
1100 			goto done;
1101 		case DDI_DMA_TOOBIG:
1102 			rv = EINVAL;
1103 			goto done;
1104 		case DDI_DMA_NOMAPPING:
1105 		case DDI_DMA_INUSE:
1106 		default:
1107 			rv = EFAULT;
1108 			goto done;
1109 		}
1110 	}
1111 
1112 done:
1113 	if (rv != 0) {
1114 		kmem_cache_free(bd->d_cache, xi);
1115 		bioerror(bp, rv);
1116 		return (NULL);
1117 	}
1118 
1119 	return (xi);
1120 }
1121 
1122 static void
1123 bd_xfer_free(bd_xfer_impl_t *xi)
1124 {
1125 	if (xi->i_dmah) {
1126 		(void) ddi_dma_unbind_handle(xi->i_dmah);
1127 	}
1128 	if (xi->i_dfl != NULL) {
1129 		dfl_free((dkioc_free_list_t *)xi->i_dfl);
1130 		xi->i_dfl = NULL;
1131 	}
1132 	kmem_cache_free(xi->i_bd->d_cache, xi);
1133 }
1134 
1135 static int
1136 bd_open(dev_t *devp, int flag, int otyp, cred_t *credp)
1137 {
1138 	dev_t		dev = *devp;
1139 	bd_t		*bd;
1140 	minor_t		part;
1141 	minor_t		inst;
1142 	uint64_t	mask;
1143 	boolean_t	ndelay;
1144 	int		rv;
1145 	diskaddr_t	nblks;
1146 	diskaddr_t	lba;
1147 
1148 	_NOTE(ARGUNUSED(credp));
1149 
1150 	part = BDPART(dev);
1151 	inst = BDINST(dev);
1152 
1153 	if (otyp >= OTYPCNT)
1154 		return (EINVAL);
1155 
1156 	ndelay = (flag & (FNDELAY | FNONBLOCK)) ? B_TRUE : B_FALSE;
1157 
1158 	/*
1159 	 * Block any DR events from changing the set of registered
1160 	 * devices while we function.
1161 	 */
1162 	rw_enter(&bd_lock, RW_READER);
1163 	if ((bd = ddi_get_soft_state(bd_state, inst)) == NULL) {
1164 		rw_exit(&bd_lock);
1165 		return (ENXIO);
1166 	}
1167 
1168 	mutex_enter(&bd->d_ocmutex);
1169 
1170 	ASSERT(part < 64);
1171 	mask = (1U << part);
1172 
1173 	bd_update_state(bd);
1174 
1175 	if (cmlb_validate(bd->d_cmlbh, 0, 0) != 0) {
1176 
1177 		/* non-blocking opens are allowed to succeed */
1178 		if (!ndelay) {
1179 			rv = ENXIO;
1180 			goto done;
1181 		}
1182 	} else if (cmlb_partinfo(bd->d_cmlbh, part, &nblks, &lba,
1183 	    NULL, NULL, 0) == 0) {
1184 
1185 		/*
1186 		 * We read the partinfo, verify valid ranges.  If the
1187 		 * partition is invalid, and we aren't blocking or
1188 		 * doing a raw access, then fail. (Non-blocking and
1189 		 * raw accesses can still succeed to allow a disk with
1190 		 * bad partition data to opened by format and fdisk.)
1191 		 */
1192 		if ((!nblks) && ((!ndelay) || (otyp != OTYP_CHR))) {
1193 			rv = ENXIO;
1194 			goto done;
1195 		}
1196 	} else if (!ndelay) {
1197 		/*
1198 		 * cmlb_partinfo failed -- invalid partition or no
1199 		 * disk label.
1200 		 */
1201 		rv = ENXIO;
1202 		goto done;
1203 	}
1204 
1205 	if ((flag & FWRITE) && bd->d_rdonly) {
1206 		rv = EROFS;
1207 		goto done;
1208 	}
1209 
1210 	if ((bd->d_open_excl) & (mask)) {
1211 		rv = EBUSY;
1212 		goto done;
1213 	}
1214 	if (flag & FEXCL) {
1215 		if (bd->d_open_lyr[part]) {
1216 			rv = EBUSY;
1217 			goto done;
1218 		}
1219 		for (int i = 0; i < OTYP_LYR; i++) {
1220 			if (bd->d_open_reg[i] & mask) {
1221 				rv = EBUSY;
1222 				goto done;
1223 			}
1224 		}
1225 	}
1226 
1227 	if (otyp == OTYP_LYR) {
1228 		bd->d_open_lyr[part]++;
1229 	} else {
1230 		bd->d_open_reg[otyp] |= mask;
1231 	}
1232 	if (flag & FEXCL) {
1233 		bd->d_open_excl |= mask;
1234 	}
1235 
1236 	rv = 0;
1237 done:
1238 	mutex_exit(&bd->d_ocmutex);
1239 	rw_exit(&bd_lock);
1240 
1241 	return (rv);
1242 }
1243 
1244 static int
1245 bd_close(dev_t dev, int flag, int otyp, cred_t *credp)
1246 {
1247 	bd_t		*bd;
1248 	minor_t		inst;
1249 	minor_t		part;
1250 	uint64_t	mask;
1251 	boolean_t	last = B_TRUE;
1252 
1253 	_NOTE(ARGUNUSED(flag));
1254 	_NOTE(ARGUNUSED(credp));
1255 
1256 	part = BDPART(dev);
1257 	inst = BDINST(dev);
1258 
1259 	ASSERT(part < 64);
1260 	mask = (1U << part);
1261 
1262 	rw_enter(&bd_lock, RW_READER);
1263 
1264 	if ((bd = ddi_get_soft_state(bd_state, inst)) == NULL) {
1265 		rw_exit(&bd_lock);
1266 		return (ENXIO);
1267 	}
1268 
1269 	mutex_enter(&bd->d_ocmutex);
1270 	if (bd->d_open_excl & mask) {
1271 		bd->d_open_excl &= ~mask;
1272 	}
1273 	if (otyp == OTYP_LYR) {
1274 		bd->d_open_lyr[part]--;
1275 	} else {
1276 		bd->d_open_reg[otyp] &= ~mask;
1277 	}
1278 	for (int i = 0; i < 64; i++) {
1279 		if (bd->d_open_lyr[part]) {
1280 			last = B_FALSE;
1281 		}
1282 	}
1283 	for (int i = 0; last && (i < OTYP_LYR); i++) {
1284 		if (bd->d_open_reg[i]) {
1285 			last = B_FALSE;
1286 		}
1287 	}
1288 	mutex_exit(&bd->d_ocmutex);
1289 
1290 	if (last) {
1291 		cmlb_invalidate(bd->d_cmlbh, 0);
1292 	}
1293 	rw_exit(&bd_lock);
1294 
1295 	return (0);
1296 }
1297 
1298 static int
1299 bd_dump(dev_t dev, caddr_t caddr, daddr_t blkno, int nblk)
1300 {
1301 	minor_t		inst;
1302 	minor_t		part;
1303 	diskaddr_t	pstart;
1304 	diskaddr_t	psize;
1305 	bd_t		*bd;
1306 	bd_xfer_impl_t	*xi;
1307 	buf_t		*bp;
1308 	int		rv;
1309 	uint32_t	shift;
1310 	daddr_t		d_blkno;
1311 	int	d_nblk;
1312 
1313 	rw_enter(&bd_lock, RW_READER);
1314 
1315 	part = BDPART(dev);
1316 	inst = BDINST(dev);
1317 
1318 	if ((bd = ddi_get_soft_state(bd_state, inst)) == NULL) {
1319 		rw_exit(&bd_lock);
1320 		return (ENXIO);
1321 	}
1322 	shift = bd->d_blkshift;
1323 	d_blkno = blkno >> (shift - DEV_BSHIFT);
1324 	d_nblk = nblk >> (shift - DEV_BSHIFT);
1325 	/*
1326 	 * do cmlb, but do it synchronously unless we already have the
1327 	 * partition (which we probably should.)
