xref: /illumos-gate/usr/src/uts/common/io/bge/bge_mii.c (revision 91762968d6040b1c9518027ec8f18f8985d19f53)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 
22 /*
23  * Copyright 2008 Sun Microsystems, Inc.  All rights reserved.
24  * Use is subject to license terms.
25  */
26 
27 #include "bge_impl.h"
28 
29 /*
30  * Bit test macros, returning boolean_t values
31  */
32 #define	BIS(w, b)	(((w) & (b)) ? B_TRUE : B_FALSE)
33 #define	BIC(w, b)	(((w) & (b)) ? B_FALSE : B_TRUE)
34 #define	UPORDOWN(x)	((x) ? "up" : "down")
35 
36 /*
37  * ========== Copper (PHY) support ==========
38  */
39 
40 #define	BGE_DBG		BGE_DBG_PHY	/* debug flag for this code	*/
41 
42 /*
43  * #defines:
44  *	BGE_COPPER_WIRESPEED controls whether the Broadcom WireSpeed(tm)
45  *	feature is enabled.  We need to recheck whether this can be
46  *	enabled; at one time it seemed to interact unpleasantly with the
47  *	loopback modes.
48  *
49  *	BGE_COPPER_IDLEOFF controls whether the (copper) PHY power is
50  *	turned off when the PHY is idled i.e. during driver suspend().
51  *	For now this is disabled because the chip doesn't seem to
52  *	resume cleanly if the PHY power is turned off.
53  */
54 #define	BGE_COPPER_WIRESPEED	B_TRUE
55 #define	BGE_COPPER_IDLEOFF	B_FALSE
56 
57 /*
58  * The arrays below can be indexed by the MODE bits from the Auxiliary
59  * Status register to determine the current speed/duplex settings.
60  */
61 static const int16_t bge_copper_link_speed[] = {
62 	0,				/* MII_AUX_STATUS_MODE_NONE	*/
63 	10,				/* MII_AUX_STATUS_MODE_10_H	*/
64 	10,				/* MII_AUX_STATUS_MODE_10_F	*/
65 	100,				/* MII_AUX_STATUS_MODE_100_H	*/
66 	0,				/* MII_AUX_STATUS_MODE_100_4	*/
67 	100,				/* MII_AUX_STATUS_MODE_100_F	*/
68 	1000,				/* MII_AUX_STATUS_MODE_1000_H	*/
69 	1000				/* MII_AUX_STATUS_MODE_1000_F	*/
70 };
71 
72 static const int8_t bge_copper_link_duplex[] = {
73 	LINK_DUPLEX_UNKNOWN,		/* MII_AUX_STATUS_MODE_NONE	*/
74 	LINK_DUPLEX_HALF,		/* MII_AUX_STATUS_MODE_10_H	*/
75 	LINK_DUPLEX_FULL,		/* MII_AUX_STATUS_MODE_10_F	*/
76 	LINK_DUPLEX_HALF,		/* MII_AUX_STATUS_MODE_100_H	*/
77 	LINK_DUPLEX_UNKNOWN,		/* MII_AUX_STATUS_MODE_100_4	*/
78 	LINK_DUPLEX_FULL,		/* MII_AUX_STATUS_MODE_100_F	*/
79 	LINK_DUPLEX_HALF,		/* MII_AUX_STATUS_MODE_1000_H	*/
80 	LINK_DUPLEX_FULL		/* MII_AUX_STATUS_MODE_1000_F	*/
81 };
82 
83 static const int16_t bge_copper_link_speed_5906[] = {
84 	0,				/* MII_AUX_STATUS_MODE_NONE	*/
85 	10,				/* MII_AUX_STATUS_MODE_10_H	*/
86 	10,				/* MII_AUX_STATUS_MODE_10_F	*/
87 	100,				/* MII_AUX_STATUS_MODE_100_H	*/
88 	0,				/* MII_AUX_STATUS_MODE_100_4	*/
89 	100,				/* MII_AUX_STATUS_MODE_100_F	*/
90 	0,				/* MII_AUX_STATUS_MODE_1000_H	*/
91 	0				/* MII_AUX_STATUS_MODE_1000_F	*/
92 };
93 
94 static const int8_t bge_copper_link_duplex_5906[] = {
95 	LINK_DUPLEX_UNKNOWN,		/* MII_AUX_STATUS_MODE_NONE	*/
96 	LINK_DUPLEX_HALF,		/* MII_AUX_STATUS_MODE_10_H	*/
97 	LINK_DUPLEX_FULL,		/* MII_AUX_STATUS_MODE_10_F	*/
98 	LINK_DUPLEX_HALF,		/* MII_AUX_STATUS_MODE_100_H	*/
99 	LINK_DUPLEX_UNKNOWN,		/* MII_AUX_STATUS_MODE_100_4	*/
100 	LINK_DUPLEX_FULL,		/* MII_AUX_STATUS_MODE_100_F	*/
101 	LINK_DUPLEX_UNKNOWN,		/* MII_AUX_STATUS_MODE_1000_H	*/
102 	LINK_DUPLEX_UNKNOWN		/* MII_AUX_STATUS_MODE_1000_F	*/
103 };
104 
105 #if	BGE_DEBUGGING
106 
107 static void
108 bge_phydump(bge_t *bgep, uint16_t mii_status, uint16_t aux)
109 {
110 	uint16_t regs[32];
111 	int i;
112 
113 	ASSERT(mutex_owned(bgep->genlock));
114 
115 	for (i = 0; i < 32; ++i)
116 		switch (i) {
117 		default:
118 			regs[i] = bge_mii_get16(bgep, i);
119 			break;
120 
121 		case MII_STATUS:
122 			regs[i] = mii_status;
123 			break;
124 
125 		case MII_AUX_STATUS:
126 			regs[i] = aux;
127 			break;
128 
129 		case 0x0b: case 0x0c: case 0x0d: case 0x0e:
130 		case 0x15: case 0x16: case 0x17:
131 		case 0x1c:
132 		case 0x1f:
133 			/* reserved registers -- don't read these */
134 			regs[i] = 0;
135 			break;
136 		}
137 
138 	for (i = 0; i < 32; i += 8)
139 		BGE_DEBUG(("bge_phydump: "
140 		    "0x%04x %04x %04x %04x %04x %04x %04x %04x",
141 		    regs[i+0], regs[i+1], regs[i+2], regs[i+3],
142 		    regs[i+4], regs[i+5], regs[i+6], regs[i+7]));
143 }
144 
145 #endif	/* BGE_DEBUGGING */
146 
147 /*
148  * Basic low-level function to probe for a PHY
149  *
150  * Returns TRUE if the PHY responds with valid data, FALSE otherwise
151  */
152 static boolean_t
153 bge_phy_probe(bge_t *bgep)
154 {
155 	uint16_t miicfg;
156 	uint32_t nicsig, niccfg;
157 
158 	BGE_TRACE(("bge_phy_probe($%p)", (void *)bgep));
159 
160 	ASSERT(mutex_owned(bgep->genlock));
161 
162 	nicsig = bge_nic_read32(bgep, BGE_NIC_DATA_SIG_ADDR);
163 	if (nicsig == BGE_NIC_DATA_SIG) {
164 		niccfg = bge_nic_read32(bgep, BGE_NIC_DATA_NIC_CFG_ADDR);
165 		switch (niccfg & BGE_NIC_CFG_PHY_TYPE_MASK) {
166 		default:
167 		case BGE_NIC_CFG_PHY_TYPE_COPPER:
168 			return (B_TRUE);
169 		case BGE_NIC_CFG_PHY_TYPE_FIBER:
170 			return (B_FALSE);
171 		}
172 	} else {
173 		/*
174 		 * Read the MII_STATUS register twice, in
175 		 * order to clear any sticky bits (but they should
176 		 * have been cleared by the RESET, I think).
177 		 */
178 		miicfg = bge_mii_get16(bgep, MII_STATUS);
179 		miicfg = bge_mii_get16(bgep, MII_STATUS);
180 		BGE_DEBUG(("bge_phy_probe: status 0x%x", miicfg));
181 
182 		/*
183 		 * Now check the value read; it should have at least one bit set
184 		 * (for the device capabilities) and at least one clear (one of
185 		 * the error bits). So if we see all 0s or all 1s, there's a
186 		 * problem.  In particular, bge_mii_get16() returns all 1s if
187 		 * communications fails ...
188 		 */
189 		switch (miicfg) {
190 		case 0x0000:
191 		case 0xffff:
192 			return (B_FALSE);
193 
194 		default :
195 			return (B_TRUE);
196 		}
197 	}
198 }
199 
200 /*
201  * Basic low-level function to reset the PHY.
202  * Doesn't incorporate any special-case workarounds.
