xref: /illumos-gate/usr/src/uts/common/io/bge/bge_mii.c (revision 841f46eda88d9c4c4d56949ffedc55ed210ddc92)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 
22 /*
23  * Copyright 2006 Sun Microsystems, Inc.  All rights reserved.
24  * Use is subject to license terms.
25  */
26 
27 #pragma ident	"%Z%%M%	%I%	%E% SMI"
28 
29 #include "sys/bge_impl2.h"
30 
31 /*
32  * Bit test macros, returning boolean_t values
33  */
34 #define	BIS(w, b)	(((w) & (b)) ? B_TRUE : B_FALSE)
35 #define	BIC(w, b)	(((w) & (b)) ? B_FALSE : B_TRUE)
36 #define	UPORDOWN(x)	((x) ? "up" : "down")
37 
38 /*
39  * ========== Copper (PHY) support ==========
40  */
41 
42 #define	BGE_DBG		BGE_DBG_PHY	/* debug flag for this code	*/
43 
44 /*
45  * #defines:
46  *	BGE_COPPER_WIRESPEED controls whether the Broadcom WireSpeed(tm)
47  *	feature is enabled.  We need to recheck whether this can be
48  *	enabled; at one time it seemed to interact unpleasantly with the
49  *	loopback modes.
50  *
51  *	BGE_COPPER_IDLEOFF controls whether the (copper) PHY power is
52  *	turned off when the PHY is idled i.e. during driver suspend().
53  *	For now this is disabled because the chip doesn't seem to
54  *	resume cleanly if the PHY power is turned off.
55  */
56 #define	BGE_COPPER_WIRESPEED	B_TRUE
57 #define	BGE_COPPER_IDLEOFF	B_FALSE
58 
59 /*
60  * The arrays below can be indexed by the MODE bits from the Auxiliary
61  * Status register to determine the current speed/duplex settings.
62  */
63 static const int16_t bge_copper_link_speed[] = {
64 	0,				/* MII_AUX_STATUS_MODE_NONE	*/
65 	10,				/* MII_AUX_STATUS_MODE_10_H	*/
66 	10,				/* MII_AUX_STATUS_MODE_10_F	*/
67 	100,				/* MII_AUX_STATUS_MODE_100_H	*/
68 	0,				/* MII_AUX_STATUS_MODE_100_4	*/
69 	100,				/* MII_AUX_STATUS_MODE_100_F	*/
70 	1000,				/* MII_AUX_STATUS_MODE_1000_H	*/
71 	1000				/* MII_AUX_STATUS_MODE_1000_F	*/
72 };
73 
74 static const int8_t bge_copper_link_duplex[] = {
75 	LINK_DUPLEX_UNKNOWN,		/* MII_AUX_STATUS_MODE_NONE	*/
76 	LINK_DUPLEX_HALF,		/* MII_AUX_STATUS_MODE_10_H	*/
77 	LINK_DUPLEX_FULL,		/* MII_AUX_STATUS_MODE_10_F	*/
78 	LINK_DUPLEX_HALF,		/* MII_AUX_STATUS_MODE_100_H	*/
79 	LINK_DUPLEX_UNKNOWN,		/* MII_AUX_STATUS_MODE_100_4	*/
80 	LINK_DUPLEX_FULL,		/* MII_AUX_STATUS_MODE_100_F	*/
81 	LINK_DUPLEX_HALF,		/* MII_AUX_STATUS_MODE_1000_H	*/
82 	LINK_DUPLEX_FULL		/* MII_AUX_STATUS_MODE_1000_F	*/
83 };
84 
85 static const char * const bge_copper_link_text[] = {
86 	"down",				/* MII_AUX_STATUS_MODE_NONE	*/
87 	"up 10Mbps Half-Duplex",	/* MII_AUX_STATUS_MODE_10_H	*/
88 	"up 10Mbps Full-Duplex",	/* MII_AUX_STATUS_MODE_10_F	*/
89 	"up 100Mbps Half-Duplex",	/* MII_AUX_STATUS_MODE_100_H	*/
90 	"down",				/* MII_AUX_STATUS_MODE_100_4	*/
91 	"up 100Mbps Full-Duplex",	/* MII_AUX_STATUS_MODE_100_F	*/
92 	"up 1000Mbps Half-Duplex",	/* MII_AUX_STATUS_MODE_1000_H	*/
93 	"up 1000Mbps Full-Duplex"	/* MII_AUX_STATUS_MODE_1000_F	*/
94 };
95 
96 #if	BGE_DEBUGGING
97 
98 static void
99 bge_phydump(bge_t *bgep, uint16_t mii_status, uint16_t aux)
100 {
101 	uint16_t regs[32];
102 	int i;
103 
104 	ASSERT(mutex_owned(bgep->genlock));
105 
106 	for (i = 0; i < 32; ++i)
107 		switch (i) {
108 		default:
109 			regs[i] = bge_mii_get16(bgep, i);
110 			break;
111 
112 		case MII_STATUS:
113 			regs[i] = mii_status;
114 			break;
115 
116 		case MII_AUX_STATUS:
117 			regs[i] = aux;
118 			break;
119 
120 		case 0x0b: case 0x0c: case 0x0d: case 0x0e:
121 		case 0x15: case 0x16: case 0x17:
122 		case 0x1c:
123 		case 0x1f:
124 			/* reserved registers -- don't read these */
125 			regs[i] = 0;
126 			break;
127 		}
128 
129 	for (i = 0; i < 32; i += 8)
130 		BGE_DEBUG(("bge_phydump: "
131 				"0x%04x %04x %04x %04x %04x %04x %04x %04x",
132 			regs[i+0], regs[i+1], regs[i+2], regs[i+3],
133 			regs[i+4], regs[i+5], regs[i+6], regs[i+7]));
134 }
135 
136 #endif	/* BGE_DEBUGGING */
137 
138 /*
139  * Basic low-level function to probe for a PHY
140  *
141  * Returns TRUE if the PHY responds with valid data, FALSE otherwise
142  */
143 static boolean_t
144 bge_phy_probe(bge_t *bgep)
145 {
146 	uint16_t phy_status;
147 
148 	BGE_TRACE(("bge_phy_probe($%p)", (void *)bgep));
149 
150 	ASSERT(mutex_owned(bgep->genlock));
151 
152 	/*
153 	 * Read the MII_STATUS register twice, in
154 	 * order to clear any sticky bits (but they should
155 	 * have been cleared by the RESET, I think).
156 	 */
157 	phy_status = bge_mii_get16(bgep, MII_STATUS);
158 	phy_status = bge_mii_get16(bgep, MII_STATUS);
159 	BGE_DEBUG(("bge_phy_probe: status 0x%x", phy_status));
160 
161 	/*
162 	 * Now check the value read; it should have at least one bit set
163 	 * (for the device capabilities) and at least one clear (one of
164 	 * the error bits). So if we see all 0s or all 1s, there's a
165 	 * problem.  In particular, bge_mii_get16() returns all 1s if
166 	 * communications fails ...
167 	 */
168 	switch (phy_status) {
169 	case 0x0000:
170 	case 0xffff:
171 		return (B_FALSE);
172 
173 	default :
174 		return (B_TRUE);
175 	}
176 }
177 
178 /*
179  * Basic low-level function to reset the PHY.
180  * Doesn't incorporate any special-case workarounds.
181  *
182  * Returns TRUE on success, FALSE if the RESET bit doesn't clear
183  */
184 static boolean_t
185 bge_phy_reset(bge_t *bgep)
186 {
187 	uint16_t control;
188 	uint_t count;
189 
190 	BGE_TRACE(("bge_phy_reset($%p)", (void *)bgep));
191 
192 	ASSERT(mutex_owned(bgep->genlock));
193 
194 	/*
195 	 * Set the PHY RESET bit, then wait up to 5 ms for it to self-clear
196 	 */
197 	bge_mii_put16(bgep, MII_CONTROL, MII_CONTROL_RESET);
198 	for (count = 0; ++count < 1000; ) {
199 		drv_usecwait(5);
200 		control = bge_mii_get16(bgep, MII_CONTROL);
201 		if (BIC(control, MII_CONTROL_RESET))
202 			return (B_TRUE);
203 	}
204 
205 	BGE_DEBUG(("bge_phy_reset: FAILED, control now 0x%x", control));
206 
207 	return (B_FALSE);
208 }
209 
210 /*
211  * Basic low-level function to powerdown the PHY, if supported
212  * If powerdown support is compiled out, this function does nothing.