1328 	 */
1329 	if (cmlb_partinfo(bd->d_cmlbh, part, &psize, &pstart, NULL, NULL,
1330 	    (void *)1)) {
1331 		rw_exit(&bd_lock);
1332 		return (ENXIO);
1333 	}
1334 
1335 	if ((d_blkno + d_nblk) > psize) {
1336 		rw_exit(&bd_lock);
1337 		return (EINVAL);
1338 	}
1339 	bp = getrbuf(KM_NOSLEEP);
1340 	if (bp == NULL) {
1341 		rw_exit(&bd_lock);
1342 		return (ENOMEM);
1343 	}
1344 
1345 	bp->b_bcount = nblk << DEV_BSHIFT;
1346 	bp->b_resid = bp->b_bcount;
1347 	bp->b_lblkno = blkno;
1348 	bp->b_un.b_addr = caddr;
1349 
1350 	xi = bd_xfer_alloc(bd, bp,  bd->d_ops.o_write, KM_NOSLEEP);
1351 	if (xi == NULL) {
1352 		rw_exit(&bd_lock);
1353 		freerbuf(bp);
1354 		return (ENOMEM);
1355 	}
1356 	xi->i_blkno = d_blkno + pstart;
1357 	xi->i_flags = BD_XFER_POLL;
1358 	bd_submit(bd, xi);
1359 	rw_exit(&bd_lock);
1360 
1361 	/*
1362 	 * Generally, we should have run this entirely synchronously
1363 	 * at this point and the biowait call should be a no-op.  If
1364 	 * it didn't happen this way, it's a bug in the underlying
1365 	 * driver not honoring BD_XFER_POLL.
1366 	 */
1367 	(void) biowait(bp);
1368 	rv = geterror(bp);
1369 	freerbuf(bp);
1370 	return (rv);
1371 }
1372 
1373 void
1374 bd_minphys(struct buf *bp)
1375 {
1376 	minor_t inst;
1377 	bd_t	*bd;
1378 	inst = BDINST(bp->b_edev);
1379 
1380 	bd = ddi_get_soft_state(bd_state, inst);
1381 
1382 	/*
1383 	 * In a non-debug kernel, bd_strategy will catch !bd as
1384 	 * well, and will fail nicely.
1385 	 */
1386 	ASSERT(bd);
1387 
1388 	if (bp->b_bcount > bd->d_maxxfer)
1389 		bp->b_bcount = bd->d_maxxfer;
1390 }
1391 
1392 static int
1393 bd_check_uio(dev_t dev, struct uio *uio)
1394 {
1395 	bd_t		*bd;
1396 	uint32_t	shift;
1397 
1398 	if ((bd = ddi_get_soft_state(bd_state, BDINST(dev))) == NULL) {
1399 		return (ENXIO);
1400 	}
1401 
1402 	shift = bd->d_blkshift;
1403 	if ((P2PHASE(uio->uio_loffset, (1U << shift)) != 0) ||
1404 	    (P2PHASE(uio->uio_iov->iov_len, (1U << shift)) != 0)) {
1405 		return (EINVAL);
1406 	}
1407 
1408 	return (0);
1409 }
1410 
1411 static int
1412 bd_read(dev_t dev, struct uio *uio, cred_t *credp)
1413 {
1414 	_NOTE(ARGUNUSED(credp));
1415 	int	ret = bd_check_uio(dev, uio);
1416 	if (ret != 0) {
1417 		return (ret);
1418 	}
1419 	return (physio(bd_strategy, NULL, dev, B_READ, bd_minphys, uio));
1420 }
1421 
1422 static int
1423 bd_write(dev_t dev, struct uio *uio, cred_t *credp)
1424 {
1425 	_NOTE(ARGUNUSED(credp));
1426 	int	ret = bd_check_uio(dev, uio);
1427 	if (ret != 0) {
1428 		return (ret);
1429 	}
1430 	return (physio(bd_strategy, NULL, dev, B_WRITE, bd_minphys, uio));
1431 }
1432 
1433 static int
1434 bd_aread(dev_t dev, struct aio_req *aio, cred_t *credp)
1435 {
1436 	_NOTE(ARGUNUSED(credp));
1437 	int	ret = bd_check_uio(dev, aio->aio_uio);
1438 	if (ret != 0) {
1439 		return (ret);
1440 	}
1441 	return (aphysio(bd_strategy, anocancel, dev, B_READ, bd_minphys, aio));
1442 }
1443 
1444 static int
1445 bd_awrite(dev_t dev, struct aio_req *aio, cred_t *credp)
1446 {
1447 	_NOTE(ARGUNUSED(credp));
1448 	int	ret = bd_check_uio(dev, aio->aio_uio);
1449 	if (ret != 0) {
1450 		return (ret);
1451 	}
1452 	return (aphysio(bd_strategy, anocancel, dev, B_WRITE, bd_minphys, aio));
1453 }
1454 
1455 static int
1456 bd_strategy(struct buf *bp)
1457 {
1458 	minor_t		inst;
1459 	minor_t		part;
1460 	bd_t		*bd;
1461 	diskaddr_t	p_lba;
1462 	diskaddr_t	p_nblks;
1463 	diskaddr_t	b_nblks;
1464 	bd_xfer_impl_t	*xi;
1465 	uint32_t	shift;
1466 	int		(*func)(void *, bd_xfer_t *);
1467 	diskaddr_t	lblkno;
1468 
1469 	part = BDPART(bp->b_edev);
1470 	inst = BDINST(bp->b_edev);
1471 
1472 	ASSERT(bp);
1473 
1474 	bp->b_resid = bp->b_bcount;
1475 
1476 	if ((bd = ddi_get_soft_state(bd_state, inst)) == NULL) {
1477 		bioerror(bp, ENXIO);
1478 		biodone(bp);
1479 		return (0);
1480 	}
1481 
1482 	if (cmlb_partinfo(bd->d_cmlbh, part, &p_nblks, &p_lba,
1483 	    NULL, NULL, 0)) {
1484 		bioerror(bp, ENXIO);
1485 		biodone(bp);
1486 		return (0);
1487 	}
1488 
1489 	shift = bd->d_blkshift;
1490 	lblkno = bp->b_lblkno >> (shift - DEV_BSHIFT);
1491 	if ((P2PHASE(bp->b_lblkno, (1U << (shift - DEV_BSHIFT))) != 0) ||
1492 	    (P2PHASE(bp->b_bcount, (1U << shift)) != 0) ||
1493 	    (lblkno > p_nblks)) {
1494 		bioerror(bp, EINVAL);
1495 		biodone(bp);
1496 		return (0);
1497 	}
1498 	b_nblks = bp->b_bcount >> shift;
1499 	if ((lblkno == p_nblks) || (bp->b_bcount == 0)) {
1500 		biodone(bp);
1501 		return (0);
1502 	}
1503 
1504 	if ((b_nblks + lblkno) > p_nblks) {
1505 		bp->b_resid = ((lblkno + b_nblks - p_nblks) << shift);
1506 		bp->b_bcount -= bp->b_resid;
1507 	} else {
1508 		bp->b_resid = 0;
1509 	}
1510 	func = (bp->b_flags & B_READ) ? bd->d_ops.o_read : bd->d_ops.o_write;
1511 
1512 	xi = bd_xfer_alloc(bd, bp, func, KM_NOSLEEP);
1513 	if (xi == NULL) {
1514 		xi = bd_xfer_alloc(bd, bp, func, KM_PUSHPAGE);
1515 	}
1516 	if (xi == NULL) {
1517 		/* bd_request_alloc will have done bioerror */
1518 		biodone(bp);
1519 		return (0);
1520 	}
1521 	xi->i_blkno = lblkno + p_lba;
1522 
1523 	bd_submit(bd, xi);
1524 
1525 	return (0);
1526 }
1527 
1528 static int
