1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 22 /* 23 * Copyright 2006 Sun Microsystems, Inc. All rights reserved. 24 * Use is subject to license terms. 25 */ 26 27 #pragma ident "%Z%%M% %I% %E% SMI" 28 29 #include "sys/bge_impl2.h" 30 #include <sys/sdt.h> 31 32 /* 33 * This is the string displayed by modinfo, etc. 34 * Make sure you keep the version ID up to date! 35 */ 36 static char bge_ident[] = "BCM579x driver v0.49"; 37 38 /* 39 * Property names 40 */ 41 static char debug_propname[] = "bge-debug-flags"; 42 static char clsize_propname[] = "cache-line-size"; 43 static char latency_propname[] = "latency-timer"; 44 static char localmac_boolname[] = "local-mac-address?"; 45 static char localmac_propname[] = "local-mac-address"; 46 static char macaddr_propname[] = "mac-address"; 47 static char subdev_propname[] = "subsystem-id"; 48 static char subven_propname[] = "subsystem-vendor-id"; 49 static char rxrings_propname[] = "bge-rx-rings"; 50 static char txrings_propname[] = "bge-tx-rings"; 51 static char default_mtu[] = "default-mtu"; 52 53 static int bge_add_intrs(bge_t *, int); 54 static void bge_rem_intrs(bge_t *); 55 56 /* 57 * Describes the chip's DMA engine 58 */ 59 static ddi_dma_attr_t dma_attr = { 60 DMA_ATTR_V0, /* dma_attr version */ 61 0x0000000000000000ull, /* dma_attr_addr_lo */ 62 0xFFFFFFFFFFFFFFFFull, /* dma_attr_addr_hi */ 63 0x00000000FFFFFFFFull, /* dma_attr_count_max */ 64 0x0000000000000001ull, /* dma_attr_align */ 65 0x00000FFF, /* dma_attr_burstsizes */ 66 0x00000001, /* dma_attr_minxfer */ 67 0x000000000000FFFFull, /* dma_attr_maxxfer */ 68 0xFFFFFFFFFFFFFFFFull, /* dma_attr_seg */ 69 1, /* dma_attr_sgllen */ 70 0x00000001, /* dma_attr_granular */ 71 0 /* dma_attr_flags */ 72 }; 73 74 /* 75 * PIO access attributes for registers 76 */ 77 static ddi_device_acc_attr_t bge_reg_accattr = { 78 DDI_DEVICE_ATTR_V0, 79 DDI_NEVERSWAP_ACC, 80 DDI_STRICTORDER_ACC 81 }; 82 83 /* 84 * DMA access attributes for descriptors: NOT to be byte swapped. 85 */ 86 static ddi_device_acc_attr_t bge_desc_accattr = { 87 DDI_DEVICE_ATTR_V0, 88 DDI_NEVERSWAP_ACC, 89 DDI_STRICTORDER_ACC 90 }; 91 92 /* 93 * DMA access attributes for data: NOT to be byte swapped. 94 */ 95 static ddi_device_acc_attr_t bge_data_accattr = { 96 DDI_DEVICE_ATTR_V0, 97 DDI_NEVERSWAP_ACC, 98 DDI_STRICTORDER_ACC 99 }; 100 101 static ether_addr_t bge_broadcast_addr = { 102 0xff, 0xff, 0xff, 0xff, 0xff, 0xff 103 }; 104 105 /* 106 * Versions of the O/S up to Solaris 8 didn't support network booting 107 * from any network interface except the first (NET0). Patching this 108 * flag to a non-zero value will tell the driver to work around this 109 * limitation by creating an extra (internal) pathname node. To do 110 * this, just add a line like the following to the CLIENT'S etc/system 111 * file ON THE ROOT FILESYSTEM SERVER before booting the client: 112 * 113 * set bge:bge_net1_boot_support = 1; 114 */ 115 static uint32_t bge_net1_boot_support = 1; 116 117 /* 118 * ========== Transmit and receive ring reinitialisation ========== 119 */ 120 121 /* 122 * These <reinit> routines each reset the specified ring to an initial 123 * state, assuming that the corresponding <init> routine has already 124 * been called exactly once. 125 */ 126 127 static void 128 bge_reinit_send_ring(send_ring_t *srp) 129 { 130 /* 131 * Reinitialise control variables ... 132 */ 133 ASSERT(srp->tx_flow == 0); 134 srp->tx_next = 0; 135 srp->tx_free = srp->desc.nslots; 136 137 ASSERT(mutex_owned(srp->tc_lock)); 138 srp->tc_next = 0; 139 140 /* 141 * Zero and sync all the h/w Send Buffer Descriptors 142 */ 143 DMA_ZERO(srp->desc); 144 DMA_SYNC(srp->desc, DDI_DMA_SYNC_FORDEV); 145 } 146 147 static void 148 bge_reinit_recv_ring(recv_ring_t *rrp) 149 { 150 /* 151 * Reinitialise control variables ... 152 */ 153 rrp->rx_next = 0; 154 } 155 156 static void 157 bge_reinit_buff_ring(buff_ring_t *brp, uint64_t ring) 158 { 159 bge_rbd_t *hw_rbd_p; 160 sw_rbd_t *srbdp; 161 uint32_t bufsize; 162 uint32_t nslots; 163 uint32_t slot; 164 165 static uint16_t ring_type_flag[BGE_BUFF_RINGS_MAX] = { 166 RBD_FLAG_STD_RING, 167 RBD_FLAG_JUMBO_RING, 168 RBD_FLAG_MINI_RING 169 }; 170 171 /* 172 * Zero, initialise and sync all the h/w Receive Buffer Descriptors 173 * Note: all the remaining fields (<type>, <flags>, <ip_cksum>, 174 * <tcp_udp_cksum>, <error_flag>, <vlan_tag>, and <reserved>) 175 * should be zeroed, and so don't need to be set up specifically 176 * once the whole area has been cleared. 177 */ 178 DMA_ZERO(brp->desc); 179 180 hw_rbd_p = DMA_VPTR(brp->desc); 181 nslots = brp->desc.nslots; 182 ASSERT(brp->buf[0].nslots == nslots/BGE_SPLIT); 183 bufsize = brp->buf[0].size; 184 srbdp = brp->sw_rbds; 185 for (slot = 0; slot < nslots; ++hw_rbd_p, ++srbdp, ++slot) { 186 hw_rbd_p->host_buf_addr = srbdp->pbuf.cookie.dmac_laddress; 187 hw_rbd_p->index = slot; 188 hw_rbd_p->len = bufsize; 189 hw_rbd_p->opaque = srbdp->pbuf.token; 190 hw_rbd_p->flags |= ring_type_flag[ring]; 191 } 192 193 DMA_SYNC(brp->desc, DDI_DMA_SYNC_FORDEV); 194 195 /* 196 * Finally, reinitialise the ring control variables ... 197 */ 198 brp->rf_next = (nslots != 0) ? (nslots-1) : 0; 199 } 200 201 /* 202 * Reinitialize all rings 203 */ 204 static void 205 bge_reinit_rings(bge_t *bgep) 206 { 207 uint64_t ring; 208 209 ASSERT(mutex_owned(bgep->genlock)); 210 211 /* 212 * Send Rings ... 213 */ 214 for (ring = 0; ring < bgep->chipid.tx_rings; ++ring) 215 bge_reinit_send_ring(&bgep->send[ring]); 216 217 /* 218 * Receive Return Rings ... 219 */ 220 for (ring = 0; ring < bgep->chipid.rx_rings; ++ring) 221 bge_reinit_recv_ring(&bgep->recv[ring]); 222 223 /* 224 * Receive Producer Rings ... 225 */ 226 for (ring = 0; ring < BGE_BUFF_RINGS_USED; ++ring) 227 bge_reinit_buff_ring(&bgep->buff[ring], ring); 228 } 229 230 /* 231 * ========== Internal state management entry points ========== 232 */ 233 234 #undef BGE_DBG 235 #define BGE_DBG BGE_DBG_NEMO /* debug flag for this code */ 236 237 /* 238 * These routines provide all the functionality required by the 239 * corresponding GLD entry points, but don't update the GLD state 240 * so they can be called internally without disturbing our record 241 * of what GLD thinks we should be doing ... 242 */ 243 244 /* 245 * bge_reset() -- reset h/w & rings to initial state 246 */ 247 static void 248 #ifdef BGE_IPMI_ASF 249 bge_reset(bge_t *bgep, uint_t asf_mode) 250 #else 251 bge_reset(bge_t *bgep) 252 #endif 253 { 254 uint64_t ring; 255 256 BGE_TRACE(("bge_reset($%p)", (void *)bgep)); 257 258 ASSERT(mutex_owned(bgep->genlock)); 259 260 /* 261 * Grab all the other mutexes in the world (this should 262 * ensure no other threads are manipulating driver state) 263 */ 264 for (ring = 0; ring < BGE_RECV_RINGS_MAX; ++ring) 265 mutex_enter(bgep->recv[ring].rx_lock); 266 for (ring = 0; ring < BGE_BUFF_RINGS_MAX; ++ring) 267 mutex_enter(bgep->buff[ring].rf_lock); 268 rw_enter(bgep->errlock, RW_WRITER); 269 for (ring = 0; ring < BGE_SEND_RINGS_MAX; ++ring) 270 mutex_enter(bgep->send[ring].tc_lock); 271 272 #ifdef BGE_IPMI_ASF 273 bge_chip_reset(bgep, B_TRUE, asf_mode); 274 #else 275 bge_chip_reset(bgep, B_TRUE); 276 #endif 277 bge_reinit_rings(bgep); 278 279 /* 280 * Free the world ... 