xref: /illumos-gate/usr/src/uts/common/io/bge/bge_send.c (revision 3ce33fb052b375020ea4249290d33b834d9f9e75)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 
22 /*
23  * Copyright (c) 2002, 2010, Oracle and/or its affiliates. All rights reserved.
24  */
25 
26 #include "bge_impl.h"
27 
28 
29 /*
30  * The transmit-side code uses an allocation process which is similar
31  * to some theme park roller-coaster rides, where riders sit in cars
32  * that can go individually, but work better in a train.
33  *
34  * 1)	RESERVE a place - this doesn't refer to any specific car or
35  *	seat, just that you will get a ride.  The attempt to RESERVE a
36  *	place can fail if all spaces in all cars are already committed.
37  *
38  * 2)	Prepare yourself; this may take an arbitrary (but not unbounded)
39  *	time, and you can back out at this stage, in which case you must
40  *	give up (RENOUNCE) your place.
41  *
42  * 3)	CLAIM your space - a specific car (the next sequentially
43  *	numbered one) is allocated at this stage, and is guaranteed
44  *	to be part of the next train to depart.  Once you've done
45  *	this, you can't back out, nor wait for any external event
46  *	or resource.
47  *
48  * 4)	Occupy your car - when all CLAIMED cars are OCCUPIED, they
49  *	all depart together as a single train!
50  *
51  * 5)	At the end of the ride, you climb out of the car and RENOUNCE
52  *	your right to it, so that it can be recycled for another rider.
53  *
54  * For each rider, these have to occur in this order, but the riders
55  * don't have to stay in the same order at each stage.  In particular,
56  * they may overtake each other between RESERVING a place and CLAIMING
57  * it, or between CLAIMING and OCCUPYING a space.
58  *
59  * Once a car is CLAIMED, the train currently being assembled can't go
60  * without that car (this guarantees that the cars in a single train
61  * make up a consecutively-numbered set).  Therefore, when any train
62  * leaves, we know there can't be any riders in transit between CLAIMING
63  * and OCCUPYING their cars.  There can be some who have RESERVED but
64  * not yet CLAIMED their places.  That's OK, though, because they'll go
65  * into the next train.
66  */
67 
68 #define	BGE_DBG		BGE_DBG_SEND	/* debug flag for this code	*/
69 
70 /*
71  * ========== Send-side recycle routines ==========
72  */
73 
74 /*
75  * Recycle all the completed buffers in the specified send ring up to
76  * (but not including) the consumer index in the status block.
77  *
78  * This function must advance (srp->tc_next) AND adjust (srp->tx_free)
79  * to account for the packets it has recycled.
80  *
81  * This is a trivial version that just does that and nothing more, but
82  * it suffices while there's only one method for sending messages (by
83  * copying) and that method doesn't need any special per-buffer action
84  * for recycling.
85  */
86 static boolean_t bge_recycle_ring(bge_t *bgep, send_ring_t *srp);
87 #pragma	inline(bge_recycle_ring)
88 
89 static boolean_t
90 bge_recycle_ring(bge_t *bgep, send_ring_t *srp)
91 {
92 	sw_sbd_t *ssbdp;
93 	bge_queue_item_t *buf_item;
94 	bge_queue_item_t *buf_item_head;
95 	bge_queue_item_t *buf_item_tail;
96 	bge_queue_t *txbuf_queue;
97 	uint64_t slot;
98 	uint64_t n;
99 
100 	ASSERT(mutex_owned(srp->tc_lock));
101 
102 	/*
103 	 * We're about to release one or more places :-)
104 	 * These ASSERTions check that our invariants still hold:
105 	 *	there must always be at least one free place
106 	 *	at this point, there must be at least one place NOT free
107 	 *	we're not about to free more places than were claimed!