1529 bd_ioctl(dev_t dev, int cmd, intptr_t arg, int flag, cred_t *credp, int *rvalp)
1530 {
1531 	minor_t		inst;
1532 	uint16_t	part;
1533 	bd_t		*bd;
1534 	void		*ptr = (void *)arg;
1535 	int		rv;
1536 
1537 	part = BDPART(dev);
1538 	inst = BDINST(dev);
1539 
1540 	if ((bd = ddi_get_soft_state(bd_state, inst)) == NULL) {
1541 		return (ENXIO);
1542 	}
1543 
1544 	rv = cmlb_ioctl(bd->d_cmlbh, dev, cmd, arg, flag, credp, rvalp, 0);
1545 	if (rv != ENOTTY)
1546 		return (rv);
1547 
1548 	if (rvalp != NULL) {
1549 		/* the return value of the ioctl is 0 by default */
1550 		*rvalp = 0;
1551 	}
1552 
1553 	switch (cmd) {
1554 	case DKIOCGMEDIAINFO: {
1555 		struct dk_minfo minfo;
1556 
1557 		/* make sure our state information is current */
1558 		bd_update_state(bd);
1559 		bzero(&minfo, sizeof (minfo));
1560 		minfo.dki_media_type = DK_FIXED_DISK;
1561 		minfo.dki_lbsize = (1U << bd->d_blkshift);
1562 		minfo.dki_capacity = bd->d_numblks;
1563 		if (ddi_copyout(&minfo, ptr, sizeof (minfo), flag)) {
1564 			return (EFAULT);
1565 		}
1566 		return (0);
1567 	}
1568 	case DKIOCGMEDIAINFOEXT: {
1569 		struct dk_minfo_ext miext;
1570 		size_t len;
1571 
1572 		/* make sure our state information is current */
1573 		bd_update_state(bd);
1574 		bzero(&miext, sizeof (miext));
1575 		miext.dki_media_type = DK_FIXED_DISK;
1576 		miext.dki_lbsize = (1U << bd->d_blkshift);
1577 		miext.dki_pbsize = (1U << bd->d_pblkshift);
1578 		miext.dki_capacity = bd->d_numblks;
1579 
1580 		switch (ddi_model_convert_from(flag & FMODELS)) {
1581 		case DDI_MODEL_ILP32:
1582 			len = sizeof (struct dk_minfo_ext32);
1583 			break;
1584 		default:
1585 			len = sizeof (struct dk_minfo_ext);
1586 			break;
1587 		}
1588 
1589 		if (ddi_copyout(&miext, ptr, len, flag)) {
1590 			return (EFAULT);
1591 		}
1592 		return (0);
1593 	}
1594 	case DKIOCINFO: {
1595 		struct dk_cinfo cinfo;
1596 		bzero(&cinfo, sizeof (cinfo));
1597 		cinfo.dki_ctype = DKC_BLKDEV;
1598 		cinfo.dki_cnum = ddi_get_instance(ddi_get_parent(bd->d_dip));
1599 		(void) snprintf(cinfo.dki_cname, sizeof (cinfo.dki_cname),
1600 		    "%s", ddi_driver_name(ddi_get_parent(bd->d_dip)));
1601 		(void) snprintf(cinfo.dki_dname, sizeof (cinfo.dki_dname),
1602 		    "%s", ddi_driver_name(bd->d_dip));
1603 		cinfo.dki_unit = inst;
1604 		cinfo.dki_flags = DKI_FMTVOL;
1605 		cinfo.dki_partition = part;
1606 		cinfo.dki_maxtransfer = bd->d_maxxfer / DEV_BSIZE;
1607 		cinfo.dki_addr = 0;
1608 		cinfo.dki_slave = 0;
1609 		cinfo.dki_space = 0;
1610 		cinfo.dki_prio = 0;
1611 		cinfo.dki_vec = 0;
1612 		if (ddi_copyout(&cinfo, ptr, sizeof (cinfo), flag)) {
1613 			return (EFAULT);
1614 		}
1615 		return (0);
1616 	}
1617 	case DKIOCREMOVABLE: {
1618 		int i;
1619 		i = bd->d_removable ? 1 : 0;
1620 		if (ddi_copyout(&i, ptr, sizeof (i), flag)) {
1621 			return (EFAULT);
1622 		}
1623 		return (0);
1624 	}
1625 	case DKIOCHOTPLUGGABLE: {
1626 		int i;
1627 		i = bd->d_hotpluggable ? 1 : 0;
1628 		if (ddi_copyout(&i, ptr, sizeof (i), flag)) {
1629 			return (EFAULT);
1630 		}
1631 		return (0);
1632 	}
1633 	case DKIOCREADONLY: {
1634 		int i;
1635 		i = bd->d_rdonly ? 1 : 0;
1636 		if (ddi_copyout(&i, ptr, sizeof (i), flag)) {
1637 			return (EFAULT);
1638 		}
1639 		return (0);
1640 	}
1641 	case DKIOCSOLIDSTATE: {
1642 		int i;
1643 		i = bd->d_ssd ? 1 : 0;
1644 		if (ddi_copyout(&i, ptr, sizeof (i), flag)) {
1645 			return (EFAULT);
1646 		}
1647 		return (0);
1648 	}
1649 	case DKIOCSTATE: {
1650 		enum dkio_state	state;
1651 		if (ddi_copyin(ptr, &state, sizeof (state), flag)) {
1652 			return (EFAULT);
1653 		}
1654 		if ((rv = bd_check_state(bd, &state)) != 0) {
1655 			return (rv);
1656 		}
1657 		if (ddi_copyout(&state, ptr, sizeof (state), flag)) {
1658 			return (EFAULT);
1659 		}
1660 		return (0);
1661 	}
1662 	case DKIOCFLUSHWRITECACHE: {
1663 		struct dk_callback *dkc = NULL;
1664 
1665 		if (flag & FKIOCTL)
1666 			dkc = (void *)arg;
1667 
1668 		rv = bd_flush_write_cache(bd, dkc);
1669 		return (rv);
1670 	}
1671 	case DKIOCFREE: {
1672 		dkioc_free_list_t *dfl = NULL;
1673 
1674 		/*
1675 		 * Check free space support early to avoid copyin/allocation
1676 		 * when unnecessary.
1677 		 */
1678 		if (!CAN_FREESPACE(bd))
1679 			return (ENOTSUP);
1680 
1681 		rv = dfl_copyin(ptr, &dfl, flag, KM_SLEEP);
1682 		if (rv != 0)
1683 			return (rv);
1684 
1685 		/*
1686 		 * bd_free_space() consumes 'dfl'. bd_free_space() will
1687 		 * call dfl_iter() which will normally try to pass dfl through
1688 		 * to bd_free_space_cb() which attaches dfl to the bd_xfer_t
1689 		 * that is then queued for the underlying driver. Once the
1690 		 * driver processes the request, the bd_xfer_t instance is
1691 		 * disposed of, including any attached dkioc_free_list_t.
1692 		 *
1693 		 * If dfl cannot be processed by the underlying driver due to
1694 		 * size or alignment requirements of the driver, dfl_iter()
1695 		 * will replace dfl with one or more new dkioc_free_list_t
1696 		 * instances with the correct alignment and sizes for the driver
1697 		 * (and free the original dkioc_free_list_t).
