1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License, Version 1.0 only 6 * (the "License"). You may not use this file except in compliance 7 * with the License. 8 * 9 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 10 * or http://www.opensolaris.org/os/licensing. 11 * See the License for the specific language governing permissions 12 * and limitations under the License. 13 * 14 * When distributing Covered Code, include this CDDL HEADER in each 15 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 16 * If applicable, add the following below this CDDL HEADER, with the 17 * fields enclosed by brackets "[]" replaced with your own identifying 18 * information: Portions Copyright [yyyy] [name of copyright owner] 19 * 20 * CDDL HEADER END 21 */ 22 /* 23 * Copyright 2005 Sun Microsystems, Inc. All rights reserved. 24 * Use is subject to license terms. 25 */ 26 27 #pragma ident "%Z%%M% %I% %E% SMI" 28 29 #include "sys/bge_impl.h" 30 31 /* 32 * Bit test macros, returning boolean_t values 33 */ 34 #define BIS(w, b) (((w) & (b)) ? B_TRUE : B_FALSE) 35 #define BIC(w, b) (((w) & (b)) ? B_FALSE : B_TRUE) 36 #define UPORDOWN(x) ((x) ? "up" : "down") 37 38 /* 39 * ========== Copper (PHY) support ========== 40 */ 41 42 #define BGE_DBG BGE_DBG_PHY /* debug flag for this code */ 43 44 /* 45 * #defines: 46 * BGE_COPPER_WIRESPEED controls whether the Broadcom WireSpeed(tm) 47 * feature is enabled. We need to recheck whether this can be 48 * enabled; at one time it seemed to interact unpleasantly with the 49 * loopback modes. 50 * 51 * BGE_COPPER_IDLEOFF controls whether the (copper) PHY power is 52 * turned off when the PHY is idled i.e. during driver suspend(). 53 * For now this is disabled because the chip doesn't seem to 54 * resume cleanly if the PHY power is turned off. 55 */ 56 #define BGE_COPPER_WIRESPEED B_TRUE 57 #define BGE_COPPER_IDLEOFF B_FALSE 58 59 /* 60 * The arrays below can be indexed by the MODE bits from the Auxiliary 61 * Status register to determine the current speed/duplex settings. 62 */ 63 static const int16_t bge_copper_link_speed[] = { 64 0, /* MII_AUX_STATUS_MODE_NONE */ 65 10, /* MII_AUX_STATUS_MODE_10_H */ 66 10, /* MII_AUX_STATUS_MODE_10_F */ 67 100, /* MII_AUX_STATUS_MODE_100_H */ 68 0, /* MII_AUX_STATUS_MODE_100_4 */ 69 100, /* MII_AUX_STATUS_MODE_100_F */ 70 1000, /* MII_AUX_STATUS_MODE_1000_H */ 71 1000 /* MII_AUX_STATUS_MODE_1000_F */ 72 }; 73 74 static const int8_t bge_copper_link_duplex[] = { 75 LINK_DUPLEX_UNKNOWN, /* MII_AUX_STATUS_MODE_NONE */ 76 LINK_DUPLEX_HALF, /* MII_AUX_STATUS_MODE_10_H */ 77 LINK_DUPLEX_FULL, /* MII_AUX_STATUS_MODE_10_F */ 78 LINK_DUPLEX_HALF, /* MII_AUX_STATUS_MODE_100_H */ 79 LINK_DUPLEX_UNKNOWN, /* MII_AUX_STATUS_MODE_100_4 */ 80 LINK_DUPLEX_FULL, /* MII_AUX_STATUS_MODE_100_F */ 81 LINK_DUPLEX_HALF, /* MII_AUX_STATUS_MODE_1000_H */ 82 LINK_DUPLEX_FULL /* MII_AUX_STATUS_MODE_1000_F */ 83 }; 84 85 static const char * const bge_copper_link_text[] = { 86 "down", /* MII_AUX_STATUS_MODE_NONE */ 87 "up 10Mbps Half-Duplex", /* MII_AUX_STATUS_MODE_10_H */ 88 "up 10Mbps Full-Duplex", /* MII_AUX_STATUS_MODE_10_F */ 89 "up 100Mbps Half-Duplex", /* MII_AUX_STATUS_MODE_100_H */ 90 "down", /* MII_AUX_STATUS_MODE_100_4 */ 91 "up 100Mbps Full-Duplex", /* MII_AUX_STATUS_MODE_100_F */ 92 "up 1000Mbps Half-Duplex", /* MII_AUX_STATUS_MODE_1000_H */ 93 "up 1000Mbps Full-Duplex" /* MII_AUX_STATUS_MODE_1000_F */ 94 }; 95 96 #if BGE_DEBUGGING 97 98 static void 99 bge_phydump(bge_t *bgep, uint16_t mii_status, uint16_t aux) 100 { 101 uint16_t regs[32]; 102 int i; 103 104 ASSERT(mutex_owned(bgep->genlock)); 105 106 for (i = 0; i < 32; ++i) 107 switch (i) { 108 default: 109 regs[i] = bge_mii_get16(bgep, i); 110 break; 111 112 case MII_STATUS: 113 regs[i] = mii_status; 114 break; 115 116 case MII_AUX_STATUS: 117 regs[i] = aux; 118 break; 119 120 case 0x0b: case 0x0c: case 0x0d: case 0x0e: 121 case 0x15: case 0x16: case 0x17: 122 case 0x1c: 123 case 0x1f: 124 /* reserved registers -- don't read these */ 125 regs[i] = 0; 126 break; 127 } 128 129 for (i = 0; i < 32; i += 8) 130 BGE_DEBUG(("bge_phydump: " 131 "0x%04x %04x %04x %04x %04x %04x %04x %04x", 132 regs[i+0], regs[i+1], regs[i+2], regs[i+3], 133 regs[i+4], regs[i+5], regs[i+6], regs[i+7])); 134 } 135 136 #endif /* BGE_DEBUGGING */ 137 138 /* 139 * Basic low-level function to probe for a PHY 140 * 141 * Returns TRUE if the PHY responds with valid data, FALSE otherwise 142 */ 143 static boolean_t 144 bge_phy_probe(bge_t *bgep) 145 { 146 uint16_t phy_status; 147 148 BGE_TRACE(("bge_phy_probe($%p)", (void *)bgep)); 149 150 ASSERT(mutex_owned(bgep->genlock)); 151 152 /* 153 * Read the MII_STATUS register twice, in 154 * order to clear any sticky bits (but they should 155 * have been cleared by the RESET, I think). 156 */ 157 phy_status = bge_mii_get16(bgep, MII_STATUS); 158 phy_status = bge_mii_get16(bgep, MII_STATUS); 159 BGE_DEBUG(("bge_phy_probe: status 0x%x", phy_status)); 160 161 /* 162 * Now check the value read; it should have at least one bit set 163 * (for the device capabilities) and at least one clear (one of 164 * the error bits). So if we see all 0s or all 1s, there's a 165 * problem. In particular, bge_mii_get16() returns all 1s if 166 * communications fails ... 167 */ 168 switch (phy_status) { 169 case 0x0000: 170 case 0xffff: 171 return (B_FALSE); 172 173 default : 174 return (B_TRUE); 175 } 176 } 177 178 /* 179 * Basic low-level function to reset the PHY. 180 * Doesn't incorporate any special-case workarounds. 