213  */
214 static void
215 bge_phy_powerdown(bge_t *bgep)
216 {
217 	BGE_TRACE(("bge_phy_powerdown"));
218 #if	BGE_COPPER_IDLEOFF
219 	bge_mii_put16(bgep, MII_CONTROL, MII_CONTROL_PWRDN);
220 #endif	/* BGE_COPPER_IDLEOFF */
221 }
222 
223 /*
224  * The following functions are based on sample code provided by
225  * Broadcom (20-June-2003), and implement workarounds said to be
226  * required on the early revisions of the BCM5703/4C.
227  *
228  * The registers and values used are mostly UNDOCUMENTED, and
229  * therefore don't have symbolic names ;-(
230  *
231  * Many of the comments are straight out of the Broadcom code:
232  * even where the code has been restructured, the original
233  * comments have been preserved in order to explain what these
234  * undocumented registers & values are all about ...
235  */
236 
237 static void
238 bge_phy_macro_wait(bge_t *bgep)
239 {
240 	uint_t count;
241 
242 	for (count = 100; --count; )
243 		if ((bge_mii_get16(bgep, 0x16) & 0x1000) == 0)
244 			break;
245 }
246 
247 /*
248  * PHY test data pattern:
249  *
250  * For 5703/04, each DFE TAP has 21-bits (low word 15, hi word 6)
251  * For 5705,    each DFE TAP has 19-bits (low word 15, hi word 4)
252  * For simplicity, we check only 19-bits, so we don't have to
253  * distinguish which chip it is.
254  * the LO word contains 15 bits, make sure pattern data is < 0x7fff
255  * the HI word contains  6 bits, make sure pattern data is < 0x003f
256  */
257 #define	N_CHANNELS	4
258 #define	N_TAPS		3
259 
260 static struct {
261 	uint16_t	lo;
262 	uint16_t	hi;
263 } tap_data[N_CHANNELS][N_TAPS] = {
264 	{
265 		{ 0x5555, 0x0005 },	/* ch0, TAP 0, LO/HI pattern */
266 		{ 0x2aaa, 0x000a },	/* ch0, TAP 1, LO/HI pattern */
267 		{ 0x3456, 0x0003 }	/* ch0, TAP 2, LO/HI pattern */
268 	},
269 	{
270 		{ 0x2aaa, 0x000a },	/* ch1, TAP 0, LO/HI pattern */
271 		{ 0x3333, 0x0003 },	/* ch1, TAP 1, LO/HI pattern */
272 		{ 0x789a, 0x0005 }	/* ch1, TAP 2, LO/HI pattern */
273 	},
274 	{
275 		{ 0x5a5a, 0x0005 },	/* ch2, TAP 0, LO/HI pattern */
276 		{ 0x2a6a, 0x000a },	/* ch2, TAP 1, LO/HI pattern */
277 		{ 0x1bcd, 0x0003 }	/* ch2, TAP 2, LO/HI pattern */
278 	},
279 	{
280 		{ 0x2a5a, 0x000a },	/* ch3, TAP 0, LO/HI pattern */
281 		{ 0x33c3, 0x0003 },	/* ch3, TAP 1, LO/HI pattern */
282 		{ 0x2ef1, 0x0005 }	/* ch3, TAP 2, LO/HI pattern */
283 	}
284 };
285 
286 /*
287  * Check whether the PHY has locked up after a RESET.
288  *
289  * Returns TRUE if it did, FALSE is it's OK ;-)
290  */
291 static boolean_t
292 bge_phy_locked_up(bge_t *bgep)
293 {
294 	uint16_t dataLo;
295 	uint16_t dataHi;
296 	uint_t chan;
297 	uint_t tap;
298 
299 	/*
300 	 * Check TAPs for all 4 channels, as soon as we see a lockup
301 	 * we'll stop checking.
302 	 */
303 	for (chan = 0; chan < N_CHANNELS; ++chan) {
304 		/* Select channel and set TAP index to 0 */
305 		bge_mii_put16(bgep, 0x17, (chan << 13) | 0x0200);
306 		/* Freeze filter again just to be safe */
307 		bge_mii_put16(bgep, 0x16, 0x0002);
308 
309 		/*
310 		 * Write fixed pattern to the RAM, 3 TAPs for
311 		 * each channel, each TAP have 2 WORDs (LO/HI)
312 		 */
313 		for (tap = 0; tap < N_TAPS; ++tap) {
314 			bge_mii_put16(bgep, 0x15, tap_data[chan][tap].lo);
315 			bge_mii_put16(bgep, 0x15, tap_data[chan][tap].hi);
316 		}
317 
318 		/*
319 		 * Active PHY's Macro operation to write DFE
320 		 * TAP from RAM, and wait for Macro to complete.
321 		 */
322 		bge_mii_put16(bgep, 0x16, 0x0202);
323 		bge_phy_macro_wait(bgep);
324 
325 		/*
326 		 * Done with write phase, now begin read phase.
327 		 */
328 
329 		/* Select channel and set TAP index to 0 */
330 		bge_mii_put16(bgep, 0x17, (chan << 13) | 0x0200);
331 
332 		/*
333 		 * Active PHY's Macro operation to load DFE
334 		 * TAP to RAM, and wait for Macro to complete
335 		 */
336 		bge_mii_put16(bgep, 0x16, 0x0082);
337 		bge_phy_macro_wait(bgep);
338 
339 		/* Enable "pre-fetch" */
340 		bge_mii_put16(bgep, 0x16, 0x0802);
341 		bge_phy_macro_wait(bgep);
342 
343 		/*
344 		 * Read back the TAP values.  3 TAPs for each
345 		 * channel, each TAP have 2 WORDs (LO/HI)
346 		 */
347 		for (tap = 0; tap < N_TAPS; ++tap) {
348 			/*
349 			 * Read Lo/Hi then wait for 'done' is faster.
350 			 * For DFE TAP, the HI word contains 6 bits,
351 			 * LO word contains 15 bits
352 			 */
353 			dataLo = bge_mii_get16(bgep, 0x15) & 0x7fff;
354 			dataHi = bge_mii_get16(bgep, 0x15) & 0x003f;
355 			bge_phy_macro_wait(bgep);
356 
357 			/*
358 			 * Check if what we wrote is what we read back.
359 			 * If failed, then the PHY is locked up, we need
360 			 * to do PHY reset again
361 			 */
362 			if (dataLo != tap_data[chan][tap].lo)
363 				return (B_TRUE);	/* wedged!	*/
364 
365 			if (dataHi != tap_data[chan][tap].hi)
366 				return (B_TRUE);	/* wedged!	*/
367 		}
368 	}
369 
370 	/*
371 	 * The PHY isn't locked up ;-)
372 	 */
373 	return (B_FALSE);
374 }
375 
376 /*
377  * Special-case code to reset the PHY on the 5702/5703/5704C/5705/5782.
378  * Tries up to 5 times to recover from failure to reset or PHY lockup.
379  *
380  * Returns TRUE on success, FALSE if there's an unrecoverable problem
381  */
382 static boolean_t
383 bge_phy_reset_and_check(bge_t *bgep)
384 {
385 	boolean_t reset_success;
386 	boolean_t phy_locked;
387 	uint16_t extctrl;
388 	uint_t retries;
389 
390 	for (retries = 0; retries < 5; ++retries) {
391 		/* Issue a phy reset, and wait for reset to complete */
392 		/* Assuming reset is successful first */
393 		reset_success = bge_phy_reset(bgep);
394 
395 		/*
396 		 * Now go check the DFE TAPs to see if locked up, but
397 		 * first, we need to set up PHY so we can read DFE
398 		 * TAPs.
399 		 */
400 
401 		/*
402 		 * Disable Transmitter and Interrupt, while we play
403 		 * with the PHY registers, so the link partner won't
404 		 * see any strange data and the Driver won't see any
405 		 * interrupts.