1698 		 */
1699 		rv = bd_free_space(dev, bd, dfl);
1700 		return (rv);
1701 	}
1702 
1703 	case DKIOC_CANFREE: {
1704 		boolean_t supported = CAN_FREESPACE(bd);
1705 
1706 		if (ddi_copyout(&supported, (void *)arg, sizeof (supported),
1707 		    flag) != 0) {
1708 			return (EFAULT);
1709 		}
1710 
1711 		return (0);
1712 	}
1713 
1714 	default:
1715 		break;
1716 
1717 	}
1718 	return (ENOTTY);
1719 }
1720 
1721 static int
1722 bd_prop_op(dev_t dev, dev_info_t *dip, ddi_prop_op_t prop_op, int mod_flags,
1723     char *name, caddr_t valuep, int *lengthp)
1724 {
1725 	bd_t	*bd;
1726 
1727 	bd = ddi_get_soft_state(bd_state, ddi_get_instance(dip));
1728 	if (bd == NULL)
1729 		return (ddi_prop_op(dev, dip, prop_op, mod_flags,
1730 		    name, valuep, lengthp));
1731 
1732 	return (cmlb_prop_op(bd->d_cmlbh, dev, dip, prop_op, mod_flags, name,
1733 	    valuep, lengthp, BDPART(dev), 0));
1734 }
1735 
1736 
1737 static int
1738 bd_tg_rdwr(dev_info_t *dip, uchar_t cmd, void *bufaddr, diskaddr_t start,
1739     size_t length, void *tg_cookie)
1740 {
1741 	bd_t		*bd;
1742 	buf_t		*bp;
1743 	bd_xfer_impl_t	*xi;
1744 	int		rv;
1745 	int		(*func)(void *, bd_xfer_t *);
1746 	int		kmflag;
1747 
1748 	/*
1749 	 * If we are running in polled mode (such as during dump(9e)
1750 	 * execution), then we cannot sleep for kernel allocations.
1751 	 */
1752 	kmflag = tg_cookie ? KM_NOSLEEP : KM_SLEEP;
1753 
1754 	bd = ddi_get_soft_state(bd_state, ddi_get_instance(dip));
1755 
1756 	if (P2PHASE(length, (1U << bd->d_blkshift)) != 0) {
1757 		/* We can only transfer whole blocks at a time! */
1758 		return (EINVAL);
1759 	}
1760 
1761 	if ((bp = getrbuf(kmflag)) == NULL) {
1762 		return (ENOMEM);
1763 	}
1764 
1765 	switch (cmd) {
1766 	case TG_READ:
1767 		bp->b_flags = B_READ;
1768 		func = bd->d_ops.o_read;
1769 		break;
1770 	case TG_WRITE:
1771 		bp->b_flags = B_WRITE;
1772 		func = bd->d_ops.o_write;
1773 		break;
1774 	default:
1775 		freerbuf(bp);
1776 		return (EINVAL);
1777 	}
1778 
1779 	bp->b_un.b_addr = bufaddr;
1780 	bp->b_bcount = length;
1781 	xi = bd_xfer_alloc(bd, bp, func, kmflag);
1782 	if (xi == NULL) {
1783 		rv = geterror(bp);
1784 		freerbuf(bp);
1785 		return (rv);
1786 	}
1787 	xi->i_flags = tg_cookie ? BD_XFER_POLL : 0;
1788 	xi->i_blkno = start;
1789 	bd_submit(bd, xi);
1790 	(void) biowait(bp);
1791 	rv = geterror(bp);
1792 	freerbuf(bp);
1793 
1794 	return (rv);
1795 }
1796 
1797 static int
1798 bd_tg_getinfo(dev_info_t *dip, int cmd, void *arg, void *tg_cookie)
1799 {
1800 	bd_t		*bd;
1801 
1802 	_NOTE(ARGUNUSED(tg_cookie));
1803 	bd = ddi_get_soft_state(bd_state, ddi_get_instance(dip));
1804 
1805 	switch (cmd) {
1806 	case TG_GETPHYGEOM:
1807 	case TG_GETVIRTGEOM:
1808 		/*
1809 		 * We don't have any "geometry" as such, let cmlb
1810 		 * fabricate something.
1811 		 */
1812 		return (ENOTTY);
1813 
1814 	case TG_GETCAPACITY:
1815 		bd_update_state(bd);
1816 		*(diskaddr_t *)arg = bd->d_numblks;
1817 		return (0);
1818 
1819 	case TG_GETBLOCKSIZE:
1820 		*(uint32_t *)arg = (1U << bd->d_blkshift);
1821 		return (0);
1822 
1823 	case TG_GETATTR:
1824 		/*
1825 		 * It turns out that cmlb really doesn't do much for
1826 		 * non-writable media, but lets make the information
1827 		 * available for it in case it does more in the
1828 		 * future.  (The value is currently used for
1829 		 * triggering special behavior for CD-ROMs.)
1830 		 */
1831 		bd_update_state(bd);
1832 		((tg_attribute_t *)arg)->media_is_writable =
1833 		    bd->d_rdonly ? B_FALSE : B_TRUE;
1834 		((tg_attribute_t *)arg)->media_is_solid_state = bd->d_ssd;
1835 		((tg_attribute_t *)arg)->media_is_rotational = B_FALSE;
1836 		return (0);
1837 
1838 	default:
1839 		return (EINVAL);
1840 	}
1841 }
1842 
1843 
1844 static void
1845 bd_sched(bd_t *bd, bd_queue_t *bq)
1846 {
1847 	bd_xfer_impl_t	*xi;
1848 	struct buf	*bp;
1849 	int		rv;
1850 
1851 	mutex_enter(&bq->q_iomutex);
1852 
1853 	while ((bq->q_qactive < bq->q_qsize) &&
1854 	    ((xi = list_remove_head(&bq->q_waitq)) != NULL)) {
1855 		mutex_enter(&bd->d_ksmutex);
1856 		kstat_waitq_to_runq(bd->d_kiop);
1857 		mutex_exit(&bd->d_ksmutex);
1858 
1859 		bq->q_qactive++;
1860 		list_insert_tail(&bq->q_runq, xi);
1861 
1862 		/*
1863 		 * Submit the job to the driver.  We drop the I/O mutex
1864 		 * so that we can deal with the case where the driver
1865 		 * completion routine calls back into us synchronously.