203  *
204  * Returns TRUE on success, FALSE if the RESET bit doesn't clear
205  */
206 static boolean_t
207 bge_phy_reset(bge_t *bgep)
208 {
209 	uint16_t control;
210 	uint_t count;
211 
212 	BGE_TRACE(("bge_phy_reset($%p)", (void *)bgep));
213 
214 	ASSERT(mutex_owned(bgep->genlock));
215 
216 	if (DEVICE_5906_SERIES_CHIPSETS(bgep)) {
217 		drv_usecwait(40);
218 		/* put PHY into ready state */
219 		bge_reg_clr32(bgep, MISC_CONFIG_REG, MISC_CONFIG_EPHY_IDDQ);
220 		(void) bge_reg_get32(bgep, MISC_CONFIG_REG); /* flush */
221 		drv_usecwait(40);
222 	}
223 
224 	/*
225 	 * Set the PHY RESET bit, then wait up to 5 ms for it to self-clear
226 	 */
227 	bge_mii_put16(bgep, MII_CONTROL, MII_CONTROL_RESET);
228 	for (count = 0; ++count < 1000; ) {
229 		drv_usecwait(5);
230 		control = bge_mii_get16(bgep, MII_CONTROL);
231 		if (BIC(control, MII_CONTROL_RESET))
232 			return (B_TRUE);
233 	}
234 
235 	if (DEVICE_5906_SERIES_CHIPSETS(bgep))
236 		(void) bge_adj_volt_5906(bgep);
237 
238 	BGE_DEBUG(("bge_phy_reset: FAILED, control now 0x%x", control));
239 
240 	return (B_FALSE);
241 }
242 
243 /*
244  * Basic low-level function to powerdown the PHY, if supported
245  * If powerdown support is compiled out, this function does nothing.
246  */
247 static void
248 bge_phy_powerdown(bge_t *bgep)
249 {
250 	BGE_TRACE(("bge_phy_powerdown"));
251 #if	BGE_COPPER_IDLEOFF
252 	bge_mii_put16(bgep, MII_CONTROL, MII_CONTROL_PWRDN);
253 #endif	/* BGE_COPPER_IDLEOFF */
254 }
255 
256 /*
257  * The following functions are based on sample code provided by
258  * Broadcom (20-June-2003), and implement workarounds said to be
259  * required on the early revisions of the BCM5703/4C.
260  *
261  * The registers and values used are mostly UNDOCUMENTED, and
262  * therefore don't have symbolic names ;-(
263  *
264  * Many of the comments are straight out of the Broadcom code:
265  * even where the code has been restructured, the original
266  * comments have been preserved in order to explain what these
267  * undocumented registers & values are all about ...
268  */
269 
270 static void
271 bge_phy_macro_wait(bge_t *bgep)
272 {
273 	uint_t count;
274 
275 	for (count = 100; --count; )
276 		if ((bge_mii_get16(bgep, 0x16) & 0x1000) == 0)
277 			break;
278 }
279 
280 /*
281  * PHY test data pattern:
282  *
283  * For 5703/04, each DFE TAP has 21-bits (low word 15, hi word 6)
284  * For 5705,    each DFE TAP has 19-bits (low word 15, hi word 4)
285  * For simplicity, we check only 19-bits, so we don't have to
286  * distinguish which chip it is.
287  * the LO word contains 15 bits, make sure pattern data is < 0x7fff
288  * the HI word contains  6 bits, make sure pattern data is < 0x003f
289  */
290 #define	N_CHANNELS	4
291 #define	N_TAPS		3
292 
293 static struct {
294 	uint16_t	lo;
295 	uint16_t	hi;
296 } tap_data[N_CHANNELS][N_TAPS] = {
297 	{
298 		{ 0x5555, 0x0005 },	/* ch0, TAP 0, LO/HI pattern */
299 		{ 0x2aaa, 0x000a },	/* ch0, TAP 1, LO/HI pattern */
300 		{ 0x3456, 0x0003 }	/* ch0, TAP 2, LO/HI pattern */
301 	},
302 	{
303 		{ 0x2aaa, 0x000a },	/* ch1, TAP 0, LO/HI pattern */
304 		{ 0x3333, 0x0003 },	/* ch1, TAP 1, LO/HI pattern */
305 		{ 0x789a, 0x0005 }	/* ch1, TAP 2, LO/HI pattern */
306 	},
307 	{
308 		{ 0x5a5a, 0x0005 },	/* ch2, TAP 0, LO/HI pattern */
309 		{ 0x2a6a, 0x000a },	/* ch2, TAP 1, LO/HI pattern */
310 		{ 0x1bcd, 0x0003 }	/* ch2, TAP 2, LO/HI pattern */
311 	},
312 	{
313 		{ 0x2a5a, 0x000a },	/* ch3, TAP 0, LO/HI pattern */
314 		{ 0x33c3, 0x0003 },	/* ch3, TAP 1, LO/HI pattern */
315 		{ 0x2ef1, 0x0005 }	/* ch3, TAP 2, LO/HI pattern */
316 	}
317 };
318 
319 /*
320  * Check whether the PHY has locked up after a RESET.
321  *
322  * Returns TRUE if it did, FALSE is it's OK ;-)
323  */
324 static boolean_t
325 bge_phy_locked_up(bge_t *bgep)
326 {
327 	uint16_t dataLo;
328 	uint16_t dataHi;
329 	uint_t chan;
330 	uint_t tap;
331 
332 	/*
333 	 * Check TAPs for all 4 channels, as soon as we see a lockup
334 	 * we'll stop checking.
335 	 */
336 	for (chan = 0; chan < N_CHANNELS; ++chan) {
337 		/* Select channel and set TAP index to 0 */
338 		bge_mii_put16(bgep, 0x17, (chan << 13) | 0x0200);
339 		/* Freeze filter again just to be safe */
340 		bge_mii_put16(bgep, 0x16, 0x0002);
341 
342 		/*
343 		 * Write fixed pattern to the RAM, 3 TAPs for
344 		 * each channel, each TAP have 2 WORDs (LO/HI)
345 		 */
346 		for (tap = 0; tap < N_TAPS; ++tap) {
347 			bge_mii_put16(bgep, 0x15, tap_data[chan][tap].lo);
348 			bge_mii_put16(bgep, 0x15, tap_data[chan][tap].hi);
349 		}
350 
351 		/*
352 		 * Active PHY's Macro operation to write DFE
353 		 * TAP from RAM, and wait for Macro to complete.
354 		 */
355 		bge_mii_put16(bgep, 0x16, 0x0202);
356 		bge_phy_macro_wait(bgep);
357 
358 		/*
359 		 * Done with write phase, now begin read phase.
360 		 */
361 
362 		/* Select channel and set TAP index to 0 */
363 		bge_mii_put16(bgep, 0x17, (chan << 13) | 0x0200);
364 
365 		/*
366 		 * Active PHY's Macro operation to load DFE
367 		 * TAP to RAM, and wait for Macro to complete
368 		 */
369 		bge_mii_put16(bgep, 0x16, 0x0082);
370 		bge_phy_macro_wait(bgep);
371 
372 		/* Enable "pre-fetch" */
373 		bge_mii_put16(bgep, 0x16, 0x0802);
374 		bge_phy_macro_wait(bgep);
375 
376 		/*
377 		 * Read back the TAP values.  3 TAPs for each
378 		 * channel, each TAP have 2 WORDs (LO/HI)
379 		 */
380 		for (tap = 0; tap < N_TAPS; ++tap) {
381 			/*
382 			 * Read Lo/Hi then wait for 'done' is faster.
383 			 * For DFE TAP, the HI word contains 6 bits,
384 			 * LO word contains 15 bits
385 			 */
386 			dataLo = bge_mii_get16(bgep, 0x15) & 0x7fff;
387 			dataHi = bge_mii_get16(bgep, 0x15) & 0x003f;
388 			bge_phy_macro_wait(bgep);
389 
390 			/*
391 			 * Check if what we wrote is what we read back.
392 			 * If failed, then the PHY is locked up, we need
393 			 * to do PHY reset again
394 			 */
395 			if (dataLo != tap_data[chan][tap].lo)
396 				return (B_TRUE);	/* wedged!	*/
397 
398 			if (dataHi != tap_data[chan][tap].hi)
399 				return (B_TRUE);	/* wedged!	*/
400 		}
401 	}
402 
403 	/*
404 	 * The PHY isn't locked up ;-)
405 	 */
406 	return (B_FALSE);
407 }
408 
409 /*
410  * Special-case code to reset the PHY on the 5702/5703/5704C/5705/5782.
411  * Tries up to 5 times to recover from failure to reset or PHY lockup.
412  *
413  * Returns TRUE on success, FALSE if there's an unrecoverable problem
414  */
415 static boolean_t
416 bge_phy_reset_and_check(bge_t *bgep)
417 {
418 	boolean_t reset_success;
419 	boolean_t phy_locked;
420 	uint16_t extctrl;
421 	uint_t retries;
422 
423 	for (retries = 0; retries < 5; ++retries) {
424 		/* Issue a phy reset, and wait for reset to complete */
425 		/* Assuming reset is successful first */
426 		reset_success = bge_phy_reset(bgep);
427 
428 		/*
429 		 * Now go check the DFE TAPs to see if locked up, but
430 		 * first, we need to set up PHY so we can read DFE
431 		 * TAPs.