406 		 */
407 		extctrl = bge_mii_get16(bgep, 0x10);
408 		bge_mii_put16(bgep, 0x10, extctrl | 0x3000);
409 
410 		/* Setup Full-Duplex, 1000 mbps */
411 		bge_mii_put16(bgep, 0x0, 0x0140);
412 
413 		/* Set to Master mode */
414 		bge_mii_put16(bgep, 0x9, 0x1800);
415 
416 		/* Enable SM_DSP_CLOCK & 6dB */
417 		bge_mii_put16(bgep, 0x18, 0x0c00);	/* "the ADC fix" */
418 
419 		/* Work-arounds */
420 		bge_mii_put16(bgep, 0x17, 0x201f);
421 		bge_mii_put16(bgep, 0x15, 0x2aaa);
422 
423 		/* More workarounds */
424 		bge_mii_put16(bgep, 0x17, 0x000a);
425 		bge_mii_put16(bgep, 0x15, 0x0323);	/* "the Gamma fix" */
426 
427 		/* Blocks the PHY control access */
428 		bge_mii_put16(bgep, 0x17, 0x8005);
429 		bge_mii_put16(bgep, 0x15, 0x0800);
430 
431 		/* Test whether PHY locked up ;-( */
432 		phy_locked = bge_phy_locked_up(bgep);
433 		if (reset_success && !phy_locked)
434 			break;
435 
436 		/*
437 		 * Some problem here ... log it & retry
438 		 */
439 		if (!reset_success)
440 			BGE_REPORT((bgep, "PHY didn't reset!"));
441 		if (phy_locked)
442 			BGE_REPORT((bgep, "PHY locked up!"));
443 	}
444 
445 	/* Remove block phy control */
446 	bge_mii_put16(bgep, 0x17, 0x8005);
447 	bge_mii_put16(bgep, 0x15, 0x0000);
448 
449 	/* Unfreeze DFE TAP filter for all channels */
450 	bge_mii_put16(bgep, 0x17, 0x8200);
451 	bge_mii_put16(bgep, 0x16, 0x0000);
452 
453 	/* Restore PHY back to operating state */
454 	bge_mii_put16(bgep, 0x18, 0x0400);
455 
456 	/* Enable transmitter and interrupt */
457 	extctrl = bge_mii_get16(bgep, 0x10);
458 	bge_mii_put16(bgep, 0x10, extctrl & ~0x3000);
459 
460 	return (reset_success && !phy_locked);
461 }
462 
463 static void
464 bge_phy_tweak_gmii(bge_t *bgep)
465 {
466 	/* Tweak GMII timing */
467 	bge_mii_put16(bgep, 0x1c, 0x8d68);
468 	bge_mii_put16(bgep, 0x1c, 0x8d68);
469 }
470 
471 /*
472  * End of Broadcom-derived workaround code				*
473  */
474 
475 static void
476 bge_restart_copper(bge_t *bgep, boolean_t powerdown)
477 {
478 	uint16_t phy_status;
479 	boolean_t reset_ok;
480 
481 	BGE_TRACE(("bge_restart_copper($%p, %d)", (void *)bgep, powerdown));
482 
483 	ASSERT(mutex_owned(bgep->genlock));
484 
485 	switch (MHCR_CHIP_ASIC_REV(bgep->chipid.asic_rev)) {
486 	default:
487 		/*
488 		 * Shouldn't happen; it means we don't recognise this chip.
489 		 * It's probably a new one, so we'll try our best anyway ...
490 		 */
491 	case MHCR_CHIP_ASIC_REV_5703:
492 	case MHCR_CHIP_ASIC_REV_5704:
493 	case MHCR_CHIP_ASIC_REV_5705:
494 	case MHCR_CHIP_ASIC_REV_5721_5751:
495 	case MHCR_CHIP_ASIC_REV_5714:
496 	case MHCR_CHIP_ASIC_REV_5715:
497 		reset_ok = bge_phy_reset_and_check(bgep);
498 		break;
499 
500 	case MHCR_CHIP_ASIC_REV_5700:
501 	case MHCR_CHIP_ASIC_REV_5701:
502 		/*
503 		 * Just a plain reset; the "check" code breaks these chips
504 		 */
505 		reset_ok = bge_phy_reset(bgep);
506 		break;
507 	}
508 	if (!reset_ok)
509 		bge_problem(bgep, "PHY failed to reset correctly");
510 
511 	/*
512 	 * Step 5: disable WOL (not required after RESET)
513 	 *
514 	 * Step 6: refer to errata
515 	 */
516 	switch (bgep->chipid.asic_rev) {
517 	default:
518 		break;
519 
520 	case MHCR_CHIP_REV_5704_A0:
521 		bge_phy_tweak_gmii(bgep);
522 		break;
523 	}
524 
525 	/*
526 	 * Step 7: read the MII_INTR_STATUS register twice,
527 	 * in order to clear any sticky bits (but they should
528 	 * have been cleared by the RESET, I think), and we're
529 	 * not using PHY interrupts anyway.
530 	 *
531 	 * Step 8: enable the PHY to interrupt on link status
532 	 * change (not required)
533 	 *
534 	 * Step 9: configure PHY LED Mode - not applicable?
535 	 *
536 	 * Step 10: read the MII_STATUS register twice, in
537 	 * order to clear any sticky bits (but they should
538 	 * have been cleared by the RESET, I think).
539 	 */
540 	phy_status = bge_mii_get16(bgep, MII_STATUS);
541 	phy_status = bge_mii_get16(bgep, MII_STATUS);
542 	BGE_DEBUG(("bge_restart_copper: status 0x%x", phy_status));
543 
544 	/*
545 	 * Finally, shut down the PHY, if required
546 	 */
547 	if (powerdown)
548 		bge_phy_powerdown(bgep);
549 }
550 
551 /*
552  * Synchronise the (copper) PHY's speed/duplex/autonegotiation capabilities
553  * and advertisements with the required settings as specified by the various
554  * param_* variables that can be poked via the NDD interface.
555  *
556  * We always reset the PHY and reprogram *all* the relevant registers,
557  * not just those changed.  This should cause the link to go down, and then
558  * back up again once the link is stable and autonegotiation (if enabled)
559  * is complete.  We should get a link state change interrupt somewhere along
560  * the way ...
561  *
562  * NOTE: <genlock> must already be held by the caller
563  */
564 static void
565 bge_update_copper(bge_t *bgep)
566 {
567 	boolean_t adv_autoneg;
568 	boolean_t adv_pause;
569 	boolean_t adv_asym_pause;
570 	boolean_t adv_1000fdx;
571 	boolean_t adv_1000hdx;
572 	boolean_t adv_100fdx;
573 	boolean_t adv_100hdx;
574 	boolean_t adv_10fdx;
575 	boolean_t adv_10hdx;
576 
577 	uint16_t control;
578 	uint16_t gigctrl;
579 	uint16_t auxctrl;
580 	uint16_t anar;
581 
582 	BGE_TRACE(("bge_update_copper($%p)", (void *)bgep));
583 
584 	ASSERT(mutex_owned(bgep->genlock));
585 
586 	BGE_DEBUG(("bge_update_copper: autoneg %d "
587 			"pause %d asym_pause %d "
588 			"1000fdx %d 1000hdx %d "
589 			"100fdx %d 100hdx %d "
590 			"10fdx %d 10hdx %d ",
591 		bgep->param_adv_autoneg,
592 		bgep->param_adv_pause, bgep->param_adv_asym_pause,
593 		bgep->param_adv_1000fdx, bgep->param_adv_1000hdx,
594 		bgep->param_adv_100fdx, bgep->param_adv_100hdx,
595 		bgep->param_adv_10fdx, bgep->param_adv_10hdx));
596 
597 	control = gigctrl = auxctrl = anar = 0;
598 
599 	/*
600 	 * PHY settings are normally based on the param_* variables,
601 	 * but if any loopback mode is in effect, that takes precedence.
602 	 *
603 	 * BGE supports MAC-internal loopback, PHY-internal loopback,
604 	 * and External loopback at a variety of speeds (with a special
605 	 * cable).  In all cases, autoneg is turned OFF, full-duplex
606 	 * is turned ON, and the speed/mastership is forced.
