xref: /illumos-gate/usr/src/uts/common/io/bge/bge_main2.c (revision a2876d03ca2556102e024ae4a50bb4db8fe562b0)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 
22 /*
23  * Copyright (c) 2010-2013, by Broadcom, Inc.
24  * All Rights Reserved.
25  */
26 
27 /*
28  * Copyright (c) 2002, 2010, Oracle and/or its affiliates.
29  * All rights reserved.
30  * Copyright 2016 Nexenta Systems, Inc.  All rights reserved.
31  */
32 
33 #include "bge_impl.h"
34 #include <sys/sdt.h>
35 #include <sys/mac_provider.h>
36 #include <sys/mac.h>
37 #include <sys/mac_flow.h>
38 
39 
40 #ifndef STRINGIFY
41 #define XSTRINGIFY(x) #x
42 #define STRINGIFY(x) XSTRINGIFY(x)
43 #endif
44 
45 /*
46  * This is the string displayed by modinfo, etc.
47  */
48 static char bge_ident[] = "Broadcom Gb Ethernet";
49 
50 /*
51  * Property names
52  */
53 static char debug_propname[] = "bge-debug-flags";
54 static char clsize_propname[] = "cache-line-size";
55 static char latency_propname[] = "latency-timer";
56 static char localmac_boolname[] = "local-mac-address?";
57 static char localmac_propname[] = "local-mac-address";
58 static char macaddr_propname[] = "mac-address";
59 static char subdev_propname[] = "subsystem-id";
60 static char subven_propname[] = "subsystem-vendor-id";
61 static char rxrings_propname[] = "bge-rx-rings";
62 static char txrings_propname[] = "bge-tx-rings";
63 static char eee_propname[] = "bge-eee";
64 static char fm_cap[] = "fm-capable";
65 static char default_mtu[] = "default_mtu";
66 
67 static int bge_add_intrs(bge_t *, int);
68 static void bge_rem_intrs(bge_t *);
69 static int bge_unicst_set(void *, const uint8_t *, int);
70 static int bge_addmac(void *, const uint8_t *);
71 static int bge_remmac(void *, const uint8_t *);
72 
73 /*
74  * Describes the chip's DMA engine
75  */
76 static ddi_dma_attr_t dma_attr = {
77 	DMA_ATTR_V0,			/* dma_attr_version	*/
78 	0x0000000000000000ull,		/* dma_attr_addr_lo	*/
79 	0xFFFFFFFFFFFFFFFFull,		/* dma_attr_addr_hi	*/
80 	0x00000000FFFFFFFFull,		/* dma_attr_count_max	*/
81 	0x0000000000000001ull,		/* dma_attr_align	*/
82 	0x00000FFF,			/* dma_attr_burstsizes	*/
83 	0x00000001,			/* dma_attr_minxfer	*/
84 	0x000000000000FFFFull,		/* dma_attr_maxxfer	*/
85 	0x00000000FFFFFFFFull,		/* dma_attr_seg		*/
86 	1,				/* dma_attr_sgllen	*/
87 	0x00000001,			/* dma_attr_granular	*/
88 	DDI_DMA_FLAGERR			/* dma_attr_flags */
89 };
90 
91 /*
92  * PIO access attributes for registers
93  */
94 static ddi_device_acc_attr_t bge_reg_accattr = {
95 	DDI_DEVICE_ATTR_V1,
96 	DDI_NEVERSWAP_ACC,
97 	DDI_STRICTORDER_ACC,
98 	DDI_FLAGERR_ACC
99 };
100 
101 /*
102  * DMA access attributes for descriptors: NOT to be byte swapped.
103  */
104 static ddi_device_acc_attr_t bge_desc_accattr = {
105 	DDI_DEVICE_ATTR_V0,
106 	DDI_NEVERSWAP_ACC,
107 	DDI_STRICTORDER_ACC
108 };
109 
110 /*
111  * DMA access attributes for data: NOT to be byte swapped.
112  */
113 static ddi_device_acc_attr_t bge_data_accattr = {
114 	DDI_DEVICE_ATTR_V0,
115 	DDI_NEVERSWAP_ACC,
116 	DDI_STRICTORDER_ACC
117 };
118 
119 static int		bge_m_start(void *);
120 static void		bge_m_stop(void *);
121 static int		bge_m_promisc(void *, boolean_t);
122 static int		bge_m_unicst(void * pArg, const uint8_t *);
123 static int		bge_m_multicst(void *, boolean_t, const uint8_t *);
124 static void		bge_m_resources(void * arg);
125 static void		bge_m_ioctl(void *, queue_t *, mblk_t *);
126 static boolean_t	bge_m_getcapab(void *, mac_capab_t, void *);
127 static int		bge_unicst_set(void *, const uint8_t *,
128     int);
129 static int		bge_m_setprop(void *, const char *, mac_prop_id_t,
130     uint_t, const void *);
131 static int		bge_m_getprop(void *, const char *, mac_prop_id_t,
132     uint_t, void *);
133 static void		bge_m_propinfo(void *, const char *, mac_prop_id_t,
134     mac_prop_info_handle_t);
135 static int		bge_set_priv_prop(bge_t *, const char *, uint_t,
136     const void *);
137 static int		bge_get_priv_prop(bge_t *, const char *, uint_t,
138     void *);
139 static void		bge_priv_propinfo(const char *,
140     mac_prop_info_handle_t);
141 
142 static mac_callbacks_t bge_m_callbacks = {
143     MC_IOCTL
144 #ifdef MC_RESOURCES
145   | MC_RESOURCES
146 #endif
147 #ifdef MC_SETPROP
148   | MC_SETPROP
149 #endif
150 #ifdef MC_GETPROP
151   | MC_GETPROP
152 #endif
153 #ifdef MC_PROPINFO
154   | MC_PROPINFO
155 #endif
156   | MC_GETCAPAB,
157 	bge_m_stat,
158 	bge_m_start,
159 	bge_m_stop,
160 	bge_m_promisc,
161 	bge_m_multicst,
162 	bge_m_unicst,
163 	bge_m_tx,
164 #ifdef MC_RESOURCES
165 	bge_m_resources,
166 #else
167 	NULL,
168 #endif
169 	bge_m_ioctl,
170 	bge_m_getcapab,
171 #ifdef MC_OPEN
172 	NULL,
173 	NULL,
174 #endif
175 #ifdef MC_SETPROP
176 	bge_m_setprop,
177 #endif
178 #ifdef MC_GETPROP
179 	bge_m_getprop,
180 #endif
181 #ifdef MC_PROPINFO
182 	bge_m_propinfo
183 #endif
184 };
185 
186 char *bge_priv_prop[] = {
187 	"_adv_asym_pause_cap",
188 	"_adv_pause_cap",
189 	"_drain_max",
190 	"_msi_cnt",
191 	"_rx_intr_coalesce_blank_time",
192 	"_tx_intr_coalesce_blank_time",
193 	"_rx_intr_coalesce_pkt_cnt",
194 	"_tx_intr_coalesce_pkt_cnt",
195 	NULL
196 };
197 
198 uint8_t zero_addr[6] = {0, 0, 0, 0, 0, 0};
199 /*
200  * ========== Transmit and receive ring reinitialisation ==========
201  */
202 
203 /*
204  * These <reinit> routines each reset the specified ring to an initial
205  * state, assuming that the corresponding <init> routine has already
206  * been called exactly once.
207  */
208 
209 static void
210 bge_reinit_send_ring(send_ring_t *srp)
211 {
212 	bge_queue_t *txbuf_queue;
213 	bge_queue_item_t *txbuf_head;
214 	sw_txbuf_t *txbuf;
215 	sw_sbd_t *ssbdp;
216 	uint32_t slot;
217 
218 	/*
219 	 * Reinitialise control variables ...
220 	 */
221 	srp->tx_flow = 0;
222 	srp->tx_next = 0;
223 	srp->txfill_next = 0;
224 	srp->tx_free = srp->desc.nslots;
225 	ASSERT(mutex_owned(srp->tc_lock));
226 	srp->tc_next = 0;
227 	srp->txpkt_next = 0;
228 	srp->tx_block = 0;
229 	srp->tx_nobd = 0;
230 	srp->tx_nobuf = 0;
231 
232 	/*
233 	 * Initialize the tx buffer push queue
234 	 */
235 	mutex_enter(srp->freetxbuf_lock);
236 	mutex_enter(srp->txbuf_lock);
237 	txbuf_queue = &srp->freetxbuf_queue;
238 	txbuf_queue->head = NULL;
239 	txbuf_queue->count = 0;
240 	txbuf_queue->lock = srp->freetxbuf_lock;
241 	srp->txbuf_push_queue = txbuf_queue;
242 
243 	/*
244 	 * Initialize the tx buffer pop queue
245 	 */
246 	txbuf_queue = &srp->txbuf_queue;
247 	txbuf_queue->head = NULL;
248 	txbuf_queue->count = 0;
249 	txbuf_queue->lock = srp->txbuf_lock;
250 	srp->txbuf_pop_queue = txbuf_queue;
251 	txbuf_head = srp->txbuf_head;
252 	txbuf = srp->txbuf;
253 	for (slot = 0; slot < srp->tx_buffers; ++slot) {
254 		txbuf_head->item = txbuf;
255 		txbuf_head->next = txbuf_queue->head;
256 		txbuf_queue->head = txbuf_head;
257 		txbuf_queue->count++;
258 		txbuf++;
259 		txbuf_head++;
260 	}
261 	mutex_exit(srp->txbuf_lock);
262 	mutex_exit(srp->freetxbuf_lock);
263 
264 	/*
265 	 * Zero and sync all the h/w Send Buffer Descriptors
266 	 */
267 	DMA_ZERO(srp->desc);
268 	DMA_SYNC(srp->desc, DDI_DMA_SYNC_FORDEV);
269 	bzero(srp->pktp, BGE_SEND_BUF_MAX * sizeof (*srp->pktp));
270 	ssbdp = srp->sw_sbds;
271 	for (slot = 0; slot < srp->desc.nslots; ++ssbdp, ++slot)
272 		ssbdp->pbuf = NULL;
273 }
274 
275 static void
276 bge_reinit_recv_ring(recv_ring_t *rrp)
277 {
278 	/*
279 	 * Reinitialise control variables ...
280 	 */
281 	rrp->rx_next = 0;
282 }
283 
284 static void
285 bge_reinit_buff_ring(buff_ring_t *brp, uint32_t ring)
286 {
287 	bge_rbd_t *hw_rbd_p;
288 	sw_rbd_t *srbdp;
289 	uint32_t bufsize;
290 	uint32_t nslots;
291 	uint32_t slot;
292 
293 	static uint16_t ring_type_flag[BGE_BUFF_RINGS_MAX] = {
294 		RBD_FLAG_STD_RING,
295 		RBD_FLAG_JUMBO_RING,
296 		RBD_FLAG_MINI_RING
297 	};
298 
299 	/*
300 	 * Zero, initialise and sync all the h/w Receive Buffer Descriptors
301 	 * Note: all the remaining fields (<type>, <flags>, <ip_cksum>,
302 	 * <tcp_udp_cksum>, <error_flag>, <vlan_tag>, and <reserved>)
303 	 * should be zeroed, and so don't need to be set up specifically
304 	 * once the whole area has been cleared.
305 	 */
306 	DMA_ZERO(brp->desc);
307 
308 	hw_rbd_p = DMA_VPTR(brp->desc);
309 	nslots = brp->desc.nslots;
310 	ASSERT(brp->buf[0].nslots == nslots/BGE_SPLIT);
311 	bufsize = brp->buf[0].size;
312 	srbdp = brp->sw_rbds;
313 	for (slot = 0; slot < nslots; ++hw_rbd_p, ++srbdp, ++slot) {
314 		hw_rbd_p->host_buf_addr = srbdp->pbuf.cookie.dmac_laddress;
315 		hw_rbd_p->index = (uint16_t)slot;
316 		hw_rbd_p->len = (uint16_t)bufsize;
317 		hw_rbd_p->opaque = srbdp->pbuf.token;
318 		hw_rbd_p->flags |= ring_type_flag[ring];
319 	}
320 
321 	DMA_SYNC(brp->desc, DDI_DMA_SYNC_FORDEV);
322 
323 	/*
324 	 * Finally, reinitialise the ring control variables ...
325 	 */
326 	brp->rf_next = (nslots != 0) ? (nslots-1) : 0;
327 }
328 
329 /*
330  * Reinitialize all rings
331  */
332 static void
333 bge_reinit_rings(bge_t *bgep)
334 {
335 	uint32_t ring;
336 
337 	ASSERT(mutex_owned(bgep->genlock));
338 
339 	/*
340 	 * Send Rings ...
341 	 */
342 	for (ring = 0; ring < bgep->chipid.tx_rings; ++ring)
343 		bge_reinit_send_ring(&bgep->send[ring]);
344 
345 	/*
346 	 * Receive Return Rings ...
347 	 */
348 	for (ring = 0; ring < bgep->chipid.rx_rings; ++ring)
349 		bge_reinit_recv_ring(&bgep->recv[ring]);
350 
351 	/*
352 	 * Receive Producer Rings ...
353 	 */
354 	for (ring = 0; ring < BGE_BUFF_RINGS_USED; ++ring)
355 		bge_reinit_buff_ring(&bgep->buff[ring], ring);
356 }
357 
358 /*
359  * ========== Internal state management entry points ==========
360  */
361 
362 #undef	BGE_DBG
363 #define	BGE_DBG		BGE_DBG_NEMO	/* debug flag for this code	*/
364 
365 /*
366  * These routines provide all the functionality required by the
367  * corresponding GLD entry points, but don't update the GLD state
368  * so they can be called internally without disturbing our record
369  * of what GLD thinks we should be doing ...
370  */
371 
372 /*
373  *	bge_reset() -- reset h/w & rings to initial state
374  */
375 static int
376 #ifdef BGE_IPMI_ASF
377 bge_reset(bge_t *bgep, uint_t asf_mode)
378 #else
379 bge_reset(bge_t *bgep)
380 #endif
381 {
382 	uint32_t	ring;
383 	int retval;
384 
385 	BGE_TRACE(("bge_reset($%p)", (void *)bgep));
386 
387 	ASSERT(mutex_owned(bgep->genlock));
388 
389 	/*
390 	 * Grab all the other mutexes in the world (this should
391 	 * ensure no other threads are manipulating driver state)
392 	 */
393 	for (ring = 0; ring < BGE_RECV_RINGS_MAX; ++ring)
394 		mutex_enter(bgep->recv[ring].rx_lock);
395 	for (ring = 0; ring < BGE_BUFF_RINGS_MAX; ++ring)
396 		mutex_enter(bgep->buff[ring].rf_lock);
397 	rw_enter(bgep->errlock, RW_WRITER);
398 	for (ring = 0; ring < BGE_SEND_RINGS_MAX; ++ring)
399 		mutex_enter(bgep->send[ring].tx_lock);
400 	for (ring = 0; ring < BGE_SEND_RINGS_MAX; ++ring)
401 		mutex_enter(bgep->send[ring].tc_lock);
402 
403 #ifdef BGE_IPMI_ASF
404 	retval = bge_chip_reset(bgep, B_TRUE, asf_mode);
405 #else
406 	retval = bge_chip_reset(bgep, B_TRUE);
407 #endif
408 	bge_reinit_rings(bgep);
409 
410 	/*
411 	 * Free the world ...
412 	 */
413 	for (ring = BGE_SEND_RINGS_MAX; ring-- > 0; )
414 		mutex_exit(bgep->send[ring].tc_lock);
415 	for (ring = 0; ring < BGE_SEND_RINGS_MAX; ++ring)
416 		mutex_exit(bgep->send[ring].tx_lock);
417 	rw_exit(bgep->errlock);
418 	for (ring = BGE_BUFF_RINGS_MAX; ring-- > 0; )
419 		mutex_exit(bgep->buff[ring].rf_lock);
420 	for (ring = BGE_RECV_RINGS_MAX; ring-- > 0; )
421 		mutex_exit(bgep->recv[ring].rx_lock);
422 
423 	BGE_DEBUG(("bge_reset($%p) done", (void *)bgep));
424 	return (retval);
425 }
426 
427 /*
428  *	bge_stop() -- stop processing, don't reset h/w or rings
429  */
430 static void
431 bge_stop(bge_t *bgep)
432 {
433 	BGE_TRACE(("bge_stop($%p)", (void *)bgep));
434 
435 	ASSERT(mutex_owned(bgep->genlock));
436 
437 #ifdef BGE_IPMI_ASF
438 	if (bgep->asf_enabled) {
439 		bgep->asf_pseudostop = B_TRUE;
440 	} else {
441 #endif
442 		bge_chip_stop(bgep, B_FALSE);
443 #ifdef BGE_IPMI_ASF
444 	}
445 #endif
446 
447 	BGE_DEBUG(("bge_stop($%p) done", (void *)bgep));
448 }
449 
450 /*
451  *	bge_start() -- start transmitting/receiving
452  */
453 static int
454 bge_start(bge_t *bgep, boolean_t reset_phys)
455 {
456 	int retval;
457 
458 	BGE_TRACE(("bge_start($%p, %d)", (void *)bgep, reset_phys));
459 
460 	ASSERT(mutex_owned(bgep->genlock));
461 
462 	/*
463 	 * Start chip processing, including enabling interrupts
464 	 */
465 	retval = bge_chip_start(bgep, reset_phys);
466 
467 	BGE_DEBUG(("bge_start($%p, %d) done", (void *)bgep, reset_phys));
468 	return (retval);
469 }
470 
471 /*
472  * bge_restart - restart transmitting/receiving after error or suspend
473  */
474 int
475 bge_restart(bge_t *bgep, boolean_t reset_phys)
476 {
477 	int retval = DDI_SUCCESS;
478 	ASSERT(mutex_owned(bgep->genlock));
479 
480 #ifdef BGE_IPMI_ASF
481 	if (bgep->asf_enabled) {
482 		if (bge_reset(bgep, ASF_MODE_POST_INIT) != DDI_SUCCESS)
483 			retval = DDI_FAILURE;
484 	} else
485 		if (bge_reset(bgep, ASF_MODE_NONE) != DDI_SUCCESS)
486 			retval = DDI_FAILURE;
487 #else
488 	if (bge_reset(bgep) != DDI_SUCCESS)
489 		retval = DDI_FAILURE;
490 #endif
491 	if (bgep->bge_mac_state == BGE_MAC_STARTED) {
492 		if (bge_start(bgep, reset_phys) != DDI_SUCCESS)
493 			retval = DDI_FAILURE;
494 		bgep->watchdog = 0;
495 		ddi_trigger_softintr(bgep->drain_id);
496 	}
497 
498 	BGE_DEBUG(("bge_restart($%p, %d) done", (void *)bgep, reset_phys));
499 	return (retval);
500 }
501 
502 
503 /*
504  * ========== Nemo-required management entry points ==========
505  */
506 
507 #undef	BGE_DBG
508 #define	BGE_DBG		BGE_DBG_NEMO	/* debug flag for this code	*/
509 
510 /*
511  *	bge_m_stop() -- stop transmitting/receiving
512  */
513 static void
514 bge_m_stop(void *arg)
515 {
516 	bge_t *bgep = arg;		/* private device info	*/
517 	send_ring_t *srp;
518 	uint32_t ring;
519 
520 	BGE_TRACE(("bge_m_stop($%p)", arg));
521 
522 	/*
523 	 * Just stop processing, then record new GLD state
524 	 */
525 	mutex_enter(bgep->genlock);
526 	if (!(bgep->progress & PROGRESS_INTR)) {
527 		/* can happen during autorecovery */
528 		bgep->bge_chip_state = BGE_CHIP_STOPPED;
529 	} else
530 		bge_stop(bgep);
531 
532 	bgep->link_state = LINK_STATE_UNKNOWN;
533 	mac_link_update(bgep->mh, bgep->link_state);
534 
535 	/*
536 	 * Free the possible tx buffers allocated in tx process.
537 	 */
538 #ifdef BGE_IPMI_ASF
539 	if (!bgep->asf_pseudostop)
540 #endif
541 	{
542 		rw_enter(bgep->errlock, RW_WRITER);
543 		for (ring = 0; ring < bgep->chipid.tx_rings; ++ring) {
544 			srp = &bgep->send[ring];
545 			mutex_enter(srp->tx_lock);
546 			if (srp->tx_array > 1)
547 				bge_free_txbuf_arrays(srp);
548 			mutex_exit(srp->tx_lock);
549 		}
550 		rw_exit(bgep->errlock);
551 	}
552 	bgep->bge_mac_state = BGE_MAC_STOPPED;
553 	BGE_DEBUG(("bge_m_stop($%p) done", arg));
554 	if (bge_check_acc_handle(bgep, bgep->io_handle) != DDI_FM_OK)
555 		ddi_fm_service_impact(bgep->devinfo, DDI_SERVICE_UNAFFECTED);
556 	mutex_exit(bgep->genlock);
557 }
558 
559 /*
560  *	bge_m_start() -- start transmitting/receiving
561  */
562 static int
563 bge_m_start(void *arg)
564 {
565 	bge_t *bgep = arg;		/* private device info	*/
566 
567 	BGE_TRACE(("bge_m_start($%p)", arg));
568 
569 	/*
570 	 * Start processing and record new GLD state
571 	 */
572 	mutex_enter(bgep->genlock);
573 	if (!(bgep->progress & PROGRESS_INTR)) {
574 		/* can happen during autorecovery */
575 		ddi_fm_service_impact(bgep->devinfo, DDI_SERVICE_DEGRADED);
576 		mutex_exit(bgep->genlock);
577 		return (EIO);
578 	}
579 #ifdef BGE_IPMI_ASF
580 	if (bgep->asf_enabled) {
581 		if ((bgep->asf_status == ASF_STAT_RUN) &&
582 		    (bgep->asf_pseudostop)) {
583 			bgep->bge_mac_state = BGE_MAC_STARTED;
584 			/* forcing a mac link update here */
585 			bge_phys_check(bgep);
586 			bgep->link_state = (bgep->param_link_up) ? LINK_STATE_UP :
587 			                                           LINK_STATE_DOWN;
588 			mac_link_update(bgep->mh, bgep->link_state);
589 			mutex_exit(bgep->genlock);
590 			return (0);
591 		}
592 	}
593 	if (bge_reset(bgep, ASF_MODE_INIT) != DDI_SUCCESS) {
594 #else
595 	if (bge_reset(bgep) != DDI_SUCCESS) {
596 #endif
597 		(void) bge_check_acc_handle(bgep, bgep->cfg_handle);
598 		(void) bge_check_acc_handle(bgep, bgep->io_handle);
599 		ddi_fm_service_impact(bgep->devinfo, DDI_SERVICE_DEGRADED);
600 		mutex_exit(bgep->genlock);
601 		return (EIO);
602 	}
603 	if (bge_start(bgep, B_TRUE) != DDI_SUCCESS) {
604 		(void) bge_check_acc_handle(bgep, bgep->cfg_handle);
605 		(void) bge_check_acc_handle(bgep, bgep->io_handle);
606 		ddi_fm_service_impact(bgep->devinfo, DDI_SERVICE_DEGRADED);
607 		mutex_exit(bgep->genlock);
608 		return (EIO);
609 	}
610 	bgep->watchdog = 0;
611 	bgep->bge_mac_state = BGE_MAC_STARTED;
612 	BGE_DEBUG(("bge_m_start($%p) done", arg));
613 
614 	if (bge_check_acc_handle(bgep, bgep->cfg_handle) != DDI_FM_OK) {
615 		ddi_fm_service_impact(bgep->devinfo, DDI_SERVICE_DEGRADED);
616 		mutex_exit(bgep->genlock);
617 		return (EIO);
618 	}
619 	if (bge_check_acc_handle(bgep, bgep->io_handle) != DDI_FM_OK) {
620 		ddi_fm_service_impact(bgep->devinfo, DDI_SERVICE_DEGRADED);
621 		mutex_exit(bgep->genlock);
622 		return (EIO);
623 	}
624 #ifdef BGE_IPMI_ASF
625 	if (bgep->asf_enabled) {
626 		if (bgep->asf_status != ASF_STAT_RUN) {
627 			/* start ASF heart beat */
628 			bgep->asf_timeout_id = timeout(bge_asf_heartbeat,
629 			    (void *)bgep,
630 			    drv_usectohz(BGE_ASF_HEARTBEAT_INTERVAL));
631 			bgep->asf_status = ASF_STAT_RUN;
632 		}
633 	}
634 #endif
635 	mutex_exit(bgep->genlock);
636 
637 	return (0);
638 }
639 
640 /*
641  *	bge_unicst_set() -- set the physical network address
642  */
643 static int
644 bge_unicst_set(void *arg, const uint8_t *macaddr, int slot)
645 {
646 	bge_t *bgep = arg;		/* private device info	*/
647 
648 	BGE_TRACE(("bge_unicst_set($%p, %s)", arg,
649 	    ether_sprintf((void *)macaddr)));
650 	/*
651 	 * Remember the new current address in the driver state
652 	 * Sync the chip's idea of the address too ...