181 * 182 * Returns TRUE on success, FALSE if the RESET bit doesn't clear 183 */ 184 static boolean_t 185 bge_phy_reset(bge_t *bgep) 186 { 187 uint16_t control; 188 uint_t count; 189 190 BGE_TRACE(("bge_phy_reset($%p)", (void *)bgep)); 191 192 ASSERT(mutex_owned(bgep->genlock)); 193 194 /* 195 * Set the PHY RESET bit, then wait up to 5 ms for it to self-clear 196 */ 197 bge_mii_put16(bgep, MII_CONTROL, MII_CONTROL_RESET); 198 for (count = 0; ++count < 1000; ) { 199 drv_usecwait(5); 200 control = bge_mii_get16(bgep, MII_CONTROL); 201 if (BIC(control, MII_CONTROL_RESET)) 202 return (B_TRUE); 203 } 204 205 BGE_DEBUG(("bge_phy_reset: FAILED, control now 0x%x", control)); 206 207 return (B_FALSE); 208 } 209 210 /* 211 * Basic low-level function to powerdown the PHY, if supported 212 * If powerdown support is compiled out, this function does nothing. 213 */ 214 static void 215 bge_phy_powerdown(bge_t *bgep) 216 { 217 BGE_TRACE(("bge_phy_powerdown")); 218 #if BGE_COPPER_IDLEOFF 219 bge_mii_put16(bgep, MII_CONTROL, MII_CONTROL_PWRDN); 220 #endif /* BGE_COPPER_IDLEOFF */ 221 } 222 223 /* 224 * The following functions are based on sample code provided by 225 * Broadcom (20-June-2003), and implement workarounds said to be 226 * required on the early revisions of the BCM5703/4C. 227 * 228 * The registers and values used are mostly UNDOCUMENTED, and 229 * therefore don't have symbolic names ;-( 230 * 231 * Many of the comments are straight out of the Broadcom code: 232 * even where the code has been restructured, the original 233 * comments have been preserved in order to explain what these 234 * undocumented registers & values are all about ... 235 */ 236 237 static void 238 bge_phy_macro_wait(bge_t *bgep) 239 { 240 uint_t count; 241 242 for (count = 100; --count; ) 243 if ((bge_mii_get16(bgep, 0x16) & 0x1000) == 0) 244 break; 245 } 246 247 /* 248 * PHY test data pattern: 249 * 250 * For 5703/04, each DFE TAP has 21-bits (low word 15, hi word 6) 251 * For 5705, each DFE TAP has 19-bits (low word 15, hi word 4) 252 * For simplicity, we check only 19-bits, so we don't have to 253 * distinguish which chip it is. 254 * the LO word contains 15 bits, make sure pattern data is < 0x7fff 255 * the HI word contains 6 bits, make sure pattern data is < 0x003f 256 */ 257 #define N_CHANNELS 4 258 #define N_TAPS 3 259 260 static struct { 261 uint16_t lo; 262 uint16_t hi; 263 } tap_data[N_CHANNELS][N_TAPS] = { 264 { 265 { 0x5555, 0x0005 }, /* ch0, TAP 0, LO/HI pattern */ 266 { 0x2aaa, 0x000a }, /* ch0, TAP 1, LO/HI pattern */ 267 { 0x3456, 0x0003 } /* ch0, TAP 2, LO/HI pattern */ 268 }, 269 { 270 { 0x2aaa, 0x000a }, /* ch1, TAP 0, LO/HI pattern */ 271 { 0x3333, 0x0003 }, /* ch1, TAP 1, LO/HI pattern */ 272 { 0x789a, 0x0005 } /* ch1, TAP 2, LO/HI pattern */ 273 }, 274 { 275 { 0x5a5a, 0x0005 }, /* ch2, TAP 0, LO/HI pattern */ 276 { 0x2a6a, 0x000a }, /* ch2, TAP 1, LO/HI pattern */ 277 { 0x1bcd, 0x0003 } /* ch2, TAP 2, LO/HI pattern */ 278 }, 279 { 280 { 0x2a5a, 0x000a }, /* ch3, TAP 0, LO/HI pattern */ 281 { 0x33c3, 0x0003 }, /* ch3, TAP 1, LO/HI pattern */ 282 { 0x2ef1, 0x0005 } /* ch3, TAP 2, LO/HI pattern */ 283 } 284 }; 285 286 /* 287 * Check whether the PHY has locked up after a RESET. 288 * 289 * Returns TRUE if it did, FALSE is it's OK ;-) 290 */ 291 static boolean_t 292 bge_phy_locked_up(bge_t *bgep) 293 { 294 uint16_t dataLo; 295 uint16_t dataHi; 296 uint_t chan; 297 uint_t tap; 298 299 /* 300 * Check TAPs for all 4 channels, as soon as we see a lockup 301 * we'll stop checking. 302 */ 303 for (chan = 0; chan < N_CHANNELS; ++chan) { 304 /* Select channel and set TAP index to 0 */ 305 bge_mii_put16(bgep, 0x17, (chan << 13) | 0x0200); 306 /* Freeze filter again just to be safe */ 307 bge_mii_put16(bgep, 0x16, 0x0002); 308 309 /* 310 * Write fixed pattern to the RAM, 3 TAPs for 311 * each channel, each TAP have 2 WORDs (LO/HI) 312 */ 313 for (tap = 0; tap < N_TAPS; ++tap) { 314 bge_mii_put16(bgep, 0x15, tap_data[chan][tap].lo); 315 bge_mii_put16(bgep, 0x15, tap_data[chan][tap].hi); 316 } 317 318 /* 319 * Active PHY's Macro operation to write DFE 320 * TAP from RAM, and wait for Macro to complete. 321 */ 322 bge_mii_put16(bgep, 0x16, 0x0202); 323 bge_phy_macro_wait(bgep); 324 325 /* 326 * Done with write phase, now begin read phase. 327 */ 328 329 /* Select channel and set TAP index to 0 */ 330 bge_mii_put16(bgep, 0x17, (chan << 13) | 0x0200); 331 332 /* 333 * Active PHY's Macro operation to load DFE 334 * TAP to RAM, and wait for Macro to complete 335 */ 336 bge_mii_put16(bgep, 0x16, 0x0082); 337 bge_phy_macro_wait(bgep); 338 339 /* Enable "pre-fetch" */ 340 bge_mii_put16(bgep, 0x16, 0x0802); 341 bge_phy_macro_wait(bgep); 342 343 /* 344 * Read back the TAP values. 3 TAPs for each 345 * channel, each TAP have 2 WORDs (LO/HI) 346 */ 347 for (tap = 0; tap < N_TAPS; ++tap) { 348 /* 349 * Read Lo/Hi then wait for 'done' is faster. 350 * For DFE TAP, the HI word contains 6 bits, 351 * LO word contains 15 bits 352 */ 353 dataLo = bge_mii_get16(bgep, 0x15) & 0x7fff; 354 dataHi = bge_mii_get16(bgep, 0x15) & 0x003f; 355 bge_phy_macro_wait(bgep); 356 357 /* 358 * Check if what we wrote is what we read back. 359 * If failed, then the PHY is locked up, we need 360 * to do PHY reset again 361 */ 362 if (dataLo != tap_data[chan][tap].lo) 363 return (B_TRUE); /* wedged! */ 364 365 if (dataHi != tap_data[chan][tap].hi) 366 return (B_TRUE); /* wedged! */ 367 } 368 } 369 370 /* 371 * The PHY isn't locked up ;-) 372 */ 373 return (B_FALSE); 374 } 375 376 /* 377 * Special-case code to reset the PHY on the 5702/5703/5704C/5705/5782. 378 * Tries up to 5 times to recover from failure to reset or PHY lockup. 379 * 380 * Returns TRUE on success, FALSE if there's an unrecoverable problem 381 */ 382 static boolean_t 383 bge_phy_reset_and_check(bge_t *bgep) 384 { 385 boolean_t reset_success; 386 boolean_t phy_locked; 387 uint16_t extctrl; 388 uint_t retries; 389 390 for (retries = 0; retries < 5; ++retries) { 391 /* Issue a phy reset, and wait for reset to complete */ 392 /* Assuming reset is successful first */ 393 reset_success = bge_phy_reset(bgep); 394 395 /* 396 * Now go check the DFE TAPs to see if locked up, but 397 * first, we need to set up PHY so we can read DFE 398 * TAPs. 399 */ 400 401 /* 402 * Disable Transmitter and Interrupt, while we play 403 * with the PHY registers, so the link partner won't 404 * see any strange data and the Driver won't see any 405 * interrupts. 