281 */ 282 for (ring = BGE_SEND_RINGS_MAX; ring-- > 0; ) 283 mutex_exit(bgep->send[ring].tc_lock); 284 rw_exit(bgep->errlock); 285 for (ring = BGE_BUFF_RINGS_MAX; ring-- > 0; ) 286 mutex_exit(bgep->buff[ring].rf_lock); 287 for (ring = BGE_RECV_RINGS_MAX; ring-- > 0; ) 288 mutex_exit(bgep->recv[ring].rx_lock); 289 290 BGE_DEBUG(("bge_reset($%p) done", (void *)bgep)); 291 } 292 293 /* 294 * bge_stop() -- stop processing, don't reset h/w or rings 295 */ 296 static void 297 bge_stop(bge_t *bgep) 298 { 299 BGE_TRACE(("bge_stop($%p)", (void *)bgep)); 300 301 ASSERT(mutex_owned(bgep->genlock)); 302 303 #ifdef BGE_IPMI_ASF 304 if (bgep->asf_enabled) { 305 bgep->asf_pseudostop = B_TRUE; 306 } else { 307 #endif 308 bge_chip_stop(bgep, B_FALSE); 309 #ifdef BGE_IPMI_ASF 310 } 311 #endif 312 313 BGE_DEBUG(("bge_stop($%p) done", (void *)bgep)); 314 } 315 316 /* 317 * bge_start() -- start transmitting/receiving 318 */ 319 static void 320 bge_start(bge_t *bgep, boolean_t reset_phys) 321 { 322 BGE_TRACE(("bge_start($%p, %d)", (void *)bgep, reset_phys)); 323 324 ASSERT(mutex_owned(bgep->genlock)); 325 326 /* 327 * Start chip processing, including enabling interrupts 328 */ 329 bge_chip_start(bgep, reset_phys); 330 331 BGE_DEBUG(("bge_start($%p, %d) done", (void *)bgep, reset_phys)); 332 } 333 334 /* 335 * bge_restart - restart transmitting/receiving after error or suspend 336 */ 337 void 338 bge_restart(bge_t *bgep, boolean_t reset_phys) 339 { 340 ASSERT(mutex_owned(bgep->genlock)); 341 342 #ifdef BGE_IPMI_ASF 343 if (bgep->asf_enabled) { 344 bge_reset(bgep, ASF_MODE_POST_INIT); 345 } else 346 bge_reset(bgep, ASF_MODE_NONE); 347 #else 348 bge_reset(bgep); 349 #endif 350 if (bgep->bge_mac_state == BGE_MAC_STARTED) { 351 bge_start(bgep, reset_phys); 352 bgep->watchdog = 0; 353 ddi_trigger_softintr(bgep->resched_id); 354 } 355 356 BGE_DEBUG(("bge_restart($%p, %d) done", (void *)bgep, reset_phys)); 357 } 358 359 360 /* 361 * ========== Nemo-required management entry points ========== 362 */ 363 364 #undef BGE_DBG 365 #define BGE_DBG BGE_DBG_NEMO /* debug flag for this code */ 366 367 /* 368 * bge_m_stop() -- stop transmitting/receiving 369 */ 370 static void 371 bge_m_stop(void *arg) 372 { 373 bge_t *bgep = arg; /* private device info */ 374 375 BGE_TRACE(("bge_m_stop($%p)", arg)); 376 377 /* 378 * Just stop processing, then record new GLD state 379 */ 380 mutex_enter(bgep->genlock); 381 bgep->link_up_msg = bgep->link_down_msg = " (stopped)"; 382 bge_stop(bgep); 383 bgep->bge_mac_state = BGE_MAC_STOPPED; 384 BGE_DEBUG(("bge_m_stop($%p) done", arg)); 385 mutex_exit(bgep->genlock); 386 } 387 388 /* 389 * bge_m_start() -- start transmitting/receiving 390 */ 391 static int 392 bge_m_start(void *arg) 393 { 394 bge_t *bgep = arg; /* private device info */ 395 396 BGE_TRACE(("bge_m_start($%p)", arg)); 397 398 /* 399 * Start processing and record new GLD state 400 */ 401 mutex_enter(bgep->genlock); 402 #ifdef BGE_IPMI_ASF 403 if (bgep->asf_enabled) { 404 if ((bgep->asf_status == ASF_STAT_RUN) && 405 (bgep->asf_pseudostop)) { 406 407 bgep->link_up_msg = bgep->link_down_msg 408 = " (initialized)"; 409 bgep->bge_mac_state = BGE_MAC_STARTED; 410 mutex_exit(bgep->genlock); 411 return (0); 412 } 413 } 414 bge_reset(bgep, ASF_MODE_INIT); 415 #else 416 bge_reset(bgep); 417 #endif 418 bgep->link_up_msg = bgep->link_down_msg = " (initialized)"; 419 bge_start(bgep, B_TRUE); 420 bgep->bge_mac_state = BGE_MAC_STARTED; 421 BGE_DEBUG(("bge_m_start($%p) done", arg)); 422 423 #ifdef BGE_IPMI_ASF 424 if (bgep->asf_enabled) { 425 if (bgep->asf_status != ASF_STAT_RUN) { 426 /* start ASF heart beat */ 427 bgep->asf_timeout_id = timeout(bge_asf_heartbeat, 428 (void *)bgep, 429 drv_usectohz(BGE_ASF_HEARTBEAT_INTERVAL)); 430 bgep->asf_status = ASF_STAT_RUN; 431 } 432 } 433 #endif 434 mutex_exit(bgep->genlock); 435 436 return (0); 437 } 438 439 /* 440 * bge_m_unicst_set() -- set the physical network address 441 */ 442 static int 443 bge_m_unicst(void *arg, const uint8_t *macaddr) 444 { 445 bge_t *bgep = arg; /* private device info */ 446 447 BGE_TRACE(("bge_m_unicst_set($%p, %s)", arg, 448 ether_sprintf((void *)macaddr))); 449 450 /* 451 * Remember the new current address in the driver state 452 * Sync the chip's idea of the address too ... 453 */ 454 mutex_enter(bgep->genlock); 455 ethaddr_copy(macaddr, bgep->curr_addr.addr); 456 #ifdef BGE_IPMI_ASF 457 bge_chip_sync(bgep, B_FALSE); 458 if (bgep->asf_enabled) { 459 /* 460 * The above bge_chip_sync() function wrote the ethernet MAC 461 * addresses registers which destroyed the IPMI/ASF sideband. 462 * Here, we have to reset chip to make IPMI/ASF sideband work. 463 */ 464 if (bgep->asf_status == ASF_STAT_RUN) { 465 /* 466 * We must stop ASF heart beat before bge_chip_stop(), 467 * otherwise some computers (ex. IBM HS20 blade server) 468 * may crash. 469 */ 470 bge_asf_update_status(bgep); 471 bge_asf_stop_timer(bgep); 472 bgep->asf_status = ASF_STAT_STOP; 473 474 bge_asf_pre_reset_operations(bgep, BGE_INIT_RESET); 475 } 476 bge_chip_stop(bgep, B_TRUE); 477 478 bge_restart(bgep, B_FALSE); 479 /* 480 * Start our ASF heartbeat counter as soon as possible. 481 */ 482 if (bgep->asf_status != ASF_STAT_RUN) { 483 /* start ASF heart beat */ 484 bgep->asf_timeout_id = timeout(bge_asf_heartbeat, 485 (void *)bgep, 486 drv_usectohz(BGE_ASF_HEARTBEAT_INTERVAL)); 487 bgep->asf_status = ASF_STAT_RUN; 488 } 489 } 490 #else 491 bge_chip_sync(bgep); 492 #endif 493 BGE_DEBUG(("bge_m_unicst_set($%p) done", arg)); 494 mutex_exit(bgep->genlock); 495 496 return (0); 497 } 498 499 /* 500 * Compute the index of the required bit in the multicast hash map. 501 * This must mirror the way the hardware actually does it! 502 * See Broadcom document 570X-PG102-R page 125. 503 */ 504 static uint32_t 505 bge_hash_index(const uint8_t *mca) 506 { 507 uint32_t hash; 508 509 CRC32(hash, mca, ETHERADDRL, -1U, crc32_table); 510 511 return (hash); 512 } 513 514 /* 515 * bge_m_multicst_add() -- enable/disable a multicast address 516 */ 517 static int 518 bge_m_multicst(void *arg, boolean_t add, const uint8_t *mca) 519 { 520 bge_t *bgep = arg; /* private device info */ 521 uint32_t hash; 522 uint32_t index; 523 uint32_t word; 524 uint32_t bit; 525 uint8_t *refp; 526 527 BGE_TRACE(("bge_m_multicst($%p, %s, %s)", arg, 528 (add) ? "add" : "remove", ether_sprintf((void *)mca))); 529 530 /* 531 * Precalculate all required masks, pointers etc ... 532 */ 533 hash = bge_hash_index(mca); 534 index = hash % BGE_HASH_TABLE_SIZE; 535 word = index/32u; 536 bit = 1 << (index % 32u); 537 refp = &bgep->mcast_refs[index]; 538 539 BGE_DEBUG(("bge_m_multicst: hash 0x%x index %d (%d:0x%x) = %d", 540 hash, index, word, bit, *refp)); 541 542 /* 543 * We must set the appropriate bit in the hash map (and the 544 * corresponding h/w register) when the refcount goes from 0 545 * to >0, and clear it when the last ref goes away (refcount 546 * goes from >0 back to 0). If we change the hash map, we 547 * must also update the chip's hardware map registers. 548 */ 549 mutex_enter(bgep->genlock); 550 if (add) { 551 if ((*refp)++ == 0) { 552 bgep->mcast_hash[word] |= bit; 553 #ifdef BGE_IPMI_ASF 554 bge_chip_sync(bgep, B_TRUE); 555 #else 556 bge_chip_sync(bgep); 557 #endif 558 } 559 } else { 560 if (--(*refp) == 0) { 561 bgep->mcast_hash[word] &= ~bit; 562 #ifdef BGE_IPMI_ASF 563 bge_chip_sync(bgep, B_TRUE); 564 #else 565 bge_chip_sync(bgep); 566 #endif 567 } 568 } 569 BGE_DEBUG(("bge_m_multicst($%p) done", arg)); 570 mutex_exit(bgep->genlock); 571 572 return (0); 573 } 574 575 /* 576 * bge_m_promisc() -- set or reset promiscuous mode on the board 577 * 578 * Program the hardware to enable/disable promiscuous and/or 579 * receive-all-multicast modes. 580 */ 581 static int 582 bge_m_promisc(void *arg, boolean_t on) 583 { 584 bge_t *bgep = arg; 585 586 BGE_TRACE(("bge_m_promisc_set($%p, %d)", arg, on)); 587 588 /* 589 * Store MAC layer specified mode and pass to chip layer to update h/w 590 */ 591 mutex_enter(bgep->genlock); 592 bgep->promisc = on; 593 #ifdef BGE_IPMI_ASF 594 bge_chip_sync(bgep, B_TRUE); 595 #else 596 bge_chip_sync(bgep); 597 #endif 598 BGE_DEBUG(("bge_m_promisc_set($%p) done", arg)); 599 mutex_exit(bgep->genlock); 600 return (0); 601 } 602 603 /* 604 * Loopback ioctl code 605 */ 606 607 static lb_property_t loopmodes[] = { 608 { normal, "normal", BGE_LOOP_NONE }, 609 { external, "1000Mbps", BGE_LOOP_EXTERNAL_1000 }, 610 { external, "100Mbps", BGE_LOOP_EXTERNAL_100 }, 611 { external, "10Mbps", BGE_LOOP_EXTERNAL_10 }, 612 { internal, "PHY", BGE_LOOP_INTERNAL_PHY }, 613 { internal, "MAC", BGE_LOOP_INTERNAL_MAC } 614 }; 615 616 static enum ioc_reply 617 bge_set_loop_mode(bge_t *bgep, uint32_t mode) 618 { 619 const char *msg; 620 621 /* 622 * If the mode isn't being changed, there's nothing to do ... 