653 	 */
654 	mutex_enter(bgep->genlock);
655 	if (!(bgep->progress & PROGRESS_INTR)) {
656 		/* can happen during autorecovery */
657 		ddi_fm_service_impact(bgep->devinfo, DDI_SERVICE_DEGRADED);
658 		mutex_exit(bgep->genlock);
659 		return (EIO);
660 	}
661 	ethaddr_copy(macaddr, bgep->curr_addr[slot].addr);
662 #ifdef BGE_IPMI_ASF
663 	if (bge_chip_sync(bgep, B_FALSE) == DDI_FAILURE) {
664 #else
665 	if (bge_chip_sync(bgep) == DDI_FAILURE) {
666 #endif
667 		(void) bge_check_acc_handle(bgep, bgep->cfg_handle);
668 		(void) bge_check_acc_handle(bgep, bgep->io_handle);
669 		ddi_fm_service_impact(bgep->devinfo, DDI_SERVICE_DEGRADED);
670 		mutex_exit(bgep->genlock);
671 		return (EIO);
672 	}
673 #ifdef BGE_IPMI_ASF
674 	if (bgep->asf_enabled) {
675 		/*
676 		 * The above bge_chip_sync() function wrote the ethernet MAC
677 		 * addresses registers which destroyed the IPMI/ASF sideband.
678 		 * Here, we have to reset chip to make IPMI/ASF sideband work.
679 		 */
680 		if (bgep->asf_status == ASF_STAT_RUN) {
681 			/*
682 			 * We must stop ASF heart beat before bge_chip_stop(),
683 			 * otherwise some computers (ex. IBM HS20 blade server)
684 			 * may crash.
685 			 */
686 			bge_asf_update_status(bgep);
687 			bge_asf_stop_timer(bgep);
688 			bgep->asf_status = ASF_STAT_STOP;
689 
690 			bge_asf_pre_reset_operations(bgep, BGE_INIT_RESET);
691 		}
692 		bge_chip_stop(bgep, B_FALSE);
693 
694 		if (bge_restart(bgep, B_FALSE) == DDI_FAILURE) {
695 			(void) bge_check_acc_handle(bgep, bgep->cfg_handle);
696 			(void) bge_check_acc_handle(bgep, bgep->io_handle);
697 			ddi_fm_service_impact(bgep->devinfo,
698 			    DDI_SERVICE_DEGRADED);
699 			mutex_exit(bgep->genlock);
700 			return (EIO);
701 		}
702 
703 		/*
704 		 * Start our ASF heartbeat counter as soon as possible.
705 		 */
706 		if (bgep->asf_status != ASF_STAT_RUN) {
707 			/* start ASF heart beat */
708 			bgep->asf_timeout_id = timeout(bge_asf_heartbeat,
709 			    (void *)bgep,
710 			    drv_usectohz(BGE_ASF_HEARTBEAT_INTERVAL));
711 			bgep->asf_status = ASF_STAT_RUN;
712 		}
713 	}
714 #endif
715 	BGE_DEBUG(("bge_unicst_set($%p) done", arg));
716 	if (bge_check_acc_handle(bgep, bgep->cfg_handle) != DDI_FM_OK) {
717 		ddi_fm_service_impact(bgep->devinfo, DDI_SERVICE_DEGRADED);
718 		mutex_exit(bgep->genlock);
719 		return (EIO);
720 	}
721 	if (bge_check_acc_handle(bgep, bgep->io_handle) != DDI_FM_OK) {
722 		ddi_fm_service_impact(bgep->devinfo, DDI_SERVICE_DEGRADED);
723 		mutex_exit(bgep->genlock);
724 		return (EIO);
725 	}
726 	mutex_exit(bgep->genlock);
727 
728 	return (0);
729 }
730 
731 extern void bge_wake_factotum(bge_t *);
732 
733 static boolean_t
734 bge_param_locked(mac_prop_id_t pr_num)
735 {
736 	/*
737 	 * All adv_* parameters are locked (read-only) while
738 	 * the device is in any sort of loopback mode ...
739 	 */
740 	switch (pr_num) {
741 		case MAC_PROP_ADV_1000FDX_CAP:
742 		case MAC_PROP_EN_1000FDX_CAP:
743 		case MAC_PROP_ADV_1000HDX_CAP:
744 		case MAC_PROP_EN_1000HDX_CAP:
745 		case MAC_PROP_ADV_100FDX_CAP:
746 		case MAC_PROP_EN_100FDX_CAP:
747 		case MAC_PROP_ADV_100HDX_CAP:
748 		case MAC_PROP_EN_100HDX_CAP:
749 		case MAC_PROP_ADV_10FDX_CAP:
750 		case MAC_PROP_EN_10FDX_CAP:
751 		case MAC_PROP_ADV_10HDX_CAP:
752 		case MAC_PROP_EN_10HDX_CAP:
753 		case MAC_PROP_AUTONEG:
754 		case MAC_PROP_FLOWCTRL:
755 			return (B_TRUE);
756 	}
757 	return (B_FALSE);
758 }
759 /*
760  * callback functions for set/get of properties
761  */
762 static int
763 bge_m_setprop(void *barg, const char *pr_name, mac_prop_id_t pr_num,
764     uint_t pr_valsize, const void *pr_val)
765 {
766 	bge_t *bgep = barg;
767 	int err = 0;
768 	uint32_t cur_mtu, new_mtu;
769 	link_flowctrl_t fl;
770 
771 	mutex_enter(bgep->genlock);
772 	if (bgep->param_loop_mode != BGE_LOOP_NONE &&
773 	    bge_param_locked(pr_num)) {
774 		/*
775 		 * All adv_* parameters are locked (read-only)
776 		 * while the device is in any sort of loopback mode.
777 		 */
778 		mutex_exit(bgep->genlock);
779 		return (EBUSY);
780 	}
781 	if ((bgep->chipid.flags & CHIP_FLAG_SERDES) &&
782 	    ((pr_num == MAC_PROP_EN_100FDX_CAP) ||
783 	    (pr_num == MAC_PROP_EN_100HDX_CAP) ||
784 	    (pr_num == MAC_PROP_EN_10FDX_CAP) ||
785 	    (pr_num == MAC_PROP_EN_10HDX_CAP))) {
786 		/*
787 		 * these properties are read/write on copper,
788 		 * read-only and 0 on serdes
789 		 */
790 		mutex_exit(bgep->genlock);
791 		return (ENOTSUP);
792 	}
793 	if (DEVICE_5906_SERIES_CHIPSETS(bgep) &&
794 	    ((pr_num == MAC_PROP_EN_1000FDX_CAP) ||
795 	    (pr_num == MAC_PROP_EN_1000HDX_CAP))) {
796 		mutex_exit(bgep->genlock);
797 		return (ENOTSUP);
798 	}
799 
800 	switch (pr_num) {
801 		case MAC_PROP_EN_1000FDX_CAP:
802 			bgep->param_en_1000fdx = *(uint8_t *)pr_val;
803 			bgep->param_adv_1000fdx = *(uint8_t *)pr_val;
804 			goto reprogram;
805 		case MAC_PROP_EN_1000HDX_CAP:
806 			bgep->param_en_1000hdx = *(uint8_t *)pr_val;
807 			bgep->param_adv_1000hdx = *(uint8_t *)pr_val;
808 			goto reprogram;
809 		case MAC_PROP_EN_100FDX_CAP:
810 			bgep->param_en_100fdx = *(uint8_t *)pr_val;
811 			bgep->param_adv_100fdx = *(uint8_t *)pr_val;
812 			goto reprogram;
813 		case MAC_PROP_EN_100HDX_CAP:
814 			bgep->param_en_100hdx = *(uint8_t *)pr_val;
815 			bgep->param_adv_100hdx = *(uint8_t *)pr_val;
816 			goto reprogram;
817 		case MAC_PROP_EN_10FDX_CAP:
818 			bgep->param_en_10fdx = *(uint8_t *)pr_val;
819 			bgep->param_adv_10fdx = *(uint8_t *)pr_val;
820 			goto reprogram;
821 		case MAC_PROP_EN_10HDX_CAP:
822 			bgep->param_en_10hdx = *(uint8_t *)pr_val;
823 			bgep->param_adv_10hdx = *(uint8_t *)pr_val;
824 reprogram:
825 			if (err == 0 && bge_reprogram(bgep) == IOC_INVAL)
826 				err = EINVAL;
827 			break;
828 		case MAC_PROP_ADV_1000FDX_CAP:
829 		case MAC_PROP_ADV_1000HDX_CAP:
830 		case MAC_PROP_ADV_100FDX_CAP:
831 		case MAC_PROP_ADV_100HDX_CAP:
832 		case MAC_PROP_ADV_10FDX_CAP:
833 		case MAC_PROP_ADV_10HDX_CAP:
834 		case MAC_PROP_STATUS:
835 		case MAC_PROP_SPEED:
836 		case MAC_PROP_DUPLEX:
837 			err = ENOTSUP; /* read-only prop. Can't set this */
838 			break;
839 		case MAC_PROP_AUTONEG:
840 			bgep->param_adv_autoneg = *(uint8_t *)pr_val;
841 			if (bge_reprogram(bgep) == IOC_INVAL)
842 				err = EINVAL;
843 			break;
844 		case MAC_PROP_MTU:
845 			cur_mtu = bgep->chipid.default_mtu;
846 			bcopy(pr_val, &new_mtu, sizeof (new_mtu));
847 
848 			if (new_mtu == cur_mtu) {
849 				err = 0;
850 				break;
851 			}
852 			if (new_mtu < BGE_DEFAULT_MTU ||
853 			    new_mtu > BGE_MAXIMUM_MTU) {
854 				err = EINVAL;
855 				break;
856 			}
857 			if ((new_mtu > BGE_DEFAULT_MTU) &&
858 			    (bgep->chipid.flags & CHIP_FLAG_NO_JUMBO)) {
859 				err = EINVAL;
860 				break;
861 			}
862 			if (bgep->bge_mac_state == BGE_MAC_STARTED) {
863 				err = EBUSY;
864 				break;
865 			}
866 			bgep->chipid.default_mtu = new_mtu;
867 			if (bge_chip_id_init(bgep)) {
868 				err = EINVAL;
869 				break;
870 			}
871 			bgep->bge_dma_error = B_TRUE;
872 			bgep->manual_reset = B_TRUE;
873 			bge_chip_stop(bgep, B_TRUE);
874 			bge_wake_factotum(bgep);
875 			err = 0;
876 			break;
877 		case MAC_PROP_FLOWCTRL:
878 			bcopy(pr_val, &fl, sizeof (fl));
879 			switch (fl) {
880 			default:
881 				err = ENOTSUP;
882 				break;
883 			case LINK_FLOWCTRL_NONE:
884 				bgep->param_adv_pause = 0;
885 				bgep->param_adv_asym_pause = 0;
886 
887 				bgep->param_link_rx_pause = B_FALSE;
888 				bgep->param_link_tx_pause = B_FALSE;
889 				break;
890 			case LINK_FLOWCTRL_RX:
891 				bgep->param_adv_pause = 1;
892 				bgep->param_adv_asym_pause = 1;
893 
894 				bgep->param_link_rx_pause = B_TRUE;
895 				bgep->param_link_tx_pause = B_FALSE;
896 				break;
897 			case LINK_FLOWCTRL_TX:
898 				bgep->param_adv_pause = 0;
899 				bgep->param_adv_asym_pause = 1;
900 
901 				bgep->param_link_rx_pause = B_FALSE;
902 				bgep->param_link_tx_pause = B_TRUE;
903 				break;
904 			case LINK_FLOWCTRL_BI:
905 				bgep->param_adv_pause = 1;
906 				bgep->param_adv_asym_pause = 0;
907 
908 				bgep->param_link_rx_pause = B_TRUE;
909 				bgep->param_link_tx_pause = B_TRUE;
910 				break;
911 			}
912 
913 			if (err == 0) {
914 				if (bge_reprogram(bgep) == IOC_INVAL)
915 					err = EINVAL;
916 			}
917 
918 			break;
919 		case MAC_PROP_PRIVATE:
920 			err = bge_set_priv_prop(bgep, pr_name, pr_valsize,
921 			    pr_val);
922 			break;
923 		default:
924 			err = ENOTSUP;
925 			break;
926 	}
927 	mutex_exit(bgep->genlock);
928 	return (err);
929 }
930 
931 /* ARGSUSED */
932 static int
933 bge_m_getprop(void *barg, const char *pr_name, mac_prop_id_t pr_num,
934     uint_t pr_valsize, void *pr_val)
935 {
936 	bge_t *bgep = barg;
937 	int err = 0;
938 
939 	switch (pr_num) {
940 		case MAC_PROP_DUPLEX:
941 			ASSERT(pr_valsize >= sizeof (link_duplex_t));
942 			bcopy(&bgep->param_link_duplex, pr_val,
943 			    sizeof (link_duplex_t));
944 			break;
945 		case MAC_PROP_SPEED: {
946 			uint64_t speed = bgep->param_link_speed * 1000000ull;
947 
948 			ASSERT(pr_valsize >= sizeof (speed));
949 			bcopy(&speed, pr_val, sizeof (speed));
950 			break;
951 		}
952 		case MAC_PROP_STATUS:
953 			ASSERT(pr_valsize >= sizeof (link_state_t));
954 			bcopy(&bgep->link_state, pr_val,
955 			    sizeof (link_state_t));
956 			break;
957 		case MAC_PROP_AUTONEG:
958 			*(uint8_t *)pr_val = bgep->param_adv_autoneg;
959 			break;
960 		case MAC_PROP_FLOWCTRL: {
961 			link_flowctrl_t fl;
962 
963 			ASSERT(pr_valsize >= sizeof (fl));
964 
965 			if (bgep->param_link_rx_pause &&
966 			    !bgep->param_link_tx_pause)
967 				fl = LINK_FLOWCTRL_RX;
968 
969 			if (!bgep->param_link_rx_pause &&
970 			    !bgep->param_link_tx_pause)
971 				fl = LINK_FLOWCTRL_NONE;
972 
973 			if (!bgep->param_link_rx_pause &&
974 			    bgep->param_link_tx_pause)
975 				fl = LINK_FLOWCTRL_TX;
976 
977 			if (bgep->param_link_rx_pause &&
978 			    bgep->param_link_tx_pause)
979 				fl = LINK_FLOWCTRL_BI;
980 			bcopy(&fl, pr_val, sizeof (fl));
981 			break;
982 		}
983 		case MAC_PROP_ADV_1000FDX_CAP:
984 			*(uint8_t *)pr_val = bgep->param_adv_1000fdx;
985 			break;
986 		case MAC_PROP_EN_1000FDX_CAP:
987 			*(uint8_t *)pr_val = bgep->param_en_1000fdx;
988 			break;
989 		case MAC_PROP_ADV_1000HDX_CAP:
990 			*(uint8_t *)pr_val = bgep->param_adv_1000hdx;
991 			break;
992 		case MAC_PROP_EN_1000HDX_CAP:
993 			*(uint8_t *)pr_val = bgep->param_en_1000hdx;
994 			break;
995 		case MAC_PROP_ADV_100FDX_CAP:
996 			*(uint8_t *)pr_val = bgep->param_adv_100fdx;
997 			break;
998 		case MAC_PROP_EN_100FDX_CAP:
999 			*(uint8_t *)pr_val = bgep->param_en_100fdx;
1000 			break;
1001 		case MAC_PROP_ADV_100HDX_CAP:
1002 			*(uint8_t *)pr_val = bgep->param_adv_100hdx;
1003 			break;
1004 		case MAC_PROP_EN_100HDX_CAP:
1005 			*(uint8_t *)pr_val = bgep->param_en_100hdx;
1006 			break;
1007 		case MAC_PROP_ADV_10FDX_CAP:
1008 			*(uint8_t *)pr_val = bgep->param_adv_10fdx;
1009 			break;
1010 		case MAC_PROP_EN_10FDX_CAP:
1011 			*(uint8_t *)pr_val = bgep->param_en_10fdx;
1012 			break;
1013 		case MAC_PROP_ADV_10HDX_CAP:
1014 			*(uint8_t *)pr_val = bgep->param_adv_10hdx;
1015 			break;
1016 		case MAC_PROP_EN_10HDX_CAP:
1017 			*(uint8_t *)pr_val = bgep->param_en_10hdx;
1018 			break;
1019 		case MAC_PROP_ADV_100T4_CAP:
1020 		case MAC_PROP_EN_100T4_CAP:
1021 			*(uint8_t *)pr_val = 0;
1022 			break;
1023 		case MAC_PROP_PRIVATE:
1024 			err = bge_get_priv_prop(bgep, pr_name,
1025 			    pr_valsize, pr_val);
1026 			return (err);
1027 		default:
1028 			return (ENOTSUP);
1029 	}
1030 	return (0);
1031 }
1032 
1033 static void
1034 bge_m_propinfo(void *barg, const char *pr_name, mac_prop_id_t pr_num,
1035     mac_prop_info_handle_t prh)
1036 {
1037 	bge_t *bgep = barg;
1038 	int flags = bgep->chipid.flags;
1039 
1040 	/*
1041 	 * By default permissions are read/write unless specified
1042 	 * otherwise by the driver.
1043 	 */
1044 
1045 	switch (pr_num) {
1046 	case MAC_PROP_DUPLEX:
1047 	case MAC_PROP_SPEED:
1048 	case MAC_PROP_STATUS:
1049 	case MAC_PROP_ADV_1000FDX_CAP:
1050 	case MAC_PROP_ADV_1000HDX_CAP:
1051 	case MAC_PROP_ADV_100FDX_CAP:
1052 	case MAC_PROP_ADV_100HDX_CAP:
1053 	case MAC_PROP_ADV_10FDX_CAP:
1054 	case MAC_PROP_ADV_10HDX_CAP:
1055 	case MAC_PROP_ADV_100T4_CAP:
1056 	case MAC_PROP_EN_100T4_CAP:
1057 		mac_prop_info_set_perm(prh, MAC_PROP_PERM_READ);
1058 		break;
1059 
1060 	case MAC_PROP_EN_1000FDX_CAP:
1061 	case MAC_PROP_EN_1000HDX_CAP:
1062 		if (DEVICE_5906_SERIES_CHIPSETS(bgep))
1063 			mac_prop_info_set_default_uint8(prh, 0);
1064 		else
1065 			mac_prop_info_set_default_uint8(prh, 1);
1066 		break;
1067 
1068 	case MAC_PROP_EN_100FDX_CAP:
1069 	case MAC_PROP_EN_100HDX_CAP:
1070 	case MAC_PROP_EN_10FDX_CAP:
1071 	case MAC_PROP_EN_10HDX_CAP:
1072 		mac_prop_info_set_default_uint8(prh,
1073 		    (flags & CHIP_FLAG_SERDES) ? 0 : 1);
1074 		break;
1075 
1076 	case MAC_PROP_AUTONEG:
1077 		mac_prop_info_set_default_uint8(prh, 1);
1078 		break;
1079 
1080 	case MAC_PROP_FLOWCTRL:
1081 		mac_prop_info_set_default_link_flowctrl(prh,
1082 		    LINK_FLOWCTRL_BI);
1083 		break;
1084 
1085 	case MAC_PROP_MTU:
1086 		mac_prop_info_set_range_uint32(prh, BGE_DEFAULT_MTU,
1087 		    (flags & CHIP_FLAG_NO_JUMBO) ?
1088 		    BGE_DEFAULT_MTU : BGE_MAXIMUM_MTU);
1089 		break;
1090 
1091 	case MAC_PROP_PRIVATE:
1092 		bge_priv_propinfo(pr_name, prh);
1093 		break;
1094 	}
1095 
1096 	mutex_enter(bgep->genlock);
1097 	if ((bgep->param_loop_mode != BGE_LOOP_NONE &&
1098 	    bge_param_locked(pr_num)) ||
1099 	    ((bgep->chipid.flags & CHIP_FLAG_SERDES) &&
1100 	    ((pr_num == MAC_PROP_EN_100FDX_CAP) ||
1101 	    (pr_num == MAC_PROP_EN_100HDX_CAP) ||
1102 	    (pr_num == MAC_PROP_EN_10FDX_CAP) ||
1103 	    (pr_num == MAC_PROP_EN_10HDX_CAP))) ||
1104 	    (DEVICE_5906_SERIES_CHIPSETS(bgep) &&
1105 	    ((pr_num == MAC_PROP_EN_1000FDX_CAP) ||
1106 	    (pr_num == MAC_PROP_EN_1000HDX_CAP))))
1107 		mac_prop_info_set_perm(prh, MAC_PROP_PERM_READ);
1108 	mutex_exit(bgep->genlock);
1109 }
1110 
1111 /* ARGSUSED */
1112 static int
1113 bge_set_priv_prop(bge_t *bgep, const char *pr_name, uint_t pr_valsize,
1114     const void *pr_val)
1115 {
1116 	int err = 0;
1117 	long result;
1118 
1119 	if (strcmp(pr_name, "_adv_pause_cap") == 0) {
1120 		(void) ddi_strtol(pr_val, (char **)NULL, 0, &result);
1121 		if (result > 1 || result < 0) {
1122 			err = EINVAL;
1123 		} else {
1124 			bgep->param_adv_pause = (uint32_t)result;
1125 			if (bge_reprogram(bgep) == IOC_INVAL)
1126 				err = EINVAL;
1127 		}
1128 		return (err);
1129 	}
1130 	if (strcmp(pr_name, "_adv_asym_pause_cap") == 0) {
1131 		(void) ddi_strtol(pr_val, (char **)NULL, 0, &result);
1132 		if (result > 1 || result < 0) {
1133 			err = EINVAL;
1134 		} else {
1135 			bgep->param_adv_asym_pause = (uint32_t)result;
1136 			if (bge_reprogram(bgep) == IOC_INVAL)
1137 				err = EINVAL;
1138 		}
1139 		return (err);
1140 	}
1141 	if (strcmp(pr_name, "_drain_max") == 0) {
1142 
1143 		/*
1144 		 * on the Tx side, we need to update the h/w register for
1145 		 * real packet transmission per packet. The drain_max parameter
1146 		 * is used to reduce the register access. This parameter
1147 		 * controls the max number of packets that we will hold before
1148 		 * updating the bge h/w to trigger h/w transmit. The bge
1149 		 * chipset usually has a max of 512 Tx descriptors, thus
1150 		 * the upper bound on drain_max is 512.