406 */ 407 extctrl = bge_mii_get16(bgep, 0x10); 408 bge_mii_put16(bgep, 0x10, extctrl | 0x3000); 409 410 /* Setup Full-Duplex, 1000 mbps */ 411 bge_mii_put16(bgep, 0x0, 0x0140); 412 413 /* Set to Master mode */ 414 bge_mii_put16(bgep, 0x9, 0x1800); 415 416 /* Enable SM_DSP_CLOCK & 6dB */ 417 bge_mii_put16(bgep, 0x18, 0x0c00); /* "the ADC fix" */ 418 419 /* Work-arounds */ 420 bge_mii_put16(bgep, 0x17, 0x201f); 421 bge_mii_put16(bgep, 0x15, 0x2aaa); 422 423 /* More workarounds */ 424 bge_mii_put16(bgep, 0x17, 0x000a); 425 bge_mii_put16(bgep, 0x15, 0x0323); /* "the Gamma fix" */ 426 427 /* Blocks the PHY control access */ 428 bge_mii_put16(bgep, 0x17, 0x8005); 429 bge_mii_put16(bgep, 0x15, 0x0800); 430 431 /* Test whether PHY locked up ;-( */ 432 phy_locked = bge_phy_locked_up(bgep); 433 if (reset_success && !phy_locked) 434 break; 435 436 /* 437 * Some problem here ... log it & retry 438 */ 439 if (!reset_success) 440 BGE_REPORT((bgep, "PHY didn't reset!")); 441 if (phy_locked) 442 BGE_REPORT((bgep, "PHY locked up!")); 443 } 444 445 /* Remove block phy control */ 446 bge_mii_put16(bgep, 0x17, 0x8005); 447 bge_mii_put16(bgep, 0x15, 0x0000); 448 449 /* Unfreeze DFE TAP filter for all channels */ 450 bge_mii_put16(bgep, 0x17, 0x8200); 451 bge_mii_put16(bgep, 0x16, 0x0000); 452 453 /* Restore PHY back to operating state */ 454 bge_mii_put16(bgep, 0x18, 0x0400); 455 456 /* Enable transmitter and interrupt */ 457 extctrl = bge_mii_get16(bgep, 0x10); 458 bge_mii_put16(bgep, 0x10, extctrl & ~0x3000); 459 460 return (reset_success && !phy_locked); 461 } 462 463 static void 464 bge_phy_tweak_gmii(bge_t *bgep) 465 { 466 /* Tweak GMII timing */ 467 bge_mii_put16(bgep, 0x1c, 0x8d68); 468 bge_mii_put16(bgep, 0x1c, 0x8d68); 469 } 470 471 /* 472 * End of Broadcom-derived workaround code * 473 */ 474 475 static void 476 bge_restart_copper(bge_t *bgep, boolean_t powerdown) 477 { 478 uint16_t phy_status; 479 boolean_t reset_ok; 480 481 BGE_TRACE(("bge_restart_copper($%p, %d)", (void *)bgep, powerdown)); 482 483 ASSERT(mutex_owned(bgep->genlock)); 484 485 switch (MHCR_CHIP_ASIC_REV(bgep->chipid.asic_rev)) { 486 default: 487 /* 488 * Shouldn't happen; it means we don't recognise this chip. 489 * It's probably a new one, so we'll try our best anyway ... 490 */ 491 case MHCR_CHIP_ASIC_REV_5703: 492 case MHCR_CHIP_ASIC_REV_5704: 493 case MHCR_CHIP_ASIC_REV_5705: 494 case MHCR_CHIP_ASIC_REV_5721_5751: 495 case MHCR_CHIP_ASIC_REV_5714: 496 reset_ok = bge_phy_reset_and_check(bgep); 497 break; 498 499 case MHCR_CHIP_ASIC_REV_5700: 500 case MHCR_CHIP_ASIC_REV_5701: 501 /* 502 * Just a plain reset; the "check" code breaks these chips 503 */ 504 reset_ok = bge_phy_reset(bgep); 505 break; 506 } 507 if (!reset_ok) 508 bge_problem(bgep, "PHY failed to reset correctly"); 509 510 /* 511 * Step 5: disable WOL (not required after RESET) 512 * 513 * Step 6: refer to errata 514 */ 515 switch (bgep->chipid.asic_rev) { 516 default: 517 break; 518 519 case MHCR_CHIP_REV_5704_A0: 520 bge_phy_tweak_gmii(bgep); 521 break; 522 } 523 524 /* 525 * Step 7: read the MII_INTR_STATUS register twice, 526 * in order to clear any sticky bits (but they should 527 * have been cleared by the RESET, I think), and we're 528 * not using PHY interrupts anyway. 529 * 530 * Step 8: enable the PHY to interrupt on link status 531 * change (not required) 532 * 533 * Step 9: configure PHY LED Mode - not applicable? 534 * 535 * Step 10: read the MII_STATUS register twice, in 536 * order to clear any sticky bits (but they should 537 * have been cleared by the RESET, I think). 538 */ 539 phy_status = bge_mii_get16(bgep, MII_STATUS); 540 phy_status = bge_mii_get16(bgep, MII_STATUS); 541 BGE_DEBUG(("bge_restart_copper: status 0x%x", phy_status)); 542 543 /* 544 * Finally, shut down the PHY, if required 545 */ 546 if (powerdown) 547 bge_phy_powerdown(bgep); 548 } 549 550 /* 551 * Synchronise the (copper) PHY's speed/duplex/autonegotiation capabilities 552 * and advertisements with the required settings as specified by the various 553 * param_* variables that can be poked via the NDD interface. 554 * 555 * We always reset the PHY and reprogram *all* the relevant registers, 556 * not just those changed. This should cause the link to go down, and then 557 * back up again once the link is stable and autonegotiation (if enabled) 558 * is complete. We should get a link state change interrupt somewhere along 559 * the way ... 560 * 561 * NOTE: <genlock> must already be held by the caller 562 */ 563 static void 564 bge_update_copper(bge_t *bgep) 565 { 566 boolean_t adv_autoneg; 567 boolean_t adv_pause; 568 boolean_t adv_asym_pause; 569 boolean_t adv_1000fdx; 570 boolean_t adv_1000hdx; 571 boolean_t adv_100fdx; 572 boolean_t adv_100hdx; 573 boolean_t adv_10fdx; 574 boolean_t adv_10hdx; 575 576 uint16_t control; 577 uint16_t gigctrl; 578 uint16_t auxctrl; 579 uint16_t anar; 580 581 BGE_TRACE(("bge_update_copper($%p)", (void *)bgep)); 582 583 ASSERT(mutex_owned(bgep->genlock)); 584 585 BGE_DEBUG(("bge_update_copper: autoneg %d " 586 "pause %d asym_pause %d " 587 "1000fdx %d 1000hdx %d " 588 "100fdx %d 100hdx %d " 589 "10fdx %d 10hdx %d ", 590 bgep->param_adv_autoneg, 591 bgep->param_adv_pause, bgep->param_adv_asym_pause, 592 bgep->param_adv_1000fdx, bgep->param_adv_1000hdx, 593 bgep->param_adv_100fdx, bgep->param_adv_100hdx, 594 bgep->param_adv_10fdx, bgep->param_adv_10hdx)); 595 596 control = gigctrl = auxctrl = anar = 0; 597 598 /* 599 * PHY settings are normally based on the param_* variables, 600 * but if any loopback mode is in effect, that takes precedence. 