623 */ 624 if (mode == bgep->param_loop_mode) 625 return (IOC_ACK); 626 627 /* 628 * Validate the requested mode and prepare a suitable message 629 * to explain the link down/up cycle that the change will 630 * probably induce ... 631 */ 632 switch (mode) { 633 default: 634 return (IOC_INVAL); 635 636 case BGE_LOOP_NONE: 637 msg = " (loopback disabled)"; 638 break; 639 640 case BGE_LOOP_EXTERNAL_1000: 641 case BGE_LOOP_EXTERNAL_100: 642 case BGE_LOOP_EXTERNAL_10: 643 msg = " (external loopback selected)"; 644 break; 645 646 case BGE_LOOP_INTERNAL_PHY: 647 msg = " (PHY internal loopback selected)"; 648 break; 649 650 case BGE_LOOP_INTERNAL_MAC: 651 msg = " (MAC internal loopback selected)"; 652 break; 653 } 654 655 /* 656 * All OK; tell the caller to reprogram 657 * the PHY and/or MAC for the new mode ... 658 */ 659 bgep->link_down_msg = bgep->link_up_msg = msg; 660 bgep->param_loop_mode = mode; 661 return (IOC_RESTART_ACK); 662 } 663 664 static enum ioc_reply 665 bge_loop_ioctl(bge_t *bgep, queue_t *wq, mblk_t *mp, struct iocblk *iocp) 666 { 667 lb_info_sz_t *lbsp; 668 lb_property_t *lbpp; 669 uint32_t *lbmp; 670 int cmd; 671 672 _NOTE(ARGUNUSED(wq)) 673 674 /* 675 * Validate format of ioctl 676 */ 677 if (mp->b_cont == NULL) 678 return (IOC_INVAL); 679 680 cmd = iocp->ioc_cmd; 681 switch (cmd) { 682 default: 683 /* NOTREACHED */ 684 bge_error(bgep, "bge_loop_ioctl: invalid cmd 0x%x", cmd); 685 return (IOC_INVAL); 686 687 case LB_GET_INFO_SIZE: 688 if (iocp->ioc_count != sizeof (lb_info_sz_t)) 689 return (IOC_INVAL); 690 lbsp = (lb_info_sz_t *)mp->b_cont->b_rptr; 691 *lbsp = sizeof (loopmodes); 692 return (IOC_REPLY); 693 694 case LB_GET_INFO: 695 if (iocp->ioc_count != sizeof (loopmodes)) 696 return (IOC_INVAL); 697 lbpp = (lb_property_t *)mp->b_cont->b_rptr; 698 bcopy(loopmodes, lbpp, sizeof (loopmodes)); 699 return (IOC_REPLY); 700 701 case LB_GET_MODE: 702 if (iocp->ioc_count != sizeof (uint32_t)) 703 return (IOC_INVAL); 704 lbmp = (uint32_t *)mp->b_cont->b_rptr; 705 *lbmp = bgep->param_loop_mode; 706 return (IOC_REPLY); 707 708 case LB_SET_MODE: 709 if (iocp->ioc_count != sizeof (uint32_t)) 710 return (IOC_INVAL); 711 lbmp = (uint32_t *)mp->b_cont->b_rptr; 712 return (bge_set_loop_mode(bgep, *lbmp)); 713 } 714 } 715 716 /* 717 * Specific bge IOCTLs, the gld module handles the generic ones. 718 */ 719 static void 720 bge_m_ioctl(void *arg, queue_t *wq, mblk_t *mp) 721 { 722 bge_t *bgep = arg; 723 struct iocblk *iocp; 724 enum ioc_reply status; 725 boolean_t need_privilege; 726 int err; 727 int cmd; 728 729 /* 730 * Validate the command before bothering with the mutex ... 731 */ 732 iocp = (struct iocblk *)mp->b_rptr; 733 iocp->ioc_error = 0; 734 need_privilege = B_TRUE; 735 cmd = iocp->ioc_cmd; 736 switch (cmd) { 737 default: 738 miocnak(wq, mp, 0, EINVAL); 739 return; 740 741 case BGE_MII_READ: 742 case BGE_MII_WRITE: 743 case BGE_SEE_READ: 744 case BGE_SEE_WRITE: 745 case BGE_DIAG: 746 case BGE_PEEK: 747 case BGE_POKE: 748 case BGE_PHY_RESET: 749 case BGE_SOFT_RESET: 750 case BGE_HARD_RESET: 751 break; 752 753 case LB_GET_INFO_SIZE: 754 case LB_GET_INFO: 755 case LB_GET_MODE: 756 need_privilege = B_FALSE; 757 /* FALLTHRU */ 758 case LB_SET_MODE: 759 break; 760 761 case ND_GET: 762 need_privilege = B_FALSE; 763 /* FALLTHRU */ 764 case ND_SET: 765 break; 766 } 767 768 if (need_privilege) { 769 /* 770 * Check for specific net_config privilege on Solaris 10+. 771 * Otherwise just check for root access ... 772 */ 773 if (secpolicy_net_config != NULL) 774 err = secpolicy_net_config(iocp->ioc_cr, B_FALSE); 775 else 776 err = drv_priv(iocp->ioc_cr); 777 if (err != 0) { 778 miocnak(wq, mp, 0, err); 779 return; 780 } 781 } 782 783 mutex_enter(bgep->genlock); 784 785 switch (cmd) { 786 default: 787 _NOTE(NOTREACHED) 788 status = IOC_INVAL; 789 break; 790 791 case BGE_MII_READ: 792 case BGE_MII_WRITE: 793 case BGE_SEE_READ: 794 case BGE_SEE_WRITE: 795 case BGE_DIAG: 796 case BGE_PEEK: 797 case BGE_POKE: 798 case BGE_PHY_RESET: 799 case BGE_SOFT_RESET: 800 case BGE_HARD_RESET: 801 status = bge_chip_ioctl(bgep, wq, mp, iocp); 802 break; 803 804 case LB_GET_INFO_SIZE: 805 case LB_GET_INFO: 806 case LB_GET_MODE: 807 case LB_SET_MODE: 808 status = bge_loop_ioctl(bgep, wq, mp, iocp); 809 break; 810 811 case ND_GET: 812 case ND_SET: 813 status = bge_nd_ioctl(bgep, wq, mp, iocp); 814 break; 815 } 816 817 /* 818 * Do we need to reprogram the PHY and/or the MAC? 819 * Do it now, while we still have the mutex. 820 * 821 * Note: update the PHY first, 'cos it controls the 822 * speed/duplex parameters that the MAC code uses. 823 */ 824 switch (status) { 825 case IOC_RESTART_REPLY: 826 case IOC_RESTART_ACK: 827 bge_phys_update(bgep); 828 #ifdef BGE_IPMI_ASF 829 bge_chip_sync(bgep, B_FALSE); 830 #else 831 bge_chip_sync(bgep); 832 #endif 833 if (bgep->intr_type == DDI_INTR_TYPE_MSI) 834 bge_chip_msi_trig(bgep); 835 break; 836 } 837 838 mutex_exit(bgep->genlock); 839 840 /* 841 * Finally, decide how to reply 842 */ 843 switch (status) { 844 default: 845 case IOC_INVAL: 846 /* 847 * Error, reply with a NAK and EINVAL or the specified error 848 */ 849 miocnak(wq, mp, 0, iocp->ioc_error == 0 ? 850 EINVAL : iocp->ioc_error); 851 break; 852 853 case IOC_DONE: 854 /* 855 * OK, reply already sent 856 */ 857 break; 858 859 case IOC_RESTART_ACK: 860 case IOC_ACK: 861 /* 862 * OK, reply with an ACK 863 */ 864 miocack(wq, mp, 0, 0); 865 break; 866 867 case IOC_RESTART_REPLY: 868 case IOC_REPLY: 869 /* 870 * OK, send prepared reply as ACK or NAK 871 */ 872 mp->b_datap->db_type = iocp->ioc_error == 0 ? 873 M_IOCACK : M_IOCNAK; 874 qreply(wq, mp); 875 break; 876 } 877 } 878 879 static void 880 bge_m_resources(void *arg) 881 { 882 bge_t *bgep = arg; 883 recv_ring_t *rrp; 884 mac_rx_fifo_t mrf; 885 int ring; 886 887 mutex_enter(bgep->genlock); 888 889 /* 890 * Register Rx rings as resources and save mac 891 * resource id for future reference 892 */ 893 mrf.mrf_type = MAC_RX_FIFO; 894 mrf.mrf_blank = bge_chip_blank; 895 mrf.mrf_arg = (void *)bgep; 896 mrf.mrf_normal_blank_time = bge_rx_ticks_norm; 897 mrf.mrf_normal_pkt_count = bge_rx_count_norm; 898 899 for (ring = 0; ring < bgep->chipid.rx_rings; ring++) { 900 rrp = &bgep->recv[ring]; 901 rrp->handle = mac_resource_add(bgep->macp, 902 (mac_resource_t *)&mrf); 903 } 904 905 mutex_exit(bgep->genlock); 906 } 907 908 /* 909 * ========== Per-instance setup/teardown code ========== 910 */ 911 912 #undef BGE_DBG 913 #define BGE_DBG BGE_DBG_INIT /* debug flag for this code */ 914 915 /* 916 * Utility routine to carve a slice off a chunk of allocated memory, 917 * updating the chunk descriptor accordingly. The size of the slice 918 * is given by the product of the <qty> and <size> parameters. 919 */ 920 static void 921 bge_slice_chunk(dma_area_t *slice, dma_area_t *chunk, 922 uint32_t qty, uint32_t size) 923 { 924 static uint32_t sequence = 0xbcd5704a; 925 size_t totsize; 926 927 totsize = qty*size; 928 ASSERT(size >= 0); 929 ASSERT(totsize <= chunk->alength); 930 931 *slice = *chunk; 932 slice->nslots = qty; 933 slice->size = size; 934 slice->alength = totsize; 935 slice->token = ++sequence; 936 937 chunk->mem_va = (caddr_t)chunk->mem_va + totsize; 938 chunk->alength -= totsize; 939 chunk->offset += totsize; 940 chunk->cookie.dmac_laddress += totsize; 941 chunk->cookie.dmac_size -= totsize; 942 } 943 944 /* 945 * Initialise the specified Receive Producer (Buffer) Ring, using 946 * the information in the <dma_area> descriptors that it contains 947 * to set up all the other fields. This routine should be called 948 * only once for each ring. 949 */ 950 static void 951 bge_init_buff_ring(bge_t *bgep, uint64_t ring) 952 { 953 buff_ring_t *brp; 954 bge_status_t *bsp; 955 sw_rbd_t *srbdp; 956 dma_area_t pbuf; 957 uint32_t bufsize; 958 uint32_t nslots; 959 uint32_t slot; 960 uint32_t split; 961 962 static bge_regno_t nic_ring_addrs[BGE_BUFF_RINGS_MAX] = { 963 NIC_MEM_SHADOW_BUFF_STD, 964 NIC_MEM_SHADOW_BUFF_JUMBO, 965 NIC_MEM_SHADOW_BUFF_MINI 966 }; 967 static bge_regno_t mailbox_regs[BGE_BUFF_RINGS_MAX] = { 968 RECV_STD_PROD_INDEX_REG, 969 RECV_JUMBO_PROD_INDEX_REG, 970 RECV_MINI_PROD_INDEX_REG 971 }; 972 static bge_regno_t buff_cons_xref[BGE_BUFF_RINGS_MAX] = { 973 STATUS_STD_BUFF_CONS_INDEX, 974 STATUS_JUMBO_BUFF_CONS_INDEX, 975 STATUS_MINI_BUFF_CONS_INDEX 976 }; 977 978 BGE_TRACE(("bge_init_buff_ring($%p, %d)", 979 (void *)bgep, ring)); 980 981 brp = &bgep->buff[ring]; 982 nslots = brp->desc.nslots; 983 ASSERT(brp->buf[0].nslots == nslots/BGE_SPLIT); 984 bufsize = brp->buf[0].size; 985 986 /* 987 * Set up the copy of the h/w RCB 988 * 989 * Note: unlike Send & Receive Return Rings, (where the max_len 990 * field holds the number of slots), in a Receive Buffer Ring 991 * this field indicates the size of each buffer in the ring. 992 */ 993 brp->hw_rcb.host_ring_addr = brp->desc.cookie.dmac_laddress; 994 brp->hw_rcb.max_len = bufsize; 995 brp->hw_rcb.flags = nslots > 0 ? 