432 		 */
433 
434 		/*
435 		 * Disable Transmitter and Interrupt, while we play
436 		 * with the PHY registers, so the link partner won't
437 		 * see any strange data and the Driver won't see any
438 		 * interrupts.
439 		 */
440 		extctrl = bge_mii_get16(bgep, 0x10);
441 		bge_mii_put16(bgep, 0x10, extctrl | 0x3000);
442 
443 		/* Setup Full-Duplex, 1000 mbps */
444 		bge_mii_put16(bgep, 0x0, 0x0140);
445 
446 		/* Set to Master mode */
447 		bge_mii_put16(bgep, 0x9, 0x1800);
448 
449 		/* Enable SM_DSP_CLOCK & 6dB */
450 		bge_mii_put16(bgep, 0x18, 0x0c00);	/* "the ADC fix" */
451 
452 		/* Work-arounds */
453 		bge_mii_put16(bgep, 0x17, 0x201f);
454 		bge_mii_put16(bgep, 0x15, 0x2aaa);
455 
456 		/* More workarounds */
457 		bge_mii_put16(bgep, 0x17, 0x000a);
458 		bge_mii_put16(bgep, 0x15, 0x0323);	/* "the Gamma fix" */
459 
460 		/* Blocks the PHY control access */
461 		bge_mii_put16(bgep, 0x17, 0x8005);
462 		bge_mii_put16(bgep, 0x15, 0x0800);
463 
464 		/* Test whether PHY locked up ;-( */
465 		phy_locked = bge_phy_locked_up(bgep);
466 		if (reset_success && !phy_locked)
467 			break;
468 
469 		/*
470 		 * Some problem here ... log it & retry
471 		 */
472 		if (!reset_success)
473 			BGE_REPORT((bgep, "PHY didn't reset!"));
474 		if (phy_locked)
475 			BGE_REPORT((bgep, "PHY locked up!"));
476 	}
477 
478 	/* Remove block phy control */
479 	bge_mii_put16(bgep, 0x17, 0x8005);
480 	bge_mii_put16(bgep, 0x15, 0x0000);
481 
482 	/* Unfreeze DFE TAP filter for all channels */
483 	bge_mii_put16(bgep, 0x17, 0x8200);
484 	bge_mii_put16(bgep, 0x16, 0x0000);
485 
486 	/* Restore PHY back to operating state */
487 	bge_mii_put16(bgep, 0x18, 0x0400);
488 
489 	/* Enable transmitter and interrupt */
490 	extctrl = bge_mii_get16(bgep, 0x10);
491 	bge_mii_put16(bgep, 0x10, extctrl & ~0x3000);
492 
493 	if (DEVICE_5906_SERIES_CHIPSETS(bgep))
494 		(void) bge_adj_volt_5906(bgep);
495 
496 	if (!reset_success)
497 		bge_fm_ereport(bgep, DDI_FM_DEVICE_NO_RESPONSE);
498 	else if (phy_locked)
499 		bge_fm_ereport(bgep, DDI_FM_DEVICE_INVAL_STATE);
500 	return (reset_success && !phy_locked);
501 }
502 
503 static void
504 bge_phy_tweak_gmii(bge_t *bgep)
505 {
506 	/* Tweak GMII timing */
507 	bge_mii_put16(bgep, 0x1c, 0x8d68);
508 	bge_mii_put16(bgep, 0x1c, 0x8d68);
509 }
510 
511 /* Bit Error Rate reduction fix */
512 static void
513 bge_phy_bit_err_fix(bge_t *bgep)
514 {
515 	bge_mii_put16(bgep, 0x18, 0x0c00);
516 	bge_mii_put16(bgep, 0x17, 0x000a);
517 	bge_mii_put16(bgep, 0x15, 0x310b);
518 	bge_mii_put16(bgep, 0x17, 0x201f);
519 	bge_mii_put16(bgep, 0x15, 0x9506);
520 	bge_mii_put16(bgep, 0x17, 0x401f);
521 	bge_mii_put16(bgep, 0x15, 0x14e2);
522 	bge_mii_put16(bgep, 0x18, 0x0400);
523 }
524 
525 /*
526  * End of Broadcom-derived workaround code				*
527  */
528 
529 static int
530 bge_restart_copper(bge_t *bgep, boolean_t powerdown)
531 {
532 	uint16_t phy_status;
533 	boolean_t reset_ok;
534 
535 	BGE_TRACE(("bge_restart_copper($%p, %d)", (void *)bgep, powerdown));
536 
537 	ASSERT(mutex_owned(bgep->genlock));
538 
539 	switch (MHCR_CHIP_ASIC_REV(bgep->chipid.asic_rev)) {
540 	default:
541 		/*
542 		 * Shouldn't happen; it means we don't recognise this chip.
543 		 * It's probably a new one, so we'll try our best anyway ...
544 		 */
545 	case MHCR_CHIP_ASIC_REV_5703:
546 	case MHCR_CHIP_ASIC_REV_5704:
547 	case MHCR_CHIP_ASIC_REV_5705:
548 	case MHCR_CHIP_ASIC_REV_5721_5751:
549 	case MHCR_CHIP_ASIC_REV_5752:
550 	case MHCR_CHIP_ASIC_REV_5714:
551 	case MHCR_CHIP_ASIC_REV_5715:
552 		reset_ok = bge_phy_reset_and_check(bgep);
553 		break;
554 
555 	case MHCR_CHIP_ASIC_REV_5906:
556 	case MHCR_CHIP_ASIC_REV_5700:
557 	case MHCR_CHIP_ASIC_REV_5701:
558 		/*
559 		 * Just a plain reset; the "check" code breaks these chips
560 		 */
561 		reset_ok = bge_phy_reset(bgep);
562 		if (!reset_ok)
563 			bge_fm_ereport(bgep, DDI_FM_DEVICE_NO_RESPONSE);
564 		break;
565 	}
566 	if (!reset_ok) {
567 		BGE_REPORT((bgep, "PHY failed to reset correctly"));
568 		return (DDI_FAILURE);
569 	}
570 
571 	/*
572 	 * Step 5: disable WOL (not required after RESET)
573 	 *
574 	 * Step 6: refer to errata
575 	 */
576 	switch (bgep->chipid.asic_rev) {
577 	default:
578 		break;
579 
580 	case MHCR_CHIP_REV_5704_A0:
581 		bge_phy_tweak_gmii(bgep);
582 		break;
583 	}
584 
585 	switch (MHCR_CHIP_ASIC_REV(bgep->chipid.asic_rev)) {
586 	case MHCR_CHIP_ASIC_REV_5705:
587 	case MHCR_CHIP_ASIC_REV_5721_5751:
588 		bge_phy_bit_err_fix(bgep);
589 		break;
590 	}
591 
592 	/*
593 	 * Step 7: read the MII_INTR_STATUS register twice,
594 	 * in order to clear any sticky bits (but they should
595 	 * have been cleared by the RESET, I think), and we're
596 	 * not using PHY interrupts anyway.
597 	 *
598 	 * Step 8: enable the PHY to interrupt on link status
599 	 * change (not required)
600 	 *
601 	 * Step 9: configure PHY LED Mode - not applicable?
602 	 *
603 	 * Step 10: read the MII_STATUS register twice, in
604 	 * order to clear any sticky bits (but they should
605 	 * have been cleared by the RESET, I think).
606 	 */
607 	phy_status = bge_mii_get16(bgep, MII_STATUS);
608 	phy_status = bge_mii_get16(bgep, MII_STATUS);
609 	BGE_DEBUG(("bge_restart_copper: status 0x%x", phy_status));
610 
611 	/*
612 	 * Finally, shut down the PHY, if required
613 	 */
614 	if (powerdown)
615 		bge_phy_powerdown(bgep);
616 	return (DDI_SUCCESS);
617 }
618 
619 /*
620  * Synchronise the (copper) PHY's speed/duplex/autonegotiation capabilities
621  * and advertisements with the required settings as specified by the various
622  * param_* variables that can be poked via the NDD interface.
623  *
624  * We always reset the PHY and reprogram *all* the relevant registers,
625  * not just those changed.  This should cause the link to go down, and then
626  * back up again once the link is stable and autonegotiation (if enabled)
627  * is complete.  We should get a link state change interrupt somewhere along
628  * the way ...