601 * 602 * BGE supports MAC-internal loopback, PHY-internal loopback, 603 * and External loopback at a variety of speeds (with a special 604 * cable). In all cases, autoneg is turned OFF, full-duplex 605 * is turned ON, and the speed/mastership is forced. 606 */ 607 switch (bgep->param_loop_mode) { 608 case BGE_LOOP_NONE: 609 default: 610 adv_autoneg = bgep->param_adv_autoneg; 611 adv_pause = bgep->param_adv_pause; 612 adv_asym_pause = bgep->param_adv_asym_pause; 613 adv_1000fdx = bgep->param_adv_1000fdx; 614 adv_1000hdx = bgep->param_adv_1000hdx; 615 adv_100fdx = bgep->param_adv_100fdx; 616 adv_100hdx = bgep->param_adv_100hdx; 617 adv_10fdx = bgep->param_adv_10fdx; 618 adv_10hdx = bgep->param_adv_10hdx; 619 break; 620 621 case BGE_LOOP_EXTERNAL_1000: 622 case BGE_LOOP_EXTERNAL_100: 623 case BGE_LOOP_EXTERNAL_10: 624 case BGE_LOOP_INTERNAL_PHY: 625 case BGE_LOOP_INTERNAL_MAC: 626 adv_autoneg = adv_pause = adv_asym_pause = B_FALSE; 627 adv_1000fdx = adv_100fdx = adv_10fdx = B_FALSE; 628 adv_1000hdx = adv_100hdx = adv_10hdx = B_FALSE; 629 bgep->param_link_duplex = LINK_DUPLEX_FULL; 630 631 switch (bgep->param_loop_mode) { 632 case BGE_LOOP_EXTERNAL_1000: 633 bgep->param_link_speed = 1000; 634 adv_1000fdx = B_TRUE; 635 auxctrl = MII_AUX_CTRL_NORM_EXT_LOOPBACK; 636 gigctrl |= MII_1000BT_CTL_MASTER_CFG; 637 gigctrl |= MII_1000BT_CTL_MASTER_SEL; 638 break; 639 640 case BGE_LOOP_EXTERNAL_100: 641 bgep->param_link_speed = 100; 642 adv_100fdx = B_TRUE; 643 auxctrl = MII_AUX_CTRL_NORM_EXT_LOOPBACK; 644 break; 645 646 case BGE_LOOP_EXTERNAL_10: 647 bgep->param_link_speed = 10; 648 adv_10fdx = B_TRUE; 649 auxctrl = MII_AUX_CTRL_NORM_EXT_LOOPBACK; 650 break; 651 652 case BGE_LOOP_INTERNAL_PHY: 653 bgep->param_link_speed = 1000; 654 adv_1000fdx = B_TRUE; 655 control = MII_CONTROL_LOOPBACK; 656 break; 657 658 case BGE_LOOP_INTERNAL_MAC: 659 bgep->param_link_speed = 1000; 660 adv_1000fdx = B_TRUE; 661 break; 662 } 663 } 664 665 BGE_DEBUG(("bge_update_copper: autoneg %d " 666 "pause %d asym_pause %d " 667 "1000fdx %d 1000hdx %d " 668 "100fdx %d 100hdx %d " 669 "10fdx %d 10hdx %d ", 670 adv_autoneg, 671 adv_pause, adv_asym_pause, 672 adv_1000fdx, adv_1000hdx, 673 adv_100fdx, adv_100hdx, 674 adv_10fdx, adv_10hdx)); 675 676 /* 677 * We should have at least one technology capability set; 678 * if not, we select a default of 1000Mb/s full-duplex 679 */ 680 if (!adv_1000fdx && !adv_100fdx && !adv_10fdx && 681 !adv_1000hdx && !adv_100hdx && !adv_10hdx) 682 adv_1000fdx = B_TRUE; 683 684 /* 685 * Now transform the adv_* variables into the proper settings 686 * of the PHY registers ... 687 * 688 * If autonegotiation is (now) enabled, we want to trigger 689 * a new autonegotiation cycle once the PHY has been 690 * programmed with the capabilities to be advertised. 691 */ 692 if (adv_autoneg) 693 control |= MII_CONTROL_ANE|MII_CONTROL_RSAN; 694 695 if (adv_1000fdx) 696 control |= MII_CONTROL_1000MB|MII_CONTROL_FDUPLEX; 697 else if (adv_1000hdx) 698 control |= MII_CONTROL_1000MB; 699 else if (adv_100fdx) 700 control |= MII_CONTROL_100MB|MII_CONTROL_FDUPLEX; 701 else if (adv_100hdx) 702 control |= MII_CONTROL_100MB; 703 else if (adv_10fdx) 704 control |= MII_CONTROL_FDUPLEX; 705 else if (adv_10hdx) 706 control |= 0; 707 else 708 { _NOTE(EMPTY); } /* Can't get here anyway ... */ 709 710 if (adv_1000fdx) 711 gigctrl |= MII_1000BT_CTL_ADV_FDX; 712 if (adv_1000hdx) 713 gigctrl |= MII_1000BT_CTL_ADV_HDX; 714 715 if (adv_100fdx) 716 anar |= MII_ABILITY_100BASE_TX_FD; 717 if (adv_100hdx) 718 anar |= MII_ABILITY_100BASE_TX; 719 if (adv_10fdx) 720 anar |= MII_ABILITY_10BASE_T_FD; 721 if (adv_10hdx) 722 anar |= MII_ABILITY_10BASE_T; 723 724 if (adv_pause) 725 anar |= MII_ABILITY_PAUSE; 726 if (adv_asym_pause) 727 anar |= MII_ABILITY_ASYM_PAUSE; 728 729 /* 730 * Munge in any other fixed bits we require ... 731 */ 732 anar |= MII_AN_SELECTOR_8023; 733 auxctrl |= MII_AUX_CTRL_NORM_TX_MODE; 734 auxctrl |= MII_AUX_CTRL_NORMAL; 735 736 /* 737 * Restart the PHY and write the new values. Note the 738 * time, so that we can say whether subsequent link state 739 * changes can be attributed to our reprogramming the PHY 740 */ 741 bgep->phys_write_time = gethrtime(); 742 (*bgep->physops->phys_restart)(bgep, B_FALSE); 743 bge_mii_put16(bgep, MII_AN_ADVERT, anar); 744 bge_mii_put16(bgep, MII_CONTROL, control); 745 bge_mii_put16(bgep, MII_AUX_CONTROL, auxctrl); 746 bge_mii_put16(bgep, MII_1000BASE_T_CONTROL, gigctrl); 747 748 BGE_DEBUG(("bge_update_copper: anar <- 0x%x", anar)); 749 BGE_DEBUG(("bge_update_copper: control <- 0x%x", control)); 750 BGE_DEBUG(("bge_update_copper: auxctrl <- 0x%x", auxctrl)); 751 BGE_DEBUG(("bge_update_copper: gigctrl <- 0x%x", gigctrl)); 752 753 #if BGE_COPPER_WIRESPEED 754 /* 755 * Enable the 'wire-speed' feature, if the chip supports it 756 * and we haven't got (any) loopback mode selected. 757 */ 758 switch (bgep->chipid.device) { 759 case DEVICE_ID_5700: 760 case DEVICE_ID_5700x: 761 case DEVICE_ID_5705C: 762 case DEVICE_ID_5782: 763 /* 764 * These chips are known or assumed not to support it 765 */ 766 break; 767 768 default: 769 /* 770 * All other Broadcom chips are expected to support it. 771 */ 772 if (bgep->param_loop_mode == BGE_LOOP_NONE) 773 bge_mii_put16(bgep, MII_AUX_CONTROL, 774 MII_AUX_CTRL_MISC_WRITE_ENABLE | 775 MII_AUX_CTRL_MISC_WIRE_SPEED | 776 MII_AUX_CTRL_MISC); 777 break; 778 } 779 #endif /* BGE_COPPER_WIRESPEED */ 780 } 781 782 static boolean_t 783 bge_check_copper(bge_t *bgep, boolean_t recheck) 784 { 785 uint32_t emac_status; 786 uint16_t mii_status; 787 uint16_t aux; 788 uint_t mode; 789 boolean_t linkup; 790 791 /* 792 * Step 10: read the status from the PHY (which is self-clearing 793 * on read!); also read & clear the main (Ethernet) MAC status 794 * (the relevant bits of this are write-one-to-clear). 