0 : RCB_FLAG_RING_DISABLED; 996 brp->hw_rcb.nic_ring_addr = nic_ring_addrs[ring]; 997 998 /* 999 * Other one-off initialisation of per-ring data 1000 */ 1001 brp->bgep = bgep; 1002 bsp = DMA_VPTR(bgep->status_block); 1003 brp->cons_index_p = &bsp->buff_cons_index[buff_cons_xref[ring]]; 1004 brp->chip_mbx_reg = mailbox_regs[ring]; 1005 mutex_init(brp->rf_lock, NULL, MUTEX_DRIVER, 1006 DDI_INTR_PRI(bgep->intr_pri)); 1007 1008 /* 1009 * Allocate the array of s/w Receive Buffer Descriptors 1010 */ 1011 srbdp = kmem_zalloc(nslots*sizeof (*srbdp), KM_SLEEP); 1012 brp->sw_rbds = srbdp; 1013 1014 /* 1015 * Now initialise each array element once and for all 1016 */ 1017 for (split = 0; split < BGE_SPLIT; ++split) { 1018 pbuf = brp->buf[split]; 1019 for (slot = 0; slot < nslots/BGE_SPLIT; ++srbdp, ++slot) 1020 bge_slice_chunk(&srbdp->pbuf, &pbuf, 1, bufsize); 1021 ASSERT(pbuf.alength == 0); 1022 } 1023 } 1024 1025 /* 1026 * Clean up initialisation done above before the memory is freed 1027 */ 1028 static void 1029 bge_fini_buff_ring(bge_t *bgep, uint64_t ring) 1030 { 1031 buff_ring_t *brp; 1032 sw_rbd_t *srbdp; 1033 1034 BGE_TRACE(("bge_fini_buff_ring($%p, %d)", 1035 (void *)bgep, ring)); 1036 1037 brp = &bgep->buff[ring]; 1038 srbdp = brp->sw_rbds; 1039 kmem_free(srbdp, brp->desc.nslots*sizeof (*srbdp)); 1040 1041 mutex_destroy(brp->rf_lock); 1042 } 1043 1044 /* 1045 * Initialise the specified Receive (Return) Ring, using the 1046 * information in the <dma_area> descriptors that it contains 1047 * to set up all the other fields. This routine should be called 1048 * only once for each ring. 1049 */ 1050 static void 1051 bge_init_recv_ring(bge_t *bgep, uint64_t ring) 1052 { 1053 recv_ring_t *rrp; 1054 bge_status_t *bsp; 1055 uint32_t nslots; 1056 1057 BGE_TRACE(("bge_init_recv_ring($%p, %d)", 1058 (void *)bgep, ring)); 1059 1060 /* 1061 * The chip architecture requires that receive return rings have 1062 * 512 or 1024 or 2048 elements per ring. See 570X-PG108-R page 103. 1063 */ 1064 rrp = &bgep->recv[ring]; 1065 nslots = rrp->desc.nslots; 1066 ASSERT(nslots == 0 || nslots == 512 || 1067 nslots == 1024 || nslots == 2048); 1068 1069 /* 1070 * Set up the copy of the h/w RCB 1071 */ 1072 rrp->hw_rcb.host_ring_addr = rrp->desc.cookie.dmac_laddress; 1073 rrp->hw_rcb.max_len = nslots; 1074 rrp->hw_rcb.flags = nslots > 0 ? 0 : RCB_FLAG_RING_DISABLED; 1075 rrp->hw_rcb.nic_ring_addr = 0; 1076 1077 /* 1078 * Other one-off initialisation of per-ring data 1079 */ 1080 rrp->bgep = bgep; 1081 bsp = DMA_VPTR(bgep->status_block); 1082 rrp->prod_index_p = RECV_INDEX_P(bsp, ring); 1083 rrp->chip_mbx_reg = RECV_RING_CONS_INDEX_REG(ring); 1084 mutex_init(rrp->rx_lock, NULL, MUTEX_DRIVER, 1085 DDI_INTR_PRI(bgep->intr_pri)); 1086 } 1087 1088 1089 /* 1090 * Clean up initialisation done above before the memory is freed 1091 */ 1092 static void 1093 bge_fini_recv_ring(bge_t *bgep, uint64_t ring) 1094 { 1095 recv_ring_t *rrp; 1096 1097 BGE_TRACE(("bge_fini_recv_ring($%p, %d)", 1098 (void *)bgep, ring)); 1099 1100 rrp = &bgep->recv[ring]; 1101 if (rrp->rx_softint) 1102 ddi_remove_softintr(rrp->rx_softint); 1103 mutex_destroy(rrp->rx_lock); 1104 } 1105 1106 /* 1107 * Initialise the specified Send Ring, using the information in the 1108 * <dma_area> descriptors that it contains to set up all the other 1109 * fields. This routine should be called only once for each ring. 1110 */ 1111 static void 1112 bge_init_send_ring(bge_t *bgep, uint64_t ring) 1113 { 1114 send_ring_t *srp; 1115 bge_status_t *bsp; 1116 sw_sbd_t *ssbdp; 1117 dma_area_t desc; 1118 dma_area_t pbuf; 1119 uint32_t nslots; 1120 uint32_t slot; 1121 uint32_t split; 1122 1123 BGE_TRACE(("bge_init_send_ring($%p, %d)", 1124 (void *)bgep, ring)); 1125 1126 /* 1127 * The chip architecture requires that host-based send rings 1128 * have 512 elements per ring. See 570X-PG102-R page 56. 1129 */ 1130 srp = &bgep->send[ring]; 1131 nslots = srp->desc.nslots; 1132 ASSERT(nslots == 0 || nslots == 512); 1133 1134 /* 1135 * Set up the copy of the h/w RCB 1136 */ 1137 srp->hw_rcb.host_ring_addr = srp->desc.cookie.dmac_laddress; 1138 srp->hw_rcb.max_len = nslots; 1139 srp->hw_rcb.flags = nslots > 0 ? 0 : RCB_FLAG_RING_DISABLED; 1140 srp->hw_rcb.nic_ring_addr = NIC_MEM_SHADOW_SEND_RING(ring, nslots); 1141 1142 /* 1143 * Other one-off initialisation of per-ring data 1144 */ 1145 srp->bgep = bgep; 1146 bsp = DMA_VPTR(bgep->status_block); 1147 srp->cons_index_p = SEND_INDEX_P(bsp, ring); 1148 srp->chip_mbx_reg = SEND_RING_HOST_INDEX_REG(ring); 1149 mutex_init(srp->tx_lock, NULL, MUTEX_DRIVER, 1150 DDI_INTR_PRI(bgep->intr_pri)); 1151 mutex_init(srp->tc_lock, NULL, MUTEX_DRIVER, 1152 DDI_INTR_PRI(bgep->intr_pri)); 1153 1154 /* 1155 * Allocate the array of s/w Send Buffer Descriptors 1156 */ 1157 ssbdp = kmem_zalloc(nslots*sizeof (*ssbdp), KM_SLEEP); 1158 srp->sw_sbds = ssbdp; 1159 1160 /* 1161 * Now initialise each array element once and for all 1162 */ 1163 desc = srp->desc; 1164 for (split = 0; split < BGE_SPLIT; ++split) { 1165 pbuf = srp->buf[split]; 1166 for (slot = 0; slot < nslots/BGE_SPLIT; ++ssbdp, ++slot) { 1167 bge_slice_chunk(&ssbdp->desc, &desc, 1, 1168 sizeof (bge_sbd_t)); 1169 bge_slice_chunk(&ssbdp->pbuf, &pbuf, 1, 1170 bgep->chipid.snd_buff_size); 1171 } 1172 ASSERT(pbuf.alength == 0); 1173 } 1174 ASSERT(desc.alength == 0); 1175 } 1176 1177 /* 1178 * Clean up initialisation done above before the memory is freed 1179 */ 1180 static void 1181 bge_fini_send_ring(bge_t *bgep, uint64_t ring) 1182 { 1183 send_ring_t *srp; 1184 sw_sbd_t *ssbdp; 1185 1186 BGE_TRACE(("bge_fini_send_ring($%p, %d)", 1187 (void *)bgep, ring)); 1188 1189 srp = &bgep->send[ring]; 1190 ssbdp = srp->sw_sbds; 1191 kmem_free(ssbdp, srp->desc.nslots*sizeof (*ssbdp)); 1192 1193 mutex_destroy(srp->tx_lock); 1194 mutex_destroy(srp->tc_lock); 1195 } 1196 1197 /* 1198 * Initialise all transmit, receive, and buffer rings. 1199 * (also a few top-level mutexen that can't be done until 1200 * the h/w interrupt handler has been registered 'cos we 1201 * need the cookie). 1202 */ 1203 static void 1204 bge_init_rings(bge_t *bgep) 1205 { 1206 uint64_t ring; 1207 1208 BGE_TRACE(("bge_init_rings($%p)", (void *)bgep)); 1209 1210 mutex_init(bgep->genlock, NULL, MUTEX_DRIVER, 1211 DDI_INTR_PRI(bgep->intr_pri)); 1212 mutex_init(bgep->softintrlock, NULL, MUTEX_DRIVER, 1213 DDI_INTR_PRI(bgep->intr_pri)); 1214 rw_init(bgep->errlock, NULL, RW_DRIVER, 1215 DDI_INTR_PRI(bgep->intr_pri)); 1216 1217 /* 1218 * Perform one-off initialisation of each ring ... 