108 	 */
109 	ASSERT(srp->tx_free <= srp->desc.nslots);
110 
111 	buf_item_head = buf_item_tail = NULL;
112 	for (n = 0, slot = srp->tc_next; slot != *srp->cons_index_p;
113 	    slot = NEXT(slot, srp->desc.nslots)) {
114 		ssbdp = &srp->sw_sbds[slot];
115 		ASSERT(ssbdp->pbuf != NULL);
116 		buf_item = ssbdp->pbuf;
117 		if (buf_item_head == NULL)
118 			buf_item_head = buf_item_tail = buf_item;
119 		else {
120 			buf_item_tail->next = buf_item;
121 			buf_item_tail = buf_item;
122 		}
123 		ssbdp->pbuf = NULL;
124 		n++;
125 	}
126 	if (n == 0)
127 		return (B_FALSE);
128 
129 	/*
130 	 * Reset the watchdog count: to 0 if all buffers are
131 	 * now free, or to 1 if some are still outstanding.
132 	 * Note: non-synchonised access here means we may get
133 	 * the "wrong" answer, but only in a harmless fashion
134 	 * (i.e. we deactivate the watchdog because all buffers
135 	 * are apparently free, even though another thread may
136 	 * have claimed one before we leave here; in this case
137 	 * the watchdog will restart on the next send() call).
138 	 */
139 	bgep->watchdog = (slot == srp->tx_next) ? 0 : 1;
140 
141 	/*
142 	 * Update recycle index and free tx BD number
143 	 */
144 	srp->tc_next = slot;
145 	ASSERT(srp->tx_free + n <= srp->desc.nslots);
146 	bge_atomic_renounce(&srp->tx_free, n);
147 
148 	/*
149 	 * Return tx buffers to buffer push queue
150 	 */
151 	txbuf_queue = srp->txbuf_push_queue;
152 	mutex_enter(txbuf_queue->lock);
153 	buf_item_tail->next = txbuf_queue->head;
154 	txbuf_queue->head = buf_item_head;
155 	txbuf_queue->count += n;
156 	mutex_exit(txbuf_queue->lock);
157 
158 	/*
159 	 * Check if we need exchange the tx buffer push and pop queue
160 	 */
161 	if ((srp->txbuf_pop_queue->count < srp->tx_buffers_low) &&
162 	    (srp->txbuf_pop_queue->count < txbuf_queue->count)) {
163 		srp->txbuf_push_queue = srp->txbuf_pop_queue;
164 		srp->txbuf_pop_queue = txbuf_queue;
165 	}
166 
167 	if (srp->tx_flow != 0 || bgep->tx_resched_needed)
168 		ddi_trigger_softintr(bgep->drain_id);
169 
170 	return (B_TRUE);
171 }
172 
173 /*
174  * Recycle all returned slots in all rings.
175  *
176  * To give priority to low-numbered rings, whenever we have recycled any
177  * slots in any ring except 0, we restart scanning again from ring 0.
178  * Thus, for example, if rings 0, 3, and 10 are carrying traffic, the
179  * pattern of recycles might go 0, 3, 10, 3, 0, 10, 0:
180  *
181  *	0	found some - recycle them
182  *	1..2					none found
183  *	3	found some - recycle them	and restart scan
184  *	0..9					none found
185  *	10	found some - recycle them	and restart scan
186  *	0..2					none found
187  *	3	found some more - recycle them	and restart scan
188  *	0	found some more - recycle them
189  *	0..9					none found
190  *	10	found some more - recycle them	and restart scan
191  *	0	found some more - recycle them
192  *	1..15					none found
193  *
194  * The routine returns only when a complete scan has been performed
195  * without finding any slots to recycle.
196  *
197  * Note: the expression (BGE_SEND_RINGS_USED > 1) yields a compile-time
198  * constant and allows the compiler to optimise away the outer do-loop
199  * if only one send ring is being used.
200  */
201 boolean_t bge_recycle(bge_t *bgep, bge_status_t *bsp);
202 #pragma	no_inline(bge_recycle)
203 
204 boolean_t
205 bge_recycle(bge_t *bgep, bge_status_t *bsp)
206 {
207 	send_ring_t *srp;
208 	uint64_t ring;
209 	uint64_t tx_rings = bgep->chipid.tx_rings;
210 	boolean_t tx_done = B_FALSE;
211 
212 restart:
213 	ring = 0;
214 	srp = &bgep->send[ring];
215 	do {
216 		/*
217 		 * For each ring, (srp->cons_index_p) points to the
218 		 * proper index within the status block (which has
219 		 * already been sync'd by the caller).