795 */ 796 mii_status = bge_mii_get16(bgep, MII_STATUS); 797 emac_status = bge_reg_get32(bgep, ETHERNET_MAC_STATUS_REG); 798 bge_reg_put32(bgep, ETHERNET_MAC_STATUS_REG, emac_status); 799 800 BGE_DEBUG(("bge_check_copper: link %d/%s, MII status 0x%x " 801 "(was 0x%x), Ethernet MAC status 0x%x", 802 bgep->link_state, UPORDOWN(bgep->param_link_up), mii_status, 803 bgep->phy_gen_status, emac_status)); 804 805 /* 806 * If the PHY status hasn't changed since last we looked, and 807 * we not forcing a recheck (i.e. the link state was already 808 * known), there's nothing to do. 809 */ 810 if (mii_status == bgep->phy_gen_status && !recheck) 811 return (B_FALSE); 812 813 do { 814 /* 815 * If the PHY status changed, record the time 816 */ 817 if (mii_status != bgep->phy_gen_status) 818 bgep->phys_event_time = gethrtime(); 819 820 /* 821 * Step 11: read AUX STATUS register to find speed/duplex 822 */ 823 aux = bge_mii_get16(bgep, MII_AUX_STATUS); 824 BGE_CDB(bge_phydump, (bgep, mii_status, aux)); 825 826 /* 827 * We will only consider the link UP if all the readings 828 * are consistent and give meaningful results ... 829 */ 830 mode = aux & MII_AUX_STATUS_MODE_MASK; 831 mode >>= MII_AUX_STATUS_MODE_SHIFT; 832 linkup = bge_copper_link_speed[mode] > 0; 833 linkup &= bge_copper_link_duplex[mode] != LINK_DUPLEX_UNKNOWN; 834 linkup &= BIS(aux, MII_AUX_STATUS_LINKUP); 835 linkup &= BIS(mii_status, MII_STATUS_LINKUP); 836 837 BGE_DEBUG(("bge_check_copper: MII status 0x%x aux 0x%x " 838 "=> mode %d (%s)", 839 mii_status, aux, 840 mode, UPORDOWN(linkup))); 841 842 /* 843 * Record current register values, then reread status 844 * register & loop until it stabilises ... 845 */ 846 bgep->phy_aux_status = aux; 847 bgep->phy_gen_status = mii_status; 848 mii_status = bge_mii_get16(bgep, MII_STATUS); 849 } while (mii_status != bgep->phy_gen_status); 850 851 /* 852 * Assume very little ... 853 */ 854 bgep->param_lp_autoneg = B_FALSE; 855 bgep->param_lp_1000fdx = B_FALSE; 856 bgep->param_lp_1000hdx = B_FALSE; 857 bgep->param_lp_100fdx = B_FALSE; 858 bgep->param_lp_100hdx = B_FALSE; 859 bgep->param_lp_10fdx = B_FALSE; 860 bgep->param_lp_10hdx = B_FALSE; 861 bgep->param_lp_pause = B_FALSE; 862 bgep->param_lp_asym_pause = B_FALSE; 863 bgep->param_link_autoneg = B_FALSE; 864 bgep->param_link_tx_pause = B_FALSE; 865 if (bgep->param_adv_autoneg) 866 bgep->param_link_rx_pause = B_FALSE; 867 else 868 bgep->param_link_rx_pause = bgep->param_adv_pause; 869 870 /* 871 * Discover all the link partner's abilities. 872 * These are scattered through various registters ... 873 */ 874 if (BIS(aux, MII_AUX_STATUS_LP_ANEG_ABLE)) { 875 bgep->param_lp_autoneg = B_TRUE; 876 bgep->param_link_autoneg = B_TRUE; 877 bgep->param_link_tx_pause = BIS(aux, MII_AUX_STATUS_TX_PAUSE); 878 bgep->param_link_rx_pause = BIS(aux, MII_AUX_STATUS_RX_PAUSE); 879 880 aux = bge_mii_get16(bgep, MII_1000BASE_T_STATUS); 881 bgep->param_lp_1000fdx = BIS(aux, MII_1000BT_STAT_LP_FDX_CAP); 882 bgep->param_lp_1000hdx = BIS(aux, MII_1000BT_STAT_LP_HDX_CAP); 883 884 aux = bge_mii_get16(bgep, MII_AN_LPABLE); 885 bgep->param_lp_100fdx = BIS(aux, MII_ABILITY_100BASE_TX_FD); 886 bgep->param_lp_100hdx = BIS(aux, MII_ABILITY_100BASE_TX); 887 bgep->param_lp_10fdx = BIS(aux, MII_ABILITY_10BASE_T_FD); 888 bgep->param_lp_10hdx = BIS(aux, MII_ABILITY_10BASE_T); 889 bgep->param_lp_pause = BIS(aux, MII_ABILITY_PAUSE); 890 bgep->param_lp_asym_pause = BIS(aux, MII_ABILITY_ASYM_PAUSE); 891 } 892 893 /* 894 * Step 12: update ndd-visible state parameters, BUT! 895 * we don't transfer the new state to <link_state> just yet; 896 * instead we mark the <link_state> as UNKNOWN, and our caller 897 * will resolve it once the status has stopped changing and 898 * been stable for several seconds. 899 */ 900 BGE_DEBUG(("bge_check_copper: link was %s speed %d duplex %d", 901 UPORDOWN(bgep->param_link_up), 902 bgep->param_link_speed, 903 bgep->param_link_duplex)); 904 905 if (!linkup) 906 mode = MII_AUX_STATUS_MODE_NONE; 907 bgep->param_link_up = linkup; 908 bgep->param_link_speed = bge_copper_link_speed[mode]; 909 bgep->param_link_duplex = bge_copper_link_duplex[mode]; 910 bgep->link_mode_msg = bge_copper_link_text[mode]; 911 bgep->link_state = LINK_STATE_UNKNOWN; 912 913 BGE_DEBUG(("bge_check_copper: link now %s speed %d duplex %d", 914 UPORDOWN(bgep->param_link_up), 915 bgep->param_link_speed, 916 bgep->param_link_duplex)); 917 918 return (B_TRUE); 919 } 920 921 static const phys_ops_t copper_ops = { 922 bge_restart_copper, 923 bge_update_copper, 924 bge_check_copper 925 }; 926 927 928 /* 929 * ========== SerDes support ========== 930 */ 931 932 #undef BGE_DBG 933 #define BGE_DBG BGE_DBG_SERDES /* debug flag for this code */ 934 935 /* 936 * Reinitialise the SerDes interface. Note that it normally powers 937 * up in the disabled state, so we need to explicitly activate it. 938 */ 939 static void 940 bge_restart_serdes(bge_t *bgep, boolean_t powerdown) 941 { 942 uint32_t macmode; 943 944 BGE_TRACE(("bge_restart_serdes($%p, %d)", (void *)bgep, powerdown)); 945 946 ASSERT(mutex_owned(bgep->genlock)); 947 948 /* 949 * Ensure that the main Ethernet MAC mode register is programmed 950 * appropriately for the SerDes interface ... 951 */ 952 macmode = bge_reg_get32(bgep, ETHERNET_MAC_MODE_REG); 953 macmode &= ~ETHERNET_MODE_LINK_POLARITY; 954 macmode &= ~ETHERNET_MODE_PORTMODE_MASK; 955 macmode |= ETHERNET_MODE_PORTMODE_TBI; 956 bge_reg_put32(bgep, ETHERNET_MAC_MODE_REG, macmode); 957 958 /* 959 * Ensure that loopback is OFF and comma detection is enabled. Then 960 * disable the SerDes output (the first time through, it may/will 961 * already be disabled). If we're shutting down, leave it disabled. 962 */ 963 bge_reg_clr32(bgep, SERDES_CONTROL_REG, SERDES_CONTROL_TBI_LOOPBACK); 964 bge_reg_set32(bgep, SERDES_CONTROL_REG, SERDES_CONTROL_COMMA_DETECT); 965 bge_reg_set32(bgep, SERDES_CONTROL_REG, SERDES_CONTROL_TX_DISABLE); 966 if (powerdown) 967 return; 968 969 /* 970 * Otherwise, pause, (re-)enable the SerDes output, and send 971 * all-zero config words in order to force autoneg restart. 