1219 */ 1220 for (ring = 0; ring < BGE_SEND_RINGS_MAX; ++ring) 1221 bge_init_send_ring(bgep, ring); 1222 for (ring = 0; ring < BGE_RECV_RINGS_MAX; ++ring) 1223 bge_init_recv_ring(bgep, ring); 1224 for (ring = 0; ring < BGE_BUFF_RINGS_MAX; ++ring) 1225 bge_init_buff_ring(bgep, ring); 1226 } 1227 1228 /* 1229 * Undo the work of bge_init_rings() above before the memory is freed 1230 */ 1231 static void 1232 bge_fini_rings(bge_t *bgep) 1233 { 1234 uint64_t ring; 1235 1236 BGE_TRACE(("bge_fini_rings($%p)", (void *)bgep)); 1237 1238 for (ring = 0; ring < BGE_BUFF_RINGS_MAX; ++ring) 1239 bge_fini_buff_ring(bgep, ring); 1240 for (ring = 0; ring < BGE_RECV_RINGS_MAX; ++ring) 1241 bge_fini_recv_ring(bgep, ring); 1242 for (ring = 0; ring < BGE_SEND_RINGS_MAX; ++ring) 1243 bge_fini_send_ring(bgep, ring); 1244 1245 rw_destroy(bgep->errlock); 1246 mutex_destroy(bgep->softintrlock); 1247 mutex_destroy(bgep->genlock); 1248 } 1249 1250 /* 1251 * Allocate an area of memory and a DMA handle for accessing it 1252 */ 1253 static int 1254 bge_alloc_dma_mem(bge_t *bgep, size_t memsize, ddi_device_acc_attr_t *attr_p, 1255 uint_t dma_flags, dma_area_t *dma_p) 1256 { 1257 caddr_t va; 1258 int err; 1259 1260 BGE_TRACE(("bge_alloc_dma_mem($%p, %ld, $%p, 0x%x, $%p)", 1261 (void *)bgep, memsize, attr_p, dma_flags, dma_p)); 1262 1263 /* 1264 * Allocate handle 1265 */ 1266 err = ddi_dma_alloc_handle(bgep->devinfo, &dma_attr, 1267 DDI_DMA_SLEEP, NULL, &dma_p->dma_hdl); 1268 if (err != DDI_SUCCESS) 1269 return (DDI_FAILURE); 1270 1271 /* 1272 * Allocate memory 1273 */ 1274 err = ddi_dma_mem_alloc(dma_p->dma_hdl, memsize, attr_p, 1275 dma_flags & (DDI_DMA_CONSISTENT | DDI_DMA_STREAMING), 1276 DDI_DMA_SLEEP, NULL, &va, &dma_p->alength, &dma_p->acc_hdl); 1277 if (err != DDI_SUCCESS) 1278 return (DDI_FAILURE); 1279 1280 /* 1281 * Bind the two together 1282 */ 1283 dma_p->mem_va = va; 1284 err = ddi_dma_addr_bind_handle(dma_p->dma_hdl, NULL, 1285 va, dma_p->alength, dma_flags, DDI_DMA_SLEEP, NULL, 1286 &dma_p->cookie, &dma_p->ncookies); 1287 1288 BGE_DEBUG(("bge_alloc_dma_mem(): bind %d bytes; err %d, %d cookies", 1289 dma_p->alength, err, dma_p->ncookies)); 1290 1291 if (err != DDI_DMA_MAPPED || dma_p->ncookies != 1) 1292 return (DDI_FAILURE); 1293 1294 dma_p->nslots = ~0U; 1295 dma_p->size = ~0U; 1296 dma_p->token = ~0U; 1297 dma_p->offset = 0; 1298 return (DDI_SUCCESS); 1299 } 1300 1301 /* 1302 * Free one allocated area of DMAable memory 1303 */ 1304 static void 1305 bge_free_dma_mem(dma_area_t *dma_p) 1306 { 1307 if (dma_p->dma_hdl != NULL) { 1308 if (dma_p->ncookies) { 1309 (void) ddi_dma_unbind_handle(dma_p->dma_hdl); 1310 dma_p->ncookies = 0; 1311 } 1312 ddi_dma_free_handle(&dma_p->dma_hdl); 1313 dma_p->dma_hdl = NULL; 1314 } 1315 1316 if (dma_p->acc_hdl != NULL) { 1317 ddi_dma_mem_free(&dma_p->acc_hdl); 1318 dma_p->acc_hdl = NULL; 1319 } 1320 } 1321 1322 /* 1323 * This function allocates all the transmit and receive buffers 1324 * and descriptors, in four chunks (or one, if MONOLITHIC). 1325 */ 1326 static int 1327 bge_alloc_bufs(bge_t *bgep) 1328 { 1329 dma_area_t area; 1330 size_t rxbuffsize; 1331 size_t txbuffsize; 1332 size_t rxbuffdescsize; 1333 size_t rxdescsize; 1334 size_t txdescsize; 1335 uint64_t ring; 1336 uint64_t rx_rings = bgep->chipid.rx_rings; 1337 uint64_t tx_rings = bgep->chipid.tx_rings; 1338 int split; 1339 int err; 1340 1341 BGE_TRACE(("bge_alloc_bufs($%p)", 1342 (void *)bgep)); 1343 1344 rxbuffsize = BGE_STD_SLOTS_USED*BGE_STD_BUFF_SIZE; 1345 rxbuffsize += bgep->chipid.jumbo_slots*bgep->chipid.recv_jumbo_size; 1346 rxbuffsize += BGE_MINI_SLOTS_USED*BGE_MINI_BUFF_SIZE; 1347 1348 txbuffsize = BGE_SEND_SLOTS_USED*bgep->chipid.snd_buff_size; 1349 txbuffsize *= tx_rings; 1350 1351 rxdescsize = rx_rings*bgep->chipid.recv_slots; 1352 rxdescsize *= sizeof (bge_rbd_t); 1353 1354 rxbuffdescsize = BGE_STD_SLOTS_USED; 1355 rxbuffdescsize += bgep->chipid.jumbo_slots; 1356 rxbuffdescsize += BGE_MINI_SLOTS_USED; 1357 rxbuffdescsize *= sizeof (bge_rbd_t); 1358 1359 txdescsize = tx_rings*BGE_SEND_SLOTS_USED; 1360 txdescsize *= sizeof (bge_sbd_t); 1361 txdescsize += sizeof (bge_statistics_t); 1362 txdescsize += sizeof (bge_status_t); 1363 txdescsize += BGE_STATUS_PADDING; 1364 1365 #if BGE_MONOLITHIC 1366 1367 err = bge_alloc_dma_mem(bgep, 1368 rxbuffsize+txbuffsize+rxbuffdescsize+rxdescsize+txdescsize, 1369 &bge_data_accattr, DDI_DMA_RDWR | DDI_DMA_CONSISTENT, &area); 1370 if (err != DDI_SUCCESS) 1371 return (DDI_FAILURE); 1372 1373 BGE_DEBUG(("allocated range $%p-$%p (0x%lx-0x%lx)", 1374 DMA_VPTR(area), 1375 (caddr_t)DMA_VPTR(area)+area.alength, 1376 area.cookie.dmac_laddress, 1377 area.cookie.dmac_laddress+area.alength)); 1378 1379 bge_slice_chunk(&bgep->rx_buff[0], &area, 1, rxbuffsize); 1380 bge_slice_chunk(&bgep->tx_buff[0], &area, 1, txbuffsize); 1381 bge_slice_chunk(&bgep->rx_desc[0], &area, 1, rxdescsize); 1382 bge_slice_chunk(&bgep->tx_desc, &area, 1, txdescsize); 1383 1384 #else 1385 /* 1386 * Allocate memory & handles for RX buffers 1387 */ 1388 ASSERT((rxbuffsize % BGE_SPLIT) == 0); 1389 for (split = 0; split < BGE_SPLIT; ++split) { 1390 err = bge_alloc_dma_mem(bgep, rxbuffsize/BGE_SPLIT, 1391 &bge_data_accattr, DDI_DMA_READ | BGE_DMA_MODE, 1392 &bgep->rx_buff[split]); 1393 if (err != DDI_SUCCESS) 1394 return (DDI_FAILURE); 1395 } 1396 1397 /* 1398 * Allocate memory & handles for TX buffers 1399 */ 1400 ASSERT((txbuffsize % BGE_SPLIT) == 0); 1401 for (split = 0; split < BGE_SPLIT; ++split) { 1402 err = bge_alloc_dma_mem(bgep, txbuffsize/BGE_SPLIT, 1403 &bge_data_accattr, DDI_DMA_WRITE | BGE_DMA_MODE, 1404 &bgep->tx_buff[split]); 1405 if (err != DDI_SUCCESS) 1406 return (DDI_FAILURE); 1407 } 1408 1409 /* 1410 * Allocate memory & handles for receive return rings 1411 */ 1412 ASSERT((rxdescsize % rx_rings) == 0); 1413 for (split = 0; split < rx_rings; ++split) { 1414 err = bge_alloc_dma_mem(bgep, rxdescsize/rx_rings, 1415 &bge_desc_accattr, DDI_DMA_RDWR | DDI_DMA_CONSISTENT, 1416 &bgep->rx_desc[split]); 1417 if (err != DDI_SUCCESS) 1418 return (DDI_FAILURE); 1419 } 1420 1421 /* 1422 * Allocate memory & handles for buffer (producer) descriptor rings 1423 */ 1424 err = bge_alloc_dma_mem(bgep, rxbuffdescsize, &bge_desc_accattr, 1425 DDI_DMA_RDWR | DDI_DMA_CONSISTENT, &bgep->rx_desc[split]); 1426 if (err != DDI_SUCCESS) 1427 return (DDI_FAILURE); 1428 1429 /* 1430 * Allocate memory & handles for TX descriptor rings, 1431 * status block, and statistics area 1432 */ 1433 err = bge_alloc_dma_mem(bgep, txdescsize, &bge_desc_accattr, 1434 DDI_DMA_RDWR | DDI_DMA_CONSISTENT, &bgep->tx_desc); 1435 if (err != DDI_SUCCESS) 1436 return (DDI_FAILURE); 1437 1438 #endif /* BGE_MONOLITHIC */ 1439 1440 /* 1441 * Now carve up each of the allocated areas ... 1442 */ 1443 for (split = 0; split < BGE_SPLIT; ++split) { 1444 area = bgep->rx_buff[split]; 1445 bge_slice_chunk(&bgep->buff[BGE_STD_BUFF_RING].buf[split], 1446 &area, BGE_STD_SLOTS_USED/BGE_SPLIT, 1447 BGE_STD_BUFF_SIZE); 1448 bge_slice_chunk(&bgep->buff[BGE_JUMBO_BUFF_RING].buf[split], 1449 &area, bgep->chipid.jumbo_slots/BGE_SPLIT, 1450 bgep->chipid.recv_jumbo_size); 1451 bge_slice_chunk(&bgep->buff[BGE_MINI_BUFF_RING].buf[split], 1452 &area, BGE_MINI_SLOTS_USED/BGE_SPLIT, 1453 BGE_MINI_BUFF_SIZE); 1454 ASSERT(area.alength >= 0); 1455 } 1456 1457 for (split = 0; split < BGE_SPLIT; ++split) { 1458 area = bgep->tx_buff[split]; 1459 for (ring = 0; ring < tx_rings; ++ring) 1460 bge_slice_chunk(&bgep->send[ring].buf[split], 1461 &area, BGE_SEND_SLOTS_USED/BGE_SPLIT, 1462 bgep->chipid.snd_buff_size); 1463 for (; ring < BGE_SEND_RINGS_MAX; ++ring) 1464 bge_slice_chunk(&bgep->send[ring].buf[split], 1465 &area, 0/BGE_SPLIT, 1466 bgep->chipid.snd_buff_size); 1467 ASSERT(area.alength >= 0); 1468 } 1469 1470 for (ring = 0; ring < rx_rings; ++ring) 1471 bge_slice_chunk(&bgep->recv[ring].desc, &bgep->rx_desc[ring], 1472 bgep->chipid.recv_slots, sizeof (bge_rbd_t)); 1473 1474 area = bgep->rx_desc[rx_rings]; 1475 for (; ring < BGE_RECV_RINGS_MAX; ++ring) 1476 bge_slice_chunk(&bgep->recv[ring].desc, &area, 1477 0, sizeof (bge_rbd_t)); 1478 bge_slice_chunk(&bgep->buff[BGE_STD_BUFF_RING].desc, &area, 1479 BGE_STD_SLOTS_USED, sizeof (bge_rbd_t)); 1480 bge_slice_chunk(&bgep->buff[BGE_JUMBO_BUFF_RING].desc, &area, 1481 bgep->chipid.jumbo_slots, sizeof (bge_rbd_t)); 1482 bge_slice_chunk(&bgep->buff[BGE_MINI_BUFF_RING].desc, &area, 1483 BGE_MINI_SLOTS_USED, sizeof (bge_rbd_t)); 1484 ASSERT(area.alength == 0); 1485 1486 area = bgep->tx_desc; 1487 for (ring = 0; ring < tx_rings; ++ring) 1488 bge_slice_chunk(&bgep->send[ring].desc, &area, 1489 BGE_SEND_SLOTS_USED, sizeof (bge_sbd_t)); 1490 for (; ring < BGE_SEND_RINGS_MAX; ++ring) 1491 bge_slice_chunk(&bgep->send[ring].desc, &area, 1492 0, sizeof (bge_sbd_t)); 1493 bge_slice_chunk(&bgep->statistics, &area, 1, sizeof (bge_statistics_t)); 1494 bge_slice_chunk(&bgep->status_block, &area, 1, sizeof (bge_status_t)); 1495 ASSERT(area.alength == BGE_STATUS_PADDING); 1496 DMA_ZERO(bgep->status_block); 1497 1498 return (DDI_SUCCESS); 1499 } 1500 1501 /* 1502 * This routine frees the transmit and receive buffers and descriptors. 