629  *
630  * NOTE: <genlock> must already be held by the caller
631  */
632 static int
633 bge_update_copper(bge_t *bgep)
634 {
635 	boolean_t adv_autoneg;
636 	boolean_t adv_pause;
637 	boolean_t adv_asym_pause;
638 	boolean_t adv_1000fdx;
639 	boolean_t adv_1000hdx;
640 	boolean_t adv_100fdx;
641 	boolean_t adv_100hdx;
642 	boolean_t adv_10fdx;
643 	boolean_t adv_10hdx;
644 
645 	uint16_t control;
646 	uint16_t gigctrl;
647 	uint16_t auxctrl;
648 	uint16_t anar;
649 
650 	BGE_TRACE(("bge_update_copper($%p)", (void *)bgep));
651 
652 	ASSERT(mutex_owned(bgep->genlock));
653 
654 	BGE_DEBUG(("bge_update_copper: autoneg %d "
655 	    "pause %d asym_pause %d "
656 	    "1000fdx %d 1000hdx %d "
657 	    "100fdx %d 100hdx %d "
658 	    "10fdx %d 10hdx %d ",
659 	    bgep->param_adv_autoneg,
660 	    bgep->param_adv_pause, bgep->param_adv_asym_pause,
661 	    bgep->param_adv_1000fdx, bgep->param_adv_1000hdx,
662 	    bgep->param_adv_100fdx, bgep->param_adv_100hdx,
663 	    bgep->param_adv_10fdx, bgep->param_adv_10hdx));
664 
665 	control = gigctrl = auxctrl = anar = 0;
666 
667 	/*
668 	 * PHY settings are normally based on the param_* variables,
669 	 * but if any loopback mode is in effect, that takes precedence.
670 	 *
671 	 * BGE supports MAC-internal loopback, PHY-internal loopback,
672 	 * and External loopback at a variety of speeds (with a special
673 	 * cable).  In all cases, autoneg is turned OFF, full-duplex
674 	 * is turned ON, and the speed/mastership is forced.
675 	 */
676 	switch (bgep->param_loop_mode) {
677 	case BGE_LOOP_NONE:
678 	default:
679 		adv_autoneg = bgep->param_adv_autoneg;
680 		adv_pause = bgep->param_adv_pause;
681 		adv_asym_pause = bgep->param_adv_asym_pause;
682 		adv_1000fdx = bgep->param_adv_1000fdx;
683 		adv_1000hdx = bgep->param_adv_1000hdx;
684 		adv_100fdx = bgep->param_adv_100fdx;
685 		adv_100hdx = bgep->param_adv_100hdx;
686 		adv_10fdx = bgep->param_adv_10fdx;
687 		adv_10hdx = bgep->param_adv_10hdx;
688 		break;
689 
690 	case BGE_LOOP_EXTERNAL_1000:
691 	case BGE_LOOP_EXTERNAL_100:
692 	case BGE_LOOP_EXTERNAL_10:
693 	case BGE_LOOP_INTERNAL_PHY:
694 	case BGE_LOOP_INTERNAL_MAC:
695 		adv_autoneg = adv_pause = adv_asym_pause = B_FALSE;
696 		adv_1000fdx = adv_100fdx = adv_10fdx = B_FALSE;
697 		adv_1000hdx = adv_100hdx = adv_10hdx = B_FALSE;
698 		bgep->param_link_duplex = LINK_DUPLEX_FULL;
699 
700 		switch (bgep->param_loop_mode) {
701 		case BGE_LOOP_EXTERNAL_1000:
702 			bgep->param_link_speed = 1000;
703 			adv_1000fdx = B_TRUE;
704 			auxctrl = MII_AUX_CTRL_NORM_EXT_LOOPBACK;
705 			gigctrl |= MII_1000BT_CTL_MASTER_CFG;
706 			gigctrl |= MII_1000BT_CTL_MASTER_SEL;
707 			break;
708 
709 		case BGE_LOOP_EXTERNAL_100:
710 			bgep->param_link_speed = 100;
711 			adv_100fdx = B_TRUE;
712 			auxctrl = MII_AUX_CTRL_NORM_EXT_LOOPBACK;
713 			break;
714 
715 		case BGE_LOOP_EXTERNAL_10:
716 			bgep->param_link_speed = 10;
717 			adv_10fdx = B_TRUE;
718 			auxctrl = MII_AUX_CTRL_NORM_EXT_LOOPBACK;
719 			break;
720 
721 		case BGE_LOOP_INTERNAL_PHY:
722 			bgep->param_link_speed = 1000;
723 			adv_1000fdx = B_TRUE;
724 			control = MII_CONTROL_LOOPBACK;
725 			break;
726 
727 		case BGE_LOOP_INTERNAL_MAC:
728 			bgep->param_link_speed = 1000;
729 			adv_1000fdx = B_TRUE;
730 			break;
731 		}
732 	}
733 
734 	BGE_DEBUG(("bge_update_copper: autoneg %d "
735 	    "pause %d asym_pause %d "
736 	    "1000fdx %d 1000hdx %d "
737 	    "100fdx %d 100hdx %d "
738 	    "10fdx %d 10hdx %d ",
739 	    adv_autoneg,
740 	    adv_pause, adv_asym_pause,
741 	    adv_1000fdx, adv_1000hdx,
742 	    adv_100fdx, adv_100hdx,
743 	    adv_10fdx, adv_10hdx));
744 
745 	/*
746 	 * We should have at least one technology capability set;
747 	 * if not, we select a default of 1000Mb/s full-duplex
748 	 */
749 	if (!adv_1000fdx && !adv_100fdx && !adv_10fdx &&
750 	    !adv_1000hdx && !adv_100hdx && !adv_10hdx)
751 		adv_1000fdx = B_TRUE;
752 
753 	/*
754 	 * Now transform the adv_* variables into the proper settings
755 	 * of the PHY registers ...
756 	 *
757 	 * If autonegotiation is (now) enabled, we want to trigger
758 	 * a new autonegotiation cycle once the PHY has been
759 	 * programmed with the capabilities to be advertised.
760 	 */
761 	if (adv_autoneg)
762 		control |= MII_CONTROL_ANE|MII_CONTROL_RSAN;
763 
764 	if (adv_1000fdx)
765 		control |= MII_CONTROL_1000MB|MII_CONTROL_FDUPLEX;
766 	else if (adv_1000hdx)
767 		control |= MII_CONTROL_1000MB;
768 	else if (adv_100fdx)
769 		control |= MII_CONTROL_100MB|MII_CONTROL_FDUPLEX;
770 	else if (adv_100hdx)
771 		control |= MII_CONTROL_100MB;
772 	else if (adv_10fdx)
773 		control |= MII_CONTROL_FDUPLEX;
774 	else if (adv_10hdx)
775 		control |= 0;
776 	else
777 		{ _NOTE(EMPTY); }	/* Can't get here anyway ...	*/
778 
779 	if (adv_1000fdx)
780 		gigctrl |= MII_1000BT_CTL_ADV_FDX;
781 	if (adv_1000hdx)
782 		gigctrl |= MII_1000BT_CTL_ADV_HDX;
783 
784 	if (adv_100fdx)
785 		anar |= MII_ABILITY_100BASE_TX_FD;
786 	if (adv_100hdx)
787 		anar |= MII_ABILITY_100BASE_TX;
788 	if (adv_10fdx)
789 		anar |= MII_ABILITY_10BASE_T_FD;
790 	if (adv_10hdx)
791 		anar |= MII_ABILITY_10BASE_T;
792 
793 	if (adv_pause)
794 		anar |= MII_ABILITY_PAUSE;
795 	if (adv_asym_pause)
796 		anar |= MII_ABILITY_ASYM_PAUSE;
797 
798 	/*
799 	 * Munge in any other fixed bits we require ...
800 	 */
801 	anar |= MII_AN_SELECTOR_8023;
802 	auxctrl |= MII_AUX_CTRL_NORM_TX_MODE;
803 	auxctrl |= MII_AUX_CTRL_NORMAL;
804 
805 	/*
806 	 * Restart the PHY and write the new values.  Note the
807 	 * time, so that we can say whether subsequent link state
808 	 * changes can be attributed to our reprogramming the PHY
809 	 */
810 	if ((*bgep->physops->phys_restart)(bgep, B_FALSE) == DDI_FAILURE)
811 		return (DDI_FAILURE);
812 	bge_mii_put16(bgep, MII_AN_ADVERT, anar);
813 	bge_mii_put16(bgep, MII_CONTROL, control);
814 	bge_mii_put16(bgep, MII_AUX_CONTROL, auxctrl);
815 	bge_mii_put16(bgep, MII_1000BASE_T_CONTROL, gigctrl);
816 
817 	BGE_DEBUG(("bge_update_copper: anar <- 0x%x", anar));
818 	BGE_DEBUG(("bge_update_copper: control <- 0x%x", control));
819 	BGE_DEBUG(("bge_update_copper: auxctrl <- 0x%x", auxctrl));
820 	BGE_DEBUG(("bge_update_copper: gigctrl <- 0x%x", gigctrl));
821 
822 #if	BGE_COPPER_WIRESPEED
823 	/*
824 	 * Enable the 'wire-speed' feature, if the chip supports it
825 	 * and we haven't got (any) loopback mode selected.