972 * Invalidate the saved "link partners received configs", as 973 * we're starting over ... 974 */ 975 drv_usecwait(10000); 976 bge_reg_clr32(bgep, SERDES_CONTROL_REG, SERDES_CONTROL_TX_DISABLE); 977 bge_reg_put32(bgep, TX_1000BASEX_AUTONEG_REG, 0); 978 bge_reg_set32(bgep, ETHERNET_MAC_MODE_REG, ETHERNET_MODE_SEND_CFGS); 979 drv_usecwait(10); 980 bge_reg_clr32(bgep, ETHERNET_MAC_MODE_REG, ETHERNET_MODE_SEND_CFGS); 981 bgep->serdes_lpadv = AUTONEG_CODE_FAULT_ANEG_ERR; 982 bgep->serdes_status = ~0U; 983 } 984 985 /* 986 * Synchronise the SerDes speed/duplex/autonegotiation capabilities and 987 * advertisements with the required settings as specified by the various 988 * param_* variables that can be poked via the NDD interface. 989 * 990 * We always reinitalise the SerDes; this should cause the link to go down, 991 * and then back up again once the link is stable and autonegotiation 992 * (if enabled) is complete. We should get a link state change interrupt 993 * somewhere along the way ... 994 * 995 * NOTE: SerDes only supports 1000FDX/HDX (with or without pause) so the 996 * param_* variables relating to lower speeds are ignored. 997 * 998 * NOTE: <genlock> must already be held by the caller 999 */ 1000 static void 1001 bge_update_serdes(bge_t *bgep) 1002 { 1003 boolean_t adv_autoneg; 1004 boolean_t adv_pause; 1005 boolean_t adv_asym_pause; 1006 boolean_t adv_1000fdx; 1007 boolean_t adv_1000hdx; 1008 1009 uint32_t serdes; 1010 uint32_t advert; 1011 1012 BGE_TRACE(("bge_update_serdes($%p)", (void *)bgep)); 1013 1014 ASSERT(mutex_owned(bgep->genlock)); 1015 1016 BGE_DEBUG(("bge_update_serdes: autoneg %d " 1017 "pause %d asym_pause %d " 1018 "1000fdx %d 1000hdx %d " 1019 "100fdx %d 100hdx %d " 1020 "10fdx %d 10hdx %d ", 1021 bgep->param_adv_autoneg, 1022 bgep->param_adv_pause, bgep->param_adv_asym_pause, 1023 bgep->param_adv_1000fdx, bgep->param_adv_1000hdx, 1024 bgep->param_adv_100fdx, bgep->param_adv_100hdx, 1025 bgep->param_adv_10fdx, bgep->param_adv_10hdx)); 1026 1027 serdes = advert = 0; 1028 1029 /* 1030 * SerDes settings are normally based on the param_* variables, 1031 * but if any loopback mode is in effect, that takes precedence. 1032 * 1033 * BGE supports MAC-internal loopback, PHY-internal loopback, 1034 * and External loopback at a variety of speeds (with a special 1035 * cable). In all cases, autoneg is turned OFF, full-duplex 1036 * is turned ON, and the speed/mastership is forced. 1037 * 1038 * Note: for the SerDes interface, "PHY" internal loopback is 1039 * interpreted as SerDes internal loopback, and all external 1040 * loopback modes are treated equivalently, as 1Gb/external. 1041 */ 1042 switch (bgep->param_loop_mode) { 1043 case BGE_LOOP_NONE: 1044 default: 1045 adv_autoneg = bgep->param_adv_autoneg; 1046 adv_pause = bgep->param_adv_pause; 1047 adv_asym_pause = bgep->param_adv_asym_pause; 1048 adv_1000fdx = bgep->param_adv_1000fdx; 1049 adv_1000hdx = bgep->param_adv_1000hdx; 1050 break; 1051 1052 case BGE_LOOP_INTERNAL_PHY: 1053 serdes |= SERDES_CONTROL_TBI_LOOPBACK; 1054 /* FALLTHRU */ 1055 case BGE_LOOP_INTERNAL_MAC: 1056 case BGE_LOOP_EXTERNAL_1000: 1057 case BGE_LOOP_EXTERNAL_100: 1058 case BGE_LOOP_EXTERNAL_10: 1059 adv_autoneg = adv_pause = adv_asym_pause = B_FALSE; 1060 adv_1000fdx = B_TRUE; 1061 adv_1000hdx = B_FALSE; 1062 break; 1063 } 1064 1065 BGE_DEBUG(("bge_update_serdes: autoneg %d " 1066 "pause %d asym_pause %d " 1067 "1000fdx %d 1000hdx %d ", 1068 adv_autoneg, 1069 adv_pause, adv_asym_pause, 1070 adv_1000fdx, adv_1000hdx)); 1071 1072 /* 1073 * We should have at least one gigabit technology capability 1074 * set; if not, we select a default of 1000Mb/s full-duplex 1075 */ 1076 if (!adv_1000fdx && !adv_1000hdx) 1077 adv_1000fdx = B_TRUE; 1078 1079 /* 1080 * Now transform the adv_* variables into the proper settings 1081 * of the SerDes registers ... 1082 * 1083 * If autonegotiation is (now) not enabled, pretend it's been 1084 * done and failed ... 1085 */ 1086 if (!adv_autoneg) 1087 advert |= AUTONEG_CODE_FAULT_ANEG_ERR; 1088 1089 if (adv_1000fdx) { 1090 advert |= AUTONEG_CODE_FULL_DUPLEX; 1091 bgep->param_adv_1000fdx = adv_1000fdx; 1092 bgep->param_link_duplex = LINK_DUPLEX_FULL; 1093 bgep->param_link_speed = 1000; 1094 } 1095 if (adv_1000hdx) { 1096 advert |= AUTONEG_CODE_HALF_DUPLEX; 1097 bgep->param_adv_1000hdx = adv_1000hdx; 1098 bgep->param_link_duplex = LINK_DUPLEX_HALF; 1099 bgep->param_link_speed = 1000; 1100 } 1101 1102 if (adv_pause) 1103 advert |= AUTONEG_CODE_PAUSE; 1104 if (adv_asym_pause) 1105 advert |= AUTONEG_CODE_ASYM_PAUSE; 1106 1107 /* 1108 * Restart the SerDes and write the new values. Note the 1109 * time, so that we can say whether subsequent link state 1110 * changes can be attributed to our reprogramming the SerDes 1111 */ 1112 bgep->serdes_advert = advert; 1113 bgep->phys_write_time = gethrtime(); 1114 bge_restart_serdes(bgep, B_FALSE); 1115 bge_reg_set32(bgep, SERDES_CONTROL_REG, serdes); 1116 1117 BGE_DEBUG(("bge_update_serdes: serdes |= 0x%x, advert 0x%x", 1118 serdes, advert)); 1119 } 1120 1121 /* 1122 * Bare-minimum autoneg protocol 1123 * 1124 * This code is only called when the link is up and we're receiving config 1125 * words, which implies that the link partner wants to autonegotiate 1126 * (otherwise, we wouldn't see configs and wouldn't reach this code). 1127 */ 1128 static void 1129 bge_autoneg_serdes(bge_t *bgep) 1130 { 1131 boolean_t ack; 1132 1133 bgep->serdes_lpadv = bge_reg_get32(bgep, RX_1000BASEX_AUTONEG_REG); 1134 ack = BIS(bgep->serdes_lpadv, AUTONEG_CODE_ACKNOWLEDGE); 1135 1136 if (!ack) { 1137 /* 1138 * Phase 1: after SerDes reset, we send a few zero configs 1139 * but then stop. Here the partner is sending configs, but 1140 * not ACKing ours; we assume that's 'cos we're not sending 1141 * any. So here we send ours, with ACK already set. 1142 */ 1143 bge_reg_put32(bgep, TX_1000BASEX_AUTONEG_REG, 1144 bgep->serdes_advert | AUTONEG_CODE_ACKNOWLEDGE); 1145 bge_reg_set32(bgep, ETHERNET_MAC_MODE_REG, 1146 ETHERNET_MODE_SEND_CFGS); 1147 } else { 1148 /* 1149 * Phase 2: partner has ACKed our configs, so now we can 1150 * stop sending; once our partner also stops sending, we 1151 * can resolve the Tx/Rx configs. 