1866 		 */
1867 
1868 		mutex_exit(&bq->q_iomutex);
1869 
1870 		rv = xi->i_func(bd->d_private, &xi->i_public);
1871 		if (rv != 0) {
1872 			bp = xi->i_bp;
1873 			bioerror(bp, rv);
1874 			biodone(bp);
1875 
1876 			atomic_inc_32(&bd->d_kerr->bd_transerrs.value.ui32);
1877 
1878 			mutex_enter(&bq->q_iomutex);
1879 
1880 			mutex_enter(&bd->d_ksmutex);
1881 			kstat_runq_exit(bd->d_kiop);
1882 			mutex_exit(&bd->d_ksmutex);
1883 
1884 			bq->q_qactive--;
1885 			list_remove(&bq->q_runq, xi);
1886 			bd_xfer_free(xi);
1887 		} else {
1888 			mutex_enter(&bq->q_iomutex);
1889 		}
1890 	}
1891 
1892 	mutex_exit(&bq->q_iomutex);
1893 }
1894 
1895 static void
1896 bd_submit(bd_t *bd, bd_xfer_impl_t *xi)
1897 {
1898 	uint64_t	nv = atomic_inc_64_nv(&bd->d_io_counter);
1899 	unsigned	q = nv % bd->d_qcount;
1900 	bd_queue_t	*bq = &bd->d_queues[q];
1901 
1902 	xi->i_bq = bq;
1903 	xi->i_qnum = q;
1904 
1905 	mutex_enter(&bq->q_iomutex);
1906 
1907 	list_insert_tail(&bq->q_waitq, xi);
1908 
1909 	mutex_enter(&bd->d_ksmutex);
1910 	kstat_waitq_enter(bd->d_kiop);
1911 	mutex_exit(&bd->d_ksmutex);
1912 
1913 	mutex_exit(&bq->q_iomutex);
1914 
1915 	bd_sched(bd, bq);
1916 }
1917 
1918 static void
1919 bd_runq_exit(bd_xfer_impl_t *xi, int err)
1920 {
1921 	bd_t		*bd = xi->i_bd;
1922 	buf_t		*bp = xi->i_bp;
1923 	bd_queue_t	*bq = xi->i_bq;
1924 
1925 	mutex_enter(&bq->q_iomutex);
1926 	bq->q_qactive--;
1927 
1928 	mutex_enter(&bd->d_ksmutex);
1929 	kstat_runq_exit(bd->d_kiop);
1930 	mutex_exit(&bd->d_ksmutex);
1931 
1932 	list_remove(&bq->q_runq, xi);
1933 	mutex_exit(&bq->q_iomutex);
1934 
1935 	if (err == 0) {
1936 		if (bp->b_flags & B_READ) {
1937 			atomic_inc_uint(&bd->d_kiop->reads);
1938 			atomic_add_64((uint64_t *)&bd->d_kiop->nread,
1939 			    bp->b_bcount - xi->i_resid);
1940 		} else {
1941 			atomic_inc_uint(&bd->d_kiop->writes);
1942 			atomic_add_64((uint64_t *)&bd->d_kiop->nwritten,
1943 			    bp->b_bcount - xi->i_resid);
1944 		}
1945 	}
1946 	bd_sched(bd, bq);
1947 }
1948 
1949 static void
1950 bd_dle_sysevent_task(void *arg)
1951 {
1952 	nvlist_t *attr = NULL;
1953 	char *path = NULL;
1954 	bd_t *bd = arg;
1955 	dev_info_t *dip = bd->d_dip;
1956 	size_t n;
1957 
1958 	mutex_enter(&bd->d_dle_mutex);
1959 	bd->d_dle_state &= ~BD_DLE_PENDING;
1960 	bd->d_dle_state |= BD_DLE_RUNNING;
1961 	mutex_exit(&bd->d_dle_mutex);
1962 
1963 	dev_err(dip, CE_NOTE, "!dynamic LUN expansion");
1964 
1965 	if (nvlist_alloc(&attr, NV_UNIQUE_NAME_TYPE, KM_SLEEP) != 0) {
1966 		mutex_enter(&bd->d_dle_mutex);
1967 		bd->d_dle_state &= ~(BD_DLE_RUNNING|BD_DLE_PENDING);
1968 		mutex_exit(&bd->d_dle_mutex);
1969 		return;
1970 	}
1971 
1972 	path = kmem_zalloc(MAXPATHLEN, KM_SLEEP);
1973 
1974 	n = snprintf(path, MAXPATHLEN, "/devices");
1975 	(void) ddi_pathname(dip, path + n);
1976 	n = strlen(path);
1977 	n += snprintf(path + n, MAXPATHLEN - n, ":x");
1978 
1979 	for (;;) {
1980 		/*
1981 		 * On receipt of this event, the ZFS sysevent module will scan
1982 		 * active zpools for child vdevs matching this physical path.
1983 		 * In order to catch both whole disk pools and those with an
1984 		 * EFI boot partition, generate separate sysevents for minor
1985 		 * node 'a' and 'b'.
1986 		 */
1987 		for (char c = 'a'; c < 'c'; c++) {
1988 			path[n - 1] = c;
1989 
1990 			if (nvlist_add_string(attr, DEV_PHYS_PATH, path) != 0)
1991 				break;
1992 
1993 			(void) ddi_log_sysevent(dip, DDI_VENDOR_SUNW,
1994 			    EC_DEV_STATUS, ESC_DEV_DLE, attr, NULL, DDI_SLEEP);
1995 		}
1996 
1997 		mutex_enter(&bd->d_dle_mutex);
1998 		if ((bd->d_dle_state & BD_DLE_PENDING) == 0) {
1999 			bd->d_dle_state &= ~BD_DLE_RUNNING;
2000 			mutex_exit(&bd->d_dle_mutex);
2001 			break;
2002 		}
2003 		bd->d_dle_state &= ~BD_DLE_PENDING;
2004 		mutex_exit(&bd->d_dle_mutex);
2005 	}
2006 
2007 	nvlist_free(attr);
2008 	kmem_free(path, MAXPATHLEN);
2009 }
2010 
2011 static void
2012 bd_update_state(bd_t *bd)
2013 {
2014 	enum	dkio_state	state = DKIO_INSERTED;
2015 	boolean_t		docmlb = B_FALSE;
2016 	bd_media_t		media;
2017 
2018 	bzero(&media, sizeof (media));
2019 
2020 	mutex_enter(&bd->d_statemutex);
2021 	if (bd->d_ops.o_media_info(bd->d_private, &media) != 0) {
2022 		bd->d_numblks = 0;
2023 		state = DKIO_EJECTED;
2024 		goto done;
2025 	}
2026 
2027 	if ((media.m_blksize < 512) ||
2028 	    (!ISP2(media.m_blksize)) ||
2029 	    (P2PHASE(bd->d_maxxfer, media.m_blksize))) {
2030 		dev_err(bd->d_dip, CE_WARN, "Invalid media block size (%d)",
2031 		    media.m_blksize);
2032 		/*
2033 		 * We can't use the media, treat it as not present.
2034 		 */
2035 		state = DKIO_EJECTED;
2036 		bd->d_numblks = 0;
2037 		goto done;
2038 	}
2039 
2040 	if (((1U << bd->d_blkshift) != media.m_blksize) ||
2041 	    (bd->d_numblks != media.m_nblks)) {
2042 		/* Device size changed */
2043 		docmlb = B_TRUE;
2044 	}
2045 
2046 	bd->d_blkshift = ddi_ffs(media.m_blksize) - 1;
2047 	bd->d_pblkshift = bd->d_blkshift;
2048 	bd->d_numblks = media.m_nblks;
2049 	bd->d_rdonly = media.m_readonly;
2050 	bd->d_ssd = media.m_solidstate;
2051 
2052 	/*
2053 	 * Only use the supplied physical block size if it is non-zero,
2054 	 * greater or equal to the block size, and a power of 2. Ignore it
2055 	 * if not, it's just informational and we can still use the media.
2056 	 */
2057 	if ((media.m_pblksize != 0) &&
2058 	    (media.m_pblksize >= media.m_blksize) &&
2059 	    (ISP2(media.m_pblksize)))
2060 		bd->d_pblkshift = ddi_ffs(media.m_pblksize) - 1;
2061 
2062 done:
2063 	if (state != bd->d_state) {
2064 		bd->d_state = state;
2065 		cv_broadcast(&bd->d_statecv);
2066 		docmlb = B_TRUE;
2067 	}
2068 	mutex_exit(&bd->d_statemutex);
2069 
2070 	bd->d_kerr->bd_capacity.value.ui64 = bd->d_numblks << bd->d_blkshift;
2071 
2072 	if (docmlb) {
2073 		if (state == DKIO_INSERTED) {
2074 			(void) cmlb_validate(bd->d_cmlbh, 0, 0);
2075 
2076 			mutex_enter(&bd->d_dle_mutex);
2077 			/*
2078 			 * If there is already an event pending, there's
2079 			 * nothing to do; we coalesce multiple events.