1151 		 */
1152 		if (pr_val == NULL) {
1153 			err = EINVAL;
1154 			return (err);
1155 		}
1156 		(void) ddi_strtol(pr_val, (char **)NULL, 0, &result);
1157 		if (result > 512 || result < 1)
1158 			err = EINVAL;
1159 		else {
1160 			bgep->param_drain_max = (uint32_t)result;
1161 			if (bge_reprogram(bgep) == IOC_INVAL)
1162 				err = EINVAL;
1163 		}
1164 		return (err);
1165 	}
1166 	if (strcmp(pr_name, "_msi_cnt") == 0) {
1167 
1168 		if (pr_val == NULL) {
1169 			err = EINVAL;
1170 			return (err);
1171 		}
1172 		(void) ddi_strtol(pr_val, (char **)NULL, 0, &result);
1173 		if (result > 7 || result < 0)
1174 			err = EINVAL;
1175 		else {
1176 			bgep->param_msi_cnt = (uint32_t)result;
1177 			if (bge_reprogram(bgep) == IOC_INVAL)
1178 				err = EINVAL;
1179 		}
1180 		return (err);
1181 	}
1182 	if (strcmp(pr_name, "_rx_intr_coalesce_blank_time") == 0) {
1183 		if (ddi_strtol(pr_val, (char **)NULL, 0, &result) != 0)
1184 			return (EINVAL);
1185 		if (result < 0)
1186 			err = EINVAL;
1187 		else {
1188 			bgep->chipid.rx_ticks_norm = (uint32_t)result;
1189 			bge_chip_coalesce_update(bgep);
1190 		}
1191 		return (err);
1192 	}
1193 
1194 	if (strcmp(pr_name, "_rx_intr_coalesce_pkt_cnt") == 0) {
1195 		if (ddi_strtol(pr_val, (char **)NULL, 0, &result) != 0)
1196 			return (EINVAL);
1197 
1198 		if (result < 0)
1199 			err = EINVAL;
1200 		else {
1201 			bgep->chipid.rx_count_norm = (uint32_t)result;
1202 			bge_chip_coalesce_update(bgep);
1203 		}
1204 		return (err);
1205 	}
1206 	if (strcmp(pr_name, "_tx_intr_coalesce_blank_time") == 0) {
1207 		if (ddi_strtol(pr_val, (char **)NULL, 0, &result) != 0)
1208 			return (EINVAL);
1209 		if (result < 0)
1210 			err = EINVAL;
1211 		else {
1212 			bgep->chipid.tx_ticks_norm = (uint32_t)result;
1213 			bge_chip_coalesce_update(bgep);
1214 		}
1215 		return (err);
1216 	}
1217 
1218 	if (strcmp(pr_name, "_tx_intr_coalesce_pkt_cnt") == 0) {
1219 		if (ddi_strtol(pr_val, (char **)NULL, 0, &result) != 0)
1220 			return (EINVAL);
1221 
1222 		if (result < 0)
1223 			err = EINVAL;
1224 		else {
1225 			bgep->chipid.tx_count_norm = (uint32_t)result;
1226 			bge_chip_coalesce_update(bgep);
1227 		}
1228 		return (err);
1229 	}
1230 	return (ENOTSUP);
1231 }
1232 
1233 static int
1234 bge_get_priv_prop(bge_t *bge, const char *pr_name, uint_t pr_valsize,
1235     void *pr_val)
1236 {
1237 	int value;
1238 
1239 	if (strcmp(pr_name, "_adv_pause_cap") == 0)
1240 		value = bge->param_adv_pause;
1241 	else if (strcmp(pr_name, "_adv_asym_pause_cap") == 0)
1242 		value = bge->param_adv_asym_pause;
1243 	else if (strcmp(pr_name, "_drain_max") == 0)
1244 		value = bge->param_drain_max;
1245 	else if (strcmp(pr_name, "_msi_cnt") == 0)
1246 		value = bge->param_msi_cnt;
1247 	else if (strcmp(pr_name, "_rx_intr_coalesce_blank_time") == 0)
1248 		value = bge->chipid.rx_ticks_norm;
1249 	else if (strcmp(pr_name, "_tx_intr_coalesce_blank_time") == 0)
1250 		value = bge->chipid.tx_ticks_norm;
1251 	else if (strcmp(pr_name, "_rx_intr_coalesce_pkt_cnt") == 0)
1252 		value = bge->chipid.rx_count_norm;
1253 	else if (strcmp(pr_name, "_tx_intr_coalesce_pkt_cnt") == 0)
1254 		value = bge->chipid.tx_count_norm;
1255 	else
1256 		return (ENOTSUP);
1257 
1258 	(void) snprintf(pr_val, pr_valsize, "%d", value);
1259 	return (0);
1260 }
1261 
1262 static void
1263 bge_priv_propinfo(const char *pr_name, mac_prop_info_handle_t mph)
1264 {
1265 	char valstr[64];
1266 	int value;
1267 
1268 	if (strcmp(pr_name, "_adv_pause_cap") == 0)
1269 		value = 1;
1270 	else if (strcmp(pr_name, "_adv_asym_pause_cap") == 0)
1271 		value = 1;
1272 	else if (strcmp(pr_name, "_drain_max") == 0)
1273 		value = 64;
1274 	else if (strcmp(pr_name, "_msi_cnt") == 0)
1275 		value = 0;
1276 	else if (strcmp(pr_name, "_rx_intr_coalesce_blank_time") == 0)
1277 		value = bge_rx_ticks_norm;
1278 	else if (strcmp(pr_name, "_tx_intr_coalesce_blank_time") == 0)
1279 		value = bge_tx_ticks_norm;
1280 	else if (strcmp(pr_name, "_rx_intr_coalesce_pkt_cnt") == 0)
1281 		value = bge_rx_count_norm;
1282 	else if (strcmp(pr_name, "_tx_intr_coalesce_pkt_cnt") == 0)
1283 		value = bge_tx_count_norm;
1284 	else
1285 		return;
1286 
1287 	(void) snprintf(valstr, sizeof (valstr), "%d", value);
1288 	mac_prop_info_set_default_str(mph, valstr);
1289 }
1290 
1291 
1292 static int
1293 bge_m_unicst(void * arg, const uint8_t * mac_addr)
1294 {
1295 	bge_t *bgep = arg;
1296 	int i;
1297 
1298 	/* XXX sets the mac address for all ring slots... OK? */
1299 	for (i = 0; i < MIN(bgep->chipid.rx_rings, MAC_ADDRESS_REGS_MAX); i++)
1300 		bge_addmac(&bgep->recv[i], mac_addr);
1301 
1302 	return (0);
1303 }
1304 
1305 
1306 /*
1307  * Compute the index of the required bit in the multicast hash map.
1308  * This must mirror the way the hardware actually does it!
1309  * See Broadcom document 570X-PG102-R page 125.
1310  */
1311 static uint32_t
1312 bge_hash_index(const uint8_t *mca)
1313 {
1314 	uint32_t hash;
1315 
1316 	CRC32(hash, mca, ETHERADDRL, -1U, crc32_table);
1317 
1318 	return (hash);
1319 }
1320 
1321 /*
1322  *	bge_m_multicst_add() -- enable/disable a multicast address
1323  */
1324 static int
1325 bge_m_multicst(void *arg, boolean_t add, const uint8_t *mca)
1326 {
1327 	bge_t *bgep = arg;		/* private device info	*/
1328 	uint32_t hash;
1329 	uint32_t index;
1330 	uint32_t word;
1331 	uint32_t bit;
1332 	uint8_t *refp;
1333 
1334 	BGE_TRACE(("bge_m_multicst($%p, %s, %s)", arg,
1335 	    (add) ? "add" : "remove", ether_sprintf((void *)mca)));
1336 
1337 	/*
1338 	 * Precalculate all required masks, pointers etc ...
1339 	 */
1340 	hash = bge_hash_index(mca);
1341 	index = hash % BGE_HASH_TABLE_SIZE;
1342 	word = index/32u;
1343 	bit = 1 << (index % 32u);
1344 	refp = &bgep->mcast_refs[index];
1345 
1346 	BGE_DEBUG(("bge_m_multicst: hash 0x%x index %d (%d:0x%x) = %d",
1347 	    hash, index, word, bit, *refp));
1348 
1349 	/*
1350 	 * We must set the appropriate bit in the hash map (and the
1351 	 * corresponding h/w register) when the refcount goes from 0
1352 	 * to >0, and clear it when the last ref goes away (refcount
1353 	 * goes from >0 back to 0).  If we change the hash map, we
1354 	 * must also update the chip's hardware map registers.
1355 	 */
1356 	mutex_enter(bgep->genlock);
1357 	if (!(bgep->progress & PROGRESS_INTR)) {
1358 		/* can happen during autorecovery */
1359 		ddi_fm_service_impact(bgep->devinfo, DDI_SERVICE_DEGRADED);
1360 		mutex_exit(bgep->genlock);
1361 		return (EIO);
1362 	}
1363 	if (add) {
1364 		if ((*refp)++ == 0) {
1365 			bgep->mcast_hash[word] |= bit;
1366 #ifdef BGE_IPMI_ASF
1367 			if (bge_chip_sync(bgep, B_TRUE) == DDI_FAILURE) {
1368 #else
1369 			if (bge_chip_sync(bgep) == DDI_FAILURE) {
1370 #endif
1371 				(void) bge_check_acc_handle(bgep,
1372 				    bgep->cfg_handle);
1373 				(void) bge_check_acc_handle(bgep,
1374 				    bgep->io_handle);
1375 				ddi_fm_service_impact(bgep->devinfo,
1376 				    DDI_SERVICE_DEGRADED);
1377 				mutex_exit(bgep->genlock);
1378 				return (EIO);
1379 			}
1380 		}
1381 	} else {
1382 		if (--(*refp) == 0) {
1383 			bgep->mcast_hash[word] &= ~bit;
1384 #ifdef BGE_IPMI_ASF
1385 			if (bge_chip_sync(bgep, B_TRUE) == DDI_FAILURE) {
1386 #else
1387 			if (bge_chip_sync(bgep) == DDI_FAILURE) {
1388 #endif
1389 				(void) bge_check_acc_handle(bgep,
1390 				    bgep->cfg_handle);
1391 				(void) bge_check_acc_handle(bgep,
1392 				    bgep->io_handle);
1393 				ddi_fm_service_impact(bgep->devinfo,
1394 				    DDI_SERVICE_DEGRADED);
1395 				mutex_exit(bgep->genlock);
1396 				return (EIO);
1397 			}
1398 		}
1399 	}
1400 	BGE_DEBUG(("bge_m_multicst($%p) done", arg));
1401 	if (bge_check_acc_handle(bgep, bgep->cfg_handle) != DDI_FM_OK) {
1402 		ddi_fm_service_impact(bgep->devinfo, DDI_SERVICE_DEGRADED);
1403 		mutex_exit(bgep->genlock);
1404 		return (EIO);
1405 	}
1406 	if (bge_check_acc_handle(bgep, bgep->io_handle) != DDI_FM_OK) {
1407 		ddi_fm_service_impact(bgep->devinfo, DDI_SERVICE_DEGRADED);
1408 		mutex_exit(bgep->genlock);
1409 		return (EIO);
1410 	}
1411 	mutex_exit(bgep->genlock);
1412 
1413 	return (0);
1414 }
1415 
1416 /*
1417  * bge_m_promisc() -- set or reset promiscuous mode on the board
1418  *
1419  *	Program the hardware to enable/disable promiscuous and/or
1420  *	receive-all-multicast modes.
1421  */
1422 static int
1423 bge_m_promisc(void *arg, boolean_t on)
1424 {
1425 	bge_t *bgep = arg;
1426 
1427 	BGE_TRACE(("bge_m_promisc_set($%p, %d)", arg, on));
1428 
1429 	/*
1430 	 * Store MAC layer specified mode and pass to chip layer to update h/w
1431 	 */
1432 	mutex_enter(bgep->genlock);
1433 	if (!(bgep->progress & PROGRESS_INTR)) {
1434 		/* can happen during autorecovery */
1435 		ddi_fm_service_impact(bgep->devinfo, DDI_SERVICE_DEGRADED);
1436 		mutex_exit(bgep->genlock);
1437 		return (EIO);
1438 	}
1439 	bgep->promisc = on;
1440 #ifdef BGE_IPMI_ASF
1441 	if (bge_chip_sync(bgep, B_TRUE) == DDI_FAILURE) {
1442 #else
1443 	if (bge_chip_sync(bgep) == DDI_FAILURE) {
1444 #endif
1445 		(void) bge_check_acc_handle(bgep, bgep->cfg_handle);
1446 		(void) bge_check_acc_handle(bgep, bgep->io_handle);
1447 		ddi_fm_service_impact(bgep->devinfo, DDI_SERVICE_DEGRADED);
1448 		mutex_exit(bgep->genlock);
1449 		return (EIO);
1450 	}
1451 	BGE_DEBUG(("bge_m_promisc_set($%p) done", arg));
1452 	if (bge_check_acc_handle(bgep, bgep->cfg_handle) != DDI_FM_OK) {
1453 		ddi_fm_service_impact(bgep->devinfo, DDI_SERVICE_DEGRADED);
1454 		mutex_exit(bgep->genlock);
1455 		return (EIO);
1456 	}
1457 	if (bge_check_acc_handle(bgep, bgep->io_handle) != DDI_FM_OK) {
1458 		ddi_fm_service_impact(bgep->devinfo, DDI_SERVICE_DEGRADED);
1459 		mutex_exit(bgep->genlock);
1460 		return (EIO);
1461 	}
1462 	mutex_exit(bgep->genlock);
1463 	return (0);
1464 }
1465 
1466 #ifdef MC_RESOURCES
1467 
1468 static void
1469 bge_blank(void * arg, time_t tick_cnt, uint_t pkt_cnt)
1470 {
1471 	(void)arg;
1472 	(void)tick_cnt;
1473 	(void)pkt_cnt;
1474 }
1475 
1476 static void
1477 bge_m_resources(void * arg)
1478 {
1479 	bge_t *bgep = arg;
1480 	mac_rx_fifo_t mrf;
1481 	int i;
1482 
1483 	mrf.mrf_type              = MAC_RX_FIFO;
1484 	mrf.mrf_blank             = bge_blank;
1485 	mrf.mrf_arg               = (void *)bgep;
1486 	mrf.mrf_normal_blank_time = 25;
1487 	mrf.mrf_normal_pkt_count  = 8;
1488 
1489 	for (i = 0; i < BGE_RECV_RINGS_MAX; i++) {
1490 		bgep->macRxResourceHandles[i] =
1491 		    mac_resource_add(bgep->mh, (mac_resource_t *)&mrf);
1492 	}
1493 }
1494 
1495 #endif /* MC_RESOURCES */
1496 
1497 /*
1498  * Find the slot for the specified unicast address
1499  */
1500 int
1501 bge_unicst_find(bge_t *bgep, const uint8_t *mac_addr)
1502 {
1503 	int slot;
1504 
1505 	ASSERT(mutex_owned(bgep->genlock));
1506 
1507 	for (slot = 0; slot < bgep->unicst_addr_total; slot++) {
1508 		if (bcmp(bgep->curr_addr[slot].addr, mac_addr, ETHERADDRL) == 0)
1509 			return (slot);
1510 	}
1511 
1512 	return (-1);
1513 }
1514 
1515 /*
1516  * Programs the classifier to start steering packets matching 'mac_addr' to the
1517  * specified ring 'arg'.
1518  */
1519 static int
1520 bge_addmac(void *arg, const uint8_t * mac_addr)
1521 {
1522 	recv_ring_t *rrp = (recv_ring_t *)arg;
1523 	bge_t		*bgep = rrp->bgep;
1524 	bge_recv_rule_t	*rulep = bgep->recv_rules;
1525 	bge_rule_info_t	*rinfop = NULL;
1526 	uint8_t		ring = (uint8_t)(rrp - bgep->recv) + 1;
1527 	int		i;
1528 	uint16_t	tmp16;
1529 	uint32_t	tmp32;
1530 	int		slot;
1531 	int		err;
1532 
1533 	mutex_enter(bgep->genlock);
1534 	if (bgep->unicst_addr_avail == 0) {
1535 		mutex_exit(bgep->genlock);
1536 		return (ENOSPC);
1537 	}
1538 
1539 	/*
1540 	 * First add the unicast address to a available slot.
1541 	 */
1542 	slot = bge_unicst_find(bgep, mac_addr);
1543 	ASSERT(slot == -1);
1544 
1545 	for (slot = 0; slot < bgep->unicst_addr_total; slot++) {
1546 		if (!bgep->curr_addr[slot].set) {
1547 			bgep->curr_addr[slot].set = B_TRUE;
1548 			break;
1549 		}
1550 	}
1551 
1552 	ASSERT(slot < bgep->unicst_addr_total);
1553 	bgep->unicst_addr_avail--;
1554 	mutex_exit(bgep->genlock);
1555 
1556 	if ((err = bge_unicst_set(bgep, mac_addr, slot)) != 0)
1557 		goto fail;
1558 
1559 	/* A rule is already here. Deny this.  */
1560 	if (rrp->mac_addr_rule != NULL) {
1561 		err = ether_cmp(mac_addr, rrp->mac_addr_val) ? EEXIST : EBUSY;
1562 		goto fail;
1563 	}
1564 
1565 	/*
1566 	 * Allocate a bge_rule_info_t to keep track of which rule slots
1567 	 * are being used.
1568 	 */
1569 	rinfop = kmem_zalloc(sizeof (bge_rule_info_t), KM_NOSLEEP);
1570 	if (rinfop == NULL) {
1571 		err = ENOMEM;
1572 		goto fail;
1573 	}
1574 
1575 	/*
1576 	 * Look for the starting slot to place the rules.
1577 	 * The two slots we reserve must be contiguous.
1578 	 */
1579 	for (i = 0; i + 1 < RECV_RULES_NUM_MAX; i++)
1580 		if ((rulep[i].control & RECV_RULE_CTL_ENABLE) == 0 &&
1581 		    (rulep[i+1].control & RECV_RULE_CTL_ENABLE) == 0)
1582 			break;
1583 
1584 	ASSERT(i + 1 < RECV_RULES_NUM_MAX);
1585 
1586 	bcopy(mac_addr, &tmp32, sizeof (tmp32));
1587 	rulep[i].mask_value = ntohl(tmp32);
1588 	rulep[i].control = RULE_DEST_MAC_1(ring) | RECV_RULE_CTL_AND;
1589 	bge_reg_put32(bgep, RECV_RULE_MASK_REG(i), rulep[i].mask_value);
1590 	bge_reg_put32(bgep, RECV_RULE_CONTROL_REG(i), rulep[i].control);
1591 
1592 	bcopy(mac_addr + 4, &tmp16, sizeof (tmp16));
1593 	rulep[i+1].mask_value = 0xffff0000 | ntohs(tmp16);
1594 	rulep[i+1].control = RULE_DEST_MAC_2(ring);
1595 	bge_reg_put32(bgep, RECV_RULE_MASK_REG(i+1), rulep[i+1].mask_value);
1596 	bge_reg_put32(bgep, RECV_RULE_CONTROL_REG(i+1), rulep[i+1].control);
1597 	rinfop->start = i;
1598 	rinfop->count = 2;
1599 
1600 	rrp->mac_addr_rule = rinfop;
1601 	bcopy(mac_addr, rrp->mac_addr_val, ETHERADDRL);
1602 
1603 	return (0);
1604 
1605 fail:
1606 	/* Clear the address just set */
1607 	(void) bge_unicst_set(bgep, zero_addr, slot);
1608 	mutex_enter(bgep->genlock);
1609 	bgep->curr_addr[slot].set = B_FALSE;
1610 	bgep->unicst_addr_avail++;
1611 	mutex_exit(bgep->genlock);
1612 
1613 	return (err);
1614 }
1615 
1616 /*
1617  * Stop classifying packets matching the MAC address to the specified ring.
1618  */
1619 static int
1620 bge_remmac(void *arg, const uint8_t *mac_addr)
1621 {
1622 	recv_ring_t	*rrp = (recv_ring_t *)arg;
1623 	bge_t		*bgep = rrp->bgep;
1624 	bge_recv_rule_t *rulep = bgep->recv_rules;
1625 	bge_rule_info_t *rinfop = rrp->mac_addr_rule;
1626 	int		start;
1627 	int		slot;
1628 	int		err;
1629 
1630 	/*
1631 	 * Remove the MAC address from its slot.
1632 	 */
1633 	mutex_enter(bgep->genlock);
1634 	slot = bge_unicst_find(bgep, mac_addr);
1635 	if (slot == -1) {
1636 		mutex_exit(bgep->genlock);
1637 		return (EINVAL);
1638 	}
1639 
1640 	ASSERT(bgep->curr_addr[slot].set);
1641 	mutex_exit(bgep->genlock);
1642 
1643 	if ((err = bge_unicst_set(bgep, zero_addr, slot)) != 0)
1644 		return (err);
1645 
1646 	if (rinfop == NULL || ether_cmp(mac_addr, rrp->mac_addr_val) != 0)
1647 		return (EINVAL);
1648 
1649 	start = rinfop->start;
1650 	rulep[start].mask_value = 0;
1651 	rulep[start].control = 0;
1652 	bge_reg_put32(bgep, RECV_RULE_MASK_REG(start), rulep[start].mask_value);
1653 	bge_reg_put32(bgep, RECV_RULE_CONTROL_REG(start), rulep[start].control);
1654 	start++;
1655 	rulep[start].mask_value = 0;
1656 	rulep[start].control = 0;
1657 	bge_reg_put32(bgep, RECV_RULE_MASK_REG(start), rulep[start].mask_value);
1658 	bge_reg_put32(bgep, RECV_RULE_CONTROL_REG(start), rulep[start].control);
1659 
1660 	kmem_free(rinfop, sizeof (bge_rule_info_t));
1661 	rrp->mac_addr_rule = NULL;
1662 	bzero(rrp->mac_addr_val, ETHERADDRL);
1663 
1664 	mutex_enter(bgep->genlock);
1665 	bgep->curr_addr[slot].set = B_FALSE;
1666 	bgep->unicst_addr_avail++;
1667 	mutex_exit(bgep->genlock);
1668 
1669 	return (0);
1670 }
1671 
1672 
1673 static int
1674 bge_flag_intr_enable(mac_ring_driver_t ih)
1675 {
1676 	recv_ring_t *rrp = (recv_ring_t *)ih;
1677 	bge_t *bgep = rrp->bgep;
1678 
1679 	mutex_enter(bgep->genlock);
1680 	rrp->poll_flag = 0;
1681 	mutex_exit(bgep->genlock);
1682 
1683 	return (0);
1684 }
1685 
1686 static int
1687 bge_flag_intr_disable(mac_ring_driver_t ih)
1688 {
1689 	recv_ring_t *rrp = (recv_ring_t *)ih;
1690 	bge_t *bgep = rrp->bgep;
1691 
1692 	mutex_enter(bgep->genlock);
1693 	rrp->poll_flag = 1;
1694 	mutex_exit(bgep->genlock);
1695 
1696 	return (0);
1697 }
1698 
1699 static int
1700 bge_ring_start(mac_ring_driver_t rh, uint64_t mr_gen_num)
1701 {
1702 	recv_ring_t *rx_ring;
1703 
1704 	rx_ring = (recv_ring_t *)rh;
1705 	mutex_enter(rx_ring->rx_lock);
1706 	rx_ring->ring_gen_num = mr_gen_num;
1707 	mutex_exit(rx_ring->rx_lock);
1708 	return (0);
1709 }
1710 
1711 
1712 /*
1713  * Callback funtion for MAC layer to register all rings
1714  * for given ring_group, noted by rg_index.
1715  */
1716 void
1717 bge_fill_ring(void *arg, mac_ring_type_t rtype, const int rg_index,
1718     const int index, mac_ring_info_t *infop, mac_ring_handle_t rh)
1719 {
1720 	bge_t *bgep = arg;
1721 	mac_intr_t *mintr;
1722 
1723 	switch (rtype) {
1724 	case MAC_RING_TYPE_RX: {
1725 		recv_ring_t *rx_ring;
1726 		ASSERT(rg_index >= 0 && rg_index < MIN(bgep->chipid.rx_rings,
1727 		    MAC_ADDRESS_REGS_MAX) && index == 0);
1728 
1729 		rx_ring = &bgep->recv[rg_index];
1730 		rx_ring->ring_handle = rh;
1731 
1732 		infop->mri_driver = (mac_ring_driver_t)rx_ring;
1733 		infop->mri_start = bge_ring_start;
1734 		infop->mri_stop = NULL;
1735 		infop->mri_poll = bge_poll_ring;
1736 		infop->mri_stat = bge_rx_ring_stat;
1737 
1738 		mintr = &infop->mri_intr;
1739 		mintr->mi_enable = (mac_intr_enable_t)bge_flag_intr_enable;
1740 		mintr->mi_disable = (mac_intr_disable_t)bge_flag_intr_disable;
1741 
1742 		break;
1743 	}
1744 	case MAC_RING_TYPE_TX:
1745 	default:
1746 		ASSERT(0);
1747 		break;
1748 	}
1749 }
1750 
1751 /*
1752  * Fill infop passed as argument
1753  * fill in respective ring_group info
1754  * Each group has a single ring in it. We keep it simple
1755  * and use the same internal handle for rings and groups.
1756  */
1757 void
1758 bge_fill_group(void *arg, mac_ring_type_t rtype, const int rg_index,
1759     mac_group_info_t * infop, mac_group_handle_t gh)
1760 {
1761 	bge_t *bgep = arg;
1762 
1763 	switch (rtype) {
1764 	case MAC_RING_TYPE_RX: {
1765 		recv_ring_t *rx_ring;
1766 
1767 		ASSERT(rg_index >= 0 && rg_index < MIN(bgep->chipid.rx_rings,
1768 		    MAC_ADDRESS_REGS_MAX));
1769 		rx_ring = &bgep->recv[rg_index];
1770 		rx_ring->ring_group_handle = gh;
1771 
1772 		infop->mgi_driver = (mac_group_driver_t)rx_ring;
1773 		infop->mgi_start = NULL;
1774 		infop->mgi_stop = NULL;
1775 		infop->mgi_addmac = bge_addmac;
1776 		infop->mgi_remmac = bge_remmac;
1777 		infop->mgi_count = 1;
1778 		break;
1779 	}
1780 	case MAC_RING_TYPE_TX:
1781 	default:
1782 		ASSERT(0);
1783 		break;
1784 	}
1785 }
1786 
1787 
1788 /*ARGSUSED*/
1789 static boolean_t
1790 bge_m_getcapab(void *arg, mac_capab_t cap, void *cap_data)
1791 {
1792 	bge_t *bgep = arg;
1793 	mac_capab_rings_t *cap_rings;
1794 
1795 	switch (cap) {
1796 	case MAC_CAPAB_HCKSUM: {
1797 		uint32_t *txflags = cap_data;
1798 
1799 		*txflags = HCKSUM_INET_FULL_V4 | HCKSUM_IPHDRCKSUM;
1800 		break;
1801 	}
1802 
1803 	case MAC_CAPAB_RINGS:
1804 		cap_rings = (mac_capab_rings_t *)cap_data;
1805 
1806 		/* Temporarily disable multiple tx rings. */
1807 		if (cap_rings->mr_type != MAC_RING_TYPE_RX)
1808 			return (B_FALSE);
1809 
1810 		cap_rings->mr_group_type = MAC_GROUP_TYPE_STATIC;
1811 		cap_rings->mr_rnum =
1812 		cap_rings->mr_gnum =
1813 		    MIN(bgep->chipid.rx_rings, MAC_ADDRESS_REGS_MAX);
1814 		cap_rings->mr_rget = bge_fill_ring;
1815 		cap_rings->mr_gget = bge_fill_group;
1816 		break;
1817 
1818 	default:
1819 		return (B_FALSE);
1820 	}
1821 	return (B_TRUE);
1822 }
1823 
1824 #ifdef NOT_SUPPORTED_XXX
1825 
1826 /*
1827  * Loopback ioctl code
1828  */
1829 
1830 static lb_property_t loopmodes[] = {
1831 	{ normal,	"normal",	BGE_LOOP_NONE		},
1832 	{ external,	"1000Mbps",	BGE_LOOP_EXTERNAL_1000	},
1833 	{ external,	"100Mbps",	BGE_LOOP_EXTERNAL_100	},
1834 	{ external,	"10Mbps",	BGE_LOOP_EXTERNAL_10	},
1835 	{ internal,	"PHY",		BGE_LOOP_INTERNAL_PHY	},
1836 	{ internal,	"MAC",		BGE_LOOP_INTERNAL_MAC	}
1837 };
1838 
1839 static enum ioc_reply
1840 bge_set_loop_mode(bge_t *bgep, uint32_t mode)
1841 {
1842 	/*
1843 	 * If the mode isn't being changed, there's nothing to do ...