1152 */ 1153 bge_reg_clr32(bgep, ETHERNET_MAC_MODE_REG, 1154 ETHERNET_MODE_SEND_CFGS); 1155 } 1156 1157 BGE_DEBUG(("bge_autoneg_serdes: Rx 0x%x %s Tx 0x%x", 1158 bgep->serdes_lpadv, 1159 ack ? "stop" : "send", 1160 bgep->serdes_advert)); 1161 } 1162 1163 static boolean_t 1164 bge_check_serdes(bge_t *bgep, boolean_t recheck) 1165 { 1166 uint32_t emac_status; 1167 uint32_t lpadv; 1168 boolean_t linkup; 1169 1170 for (;;) { 1171 /* 1172 * Step 10: read & clear the main (Ethernet) MAC status 1173 * (the relevant bits of this are write-one-to-clear). 1174 */ 1175 emac_status = bge_reg_get32(bgep, ETHERNET_MAC_STATUS_REG); 1176 bge_reg_put32(bgep, ETHERNET_MAC_STATUS_REG, emac_status); 1177 1178 BGE_DEBUG(("bge_check_serdes: link %d/%s, " 1179 "MAC status 0x%x (was 0x%x)", 1180 bgep->link_state, UPORDOWN(bgep->param_link_up), 1181 emac_status, bgep->serdes_status)); 1182 1183 /* 1184 * We will only consider the link UP if all the readings 1185 * are consistent and give meaningful results ... 1186 */ 1187 bgep->serdes_status = emac_status; 1188 linkup = BIS(emac_status, ETHERNET_STATUS_SIGNAL_DETECT); 1189 linkup &= BIS(emac_status, ETHERNET_STATUS_PCS_SYNCHED); 1190 1191 /* 1192 * Now some fiddling with the interpretation: 1193 * if there's been an error at the PCS level, treat 1194 * it as a link change (the h/w doesn't do this) 1195 * 1196 * if there's been a change, but it's only a PCS sync 1197 * change (not a config change), AND the link already 1198 * was & is still UP, then ignore the change 1199 */ 1200 if (BIS(emac_status, ETHERNET_STATUS_PCS_ERROR)) 1201 emac_status |= ETHERNET_STATUS_LINK_CHANGED; 1202 else if (BIC(emac_status, ETHERNET_STATUS_CFG_CHANGED)) 1203 if (bgep->param_link_up && linkup) 1204 emac_status &= ~ETHERNET_STATUS_LINK_CHANGED; 1205 1206 BGE_DEBUG(("bge_check_serdes: status 0x%x => 0x%x %s", 1207 bgep->serdes_status, emac_status, UPORDOWN(linkup))); 1208 1209 /* 1210 * If we're receiving configs, run the autoneg protocol 1211 */ 1212 if (linkup && BIS(emac_status, ETHERNET_STATUS_RECEIVING_CFG)) 1213 bge_autoneg_serdes(bgep); 1214 1215 /* 1216 * If the SerDes status hasn't changed, we're done ... 1217 */ 1218 if (BIC(emac_status, ETHERNET_STATUS_LINK_CHANGED)) 1219 break; 1220 1221 /* 1222 * Record when the SerDes status changed, then go 1223 * round again until we no longer see a change ... 1224 */ 1225 bgep->phys_event_time = gethrtime(); 1226 recheck = B_TRUE; 1227 } 1228 1229 /* 1230 * If we're not forcing a recheck (i.e. the link state was already 1231 * known), and we didn't see the hardware flag a change, there's 1232 * no more to do (and we tell the caller nothing happened). 1233 */ 1234 if (!recheck) 1235 return (B_FALSE); 1236 1237 /* 1238 * Don't resolve autoneg until we're no longer receiving configs 1239 */ 1240 if (linkup && BIS(emac_status, ETHERNET_STATUS_RECEIVING_CFG)) 1241 return (B_FALSE); 1242 1243 /* 1244 * Assume very little ... 1245 */ 1246 bgep->param_lp_autoneg = B_FALSE; 1247 bgep->param_lp_1000fdx = B_FALSE; 1248 bgep->param_lp_1000hdx = B_FALSE; 1249 bgep->param_lp_100fdx = B_FALSE; 1250 bgep->param_lp_100hdx = B_FALSE; 1251 bgep->param_lp_10fdx = B_FALSE; 1252 bgep->param_lp_10hdx = B_FALSE; 1253 bgep->param_lp_pause = B_FALSE; 1254 bgep->param_lp_asym_pause = B_FALSE; 1255 bgep->param_link_autoneg = B_FALSE; 1256 bgep->param_link_tx_pause = B_FALSE; 1257 if (bgep->param_adv_autoneg) 1258 bgep->param_link_rx_pause = B_FALSE; 1259 else 1260 bgep->param_link_rx_pause = bgep->param_adv_pause; 1261 1262 /* 1263 * Discover all the link partner's abilities. 1264 */ 1265 lpadv = bgep->serdes_lpadv; 1266 if (lpadv != 0 && BIC(lpadv, AUTONEG_CODE_FAULT_MASK)) { 1267 /* 1268 * No fault, so derive partner's capabilities 1269 */ 1270 bgep->param_lp_autoneg = B_TRUE; 1271 bgep->param_lp_1000fdx = BIS(lpadv, AUTONEG_CODE_FULL_DUPLEX); 1272 bgep->param_lp_1000hdx = BIS(lpadv, AUTONEG_CODE_HALF_DUPLEX); 1273 bgep->param_lp_pause = BIS(lpadv, AUTONEG_CODE_PAUSE); 1274 bgep->param_lp_asym_pause = BIS(lpadv, AUTONEG_CODE_ASYM_PAUSE); 1275 1276 /* 1277 * Pause direction resolution 1278 */ 1279 bgep->param_link_autoneg = B_TRUE; 1280 if (bgep->param_adv_pause && 1281 bgep->param_lp_pause) { 1282 bgep->param_link_tx_pause = B_TRUE; 1283 bgep->param_link_rx_pause = B_TRUE; 1284 } 1285 if (bgep->param_adv_asym_pause && 1286 bgep->param_lp_asym_pause) { 1287 if (bgep->param_adv_pause) 1288 bgep->param_link_rx_pause = B_TRUE; 1289 if (bgep->param_lp_pause) 1290 bgep->param_link_tx_pause = B_TRUE; 1291 } 1292 } 1293 1294 /* 1295 * Step 12: update ndd-visible state parameters, BUT! 1296 * we don't transfer the new state to <link_state> just yet; 1297 * instead we mark the <link_state> as UNKNOWN, and our caller 1298 * will resolve it once the status has stopped changing and 1299 * been stable for several seconds. 