2080 			 */
2081 			if ((bd->d_dle_state & BD_DLE_PENDING) == 0) {
2082 				if ((bd->d_dle_state & BD_DLE_RUNNING) == 0) {
2083 					taskq_dispatch_ent(bd_taskq,
2084 					    bd_dle_sysevent_task, bd, 0,
2085 					    &bd->d_dle_ent);
2086 				}
2087 				bd->d_dle_state |= BD_DLE_PENDING;
2088 			}
2089 			mutex_exit(&bd->d_dle_mutex);
2090 		} else {
2091 			cmlb_invalidate(bd->d_cmlbh, 0);
2092 		}
2093 	}
2094 }
2095 
2096 static int
2097 bd_check_state(bd_t *bd, enum dkio_state *state)
2098 {
2099 	clock_t		when;
2100 
2101 	for (;;) {
2102 
2103 		bd_update_state(bd);
2104 
2105 		mutex_enter(&bd->d_statemutex);
2106 
2107 		if (bd->d_state != *state) {
2108 			*state = bd->d_state;
2109 			mutex_exit(&bd->d_statemutex);
2110 			break;
2111 		}
2112 
2113 		when = drv_usectohz(1000000);
2114 		if (cv_reltimedwait_sig(&bd->d_statecv, &bd->d_statemutex,
2115 		    when, TR_CLOCK_TICK) == 0) {
2116 			mutex_exit(&bd->d_statemutex);
2117 			return (EINTR);
2118 		}
2119 
2120 		mutex_exit(&bd->d_statemutex);
2121 	}
2122 
2123 	return (0);
2124 }
2125 
2126 static int
2127 bd_flush_write_cache_done(struct buf *bp)
2128 {
2129 	struct dk_callback *dc = (void *)bp->b_private;
2130 
2131 	(*dc->dkc_callback)(dc->dkc_cookie, geterror(bp));
2132 	kmem_free(dc, sizeof (*dc));
2133 	freerbuf(bp);
2134 	return (0);
2135 }
2136 
2137 static int
2138 bd_flush_write_cache(bd_t *bd, struct dk_callback *dkc)
2139 {
2140 	buf_t			*bp;
2141 	struct dk_callback	*dc;
2142 	bd_xfer_impl_t		*xi;
2143 	int			rv;
2144 
2145 	if (bd->d_ops.o_sync_cache == NULL) {
2146 		return (ENOTSUP);
2147 	}
2148 	if ((bp = getrbuf(KM_SLEEP)) == NULL) {
2149 		return (ENOMEM);
2150 	}
2151 	bp->b_resid = 0;
2152 	bp->b_bcount = 0;
2153 
2154 	xi = bd_xfer_alloc(bd, bp, bd->d_ops.o_sync_cache, KM_SLEEP);
2155 	if (xi == NULL) {
2156 		rv = geterror(bp);
2157 		freerbuf(bp);
2158 		return (rv);
2159 	}
2160 
2161 	/* Make an asynchronous flush, but only if there is a callback */
2162 	if (dkc != NULL && dkc->dkc_callback != NULL) {
2163 		/* Make a private copy of the callback structure */
2164 		dc = kmem_alloc(sizeof (*dc), KM_SLEEP);
2165 		*dc = *dkc;
2166 		bp->b_private = dc;
2167 		bp->b_iodone = bd_flush_write_cache_done;
2168 
2169 		bd_submit(bd, xi);
2170 		return (0);
2171 	}
2172 
2173 	/* In case there is no callback, perform a synchronous flush */
2174 	bd_submit(bd, xi);
2175 	(void) biowait(bp);
2176 	rv = geterror(bp);
2177 	freerbuf(bp);
2178 
2179 	return (rv);
2180 }
2181 
2182 static int
2183 bd_free_space_done(struct buf *bp)
2184 {
2185 	freerbuf(bp);
2186 	return (0);
2187 }
2188 
2189 static int
2190 bd_free_space_cb(dkioc_free_list_t *dfl, void *arg, int kmflag)
2191 {
2192 	bd_t		*bd = arg;
2193 	buf_t		*bp = NULL;
2194 	bd_xfer_impl_t	*xi = NULL;
2195 	boolean_t	sync = DFL_ISSYNC(dfl) ?  B_TRUE : B_FALSE;
2196 	int		rv = 0;
2197 
2198 	bp = getrbuf(KM_SLEEP);
2199 	bp->b_resid = 0;
2200 	bp->b_bcount = 0;
2201 	bp->b_lblkno = 0;
2202 
2203 	xi = bd_xfer_alloc(bd, bp, bd->d_ops.o_free_space, kmflag);
2204 	xi->i_dfl = dfl;
2205 
2206 	if (!sync) {
2207 		bp->b_iodone = bd_free_space_done;
2208 		bd_submit(bd, xi);
2209 		return (0);
2210 	}
2211 
2212 	xi->i_flags |= BD_XFER_POLL;
2213 	bd_submit(bd, xi);
2214 
2215 	(void) biowait(bp);
2216 	rv = geterror(bp);
2217 	freerbuf(bp);
2218 
2219 	return (rv);
2220 }
2221 
2222 static int
2223 bd_free_space(dev_t dev, bd_t *bd, dkioc_free_list_t *dfl)
2224 {
2225 	diskaddr_t p_len, p_offset;
2226 	uint64_t offset_bytes, len_bytes;
2227 	minor_t part = BDPART(dev);
2228 	const uint_t bshift = bd->d_blkshift;
2229 	dkioc_free_info_t dfi = {
2230 		.dfi_bshift = bshift,
2231 		.dfi_align = bd->d_free_align << bshift,
2232 		.dfi_max_bytes = bd->d_max_free_blks << bshift,
2233 		.dfi_max_ext = bd->d_max_free_seg,
2234 		.dfi_max_ext_bytes = bd->d_max_free_seg_blks << bshift,
2235 	};
2236 
2237 	if (cmlb_partinfo(bd->d_cmlbh, part, &p_len, &p_offset, NULL,
2238 	    NULL, 0) != 0) {
2239 		dfl_free(dfl);
2240 		return (ENXIO);
2241 	}
2242 
2243 	/*
2244 	 * bd_ioctl created our own copy of dfl, so we can modify as
2245 	 * necessary
2246 	 */
2247 	offset_bytes = (uint64_t)p_offset << bshift;
2248 	len_bytes = (uint64_t)p_len << bshift;
2249 
2250 	dfl->dfl_offset += offset_bytes;
2251 	if (dfl->dfl_offset < offset_bytes) {
2252 		dfl_free(dfl);
2253 		return (EOVERFLOW);
2254 	}
2255 
2256 	return (dfl_iter(dfl, &dfi, offset_bytes + len_bytes, bd_free_space_cb,
2257 	    bd, KM_SLEEP));
2258 }
2259 
2260 /*
2261  * Nexus support.