220 		 */
221 		ASSERT(srp->cons_index_p == SEND_INDEX_P(bsp, ring));
222 
223 		if (*srp->cons_index_p == srp->tc_next)
224 			continue;		/* no slots to recycle	*/
225 		if (mutex_tryenter(srp->tc_lock) == 0)
226 			continue;		/* already in process	*/
227 		tx_done |= bge_recycle_ring(bgep, srp);
228 		mutex_exit(srp->tc_lock);
229 
230 		/*
231 		 * Restart from ring 0, if we're not on ring 0 already.
232 		 * As H/W selects send BDs totally based on priority and
233 		 * available BDs on the higher priority ring are always
234 		 * selected first, driver should keep consistence with H/W
235 		 * and gives lower-numbered ring with higher priority.
236 		 */
237 		if (tx_rings > 1 && ring > 0)
238 			goto restart;
239 
240 		/*
241 		 * Loop over all rings (if there *are* multiple rings)
242 		 */
243 	} while (++srp, ++ring < tx_rings);
244 
245 	return (tx_done);
246 }
247 
248 
249 /*
250  * ========== Send-side transmit routines ==========
251  */
252 #define	TCP_CKSUM_OFFSET	16
253 #define	UDP_CKSUM_OFFSET	6
254 
255 static void
256 bge_pseudo_cksum(uint8_t *buf)
257 {
258 	uint32_t cksum;
259 	uint16_t iphl;
260 	uint16_t proto;
261 
262 	/*
263 	 * Point it to the ip header.
264 	 */
265 	buf += sizeof (struct ether_header);
266 
267 	/*
268 	 * Calculate the pseudo-header checksum.
269 	 */
270 	iphl = 4 * (buf[0] & 0xF);
271 	cksum = (((uint16_t)buf[2])<<8) + buf[3] - iphl;
272 	cksum += proto = buf[9];
273 	cksum += (((uint16_t)buf[12])<<8) + buf[13];
274 	cksum += (((uint16_t)buf[14])<<8) + buf[15];
275 	cksum += (((uint16_t)buf[16])<<8) + buf[17];
276 	cksum += (((uint16_t)buf[18])<<8) + buf[19];
277 	cksum = (cksum>>16) + (cksum & 0xFFFF);
278 	cksum = (cksum>>16) + (cksum & 0xFFFF);
279 
280 	/*
281 	 * Point it to the TCP/UDP header, and
282 	 * update the checksum field.
283 	 */
284 	buf += iphl + ((proto == IPPROTO_TCP) ?
285 	    TCP_CKSUM_OFFSET : UDP_CKSUM_OFFSET);
286 
287 	/*
288 	 * A real possibility that pointer cast is a problem.
289 	 * Should be fixed when we know the code better.
290 	 * E_BAD_PTR_CAST_ALIGN is added to make it temporarily clean.
291 	 */
292 	*(uint16_t *)buf = htons((uint16_t)cksum);
293 }
294 
295 static bge_queue_item_t *
296 bge_get_txbuf(bge_t *bgep, send_ring_t *srp)
297 {
298 	bge_queue_item_t *txbuf_item;
299 	bge_queue_t *txbuf_queue;
300 
301 	txbuf_queue = srp->txbuf_pop_queue;
302 	mutex_enter(txbuf_queue->lock);
303 	if (txbuf_queue->count == 0) {
304 		mutex_exit(txbuf_queue->lock);
305 		txbuf_queue = srp->txbuf_push_queue;
306 		mutex_enter(txbuf_queue->lock);
307 		if (txbuf_queue->count == 0) {
308 			mutex_exit(txbuf_queue->lock);
309 			/* Try to allocate more tx buffers */
310 			if (srp->tx_array < srp->tx_array_max) {