607 	 */
608 	switch (bgep->param_loop_mode) {
609 	case BGE_LOOP_NONE:
610 	default:
611 		adv_autoneg = bgep->param_adv_autoneg;
612 		adv_pause = bgep->param_adv_pause;
613 		adv_asym_pause = bgep->param_adv_asym_pause;
614 		adv_1000fdx = bgep->param_adv_1000fdx;
615 		adv_1000hdx = bgep->param_adv_1000hdx;
616 		adv_100fdx = bgep->param_adv_100fdx;
617 		adv_100hdx = bgep->param_adv_100hdx;
618 		adv_10fdx = bgep->param_adv_10fdx;
619 		adv_10hdx = bgep->param_adv_10hdx;
620 		break;
621 
622 	case BGE_LOOP_EXTERNAL_1000:
623 	case BGE_LOOP_EXTERNAL_100:
624 	case BGE_LOOP_EXTERNAL_10:
625 	case BGE_LOOP_INTERNAL_PHY:
626 	case BGE_LOOP_INTERNAL_MAC:
627 		adv_autoneg = adv_pause = adv_asym_pause = B_FALSE;
628 		adv_1000fdx = adv_100fdx = adv_10fdx = B_FALSE;
629 		adv_1000hdx = adv_100hdx = adv_10hdx = B_FALSE;
630 		bgep->param_link_duplex = LINK_DUPLEX_FULL;
631 
632 		switch (bgep->param_loop_mode) {
633 		case BGE_LOOP_EXTERNAL_1000:
634 			bgep->param_link_speed = 1000;
635 			adv_1000fdx = B_TRUE;
636 			auxctrl = MII_AUX_CTRL_NORM_EXT_LOOPBACK;
637 			gigctrl |= MII_1000BT_CTL_MASTER_CFG;
638 			gigctrl |= MII_1000BT_CTL_MASTER_SEL;
639 			break;
640 
641 		case BGE_LOOP_EXTERNAL_100:
642 			bgep->param_link_speed = 100;
643 			adv_100fdx = B_TRUE;
644 			auxctrl = MII_AUX_CTRL_NORM_EXT_LOOPBACK;
645 			break;
646 
647 		case BGE_LOOP_EXTERNAL_10:
648 			bgep->param_link_speed = 10;
649 			adv_10fdx = B_TRUE;
650 			auxctrl = MII_AUX_CTRL_NORM_EXT_LOOPBACK;
651 			break;
652 
653 		case BGE_LOOP_INTERNAL_PHY:
654 			bgep->param_link_speed = 1000;
655 			adv_1000fdx = B_TRUE;
656 			control = MII_CONTROL_LOOPBACK;
657 			break;
658 
659 		case BGE_LOOP_INTERNAL_MAC:
660 			bgep->param_link_speed = 1000;
661 			adv_1000fdx = B_TRUE;
662 			break;
663 		}
664 	}
665 
666 	BGE_DEBUG(("bge_update_copper: autoneg %d "
667 			"pause %d asym_pause %d "
668 			"1000fdx %d 1000hdx %d "
669 			"100fdx %d 100hdx %d "
670 			"10fdx %d 10hdx %d ",
671 		adv_autoneg,
672 		adv_pause, adv_asym_pause,
673 		adv_1000fdx, adv_1000hdx,
674 		adv_100fdx, adv_100hdx,
675 		adv_10fdx, adv_10hdx));
676 
677 	/*
678 	 * We should have at least one technology capability set;
679 	 * if not, we select a default of 1000Mb/s full-duplex
680 	 */
681 	if (!adv_1000fdx && !adv_100fdx && !adv_10fdx &&
682 	    !adv_1000hdx && !adv_100hdx && !adv_10hdx)
683 		adv_1000fdx = B_TRUE;
684 
685 	/*
686 	 * Now transform the adv_* variables into the proper settings
687 	 * of the PHY registers ...
688 	 *
689 	 * If autonegotiation is (now) enabled, we want to trigger
690 	 * a new autonegotiation cycle once the PHY has been
691 	 * programmed with the capabilities to be advertised.
692 	 */
693 	if (adv_autoneg)
694 		control |= MII_CONTROL_ANE|MII_CONTROL_RSAN;
695 
696 	if (adv_1000fdx)
697 		control |= MII_CONTROL_1000MB|MII_CONTROL_FDUPLEX;
698 	else if (adv_1000hdx)
699 		control |= MII_CONTROL_1000MB;
700 	else if (adv_100fdx)
701 		control |= MII_CONTROL_100MB|MII_CONTROL_FDUPLEX;
702 	else if (adv_100hdx)
703 		control |= MII_CONTROL_100MB;
704 	else if (adv_10fdx)
705 		control |= MII_CONTROL_FDUPLEX;
706 	else if (adv_10hdx)
707 		control |= 0;
708 	else
709 		{ _NOTE(EMPTY); }	/* Can't get here anyway ...	*/
710 
711 	if (adv_1000fdx)
712 		gigctrl |= MII_1000BT_CTL_ADV_FDX;
713 	if (adv_1000hdx)
714 		gigctrl |= MII_1000BT_CTL_ADV_HDX;
715 
716 	if (adv_100fdx)
717 		anar |= MII_ABILITY_100BASE_TX_FD;
718 	if (adv_100hdx)
719 		anar |= MII_ABILITY_100BASE_TX;
720 	if (adv_10fdx)
721 		anar |= MII_ABILITY_10BASE_T_FD;
722 	if (adv_10hdx)
723 		anar |= MII_ABILITY_10BASE_T;
724 
725 	if (adv_pause)
726 		anar |= MII_ABILITY_PAUSE;
727 	if (adv_asym_pause)
728 		anar |= MII_ABILITY_ASYM_PAUSE;
729 
730 	/*
731 	 * Munge in any other fixed bits we require ...
732 	 */
733 	anar |= MII_AN_SELECTOR_8023;
734 	auxctrl |= MII_AUX_CTRL_NORM_TX_MODE;
735 	auxctrl |= MII_AUX_CTRL_NORMAL;
736 
737 	/*
738 	 * Restart the PHY and write the new values.  Note the
739 	 * time, so that we can say whether subsequent link state
740 	 * changes can be attributed to our reprogramming the PHY
741 	 */
742 	bgep->phys_write_time = gethrtime();
743 	(*bgep->physops->phys_restart)(bgep, B_FALSE);
744 	bge_mii_put16(bgep, MII_AN_ADVERT, anar);
745 	bge_mii_put16(bgep, MII_CONTROL, control);
746 	bge_mii_put16(bgep, MII_AUX_CONTROL, auxctrl);
747 	bge_mii_put16(bgep, MII_1000BASE_T_CONTROL, gigctrl);
748 
749 	BGE_DEBUG(("bge_update_copper: anar <- 0x%x", anar));
750 	BGE_DEBUG(("bge_update_copper: control <- 0x%x", control));
751 	BGE_DEBUG(("bge_update_copper: auxctrl <- 0x%x", auxctrl));
752 	BGE_DEBUG(("bge_update_copper: gigctrl <- 0x%x", gigctrl));
753 
754 #if	BGE_COPPER_WIRESPEED
755 	/*
756 	 * Enable the 'wire-speed' feature, if the chip supports it
757 	 * and we haven't got (any) loopback mode selected.
758 	 */
759 	switch (bgep->chipid.device) {
760 	case DEVICE_ID_5700:
761 	case DEVICE_ID_5700x:
762 	case DEVICE_ID_5705C:
763 	case DEVICE_ID_5782:
764 		/*
765 		 * These chips are known or assumed not to support it
766 		 */
767 		break;
768 
769 	default:
770 		/*
771 		 * All other Broadcom chips are expected to support it.
772 		 */
773 		if (bgep->param_loop_mode == BGE_LOOP_NONE)
774 			bge_mii_put16(bgep, MII_AUX_CONTROL,
775 					MII_AUX_CTRL_MISC_WRITE_ENABLE |
776 					MII_AUX_CTRL_MISC_WIRE_SPEED |
777 					MII_AUX_CTRL_MISC);
778 		break;
779 	}
780 #endif	/* BGE_COPPER_WIRESPEED */
781 }
782 
783 static boolean_t
784 bge_check_copper(bge_t *bgep, boolean_t recheck)
785 {
786 	uint32_t emac_status;
787 	uint16_t mii_status;
788 	uint16_t aux;
789 	uint_t mode;
790 	boolean_t linkup;
791 
792 	/*
793 	 * Step 10: read the status from the PHY (which is self-clearing
794 	 * on read!); also read & clear the main (Ethernet) MAC status
795 	 * (the relevant bits of this are write-one-to-clear).