1300 */ 1301 BGE_DEBUG(("bge_check_serdes: link was %s speed %d duplex %d", 1302 UPORDOWN(bgep->param_link_up), 1303 bgep->param_link_speed, 1304 bgep->param_link_duplex)); 1305 1306 if (linkup) { 1307 bgep->param_link_up = B_TRUE; 1308 bgep->param_link_speed = 1000; 1309 if (bgep->param_adv_1000fdx) 1310 bgep->param_link_duplex = LINK_DUPLEX_FULL; 1311 else 1312 bgep->param_link_duplex = LINK_DUPLEX_HALF; 1313 if (bgep->param_lp_autoneg && !bgep->param_lp_1000fdx) 1314 bgep->param_link_duplex = LINK_DUPLEX_HALF; 1315 } else { 1316 bgep->param_link_up = B_FALSE; 1317 bgep->param_link_speed = 0; 1318 bgep->param_link_duplex = LINK_DUPLEX_UNKNOWN; 1319 } 1320 switch (bgep->param_link_duplex) { 1321 default: 1322 case LINK_DUPLEX_UNKNOWN: 1323 bgep->link_mode_msg = "down"; 1324 break; 1325 1326 case LINK_DUPLEX_HALF: 1327 bgep->link_mode_msg = "up 1000Mbps Half-Duplex"; 1328 break; 1329 1330 case LINK_DUPLEX_FULL: 1331 bgep->link_mode_msg = "up 1000Mbps Full-Duplex"; 1332 break; 1333 } 1334 bgep->link_state = LINK_STATE_UNKNOWN; 1335 1336 BGE_DEBUG(("bge_check_serdes: link now %s speed %d duplex %d", 1337 UPORDOWN(bgep->param_link_up), 1338 bgep->param_link_speed, 1339 bgep->param_link_duplex)); 1340 1341 return (B_TRUE); 1342 } 1343 1344 static const phys_ops_t serdes_ops = { 1345 bge_restart_serdes, 1346 bge_update_serdes, 1347 bge_check_serdes 1348 }; 1349 1350 /* 1351 * ========== Exported physical layer control routines ========== 1352 */ 1353 1354 #undef BGE_DBG 1355 #define BGE_DBG BGE_DBG_PHYS /* debug flag for this code */ 1356 1357 /* 1358 * Here we have to determine which media we're using (copper or serdes). 1359 * Once that's done, we can initialise the physical layer appropriately. 1360 */ 1361 void 1362 bge_phys_init(bge_t *bgep) 1363 { 1364 BGE_TRACE(("bge_phys_init($%p)", (void *)bgep)); 1365 1366 mutex_enter(bgep->genlock); 1367 1368 /* 1369 * Probe for the (internal) PHY. If it's not there, we'll assume 1370 * that this is a 5703/4S, with a SerDes interface rather than a PHY. 1371 */ 1372 bgep->phy_mii_addr = 1; 1373 if (bge_phy_probe(bgep)) { 1374 bgep->chipid.flags &= ~CHIP_FLAG_SERDES; 1375 bgep->phys_delta_time = BGE_PHY_STABLE_TIME; 1376 bgep->physops = &copper_ops; 1377 } else { 1378 bgep->chipid.flags |= CHIP_FLAG_SERDES; 1379 bgep->phys_delta_time = BGE_SERDES_STABLE_TIME; 1380 bgep->physops = &serdes_ops; 1381 } 1382 1383 (*bgep->physops->phys_restart)(bgep, B_FALSE); 1384 mutex_exit(bgep->genlock); 1385 } 1386 1387 /* 1388 * Reset the physical layer 1389 */ 1390 void 1391 bge_phys_reset(bge_t *bgep) 1392 { 1393 BGE_TRACE(("bge_phys_reset($%p)", (void *)bgep)); 1394 1395 mutex_enter(bgep->genlock); 1396 (*bgep->physops->phys_restart)(bgep, B_FALSE); 1397 mutex_exit(bgep->genlock); 1398 } 1399 1400 /* 1401 * Reset and power off the physical layer. 1402 * 1403 * Another RESET should get it back to working, but it may take a few 1404 * seconds it may take a few moments to return to normal operation ... 1405 */ 1406 void 1407 bge_phys_idle(bge_t *bgep) 1408 { 1409 BGE_TRACE(("bge_phys_idle($%p)", (void *)bgep)); 1410 1411 ASSERT(mutex_owned(bgep->genlock)); 1412 (*bgep->physops->phys_restart)(bgep, B_TRUE); 1413 } 1414 1415 /* 1416 * Synchronise the PHYSICAL layer's speed/duplex/autonegotiation capabilities 1417 * and advertisements with the required settings as specified by the various 1418 * param_* variables that can be poked via the NDD interface. 1419 * 1420 * We always reset the PHYSICAL layer and reprogram *all* relevant registers. 1421 * This is expected to cause the link to go down, and then back up again once 1422 * the link is stable and autonegotiation (if enabled) is complete. We should 1423 * get a link state change interrupt somewhere along the way ... 1424 * 1425 * NOTE: <genlock> must already be held by the caller 1426 */ 1427 void 1428 bge_phys_update(bge_t *bgep) 1429 { 1430 BGE_TRACE(("bge_phys_update($%p)", (void *)bgep)); 1431 1432 ASSERT(mutex_owned(bgep->genlock)); 1433 (*bgep->physops->phys_update)(bgep); 1434 } 1435 1436 #undef BGE_DBG 1437 #define BGE_DBG BGE_DBG_LINK /* debug flag for this code */ 1438 1439 /* 1440 * Read the link status and determine whether anything's changed ... 1441 * 1442 * This routine should be called whenever the chip flags a change 1443 * in the hardware link state, and repeatedly for several seconds 1444 * afterwards, until we're sure the state has stabilised (sometimes 1445 * it goes up and down several times during autonegotiation before 1446 * settling on the proper configuration). This routine applies 1447 * timing-based heuristics to determine when the state is stable. 1448 * 1449 * This routine returns B_FALSE if the link state has not changed, 1450 * or if it has changed, but hasn't settled for long enough yet. It 1451 * returns B_TRUE when the change to the new state should be accepted. 1452 * In such a case, the param_* variables give the new hardware state, 1453 * which the caller should use to update link_state etc. 1454 * 1455 * The caller must already hold <genlock> 1456 */ 1457 boolean_t 1458 bge_phys_check(bge_t *bgep) 1459 { 1460 int32_t orig_state; 1461 boolean_t recheck; 1462 boolean_t linkup; 1463 hrtime_t deltat; 1464 hrtime_t now; 1465 1466 BGE_TRACE(("bge_phys_check($%p)", (void *)bgep)); 1467 1468 ASSERT(mutex_owned(bgep->genlock)); 1469 1470 linkup = bgep->param_link_up; 1471 orig_state = bgep->link_state; 1472 recheck = orig_state == LINK_STATE_UNKNOWN; 1473 recheck = (*bgep->physops->phys_check)(bgep, recheck); 1474 if (!recheck) 1475 return (B_FALSE); 1476 1477 /* 1478 * At this point, the check_*_link() function above has detected 1479 * a change and updated the param_* variables to show what the 1480 * latest hardware state seems to be -- but it might still be 1481 * changing. 1482 * 1483 * The link_state must now be UNKNOWN, but if it was previously 1484 * UP, we want to recognise this immediately, whereas in any other 1485 * case (e.g. DOWN->UP) we don't accept it until a few seconds have 1486 * elapsed, to give the hardware time to settle. 1487 */ 1488 now = gethrtime(); 1489 deltat = now - bgep->phys_event_time; 1490 1491 BGE_DEBUG(("bge_phys_check: link was %d/%s now %d/%s", 1492 orig_state, UPORDOWN(linkup), 1493 bgep->link_state, UPORDOWN(bgep->param_link_up))); 1494 BGE_DEBUG(("bge_phys_check: update %lld change %lld " 1495 "now %lld delta %lld", 1496 bgep->phys_write_time, bgep->phys_event_time, now, deltat)); 1497 1498 if (orig_state == LINK_STATE_UP) 1499 return (B_TRUE); 1500 else 1501 return (deltat > bgep->phys_delta_time); 1502 } 1503