311 				mutex_enter(srp->tx_lock);
312 				txbuf_item = bge_alloc_txbuf_array(bgep, srp);
313 				mutex_exit(srp->tx_lock);
314 			} else
315 				txbuf_item = NULL;
316 			return (txbuf_item);
317 		}
318 	}
319 	txbuf_item = txbuf_queue->head;
320 	txbuf_queue->head = (bge_queue_item_t *)txbuf_item->next;
321 	txbuf_queue->count--;
322 	mutex_exit(txbuf_queue->lock);
323 	txbuf_item->next = NULL;
324 
325 	return (txbuf_item);
326 }
327 
328 /*
329  * Send a message by copying it into a preallocated (and premapped) buffer
330  */
331 static void bge_send_copy(bge_t *bgep, sw_txbuf_t *txbuf, mblk_t *mp);
332 #pragma	inline(bge_send_copy)
333 
334 static void
335 bge_send_copy(bge_t *bgep, sw_txbuf_t *txbuf, mblk_t *mp)
336 {
337 	mblk_t *bp;
338 	uint32_t mblen;
339 	char *pbuf;
340 
341 	txbuf->copy_len = 0;
342 	pbuf = DMA_VPTR(txbuf->buf);
343 	for (bp = mp; bp != NULL; bp = bp->b_cont) {
344 		if ((mblen = MBLKL(bp)) == 0)
345 			continue;
346 		ASSERT(txbuf->copy_len + mblen <=
347 		    bgep->chipid.snd_buff_size);
348 		bcopy(bp->b_rptr, pbuf, mblen);
349 		pbuf += mblen;
350 		txbuf->copy_len += mblen;
351 	}
352 }
353 
354 /*
355  * Fill the Tx buffer descriptors and trigger the h/w transmission
356  */
357 static void
358 bge_send_serial(bge_t *bgep, send_ring_t *srp)
359 {
360 	send_pkt_t *pktp;
361 	uint64_t txfill_next;
362 	uint32_t count;
363 	uint32_t tx_next;
364 	sw_sbd_t *ssbdp;
365 	bge_status_t *bsp;
366 	bge_sbd_t *hw_sbd_p;
367 	bge_queue_item_t *txbuf_item;
368 	sw_txbuf_t *txbuf;
369 
370 	/*
371 	 * Try to hold the tx lock:
372 	 *	If we are in an interrupt context, use mutex_enter() to
373 	 *	ensure quick response for tx in interrupt context;
374 	 *	Otherwise, use mutex_tryenter() to serialize this h/w tx
375 	 *	BD filling and transmission triggering task.
376 	 */
377 	if (servicing_interrupt() != 0)
378 		mutex_enter(srp->tx_lock);
379 	else if (mutex_tryenter(srp->tx_lock) == 0)
380 		return;		/* already in process	*/
381 
382 	bsp = DMA_VPTR(bgep->status_block);
383 	txfill_next = srp->txfill_next;
384 	tx_next = srp->tx_next;
385 start_tx:
386 	for (count = 0; count < bgep->param_drain_max; ++count) {
387 		pktp = &srp->pktp[txfill_next];
388 		if (!pktp->tx_ready) {
389 			if (count == 0)
390 				srp->tx_block++;
391 			break;
392 		}
393 
394 		/*
395 		 * If there are no enough BDs: try to recycle more
396 		 */
397 		if (srp->tx_free <= 1)
398 			(void) bge_recycle(bgep, bsp);
399 
400 		/*
401 		 * Reserved required BDs: 1 is enough
402 		 */
403 		if (!bge_atomic_reserve(&srp->tx_free, 1)) {
404 			srp->tx_nobd++;
405 			break;
406 		}
407 
408 		/*
409 		 * Filling the tx BD
410 		 */
411 
412 		/*
413 		 * Go straight to claiming our already-reserved places
414 		 * on the train!