796 	 */
797 	mii_status = bge_mii_get16(bgep, MII_STATUS);
798 	emac_status = bge_reg_get32(bgep, ETHERNET_MAC_STATUS_REG);
799 	bge_reg_put32(bgep, ETHERNET_MAC_STATUS_REG, emac_status);
800 
801 	BGE_DEBUG(("bge_check_copper: link %d/%s, MII status 0x%x "
802 			"(was 0x%x), Ethernet MAC status 0x%x",
803 		bgep->link_state, UPORDOWN(bgep->param_link_up), mii_status,
804 		bgep->phy_gen_status, emac_status));
805 
806 	/*
807 	 * If the PHY status hasn't changed since last we looked, and
808 	 * we not forcing a recheck (i.e. the link state was already
809 	 * known), there's nothing to do.
810 	 */
811 	if (mii_status == bgep->phy_gen_status && !recheck)
812 		return (B_FALSE);
813 
814 	do {
815 		/*
816 		 * If the PHY status changed, record the time
817 		 */
818 		if (mii_status != bgep->phy_gen_status)
819 			bgep->phys_event_time = gethrtime();
820 
821 		/*
822 		 * Step 11: read AUX STATUS register to find speed/duplex
823 		 */
824 		aux = bge_mii_get16(bgep, MII_AUX_STATUS);
825 		BGE_CDB(bge_phydump, (bgep, mii_status, aux));
826 
827 		/*
828 		 * We will only consider the link UP if all the readings
829 		 * are consistent and give meaningful results ...
830 		 */
831 		mode = aux & MII_AUX_STATUS_MODE_MASK;
832 		mode >>= MII_AUX_STATUS_MODE_SHIFT;
833 		linkup = bge_copper_link_speed[mode] > 0;
834 		linkup &= bge_copper_link_duplex[mode] != LINK_DUPLEX_UNKNOWN;
835 		linkup &= BIS(aux, MII_AUX_STATUS_LINKUP);
836 		linkup &= BIS(mii_status, MII_STATUS_LINKUP);
837 
838 		BGE_DEBUG(("bge_check_copper: MII status 0x%x aux 0x%x "
839 				"=> mode %d (%s)",
840 			mii_status, aux,
841 			mode, UPORDOWN(linkup)));
842 
843 		/*
844 		 * Record current register values, then reread status
845 		 * register & loop until it stabilises ...
846 		 */
847 		bgep->phy_aux_status = aux;
848 		bgep->phy_gen_status = mii_status;
849 		mii_status = bge_mii_get16(bgep, MII_STATUS);
850 	} while (mii_status != bgep->phy_gen_status);
851 
852 	/*
853 	 * Assume very little ...
854 	 */
855 	bgep->param_lp_autoneg = B_FALSE;
856 	bgep->param_lp_1000fdx = B_FALSE;
857 	bgep->param_lp_1000hdx = B_FALSE;
858 	bgep->param_lp_100fdx = B_FALSE;
859 	bgep->param_lp_100hdx = B_FALSE;
860 	bgep->param_lp_10fdx = B_FALSE;
861 	bgep->param_lp_10hdx = B_FALSE;
862 	bgep->param_lp_pause = B_FALSE;
863 	bgep->param_lp_asym_pause = B_FALSE;
864 	bgep->param_link_autoneg = B_FALSE;
865 	bgep->param_link_tx_pause = B_FALSE;
866 	if (bgep->param_adv_autoneg)
867 		bgep->param_link_rx_pause = B_FALSE;
868 	else
869 		bgep->param_link_rx_pause = bgep->param_adv_pause;
870 
871 	/*
872 	 * Discover all the link partner's abilities.
873 	 * These are scattered through various registters ...
874 	 */
875 	if (BIS(aux, MII_AUX_STATUS_LP_ANEG_ABLE)) {
876 		bgep->param_lp_autoneg = B_TRUE;
877 		bgep->param_link_autoneg = B_TRUE;
878 		bgep->param_link_tx_pause = BIS(aux, MII_AUX_STATUS_TX_PAUSE);
879 		bgep->param_link_rx_pause = BIS(aux, MII_AUX_STATUS_RX_PAUSE);
880 
881 		aux = bge_mii_get16(bgep, MII_1000BASE_T_STATUS);
882 		bgep->param_lp_1000fdx = BIS(aux, MII_1000BT_STAT_LP_FDX_CAP);
883 		bgep->param_lp_1000hdx = BIS(aux, MII_1000BT_STAT_LP_HDX_CAP);
884 
885 		aux = bge_mii_get16(bgep, MII_AN_LPABLE);
886 		bgep->param_lp_100fdx = BIS(aux, MII_ABILITY_100BASE_TX_FD);
887 		bgep->param_lp_100hdx = BIS(aux, MII_ABILITY_100BASE_TX);
888 		bgep->param_lp_10fdx = BIS(aux, MII_ABILITY_10BASE_T_FD);
889 		bgep->param_lp_10hdx = BIS(aux, MII_ABILITY_10BASE_T);
890 		bgep->param_lp_pause = BIS(aux, MII_ABILITY_PAUSE);
891 		bgep->param_lp_asym_pause = BIS(aux, MII_ABILITY_ASYM_PAUSE);
892 	}
893 
894 	/*
895 	 * Step 12: update ndd-visible state parameters, BUT!
896 	 * we don't transfer the new state to <link_state> just yet;
897 	 * instead we mark the <link_state> as UNKNOWN, and our caller
898 	 * will resolve it once the status has stopped changing and
899 	 * been stable for several seconds.
900 	 */
901 	BGE_DEBUG(("bge_check_copper: link was %s speed %d duplex %d",
902 		UPORDOWN(bgep->param_link_up),
903 		bgep->param_link_speed,
904 		bgep->param_link_duplex));
905 
906 	if (!linkup)
907 		mode = MII_AUX_STATUS_MODE_NONE;
908 	bgep->param_link_up = linkup;
909 	bgep->param_link_speed = bge_copper_link_speed[mode];
910 	bgep->param_link_duplex = bge_copper_link_duplex[mode];
911 	bgep->link_mode_msg = bge_copper_link_text[mode];
912 	bgep->link_state = LINK_STATE_UNKNOWN;
913 
914 	BGE_DEBUG(("bge_check_copper: link now %s speed %d duplex %d",
915 		UPORDOWN(bgep->param_link_up),
916 		bgep->param_link_speed,
917 		bgep->param_link_duplex));
918 
919 	return (B_TRUE);
920 }
921 
922 static const phys_ops_t copper_ops = {
923 	bge_restart_copper,
924 	bge_update_copper,
925 	bge_check_copper
926 };
927 
928 
929 /*
930  * ========== SerDes support ==========
931  */
932 
933 #undef	BGE_DBG
934 #define	BGE_DBG		BGE_DBG_SERDES	/* debug flag for this code	*/
935 
936 /*
937  * Reinitialise the SerDes interface.  Note that it normally powers
938  * up in the disabled state, so we need to explicitly activate it.
939  */
940 static void
941 bge_restart_serdes(bge_t *bgep, boolean_t powerdown)
942 {
943 	uint32_t macmode;
944 
945 	BGE_TRACE(("bge_restart_serdes($%p, %d)", (void *)bgep, powerdown));
946 
947 	ASSERT(mutex_owned(bgep->genlock));
948 
949 	/*
950 	 * Ensure that the main Ethernet MAC mode register is programmed
951 	 * appropriately for the SerDes interface ...
952 	 */
953 	macmode = bge_reg_get32(bgep, ETHERNET_MAC_MODE_REG);
954 	macmode &= ~ETHERNET_MODE_LINK_POLARITY;
955 	macmode &= ~ETHERNET_MODE_PORTMODE_MASK;
956 	macmode |= ETHERNET_MODE_PORTMODE_TBI;
957 	bge_reg_put32(bgep, ETHERNET_MAC_MODE_REG, macmode);
958 
959 	/*
960 	 * Ensure that loopback is OFF and comma detection is enabled.  Then
961 	 * disable the SerDes output (the first time through, it may/will
962 	 * already be disabled).  If we're shutting down, leave it disabled.