1503 * Make sure the chip is stopped before calling it! 1504 */ 1505 static void 1506 bge_free_bufs(bge_t *bgep) 1507 { 1508 int split; 1509 1510 BGE_TRACE(("bge_free_bufs($%p)", 1511 (void *)bgep)); 1512 1513 #if BGE_MONOLITHIC 1514 bge_free_dma_mem(&bgep->rx_buff[0]); 1515 #else 1516 bge_free_dma_mem(&bgep->tx_desc); 1517 for (split = 0; split < BGE_RECV_RINGS_SPLIT; ++split) 1518 bge_free_dma_mem(&bgep->rx_desc[split]); 1519 for (split = 0; split < BGE_SPLIT; ++split) 1520 bge_free_dma_mem(&bgep->tx_buff[split]); 1521 for (split = 0; split < BGE_SPLIT; ++split) 1522 bge_free_dma_mem(&bgep->rx_buff[split]); 1523 #endif /* BGE_MONOLITHIC */ 1524 } 1525 1526 /* 1527 * Determine (initial) MAC address ("BIA") to use for this interface 1528 */ 1529 1530 static void 1531 bge_find_mac_address(bge_t *bgep, chip_id_t *cidp) 1532 { 1533 struct ether_addr sysaddr; 1534 char propbuf[8]; /* "true" or "false", plus NUL */ 1535 uchar_t *bytes; 1536 int *ints; 1537 uint_t nelts; 1538 int err; 1539 1540 BGE_TRACE(("bge_find_mac_address($%p)", 1541 (void *)bgep)); 1542 1543 BGE_DEBUG(("bge_find_mac_address: hw_mac_addr %012llx, => %s (%sset)", 1544 cidp->hw_mac_addr, 1545 ether_sprintf((void *)cidp->vendor_addr.addr), 1546 cidp->vendor_addr.set ? "" : "not ")); 1547 1548 /* 1549 * The "vendor's factory-set address" may already have 1550 * been extracted from the chip, but if the property 1551 * "local-mac-address" is set we use that instead. It 1552 * will normally be set by OBP, but it could also be 1553 * specified in a .conf file(!) 1554 * 1555 * There doesn't seem to be a way to define byte-array 1556 * properties in a .conf, so we check whether it looks 1557 * like an array of 6 ints instead. 1558 * 1559 * Then, we check whether it looks like an array of 6 1560 * bytes (which it should, if OBP set it). If we can't 1561 * make sense of it either way, we'll ignore it. 1562 */ 1563 err = ddi_prop_lookup_int_array(DDI_DEV_T_ANY, bgep->devinfo, 1564 DDI_PROP_DONTPASS, localmac_propname, &ints, &nelts); 1565 if (err == DDI_PROP_SUCCESS) { 1566 if (nelts == ETHERADDRL) { 1567 while (nelts--) 1568 cidp->vendor_addr.addr[nelts] = ints[nelts]; 1569 cidp->vendor_addr.set = 1; 1570 } 1571 ddi_prop_free(ints); 1572 } 1573 1574 err = ddi_prop_lookup_byte_array(DDI_DEV_T_ANY, bgep->devinfo, 1575 DDI_PROP_DONTPASS, localmac_propname, &bytes, &nelts); 1576 if (err == DDI_PROP_SUCCESS) { 1577 if (nelts == ETHERADDRL) { 1578 while (nelts--) 1579 cidp->vendor_addr.addr[nelts] = bytes[nelts]; 1580 cidp->vendor_addr.set = 1; 1581 } 1582 ddi_prop_free(bytes); 1583 } 1584 1585 BGE_DEBUG(("bge_find_mac_address: +local %s (%sset)", 1586 ether_sprintf((void *)cidp->vendor_addr.addr), 1587 cidp->vendor_addr.set ? "" : "not ")); 1588 1589 /* 1590 * Look up the OBP property "local-mac-address?". Note that even 1591 * though its value is a string (which should be "true" or "false"), 1592 * it can't be decoded by ddi_prop_lookup_string(9F). So, we zero 1593 * the buffer first and then fetch the property as an untyped array; 1594 * this may or may not include a final NUL, but since there will 1595 * always be one left at the end of the buffer we can now treat it 1596 * as a string anyway. 1597 */ 1598 nelts = sizeof (propbuf); 1599 bzero(propbuf, nelts--); 1600 err = ddi_getlongprop_buf(DDI_DEV_T_ANY, bgep->devinfo, 1601 DDI_PROP_CANSLEEP, localmac_boolname, propbuf, (int *)&nelts); 1602 1603 /* 1604 * Now, if the address still isn't set from the hardware (SEEPROM) 1605 * or the OBP or .conf property, OR if the user has foolishly set 1606 * 'local-mac-address? = false', use "the system address" instead 1607 * (but only if it's non-null i.e. has been set from the IDPROM). 1608 */ 1609 if (cidp->vendor_addr.set == 0 || strcmp(propbuf, "false") == 0) 1610 if (localetheraddr(NULL, &sysaddr) != 0) { 1611 ethaddr_copy(&sysaddr, cidp->vendor_addr.addr); 1612 cidp->vendor_addr.set = 1; 1613 } 1614 1615 BGE_DEBUG(("bge_find_mac_address: +system %s (%sset)", 1616 ether_sprintf((void *)cidp->vendor_addr.addr), 1617 cidp->vendor_addr.set ? "" : "not ")); 1618 1619 /* 1620 * Finally(!), if there's a valid "mac-address" property (created 1621 * if we netbooted from this interface), we must use this instead 1622 * of any of the above to ensure that the NFS/install server doesn't 1623 * get confused by the address changing as Solaris takes over! 1624 */ 1625 err = ddi_prop_lookup_byte_array(DDI_DEV_T_ANY, bgep->devinfo, 1626 DDI_PROP_DONTPASS, macaddr_propname, &bytes, &nelts); 1627 if (err == DDI_PROP_SUCCESS) { 1628 if (nelts == ETHERADDRL) { 1629 while (nelts--) 1630 cidp->vendor_addr.addr[nelts] = bytes[nelts]; 1631 cidp->vendor_addr.set = 1; 1632 } 1633 ddi_prop_free(bytes); 1634 } 1635 1636 BGE_DEBUG(("bge_find_mac_address: =final %s (%sset)", 1637 ether_sprintf((void *)cidp->vendor_addr.addr), 1638 cidp->vendor_addr.set ? "" : "not ")); 1639 } 1640 1641 static void 1642 #ifdef BGE_IPMI_ASF 1643 bge_unattach(bge_t *bgep, uint_t asf_mode) 1644 #else 1645 bge_unattach(bge_t *bgep) 1646 #endif 1647 { 1648 mac_t *macp; 1649 1650 BGE_TRACE(("bge_unattach($%p)", 1651 (void *)bgep)); 1652 1653 /* 1654 * Flag that no more activity may be initiated 1655 */ 1656 bgep->progress &= ~PROGRESS_READY; 1657 1658 /* 1659 * Quiesce the PHY and MAC (leave it reset but still powered). 1660 * Clean up and free all BGE data structures 1661 */ 1662 if (bgep->cyclic_id) { 1663 mutex_enter(&cpu_lock); 1664 cyclic_remove(bgep->cyclic_id); 1665 mutex_exit(&cpu_lock); 1666 } 1667 if (bgep->progress & PROGRESS_KSTATS) 1668 bge_fini_kstats(bgep); 1669 if (bgep->progress & PROGRESS_NDD) 1670 bge_nd_cleanup(bgep); 1671 if (bgep->progress & PROGRESS_PHY) 1672 bge_phys_reset(bgep); 1673 if (bgep->progress & PROGRESS_HWINT) { 1674 mutex_enter(bgep->genlock); 1675 #ifdef BGE_IPMI_ASF 1676 bge_chip_reset(bgep, B_FALSE, asf_mode); 1677 if (bgep->asf_enabled) { 1678 /* 1679 * This register has been overlaid. We restore its 1680 * initial value here. 1681 */ 1682 bge_nic_put32(bgep, BGE_NIC_DATA_SIG_ADDR, 1683 BGE_NIC_DATA_SIG); 1684 } 1685 #else 1686 bge_chip_reset(bgep, B_FALSE); 1687 #endif 1688 mutex_exit(bgep->genlock); 1689 } 1690 1691 if (bgep->progress & PROGRESS_INTR) { 1692 bge_rem_intrs(bgep); 1693 bge_fini_rings(bgep); 1694 } 1695 1696 if (bgep->progress & PROGRESS_FACTOTUM) 1697 ddi_remove_softintr(bgep->factotum_id); 1698 if (bgep->progress & PROGRESS_RESCHED) 1699 ddi_remove_softintr(bgep->resched_id); 1700 bge_free_bufs(bgep); 1701 if (bgep->progress & PROGRESS_REGS) 1702 ddi_regs_map_free(&bgep->io_handle); 1703 if (bgep->progress & PROGRESS_CFG) 1704 pci_config_teardown(&bgep->cfg_handle); 1705 1706 ddi_remove_minor_node(bgep->devinfo, NULL); 1707 macp = bgep->macp; 1708 kmem_free(macp, sizeof (*macp)); 1709 kmem_free(bgep, sizeof (*bgep)); 1710 } 1711 1712 static int 1713 bge_resume(dev_info_t *devinfo) 1714 { 1715 bge_t *bgep; /* Our private data */ 1716 chip_id_t *cidp; 1717 chip_id_t chipid; 1718 1719 bgep = ddi_get_driver_private(devinfo); 1720 if (bgep == NULL) 1721 return (DDI_FAILURE); 1722 1723 /* 1724 * Refuse to resume if the data structures aren't consistent 1725 */ 1726 if (bgep->devinfo != devinfo) 1727 return (DDI_FAILURE); 1728 1729 #ifdef BGE_IPMI_ASF 1730 /* 1731 * Power management hasn't been supported in BGE now. If you 1732 * want to implement it, please add the ASF/IPMI related 1733 * code here. 1734 */ 1735 1736 #endif 1737 1738 /* 1739 * Read chip ID & set up config space command register(s) 1740 * Refuse to resume if the chip has changed its identity! 