1844 	 */
1845 	if (mode == bgep->param_loop_mode)
1846 		return (IOC_ACK);
1847 
1848 	/*
1849 	 * Validate the requested mode and prepare a suitable message
1850 	 * to explain the link down/up cycle that the change will
1851 	 * probably induce ...
1852 	 */
1853 	switch (mode) {
1854 	default:
1855 		return (IOC_INVAL);
1856 
1857 	case BGE_LOOP_NONE:
1858 	case BGE_LOOP_EXTERNAL_1000:
1859 	case BGE_LOOP_EXTERNAL_100:
1860 	case BGE_LOOP_EXTERNAL_10:
1861 	case BGE_LOOP_INTERNAL_PHY:
1862 	case BGE_LOOP_INTERNAL_MAC:
1863 		break;
1864 	}
1865 
1866 	/*
1867 	 * All OK; tell the caller to reprogram
1868 	 * the PHY and/or MAC for the new mode ...
1869 	 */
1870 	bgep->param_loop_mode = mode;
1871 	return (IOC_RESTART_ACK);
1872 }
1873 
1874 static enum ioc_reply
1875 bge_loop_ioctl(bge_t *bgep, queue_t *wq, mblk_t *mp, struct iocblk *iocp)
1876 {
1877 	lb_info_sz_t *lbsp;
1878 	lb_property_t *lbpp;
1879 	uint32_t *lbmp;
1880 	int cmd;
1881 
1882 	_NOTE(ARGUNUSED(wq))
1883 
1884 	/*
1885 	 * Validate format of ioctl
1886 	 */
1887 	if (mp->b_cont == NULL)
1888 		return (IOC_INVAL);
1889 
1890 	cmd = iocp->ioc_cmd;
1891 	switch (cmd) {
1892 	default:
1893 		/* NOTREACHED */
1894 		bge_error(bgep, "bge_loop_ioctl: invalid cmd 0x%x", cmd);
1895 		return (IOC_INVAL);
1896 
1897 	case LB_GET_INFO_SIZE:
1898 		if (iocp->ioc_count != sizeof (lb_info_sz_t))
1899 			return (IOC_INVAL);
1900 		lbsp = (void *)mp->b_cont->b_rptr;
1901 		*lbsp = sizeof (loopmodes);
1902 		return (IOC_REPLY);
1903 
1904 	case LB_GET_INFO:
1905 		if (iocp->ioc_count != sizeof (loopmodes))
1906 			return (IOC_INVAL);
1907 		lbpp = (void *)mp->b_cont->b_rptr;
1908 		bcopy(loopmodes, lbpp, sizeof (loopmodes));
1909 		return (IOC_REPLY);
1910 
1911 	case LB_GET_MODE:
1912 		if (iocp->ioc_count != sizeof (uint32_t))
1913 			return (IOC_INVAL);
1914 		lbmp = (void *)mp->b_cont->b_rptr;
1915 		*lbmp = bgep->param_loop_mode;
1916 		return (IOC_REPLY);
1917 
1918 	case LB_SET_MODE:
1919 		if (iocp->ioc_count != sizeof (uint32_t))
1920 			return (IOC_INVAL);
1921 		lbmp = (void *)mp->b_cont->b_rptr;
1922 		return (bge_set_loop_mode(bgep, *lbmp));
1923 	}
1924 }
1925 
1926 #endif /* NOT_SUPPORTED_XXX */
1927 
1928 /*
1929  * Specific bge IOCTLs, the gld module handles the generic ones.
1930  */
1931 static void
1932 bge_m_ioctl(void *arg, queue_t *wq, mblk_t *mp)
1933 {
1934 	bge_t *bgep = arg;
1935 	struct iocblk *iocp;
1936 	enum ioc_reply status;
1937 	boolean_t need_privilege;
1938 	int err;
1939 	int cmd;
1940 
1941 	/*
1942 	 * Validate the command before bothering with the mutex ...
1943 	 */
1944 	iocp = (void *)mp->b_rptr;
1945 	iocp->ioc_error = 0;
1946 	need_privilege = B_TRUE;
1947 	cmd = iocp->ioc_cmd;
1948 	switch (cmd) {
1949 	default:
1950 		miocnak(wq, mp, 0, EINVAL);
1951 		return;
1952 
1953 	case BGE_MII_READ:
1954 	case BGE_MII_WRITE:
1955 	case BGE_SEE_READ:
1956 	case BGE_SEE_WRITE:
1957 	case BGE_FLASH_READ:
1958 	case BGE_FLASH_WRITE:
1959 	case BGE_DIAG:
1960 	case BGE_PEEK:
1961 	case BGE_POKE:
1962 	case BGE_PHY_RESET:
1963 	case BGE_SOFT_RESET:
1964 	case BGE_HARD_RESET:
1965 		break;
1966 
1967 #ifdef NOT_SUPPORTED_XXX
1968 	case LB_GET_INFO_SIZE:
1969 	case LB_GET_INFO:
1970 	case LB_GET_MODE:
1971 		need_privilege = B_FALSE;
1972 		/* FALLTHRU */
1973 	case LB_SET_MODE:
1974 		break;
1975 #endif
1976 
1977 	}
1978 
1979 	if (need_privilege) {
1980 		/*
1981 		 * Check for specific net_config privilege on Solaris 10+.
1982 		 */
1983 		err = secpolicy_net_config(iocp->ioc_cr, B_FALSE);
1984 		if (err != 0) {
1985 			miocnak(wq, mp, 0, err);
1986 			return;
1987 		}
1988 	}
1989 
1990 	mutex_enter(bgep->genlock);
1991 	if (!(bgep->progress & PROGRESS_INTR)) {
1992 		/* can happen during autorecovery */
1993 		mutex_exit(bgep->genlock);
1994 		miocnak(wq, mp, 0, EIO);
1995 		return;
1996 	}
1997 
1998 	switch (cmd) {
1999 	default:
2000 		_NOTE(NOTREACHED)
2001 		status = IOC_INVAL;
2002 		break;
2003 
2004 	case BGE_MII_READ:
2005 	case BGE_MII_WRITE:
2006 	case BGE_SEE_READ:
2007 	case BGE_SEE_WRITE:
2008 	case BGE_FLASH_READ:
2009 	case BGE_FLASH_WRITE:
2010 	case BGE_DIAG:
2011 	case BGE_PEEK:
2012 	case BGE_POKE:
2013 	case BGE_PHY_RESET:
2014 	case BGE_SOFT_RESET:
2015 	case BGE_HARD_RESET:
2016 		status = bge_chip_ioctl(bgep, wq, mp, iocp);
2017 		break;
2018 
2019 #ifdef NOT_SUPPORTED_XXX
2020 	case LB_GET_INFO_SIZE:
2021 	case LB_GET_INFO:
2022 	case LB_GET_MODE:
2023 	case LB_SET_MODE:
2024 		status = bge_loop_ioctl(bgep, wq, mp, iocp);
2025 		break;
2026 #endif
2027 
2028 	}
2029 
2030 	/*
2031 	 * Do we need to reprogram the PHY and/or the MAC?
2032 	 * Do it now, while we still have the mutex.
2033 	 *
2034 	 * Note: update the PHY first, 'cos it controls the
2035 	 * speed/duplex parameters that the MAC code uses.
2036 	 */
2037 	switch (status) {
2038 	case IOC_RESTART_REPLY:
2039 	case IOC_RESTART_ACK:
2040 		if (bge_reprogram(bgep) == IOC_INVAL)
2041 			status = IOC_INVAL;
2042 		break;
2043 	}
2044 
2045 	if (bge_check_acc_handle(bgep, bgep->cfg_handle) != DDI_FM_OK) {
2046 		ddi_fm_service_impact(bgep->devinfo, DDI_SERVICE_DEGRADED);
2047 		status = IOC_INVAL;
2048 	}
2049 	if (bge_check_acc_handle(bgep, bgep->io_handle) != DDI_FM_OK) {
2050 		ddi_fm_service_impact(bgep->devinfo, DDI_SERVICE_DEGRADED);
2051 		status = IOC_INVAL;
2052 	}
2053 	mutex_exit(bgep->genlock);
2054 
2055 	/*
2056 	 * Finally, decide how to reply
2057 	 */
2058 	switch (status) {
2059 	default:
2060 	case IOC_INVAL:
2061 		/*
2062 		 * Error, reply with a NAK and EINVAL or the specified error
2063 		 */
2064 		miocnak(wq, mp, 0, iocp->ioc_error == 0 ?
2065 		    EINVAL : iocp->ioc_error);
2066 		break;
2067 
2068 	case IOC_DONE:
2069 		/*
2070 		 * OK, reply already sent
2071 		 */
2072 		break;
2073 
2074 	case IOC_RESTART_ACK:
2075 	case IOC_ACK:
2076 		/*
2077 		 * OK, reply with an ACK
2078 		 */
2079 		miocack(wq, mp, 0, 0);
2080 		break;
2081 
2082 	case IOC_RESTART_REPLY:
2083 	case IOC_REPLY:
2084 		/*
2085 		 * OK, send prepared reply as ACK or NAK
2086 		 */
2087 		mp->b_datap->db_type = iocp->ioc_error == 0 ?
2088 		    M_IOCACK : M_IOCNAK;
2089 		qreply(wq, mp);
2090 		break;
2091 	}
2092 }
2093 
2094 /*
2095  * ========== Per-instance setup/teardown code ==========
2096  */
2097 
2098 #undef	BGE_DBG
2099 #define	BGE_DBG		BGE_DBG_MEM	/* debug flag for this code	*/
2100 /*
2101  * Allocate an area of memory and a DMA handle for accessing it
2102  */
2103 static int
2104 bge_alloc_dma_mem(bge_t *bgep, size_t memsize, ddi_device_acc_attr_t *attr_p,
2105 	uint_t dma_flags, dma_area_t *dma_p)
2106 {
2107 	caddr_t va;
2108 	int err;
2109 
2110 	BGE_TRACE(("bge_alloc_dma_mem($%p, %ld, $%p, 0x%x, $%p)",
2111 	    (void *)bgep, memsize, attr_p, dma_flags, dma_p));
2112 
2113 	/*
2114 	 * Allocate handle
2115 	 */
2116 	err = ddi_dma_alloc_handle(bgep->devinfo, &dma_attr,
2117 	    DDI_DMA_DONTWAIT, NULL, &dma_p->dma_hdl);
2118 	if (err != DDI_SUCCESS)
2119 		return (DDI_FAILURE);
2120 
2121 	/*
2122 	 * Allocate memory
2123 	 */
2124 	err = ddi_dma_mem_alloc(dma_p->dma_hdl, memsize, attr_p,
2125 	    dma_flags, DDI_DMA_DONTWAIT, NULL, &va, &dma_p->alength,
2126 	    &dma_p->acc_hdl);
2127 	if (err != DDI_SUCCESS)
2128 		return (DDI_FAILURE);
2129 
2130 	/*
2131 	 * Bind the two together
2132 	 */
2133 	dma_p->mem_va = va;
2134 	err = ddi_dma_addr_bind_handle(dma_p->dma_hdl, NULL,
2135 	    va, dma_p->alength, dma_flags, DDI_DMA_DONTWAIT, NULL,
2136 	    &dma_p->cookie, &dma_p->ncookies);
2137 
2138 	BGE_DEBUG(("bge_alloc_dma_mem(): bind %d bytes; err %d, %d cookies",
2139 	    dma_p->alength, err, dma_p->ncookies));
2140 
2141 	if (err != DDI_DMA_MAPPED || dma_p->ncookies != 1)
2142 		return (DDI_FAILURE);
2143 
2144 	dma_p->nslots = ~0U;
2145 	dma_p->size = ~0U;
2146 	dma_p->token = ~0U;
2147 	dma_p->offset = 0;
2148 	return (DDI_SUCCESS);
2149 }
2150 
2151 /*
2152  * Free one allocated area of DMAable memory
2153  */
2154 static void
2155 bge_free_dma_mem(dma_area_t *dma_p)
2156 {
2157 	if (dma_p->dma_hdl != NULL) {
2158 		if (dma_p->ncookies) {
2159 			(void) ddi_dma_unbind_handle(dma_p->dma_hdl);
2160 			dma_p->ncookies = 0;
2161 		}
2162 		ddi_dma_free_handle(&dma_p->dma_hdl);
2163 		dma_p->dma_hdl = NULL;
2164 	}
2165 
2166 	if (dma_p->acc_hdl != NULL) {
2167 		ddi_dma_mem_free(&dma_p->acc_hdl);
2168 		dma_p->acc_hdl = NULL;
2169 	}
2170 }
2171 /*
2172  * Utility routine to carve a slice off a chunk of allocated memory,
2173  * updating the chunk descriptor accordingly.  The size of the slice
2174  * is given by the product of the <qty> and <size> parameters.
2175  */
2176 static void
2177 bge_slice_chunk(dma_area_t *slice, dma_area_t *chunk,
2178 	uint32_t qty, uint32_t size)
2179 {
2180 	static uint32_t sequence = 0xbcd5704a;
2181 	size_t totsize;
2182 
2183 	totsize = qty*size;
2184 	ASSERT(totsize <= chunk->alength);
2185 
2186 	*slice = *chunk;
2187 	slice->nslots = qty;
2188 	slice->size = size;
2189 	slice->alength = totsize;
2190 	slice->token = ++sequence;
2191 
2192 	chunk->mem_va = (caddr_t)chunk->mem_va + totsize;
2193 	chunk->alength -= totsize;
2194 	chunk->offset += totsize;
2195 	chunk->cookie.dmac_laddress += totsize;
2196 	chunk->cookie.dmac_size -= totsize;
2197 }
2198 
2199 /*
2200  * Initialise the specified Receive Producer (Buffer) Ring, using
2201  * the information in the <dma_area> descriptors that it contains
2202  * to set up all the other fields. This routine should be called
2203  * only once for each ring.
2204  */
2205 static void
2206 bge_init_buff_ring(bge_t *bgep, uint64_t ring)
2207 {
2208 	buff_ring_t *brp;
2209 	bge_status_t *bsp;
2210 	sw_rbd_t *srbdp;
2211 	dma_area_t pbuf;
2212 	uint32_t bufsize;
2213 	uint32_t nslots;
2214 	uint32_t slot;
2215 	uint32_t split;
2216 
2217 	static bge_regno_t nic_ring_addrs[BGE_BUFF_RINGS_MAX] = {
2218 		NIC_MEM_SHADOW_BUFF_STD,
2219 		NIC_MEM_SHADOW_BUFF_JUMBO,
2220 		NIC_MEM_SHADOW_BUFF_MINI
2221 	};
2222 	static bge_regno_t mailbox_regs[BGE_BUFF_RINGS_MAX] = {
2223 		RECV_STD_PROD_INDEX_REG,
2224 		RECV_JUMBO_PROD_INDEX_REG,
2225 		RECV_MINI_PROD_INDEX_REG
2226 	};
2227 	static bge_regno_t buff_cons_xref[BGE_BUFF_RINGS_MAX] = {
2228 		STATUS_STD_BUFF_CONS_INDEX,
2229 		STATUS_JUMBO_BUFF_CONS_INDEX,
2230 		STATUS_MINI_BUFF_CONS_INDEX
2231 	};
2232 
2233 	BGE_TRACE(("bge_init_buff_ring($%p, %d)",
2234 	    (void *)bgep, ring));
2235 
2236 	brp = &bgep->buff[ring];
2237 	nslots = brp->desc.nslots;
2238 	ASSERT(brp->buf[0].nslots == nslots/BGE_SPLIT);
2239 	bufsize = brp->buf[0].size;
2240 
2241 	/*
2242 	 * Set up the copy of the h/w RCB
2243 	 *
2244 	 * Note: unlike Send & Receive Return Rings, (where the max_len
2245 	 * field holds the number of slots), in a Receive Buffer Ring
2246 	 * this field indicates the size of each buffer in the ring.
2247 	 */
2248 	brp->hw_rcb.host_ring_addr = brp->desc.cookie.dmac_laddress;
2249 	brp->hw_rcb.max_len = (uint16_t)bufsize;
2250 	brp->hw_rcb.flags = nslots > 0 ? 0 : RCB_FLAG_RING_DISABLED;
2251 	brp->hw_rcb.nic_ring_addr = nic_ring_addrs[ring];
2252 
2253 	/*
2254 	 * Other one-off initialisation of per-ring data
2255 	 */
2256 	brp->bgep = bgep;
2257 	bsp = DMA_VPTR(bgep->status_block);
2258 	brp->cons_index_p = &bsp->buff_cons_index[buff_cons_xref[ring]];
2259 	brp->chip_mbx_reg = mailbox_regs[ring];
2260 	mutex_init(brp->rf_lock, NULL, MUTEX_DRIVER,
2261 	    DDI_INTR_PRI(bgep->intr_pri));
2262 
2263 	/*
2264 	 * Allocate the array of s/w Receive Buffer Descriptors
2265 	 */
2266 	srbdp = kmem_zalloc(nslots*sizeof (*srbdp), KM_SLEEP);
2267 	brp->sw_rbds = srbdp;
2268 
2269 	/*
2270 	 * Now initialise each array element once and for all
2271 	 */
2272 	for (split = 0; split < BGE_SPLIT; ++split) {
2273 		pbuf = brp->buf[split];
2274 		for (slot = 0; slot < nslots/BGE_SPLIT; ++srbdp, ++slot)
2275 			bge_slice_chunk(&srbdp->pbuf, &pbuf, 1, bufsize);
2276 		ASSERT(pbuf.alength == 0);
2277 	}
2278 }
2279 
2280 /*
2281  * Clean up initialisation done above before the memory is freed
2282  */
2283 static void
2284 bge_fini_buff_ring(bge_t *bgep, uint64_t ring)
2285 {
2286 	buff_ring_t *brp;
2287 	sw_rbd_t *srbdp;
2288 
2289 	BGE_TRACE(("bge_fini_buff_ring($%p, %d)",
2290 	    (void *)bgep, ring));
2291 
2292 	brp = &bgep->buff[ring];
2293 	srbdp = brp->sw_rbds;
2294 	kmem_free(srbdp, brp->desc.nslots*sizeof (*srbdp));
2295 
2296 	mutex_destroy(brp->rf_lock);
2297 }
2298 
2299 /*
2300  * Initialise the specified Receive (Return) Ring, using the
2301  * information in the <dma_area> descriptors that it contains
2302  * to set up all the other fields. This routine should be called
2303  * only once for each ring.
2304  */
2305 static void
2306 bge_init_recv_ring(bge_t *bgep, uint64_t ring)
2307 {
2308 	recv_ring_t *rrp;
2309 	bge_status_t *bsp;
2310 	uint32_t nslots;
2311 
2312 	BGE_TRACE(("bge_init_recv_ring($%p, %d)",
2313 	    (void *)bgep, ring));
2314 
2315 	/*
2316 	 * The chip architecture requires that receive return rings have
2317 	 * 512 or 1024 or 2048 elements per ring.  See 570X-PG108-R page 103.
2318 	 */
2319 	rrp = &bgep->recv[ring];
2320 	nslots = rrp->desc.nslots;
2321 	ASSERT(nslots == 0 || nslots == 512 ||
2322 	    nslots == 1024 || nslots == 2048);
2323 
2324 	/*
2325 	 * Set up the copy of the h/w RCB
2326 	 */
2327 	rrp->hw_rcb.host_ring_addr = rrp->desc.cookie.dmac_laddress;
2328 	rrp->hw_rcb.max_len = (uint16_t)nslots;
2329 	rrp->hw_rcb.flags = nslots > 0 ? 0 : RCB_FLAG_RING_DISABLED;
2330 	rrp->hw_rcb.nic_ring_addr = 0;
2331 
2332 	/*
2333 	 * Other one-off initialisation of per-ring data
2334 	 */
2335 	rrp->bgep = bgep;
2336 	bsp = DMA_VPTR(bgep->status_block);
2337 	rrp->prod_index_p = RECV_INDEX_P(bsp, ring);
2338 	rrp->chip_mbx_reg = RECV_RING_CONS_INDEX_REG(ring);
2339 	mutex_init(rrp->rx_lock, NULL, MUTEX_DRIVER,
2340 	    DDI_INTR_PRI(bgep->intr_pri));
2341 }
2342 
2343 
2344 /*
2345  * Clean up initialisation done above before the memory is freed
2346  */
2347 static void
2348 bge_fini_recv_ring(bge_t *bgep, uint64_t ring)
2349 {
2350 	recv_ring_t *rrp;
2351 
2352 	BGE_TRACE(("bge_fini_recv_ring($%p, %d)",
2353 	    (void *)bgep, ring));
2354 
2355 	rrp = &bgep->recv[ring];
2356 	if (rrp->rx_softint)
2357 		ddi_remove_softintr(rrp->rx_softint);
2358 	mutex_destroy(rrp->rx_lock);
2359 }
2360 
2361 /*
2362  * Initialise the specified Send Ring, using the information in the
2363  * <dma_area> descriptors that it contains to set up all the other
2364  * fields. This routine should be called only once for each ring.
2365  */
2366 static void
2367 bge_init_send_ring(bge_t *bgep, uint64_t ring)
2368 {
2369 	send_ring_t *srp;
2370 	bge_status_t *bsp;
2371 	sw_sbd_t *ssbdp;
2372 	dma_area_t desc;
2373 	dma_area_t pbuf;
2374 	uint32_t nslots;
2375 	uint32_t slot;
2376 	uint32_t split;
2377 	sw_txbuf_t *txbuf;
2378 
2379 	BGE_TRACE(("bge_init_send_ring($%p, %d)",
2380 	    (void *)bgep, ring));
2381 
2382 	/*
2383 	 * The chip architecture requires that host-based send rings
2384 	 * have 512 elements per ring.  See 570X-PG102-R page 56.