826 	 */
827 	switch (bgep->chipid.device) {
828 	case DEVICE_ID_5700:
829 	case DEVICE_ID_5700x:
830 	case DEVICE_ID_5705C:
831 	case DEVICE_ID_5782:
832 		/*
833 		 * These chips are known or assumed not to support it
834 		 */
835 		break;
836 
837 	default:
838 		/*
839 		 * All other Broadcom chips are expected to support it.
840 		 */
841 		if (bgep->param_loop_mode == BGE_LOOP_NONE)
842 			bge_mii_put16(bgep, MII_AUX_CONTROL,
843 			    MII_AUX_CTRL_MISC_WRITE_ENABLE |
844 			    MII_AUX_CTRL_MISC_WIRE_SPEED |
845 			    MII_AUX_CTRL_MISC);
846 		break;
847 	}
848 #endif	/* BGE_COPPER_WIRESPEED */
849 	return (DDI_SUCCESS);
850 }
851 
852 static boolean_t
853 bge_check_copper(bge_t *bgep, boolean_t recheck)
854 {
855 	uint32_t emac_status;
856 	uint16_t mii_status;
857 	uint16_t aux;
858 	uint_t mode;
859 	boolean_t linkup;
860 
861 	/*
862 	 * Step 10: read the status from the PHY (which is self-clearing
863 	 * on read!); also read & clear the main (Ethernet) MAC status
864 	 * (the relevant bits of this are write-one-to-clear).
865 	 */
866 	mii_status = bge_mii_get16(bgep, MII_STATUS);
867 	emac_status = bge_reg_get32(bgep, ETHERNET_MAC_STATUS_REG);
868 	bge_reg_put32(bgep, ETHERNET_MAC_STATUS_REG, emac_status);
869 
870 	BGE_DEBUG(("bge_check_copper: link %d/%s, MII status 0x%x "
871 	    "(was 0x%x), Ethernet MAC status 0x%x",
872 	    bgep->link_state, UPORDOWN(bgep->param_link_up), mii_status,
873 	    bgep->phy_gen_status, emac_status));
874 
875 	/*
876 	 * If the PHY status hasn't changed since last we looked, and
877 	 * we not forcing a recheck (i.e. the link state was already
878 	 * known), there's nothing to do.
879 	 */
880 	if (mii_status == bgep->phy_gen_status && !recheck)
881 		return (B_FALSE);
882 
883 	do {
884 		/*
885 		 * Step 11: read AUX STATUS register to find speed/duplex
886 		 */
887 		aux = bge_mii_get16(bgep, MII_AUX_STATUS);
888 		BGE_CDB(bge_phydump, (bgep, mii_status, aux));
889 
890 		/*
891 		 * We will only consider the link UP if all the readings
892 		 * are consistent and give meaningful results ...
893 		 */
894 		mode = aux & MII_AUX_STATUS_MODE_MASK;
895 		mode >>= MII_AUX_STATUS_MODE_SHIFT;
896 		if (DEVICE_5906_SERIES_CHIPSETS(bgep)) {
897 			linkup = BIS(aux, MII_AUX_STATUS_LINKUP);
898 			linkup &= BIS(mii_status, MII_STATUS_LINKUP);
899 		} else {
900 			linkup = bge_copper_link_speed[mode] > 0;
901 			linkup &= bge_copper_link_duplex[mode] !=
902 			    LINK_DUPLEX_UNKNOWN;
903 			linkup &= BIS(aux, MII_AUX_STATUS_LINKUP);
904 			linkup &= BIS(mii_status, MII_STATUS_LINKUP);
905 		}
906 
907 		BGE_DEBUG(("bge_check_copper: MII status 0x%x aux 0x%x "
908 		    "=> mode %d (%s)",
909 		    mii_status, aux,
910 		    mode, UPORDOWN(linkup)));
911 
912 		/*
913 		 * Record current register values, then reread status
914 		 * register & loop until it stabilises ...
915 		 */
916 		bgep->phy_aux_status = aux;
917 		bgep->phy_gen_status = mii_status;
918 		mii_status = bge_mii_get16(bgep, MII_STATUS);
919 	} while (mii_status != bgep->phy_gen_status);
920 
921 	/*
922 	 * Assume very little ...
923 	 */
924 	bgep->param_lp_autoneg = B_FALSE;
925 	bgep->param_lp_1000fdx = B_FALSE;
926 	bgep->param_lp_1000hdx = B_FALSE;
927 	bgep->param_lp_100fdx = B_FALSE;
928 	bgep->param_lp_100hdx = B_FALSE;
929 	bgep->param_lp_10fdx = B_FALSE;
930 	bgep->param_lp_10hdx = B_FALSE;
931 	bgep->param_lp_pause = B_FALSE;
932 	bgep->param_lp_asym_pause = B_FALSE;
933 	bgep->param_link_autoneg = B_FALSE;
934 	bgep->param_link_tx_pause = B_FALSE;
935 	if (bgep->param_adv_autoneg)
936 		bgep->param_link_rx_pause = B_FALSE;
937 	else
938 		bgep->param_link_rx_pause = bgep->param_adv_pause;
939 
940 	/*
941 	 * Discover all the link partner's abilities.
942 	 * These are scattered through various registers ...
943 	 */
944 	if (BIS(aux, MII_AUX_STATUS_LP_ANEG_ABLE)) {
945 		bgep->param_lp_autoneg = B_TRUE;
946 		bgep->param_link_autoneg = B_TRUE;
947 		bgep->param_link_tx_pause = BIS(aux, MII_AUX_STATUS_TX_PAUSE);
948 		bgep->param_link_rx_pause = BIS(aux, MII_AUX_STATUS_RX_PAUSE);
949 
950 		aux = bge_mii_get16(bgep, MII_1000BASE_T_STATUS);
951 		bgep->param_lp_1000fdx = BIS(aux, MII_1000BT_STAT_LP_FDX_CAP);
952 		bgep->param_lp_1000hdx = BIS(aux, MII_1000BT_STAT_LP_HDX_CAP);
953 
954 		aux = bge_mii_get16(bgep, MII_AN_LPABLE);
955 		bgep->param_lp_100fdx = BIS(aux, MII_ABILITY_100BASE_TX_FD);
956 		bgep->param_lp_100hdx = BIS(aux, MII_ABILITY_100BASE_TX);
957 		bgep->param_lp_10fdx = BIS(aux, MII_ABILITY_10BASE_T_FD);
958 		bgep->param_lp_10hdx = BIS(aux, MII_ABILITY_10BASE_T);
959 		bgep->param_lp_pause = BIS(aux, MII_ABILITY_PAUSE);
960 		bgep->param_lp_asym_pause = BIS(aux, MII_ABILITY_ASYM_PAUSE);
961 	}
962 
963 	/*
964 	 * Step 12: update ndd-visible state parameters, BUT!
965 	 * we don't transfer the new state to <link_state> just yet;
966 	 * instead we mark the <link_state> as UNKNOWN, and our caller
967 	 * will resolve it once the status has stopped changing and
968 	 * been stable for several seconds.
969 	 */
970 	BGE_DEBUG(("bge_check_copper: link was %s speed %d duplex %d",
971 	    UPORDOWN(bgep->param_link_up),
972 	    bgep->param_link_speed,
973 	    bgep->param_link_duplex));
974 
975 	if (!linkup)
976 		mode = MII_AUX_STATUS_MODE_NONE;
977 	bgep->param_link_up = linkup;
978 	bgep->link_state = LINK_STATE_UNKNOWN;
979 	if (DEVICE_5906_SERIES_CHIPSETS(bgep)) {
980 		if (bgep->phy_aux_status & MII_AUX_STATUS_NEG_ENABLED_5906) {
981 			bgep->param_link_speed =
982 			    bge_copper_link_speed_5906[mode];
983 			bgep->param_link_duplex =
984 			    bge_copper_link_duplex_5906[mode];
985 		} else {
986 			bgep->param_link_speed = (bgep->phy_aux_status &
987 			    MII_AUX_STATUS_SPEED_IND_5906) ?  100 : 10;
988 			bgep->param_link_duplex = (bgep->phy_aux_status &
989 			    MII_AUX_STATUS_DUPLEX_IND_5906) ? LINK_DUPLEX_FULL :
990 			    LINK_DUPLEX_HALF;
991 		}
992 	} else {
993 		bgep->param_link_speed = bge_copper_link_speed[mode];
994 		bgep->param_link_duplex = bge_copper_link_duplex[mode];
995 	}
996 
997 	BGE_DEBUG(("bge_check_copper: link now %s speed %d duplex %d",
998 	    UPORDOWN(bgep->param_link_up),
999 	    bgep->param_link_speed,
1000 	    bgep->param_link_duplex));
1001 
1002 	return (B_TRUE);
1003 }
1004 
1005 static const phys_ops_t copper_ops = {
1006 	bge_restart_copper,
1007 	bge_update_copper,
1008 	bge_check_copper
1009 };
1010 
1011 
1012 /*
1013  * ========== SerDes support ==========
1014  */
1015 
1016 #undef	BGE_DBG
1017 #define	BGE_DBG		BGE_DBG_SERDES	/* debug flag for this code	*/
1018 
1019 /*
1020  * Reinitialise the SerDes interface.  Note that it normally powers
1021  * up in the disabled state, so we need to explicitly activate it.