415 		 */
416 		ASSERT(pktp->txbuf_item != NULL);
417 		txbuf_item = pktp->txbuf_item;
418 		pktp->txbuf_item = NULL;
419 		pktp->tx_ready = B_FALSE;
420 
421 		txbuf = txbuf_item->item;
422 		ASSERT(txbuf->copy_len != 0);
423 		(void) ddi_dma_sync(txbuf->buf.dma_hdl,  0,
424 		    txbuf->copy_len, DDI_DMA_SYNC_FORDEV);
425 
426 		ssbdp = &srp->sw_sbds[tx_next];
427 		ASSERT(ssbdp->pbuf == NULL);
428 		ssbdp->pbuf = txbuf_item;
429 
430 		/*
431 		 * Setting hardware send buffer descriptor
432 		 */
433 		hw_sbd_p = DMA_VPTR(ssbdp->desc);
434 		hw_sbd_p->flags = 0;
435 		hw_sbd_p->host_buf_addr = txbuf->buf.cookie.dmac_laddress;
436 		hw_sbd_p->len = txbuf->copy_len;
437 		if (pktp->vlan_tci != 0) {
438 			hw_sbd_p->vlan_tci = pktp->vlan_tci;
439 			hw_sbd_p->host_buf_addr += VLAN_TAGSZ;
440 			hw_sbd_p->flags |= SBD_FLAG_VLAN_TAG;
441 		}
442 		if (pktp->pflags & HCK_IPV4_HDRCKSUM)
443 			hw_sbd_p->flags |= SBD_FLAG_IP_CKSUM;
444 		if (pktp->pflags & HCK_FULLCKSUM)
445 			hw_sbd_p->flags |= SBD_FLAG_TCP_UDP_CKSUM;
446 		hw_sbd_p->flags |= SBD_FLAG_PACKET_END;
447 
448 		txfill_next = NEXT(txfill_next, BGE_SEND_BUF_MAX);
449 		tx_next = NEXT(tx_next, srp->desc.nslots);
450 	}
451 
452 	/*
453 	 * Trigger h/w to start transmission.
454 	 */
455 	if (count != 0) {
456 		bge_atomic_sub64(&srp->tx_flow, count);
457 		srp->txfill_next = txfill_next;
458 
459 		if (srp->tx_next > tx_next) {
460 			(void) ddi_dma_sync(ssbdp->desc.dma_hdl,  0,
461 			    (srp->desc.nslots - srp->tx_next) *
462 			    sizeof (bge_sbd_t),
463 			    DDI_DMA_SYNC_FORDEV);
464 			count -= srp->desc.nslots - srp->tx_next;
465 			ssbdp = &srp->sw_sbds[0];
466 		}
467 		(void) ddi_dma_sync(ssbdp->desc.dma_hdl,  0,
468 		    count*sizeof (bge_sbd_t), DDI_DMA_SYNC_FORDEV);
469 		bge_mbx_put(bgep, srp->chip_mbx_reg, tx_next);
470 		srp->tx_next = tx_next;
471 		atomic_or_32(&bgep->watchdog, 1);
472 
473 		if (srp->tx_flow != 0 && srp->tx_free > 1)
474 			goto start_tx;
475 	}
476 
477 	mutex_exit(srp->tx_lock);
478 }
479 
480 mblk_t *
481 bge_ring_tx(void *arg, mblk_t *mp)
482 {
483 	send_ring_t *srp = arg;
484 	bge_t *bgep = srp->bgep;
485 	struct ether_vlan_header *ehp;
486 	bge_queue_item_t *txbuf_item;
487 	sw_txbuf_t *txbuf;
488 	send_pkt_t *pktp;
489 	uint64_t pkt_slot;
490 	uint16_t vlan_tci;
491 	uint32_t pflags;
492 	char *pbuf;
493 
494 	ASSERT(mp->b_next == NULL);
495 
496 	/*
497 	 * Get a s/w tx buffer first
498 	 */
499 	txbuf_item = bge_get_txbuf(bgep, srp);
500 	if (txbuf_item == NULL) {
501 		/* no tx buffer available */
502 		srp->tx_nobuf++;
503 		bgep->tx_resched_needed = B_TRUE;
504 		bge_send_serial(bgep, srp);
505 		return (mp);
506 	}
507 
508 	/*
509 	 * Copy all mp fragments to the pkt buffer
510 	 */
511 	txbuf = txbuf_item->item;
512 	bge_send_copy(bgep, txbuf, mp);
513 
514 	/*
515 	 * Determine if the packet is VLAN tagged.
516 	 */
517 	ASSERT(txbuf->copy_len >= sizeof (struct ether_header));
518 	pbuf = DMA_VPTR(txbuf->buf);
519 
520 	ehp = (void *)pbuf;
521 	if (ehp->ether_tpid == htons(ETHERTYPE_VLAN)) {
522 		/* Strip the vlan tag */
523 		vlan_tci = ntohs(ehp->ether_tci);
524 		pbuf = memmove(pbuf + VLAN_TAGSZ, pbuf, 2 * ETHERADDRL);
525 		txbuf->copy_len -= VLAN_TAGSZ;
526 	} else
527 		vlan_tci = 0;
528 
529 	/*
530 	 * Retrieve checksum offloading info.