2385 	 */
2386 	srp = &bgep->send[ring];
2387 	nslots = srp->desc.nslots;
2388 	ASSERT(nslots == 0 || nslots == 512);
2389 
2390 	/*
2391 	 * Set up the copy of the h/w RCB
2392 	 */
2393 	srp->hw_rcb.host_ring_addr = srp->desc.cookie.dmac_laddress;
2394 	srp->hw_rcb.max_len = (uint16_t)nslots;
2395 	srp->hw_rcb.flags = nslots > 0 ? 0 : RCB_FLAG_RING_DISABLED;
2396 	srp->hw_rcb.nic_ring_addr = NIC_MEM_SHADOW_SEND_RING(ring, nslots);
2397 
2398 	/*
2399 	 * Other one-off initialisation of per-ring data
2400 	 */
2401 	srp->bgep = bgep;
2402 	bsp = DMA_VPTR(bgep->status_block);
2403 	srp->cons_index_p = SEND_INDEX_P(bsp, ring);
2404 	srp->chip_mbx_reg = SEND_RING_HOST_INDEX_REG(ring);
2405 	mutex_init(srp->tx_lock, NULL, MUTEX_DRIVER,
2406 	    DDI_INTR_PRI(bgep->intr_pri));
2407 	mutex_init(srp->txbuf_lock, NULL, MUTEX_DRIVER,
2408 	    DDI_INTR_PRI(bgep->intr_pri));
2409 	mutex_init(srp->freetxbuf_lock, NULL, MUTEX_DRIVER,
2410 	    DDI_INTR_PRI(bgep->intr_pri));
2411 	mutex_init(srp->tc_lock, NULL, MUTEX_DRIVER,
2412 	    DDI_INTR_PRI(bgep->intr_pri));
2413 	if (nslots == 0)
2414 		return;
2415 
2416 	/*
2417 	 * Allocate the array of s/w Send Buffer Descriptors
2418 	 */
2419 	ssbdp = kmem_zalloc(nslots*sizeof (*ssbdp), KM_SLEEP);
2420 	txbuf = kmem_zalloc(BGE_SEND_BUF_MAX*sizeof (*txbuf), KM_SLEEP);
2421 	srp->txbuf_head =
2422 	    kmem_zalloc(BGE_SEND_BUF_MAX*sizeof (bge_queue_item_t), KM_SLEEP);
2423 	srp->pktp = kmem_zalloc(BGE_SEND_BUF_MAX*sizeof (send_pkt_t), KM_SLEEP);
2424 	srp->sw_sbds = ssbdp;
2425 	srp->txbuf = txbuf;
2426 	srp->tx_buffers = BGE_SEND_BUF_NUM;
2427 	srp->tx_buffers_low = srp->tx_buffers / 4;
2428 	if (bgep->chipid.snd_buff_size > BGE_SEND_BUFF_SIZE_DEFAULT)
2429 		srp->tx_array_max = BGE_SEND_BUF_ARRAY_JUMBO;
2430 	else
2431 		srp->tx_array_max = BGE_SEND_BUF_ARRAY;
2432 	srp->tx_array = 1;
2433 
2434 	/*
2435 	 * Chunk tx desc area
2436 	 */
2437 	desc = srp->desc;
2438 	for (slot = 0; slot < nslots; ++ssbdp, ++slot) {
2439 		bge_slice_chunk(&ssbdp->desc, &desc, 1,
2440 		    sizeof (bge_sbd_t));
2441 	}
2442 	ASSERT(desc.alength == 0);
2443 
2444 	/*
2445 	 * Chunk tx buffer area
2446 	 */
2447 	for (split = 0; split < BGE_SPLIT; ++split) {
2448 		pbuf = srp->buf[0][split];
2449 		for (slot = 0; slot < BGE_SEND_BUF_NUM/BGE_SPLIT; ++slot) {
2450 			bge_slice_chunk(&txbuf->buf, &pbuf, 1,
2451 			    bgep->chipid.snd_buff_size);
2452 			txbuf++;
2453 		}
2454 		ASSERT(pbuf.alength == 0);
2455 	}
2456 }
2457 
2458 /*
2459  * Clean up initialisation done above before the memory is freed
2460  */
2461 static void
2462 bge_fini_send_ring(bge_t *bgep, uint64_t ring)
2463 {
2464 	send_ring_t *srp;
2465 	uint32_t array;
2466 	uint32_t split;
2467 	uint32_t nslots;
2468 
2469 	BGE_TRACE(("bge_fini_send_ring($%p, %d)",
2470 	    (void *)bgep, ring));
2471 
2472 	srp = &bgep->send[ring];
2473 	mutex_destroy(srp->tc_lock);
2474 	mutex_destroy(srp->freetxbuf_lock);
2475 	mutex_destroy(srp->txbuf_lock);
2476 	mutex_destroy(srp->tx_lock);
2477 	nslots = srp->desc.nslots;
2478 	if (nslots == 0)
2479 		return;
2480 
2481 	for (array = 1; array < srp->tx_array; ++array)
2482 		for (split = 0; split < BGE_SPLIT; ++split)
2483 			bge_free_dma_mem(&srp->buf[array][split]);
2484 	kmem_free(srp->sw_sbds, nslots*sizeof (*srp->sw_sbds));
2485 	kmem_free(srp->txbuf_head, BGE_SEND_BUF_MAX*sizeof (*srp->txbuf_head));
2486 	kmem_free(srp->txbuf, BGE_SEND_BUF_MAX*sizeof (*srp->txbuf));
2487 	kmem_free(srp->pktp, BGE_SEND_BUF_MAX*sizeof (*srp->pktp));
2488 	srp->sw_sbds = NULL;
2489 	srp->txbuf_head = NULL;
2490 	srp->txbuf = NULL;
2491 	srp->pktp = NULL;
2492 }
2493 
2494 /*
2495  * Initialise all transmit, receive, and buffer rings.
2496  */
2497 void
2498 bge_init_rings(bge_t *bgep)
2499 {
2500 	uint32_t ring;
2501 
2502 	BGE_TRACE(("bge_init_rings($%p)", (void *)bgep));
2503 
2504 	/*
2505 	 * Perform one-off initialisation of each ring ...
2506 	 */
2507 	for (ring = 0; ring < BGE_SEND_RINGS_MAX; ++ring)
2508 		bge_init_send_ring(bgep, ring);
2509 	for (ring = 0; ring < BGE_RECV_RINGS_MAX; ++ring)
2510 		bge_init_recv_ring(bgep, ring);
2511 	for (ring = 0; ring < BGE_BUFF_RINGS_MAX; ++ring)
2512 		bge_init_buff_ring(bgep, ring);
2513 }
2514 
2515 /*
2516  * Undo the work of bge_init_rings() above before the memory is freed
2517  */
2518 void
2519 bge_fini_rings(bge_t *bgep)
2520 {
2521 	uint32_t ring;
2522 
2523 	BGE_TRACE(("bge_fini_rings($%p)", (void *)bgep));
2524 
2525 	for (ring = 0; ring < BGE_BUFF_RINGS_MAX; ++ring)
2526 		bge_fini_buff_ring(bgep, ring);
2527 	for (ring = 0; ring < BGE_RECV_RINGS_MAX; ++ring)
2528 		bge_fini_recv_ring(bgep, ring);
2529 	for (ring = 0; ring < BGE_SEND_RINGS_MAX; ++ring)
2530 		bge_fini_send_ring(bgep, ring);
2531 }
2532 
2533 /*
2534  * Called from the bge_m_stop() to free the tx buffers which are
2535  * allocated from the tx process.
2536  */
2537 void
2538 bge_free_txbuf_arrays(send_ring_t *srp)
2539 {
2540 	uint32_t array;
2541 	uint32_t split;
2542 
2543 	ASSERT(mutex_owned(srp->tx_lock));
2544 
2545 	/*
2546 	 * Free the extra tx buffer DMA area
2547 	 */
2548 	for (array = 1; array < srp->tx_array; ++array)
2549 		for (split = 0; split < BGE_SPLIT; ++split)
2550 			bge_free_dma_mem(&srp->buf[array][split]);
2551 
2552 	/*
2553 	 * Restore initial tx buffer numbers
2554 	 */
2555 	srp->tx_array = 1;
2556 	srp->tx_buffers = BGE_SEND_BUF_NUM;
2557 	srp->tx_buffers_low = srp->tx_buffers / 4;
2558 	srp->tx_flow = 0;
2559 	bzero(srp->pktp, BGE_SEND_BUF_MAX * sizeof (*srp->pktp));
2560 }
2561 
2562 /*
2563  * Called from tx process to allocate more tx buffers
2564  */
2565 bge_queue_item_t *
2566 bge_alloc_txbuf_array(bge_t *bgep, send_ring_t *srp)
2567 {
2568 	bge_queue_t *txbuf_queue;
2569 	bge_queue_item_t *txbuf_item_last;
2570 	bge_queue_item_t *txbuf_item;
2571 	bge_queue_item_t *txbuf_item_rtn;
2572 	sw_txbuf_t *txbuf;
2573 	dma_area_t area;
2574 	size_t txbuffsize;
2575 	uint32_t slot;
2576 	uint32_t array;
2577 	uint32_t split;
2578 	uint32_t err;
2579 
2580 	ASSERT(mutex_owned(srp->tx_lock));
2581 
2582 	array = srp->tx_array;
2583 	if (array >= srp->tx_array_max)
2584 		return (NULL);
2585 
2586 	/*
2587 	 * Allocate memory & handles for TX buffers
2588 	 */
2589 	txbuffsize = BGE_SEND_BUF_NUM*bgep->chipid.snd_buff_size;
2590 	ASSERT((txbuffsize % BGE_SPLIT) == 0);
2591 	for (split = 0; split < BGE_SPLIT; ++split) {
2592 		err = bge_alloc_dma_mem(bgep, txbuffsize/BGE_SPLIT,
2593 		    &bge_data_accattr, DDI_DMA_WRITE | BGE_DMA_MODE,
2594 		    &srp->buf[array][split]);
2595 		if (err != DDI_SUCCESS) {
2596 			/* Free the last already allocated OK chunks */
2597 			for (slot = 0; slot <= split; ++slot)
2598 				bge_free_dma_mem(&srp->buf[array][slot]);
2599 			srp->tx_alloc_fail++;
2600 			return (NULL);
2601 		}
2602 	}
2603 
2604 	/*
2605 	 * Chunk tx buffer area
2606 	 */
2607 	txbuf = srp->txbuf + array*BGE_SEND_BUF_NUM;
2608 	for (split = 0; split < BGE_SPLIT; ++split) {
2609 		area = srp->buf[array][split];
2610 		for (slot = 0; slot < BGE_SEND_BUF_NUM/BGE_SPLIT; ++slot) {
2611 			bge_slice_chunk(&txbuf->buf, &area, 1,
2612 			    bgep->chipid.snd_buff_size);
2613 			txbuf++;
2614 		}
2615 	}
2616 
2617 	/*
2618 	 * Add above buffers to the tx buffer pop queue
2619 	 */
2620 	txbuf_item = srp->txbuf_head + array*BGE_SEND_BUF_NUM;
2621 	txbuf = srp->txbuf + array*BGE_SEND_BUF_NUM;
2622 	txbuf_item_last = NULL;
2623 	for (slot = 0; slot < BGE_SEND_BUF_NUM; ++slot) {
2624 		txbuf_item->item = txbuf;
2625 		txbuf_item->next = txbuf_item_last;
2626 		txbuf_item_last = txbuf_item;
2627 		txbuf++;
2628 		txbuf_item++;
2629 	}
2630 	txbuf_item = srp->txbuf_head + array*BGE_SEND_BUF_NUM;
2631 	txbuf_item_rtn = txbuf_item;
2632 	txbuf_item++;
2633 	txbuf_queue = srp->txbuf_pop_queue;
2634 	mutex_enter(txbuf_queue->lock);
2635 	txbuf_item->next = txbuf_queue->head;
2636 	txbuf_queue->head = txbuf_item_last;
2637 	txbuf_queue->count += BGE_SEND_BUF_NUM - 1;
2638 	mutex_exit(txbuf_queue->lock);
2639 
2640 	srp->tx_array++;
2641 	srp->tx_buffers += BGE_SEND_BUF_NUM;
2642 	srp->tx_buffers_low = srp->tx_buffers / 4;
2643 
2644 	return (txbuf_item_rtn);
2645 }
2646 
2647 /*
2648  * This function allocates all the transmit and receive buffers
2649  * and descriptors, in four chunks.
2650  */
2651 int
2652 bge_alloc_bufs(bge_t *bgep)
2653 {
2654 	dma_area_t area;
2655 	size_t rxbuffsize;
2656 	size_t txbuffsize;
2657 	size_t rxbuffdescsize;
2658 	size_t rxdescsize;
2659 	size_t txdescsize;
2660 	uint32_t ring;
2661 	uint32_t rx_rings = bgep->chipid.rx_rings;
2662 	uint32_t tx_rings = bgep->chipid.tx_rings;
2663 	int split;
2664 	int err;
2665 
2666 	BGE_TRACE(("bge_alloc_bufs($%p)",
2667 	    (void *)bgep));
2668 
2669 	rxbuffsize = BGE_STD_SLOTS_USED*bgep->chipid.std_buf_size;
2670 	rxbuffsize += bgep->chipid.jumbo_slots*bgep->chipid.recv_jumbo_size;
2671 	rxbuffsize += BGE_MINI_SLOTS_USED*BGE_MINI_BUFF_SIZE;
2672 
2673 	txbuffsize = BGE_SEND_BUF_NUM*bgep->chipid.snd_buff_size;
2674 	txbuffsize *= tx_rings;
2675 
2676 	rxdescsize = rx_rings*bgep->chipid.recv_slots;
2677 	rxdescsize *= sizeof (bge_rbd_t);
2678 
2679 	rxbuffdescsize = BGE_STD_SLOTS_USED;
2680 	rxbuffdescsize += bgep->chipid.jumbo_slots;
2681 	rxbuffdescsize += BGE_MINI_SLOTS_USED;
2682 	rxbuffdescsize *= sizeof (bge_rbd_t);
2683 
2684 	txdescsize = tx_rings*BGE_SEND_SLOTS_USED;
2685 	txdescsize *= sizeof (bge_sbd_t);
2686 	txdescsize += sizeof (bge_statistics_t);
2687 	txdescsize += sizeof (bge_status_t);
2688 	txdescsize += BGE_STATUS_PADDING;
2689 
2690 	/*
2691 	 * Enable PCI relaxed ordering only for RX/TX data buffers
2692 	 */
2693 	if (!(DEVICE_5717_SERIES_CHIPSETS(bgep) ||
2694 	    DEVICE_5725_SERIES_CHIPSETS(bgep) ||
2695 	    DEVICE_57765_SERIES_CHIPSETS(bgep))) {
2696 		if (bge_relaxed_ordering)
2697 			dma_attr.dma_attr_flags |= DDI_DMA_RELAXED_ORDERING;
2698 	}
2699 
2700 	/*
2701 	 * Allocate memory & handles for RX buffers
2702 	 */
2703 	ASSERT((rxbuffsize % BGE_SPLIT) == 0);
2704 	for (split = 0; split < BGE_SPLIT; ++split) {
2705 		err = bge_alloc_dma_mem(bgep, rxbuffsize/BGE_SPLIT,
2706 		    &bge_data_accattr, DDI_DMA_READ | BGE_DMA_MODE,
2707 		    &bgep->rx_buff[split]);
2708 		if (err != DDI_SUCCESS)
2709 			return (DDI_FAILURE);
2710 	}
2711 	BGE_DEBUG(("DMA ALLOC: allocated %d chunks for Rx Buffers (rxbuffsize = %d)",
2712 	           rxbuffsize/BGE_SPLIT,
2713 	           rxbuffsize));
2714 
2715 	/*
2716 	 * Allocate memory & handles for TX buffers
2717 	 */
2718 	ASSERT((txbuffsize % BGE_SPLIT) == 0);
2719 	for (split = 0; split < BGE_SPLIT; ++split) {
2720 		err = bge_alloc_dma_mem(bgep, txbuffsize/BGE_SPLIT,
2721 		    &bge_data_accattr, DDI_DMA_WRITE | BGE_DMA_MODE,
2722 		    &bgep->tx_buff[split]);
2723 		if (err != DDI_SUCCESS)
2724 			return (DDI_FAILURE);
2725 	}
2726 	BGE_DEBUG(("DMA ALLOC: allocated %d chunks for Tx Buffers (txbuffsize = %d)",
2727 	           txbuffsize/BGE_SPLIT,
2728 	           txbuffsize));
2729 
2730 	if (!(DEVICE_5717_SERIES_CHIPSETS(bgep) ||
2731 	    DEVICE_5725_SERIES_CHIPSETS(bgep) ||
2732 	    DEVICE_57765_SERIES_CHIPSETS(bgep))) {
2733 		/* no relaxed ordering for descriptors rings? */
2734 		dma_attr.dma_attr_flags &= ~DDI_DMA_RELAXED_ORDERING;
2735 	}
2736 
2737 	/*
2738 	 * Allocate memory & handles for receive return rings
2739 	 */
2740 	ASSERT((rxdescsize % rx_rings) == 0);
2741 	for (split = 0; split < rx_rings; ++split) {
2742 		err = bge_alloc_dma_mem(bgep, rxdescsize/rx_rings,
2743 		    &bge_desc_accattr, DDI_DMA_RDWR | DDI_DMA_CONSISTENT,
2744 		    &bgep->rx_desc[split]);
2745 		if (err != DDI_SUCCESS)
2746 			return (DDI_FAILURE);
2747 	}
2748 	BGE_DEBUG(("DMA ALLOC: allocated %d chunks for Rx Descs cons (rx_rings = %d, rxdescsize = %d)",
2749 	           rxdescsize/rx_rings,
2750 	           rx_rings,
2751 	           rxdescsize));
2752 
2753 	/*
2754 	 * Allocate memory & handles for buffer (producer) descriptor rings.
2755 	 * Note that split=rx_rings.
2756 	 */
2757 	err = bge_alloc_dma_mem(bgep, rxbuffdescsize, &bge_desc_accattr,
2758 	    DDI_DMA_RDWR | DDI_DMA_CONSISTENT, &bgep->rx_desc[split]);
2759 	if (err != DDI_SUCCESS)
2760 		return (DDI_FAILURE);
2761 	BGE_DEBUG(("DMA ALLOC: allocated 1 chunks for Rx Descs prod (rxbuffdescsize = %d)",
2762 	           rxdescsize));
2763 
2764 	/*
2765 	 * Allocate memory & handles for TX descriptor rings,
2766 	 * status block, and statistics area
2767 	 */
2768 	err = bge_alloc_dma_mem(bgep, txdescsize, &bge_desc_accattr,
2769 	    DDI_DMA_RDWR | DDI_DMA_CONSISTENT, &bgep->tx_desc);
2770 	if (err != DDI_SUCCESS)
2771 		return (DDI_FAILURE);
2772 	BGE_DEBUG(("DMA ALLOC: allocated 1 chunks for Tx Descs / Status Block / Stats (txdescdize = %d)",
2773                txdescsize));
2774 
2775 	/*
2776 	 * Now carve up each of the allocated areas ...