1741 */ 1742 cidp = &bgep->chipid; 1743 bge_chip_cfg_init(bgep, &chipid, B_FALSE); 1744 if (chipid.vendor != cidp->vendor) 1745 return (DDI_FAILURE); 1746 if (chipid.device != cidp->device) 1747 return (DDI_FAILURE); 1748 if (chipid.revision != cidp->revision) 1749 return (DDI_FAILURE); 1750 if (chipid.asic_rev != cidp->asic_rev) 1751 return (DDI_FAILURE); 1752 1753 /* 1754 * All OK, reinitialise h/w & kick off GLD scheduling 1755 */ 1756 mutex_enter(bgep->genlock); 1757 bge_restart(bgep, B_TRUE); 1758 mutex_exit(bgep->genlock); 1759 return (DDI_SUCCESS); 1760 } 1761 1762 static uint8_t ether_brdcst[] = { 0xff, 0xff, 0xff, 0xff, 0xff, 0xff }; 1763 1764 /* 1765 * attach(9E) -- Attach a device to the system 1766 * 1767 * Called once for each board successfully probed. 1768 */ 1769 static int 1770 bge_attach(dev_info_t *devinfo, ddi_attach_cmd_t cmd) 1771 { 1772 bge_t *bgep; /* Our private data */ 1773 mac_t *macp; 1774 chip_id_t *cidp; 1775 cyc_handler_t cychand; 1776 cyc_time_t cyctime; 1777 caddr_t regs; 1778 int instance; 1779 int err; 1780 mac_info_t *mip; 1781 int intr_types; 1782 int i; 1783 #ifdef BGE_IPMI_ASF 1784 uint32_t mhcrValue; 1785 #endif 1786 1787 instance = ddi_get_instance(devinfo); 1788 1789 BGE_GTRACE(("bge_attach($%p, %d) instance %d", 1790 (void *)devinfo, cmd, instance)); 1791 BGE_BRKPT(NULL, "bge_attach"); 1792 1793 switch (cmd) { 1794 default: 1795 return (DDI_FAILURE); 1796 1797 case DDI_RESUME: 1798 return (bge_resume(devinfo)); 1799 1800 case DDI_ATTACH: 1801 break; 1802 } 1803 1804 /* 1805 * Allocate mac_t and BGE private structures, and 1806 * cross-link them so that given either one of these or 1807 * the devinfo the others can be derived. 1808 */ 1809 macp = kmem_zalloc(sizeof (*macp), KM_SLEEP); 1810 bgep = kmem_zalloc(sizeof (*bgep), KM_SLEEP); 1811 ddi_set_driver_private(devinfo, bgep); 1812 bgep->bge_guard = BGE_GUARD; 1813 bgep->devinfo = devinfo; 1814 bgep->macp = macp; 1815 macp->m_driver = bgep; 1816 1817 /* 1818 * Initialize more fields in BGE private data 1819 */ 1820 bgep->debug = ddi_prop_get_int(DDI_DEV_T_ANY, devinfo, 1821 DDI_PROP_DONTPASS, debug_propname, bge_debug); 1822 (void) snprintf(bgep->ifname, sizeof (bgep->ifname), "%s%d", 1823 BGE_DRIVER_NAME, instance); 1824 1825 /* 1826 * Look up the IOMMU's page size for DVMA mappings (must be 1827 * a power of 2) and convert to a mask. This can be used to 1828 * determine whether a message buffer crosses a page boundary. 1829 * Note: in 2s complement binary notation, if X is a power of 1830 * 2, then -X has the representation "11...1100...00". 1831 */ 1832 bgep->pagemask = dvma_pagesize(devinfo); 1833 ASSERT(ddi_ffs(bgep->pagemask) == ddi_fls(bgep->pagemask)); 1834 bgep->pagemask = -bgep->pagemask; 1835 1836 /* 1837 * Map config space registers 1838 * Read chip ID & set up config space command register(s) 1839 * 1840 * Note: this leaves the chip accessible by Memory Space 1841 * accesses, but with interrupts and Bus Mastering off. 1842 * This should ensure that nothing untoward will happen 1843 * if it has been left active by the (net-)bootloader. 1844 * We'll re-enable Bus Mastering once we've reset the chip, 1845 * and allow interrupts only when everything else is set up. 1846 */ 1847 err = pci_config_setup(devinfo, &bgep->cfg_handle); 1848 #ifdef BGE_IPMI_ASF 1849 mhcrValue = pci_config_get32(bgep->cfg_handle, PCI_CONF_BGE_MHCR); 1850 if (mhcrValue & MHCR_ENABLE_ENDIAN_WORD_SWAP) { 1851 bgep->asf_wordswapped = B_TRUE; 1852 } else { 1853 bgep->asf_wordswapped = B_FALSE; 1854 } 1855 bge_asf_get_config(bgep); 1856 #endif 1857 if (err != DDI_SUCCESS) { 1858 bge_problem(bgep, "pci_config_setup() failed"); 1859 goto attach_fail; 1860 } 1861 bgep->progress |= PROGRESS_CFG; 1862 cidp = &bgep->chipid; 1863 bzero(cidp, sizeof (*cidp)); 1864 bge_chip_cfg_init(bgep, cidp, B_FALSE); 1865 1866 #ifdef BGE_IPMI_ASF 1867 if (DEVICE_5721_SERIES_CHIPSETS(bgep) || 1868 DEVICE_5714_SERIES_CHIPSETS(bgep)) { 1869 bgep->asf_newhandshake = B_TRUE; 1870 } else { 1871 bgep->asf_newhandshake = B_FALSE; 1872 } 1873 #endif 1874 1875 /* 1876 * Update those parts of the chip ID derived from volatile 1877 * registers with the values seen by OBP (in case the chip 1878 * has been reset externally and therefore lost them). 1879 */ 1880 cidp->subven = ddi_prop_get_int(DDI_DEV_T_ANY, devinfo, 1881 DDI_PROP_DONTPASS, subven_propname, cidp->subven); 1882 cidp->subdev = ddi_prop_get_int(DDI_DEV_T_ANY, devinfo, 1883 DDI_PROP_DONTPASS, subdev_propname, cidp->subdev); 1884 cidp->clsize = ddi_prop_get_int(DDI_DEV_T_ANY, devinfo, 1885 DDI_PROP_DONTPASS, clsize_propname, cidp->clsize); 1886 cidp->latency = ddi_prop_get_int(DDI_DEV_T_ANY, devinfo, 1887 DDI_PROP_DONTPASS, latency_propname, cidp->latency); 1888 cidp->rx_rings = ddi_prop_get_int(DDI_DEV_T_ANY, devinfo, 1889 DDI_PROP_DONTPASS, rxrings_propname, cidp->rx_rings); 1890 cidp->tx_rings = ddi_prop_get_int(DDI_DEV_T_ANY, devinfo, 1891 DDI_PROP_DONTPASS, txrings_propname, cidp->tx_rings); 1892 1893 if (bge_jumbo_enable == B_TRUE) { 1894 cidp->default_mtu = ddi_prop_get_int(DDI_DEV_T_ANY, devinfo, 1895 DDI_PROP_DONTPASS, default_mtu, BGE_DEFAULT_MTU); 1896 if ((cidp->default_mtu < BGE_DEFAULT_MTU)|| 1897 (cidp->default_mtu > BGE_MAXIMUM_MTU)) { 1898 cidp->default_mtu = BGE_DEFAULT_MTU; 1899 } 1900 } 1901 /* 1902 * Map operating registers 1903 */ 1904 err = ddi_regs_map_setup(devinfo, BGE_PCI_OPREGS_RNUMBER, 1905 ®s, 0, 0, &bge_reg_accattr, &bgep->io_handle); 1906 if (err != DDI_SUCCESS) { 1907 bge_problem(bgep, "ddi_regs_map_setup() failed"); 1908 goto attach_fail; 1909 } 1910 bgep->io_regs = regs; 1911 bgep->progress |= PROGRESS_REGS; 1912 1913 /* 1914 * Characterise the device, so we know its requirements. 1915 * Then allocate the appropriate TX and RX descriptors & buffers. 1916 */ 1917 bge_chip_id_init(bgep); 1918 err = bge_alloc_bufs(bgep); 1919 if (err != DDI_SUCCESS) { 1920 bge_problem(bgep, "DMA buffer allocation failed"); 1921 goto attach_fail; 1922 } 1923 1924 /* 1925 * Add the softint handlers: 1926 * 1927 * Both of these handlers are used to avoid restrictions on the 1928 * context and/or mutexes required for some operations. In 1929 * particular, the hardware interrupt handler and its subfunctions 1930 * can detect a number of conditions that we don't want to handle 1931 * in that context or with that set of mutexes held. So, these 1932 * softints are triggered instead: 1933 * 1934 * the <resched> softint is triggered if if we have previously 1935 * had to refuse to send a packet because of resource shortage 1936 * (we've run out of transmit buffers), but the send completion 1937 * interrupt handler has now detected that more buffers have 1938 * become available. 1939 * 1940 * the <factotum> is triggered if the h/w interrupt handler 1941 * sees the <link state changed> or <error> bits in the status 1942 * block. It's also triggered periodically to poll the link 1943 * state, just in case we aren't getting link status change 1944 * interrupts ... 1945 */ 1946 err = ddi_add_softintr(devinfo, DDI_SOFTINT_LOW, &bgep->resched_id, 1947 NULL, NULL, bge_reschedule, (caddr_t)bgep); 1948 if (err != DDI_SUCCESS) { 1949 bge_problem(bgep, "ddi_add_softintr() failed"); 1950 goto attach_fail; 1951 } 1952 bgep->progress |= PROGRESS_RESCHED; 1953 err = ddi_add_softintr(devinfo, DDI_SOFTINT_LOW, &bgep->factotum_id, 1954 NULL, NULL, bge_chip_factotum, (caddr_t)bgep); 1955 if (err != DDI_SUCCESS) { 1956 bge_problem(bgep, "ddi_add_softintr() failed"); 1957 goto attach_fail; 1958 } 1959 bgep->progress |= PROGRESS_FACTOTUM; 1960 1961 /* Get supported interrupt types */ 1962 if (ddi_intr_get_supported_types(devinfo, &intr_types) != DDI_SUCCESS) { 1963 bge_error(bgep, "ddi_intr_get_supported_types failed\n"); 1964 1965 goto attach_fail; 1966 } 1967 1968 bge_log(bgep, "ddi_intr_get_supported_types() returned: %x", 1969 intr_types); 1970 1971 if ((intr_types & DDI_INTR_TYPE_MSI) && bgep->chipid.msi_enabled) { 1972 if (bge_add_intrs(bgep, DDI_INTR_TYPE_MSI) != DDI_SUCCESS) { 1973 bge_error(bgep, "MSI registration failed, " 1974 "trying FIXED interrupt type\n"); 1975 } else { 1976 bge_log(bgep, "Using MSI interrupt type\n"); 1977 1978 bgep->intr_type = DDI_INTR_TYPE_MSI; 1979 bgep->progress |= PROGRESS_INTR; 1980 } 1981 } 1982 1983 if (!