963 	 */
964 	bge_reg_clr32(bgep, SERDES_CONTROL_REG, SERDES_CONTROL_TBI_LOOPBACK);
965 	bge_reg_set32(bgep, SERDES_CONTROL_REG, SERDES_CONTROL_COMMA_DETECT);
966 	bge_reg_set32(bgep, SERDES_CONTROL_REG, SERDES_CONTROL_TX_DISABLE);
967 	if (powerdown)
968 		return;
969 
970 	/*
971 	 * Otherwise, pause, (re-)enable the SerDes output, and send
972 	 * all-zero config words in order to force autoneg restart.
973 	 * Invalidate the saved "link partners received configs", as
974 	 * we're starting over ...
975 	 */
976 	drv_usecwait(10000);
977 	bge_reg_clr32(bgep, SERDES_CONTROL_REG, SERDES_CONTROL_TX_DISABLE);
978 	bge_reg_put32(bgep, TX_1000BASEX_AUTONEG_REG, 0);
979 	bge_reg_set32(bgep, ETHERNET_MAC_MODE_REG, ETHERNET_MODE_SEND_CFGS);
980 	drv_usecwait(10);
981 	bge_reg_clr32(bgep, ETHERNET_MAC_MODE_REG, ETHERNET_MODE_SEND_CFGS);
982 	bgep->serdes_lpadv = AUTONEG_CODE_FAULT_ANEG_ERR;
983 	bgep->serdes_status = ~0U;
984 }
985 
986 /*
987  * Synchronise the SerDes speed/duplex/autonegotiation capabilities and
988  * advertisements with the required settings as specified by the various
989  * param_* variables that can be poked via the NDD interface.
990  *
991  * We always reinitalise the SerDes; this should cause the link to go down,
992  * and then back up again once the link is stable and autonegotiation
993  * (if enabled) is complete.  We should get a link state change interrupt
994  * somewhere along the way ...
995  *
996  * NOTE: SerDes only supports 1000FDX/HDX (with or without pause) so the
997  * param_* variables relating to lower speeds are ignored.
998  *
999  * NOTE: <genlock> must already be held by the caller
1000  */
1001 static void
1002 bge_update_serdes(bge_t *bgep)
1003 {
1004 	boolean_t adv_autoneg;
1005 	boolean_t adv_pause;
1006 	boolean_t adv_asym_pause;
1007 	boolean_t adv_1000fdx;
1008 	boolean_t adv_1000hdx;
1009 
1010 	uint32_t serdes;
1011 	uint32_t advert;
1012 
1013 	BGE_TRACE(("bge_update_serdes($%p)", (void *)bgep));
1014 
1015 	ASSERT(mutex_owned(bgep->genlock));
1016 
1017 	BGE_DEBUG(("bge_update_serdes: autoneg %d "
1018 			"pause %d asym_pause %d "
1019 			"1000fdx %d 1000hdx %d "
1020 			"100fdx %d 100hdx %d "
1021 			"10fdx %d 10hdx %d ",
1022 		bgep->param_adv_autoneg,
1023 		bgep->param_adv_pause, bgep->param_adv_asym_pause,
1024 		bgep->param_adv_1000fdx, bgep->param_adv_1000hdx,
1025 		bgep->param_adv_100fdx, bgep->param_adv_100hdx,
1026 		bgep->param_adv_10fdx, bgep->param_adv_10hdx));
1027 
1028 	serdes = advert = 0;
1029 
1030 	/*
1031 	 * SerDes settings are normally based on the param_* variables,
1032 	 * but if any loopback mode is in effect, that takes precedence.
1033 	 *
1034 	 * BGE supports MAC-internal loopback, PHY-internal loopback,
1035 	 * and External loopback at a variety of speeds (with a special
1036 	 * cable).  In all cases, autoneg is turned OFF, full-duplex
1037 	 * is turned ON, and the speed/mastership is forced.
1038 	 *
1039 	 * Note: for the SerDes interface, "PHY" internal loopback is
1040 	 * interpreted as SerDes internal loopback, and all external
1041 	 * loopback modes are treated equivalently, as 1Gb/external.
1042 	 */
1043 	switch (bgep->param_loop_mode) {
1044 	case BGE_LOOP_NONE:
1045 	default:
1046 		adv_autoneg = bgep->param_adv_autoneg;
1047 		adv_pause = bgep->param_adv_pause;
1048 		adv_asym_pause = bgep->param_adv_asym_pause;
1049 		adv_1000fdx = bgep->param_adv_1000fdx;
1050 		adv_1000hdx = bgep->param_adv_1000hdx;
1051 		break;
1052 
1053 	case BGE_LOOP_INTERNAL_PHY:
1054 		serdes |= SERDES_CONTROL_TBI_LOOPBACK;
1055 		/* FALLTHRU */
1056 	case BGE_LOOP_INTERNAL_MAC:
1057 	case BGE_LOOP_EXTERNAL_1000:
1058 	case BGE_LOOP_EXTERNAL_100:
1059 	case BGE_LOOP_EXTERNAL_10:
1060 		adv_autoneg = adv_pause = adv_asym_pause = B_FALSE;
1061 		adv_1000fdx = B_TRUE;
1062 		adv_1000hdx = B_FALSE;
1063 		break;
1064 	}
1065 
1066 	BGE_DEBUG(("bge_update_serdes: autoneg %d "
1067 			"pause %d asym_pause %d "
1068 			"1000fdx %d 1000hdx %d ",
1069 		adv_autoneg,
1070 		adv_pause, adv_asym_pause,
1071 		adv_1000fdx, adv_1000hdx));
1072 
1073 	/*
1074 	 * We should have at least one gigabit technology capability
1075 	 * set; if not, we select a default of 1000Mb/s full-duplex
1076 	 */
1077 	if (!adv_1000fdx && !adv_1000hdx)
1078 		adv_1000fdx = B_TRUE;
1079 
1080 	/*
1081 	 * Now transform the adv_* variables into the proper settings
1082 	 * of the SerDes registers ...
1083 	 *
1084 	 * If autonegotiation is (now) not enabled, pretend it's been
1085 	 * done and failed ...
1086 	 */
1087 	if (!adv_autoneg)
1088 		advert |= AUTONEG_CODE_FAULT_ANEG_ERR;
1089 
1090 	if (adv_1000fdx) {
1091 		advert |= AUTONEG_CODE_FULL_DUPLEX;
1092 		bgep->param_adv_1000fdx = adv_1000fdx;
1093 		bgep->param_link_duplex = LINK_DUPLEX_FULL;
1094 		bgep->param_link_speed = 1000;
1095 	}
1096 	if (adv_1000hdx) {
1097 		advert |= AUTONEG_CODE_HALF_DUPLEX;
1098 		bgep->param_adv_1000hdx = adv_1000hdx;
1099 		bgep->param_link_duplex = LINK_DUPLEX_HALF;
1100 		bgep->param_link_speed = 1000;
1101 	}
1102 
1103 	if (adv_pause)
1104 		advert |= AUTONEG_CODE_PAUSE;
1105 	if (adv_asym_pause)
1106 		advert |= AUTONEG_CODE_ASYM_PAUSE;
1107 
1108 	/*
1109 	 * Restart the SerDes and write the new values.  Note the
1110 	 * time, so that we can say whether subsequent link state
1111 	 * changes can be attributed to our reprogramming the SerDes
1112 	 */
1113 	bgep->serdes_advert = advert;
1114 	bgep->phys_write_time = gethrtime();
1115 	bge_restart_serdes(bgep, B_FALSE);
1116 	bge_reg_set32(bgep, SERDES_CONTROL_REG, serdes);
1117 
1118 	BGE_DEBUG(("bge_update_serdes: serdes |= 0x%x, advert 0x%x",
1119 		serdes, advert));
1120 }
1121 
1122 /*
1123  * Bare-minimum autoneg protocol
1124  *
1125  * This code is only called when the link is up and we're receiving config
1126  * words, which implies that the link partner wants to autonegotiate
1127  * (otherwise, we wouldn't see configs and wouldn't reach this code).
1128  */
1129 static void
1130 bge_autoneg_serdes(bge_t *bgep)
1131 {
1132 	boolean_t ack;
1133 
1134 	bgep->serdes_lpadv = bge_reg_get32(bgep, RX_1000BASEX_AUTONEG_REG);
1135 	ack = BIS(bgep->serdes_lpadv, AUTONEG_CODE_ACKNOWLEDGE);
1136 
1137 	if (!ack) {
1138 		/*
1139 		 * Phase 1: after SerDes reset, we send a few zero configs
1140 		 * but then stop.  Here the partner is sending configs, but
1141 		 * not ACKing ours; we assume that's 'cos we're not sending
1142 		 * any.  So here we send ours, with ACK already set.