2777 	 */
2778 
2779 	/* rx buffers */
2780 	for (split = 0; split < BGE_SPLIT; ++split) {
2781 		area = bgep->rx_buff[split];
2782 
2783 		BGE_DEBUG(("RXB CHNK %d INIT: va=%p alen=%d off=%d pa=%llx psz=%d",
2784 		           split,
2785 		           area.mem_va,
2786 		           area.alength,
2787 		           area.offset,
2788 		           area.cookie.dmac_laddress,
2789 		           area.cookie.dmac_size));
2790 
2791 		bge_slice_chunk(&bgep->buff[BGE_STD_BUFF_RING].buf[split],
2792 		    &area, BGE_STD_SLOTS_USED/BGE_SPLIT,
2793 		    bgep->chipid.std_buf_size);
2794 
2795 		BGE_DEBUG(("RXB SLCE %d STND: va=%p alen=%d off=%d pa=%llx psz=%d (nslots=%d slotlen=%d)",
2796 		           split,
2797 		           bgep->buff[BGE_STD_BUFF_RING].buf[split].mem_va,
2798 		           bgep->buff[BGE_STD_BUFF_RING].buf[split].alength,
2799 		           bgep->buff[BGE_STD_BUFF_RING].buf[split].offset,
2800 		           bgep->buff[BGE_STD_BUFF_RING].buf[split].cookie.dmac_laddress,
2801 		           bgep->buff[BGE_STD_BUFF_RING].buf[split].cookie.dmac_size,
2802 		           BGE_STD_SLOTS_USED/BGE_SPLIT,
2803 		           bgep->chipid.std_buf_size));
2804 
2805 		bge_slice_chunk(&bgep->buff[BGE_JUMBO_BUFF_RING].buf[split],
2806 		    &area, bgep->chipid.jumbo_slots/BGE_SPLIT,
2807 		    bgep->chipid.recv_jumbo_size);
2808 
2809 		if ((bgep->chipid.jumbo_slots / BGE_SPLIT) > 0)
2810 		{
2811 			BGE_DEBUG(("RXB SLCE %d JUMB: va=%p alen=%d off=%d pa=%llx psz=%d (nslots=%d slotlen=%d)",
2812 			           split,
2813 			           bgep->buff[BGE_JUMBO_BUFF_RING].buf[split].mem_va,
2814 			           bgep->buff[BGE_JUMBO_BUFF_RING].buf[split].alength,
2815 			           bgep->buff[BGE_JUMBO_BUFF_RING].buf[split].offset,
2816 			           bgep->buff[BGE_JUMBO_BUFF_RING].buf[split].cookie.dmac_laddress,
2817 			           bgep->buff[BGE_JUMBO_BUFF_RING].buf[split].cookie.dmac_size,
2818 			           bgep->chipid.jumbo_slots/BGE_SPLIT,
2819 			           bgep->chipid.recv_jumbo_size));
2820 		}
2821 
2822 		bge_slice_chunk(&bgep->buff[BGE_MINI_BUFF_RING].buf[split],
2823 		    &area, BGE_MINI_SLOTS_USED/BGE_SPLIT,
2824 		    BGE_MINI_BUFF_SIZE);
2825 
2826 		if ((BGE_MINI_SLOTS_USED / BGE_SPLIT) > 0)
2827 		{
2828 			BGE_DEBUG(("RXB SLCE %d MINI: va=%p alen=%d off=%d pa=%llx psz=%d (nslots=%d slotlen=%d)",
2829 			           split,
2830 			           bgep->buff[BGE_MINI_BUFF_RING].buf[split].mem_va,
2831 			           bgep->buff[BGE_MINI_BUFF_RING].buf[split].alength,
2832 			           bgep->buff[BGE_MINI_BUFF_RING].buf[split].offset,
2833 			           bgep->buff[BGE_MINI_BUFF_RING].buf[split].cookie.dmac_laddress,
2834 			           bgep->buff[BGE_MINI_BUFF_RING].buf[split].cookie.dmac_size,
2835 			           BGE_MINI_SLOTS_USED/BGE_SPLIT,
2836 			           BGE_MINI_BUFF_SIZE));
2837 		}
2838 
2839 		BGE_DEBUG(("RXB CHNK %d DONE: va=%p alen=%d off=%d pa=%llx psz=%d",
2840 		           split,
2841 		           area.mem_va,
2842 		           area.alength,
2843 		           area.offset,
2844 		           area.cookie.dmac_laddress,
2845 		           area.cookie.dmac_size));
2846 	}
2847 
2848 	/* tx buffers */
2849 	for (split = 0; split < BGE_SPLIT; ++split) {
2850 		area = bgep->tx_buff[split];
2851 
2852 		BGE_DEBUG(("TXB CHNK %d INIT: va=%p alen=%d off=%d pa=%llx psz=%d",
2853 		           split,
2854 		           area.mem_va,
2855 		           area.alength,
2856 		           area.offset,
2857 		           area.cookie.dmac_laddress,
2858 		           area.cookie.dmac_size));
2859 
2860 		for (ring = 0; ring < tx_rings; ++ring) {
2861 			bge_slice_chunk(&bgep->send[ring].buf[0][split],
2862 			    &area, BGE_SEND_BUF_NUM/BGE_SPLIT,
2863 			    bgep->chipid.snd_buff_size);
2864 
2865 			BGE_DEBUG(("TXB SLCE %d RING %d: va=%p alen=%d off=%d pa=%llx psz=%d (nslots=%d slotlen=%d)",
2866 			           split, ring,
2867 			           bgep->send[ring].buf[0][split].mem_va,
2868 			           bgep->send[ring].buf[0][split].alength,
2869 			           bgep->send[ring].buf[0][split].offset,
2870 			           bgep->send[ring].buf[0][split].cookie.dmac_laddress,
2871 			           bgep->send[ring].buf[0][split].cookie.dmac_size,
2872 			           BGE_SEND_BUF_NUM/BGE_SPLIT,
2873 			           bgep->chipid.snd_buff_size));
2874 		}
2875 
2876 		for (; ring < BGE_SEND_RINGS_MAX; ++ring) {
2877 			bge_slice_chunk(&bgep->send[ring].buf[0][split],
2878 			    &area, 0, bgep->chipid.snd_buff_size);
2879 		}
2880 
2881 		BGE_DEBUG(("TXB CHNK %d DONE: va=%p alen=%d off=%d pa=%llx psz=%d",
2882 		           split,
2883 		           area.mem_va,
2884 		           area.alength,
2885 		           area.offset,
2886 		           area.cookie.dmac_laddress,
2887 		           area.cookie.dmac_size));
2888 	}
2889 
2890 	for (ring = 0; ring < rx_rings; ++ring) {
2891 		bge_slice_chunk(&bgep->recv[ring].desc, &bgep->rx_desc[ring],
2892 		    bgep->chipid.recv_slots, sizeof (bge_rbd_t));
2893 
2894 		BGE_DEBUG(("RXD CONS RING %d: va=%p alen=%d off=%d pa=%llx psz=%d (nslots=%d slotlen=%d)",
2895 		           ring,
2896 		           bgep->recv[ring].desc.mem_va,
2897 		           bgep->recv[ring].desc.alength,
2898 		           bgep->recv[ring].desc.offset,
2899 		           bgep->recv[ring].desc.cookie.dmac_laddress,
2900 		           bgep->recv[ring].desc.cookie.dmac_size,
2901 		           bgep->chipid.recv_slots,
2902 		           sizeof(bge_rbd_t)));
2903 	}
2904 
2905 	/* dma alloc for rxbuffdescsize is located at bgep->rx_desc[#rings] */
2906 	area = bgep->rx_desc[rx_rings]; /* note rx_rings = one beyond rings */
2907 
2908 	for (; ring < BGE_RECV_RINGS_MAX; ++ring) /* skip unused rings */
2909 		bge_slice_chunk(&bgep->recv[ring].desc, &area,
2910 		    0, sizeof (bge_rbd_t));
2911 
2912 	BGE_DEBUG(("RXD PROD INIT: va=%p alen=%d off=%d pa=%llx psz=%d",
2913 	           area.mem_va,
2914 	           area.alength,
2915 	           area.offset,
2916 	           area.cookie.dmac_laddress,
2917 	           area.cookie.dmac_size));
2918 
2919 	bge_slice_chunk(&bgep->buff[BGE_STD_BUFF_RING].desc, &area,
2920 	    BGE_STD_SLOTS_USED, sizeof (bge_rbd_t));
2921 	BGE_DEBUG(("RXD PROD STND: va=%p alen=%d off=%d pa=%llx psz=%d (nslots=%d slotlen=%d)",
2922 	           bgep->buff[BGE_STD_BUFF_RING].desc.mem_va,
2923 	           bgep->buff[BGE_STD_BUFF_RING].desc.alength,
2924 	           bgep->buff[BGE_STD_BUFF_RING].desc.offset,
2925 	           bgep->buff[BGE_STD_BUFF_RING].desc.cookie.dmac_laddress,
2926 	           bgep->buff[BGE_STD_BUFF_RING].desc.cookie.dmac_size,
2927 	           BGE_STD_SLOTS_USED,
2928 	           sizeof(bge_rbd_t)));
2929 
2930 	bge_slice_chunk(&bgep->buff[BGE_JUMBO_BUFF_RING].desc, &area,
2931 	    bgep->chipid.jumbo_slots, sizeof (bge_rbd_t));
2932 	BGE_DEBUG(("RXD PROD JUMB: va=%p alen=%d off=%d pa=%llx psz=%d (nslots=%d slotlen=%d)",
2933 	           bgep->buff[BGE_JUMBO_BUFF_RING].desc.mem_va,
2934 	           bgep->buff[BGE_JUMBO_BUFF_RING].desc.alength,
2935 	           bgep->buff[BGE_JUMBO_BUFF_RING].desc.offset,
2936 	           bgep->buff[BGE_JUMBO_BUFF_RING].desc.cookie.dmac_laddress,
2937 	           bgep->buff[BGE_JUMBO_BUFF_RING].desc.cookie.dmac_size,
2938 	           bgep->chipid.jumbo_slots,
2939 	           sizeof(bge_rbd_t)));
2940 
2941 	bge_slice_chunk(&bgep->buff[BGE_MINI_BUFF_RING].desc, &area,
2942 	    BGE_MINI_SLOTS_USED, sizeof (bge_rbd_t));
2943 	BGE_DEBUG(("RXD PROD MINI: va=%p alen=%d off=%d pa=%llx psz=%d (nslots=%d slotlen=%d)",
2944 	           bgep->buff[BGE_MINI_BUFF_RING].desc.mem_va,
2945 	           bgep->buff[BGE_MINI_BUFF_RING].desc.alength,
2946 	           bgep->buff[BGE_MINI_BUFF_RING].desc.offset,
2947 	           bgep->buff[BGE_MINI_BUFF_RING].desc.cookie.dmac_laddress,
2948 	           bgep->buff[BGE_MINI_BUFF_RING].desc.cookie.dmac_size,
2949 	           BGE_MINI_SLOTS_USED,
2950 	           sizeof(bge_rbd_t)));
2951 
2952 	BGE_DEBUG(("RXD PROD DONE: va=%p alen=%d off=%d pa=%llx psz=%d",
2953 	           area.mem_va,
2954 	           area.alength,
2955 	           area.offset,
2956 	           area.cookie.dmac_laddress,
2957 	           area.cookie.dmac_size));
2958 
2959 	ASSERT(area.alength == 0);
2960 
2961 	area = bgep->tx_desc;
2962 
2963 	BGE_DEBUG(("TXD INIT: va=%p alen=%d off=%d pa=%llx psz=%d",
2964 	           area.mem_va,
2965 	           area.alength,
2966 	           area.offset,
2967 	           area.cookie.dmac_laddress,
2968 	           area.cookie.dmac_size));
2969 
2970 	for (ring = 0; ring < tx_rings; ++ring) {
2971 		bge_slice_chunk(&bgep->send[ring].desc, &area,
2972 		    BGE_SEND_SLOTS_USED, sizeof (bge_sbd_t));
2973 
2974 		BGE_DEBUG(("TXD RING %d: va=%p alen=%d off=%d pa=%llx psz=%d (nslots=%d slotlen=%d)",
2975 		           ring,
2976 		           bgep->send[ring].desc.mem_va,
2977 		           bgep->send[ring].desc.alength,
2978 		           bgep->send[ring].desc.offset,
2979 		           bgep->send[ring].desc.cookie.dmac_laddress,
2980 		           bgep->send[ring].desc.cookie.dmac_size,
2981 		           BGE_SEND_SLOTS_USED,
2982 		           sizeof(bge_sbd_t)));
2983 	}
2984 
2985 	for (; ring < BGE_SEND_RINGS_MAX; ++ring) /* skip unused rings */
2986 		bge_slice_chunk(&bgep->send[ring].desc, &area,
2987 		    0, sizeof (bge_sbd_t));
2988 
2989 	bge_slice_chunk(&bgep->statistics, &area, 1, sizeof (bge_statistics_t));
2990 	BGE_DEBUG(("TXD STATISTICS: va=%p alen=%d off=%d pa=%llx psz=%d (nslots=%d slotlen=%d)",
2991 	           bgep->statistics.mem_va,
2992 	           bgep->statistics.alength,
2993 	           bgep->statistics.offset,
2994 	           bgep->statistics.cookie.dmac_laddress,
2995 	           bgep->statistics.cookie.dmac_size,
2996 	           1,
2997 	           sizeof(bge_statistics_t)));
2998 
2999 	bge_slice_chunk(&bgep->status_block, &area, 1, sizeof (bge_status_t));
3000 	BGE_DEBUG(("TXD STATUS BLOCK: va=%p alen=%d off=%d pa=%llx psz=%d (nslots=%d slotlen=%d)",
3001 	           bgep->status_block.mem_va,
3002 	           bgep->status_block.alength,
3003 	           bgep->status_block.offset,
3004 	           bgep->status_block.cookie.dmac_laddress,
3005 	           bgep->status_block.cookie.dmac_size,
3006 	           1,
3007 	           sizeof(bge_status_t)));
3008 
3009 	BGE_DEBUG(("TXD DONE: va=%p alen=%d off=%d pa=%llx psz=%d",
3010 	           area.mem_va,
3011 	           area.alength,
3012 	           area.offset,
3013 	           area.cookie.dmac_laddress,
3014 	           area.cookie.dmac_size));
3015 
3016 	ASSERT(area.alength == BGE_STATUS_PADDING);
3017 
3018 	DMA_ZERO(bgep->status_block);
3019 
3020 	return (DDI_SUCCESS);
3021 }
3022 
3023 #undef	BGE_DBG
3024 #define	BGE_DBG		BGE_DBG_INIT	/* debug flag for this code	*/
3025 
3026 /*
3027  * This routine frees the transmit and receive buffers and descriptors.
3028  * Make sure the chip is stopped before calling it!
3029  */
3030 void
3031 bge_free_bufs(bge_t *bgep)
3032 {
3033 	int split;
3034 
3035 	BGE_TRACE(("bge_free_bufs($%p)",
3036 	    (void *)bgep));
3037 
3038 	bge_free_dma_mem(&bgep->tx_desc);
3039 	for (split = 0; split < BGE_RECV_RINGS_SPLIT; ++split)
3040 		bge_free_dma_mem(&bgep->rx_desc[split]);
3041 	for (split = 0; split < BGE_SPLIT; ++split)
3042 		bge_free_dma_mem(&bgep->tx_buff[split]);
3043 	for (split = 0; split < BGE_SPLIT; ++split)
3044 		bge_free_dma_mem(&bgep->rx_buff[split]);
3045 }
3046 
3047 /*
3048  * Determine (initial) MAC address ("BIA") to use for this interface
3049  */
3050 
3051 static void
3052 bge_find_mac_address(bge_t *bgep, chip_id_t *cidp)
3053 {
3054 	struct ether_addr sysaddr;
3055 	char propbuf[8];		/* "true" or "false", plus NUL	*/
3056 	uchar_t *bytes;
3057 	int *ints;
3058 	uint_t nelts;
3059 	int err;
3060 
3061 	BGE_TRACE(("bge_find_mac_address($%p)",
3062 	    (void *)bgep));
3063 
3064 	BGE_DEBUG(("bge_find_mac_address: hw_mac_addr %012llx, => %s (%sset)",
3065 	    cidp->hw_mac_addr,
3066 	    ether_sprintf((void *)cidp->vendor_addr.addr),
3067 	    cidp->vendor_addr.set ? "" : "not "));
3068 
3069 	/*
3070 	 * The "vendor's factory-set address" may already have
3071 	 * been extracted from the chip, but if the property
3072 	 * "local-mac-address" is set we use that instead.  It
3073 	 * will normally be set by OBP, but it could also be
3074 	 * specified in a .conf file(!)
3075 	 *
3076 	 * There doesn't seem to be a way to define byte-array
3077 	 * properties in a .conf, so we check whether it looks
3078 	 * like an array of 6 ints instead.
3079 	 *
3080 	 * Then, we check whether it looks like an array of 6
3081 	 * bytes (which it should, if OBP set it).  If we can't
3082 	 * make sense of it either way, we'll ignore it.
3083 	 */
3084 	err = ddi_prop_lookup_int_array(DDI_DEV_T_ANY, bgep->devinfo,
3085 	    DDI_PROP_DONTPASS, localmac_propname, &ints, &nelts);
3086 	if (err == DDI_PROP_SUCCESS) {
3087 		if (nelts == ETHERADDRL) {
3088 			while (nelts--)
3089 				cidp->vendor_addr.addr[nelts] = ints[nelts];
3090 			cidp->vendor_addr.set = B_TRUE;
3091 		}
3092 		ddi_prop_free(ints);
3093 	}
3094 
3095 	err = ddi_prop_lookup_byte_array(DDI_DEV_T_ANY, bgep->devinfo,
3096 	    DDI_PROP_DONTPASS, localmac_propname, &bytes, &nelts);
3097 	if (err == DDI_PROP_SUCCESS) {
3098 		if (nelts == ETHERADDRL) {
3099 			while (nelts--)
3100 				cidp->vendor_addr.addr[nelts] = bytes[nelts];
3101 			cidp->vendor_addr.set = B_TRUE;
3102 		}
3103 		ddi_prop_free(bytes);
3104 	}
3105 
3106 	BGE_DEBUG(("bge_find_mac_address: +local %s (%sset)",
3107 	    ether_sprintf((void *)cidp->vendor_addr.addr),
3108 	    cidp->vendor_addr.set ? "" : "not "));
3109 
3110 	/*
3111 	 * Look up the OBP property "local-mac-address?".  Note that even
3112 	 * though its value is a string (which should be "true" or "false"),
3113 	 * it can't be decoded by ddi_prop_lookup_string(9F).  So, we zero
3114 	 * the buffer first and then fetch the property as an untyped array;
3115 	 * this may or may not include a final NUL, but since there will
3116 	 * always be one left at the end of the buffer we can now treat it
3117 	 * as a string anyway.
3118 	 */
3119 	nelts = sizeof (propbuf);
3120 	bzero(propbuf, nelts--);
3121 	err = ddi_getlongprop_buf(DDI_DEV_T_ANY, bgep->devinfo,
3122 	    DDI_PROP_CANSLEEP, localmac_boolname, propbuf, (int *)&nelts);
3123 
3124 	/*
3125 	 * Now, if the address still isn't set from the hardware (SEEPROM)
3126 	 * or the OBP or .conf property, OR if the user has foolishly set
3127 	 * 'local-mac-address? = false', use "the system address" instead
3128 	 * (but only if it's non-null i.e. has been set from the IDPROM).
3129 	 */
3130 	if (cidp->vendor_addr.set == B_FALSE || strcmp(propbuf, "false") == 0)
3131 		if (localetheraddr(NULL, &sysaddr) != 0) {
3132 			ethaddr_copy(&sysaddr, cidp->vendor_addr.addr);
3133 			cidp->vendor_addr.set = B_TRUE;
3134 		}
3135 
3136 	BGE_DEBUG(("bge_find_mac_address: +system %s (%sset)",
3137 	    ether_sprintf((void *)cidp->vendor_addr.addr),
3138 	    cidp->vendor_addr.set ? "" : "not "));
3139 
3140 	/*
3141 	 * Finally(!), if there's a valid "mac-address" property (created
3142 	 * if we netbooted from this interface), we must use this instead
3143 	 * of any of the above to ensure that the NFS/install server doesn't
3144 	 * get confused by the address changing as Solaris takes over!
3145 	 */
3146 	err = ddi_prop_lookup_byte_array(DDI_DEV_T_ANY, bgep->devinfo,
3147 	    DDI_PROP_DONTPASS, macaddr_propname, &bytes, &nelts);
3148 	if (err == DDI_PROP_SUCCESS) {
3149 		if (nelts == ETHERADDRL) {
3150 			while (nelts--)
3151 				cidp->vendor_addr.addr[nelts] = bytes[nelts];
3152 			cidp->vendor_addr.set = B_TRUE;
3153 		}
3154 		ddi_prop_free(bytes);
3155 	}
3156 
3157 	BGE_DEBUG(("bge_find_mac_address: =final %s (%sset)",
3158 	    ether_sprintf((void *)cidp->vendor_addr.addr),
3159 	    cidp->vendor_addr.set ? "" : "not "));
3160 }
3161 
3162 /*ARGSUSED*/
3163 int
3164 bge_check_acc_handle(bge_t *bgep, ddi_acc_handle_t handle)
3165 {
3166 	ddi_fm_error_t de;
3167 
3168 	ddi_fm_acc_err_get(handle, &de, DDI_FME_VERSION);
3169 	ddi_fm_acc_err_clear(handle, DDI_FME_VERSION);
3170 	return (de.fme_status);
3171 }
3172 
3173 /*ARGSUSED*/
3174 int
3175 bge_check_dma_handle(bge_t *bgep, ddi_dma_handle_t handle)
3176 {
3177 	ddi_fm_error_t de;
3178 
3179 	ASSERT(bgep->progress & PROGRESS_BUFS);
3180 	ddi_fm_dma_err_get(handle, &de, DDI_FME_VERSION);
3181 	return (de.fme_status);
3182 }
3183 
3184 /*
3185  * The IO fault service error handling callback function
3186  */
3187 /*ARGSUSED*/
3188 static int
3189 bge_fm_error_cb(dev_info_t *dip, ddi_fm_error_t *err, const void *impl_data)
3190 {
3191 	/*
3192 	 * as the driver can always deal with an error in any dma or
3193 	 * access handle, we can just return the fme_status value.
3194 	 */
3195 	pci_ereport_post(dip, err, NULL);
3196 	return (err->fme_status);
3197 }
3198 
3199 static void
3200 bge_fm_init(bge_t *bgep)
3201 {
3202 	ddi_iblock_cookie_t iblk;
3203 
3204 	/* Only register with IO Fault Services if we have some capability */
3205 	if (bgep->fm_capabilities) {
3206 		bge_reg_accattr.devacc_attr_access = DDI_FLAGERR_ACC;
3207 		dma_attr.dma_attr_flags = DDI_DMA_FLAGERR;
3208 
3209 		/* Register capabilities with IO Fault Services */
3210 		ddi_fm_init(bgep->devinfo, &bgep->fm_capabilities, &iblk);
3211 
3212 		/*
3213 		 * Initialize pci ereport capabilities if ereport capable
3214 		 */
3215 		if (DDI_FM_EREPORT_CAP(bgep->fm_capabilities) ||
3216 		    DDI_FM_ERRCB_CAP(bgep->fm_capabilities))
3217 			pci_ereport_setup(bgep->devinfo);
3218 
3219 		/*
3220 		 * Register error callback if error callback capable
3221 		 */
3222 		if (DDI_FM_ERRCB_CAP(bgep->fm_capabilities))
3223 			ddi_fm_handler_register(bgep->devinfo,
3224 			    bge_fm_error_cb, (void*) bgep);
3225 	} else {
3226 		/*
3227 		 * These fields have to be cleared of FMA if there are no
3228 		 * FMA capabilities at runtime.
3229 		 */
3230 		bge_reg_accattr.devacc_attr_access = DDI_DEFAULT_ACC;
3231 		dma_attr.dma_attr_flags = 0;
3232 	}
3233 }
3234 
3235 static void
3236 bge_fm_fini(bge_t *bgep)
3237 {
3238 	/* Only unregister FMA capabilities if we registered some */
3239 	if (bgep->fm_capabilities) {
3240 
3241 		/*
3242 		 * Release any resources allocated by pci_ereport_setup()
3243 		 */
3244 		if (DDI_FM_EREPORT_CAP(bgep->fm_capabilities) ||
3245 		    DDI_FM_ERRCB_CAP(bgep->fm_capabilities))
3246 			pci_ereport_teardown(bgep->devinfo);
3247 
3248 		/*
3249 		 * Un-register error callback if error callback capable
3250 		 */
3251 		if (DDI_FM_ERRCB_CAP(bgep->fm_capabilities))
3252 			ddi_fm_handler_unregister(bgep->devinfo);
3253 
3254 		/* Unregister from IO Fault Services */
3255 		ddi_fm_fini(bgep->devinfo);
3256 	}
3257 }
3258 
3259 static void
3260 #ifdef BGE_IPMI_ASF
3261 bge_unattach(bge_t *bgep, uint_t asf_mode)
3262 #else
3263 bge_unattach(bge_t *bgep)
3264 #endif
3265 {
3266 	BGE_TRACE(("bge_unattach($%p)",
3267 		(void *)bgep));
3268 
3269 	/*
3270 	 * Flag that no more activity may be initiated
3271 	 */
3272 	bgep->progress &= ~PROGRESS_READY;
3273 
3274 	/*
3275 	 * Quiesce the PHY and MAC (leave it reset but still powered).
3276 	 * Clean up and free all BGE data structures
3277 	 */
3278 	if (bgep->periodic_id != NULL) {
3279 		ddi_periodic_delete(bgep->periodic_id);
3280 		bgep->periodic_id = NULL;
3281 	}
3282 
3283 	if (bgep->progress & PROGRESS_KSTATS)
3284 		bge_fini_kstats(bgep);
3285 	if (bgep->progress & PROGRESS_PHY)
3286 		bge_phys_reset(bgep);
3287 	if (bgep->progress & PROGRESS_HWINT) {
3288 		mutex_enter(bgep->genlock);
3289 #ifdef BGE_IPMI_ASF
3290 		if (bge_chip_reset(bgep, B_FALSE, asf_mode) != DDI_SUCCESS)
3291 #else
3292 		if (bge_chip_reset(bgep, B_FALSE) != DDI_SUCCESS)
3293 #endif
3294 			ddi_fm_service_impact(bgep->devinfo,
3295 			    DDI_SERVICE_UNAFFECTED);
3296 #ifdef BGE_IPMI_ASF
3297 		if (bgep->asf_enabled) {
3298 			/*
3299 			 * This register has been overlaid. We restore its
3300 			 * initial value here.
3301 			 */
3302 			bge_nic_put32(bgep, BGE_NIC_DATA_SIG_ADDR,
3303 			    BGE_NIC_DATA_SIG);
3304 		}
3305 #endif
3306 		if (bge_check_acc_handle(bgep, bgep->cfg_handle) != DDI_FM_OK)
3307 			ddi_fm_service_impact(bgep->devinfo,
3308 			    DDI_SERVICE_UNAFFECTED);
3309 		if (bge_check_acc_handle(bgep, bgep->io_handle) != DDI_FM_OK)
3310 			ddi_fm_service_impact(bgep->devinfo,
3311 			    DDI_SERVICE_UNAFFECTED);
3312 		mutex_exit(bgep->genlock);
3313 	}
3314 	if (bgep->progress & PROGRESS_INTR) {
3315 		bge_intr_disable(bgep);
3316 		bge_fini_rings(bgep);
3317 	}
3318 	if (bgep->progress & PROGRESS_HWINT) {
3319 		bge_rem_intrs(bgep);
3320 		rw_destroy(bgep->errlock);
3321 		mutex_destroy(bgep->softintrlock);
3322 		mutex_destroy(bgep->genlock);
3323 	}
3324 	if (bgep->progress & PROGRESS_FACTOTUM)
3325 		ddi_remove_softintr(bgep->factotum_id);
3326 	if (bgep->progress & PROGRESS_RESCHED)
3327 		ddi_remove_softintr(bgep->drain_id);
3328 	if (bgep->progress & PROGRESS_BUFS)
3329 		bge_free_bufs(bgep);
3330 	if (bgep->progress & PROGRESS_REGS) {
3331 		ddi_regs_map_free(&bgep->io_handle);
3332 		if (bgep->ape_enabled)
3333 			ddi_regs_map_free(&bgep->ape_handle);
3334 	}
3335 	if (bgep->progress & PROGRESS_CFG)
3336 		pci_config_teardown(&bgep->cfg_handle);
3337 
3338 	bge_fm_fini(bgep);
3339 
3340 	ddi_remove_minor_node(bgep->devinfo, NULL);
3341 	kmem_free(bgep->pstats, sizeof (bge_statistics_reg_t));
3342 	kmem_free(bgep, sizeof (*bgep));
3343 }
3344 
3345 static int
3346 bge_resume(dev_info_t *devinfo)
3347 {
3348 	bge_t *bgep;				/* Our private data	*/
3349 	chip_id_t *cidp;
3350 	chip_id_t chipid;
3351 
3352 	bgep = ddi_get_driver_private(devinfo);
3353 	if (bgep == NULL)
3354 		return (DDI_FAILURE);
3355 
3356 	/*
3357 	 * Refuse to resume if the data structures aren't consistent
3358 	 */
3359 	if (bgep->devinfo != devinfo)
3360 		return (DDI_FAILURE);
3361 
3362 #ifdef BGE_IPMI_ASF
3363 	/*
3364 	 * Power management hasn't been supported in BGE now. If you
3365 	 * want to implement it, please add the ASF/IPMI related
3366 	 * code here.
3367 	 */
3368 
3369 #endif
3370 
3371 	/*
3372 	 * Read chip ID & set up config space command register(s)
3373 	 * Refuse to resume if the chip has changed its identity!