531 	 */
532 	mac_hcksum_get(mp, NULL, NULL, NULL, NULL, &pflags);
533 
534 	/*
535 	 * Calculate pseudo checksum if needed.
536 	 */
537 	if ((pflags & HCK_FULLCKSUM) &&
538 	    (bgep->chipid.flags & CHIP_FLAG_PARTIAL_CSUM))
539 		bge_pseudo_cksum((uint8_t *)pbuf);
540 
541 	/*
542 	 * Packet buffer is ready to send: get and fill pkt info
543 	 */
544 	pkt_slot = bge_atomic_next(&srp->txpkt_next, BGE_SEND_BUF_MAX);
545 	pktp = &srp->pktp[pkt_slot];
546 	ASSERT(pktp->txbuf_item == NULL);
547 	pktp->txbuf_item = txbuf_item;
548 	pktp->vlan_tci = vlan_tci;
549 	pktp->pflags = pflags;
550 	atomic_inc_64(&srp->tx_flow);
551 	ASSERT(pktp->tx_ready == B_FALSE);
552 	pktp->tx_ready = B_TRUE;
553 
554 	/*
555 	 * Filling the h/w bd and trigger the h/w to start transmission
556 	 */
557 	bge_send_serial(bgep, srp);
558 
559 	srp->pushed_bytes += MBLKL(mp);
560 
561 	/*
562 	 * We've copied the contents, the message can be freed right away
563 	 */
564 	freemsg(mp);
565 	return (NULL);
566 }
567 
568 static mblk_t *
569 bge_send(bge_t *bgep, mblk_t *mp)
570 {
571 	send_ring_t *ring;
572 
573 	ring = &bgep->send[0];	/* ring 0 */
574 
575 	return (bge_ring_tx(ring, mp));
576 }
577 
578 uint_t
579 bge_send_drain(caddr_t arg)
580 {
581 	uint_t ring = 0;	/* use ring 0 */
582 	bge_t *bgep;
583 	send_ring_t *srp;
584 
585 	bgep = (void *)arg;
586 	BGE_TRACE(("bge_send_drain($%p)", (void *)bgep));
587 
588 	srp = &bgep->send[ring];
589 	bge_send_serial(bgep, srp);
590 
591 	if (bgep->tx_resched_needed &&
592 	    (srp->tx_flow < srp->tx_buffers_low) &&
593 	    (bgep->bge_mac_state == BGE_MAC_STARTED)) {
594 		mac_tx_update(bgep->mh);
595 		bgep->tx_resched_needed = B_FALSE;
596 		bgep->tx_resched++;
597 	}
598 
599 	return (DDI_INTR_CLAIMED);
600 }
601 
602 /*
603  * bge_m_tx() - send a chain of packets
604  */
605 mblk_t *
606 bge_m_tx(void *arg, mblk_t *mp)
607 {
608 	bge_t *bgep = arg;		/* private device info	*/
609 	mblk_t *next;
610 
611 	BGE_TRACE(("bge_m_tx($%p, $%p)", arg, (void *)mp));
612 
613 	ASSERT(mp != NULL);
614 	ASSERT(bgep->bge_mac_state == BGE_MAC_STARTED);
615 
616 	rw_enter(bgep->errlock, RW_READER);
617 	if ((bgep->bge_chip_state != BGE_CHIP_RUNNING) ||
618 	    !(bgep->param_link_up)) {
619 		BGE_DEBUG(("bge_m_tx: chip not running or link down"));
620 		freemsgchain(mp);
621 		mp = NULL;
622 	}
623 
624 	while (mp != NULL) {
625 		next = mp->b_next;
626 		mp->b_next = NULL;
627 
628 		if ((mp = bge_send(bgep, mp)) != NULL) {
629 			mp->b_next = next;
630 			break;
631 		}
632 
633 		mp = next;
634 	}
635 	rw_exit(bgep->errlock);
636 
637 	return (mp);
638 }
639