1143 		 */
1144 		bge_reg_put32(bgep, TX_1000BASEX_AUTONEG_REG,
1145 			bgep->serdes_advert | AUTONEG_CODE_ACKNOWLEDGE);
1146 		bge_reg_set32(bgep, ETHERNET_MAC_MODE_REG,
1147 			ETHERNET_MODE_SEND_CFGS);
1148 	} else {
1149 		/*
1150 		 * Phase 2: partner has ACKed our configs, so now we can
1151 		 * stop sending; once our partner also stops sending, we
1152 		 * can resolve the Tx/Rx configs.
1153 		 */
1154 		bge_reg_clr32(bgep, ETHERNET_MAC_MODE_REG,
1155 			ETHERNET_MODE_SEND_CFGS);
1156 	}
1157 
1158 	BGE_DEBUG(("bge_autoneg_serdes: Rx 0x%x %s Tx 0x%x",
1159 		bgep->serdes_lpadv,
1160 		ack ? "stop" : "send",
1161 		bgep->serdes_advert));
1162 }
1163 
1164 static boolean_t
1165 bge_check_serdes(bge_t *bgep, boolean_t recheck)
1166 {
1167 	uint32_t emac_status;
1168 	uint32_t lpadv;
1169 	boolean_t linkup;
1170 
1171 	for (;;) {
1172 		/*
1173 		 * Step 10: read & clear the main (Ethernet) MAC status
1174 		 * (the relevant bits of this are write-one-to-clear).
1175 		 */
1176 		emac_status = bge_reg_get32(bgep, ETHERNET_MAC_STATUS_REG);
1177 		bge_reg_put32(bgep, ETHERNET_MAC_STATUS_REG, emac_status);
1178 
1179 		BGE_DEBUG(("bge_check_serdes: link %d/%s, "
1180 				"MAC status 0x%x (was 0x%x)",
1181 			bgep->link_state, UPORDOWN(bgep->param_link_up),
1182 			emac_status, bgep->serdes_status));
1183 
1184 		/*
1185 		 * We will only consider the link UP if all the readings
1186 		 * are consistent and give meaningful results ...
1187 		 */
1188 		bgep->serdes_status = emac_status;
1189 		linkup = BIS(emac_status, ETHERNET_STATUS_SIGNAL_DETECT);
1190 		linkup &= BIS(emac_status, ETHERNET_STATUS_PCS_SYNCHED);
1191 
1192 		/*
1193 		 * Now some fiddling with the interpretation:
1194 		 *	if there's been an error at the PCS level, treat
1195 		 *	it as a link change (the h/w doesn't do this)
1196 		 *
1197 		 *	if there's been a change, but it's only a PCS sync
1198 		 *	change (not a config change), AND the link already
1199 		 *	was & is still UP, then ignore the change
1200 		 */
1201 		if (BIS(emac_status, ETHERNET_STATUS_PCS_ERROR))
1202 			emac_status |= ETHERNET_STATUS_LINK_CHANGED;
1203 		else if (BIC(emac_status, ETHERNET_STATUS_CFG_CHANGED))
1204 			if (bgep->param_link_up && linkup)
1205 				emac_status &= ~ETHERNET_STATUS_LINK_CHANGED;
1206 
1207 		BGE_DEBUG(("bge_check_serdes: status 0x%x => 0x%x %s",
1208 			bgep->serdes_status, emac_status, UPORDOWN(linkup)));
1209 
1210 		/*
1211 		 * If we're receiving configs, run the autoneg protocol
1212 		 */
1213 		if (linkup && BIS(emac_status, ETHERNET_STATUS_RECEIVING_CFG))
1214 			bge_autoneg_serdes(bgep);
1215 
1216 		/*
1217 		 * If the SerDes status hasn't changed, we're done ...
1218 		 */
1219 		if (BIC(emac_status, ETHERNET_STATUS_LINK_CHANGED))
1220 			break;
1221 
1222 		/*
1223 		 * Record when the SerDes status changed, then go
1224 		 * round again until we no longer see a change ...
1225 		 */
1226 		bgep->phys_event_time = gethrtime();
1227 		recheck = B_TRUE;
1228 	}
1229 
1230 	/*
1231 	 * If we're not forcing a recheck (i.e. the link state was already
1232 	 * known), and we didn't see the hardware flag a change, there's
1233 	 * no more to do (and we tell the caller nothing happened).
1234 	 */
1235 	if (!recheck)
1236 		return (B_FALSE);
1237 
1238 	/*
1239 	 * Don't resolve autoneg until we're no longer receiving configs
1240 	 */
1241 	if (linkup && BIS(emac_status, ETHERNET_STATUS_RECEIVING_CFG))
1242 		return (B_FALSE);
1243 
1244 	/*
1245 	 * Assume very little ...
1246 	 */
1247 	bgep->param_lp_autoneg = B_FALSE;
1248 	bgep->param_lp_1000fdx = B_FALSE;
1249 	bgep->param_lp_1000hdx = B_FALSE;
1250 	bgep->param_lp_100fdx = B_FALSE;
1251 	bgep->param_lp_100hdx = B_FALSE;
1252 	bgep->param_lp_10fdx = B_FALSE;
1253 	bgep->param_lp_10hdx = B_FALSE;
1254 	bgep->param_lp_pause = B_FALSE;
1255 	bgep->param_lp_asym_pause = B_FALSE;
1256 	bgep->param_link_autoneg = B_FALSE;
1257 	bgep->param_link_tx_pause = B_FALSE;
1258 	if (bgep->param_adv_autoneg)
1259 		bgep->param_link_rx_pause = B_FALSE;
1260 	else
1261 		bgep->param_link_rx_pause = bgep->param_adv_pause;
1262 
1263 	/*
1264 	 * Discover all the link partner's abilities.
1265 	 */
1266 	lpadv = bgep->serdes_lpadv;
1267 	if (lpadv != 0 && BIC(lpadv, AUTONEG_CODE_FAULT_MASK)) {
1268 		/*
1269 		 * No fault, so derive partner's capabilities
1270 		 */
1271 		bgep->param_lp_autoneg = B_TRUE;
1272 		bgep->param_lp_1000fdx = BIS(lpadv, AUTONEG_CODE_FULL_DUPLEX);
1273 		bgep->param_lp_1000hdx = BIS(lpadv, AUTONEG_CODE_HALF_DUPLEX);
1274 		bgep->param_lp_pause = BIS(lpadv, AUTONEG_CODE_PAUSE);
1275 		bgep->param_lp_asym_pause = BIS(lpadv, AUTONEG_CODE_ASYM_PAUSE);
1276 
1277 		/*
1278 		 * Pause direction resolution
1279 		 */
1280 		bgep->param_link_autoneg = B_TRUE;
1281 		if (bgep->param_adv_pause &&
1282 		    bgep->param_lp_pause) {
1283 			bgep->param_link_tx_pause = B_TRUE;
1284 			bgep->param_link_rx_pause = B_TRUE;
1285 		}
1286 		if (bgep->param_adv_asym_pause &&
1287 		    bgep->param_lp_asym_pause) {
1288 			if (bgep->param_adv_pause)
1289 				bgep->param_link_rx_pause = B_TRUE;
1290 			if (bgep->param_lp_pause)
1291 				bgep->param_link_tx_pause = B_TRUE;
1292 		}
1293 	}
1294 
1295 	/*
1296 	 * Step 12: update ndd-visible state parameters, BUT!
1297 	 * we don't transfer the new state to <link_state> just yet;
1298 	 * instead we mark the <link_state> as UNKNOWN, and our caller
1299 	 * will resolve it once the status has stopped changing and
1300 	 * been stable for several seconds.