3374 	 */
3375 	cidp = &bgep->chipid;
3376 	mutex_enter(bgep->genlock);
3377 	bge_chip_cfg_init(bgep, &chipid, B_FALSE);
3378 	if (bge_check_acc_handle(bgep, bgep->cfg_handle) != DDI_FM_OK) {
3379 		ddi_fm_service_impact(bgep->devinfo, DDI_SERVICE_LOST);
3380 		mutex_exit(bgep->genlock);
3381 		return (DDI_FAILURE);
3382 	}
3383 	mutex_exit(bgep->genlock);
3384 	if (chipid.vendor != cidp->vendor)
3385 		return (DDI_FAILURE);
3386 	if (chipid.device != cidp->device)
3387 		return (DDI_FAILURE);
3388 	if (chipid.revision != cidp->revision)
3389 		return (DDI_FAILURE);
3390 	if (chipid.asic_rev != cidp->asic_rev)
3391 		return (DDI_FAILURE);
3392 
3393 	/*
3394 	 * All OK, reinitialise h/w & kick off GLD scheduling
3395 	 */
3396 	mutex_enter(bgep->genlock);
3397 	if (bge_restart(bgep, B_TRUE) != DDI_SUCCESS) {
3398 		(void) bge_check_acc_handle(bgep, bgep->cfg_handle);
3399 		(void) bge_check_acc_handle(bgep, bgep->io_handle);
3400 		ddi_fm_service_impact(bgep->devinfo, DDI_SERVICE_LOST);
3401 		mutex_exit(bgep->genlock);
3402 		return (DDI_FAILURE);
3403 	}
3404 	if (bge_check_acc_handle(bgep, bgep->cfg_handle) != DDI_FM_OK) {
3405 		ddi_fm_service_impact(bgep->devinfo, DDI_SERVICE_LOST);
3406 		mutex_exit(bgep->genlock);
3407 		return (DDI_FAILURE);
3408 	}
3409 	if (bge_check_acc_handle(bgep, bgep->io_handle) != DDI_FM_OK) {
3410 		ddi_fm_service_impact(bgep->devinfo, DDI_SERVICE_LOST);
3411 		mutex_exit(bgep->genlock);
3412 		return (DDI_FAILURE);
3413 	}
3414 	mutex_exit(bgep->genlock);
3415 	return (DDI_SUCCESS);
3416 }
3417 
3418 static int
3419 bge_fw_img_is_valid(bge_t *bgep, uint32_t offset)
3420 {
3421 	uint32_t val;
3422 
3423 	if (bge_nvmem_read32(bgep, offset, &val) ||
3424 	    (val & 0xfc000000) != 0x0c000000 ||
3425 	    bge_nvmem_read32(bgep, offset + 4, &val) ||
3426 	    val != 0)
3427 		return (0);
3428 
3429 	return (1);
3430 }
3431 
3432 static void
3433 bge_read_mgmtfw_ver(bge_t *bgep)
3434 {
3435 	uint32_t val;
3436 	uint32_t offset;
3437 	uint32_t start;
3438 	int i, vlen;
3439 
3440 	for (offset = NVM_DIR_START;
3441 	     offset < NVM_DIR_END;
3442 	     offset += NVM_DIRENT_SIZE) {
3443 		if (bge_nvmem_read32(bgep, offset, &val))
3444 			return;
3445 
3446 		if ((val >> NVM_DIRTYPE_SHIFT) == NVM_DIRTYPE_ASFINI)
3447 			break;
3448 	}
3449 
3450 	if (offset == NVM_DIR_END)
3451 		return;
3452 
3453 	if (bge_nvmem_read32(bgep, offset - 4, &start))
3454 		return;
3455 
3456 	if (bge_nvmem_read32(bgep, offset + 4, &offset) ||
3457 	    !bge_fw_img_is_valid(bgep, offset) ||
3458 	    bge_nvmem_read32(bgep, offset + 8, &val))
3459 		return;
3460 
3461 	offset += val - start;
3462 
3463 	vlen = strlen(bgep->fw_version);
3464 
3465 	bgep->fw_version[vlen++] = ',';
3466 	bgep->fw_version[vlen++] = ' ';
3467 
3468 	for (i = 0; i < 4; i++) {
3469 		uint32_t v;
3470 
3471 		if (bge_nvmem_read32(bgep, offset, &v))
3472 			return;
3473 
3474 		v = BE_32(v);
3475 
3476 		offset += sizeof(v);
3477 
3478 		if (vlen > BGE_FW_VER_SIZE - sizeof(v)) {
3479 			memcpy(&bgep->fw_version[vlen], &v, BGE_FW_VER_SIZE - vlen);
3480 			break;
3481 		}
3482 
3483 		memcpy(&bgep->fw_version[vlen], &v, sizeof(v));
3484 		vlen += sizeof(v);
3485 	}
3486 }
3487 
3488 static void
3489 bge_read_dash_ver(bge_t *bgep)
3490 {
3491 	int vlen;
3492 	uint32_t apedata;
3493 	char *fwtype;
3494 
3495 	if (!bgep->ape_enabled || !bgep->asf_enabled)
3496 		return;
3497 
3498 	apedata = bge_ape_get32(bgep, BGE_APE_SEG_SIG);
3499 	if (apedata != APE_SEG_SIG_MAGIC)
3500 		return;
3501 
3502 	apedata = bge_ape_get32(bgep, BGE_APE_FW_STATUS);
3503 	if (!(apedata & APE_FW_STATUS_READY))
3504 		return;
3505 
3506 	apedata = bge_ape_get32(bgep, BGE_APE_FW_VERSION);
3507 
3508 	if (bge_ape_get32(bgep, BGE_APE_FW_FEATURES) &
3509 	    BGE_APE_FW_FEATURE_NCSI) {
3510 		bgep->ape_has_ncsi = B_TRUE;
3511 		fwtype = "NCSI";
3512 	} else if ((bgep->chipid.device == DEVICE_ID_5725) ||
3513 	    (bgep->chipid.device == DEVICE_ID_5727)) {
3514 		fwtype = "SMASH";
3515 	} else {
3516 		fwtype = "DASH";
3517 	}
3518 
3519 	vlen = strlen(bgep->fw_version);
3520 
3521 	snprintf(&bgep->fw_version[vlen], BGE_FW_VER_SIZE - vlen,
3522 	    " %s v%d.%d.%d.%d", fwtype,
3523 	    (apedata & APE_FW_VERSION_MAJMSK) >> APE_FW_VERSION_MAJSFT,
3524 	    (apedata & APE_FW_VERSION_MINMSK) >> APE_FW_VERSION_MINSFT,
3525 	    (apedata & APE_FW_VERSION_REVMSK) >> APE_FW_VERSION_REVSFT,
3526 	    (apedata & APE_FW_VERSION_BLDMSK));
3527 }
3528 
3529 static void
3530 bge_read_bc_ver(bge_t *bgep)
3531 {
3532 	uint32_t val;
3533 	uint32_t offset;
3534 	uint32_t start;
3535 	uint32_t ver_offset;
3536 	int i, dst_off;
3537 	uint32_t major;
3538 	uint32_t minor;
3539 	boolean_t newver = B_FALSE;
3540 
3541 	if (bge_nvmem_read32(bgep, 0xc, &offset) ||
3542 	    bge_nvmem_read32(bgep, 0x4, &start))
3543 		return;
3544 
3545 	if (bge_nvmem_read32(bgep, offset, &val))
3546 		return;
3547 
3548 	if ((val & 0xfc000000) == 0x0c000000) {
3549 		if (bge_nvmem_read32(bgep, offset + 4, &val))
3550 			return;
3551 
3552 		if (val == 0)
3553 			newver = B_TRUE;
3554 	}
3555 
3556 	dst_off = strlen(bgep->fw_version);
3557 
3558 	if (newver) {
3559 		if (((BGE_FW_VER_SIZE - dst_off) < 16) ||
3560 		    bge_nvmem_read32(bgep, offset + 8, &ver_offset))
3561 			return;
3562 
3563 		offset = offset + ver_offset - start;
3564 		for (i = 0; i < 16; i += 4) {
3565 			if (bge_nvmem_read32(bgep, offset + i, &val))
3566 				return;
3567 			val = BE_32(val);
3568 			memcpy(bgep->fw_version + dst_off + i, &val,
3569 			    sizeof(val));
3570 		}
3571 	} else {
3572 		if (bge_nvmem_read32(bgep, NVM_PTREV_BCVER, &ver_offset))
3573 			return;
3574 
3575 		major = (ver_offset & NVM_BCVER_MAJMSK) >> NVM_BCVER_MAJSFT;
3576 		minor = ver_offset & NVM_BCVER_MINMSK;
3577 		snprintf(&bgep->fw_version[dst_off], BGE_FW_VER_SIZE - dst_off,
3578 		    "v%d.%02d", major, minor);
3579 	}
3580 }
3581 
3582 static void
3583 bge_read_fw_ver(bge_t *bgep)
3584 {
3585 	uint32_t val;
3586 	uint32_t magic;
3587 
3588 	*bgep->fw_version = 0;
3589 
3590 	if ((bgep->chipid.nvtype == BGE_NVTYPE_NONE) ||
3591 	    (bgep->chipid.nvtype == BGE_NVTYPE_UNKNOWN)) {
3592 		snprintf(bgep->fw_version, sizeof(bgep->fw_version), "sb");
3593 		return;
3594 	}
3595 
3596 	mutex_enter(bgep->genlock);
3597 
3598 	bge_nvmem_read32(bgep, 0, &magic);
3599 
3600 	if (magic == EEPROM_MAGIC) {
3601 		bge_read_bc_ver(bgep);
3602 	} else {
3603 		/* ignore other configs for now */
3604 		mutex_exit(bgep->genlock);
3605 		return;
3606 	}
3607 
3608 	if (bgep->ape_enabled) {
3609 		if (bgep->asf_enabled) {
3610 			bge_read_dash_ver(bgep);
3611 		}
3612 	} else if (bgep->asf_enabled) {
3613 		bge_read_mgmtfw_ver(bgep);
3614 	}
3615 
3616 	mutex_exit(bgep->genlock);
3617 
3618 	bgep->fw_version[BGE_FW_VER_SIZE - 1] = 0; /* safety */
3619 }
3620 
3621 /*
3622  * attach(9E) -- Attach a device to the system
3623  *
3624  * Called once for each board successfully probed.
3625  */
3626 static int
3627 bge_attach(dev_info_t *devinfo, ddi_attach_cmd_t cmd)
3628 {
3629 	bge_t *bgep;				/* Our private data	*/
3630 	mac_register_t *macp;
3631 	chip_id_t *cidp;
3632 	caddr_t regs;
3633 	int instance;
3634 	int err;
3635 	int intr_types;
3636 	int *props = NULL;
3637 	uint_t numProps;
3638 	uint32_t regval;
3639 	uint32_t pci_state_reg;
3640 #ifdef BGE_IPMI_ASF
3641 	uint32_t mhcrValue;
3642 #ifdef __sparc
3643 	uint16_t value16;
3644 #endif
3645 #ifdef BGE_NETCONSOLE
3646 	int retval;
3647 #endif
3648 #endif
3649 
3650 	instance = ddi_get_instance(devinfo);
3651 
3652 	BGE_GTRACE(("bge_attach($%p, %d) instance %d",
3653 	    (void *)devinfo, cmd, instance));
3654 	BGE_BRKPT(NULL, "bge_attach");
3655 
3656 	switch (cmd) {
3657 	default:
3658 		return (DDI_FAILURE);
3659 
3660 	case DDI_RESUME:
3661 		return (bge_resume(devinfo));
3662 
3663 	case DDI_ATTACH:
3664 		break;
3665 	}
3666 
3667 	bgep = kmem_zalloc(sizeof (*bgep), KM_SLEEP);
3668 	bgep->pstats = kmem_zalloc(sizeof (bge_statistics_reg_t), KM_SLEEP);
3669 	ddi_set_driver_private(devinfo, bgep);
3670 	bgep->bge_guard = BGE_GUARD;
3671 	bgep->devinfo = devinfo;
3672 	bgep->param_drain_max = 64;
3673 	bgep->param_msi_cnt = 0;
3674 	bgep->param_loop_mode = 0;
3675 
3676 	/*
3677 	 * Initialize more fields in BGE private data
3678 	 */
3679 	bgep->debug = ddi_prop_get_int(DDI_DEV_T_ANY, devinfo,
3680 	    DDI_PROP_DONTPASS, debug_propname, bge_debug);
3681 	(void) snprintf(bgep->ifname, sizeof (bgep->ifname), "%s%d",
3682 	    BGE_DRIVER_NAME, instance);
3683 
3684 	/*
3685 	 * Initialize for fma support
3686 	 */
3687 	bgep->fm_capabilities = ddi_prop_get_int(DDI_DEV_T_ANY, devinfo,
3688 	    DDI_PROP_DONTPASS, fm_cap,
3689 	    DDI_FM_EREPORT_CAPABLE | DDI_FM_ACCCHK_CAPABLE |
3690 	    DDI_FM_DMACHK_CAPABLE | DDI_FM_ERRCB_CAPABLE);
3691 	BGE_DEBUG(("bgep->fm_capabilities = %d", bgep->fm_capabilities));
3692 	bge_fm_init(bgep);
3693 
3694 	/*
3695 	 * Look up the IOMMU's page size for DVMA mappings (must be
3696 	 * a power of 2) and convert to a mask.  This can be used to
3697 	 * determine whether a message buffer crosses a page boundary.
3698 	 * Note: in 2s complement binary notation, if X is a power of
3699 	 * 2, then -X has the representation "11...1100...00".
3700 	 */
3701 	bgep->pagemask = dvma_pagesize(devinfo);
3702 	ASSERT(ddi_ffs(bgep->pagemask) == ddi_fls(bgep->pagemask));
3703 	bgep->pagemask = -bgep->pagemask;
3704 
3705 	/*
3706 	 * Map config space registers
3707 	 * Read chip ID & set up config space command register(s)
3708 	 *
3709 	 * Note: this leaves the chip accessible by Memory Space
3710 	 * accesses, but with interrupts and Bus Mastering off.
3711 	 * This should ensure that nothing untoward will happen
3712 	 * if it has been left active by the (net-)bootloader.
3713 	 * We'll re-enable Bus Mastering once we've reset the chip,
3714 	 * and allow interrupts only when everything else is set up.
3715 	 */
3716 	err = pci_config_setup(devinfo, &bgep->cfg_handle);
3717 
3718 	bgep->ape_enabled = B_FALSE;
3719 	bgep->ape_regs = NULL;
3720 
3721 	if (DEVICE_5717_SERIES_CHIPSETS(bgep) ||
3722 	    DEVICE_5725_SERIES_CHIPSETS(bgep)) {
3723 		err = ddi_regs_map_setup(devinfo, BGE_PCI_APEREGS_RNUMBER,
3724 		    &regs, 0, 0, &bge_reg_accattr, &bgep->ape_handle);
3725 		if (err != DDI_SUCCESS) {
3726 			ddi_regs_map_free(&bgep->io_handle);
3727 			bge_problem(bgep, "ddi_regs_map_setup() failed");
3728 			goto attach_fail;
3729 		}
3730 		bgep->ape_regs    = regs;
3731 		bgep->ape_enabled = B_TRUE;
3732 
3733 		/*
3734 		 * Allow reads and writes to the
3735 		 * APE register and memory space.
3736 		 */
3737 
3738 		pci_state_reg = pci_config_get32(bgep->cfg_handle,
3739 		    PCI_CONF_BGE_PCISTATE);
3740 		pci_state_reg |= PCISTATE_ALLOW_APE_CTLSPC_WR |
3741 		    PCISTATE_ALLOW_APE_SHMEM_WR | PCISTATE_ALLOW_APE_PSPACE_WR;
3742 		pci_config_put32(bgep->cfg_handle,
3743 		    PCI_CONF_BGE_PCISTATE, pci_state_reg);
3744 		bge_ape_lock_init(bgep);
3745 	}
3746 
3747 #ifdef BGE_IPMI_ASF
3748 #ifdef __sparc
3749 	/*
3750 	 * We need to determine the type of chipset for accessing some configure
3751 	 * registers. (This information will be used by bge_ind_put32,
3752 	 * bge_ind_get32 and bge_nic_read32)
3753 	 */
3754 	bgep->chipid.device = pci_config_get16(bgep->cfg_handle,
3755 	    PCI_CONF_DEVID);
3756 	value16 = pci_config_get16(bgep->cfg_handle, PCI_CONF_COMM);
3757 	value16 = value16 | (PCI_COMM_MAE | PCI_COMM_ME);
3758 	pci_config_put16(bgep->cfg_handle, PCI_CONF_COMM, value16);
3759 	mhcrValue = MHCR_ENABLE_INDIRECT_ACCESS |
3760 	    MHCR_ENABLE_TAGGED_STATUS_MODE |
3761 	    MHCR_MASK_INTERRUPT_MODE |
3762 	    MHCR_MASK_PCI_INT_OUTPUT |
3763 	    MHCR_CLEAR_INTERRUPT_INTA |
3764 	    MHCR_ENABLE_ENDIAN_WORD_SWAP |
3765 	    MHCR_ENABLE_ENDIAN_BYTE_SWAP;
3766 	/*
3767 	 * For some chipsets (e.g., BCM5718), if MHCR_ENABLE_ENDIAN_BYTE_SWAP
3768 	 * has been set in PCI_CONF_COMM already, we need to write the
3769 	 * byte-swapped value to it. So we just write zero first for simplicity.
3770 	 */
3771 	if (DEVICE_5717_SERIES_CHIPSETS(bgep) ||
3772 	    DEVICE_5725_SERIES_CHIPSETS(bgep) ||
3773 	    DEVICE_57765_SERIES_CHIPSETS(bgep))
3774 		pci_config_put32(bgep->cfg_handle, PCI_CONF_BGE_MHCR, 0);
3775 #else
3776 	mhcrValue = MHCR_ENABLE_INDIRECT_ACCESS |
3777 	    MHCR_ENABLE_TAGGED_STATUS_MODE |
3778 	    MHCR_MASK_INTERRUPT_MODE |
3779 	    MHCR_MASK_PCI_INT_OUTPUT |
3780 	    MHCR_CLEAR_INTERRUPT_INTA;
3781 #endif
3782 	pci_config_put32(bgep->cfg_handle, PCI_CONF_BGE_MHCR, mhcrValue);
3783 	bge_ind_put32(bgep, MEMORY_ARBITER_MODE_REG,
3784 	    bge_ind_get32(bgep, MEMORY_ARBITER_MODE_REG) |
3785 	    MEMORY_ARBITER_ENABLE);
3786 	if (mhcrValue & MHCR_ENABLE_ENDIAN_WORD_SWAP) {
3787 		bgep->asf_wordswapped = B_TRUE;
3788 	} else {
3789 		bgep->asf_wordswapped = B_FALSE;
3790 	}
3791 	bge_asf_get_config(bgep);
3792 #endif
3793 	if (err != DDI_SUCCESS) {
3794 		bge_problem(bgep, "pci_config_setup() failed");
3795 		goto attach_fail;
3796 	}
3797 	bgep->progress |= PROGRESS_CFG;
3798 	cidp = &bgep->chipid;
3799 	bzero(cidp, sizeof(*cidp));
3800 	bge_chip_cfg_init(bgep, cidp, B_FALSE);
3801 	if (bge_check_acc_handle(bgep, bgep->cfg_handle) != DDI_FM_OK) {
3802 		ddi_fm_service_impact(bgep->devinfo, DDI_SERVICE_LOST);
3803 		goto attach_fail;
3804 	}
3805 
3806 #ifdef BGE_IPMI_ASF
3807 	if (DEVICE_5721_SERIES_CHIPSETS(bgep) ||
3808 	    DEVICE_5714_SERIES_CHIPSETS(bgep)) {
3809 		bgep->asf_newhandshake = B_TRUE;
3810 	} else {
3811 		bgep->asf_newhandshake = B_FALSE;
3812 	}
3813 #endif
3814 
3815 	/*
3816 	 * Update those parts of the chip ID derived from volatile
3817 	 * registers with the values seen by OBP (in case the chip
3818 	 * has been reset externally and therefore lost them).
3819 	 */
3820 	cidp->subven = ddi_prop_get_int(DDI_DEV_T_ANY, devinfo,
3821 	    DDI_PROP_DONTPASS, subven_propname, cidp->subven);
3822 	cidp->subdev = ddi_prop_get_int(DDI_DEV_T_ANY, devinfo,
3823 	    DDI_PROP_DONTPASS, subdev_propname, cidp->subdev);
3824 	cidp->clsize = ddi_prop_get_int(DDI_DEV_T_ANY, devinfo,
3825 	    DDI_PROP_DONTPASS, clsize_propname, cidp->clsize);
3826 	cidp->latency = ddi_prop_get_int(DDI_DEV_T_ANY, devinfo,
3827 	    DDI_PROP_DONTPASS, latency_propname, cidp->latency);
3828 	cidp->rx_rings = ddi_prop_get_int(DDI_DEV_T_ANY, devinfo,
3829 	    DDI_PROP_DONTPASS, rxrings_propname, cidp->rx_rings);
3830 	cidp->tx_rings = ddi_prop_get_int(DDI_DEV_T_ANY, devinfo,
3831 	    DDI_PROP_DONTPASS, txrings_propname, cidp->tx_rings);
3832 	cidp->eee = ddi_prop_get_int(DDI_DEV_T_ANY, devinfo,
3833 	    DDI_PROP_DONTPASS, eee_propname, cidp->eee);
3834 
3835 	cidp->default_mtu = ddi_prop_get_int(DDI_DEV_T_ANY, devinfo,
3836 	    DDI_PROP_DONTPASS, default_mtu, BGE_DEFAULT_MTU);
3837 	if ((cidp->default_mtu < BGE_DEFAULT_MTU) ||
3838 	    (cidp->default_mtu > BGE_MAXIMUM_MTU)) {
3839 		cidp->default_mtu = BGE_DEFAULT_MTU;
3840 	}
3841 
3842 	/*
3843 	 * Map operating registers
3844 	 */
3845 	err = ddi_regs_map_setup(devinfo, BGE_PCI_OPREGS_RNUMBER,
3846 	    &regs, 0, 0, &bge_reg_accattr, &bgep->io_handle);
3847 	if (err != DDI_SUCCESS) {
3848 		bge_problem(bgep, "ddi_regs_map_setup() failed");
3849 		goto attach_fail;
3850 	}
3851 	bgep->io_regs = regs;
3852 
3853 	bgep->progress |= PROGRESS_REGS;
3854 
3855 	/*
3856 	 * Characterise the device, so we know its requirements.
3857 	 * Then allocate the appropriate TX and RX descriptors & buffers.
3858 	 */
3859 	if (bge_chip_id_init(bgep) == EIO) {
3860 		ddi_fm_service_impact(bgep->devinfo, DDI_SERVICE_LOST);
3861 		goto attach_fail;
3862 	}
3863 
3864 	err = ddi_prop_lookup_int_array(DDI_DEV_T_ANY, bgep->devinfo,
3865 	    0, "reg", &props, &numProps);
3866 	if ((err == DDI_PROP_SUCCESS) && (numProps > 0)) {
3867 		bgep->pci_bus  = PCI_REG_BUS_G(props[0]);
3868 		bgep->pci_dev  = PCI_REG_DEV_G(props[0]);
3869 		bgep->pci_func = PCI_REG_FUNC_G(props[0]);
3870 		ddi_prop_free(props);
3871 	}
3872 
3873 	if (DEVICE_5717_SERIES_CHIPSETS(bgep) ||
3874 	    DEVICE_5725_SERIES_CHIPSETS(bgep)) {
3875 		regval = bge_reg_get32(bgep, CPMU_STATUS_REG);
3876 		if ((bgep->chipid.device == DEVICE_ID_5719) ||
3877 		    (bgep->chipid.device == DEVICE_ID_5720)) {
3878 			bgep->pci_func =
3879 			    ((regval & CPMU_STATUS_FUNC_NUM_5719) >>
3880 			    CPMU_STATUS_FUNC_NUM_5719_SHIFT);
3881 		} else {
3882 			bgep->pci_func = ((regval & CPMU_STATUS_FUNC_NUM) >>
3883 			    CPMU_STATUS_FUNC_NUM_SHIFT);
3884 		}
3885 	}
3886 
3887 	err = bge_alloc_bufs(bgep);
3888 	if (err != DDI_SUCCESS) {
3889 		bge_problem(bgep, "DMA buffer allocation failed");
3890 		goto attach_fail;
3891 	}
3892 	bgep->progress |= PROGRESS_BUFS;
3893 
3894 	/*
3895 	 * Add the softint handlers:
3896 	 *
3897 	 * Both of these handlers are used to avoid restrictions on the
3898 	 * context and/or mutexes required for some operations.  In
3899 	 * particular, the hardware interrupt handler and its subfunctions
3900 	 * can detect a number of conditions that we don't want to handle
3901 	 * in that context or with that set of mutexes held.  So, these
3902 	 * softints are triggered instead:
3903 	 *
3904 	 * the <resched> softint is triggered if we have previously
3905 	 * had to refuse to send a packet because of resource shortage
3906 	 * (we've run out of transmit buffers), but the send completion
3907 	 * interrupt handler has now detected that more buffers have
3908 	 * become available.
3909 	 *
3910 	 * the <factotum> is triggered if the h/w interrupt handler
3911 	 * sees the <link state changed> or <error> bits in the status
3912 	 * block.  It's also triggered periodically to poll the link
3913 	 * state, just in case we aren't getting link status change
3914 	 * interrupts ...