1022  */
1023 static int
1024 bge_restart_serdes(bge_t *bgep, boolean_t powerdown)
1025 {
1026 	uint32_t macmode;
1027 
1028 	BGE_TRACE(("bge_restart_serdes($%p, %d)", (void *)bgep, powerdown));
1029 
1030 	ASSERT(mutex_owned(bgep->genlock));
1031 
1032 	/*
1033 	 * Ensure that the main Ethernet MAC mode register is programmed
1034 	 * appropriately for the SerDes interface ...
1035 	 */
1036 	macmode = bge_reg_get32(bgep, ETHERNET_MAC_MODE_REG);
1037 	if (DEVICE_5714_SERIES_CHIPSETS(bgep)) {
1038 		macmode |= ETHERNET_MODE_LINK_POLARITY;
1039 		macmode &= ~ETHERNET_MODE_PORTMODE_MASK;
1040 		macmode |= ETHERNET_MODE_PORTMODE_GMII;
1041 	} else {
1042 		macmode &= ~ETHERNET_MODE_LINK_POLARITY;
1043 		macmode &= ~ETHERNET_MODE_PORTMODE_MASK;
1044 		macmode |= ETHERNET_MODE_PORTMODE_TBI;
1045 	}
1046 	bge_reg_put32(bgep, ETHERNET_MAC_MODE_REG, macmode);
1047 
1048 	/*
1049 	 * Ensure that loopback is OFF and comma detection is enabled.  Then
1050 	 * disable the SerDes output (the first time through, it may/will
1051 	 * already be disabled).  If we're shutting down, leave it disabled.
1052 	 */
1053 	bge_reg_clr32(bgep, SERDES_CONTROL_REG, SERDES_CONTROL_TBI_LOOPBACK);
1054 	bge_reg_set32(bgep, SERDES_CONTROL_REG, SERDES_CONTROL_COMMA_DETECT);
1055 	bge_reg_set32(bgep, SERDES_CONTROL_REG, SERDES_CONTROL_TX_DISABLE);
1056 	if (powerdown)
1057 		return (DDI_SUCCESS);
1058 
1059 	/*
1060 	 * Otherwise, pause, (re-)enable the SerDes output, and send
1061 	 * all-zero config words in order to force autoneg restart.
1062 	 * Invalidate the saved "link partners received configs", as
1063 	 * we're starting over ...
1064 	 */
1065 	drv_usecwait(10000);
1066 	bge_reg_clr32(bgep, SERDES_CONTROL_REG, SERDES_CONTROL_TX_DISABLE);
1067 	bge_reg_put32(bgep, TX_1000BASEX_AUTONEG_REG, 0);
1068 	bge_reg_set32(bgep, ETHERNET_MAC_MODE_REG, ETHERNET_MODE_SEND_CFGS);
1069 	drv_usecwait(10);
1070 	bge_reg_clr32(bgep, ETHERNET_MAC_MODE_REG, ETHERNET_MODE_SEND_CFGS);
1071 	bgep->serdes_lpadv = AUTONEG_CODE_FAULT_ANEG_ERR;
1072 	bgep->serdes_status = ~0U;
1073 	return (DDI_SUCCESS);
1074 }
1075 
1076 /*
1077  * Synchronise the SerDes speed/duplex/autonegotiation capabilities and
1078  * advertisements with the required settings as specified by the various
1079  * param_* variables that can be poked via the NDD interface.
1080  *
1081  * We always reinitalise the SerDes; this should cause the link to go down,
1082  * and then back up again once the link is stable and autonegotiation
1083  * (if enabled) is complete.  We should get a link state change interrupt
1084  * somewhere along the way ...
1085  *
1086  * NOTE: SerDes only supports 1000FDX/HDX (with or without pause) so the
1087  * param_* variables relating to lower speeds are ignored.
1088  *
1089  * NOTE: <genlock> must already be held by the caller
1090  */
1091 static int
1092 bge_update_serdes(bge_t *bgep)
1093 {
1094 	boolean_t adv_autoneg;
1095 	boolean_t adv_pause;
1096 	boolean_t adv_asym_pause;
1097 	boolean_t adv_1000fdx;
1098 	boolean_t adv_1000hdx;
1099 
1100 	uint32_t serdes;
1101 	uint32_t advert;
1102 
1103 	BGE_TRACE(("bge_update_serdes($%p)", (void *)bgep));
1104 
1105 	ASSERT(mutex_owned(bgep->genlock));
1106 
1107 	BGE_DEBUG(("bge_update_serdes: autoneg %d "
1108 	    "pause %d asym_pause %d "
1109 	    "1000fdx %d 1000hdx %d "
1110 	    "100fdx %d 100hdx %d "
1111 	    "10fdx %d 10hdx %d ",
1112 	    bgep->param_adv_autoneg,
1113 	    bgep->param_adv_pause, bgep->param_adv_asym_pause,
1114 	    bgep->param_adv_1000fdx, bgep->param_adv_1000hdx,
1115 	    bgep->param_adv_100fdx, bgep->param_adv_100hdx,
1116 	    bgep->param_adv_10fdx, bgep->param_adv_10hdx));
1117 
1118 	serdes = advert = 0;
1119 
1120 	/*
1121 	 * SerDes settings are normally based on the param_* variables,
1122 	 * but if any loopback mode is in effect, that takes precedence.
1123 	 *
1124 	 * BGE supports MAC-internal loopback, PHY-internal loopback,
1125 	 * and External loopback at a variety of speeds (with a special
1126 	 * cable).  In all cases, autoneg is turned OFF, full-duplex
1127 	 * is turned ON, and the speed/mastership is forced.
1128 	 *
1129 	 * Note: for the SerDes interface, "PHY" internal loopback is
1130 	 * interpreted as SerDes internal loopback, and all external
1131 	 * loopback modes are treated equivalently, as 1Gb/external.
1132 	 */
1133 	switch (bgep->param_loop_mode) {
1134 	case BGE_LOOP_NONE:
1135 	default:
1136 		adv_autoneg = bgep->param_adv_autoneg;
1137 		adv_pause = bgep->param_adv_pause;
1138 		adv_asym_pause = bgep->param_adv_asym_pause;
1139 		adv_1000fdx = bgep->param_adv_1000fdx;
1140 		adv_1000hdx = bgep->param_adv_1000hdx;
1141 		break;
1142 
1143 	case BGE_LOOP_INTERNAL_PHY:
1144 		serdes |= SERDES_CONTROL_TBI_LOOPBACK;
1145 		/* FALLTHRU */
1146 	case BGE_LOOP_INTERNAL_MAC:
1147 	case BGE_LOOP_EXTERNAL_1000:
1148 	case BGE_LOOP_EXTERNAL_100:
1149 	case BGE_LOOP_EXTERNAL_10:
1150 		adv_autoneg = adv_pause = adv_asym_pause = B_FALSE;
1151 		adv_1000fdx = B_TRUE;
1152 		adv_1000hdx = B_FALSE;
1153 		break;
1154 	}
1155 
1156 	BGE_DEBUG(("bge_update_serdes: autoneg %d "
1157 	    "pause %d asym_pause %d "
1158 	    "1000fdx %d 1000hdx %d ",
1159 	    adv_autoneg,
1160 	    adv_pause, adv_asym_pause,
1161 	    adv_1000fdx, adv_1000hdx));
1162 
1163 	/*
1164 	 * We should have at least one gigabit technology capability
1165 	 * set; if not, we select a default of 1000Mb/s full-duplex
1166 	 */
1167 	if (!adv_1000fdx && !adv_1000hdx)
1168 		adv_1000fdx = B_TRUE;
1169 
1170 	/*
1171 	 * Now transform the adv_* variables into the proper settings
1172 	 * of the SerDes registers ...
1173 	 *
1174 	 * If autonegotiation is (now) not enabled, pretend it's been
1175 	 * done and failed ...