2262  */
2263 int
2264 bd_bus_ctl(dev_info_t *dip, dev_info_t *rdip, ddi_ctl_enum_t ctlop,
2265     void *arg, void *result)
2266 {
2267 	bd_handle_t	hdl;
2268 
2269 	switch (ctlop) {
2270 	case DDI_CTLOPS_REPORTDEV:
2271 		cmn_err(CE_CONT, "?Block device: %s@%s, %s%d\n",
2272 		    ddi_node_name(rdip), ddi_get_name_addr(rdip),
2273 		    ddi_driver_name(rdip), ddi_get_instance(rdip));
2274 		return (DDI_SUCCESS);
2275 
2276 	case DDI_CTLOPS_INITCHILD:
2277 		hdl = ddi_get_parent_data((dev_info_t *)arg);
2278 		if (hdl == NULL) {
2279 			return (DDI_NOT_WELL_FORMED);
2280 		}
2281 		ddi_set_name_addr((dev_info_t *)arg, hdl->h_addr);
2282 		return (DDI_SUCCESS);
2283 
2284 	case DDI_CTLOPS_UNINITCHILD:
2285 		ddi_set_name_addr((dev_info_t *)arg, NULL);
2286 		ndi_prop_remove_all((dev_info_t *)arg);
2287 		return (DDI_SUCCESS);
2288 
2289 	default:
2290 		return (ddi_ctlops(dip, rdip, ctlop, arg, result));
2291 	}
2292 }
2293 
2294 /*
2295  * Functions for device drivers.
2296  */
2297 bd_handle_t
2298 bd_alloc_handle(void *private, bd_ops_t *ops, ddi_dma_attr_t *dma, int kmflag)
2299 {
2300 	bd_handle_t	hdl;
2301 
2302 	switch (ops->o_version) {
2303 	case BD_OPS_VERSION_0:
2304 	case BD_OPS_VERSION_1:
2305 	case BD_OPS_VERSION_2:
2306 		break;
2307 
2308 	default:
2309 		/* Unsupported version */
2310 		return (NULL);
2311 	}
2312 
2313 	hdl = kmem_zalloc(sizeof (*hdl), kmflag);
2314 	if (hdl == NULL) {
2315 		return (NULL);
2316 	}
2317 
2318 	switch (ops->o_version) {
2319 	case BD_OPS_VERSION_2:
2320 		hdl->h_ops.o_free_space = ops->o_free_space;
2321 		/*FALLTHRU*/
2322 	case BD_OPS_VERSION_1:
2323 	case BD_OPS_VERSION_0:
2324 		hdl->h_ops.o_drive_info = ops->o_drive_info;
2325 		hdl->h_ops.o_media_info = ops->o_media_info;
2326 		hdl->h_ops.o_devid_init = ops->o_devid_init;
2327 		hdl->h_ops.o_sync_cache = ops->o_sync_cache;
2328 		hdl->h_ops.o_read = ops->o_read;
2329 		hdl->h_ops.o_write = ops->o_write;
2330 		break;
2331 	}
2332 
2333 	hdl->h_dma = dma;
2334 	hdl->h_private = private;
2335 
2336 	return (hdl);
2337 }
2338 
2339 void
2340 bd_free_handle(bd_handle_t hdl)
2341 {
2342 	kmem_free(hdl, sizeof (*hdl));
2343 }
2344 
2345 int
2346 bd_attach_handle(dev_info_t *dip, bd_handle_t hdl)
2347 {
2348 	bd_drive_t	drive = { 0 };
2349 	dev_info_t	*child;
2350 	size_t		len;
2351 
2352 	/*
2353 	 * It's not an error if bd_attach_handle() is called on a handle that
2354 	 * already is attached. We just ignore the request to attach and return.
2355 	 * This way drivers using blkdev don't have to keep track about blkdev
2356 	 * state, they can just call this function to make sure it attached.
2357 	 */
2358 	if (hdl->h_child != NULL) {
2359 		return (DDI_SUCCESS);
2360 	}
2361 
2362 	/* if drivers don't override this, make it assume none */
2363 	drive.d_lun = -1;
2364 	hdl->h_ops.o_drive_info(hdl->h_private, &drive);
2365 
2366 	hdl->h_parent = dip;
2367 	hdl->h_name = "blkdev";
2368 
2369 	/*
2370 	 * Prefer the GUID over the EUI64.
2371 	 */
2372 	if (*(uint64_t *)drive.d_guid != 0 ||
2373 	    *((uint64_t *)drive.d_guid + 1) != 0) {
2374 		len = snprintf(hdl->h_addr, sizeof (hdl->h_addr),
2375 		    "w%02X%02X%02X%02X%02X%02X%02X%02X"
2376 		    "%02X%02X%02X%02X%02X%02X%02X%02X",
2377 		    drive.d_guid[0], drive.d_guid[1], drive.d_guid[2],
2378 		    drive.d_guid[3], drive.d_guid[4], drive.d_guid[5],
2379 		    drive.d_guid[6], drive.d_guid[7], drive.d_guid[8],
2380 		    drive.d_guid[9], drive.d_guid[10], drive.d_guid[11],
2381 		    drive.d_guid[12], drive.d_guid[13], drive.d_guid[14],
2382 		    drive.d_guid[15]);
2383 	} else if (*(uint64_t *)drive.d_eui64 != 0) {
2384 		len = snprintf(hdl->h_addr, sizeof (hdl->h_addr),
2385 		    "w%02X%02X%02X%02X%02X%02X%02X%02X",
2386 		    drive.d_eui64[0], drive.d_eui64[1],
2387 		    drive.d_eui64[2], drive.d_eui64[3],
2388 		    drive.d_eui64[4], drive.d_eui64[5],
2389 		    drive.d_eui64[6], drive.d_eui64[7]);
2390 	} else {
2391 		len = snprintf(hdl->h_addr, sizeof (hdl->h_addr),
2392 		    "%X", drive.d_target);
2393 	}
2394 
2395 	VERIFY(len <= sizeof (hdl->h_addr));
2396 
2397 	if (drive.d_lun >= 0) {
2398 		(void) snprintf(hdl->h_addr + len, sizeof (hdl->h_addr) - len,
2399 		    ",%X", drive.d_lun);
2400 	}
2401 
2402 	if (ndi_devi_alloc(dip, hdl->h_name, (pnode_t)DEVI_SID_NODEID,
2403 	    &child) != NDI_SUCCESS) {
2404 		cmn_err(CE_WARN, "%s%d: unable to allocate node %s@%s",
2405 		    ddi_driver_name(dip), ddi_get_instance(dip),
2406 		    "blkdev", hdl->h_addr);
2407 		return (DDI_FAILURE);
2408 	}
2409 
2410 	ddi_set_parent_data(child, hdl);
2411 	hdl->h_child = child;
2412 
2413 	if (ndi_devi_online(child, 0) != NDI_SUCCESS) {
2414 		cmn_err(CE_WARN, "%s%d: failed bringing node %s@%s online",
2415 		    ddi_driver_name(dip), ddi_get_instance(dip),
2416 		    hdl->h_name, hdl->h_addr);
2417 		(void) ndi_devi_free(child);
2418 		hdl->h_child = NULL;
2419 		return (DDI_FAILURE);
2420 	}
2421 
2422 	return (DDI_SUCCESS);
2423 }
2424 
2425 int
2426 bd_detach_handle(bd_handle_t hdl)
2427 {
2428 	int	rv;
2429 	char	*devnm;
2430 
2431 	/*
2432 	 * It's not an error if bd_detach_handle() is called on a handle that
2433 	 * already is detached. We just ignore the request to detach and return.
2434 	 * This way drivers using blkdev don't have to keep track about blkdev
2435 	 * state, they can just call this function to make sure it detached.