3915 	 */
3916 	err = ddi_add_softintr(devinfo, DDI_SOFTINT_LOW, &bgep->drain_id,
3917 	    NULL, NULL, bge_send_drain, (caddr_t)bgep);
3918 	if (err != DDI_SUCCESS) {
3919 		bge_problem(bgep, "ddi_add_softintr() failed");
3920 		goto attach_fail;
3921 	}
3922 	bgep->progress |= PROGRESS_RESCHED;
3923 	err = ddi_add_softintr(devinfo, DDI_SOFTINT_LOW, &bgep->factotum_id,
3924 	    NULL, NULL, bge_chip_factotum, (caddr_t)bgep);
3925 	if (err != DDI_SUCCESS) {
3926 		bge_problem(bgep, "ddi_add_softintr() failed");
3927 		goto attach_fail;
3928 	}
3929 	bgep->progress |= PROGRESS_FACTOTUM;
3930 
3931 	/* Get supported interrupt types */
3932 	if (ddi_intr_get_supported_types(devinfo, &intr_types) != DDI_SUCCESS) {
3933 		bge_error(bgep, "ddi_intr_get_supported_types failed\n");
3934 
3935 		goto attach_fail;
3936 	}
3937 
3938 	BGE_DEBUG(("%s: ddi_intr_get_supported_types() returned: %x",
3939 	    bgep->ifname, intr_types));
3940 
3941 	if ((intr_types & DDI_INTR_TYPE_MSI) && bgep->chipid.msi_enabled) {
3942 		if (bge_add_intrs(bgep, DDI_INTR_TYPE_MSI) != DDI_SUCCESS) {
3943 			bge_error(bgep, "MSI registration failed, "
3944 			    "trying FIXED interrupt type\n");
3945 		} else {
3946 			BGE_DEBUG(("%s: Using MSI interrupt type",
3947 			    bgep->ifname));
3948 			bgep->intr_type = DDI_INTR_TYPE_MSI;
3949 			bgep->progress |= PROGRESS_HWINT;
3950 		}
3951 	}
3952 
3953 	if (!(bgep->progress & PROGRESS_HWINT) &&
3954 	    (intr_types & DDI_INTR_TYPE_FIXED)) {
3955 		if (bge_add_intrs(bgep, DDI_INTR_TYPE_FIXED) != DDI_SUCCESS) {
3956 			bge_error(bgep, "FIXED interrupt "
3957 			    "registration failed\n");
3958 			goto attach_fail;
3959 		}
3960 
3961 		BGE_DEBUG(("%s: Using FIXED interrupt type", bgep->ifname));
3962 
3963 		bgep->intr_type = DDI_INTR_TYPE_FIXED;
3964 		bgep->progress |= PROGRESS_HWINT;
3965 	}
3966 
3967 	if (!(bgep->progress & PROGRESS_HWINT)) {
3968 		bge_error(bgep, "No interrupts registered\n");
3969 		goto attach_fail;
3970 	}
3971 
3972 	/*
3973 	 * Note that interrupts are not enabled yet as
3974 	 * mutex locks are not initialized. Initialize mutex locks.
3975 	 */
3976 	mutex_init(bgep->genlock, NULL, MUTEX_DRIVER,
3977 	    DDI_INTR_PRI(bgep->intr_pri));
3978 	mutex_init(bgep->softintrlock, NULL, MUTEX_DRIVER,
3979 	    DDI_INTR_PRI(bgep->intr_pri));
3980 	rw_init(bgep->errlock, NULL, RW_DRIVER,
3981 	    DDI_INTR_PRI(bgep->intr_pri));
3982 
3983 	/*
3984 	 * Initialize rings.
3985 	 */
3986 	bge_init_rings(bgep);
3987 
3988 	/*
3989 	 * Now that mutex locks are initialized, enable interrupts.
3990 	 */
3991 	bge_intr_enable(bgep);
3992 	bgep->progress |= PROGRESS_INTR;
3993 
3994 	/*
3995 	 * Initialise link state variables
3996 	 * Stop, reset & reinitialise the chip.
3997 	 * Initialise the (internal) PHY.
3998 	 */
3999 	bgep->link_state = LINK_STATE_UNKNOWN;
4000 
4001 	mutex_enter(bgep->genlock);
4002 
4003 	/*
4004 	 * Reset chip & rings to initial state; also reset address
4005 	 * filtering, promiscuity, loopback mode.
4006 	 */
4007 #ifdef BGE_IPMI_ASF
4008 #ifdef BGE_NETCONSOLE
4009 	if (bge_reset(bgep, ASF_MODE_INIT) != DDI_SUCCESS) {
4010 #else
4011 	if (bge_reset(bgep, ASF_MODE_SHUTDOWN) != DDI_SUCCESS) {
4012 #endif
4013 #else
4014 	if (bge_reset(bgep) != DDI_SUCCESS) {
4015 #endif
4016 		(void) bge_check_acc_handle(bgep, bgep->cfg_handle);
4017 		(void) bge_check_acc_handle(bgep, bgep->io_handle);
4018 		ddi_fm_service_impact(bgep->devinfo, DDI_SERVICE_LOST);
4019 		mutex_exit(bgep->genlock);
4020 		goto attach_fail;
4021 	}
4022 
4023 #ifdef BGE_IPMI_ASF
4024 	if (bgep->asf_enabled) {
4025 		bgep->asf_status = ASF_STAT_RUN_INIT;
4026 	}
4027 #endif
4028 
4029 	bzero(bgep->mcast_hash, sizeof (bgep->mcast_hash));
4030 	bzero(bgep->mcast_refs, sizeof (bgep->mcast_refs));
4031 	bgep->promisc = B_FALSE;
4032 	bgep->param_loop_mode = BGE_LOOP_NONE;
4033 	if (bge_check_acc_handle(bgep, bgep->cfg_handle) != DDI_FM_OK) {
4034 		ddi_fm_service_impact(bgep->devinfo, DDI_SERVICE_LOST);
4035 		mutex_exit(bgep->genlock);
4036 		goto attach_fail;
4037 	}
4038 	if (bge_check_acc_handle(bgep, bgep->io_handle) != DDI_FM_OK) {
4039 		ddi_fm_service_impact(bgep->devinfo, DDI_SERVICE_LOST);
4040 		mutex_exit(bgep->genlock);
4041 		goto attach_fail;
4042 	}
4043 
4044 	mutex_exit(bgep->genlock);
4045 
4046 	if (bge_phys_init(bgep) == EIO) {
4047 		ddi_fm_service_impact(bgep->devinfo, DDI_SERVICE_LOST);
4048 		goto attach_fail;
4049 	}
4050 	bgep->progress |= PROGRESS_PHY;
4051 
4052 	/*
4053 	 * initialize NDD-tweakable parameters
4054 	 */
4055 	if (bge_nd_init(bgep)) {
4056 		bge_problem(bgep, "bge_nd_init() failed");
4057 		goto attach_fail;
4058 	}
4059 	bgep->progress |= PROGRESS_NDD;
4060 
4061 	/*
4062 	 * Create & initialise named kstats
4063 	 */
4064 	bge_init_kstats(bgep, instance);
4065 	bgep->progress |= PROGRESS_KSTATS;
4066 
4067 	/*
4068 	 * Determine whether to override the chip's own MAC address
4069 	 */
4070 	bge_find_mac_address(bgep, cidp);
4071 	{
4072 		int slot;
4073 		for (slot = 0; slot < MAC_ADDRESS_REGS_MAX; slot++) {
4074 			ethaddr_copy(cidp->vendor_addr.addr,
4075 			    bgep->curr_addr[slot].addr);
4076 			bgep->curr_addr[slot].set = 1;
4077 		}
4078 	}
4079 
4080 	bge_read_fw_ver(bgep);
4081 
4082 	bgep->unicst_addr_total = MAC_ADDRESS_REGS_MAX;
4083 	bgep->unicst_addr_avail = MAC_ADDRESS_REGS_MAX;
4084 
4085 	if ((macp = mac_alloc(MAC_VERSION)) == NULL)
4086 		goto attach_fail;
4087 	macp->m_type_ident = MAC_PLUGIN_IDENT_ETHER;
4088 	macp->m_driver = bgep;
4089 	macp->m_dip = devinfo;
4090 	macp->m_src_addr = cidp->vendor_addr.addr;
4091 	macp->m_callbacks = &bge_m_callbacks;
4092 	macp->m_min_sdu = 0;
4093 	macp->m_max_sdu = cidp->ethmax_size - sizeof (struct ether_header);
4094 	macp->m_margin = VLAN_TAGSZ;
4095 	macp->m_priv_props = bge_priv_prop;
4096 
4097 #if defined(ILLUMOS)
4098 	bge_m_unicst(bgep, cidp->vendor_addr.addr);
4099 #endif
4100 
4101 	/*
4102 	 * Finally, we're ready to register ourselves with the MAC layer
4103 	 * interface; if this succeeds, we're all ready to start()
4104 	 */
4105 	err = mac_register(macp, &bgep->mh);
4106 	mac_free(macp);
4107 	if (err != 0)
4108 		goto attach_fail;
4109 
4110 	mac_link_update(bgep->mh, LINK_STATE_UNKNOWN);
4111 
4112 	/*
4113 	 * Register a periodical handler.
4114 	 * bge_chip_cyclic() is invoked in kernel context.
4115 	 */
4116 	bgep->periodic_id = ddi_periodic_add(bge_chip_cyclic, bgep,
4117 	    BGE_CYCLIC_PERIOD, DDI_IPL_0);
4118 
4119 	bgep->progress |= PROGRESS_READY;
4120 	ASSERT(bgep->bge_guard == BGE_GUARD);
4121 #ifdef BGE_IPMI_ASF
4122 #ifdef BGE_NETCONSOLE
4123 	if (bgep->asf_enabled) {
4124 		mutex_enter(bgep->genlock);
4125 		retval = bge_chip_start(bgep, B_TRUE);
4126 		mutex_exit(bgep->genlock);
4127 		if (retval != DDI_SUCCESS)
4128 			goto attach_fail;
4129 	}
4130 #endif
4131 #endif
4132 
4133 	ddi_report_dev(devinfo);
4134 
4135 	return (DDI_SUCCESS);
4136 
4137 attach_fail:
4138 #ifdef BGE_IPMI_ASF
4139 	bge_unattach(bgep, ASF_MODE_SHUTDOWN);
4140 #else
4141 	bge_unattach(bgep);
4142 #endif
4143 	return (DDI_FAILURE);
4144 }
4145 
4146 /*
4147  *	bge_suspend() -- suspend transmit/receive for powerdown
4148  */
4149 static int
4150 bge_suspend(bge_t *bgep)
4151 {
4152 	/*
4153 	 * Stop processing and idle (powerdown) the PHY ...
4154 	 */
4155 	mutex_enter(bgep->genlock);
4156 #ifdef BGE_IPMI_ASF
4157 	/*
4158 	 * Power management hasn't been supported in BGE now. If you
4159 	 * want to implement it, please add the ASF/IPMI related
4160 	 * code here.
4161 	 */
4162 #endif
4163 	bge_stop(bgep);
4164 	if (bge_phys_idle(bgep) != DDI_SUCCESS) {
4165 		(void) bge_check_acc_handle(bgep, bgep->io_handle);
4166 		ddi_fm_service_impact(bgep->devinfo, DDI_SERVICE_DEGRADED);
4167 		mutex_exit(bgep->genlock);
4168 		return (DDI_FAILURE);
4169 	}
4170 	if (bge_check_acc_handle(bgep, bgep->io_handle) != DDI_FM_OK) {
4171 		ddi_fm_service_impact(bgep->devinfo, DDI_SERVICE_DEGRADED);
4172 		mutex_exit(bgep->genlock);
4173 		return (DDI_FAILURE);
4174 	}
4175 	mutex_exit(bgep->genlock);
4176 
4177 	return (DDI_SUCCESS);
4178 }
4179 
4180 /*
4181  * quiesce(9E) entry point.
4182  *
4183  * This function is called when the system is single-threaded at high
4184  * PIL with preemption disabled. Therefore, this function must not be
4185  * blocked.
4186  *
4187  * This function returns DDI_SUCCESS on success, or DDI_FAILURE on failure.
4188  * DDI_FAILURE indicates an error condition and should almost never happen.
4189  */
4190 #ifdef	__sparc
4191 #define	bge_quiesce	ddi_quiesce_not_supported
4192 #else
4193 static int
4194 bge_quiesce(dev_info_t *devinfo)
4195 {
4196 	bge_t *bgep = ddi_get_driver_private(devinfo);
4197 
4198 	if (bgep == NULL)
4199 		return (DDI_FAILURE);
4200 
4201 	if (bgep->intr_type == DDI_INTR_TYPE_FIXED) {
4202 		bge_reg_set32(bgep, PCI_CONF_BGE_MHCR,
4203 		    MHCR_MASK_PCI_INT_OUTPUT);
4204 	} else {
4205 		bge_reg_clr32(bgep, MSI_MODE_REG, MSI_MSI_ENABLE);
4206 	}
4207 
4208 	/* Stop the chip */
4209 	bge_chip_stop_nonblocking(bgep);
4210 
4211 	return (DDI_SUCCESS);
4212 }
4213 #endif
4214 
4215 /*
4216  * detach(9E) -- Detach a device from the system
4217  */
4218 static int
4219 bge_detach(dev_info_t *devinfo, ddi_detach_cmd_t cmd)
4220 {
4221 	bge_t *bgep;
4222 #ifdef BGE_IPMI_ASF
4223 	uint_t asf_mode;
4224 	asf_mode = ASF_MODE_NONE;
4225 #endif
4226 
4227 	BGE_GTRACE(("bge_detach($%p, %d)", (void *)devinfo, cmd));
4228 
4229 	bgep = ddi_get_driver_private(devinfo);
4230 
4231 	switch (cmd) {
4232 	default:
4233 		return (DDI_FAILURE);
4234 
4235 	case DDI_SUSPEND:
4236 		return (bge_suspend(bgep));
4237 
4238 	case DDI_DETACH:
4239 		break;
4240 	}
4241 
4242 #ifdef BGE_IPMI_ASF
4243 	mutex_enter(bgep->genlock);
4244 	if (bgep->asf_enabled && ((bgep->asf_status == ASF_STAT_RUN) ||
4245 	    (bgep->asf_status == ASF_STAT_RUN_INIT))) {
4246 
4247 		bge_asf_update_status(bgep);
4248 		if (bgep->asf_status == ASF_STAT_RUN) {
4249 			bge_asf_stop_timer(bgep);
4250 		}
4251 		bgep->asf_status = ASF_STAT_STOP;
4252 
4253 		bge_asf_pre_reset_operations(bgep, BGE_SHUTDOWN_RESET);
4254 
4255 		if (bgep->asf_pseudostop) {
4256 			bge_chip_stop(bgep, B_FALSE);
4257 			bgep->bge_mac_state = BGE_MAC_STOPPED;
4258 			bgep->asf_pseudostop = B_FALSE;
4259 		}
4260 
4261 		asf_mode = ASF_MODE_POST_SHUTDOWN;
4262 
4263 		if (bge_check_acc_handle(bgep, bgep->cfg_handle) != DDI_FM_OK)
4264 			ddi_fm_service_impact(bgep->devinfo,
4265 			    DDI_SERVICE_UNAFFECTED);
4266 		if (bge_check_acc_handle(bgep, bgep->io_handle) != DDI_FM_OK)
4267 			ddi_fm_service_impact(bgep->devinfo,
4268 			    DDI_SERVICE_UNAFFECTED);
4269 	}
4270 	mutex_exit(bgep->genlock);
4271 #endif
4272 
4273 	/*
4274 	 * Unregister from the GLD subsystem.  This can fail, in
4275 	 * particular if there are DLPI style-2 streams still open -
4276 	 * in which case we just return failure without shutting
4277 	 * down chip operations.
4278 	 */
4279 	if (mac_unregister(bgep->mh) != 0)
4280 		return (DDI_FAILURE);
4281 
4282 	/*
4283 	 * All activity stopped, so we can clean up & exit
4284 	 */
4285 #ifdef BGE_IPMI_ASF
4286 	bge_unattach(bgep, asf_mode);
4287 #else
4288 	bge_unattach(bgep);
4289 #endif
4290 	return (DDI_SUCCESS);
4291 }
4292 
4293 
4294 /*
4295  * ========== Module Loading Data & Entry Points ==========
4296  */
4297 
4298 #undef	BGE_DBG
4299 #define	BGE_DBG		BGE_DBG_INIT	/* debug flag for this code	*/
4300 
4301 DDI_DEFINE_STREAM_OPS(bge_dev_ops,
4302 	nulldev,	/* identify */
4303 	nulldev,	/* probe */
4304 	bge_attach,	/* attach */
4305 	bge_detach,	/* detach */
4306 	nodev,		/* reset */
4307 	NULL,		/* cb_ops */
4308 	D_MP,		/* bus_ops */
4309 	NULL,		/* power */
4310 	bge_quiesce	/* quiesce */
4311 );
4312 
4313 static struct modldrv bge_modldrv = {
4314 	&mod_driverops,		/* Type of module.  This one is a driver */
4315 	bge_ident,		/* short description */
4316 	&bge_dev_ops		/* driver specific ops */
4317 };
4318 
4319 static struct modlinkage modlinkage = {
4320 	MODREV_1, (void *)&bge_modldrv, NULL
4321 };
4322 
4323 
4324 int
4325 _info(struct modinfo *modinfop)
4326 {
4327 	return (mod_info(&modlinkage, modinfop));
4328 }
4329 
4330 int
4331 _init(void)
4332 {
4333 	int status;
4334 
4335 	mac_init_ops(&bge_dev_ops, "bge");
4336 	status = mod_install(&modlinkage);
4337 	if (status == DDI_SUCCESS)
4338 		mutex_init(bge_log_mutex, NULL, MUTEX_DRIVER, NULL);
4339 	else
4340 		mac_fini_ops(&bge_dev_ops);
4341 	return (status);
4342 }
4343 
4344 int
4345 _fini(void)
4346 {
4347 	int status;
4348 
4349 	status = mod_remove(&modlinkage);
4350 	if (status == DDI_SUCCESS) {
4351 		mac_fini_ops(&bge_dev_ops);
4352 		mutex_destroy(bge_log_mutex);
4353 	}
4354 	return (status);
4355 }
4356 
4357 
4358 /*
4359  * bge_add_intrs:
4360  *
4361  * Register FIXED or MSI interrupts.
4362  */
4363 static int
4364 bge_add_intrs(bge_t *bgep, int	intr_type)
4365 {
4366 	dev_info_t	*dip = bgep->devinfo;
4367 	int		avail, actual, intr_size, count = 0;
4368 	int		i, flag, ret;
4369 
4370 	BGE_DEBUG(("bge_add_intrs($%p, 0x%x)", (void *)bgep, intr_type));
4371 
4372 	/* Get number of interrupts */
4373 	ret = ddi_intr_get_nintrs(dip, intr_type, &count);
4374 	if ((ret != DDI_SUCCESS) || (count == 0)) {
4375 		bge_error(bgep, "ddi_intr_get_nintrs() failure, ret: %d, "
4376 		    "count: %d", ret, count);
4377 
4378 		return (DDI_FAILURE);
4379 	}
4380 
4381 	/* Get number of available interrupts */
4382 	ret = ddi_intr_get_navail(dip, intr_type, &avail);
4383 	if ((ret != DDI_SUCCESS) || (avail == 0)) {
4384 		bge_error(bgep, "ddi_intr_get_navail() failure, "
4385 		    "ret: %d, avail: %d\n", ret, avail);
4386 
4387 		return (DDI_FAILURE);
4388 	}
4389 
4390 	if (avail < count) {
4391 		BGE_DEBUG(("%s: nintrs() returned %d, navail returned %d",
4392 		    bgep->ifname, count, avail));
4393 	}
4394 
4395 	/*
4396 	 * BGE hardware generates only single MSI even though it claims
4397 	 * to support multiple MSIs. So, hard code MSI count value to 1.
4398 	 */
4399 	if (intr_type == DDI_INTR_TYPE_MSI) {
4400 		count = 1;
4401 		flag = DDI_INTR_ALLOC_STRICT;
4402 	} else {
4403 		flag = DDI_INTR_ALLOC_NORMAL;
4404 	}
4405 
4406 	/* Allocate an array of interrupt handles */
4407 	intr_size = count * sizeof (ddi_intr_handle_t);
4408 	bgep->htable = kmem_alloc(intr_size, KM_SLEEP);
4409 
4410 	/* Call ddi_intr_alloc() */
4411 	ret = ddi_intr_alloc(dip, bgep->htable, intr_type, 0,
4412 	    count, &actual, flag);
4413 
4414 	if ((ret != DDI_SUCCESS) || (actual == 0)) {
4415 		bge_error(bgep, "ddi_intr_alloc() failed %d\n", ret);
4416 
4417 		kmem_free(bgep->htable, intr_size);
4418 		return (DDI_FAILURE);
4419 	}
4420 
4421 	if (actual < count) {
4422 		BGE_DEBUG(("%s: Requested: %d, Received: %d",
4423 		    bgep->ifname, count, actual));
4424 	}
4425 
4426 	bgep->intr_cnt = actual;
4427 
4428 	/*
4429 	 * Get priority for first msi, assume remaining are all the same
4430 	 */
4431 	if ((ret = ddi_intr_get_pri(bgep->htable[0], &bgep->intr_pri)) !=
4432 	    DDI_SUCCESS) {
4433 		bge_error(bgep, "ddi_intr_get_pri() failed %d\n", ret);
4434 
4435 		/* Free already allocated intr */
4436 		for (i = 0; i < actual; i++) {
4437 			(void) ddi_intr_free(bgep->htable[i]);
4438 		}
4439 
4440 		kmem_free(bgep->htable, intr_size);
4441 		return (DDI_FAILURE);
4442 	}
4443 
4444 	/* Call ddi_intr_add_handler() */
4445 	for (i = 0; i < actual; i++) {
4446 		if ((ret = ddi_intr_add_handler(bgep->htable[i], bge_intr,
4447 		    (caddr_t)bgep, (caddr_t)(uintptr_t)i)) != DDI_SUCCESS) {
4448 			bge_error(bgep, "ddi_intr_add_handler() "
4449 			    "failed %d\n", ret);
4450 
4451 			/* Free already allocated intr */
4452 			for (i = 0; i < actual; i++) {
4453 				(void) ddi_intr_free(bgep->htable[i]);
4454 			}
4455 
4456 			kmem_free(bgep->htable, intr_size);
4457 			return (DDI_FAILURE);
4458 		}
4459 	}
4460 
4461 	if ((ret = ddi_intr_get_cap(bgep->htable[0], &bgep->intr_cap))
4462 	    != DDI_SUCCESS) {
4463 		bge_error(bgep, "ddi_intr_get_cap() failed %d\n", ret);
4464 
4465 		for (i = 0; i < actual; i++) {
4466 			(void) ddi_intr_remove_handler(bgep->htable[i]);
4467 			(void) ddi_intr_free(bgep->htable[i]);
4468 		}
4469 
4470 		kmem_free(bgep->htable, intr_size);
4471 		return (DDI_FAILURE);
4472 	}
4473 
4474 	return (DDI_SUCCESS);
4475 }
4476 
4477 /*
4478  * bge_rem_intrs:
4479  *
4480  * Unregister FIXED or MSI interrupts
4481  */
4482 static void
4483 bge_rem_intrs(bge_t *bgep)
4484 {
4485 	int	i;
4486 
4487 	BGE_DEBUG(("bge_rem_intrs($%p)", (void *)bgep));
4488 
4489 	/* Call ddi_intr_remove_handler() */
4490 	for (i = 0; i < bgep->intr_cnt; i++) {
4491 		(void) ddi_intr_remove_handler(bgep->htable[i]);
4492 		(void) ddi_intr_free(bgep->htable[i]);
4493 	}
4494 
4495 	kmem_free(bgep->htable, bgep->intr_cnt * sizeof (ddi_intr_handle_t));
4496 }
4497 
4498 
4499 void
4500 bge_intr_enable(bge_t *bgep)
4501 {
4502 	int i;
4503 
4504 	if (bgep->intr_cap & DDI_INTR_FLAG_BLOCK) {
4505 		/* Call ddi_intr_block_enable() for MSI interrupts */
4506 		(void) ddi_intr_block_enable(bgep->htable, bgep->intr_cnt);
4507 	} else {
4508 		/* Call ddi_intr_enable for MSI or FIXED interrupts */
4509 		for (i = 0; i < bgep->intr_cnt; i++) {
4510 			(void) ddi_intr_enable(bgep->htable[i]);
4511 		}
4512 	}
4513 }
4514 
4515 
4516 void
4517 bge_intr_disable(bge_t *bgep)
4518 {
4519 	int i;
4520 
4521 	if (bgep->intr_cap & DDI_INTR_FLAG_BLOCK) {
4522 		/* Call ddi_intr_block_disable() */
4523 		(void) ddi_intr_block_disable(bgep->htable, bgep->intr_cnt);
4524 	} else {
4525 		for (i = 0; i < bgep->intr_cnt; i++) {
4526 			(void) ddi_intr_disable(bgep->htable[i]);
4527 		}
4528 	}
4529 }
4530 
4531 int
4532 bge_reprogram(bge_t *bgep)
4533 {
4534 	int status = 0;
4535 
4536 	ASSERT(mutex_owned(bgep->genlock));
4537 
4538 	if (bge_phys_update(bgep) != DDI_SUCCESS) {
4539 		ddi_fm_service_impact(bgep->devinfo, DDI_SERVICE_DEGRADED);
4540 		status = IOC_INVAL;
4541 	}
4542 #ifdef BGE_IPMI_ASF
4543 	if (bge_chip_sync(bgep, B_TRUE) == DDI_FAILURE) {
4544 #else
4545 	if (bge_chip_sync(bgep) == DDI_FAILURE) {
4546 #endif
4547 		ddi_fm_service_impact(bgep->devinfo, DDI_SERVICE_DEGRADED);
4548 		status = IOC_INVAL;
4549 	}
4550 	if (bgep->intr_type == DDI_INTR_TYPE_MSI)
4551 		bge_chip_msi_trig(bgep);
4552 	return (status);
4553 }
4554