1301 	 */
1302 	BGE_DEBUG(("bge_check_serdes: link was %s speed %d duplex %d",
1303 		UPORDOWN(bgep->param_link_up),
1304 		bgep->param_link_speed,
1305 		bgep->param_link_duplex));
1306 
1307 	if (linkup) {
1308 		bgep->param_link_up = B_TRUE;
1309 		bgep->param_link_speed = 1000;
1310 		if (bgep->param_adv_1000fdx)
1311 			bgep->param_link_duplex = LINK_DUPLEX_FULL;
1312 		else
1313 			bgep->param_link_duplex = LINK_DUPLEX_HALF;
1314 		if (bgep->param_lp_autoneg && !bgep->param_lp_1000fdx)
1315 			bgep->param_link_duplex = LINK_DUPLEX_HALF;
1316 	} else {
1317 		bgep->param_link_up = B_FALSE;
1318 		bgep->param_link_speed = 0;
1319 		bgep->param_link_duplex = LINK_DUPLEX_UNKNOWN;
1320 	}
1321 	switch (bgep->param_link_duplex) {
1322 	default:
1323 	case LINK_DUPLEX_UNKNOWN:
1324 		bgep->link_mode_msg = "down";
1325 		break;
1326 
1327 	case LINK_DUPLEX_HALF:
1328 		bgep->link_mode_msg = "up 1000Mbps Half-Duplex";
1329 		break;
1330 
1331 	case LINK_DUPLEX_FULL:
1332 		bgep->link_mode_msg = "up 1000Mbps Full-Duplex";
1333 		break;
1334 	}
1335 	bgep->link_state = LINK_STATE_UNKNOWN;
1336 
1337 	BGE_DEBUG(("bge_check_serdes: link now %s speed %d duplex %d",
1338 		UPORDOWN(bgep->param_link_up),
1339 		bgep->param_link_speed,
1340 		bgep->param_link_duplex));
1341 
1342 	return (B_TRUE);
1343 }
1344 
1345 static const phys_ops_t serdes_ops = {
1346 	bge_restart_serdes,
1347 	bge_update_serdes,
1348 	bge_check_serdes
1349 };
1350 
1351 /*
1352  * ========== Exported physical layer control routines ==========
1353  */
1354 
1355 #undef	BGE_DBG
1356 #define	BGE_DBG		BGE_DBG_PHYS	/* debug flag for this code	*/
1357 
1358 /*
1359  * Here we have to determine which media we're using (copper or serdes).
1360  * Once that's done, we can initialise the physical layer appropriately.
1361  */
1362 void
1363 bge_phys_init(bge_t *bgep)
1364 {
1365 	BGE_TRACE(("bge_phys_init($%p)", (void *)bgep));
1366 
1367 	mutex_enter(bgep->genlock);
1368 
1369 	/*
1370 	 * Probe for the (internal) PHY.  If it's not there, we'll assume
1371 	 * that this is a 5703/4S, with a SerDes interface rather than
1372 	 * a PHY. BCM5714S/BCM5715S are not supported.It are based on
1373 	 * BCM800x PHY.
1374 	 */
1375 	bgep->phy_mii_addr = 1;
1376 	if (bge_phy_probe(bgep)) {
1377 		bgep->chipid.flags &= ~CHIP_FLAG_SERDES;
1378 		bgep->phys_delta_time = BGE_PHY_STABLE_TIME;
1379 		bgep->physops = &copper_ops;
1380 	} else {
1381 		bgep->chipid.flags |= CHIP_FLAG_SERDES;
1382 		bgep->phys_delta_time = BGE_SERDES_STABLE_TIME;
1383 		bgep->physops = &serdes_ops;
1384 	}
1385 
1386 	(*bgep->physops->phys_restart)(bgep, B_FALSE);
1387 	mutex_exit(bgep->genlock);
1388 }
1389 
1390 /*
1391  * Reset the physical layer
1392  */
1393 void
1394 bge_phys_reset(bge_t *bgep)
1395 {
1396 	BGE_TRACE(("bge_phys_reset($%p)", (void *)bgep));
1397 
1398 	mutex_enter(bgep->genlock);
1399 	(*bgep->physops->phys_restart)(bgep, B_FALSE);
1400 	mutex_exit(bgep->genlock);
1401 }
1402 
1403 /*
1404  * Reset and power off the physical layer.
1405  *
1406  * Another RESET should get it back to working, but it may take a few
1407  * seconds it may take a few moments to return to normal operation ...
1408  */
1409 void
1410 bge_phys_idle(bge_t *bgep)
1411 {
1412 	BGE_TRACE(("bge_phys_idle($%p)", (void *)bgep));
1413 
1414 	ASSERT(mutex_owned(bgep->genlock));
1415 	(*bgep->physops->phys_restart)(bgep, B_TRUE);
1416 }
1417 
1418 /*
1419  * Synchronise the PHYSICAL layer's speed/duplex/autonegotiation capabilities
1420  * and advertisements with the required settings as specified by the various
1421  * param_* variables that can be poked via the NDD interface.
1422  *
1423  * We always reset the PHYSICAL layer and reprogram *all* relevant registers.
1424  * This is expected to cause the link to go down, and then back up again once
1425  * the link is stable and autonegotiation (if enabled) is complete.  We should
1426  * get a link state change interrupt somewhere along the way ...
1427  *
1428  * NOTE: <genlock> must already be held by the caller
1429  */
1430 void
1431 bge_phys_update(bge_t *bgep)
1432 {
1433 	BGE_TRACE(("bge_phys_update($%p)", (void *)bgep));
1434 
1435 	ASSERT(mutex_owned(bgep->genlock));
1436 	(*bgep->physops->phys_update)(bgep);
1437 }
1438 
1439 #undef	BGE_DBG
1440 #define	BGE_DBG		BGE_DBG_LINK	/* debug flag for this code	*/
1441 
1442 /*
1443  * Read the link status and determine whether anything's changed ...
1444  *
1445  * This routine should be called whenever the chip flags a change
1446  * in the hardware link state, and repeatedly for several seconds
1447  * afterwards, until we're sure the state has stabilised (sometimes
1448  * it goes up and down several times during autonegotiation before
1449  * settling on the proper configuration).  This routine applies
1450  * timing-based heuristics to determine when the state is stable.
1451  *
1452  * This routine returns B_FALSE if the link state has not changed,
1453  * or if it has changed, but hasn't settled for long enough yet.  It
1454  * returns B_TRUE when the change to the new state should be accepted.
1455  * In such a case, the param_* variables give the new hardware state,
1456  * which the caller should use to update link_state etc.
1457  *
1458  * The caller must already hold <genlock>
1459  */
1460 boolean_t
1461 bge_phys_check(bge_t *bgep)
1462 {
1463 	int32_t orig_state;
1464 	boolean_t recheck;
1465 	boolean_t linkup;
1466 	hrtime_t deltat;
1467 	hrtime_t now;
1468 
1469 	BGE_TRACE(("bge_phys_check($%p)", (void *)bgep));
1470 
1471 	ASSERT(mutex_owned(bgep->genlock));
1472 
1473 	linkup = bgep->param_link_up;
1474 	orig_state = bgep->link_state;
1475 	recheck = orig_state == LINK_STATE_UNKNOWN;
1476 	recheck = (*bgep->physops->phys_check)(bgep, recheck);
1477 	if (!recheck)
1478 		return (B_FALSE);
1479 
1480 	/*
1481 	 * At this point, the check_*_link() function above has detected
1482 	 * a change and updated the param_* variables to show what the
1483 	 * latest hardware state seems to be -- but it might still be
1484 	 * changing.
1485 	 *
1486 	 * The link_state must now be UNKNOWN, but if it was previously
1487 	 * UP, we want to recognise this immediately, whereas in any other
1488 	 * case (e.g. DOWN->UP) we don't accept it until a few seconds have
1489 	 * elapsed, to give the hardware time to settle.
1490 	 */
1491 	now = gethrtime();
1492 	deltat = now - bgep->phys_event_time;
1493 
1494 	BGE_DEBUG(("bge_phys_check: link was %d/%s now %d/%s",
1495 		orig_state, UPORDOWN(linkup),
1496 		bgep->link_state, UPORDOWN(bgep->param_link_up)));
1497 	BGE_DEBUG(("bge_phys_check: update %lld change %lld "
1498 			"now %lld delta %lld",
1499 		bgep->phys_write_time, bgep->phys_event_time, now, deltat));
1500 
1501 	if (orig_state == LINK_STATE_UP)
1502 		return (B_TRUE);
1503 	else
1504 		return (deltat > bgep->phys_delta_time);
1505 }
1506