2436 	 */
2437 	if (hdl->h_child == NULL) {
2438 		return (DDI_SUCCESS);
2439 	}
2440 	ndi_devi_enter(hdl->h_parent);
2441 	if (i_ddi_node_state(hdl->h_child) < DS_INITIALIZED) {
2442 		rv = ddi_remove_child(hdl->h_child, 0);
2443 	} else {
2444 		devnm = kmem_alloc(MAXNAMELEN + 1, KM_SLEEP);
2445 		(void) ddi_deviname(hdl->h_child, devnm);
2446 		(void) devfs_clean(hdl->h_parent, devnm + 1, DV_CLEAN_FORCE);
2447 		rv = ndi_devi_unconfig_one(hdl->h_parent, devnm + 1, NULL,
2448 		    NDI_DEVI_REMOVE | NDI_UNCONFIG);
2449 		kmem_free(devnm, MAXNAMELEN + 1);
2450 	}
2451 	if (rv == 0) {
2452 		hdl->h_child = NULL;
2453 	}
2454 
2455 	ndi_devi_exit(hdl->h_parent);
2456 	return (rv == NDI_SUCCESS ? DDI_SUCCESS : DDI_FAILURE);
2457 }
2458 
2459 void
2460 bd_xfer_done(bd_xfer_t *xfer, int err)
2461 {
2462 	bd_xfer_impl_t	*xi = (void *)xfer;
2463 	buf_t		*bp = xi->i_bp;
2464 	int		rv = DDI_SUCCESS;
2465 	bd_t		*bd = xi->i_bd;
2466 	size_t		len;
2467 
2468 	if (err != 0) {
2469 		bd_runq_exit(xi, err);
2470 		atomic_inc_32(&bd->d_kerr->bd_harderrs.value.ui32);
2471 
2472 		bp->b_resid += xi->i_resid;
2473 		bd_xfer_free(xi);
2474 		bioerror(bp, err);
2475 		biodone(bp);
2476 		return;
2477 	}
2478 
2479 	xi->i_cur_win++;
2480 	xi->i_resid -= xi->i_len;
2481 
2482 	if (xi->i_resid == 0) {
2483 		/* Job completed succcessfully! */
2484 		bd_runq_exit(xi, 0);
2485 
2486 		bd_xfer_free(xi);
2487 		biodone(bp);
2488 		return;
2489 	}
2490 
2491 	xi->i_blkno += xi->i_nblks;
2492 
2493 	if (bd->d_use_dma) {
2494 		/* More transfer still pending... advance to next DMA window. */
2495 		rv = ddi_dma_getwin(xi->i_dmah, xi->i_cur_win,
2496 		    &xi->i_offset, &len, &xi->i_dmac, &xi->i_ndmac);
2497 	} else {
2498 		/* Advance memory window. */
2499 		xi->i_kaddr += xi->i_len;
2500 		xi->i_offset += xi->i_len;
2501 		len = min(bp->b_bcount - xi->i_offset, bd->d_maxxfer);
2502 	}
2503 
2504 
2505 	if ((rv != DDI_SUCCESS) ||
2506 	    (P2PHASE(len, (1U << xi->i_blkshift)) != 0)) {
2507 		bd_runq_exit(xi, EFAULT);
2508 
2509 		bp->b_resid += xi->i_resid;
2510 		bd_xfer_free(xi);
2511 		bioerror(bp, EFAULT);
2512 		biodone(bp);
2513 		return;
2514 	}
2515 	xi->i_len = len;
2516 	xi->i_nblks = len >> xi->i_blkshift;
2517 
2518 	/* Submit next window to hardware. */
2519 	rv = xi->i_func(bd->d_private, &xi->i_public);
2520 	if (rv != 0) {
2521 		bd_runq_exit(xi, rv);
2522 
2523 		atomic_inc_32(&bd->d_kerr->bd_transerrs.value.ui32);
2524 
2525 		bp->b_resid += xi->i_resid;
2526 		bd_xfer_free(xi);
2527 		bioerror(bp, rv);
2528 		biodone(bp);
2529 	}
2530 }
2531 
2532 void
2533 bd_error(bd_xfer_t *xfer, int error)
2534 {
2535 	bd_xfer_impl_t	*xi = (void *)xfer;
2536 	bd_t		*bd = xi->i_bd;
2537 
2538 	switch (error) {
2539 	case BD_ERR_MEDIA:
2540 		atomic_inc_32(&bd->d_kerr->bd_rq_media_err.value.ui32);
2541 		break;
2542 	case BD_ERR_NTRDY:
2543 		atomic_inc_32(&bd->d_kerr->bd_rq_ntrdy_err.value.ui32);
2544 		break;
2545 	case BD_ERR_NODEV:
2546 		atomic_inc_32(&bd->d_kerr->bd_rq_nodev_err.value.ui32);
2547 		break;
2548 	case BD_ERR_RECOV:
2549 		atomic_inc_32(&bd->d_kerr->bd_rq_recov_err.value.ui32);
2550 		break;
2551 	case BD_ERR_ILLRQ:
2552 		atomic_inc_32(&bd->d_kerr->bd_rq_illrq_err.value.ui32);
2553 		break;
2554 	case BD_ERR_PFA:
2555 		atomic_inc_32(&bd->d_kerr->bd_rq_pfa_err.value.ui32);
2556 		break;
2557 	default:
2558 		cmn_err(CE_PANIC, "bd_error: unknown error type %d", error);
2559 		break;
2560 	}
2561 }
2562 
2563 void
2564 bd_state_change(bd_handle_t hdl)
2565 {
2566 	bd_t		*bd;
2567 
2568 	if ((bd = hdl->h_bd) != NULL) {
2569 		bd_update_state(bd);
2570 	}
2571 }
2572 
2573 const char *
2574 bd_address(bd_handle_t hdl)
2575 {
2576 	return (hdl->h_addr);
2577 }
2578 
2579 void
2580 bd_mod_init(struct dev_ops *devops)
2581 {
2582 	static struct bus_ops bd_bus_ops = {
2583 		BUSO_REV,		/* busops_rev */
2584 		nullbusmap,		/* bus_map */
2585 		NULL,			/* bus_get_intrspec (OBSOLETE) */
2586 		NULL,			/* bus_add_intrspec (OBSOLETE) */
2587 		NULL,			/* bus_remove_intrspec (OBSOLETE) */
2588 		i_ddi_map_fault,	/* bus_map_fault */
2589 		NULL,			/* bus_dma_map (OBSOLETE) */
2590 		ddi_dma_allochdl,	/* bus_dma_allochdl */
2591 		ddi_dma_freehdl,	/* bus_dma_freehdl */
2592 		ddi_dma_bindhdl,	/* bus_dma_bindhdl */
2593 		ddi_dma_unbindhdl,	/* bus_dma_unbindhdl */
2594 		ddi_dma_flush,		/* bus_dma_flush */
2595 		ddi_dma_win,		/* bus_dma_win */
2596 		ddi_dma_mctl,		/* bus_dma_ctl */
2597 		bd_bus_ctl,		/* bus_ctl */
2598 		ddi_bus_prop_op,	/* bus_prop_op */
2599 		NULL,			/* bus_get_eventcookie */
2600 		NULL,			/* bus_add_eventcall */
2601 		NULL,			/* bus_remove_eventcall */
2602 		NULL,			/* bus_post_event */
2603 		NULL,			/* bus_intr_ctl (OBSOLETE) */
2604 		NULL,			/* bus_config */
2605 		NULL,			/* bus_unconfig */
2606 		NULL,			/* bus_fm_init */
2607 		NULL,			/* bus_fm_fini */
2608 		NULL,			/* bus_fm_access_enter */
2609 		NULL,			/* bus_fm_access_exit */
2610 		NULL,			/* bus_power */
2611 		NULL,			/* bus_intr_op */
2612 	};
2613 
2614 	devops->devo_bus_ops = &bd_bus_ops;
2615 
2616 	/*
2617 	 * NB: The device driver is free to supply its own
2618 	 * character entry device support.
2619 	 */
2620 }
2621 
2622 void
2623 bd_mod_fini(struct dev_ops *devops)
2624 {
2625 	devops->devo_bus_ops = NULL;
2626 }
2627