1176 	 */
1177 	if (!adv_autoneg)
1178 		advert |= AUTONEG_CODE_FAULT_ANEG_ERR;
1179 
1180 	if (adv_1000fdx) {
1181 		advert |= AUTONEG_CODE_FULL_DUPLEX;
1182 		bgep->param_adv_1000fdx = adv_1000fdx;
1183 		bgep->param_link_duplex = LINK_DUPLEX_FULL;
1184 		bgep->param_link_speed = 1000;
1185 	}
1186 	if (adv_1000hdx) {
1187 		advert |= AUTONEG_CODE_HALF_DUPLEX;
1188 		bgep->param_adv_1000hdx = adv_1000hdx;
1189 		bgep->param_link_duplex = LINK_DUPLEX_HALF;
1190 		bgep->param_link_speed = 1000;
1191 	}
1192 
1193 	if (adv_pause)
1194 		advert |= AUTONEG_CODE_PAUSE;
1195 	if (adv_asym_pause)
1196 		advert |= AUTONEG_CODE_ASYM_PAUSE;
1197 
1198 	/*
1199 	 * Restart the SerDes and write the new values.  Note the
1200 	 * time, so that we can say whether subsequent link state
1201 	 * changes can be attributed to our reprogramming the SerDes
1202 	 */
1203 	bgep->serdes_advert = advert;
1204 	(void) bge_restart_serdes(bgep, B_FALSE);
1205 	bge_reg_set32(bgep, SERDES_CONTROL_REG, serdes);
1206 
1207 	BGE_DEBUG(("bge_update_serdes: serdes |= 0x%x, advert 0x%x",
1208 	    serdes, advert));
1209 	return (DDI_SUCCESS);
1210 }
1211 
1212 /*
1213  * Bare-minimum autoneg protocol
1214  *
1215  * This code is only called when the link is up and we're receiving config
1216  * words, which implies that the link partner wants to autonegotiate
1217  * (otherwise, we wouldn't see configs and wouldn't reach this code).
1218  */
1219 static void
1220 bge_autoneg_serdes(bge_t *bgep)
1221 {
1222 	boolean_t ack;
1223 
1224 	bgep->serdes_lpadv = bge_reg_get32(bgep, RX_1000BASEX_AUTONEG_REG);
1225 	ack = BIS(bgep->serdes_lpadv, AUTONEG_CODE_ACKNOWLEDGE);
1226 
1227 	if (!ack) {
1228 		/*
1229 		 * Phase 1: after SerDes reset, we send a few zero configs
1230 		 * but then stop.  Here the partner is sending configs, but
1231 		 * not ACKing ours; we assume that's 'cos we're not sending
1232 		 * any.  So here we send ours, with ACK already set.
1233 		 */
1234 		bge_reg_put32(bgep, TX_1000BASEX_AUTONEG_REG,
1235 		    bgep->serdes_advert | AUTONEG_CODE_ACKNOWLEDGE);
1236 		bge_reg_set32(bgep, ETHERNET_MAC_MODE_REG,
1237 		    ETHERNET_MODE_SEND_CFGS);
1238 	} else {
1239 		/*
1240 		 * Phase 2: partner has ACKed our configs, so now we can
1241 		 * stop sending; once our partner also stops sending, we
1242 		 * can resolve the Tx/Rx configs.
1243 		 */
1244 		bge_reg_clr32(bgep, ETHERNET_MAC_MODE_REG,
1245 		    ETHERNET_MODE_SEND_CFGS);
1246 	}
1247 
1248 	BGE_DEBUG(("bge_autoneg_serdes: Rx 0x%x %s Tx 0x%x",
1249 	    bgep->serdes_lpadv,
1250 	    ack ? "stop" : "send",
1251 	    bgep->serdes_advert));
1252 }
1253 
1254 static boolean_t
1255 bge_check_serdes(bge_t *bgep, boolean_t recheck)
1256 {
1257 	uint32_t emac_status;
1258 	uint32_t lpadv;
1259 	boolean_t linkup;
1260 	boolean_t linkup_old = bgep->param_link_up;
1261 
1262 	for (;;) {
1263 		/*
1264 		 * Step 10: BCM5714S, BCM5715S only
1265 		 * Don't call function bge_autoneg_serdes() as
1266 		 * RX_1000BASEX_AUTONEG_REG (0x0448) is not applicable
1267 		 * to BCM5705, BCM5788, BCM5721, BCM5751, BCM5752,
1268 		 * BCM5714, and BCM5715 devices.
1269 		 */
1270 		if (DEVICE_5714_SERIES_CHIPSETS(bgep)) {
1271 			emac_status =  bge_reg_get32(bgep, MI_STATUS_REG);
1272 			linkup = BIS(emac_status, MI_STATUS_LINK);
1273 			bgep->serdes_status = emac_status;
1274 			if ((linkup && linkup_old) ||
1275 			    (!linkup && !linkup_old)) {
1276 				emac_status &= ~ETHERNET_STATUS_LINK_CHANGED;
1277 				emac_status &= ~ETHERNET_STATUS_RECEIVING_CFG;
1278 				break;
1279 			}
1280 			emac_status |= ETHERNET_STATUS_LINK_CHANGED;
1281 			emac_status |= ETHERNET_STATUS_RECEIVING_CFG;
1282 			if (linkup)
1283 				linkup_old = B_TRUE;
1284 			else
1285 				linkup_old = B_FALSE;
1286 			recheck = B_TRUE;
1287 		} else {
1288 			/*
1289 			 * Step 10: others
1290 			 * read & clear the main (Ethernet) MAC status
1291 			 * (the relevant bits of this are write-one-to-clear).
1292 			 */
1293 			emac_status = bge_reg_get32(bgep,
1294 			    ETHERNET_MAC_STATUS_REG);
1295 			bge_reg_put32(bgep,
1296 			    ETHERNET_MAC_STATUS_REG, emac_status);
1297 
1298 			BGE_DEBUG(("bge_check_serdes: link %d/%s, "
1299 			    "MAC status 0x%x (was 0x%x)",
1300 			    bgep->link_state, UPORDOWN(bgep->param_link_up),
1301 			    emac_status, bgep->serdes_status));
1302 
1303 			/*
1304 			 * We will only consider the link UP if all the readings
1305 			 * are consistent and give meaningful results ...
1306 			 */
1307 			bgep->serdes_status = emac_status;
1308 			linkup = BIS(emac_status,
1309 			    ETHERNET_STATUS_SIGNAL_DETECT);
1310 			linkup &= BIS(emac_status, ETHERNET_STATUS_PCS_SYNCHED);
1311 
1312 			/*
1313 			 * Now some fiddling with the interpretation:
1314 			 *	if there's been an error at the PCS level, treat
1315 			 *	it as a link change (the h/w doesn't do this)
1316 			 *
1317 			 *	if there's been a change, but it's only a PCS
1318 			 *	sync change (not a config change), AND the link
1319 			 *	already was & is still UP, then ignore the
1320 			 *	change
1321 			 */
1322 			if (BIS(emac_status, ETHERNET_STATUS_PCS_ERROR))
1323 				emac_status |= ETHERNET_STATUS_LINK_CHANGED;
1324 			else if (BIC(emac_status, ETHERNET_STATUS_CFG_CHANGED))
1325 				if (bgep->param_link_up && linkup)
1326 					emac_status &=
1327 					    ~ETHERNET_STATUS_LINK_CHANGED;
1328 
1329 			BGE_DEBUG(("bge_check_serdes: status 0x%x => 0x%x %s",
1330 			    bgep->serdes_status, emac_status,
1331 			    UPORDOWN(linkup)));
1332 
1333 			/*
1334 			 * If we're receiving configs, run the autoneg protocol
1335 			 */
1336 			if (linkup && BIS(emac_status,
1337 			    ETHERNET_STATUS_RECEIVING_CFG))
1338 				bge_autoneg_serdes(bgep);
1339 
1340 			/*
1341 			 * If the SerDes status hasn't changed, we're done ...
1342 			 */
1343 			if (BIC(emac_status, ETHERNET_STATUS_LINK_CHANGED))
1344 				break;
1345 
1346 			/*
1347 			 * Go round again until we no longer see a change ...
1348 			 */
1349 			recheck = B_TRUE;
1350 		}
1351 	}
1352 
1353 	/*
1354 	 * If we're not forcing a recheck (i.e. the link state was already
1355 	 * known), and we didn't see the hardware flag a change, there's
1356 	 * no more to do (and we tell the caller nothing happened).
1357 	 */
1358 	if (!recheck)
1359 		return (B_FALSE);
1360 
1361 	/*
1362 	 * Don't resolve autoneg until we're no longer receiving configs
1363 	 */
1364 	if (linkup && BIS(emac_status, ETHERNET_STATUS_RECEIVING_CFG))
1365 		return (B_FALSE);
1366 
1367 	/*
1368 	 * Assume very little ...
1369 	 */
1370 	bgep->param_lp_autoneg = B_FALSE;
1371 	bgep->param_lp_1000fdx = B_FALSE;
1372 	bgep->param_lp_1000hdx = B_FALSE;
1373 	bgep->param_lp_100fdx = B_FALSE;
1374 	bgep->param_lp_100hdx = B_FALSE;
1375 	bgep->param_lp_10fdx = B_FALSE;
1376 	bgep->param_lp_10hdx = B_FALSE;
1377 	bgep->param_lp_pause = B_FALSE;
1378 	bgep->param_lp_asym_pause = B_FALSE;
1379 	bgep->param_link_autoneg = B_FALSE;
1380 	bgep->param_link_tx_pause = B_FALSE;
1381 	if (bgep->param_adv_autoneg)
1382 		bgep->param_link_rx_pause = B_FALSE;
1383 	else
1384 		bgep->param_link_rx_pause = bgep->param_adv_pause;
1385 
1386 	/*
1387 	 * Discover all the link partner's abilities.
1388 	 */
1389 	lpadv = bgep->serdes_lpadv;
1390 	if (lpadv != 0 && BIC(lpadv, AUTONEG_CODE_FAULT_MASK)) {
1391 		/*
1392 		 * No fault, so derive partner's capabilities
1393 		 */
1394 		bgep->param_lp_autoneg = B_TRUE;
1395 		bgep->param_lp_1000fdx = BIS(lpadv, AUTONEG_CODE_FULL_DUPLEX);
1396 		bgep->param_lp_1000hdx = BIS(lpadv, AUTONEG_CODE_HALF_DUPLEX);
1397 		bgep->param_lp_pause = BIS(lpadv, AUTONEG_CODE_PAUSE);
1398 		bgep->param_lp_asym_pause = BIS(lpadv, AUTONEG_CODE_ASYM_PAUSE);
1399 
1400 		/*
1401 		 * Pause direction resolution
1402 		 */
1403 		bgep->param_link_autoneg = B_TRUE;
1404 		if (bgep->param_adv_pause &&
1405 		    bgep->param_lp_pause) {
1406 			bgep->param_link_tx_pause = B_TRUE;
1407 			bgep->param_link_rx_pause = B_TRUE;
1408 		}
1409 		if (bgep->param_adv_asym_pause &&
1410 		    bgep->param_lp_asym_pause) {
1411 			if (bgep->param_adv_pause)
1412 				bgep->param_link_rx_pause = B_TRUE;
1413 			if (bgep->param_lp_pause)
1414 				bgep->param_link_tx_pause = B_TRUE;
1415 		}
1416 	}
1417 
1418 	/*
1419 	 * Step 12: update ndd-visible state parameters, BUT!
1420 	 * we don't transfer the new state to <link_state> just yet;
1421 	 * instead we mark the <link_state> as UNKNOWN, and our caller
1422 	 * will resolve it once the status has stopped changing and
1423 	 * been stable for several seconds.
1424 	 */
1425 	BGE_DEBUG(("bge_check_serdes: link was %s speed %d duplex %d",
1426 	    UPORDOWN(bgep->param_link_up),
1427 	    bgep->param_link_speed,
1428 	    bgep->param_link_duplex));
1429 
1430 	if (linkup) {
1431 		bgep->param_link_up = B_TRUE;
1432 		bgep->param_link_speed = 1000;
1433 		if (bgep->param_adv_1000fdx)
1434 			bgep->param_link_duplex = LINK_DUPLEX_FULL;
1435 		else
1436 			bgep->param_link_duplex = LINK_DUPLEX_HALF;
1437 		if (bgep->param_lp_autoneg && !bgep->param_lp_1000fdx)
1438 			bgep->param_link_duplex = LINK_DUPLEX_HALF;
1439 	} else {
1440 		bgep->param_link_up = B_FALSE;
1441 		bgep->param_link_speed = 0;
1442 		bgep->param_link_duplex = LINK_DUPLEX_UNKNOWN;
1443 	}
1444 	bgep->link_state = LINK_STATE_UNKNOWN;
1445 
1446 	BGE_DEBUG(("bge_check_serdes: link now %s speed %d duplex %d",
1447 	    UPORDOWN(bgep->param_link_up),
1448 	    bgep->param_link_speed,
1449 	    bgep->param_link_duplex));
1450 
1451 	return (B_TRUE);
1452 }
1453 
1454 static const phys_ops_t serdes_ops = {
1455 	bge_restart_serdes,
1456 	bge_update_serdes,
1457 	bge_check_serdes
1458 };
1459 
1460 /*
1461  * ========== Exported physical layer control routines ==========
1462  */
1463 
1464 #undef	BGE_DBG
1465 #define	BGE_DBG		BGE_DBG_PHYS	/* debug flag for this code	*/
1466 
1467 /*
1468  * Here we have to determine which media we're using (copper or serdes).
1469  * Once that's done, we can initialise the physical layer appropriately.
1470  */
1471 int
1472 bge_phys_init(bge_t *bgep)
1473 {
1474 	BGE_TRACE(("bge_phys_init($%p)", (void *)bgep));
1475 
1476 	mutex_enter(bgep->genlock);
1477 
1478 	/*
1479 	 * Probe for the (internal) PHY.  If it's not there, we'll assume
1480 	 * that this is a 5703/4S, with a SerDes interface rather than
1481 	 * a PHY. BCM5714S/BCM5715S are not supported.It are based on
1482 	 * BCM800x PHY.
1483 	 */
1484 	bgep->phy_mii_addr = 1;
1485 	if (bge_phy_probe(bgep)) {
1486 		bgep->chipid.flags &= ~CHIP_FLAG_SERDES;
1487 		bgep->physops = &copper_ops;
1488 	} else {
1489 		bgep->chipid.flags |= CHIP_FLAG_SERDES;
1490 		bgep->physops = &serdes_ops;
1491 	}
1492 
1493 	if ((*bgep->physops->phys_restart)(bgep, B_FALSE) != DDI_SUCCESS) {
1494 		mutex_exit(bgep->genlock);
1495 		return (EIO);
1496 	}
1497 	if (bge_check_acc_handle(bgep, bgep->io_handle) != DDI_FM_OK) {
1498 		mutex_exit(bgep->genlock);
1499 		return (EIO);
1500 	}
1501 	mutex_exit(bgep->genlock);
1502 	return (0);
1503 }
1504 
1505 /*
1506  * Reset the physical layer
1507  */
1508 void
1509 bge_phys_reset(bge_t *bgep)
1510 {
1511 	BGE_TRACE(("bge_phys_reset($%p)", (void *)bgep));
1512 
1513 	mutex_enter(bgep->genlock);
1514 	if ((*bgep->physops->phys_restart)(bgep, B_FALSE) != DDI_SUCCESS)
1515 		ddi_fm_service_impact(bgep->devinfo, DDI_SERVICE_UNAFFECTED);
1516 	if (bge_check_acc_handle(bgep, bgep->io_handle) != DDI_FM_OK)
1517 		ddi_fm_service_impact(bgep->devinfo, DDI_SERVICE_UNAFFECTED);
1518 	mutex_exit(bgep->genlock);
1519 }
1520 
1521 /*
1522  * Reset and power off the physical layer.
1523  *
1524  * Another RESET should get it back to working, but it may take a few
1525  * seconds it may take a few moments to return to normal operation ...
1526  */
1527 int
1528 bge_phys_idle(bge_t *bgep)
1529 {
1530 	BGE_TRACE(("bge_phys_idle($%p)", (void *)bgep));
1531 
1532 	ASSERT(mutex_owned(bgep->genlock));
1533 	return ((*bgep->physops->phys_restart)(bgep, B_TRUE));
1534 }
1535 
1536 /*
1537  * Synchronise the PHYSICAL layer's speed/duplex/autonegotiation capabilities
1538  * and advertisements with the required settings as specified by the various
1539  * param_* variables that can be poked via the NDD interface.
1540  *
1541  * We always reset the PHYSICAL layer and reprogram *all* relevant registers.
1542  * This is expected to cause the link to go down, and then back up again once
1543  * the link is stable and autonegotiation (if enabled) is complete.  We should
1544  * get a link state change interrupt somewhere along the way ...
1545  *
1546  * NOTE: <genlock> must already be held by the caller
1547  */
1548 int
1549 bge_phys_update(bge_t *bgep)
1550 {
1551 	BGE_TRACE(("bge_phys_update($%p)", (void *)bgep));
1552 
1553 	ASSERT(mutex_owned(bgep->genlock));
1554 	return ((*bgep->physops->phys_update)(bgep));
1555 }
1556 
1557 #undef	BGE_DBG
1558 #define	BGE_DBG		BGE_DBG_LINK	/* debug flag for this code	*/
1559 
1560 /*
1561  * Read the link status and determine whether anything's changed ...
1562  *
1563  * This routine should be called whenever the chip flags a change
1564  * in the hardware link state.
1565  *
1566  * This routine returns B_FALSE if the link state has not changed,
1567  * returns B_TRUE when the change to the new state should be accepted.
1568  * In such a case, the param_* variables give the new hardware state,
1569  * which the caller should use to update link_state etc.
1570  *
1571  * The caller must already hold <genlock>
1572  */
1573 boolean_t
1574 bge_phys_check(bge_t *bgep)
1575 {
1576 	int32_t orig_state;
1577 	boolean_t recheck;
1578 
1579 	BGE_TRACE(("bge_phys_check($%p)", (void *)bgep));
1580 
1581 	ASSERT(mutex_owned(bgep->genlock));
1582 
1583 	orig_state = bgep->link_state;
1584 	recheck = orig_state == LINK_STATE_UNKNOWN;
1585 	recheck = (*bgep->physops->phys_check)(bgep, recheck);
1586 	if (!recheck)
1587 		return (B_FALSE);
1588 
1589 	return (B_TRUE);
1590 }
1591