(bgep->progress & PROGRESS_INTR) && 1984 (intr_types & DDI_INTR_TYPE_FIXED)) { 1985 if (bge_add_intrs(bgep, DDI_INTR_TYPE_FIXED) != DDI_SUCCESS) { 1986 bge_error(bgep, "FIXED interrupt " 1987 "registration failed\n"); 1988 goto attach_fail; 1989 } 1990 1991 bge_log(bgep, "Using FIXED interrupt type\n"); 1992 1993 bgep->intr_type = DDI_INTR_TYPE_FIXED; 1994 bgep->progress |= PROGRESS_INTR; 1995 } 1996 1997 if (!(bgep->progress & PROGRESS_INTR)) { 1998 bge_error(bgep, "No interrupts registered\n"); 1999 goto attach_fail; 2000 } 2001 2002 /* 2003 * Note that interrupts are not enabled yet as 2004 * mutex locks are not initialized. 2005 * Initialize rings and mutex locks. 2006 */ 2007 bge_init_rings(bgep); 2008 bgep->progress |= PROGRESS_HWINT; 2009 2010 /* 2011 * Now that mutex locks are initialized, enable interrupts. 2012 */ 2013 if (bgep->intr_cap & DDI_INTR_FLAG_BLOCK) { 2014 /* Call ddi_intr_block_enable() for MSI interrupts */ 2015 (void) ddi_intr_block_enable(bgep->htable, bgep->intr_cnt); 2016 } else { 2017 /* Call ddi_intr_enable for MSI or FIXED interrupts */ 2018 for (i = 0; i < bgep->intr_cnt; i++) { 2019 (void) ddi_intr_enable(bgep->htable[i]); 2020 } 2021 } 2022 2023 /* 2024 * Initialise link state variables 2025 * Stop, reset & reinitialise the chip. 2026 * Initialise the (internal) PHY. 2027 */ 2028 bgep->link_state = LINK_STATE_UNKNOWN; 2029 bgep->link_up_msg = bgep->link_down_msg = " (initialized)"; 2030 2031 mutex_enter(bgep->genlock); 2032 2033 /* 2034 * Reset chip & rings to initial state; also reset address 2035 * filtering, promiscuity, loopback mode. 2036 */ 2037 #ifdef BGE_IPMI_ASF 2038 bge_reset(bgep, ASF_MODE_SHUTDOWN); 2039 #else 2040 bge_reset(bgep); 2041 #endif 2042 2043 bzero(bgep->mcast_hash, sizeof (bgep->mcast_hash)); 2044 bzero(bgep->mcast_refs, sizeof (bgep->mcast_refs)); 2045 bgep->promisc = B_FALSE; 2046 bgep->param_loop_mode = BGE_LOOP_NONE; 2047 2048 mutex_exit(bgep->genlock); 2049 2050 bge_phys_init(bgep); 2051 bgep->progress |= PROGRESS_PHY; 2052 2053 /* 2054 * Register NDD-tweakable parameters 2055 */ 2056 if (bge_nd_init(bgep)) { 2057 bge_problem(bgep, "bge_nd_init() failed"); 2058 goto attach_fail; 2059 } 2060 bgep->progress |= PROGRESS_NDD; 2061 2062 /* 2063 * Create & initialise named kstats 2064 */ 2065 bge_init_kstats(bgep, instance); 2066 bgep->progress |= PROGRESS_KSTATS; 2067 2068 /* 2069 * Determine whether to override the chip's own MAC address 2070 */ 2071 bge_find_mac_address(bgep, cidp); 2072 ethaddr_copy(cidp->vendor_addr.addr, bgep->curr_addr.addr); 2073 bgep->curr_addr.set = 1; 2074 2075 /* 2076 * Initialize pointers to device specific functions which 2077 * will be used by the generic layer. 2078 */ 2079 mip = &(macp->m_info); 2080 mip->mi_media = DL_ETHER; 2081 mip->mi_sdu_min = 0; 2082 mip->mi_sdu_max = cidp->ethmax_size - sizeof (struct ether_header); 2083 mip->mi_cksum = HCKSUM_INET_FULL_V4 | HCKSUM_IPHDRCKSUM; 2084 mip->mi_poll = DL_CAPAB_POLL; 2085 2086 mip->mi_addr_length = ETHERADDRL; 2087 bcopy(ether_brdcst, mip->mi_brdcst_addr, ETHERADDRL); 2088 bcopy(bgep->curr_addr.addr, mip->mi_unicst_addr, ETHERADDRL); 2089 2090 MAC_STAT_MIB(mip->mi_stat); 2091 mip->mi_stat[MAC_STAT_UNKNOWNS] = B_FALSE; 2092 MAC_STAT_ETHER(mip->mi_stat); 2093 mip->mi_stat[MAC_STAT_SQE_ERRORS] = B_FALSE; 2094 mip->mi_stat[MAC_STAT_MACRCV_ERRORS] = B_FALSE; 2095 if (!(bgep->chipid.flags & CHIP_FLAG_SERDES)) 2096 MAC_STAT_MII(mip->mi_stat); 2097 2098 macp->m_stat = bge_m_stat; 2099 macp->m_stop = bge_m_stop; 2100 macp->m_start = bge_m_start; 2101 macp->m_unicst = bge_m_unicst; 2102 macp->m_multicst = bge_m_multicst; 2103 macp->m_promisc = bge_m_promisc; 2104 macp->m_tx = bge_m_tx; 2105 macp->m_resources = bge_m_resources; 2106 macp->m_ioctl = bge_m_ioctl; 2107 2108 macp->m_dip = devinfo; 2109 macp->m_ident = MAC_IDENT; 2110 2111 /* 2112 * Finally, we're ready to register ourselves with the MAC layer 2113 * interface; if this succeeds, we're all ready to start() 2114 */ 2115 if (mac_register(macp) != 0) 2116 goto attach_fail; 2117 2118 cychand.cyh_func = bge_chip_cyclic; 2119 cychand.cyh_arg = bgep; 2120 cychand.cyh_level = CY_LOCK_LEVEL; 2121 cyctime.cyt_when = 0; 2122 cyctime.cyt_interval = BGE_CYCLIC_PERIOD; 2123 mutex_enter(&cpu_lock); 2124 bgep->cyclic_id = cyclic_add(&cychand, &cyctime); 2125 mutex_exit(&cpu_lock); 2126 2127 bgep->progress |= PROGRESS_READY; 2128 ASSERT(bgep->bge_guard == BGE_GUARD); 2129 return (DDI_SUCCESS); 2130 2131 attach_fail: 2132 #ifdef BGE_IPMI_ASF 2133 bge_unattach(bgep, ASF_MODE_NONE); 2134 #else 2135 bge_unattach(bgep); 2136 #endif 2137 return (DDI_FAILURE); 2138 } 2139 2140 /* 2141 * bge_suspend() -- suspend transmit/receive for powerdown 2142 */ 2143 static int 2144 bge_suspend(bge_t *bgep) 2145 { 2146 /* 2147 * Stop processing and idle (powerdown) the PHY ... 2148 */ 2149 mutex_enter(bgep->genlock); 2150 #ifdef BGE_IPMI_ASF 2151 /* 2152 * Power management hasn't been supported in BGE now. If you 2153 * want to implement it, please add the ASF/IPMI related 2154 * code here. 2155 */ 2156 #endif 2157 bge_stop(bgep); 2158 bge_phys_idle(bgep); 2159 mutex_exit(bgep->genlock); 2160 2161 return (DDI_SUCCESS); 2162 } 2163 2164 /* 2165 * detach(9E) -- Detach a device from the system 2166 */ 2167 static int 2168 bge_detach(dev_info_t *devinfo, ddi_detach_cmd_t cmd) 2169 { 2170 bge_t *bgep; 2171 #ifdef BGE_IPMI_ASF 2172 uint_t asf_mode; 2173 asf_mode = ASF_MODE_NONE; 2174 #endif 2175 2176 BGE_GTRACE(("bge_detach($%p, %d)", (void *)devinfo, cmd)); 2177 2178 bgep = ddi_get_driver_private(devinfo); 2179 2180 switch (cmd) { 2181 default: 2182 return (DDI_FAILURE); 2183 2184 case DDI_SUSPEND: 2185 return (bge_suspend(bgep)); 2186 2187 case DDI_DETACH: 2188 break; 2189 } 2190 2191 #ifdef BGE_IPMI_ASF 2192 mutex_enter(bgep->genlock); 2193 if (bgep->asf_enabled && (bgep->asf_status == ASF_STAT_RUN)) { 2194 2195 bge_asf_update_status(bgep); 2196 bge_asf_stop_timer(bgep); 2197 bgep->asf_status = ASF_STAT_STOP; 2198 2199 bge_asf_pre_reset_operations(bgep, BGE_SHUTDOWN_RESET); 2200 2201 if (bgep->asf_pseudostop) { 2202 bgep->link_up_msg = bgep->link_down_msg = " (stopped)"; 2203 bge_chip_stop(bgep, B_FALSE); 2204 bgep->bge_mac_state = BGE_MAC_STOPPED; 2205 bgep->asf_pseudostop = B_FALSE; 2206 } 2207 2208 asf_mode = ASF_MODE_POST_SHUTDOWN; 2209 } 2210 mutex_exit(bgep->genlock); 2211 #endif 2212 2213 /* 2214 * Unregister from the GLD subsystem. This can fail, in 2215 * particular if there are DLPI style-2 streams still open - 2216 * in which case we just return failure without shutting 2217 * down chip operations. 2218 */ 2219 if (mac_unregister(bgep->macp) != 0) 2220 return (DDI_FAILURE); 2221 2222 /* 2223 * All activity stopped, so we can clean up & exit 2224 */ 2225 #ifdef BGE_IPMI_ASF 2226 bge_unattach(bgep, asf_mode); 2227 #else 2228 bge_unattach(bgep); 2229 #endif 2230 return (DDI_SUCCESS); 2231 } 2232 2233 2234 /* 2235 * ========== Module Loading Data & Entry Points ========== 2236 */ 2237 2238 #undef BGE_DBG 2239 #define BGE_DBG BGE_DBG_INIT /* debug flag for this code */ 2240 2241 DDI_DEFINE_STREAM_OPS(bge_dev_ops, nulldev, nulldev, bge_attach, bge_detach, 2242 nodev, NULL, D_MP, NULL); 2243 2244 static struct modldrv bge_modldrv = { 2245 &mod_driverops, /* Type of module. This one is a driver */ 2246 bge_ident, /* short description */ 2247 &bge_dev_ops /* driver specific ops */ 2248 }; 2249 2250 static struct modlinkage modlinkage = { 2251 MODREV_1, (void *)&bge_modldrv, NULL 2252 }; 2253 2254 2255 int 2256 _info(struct modinfo *modinfop) 2257 { 2258 return (mod_info(&modlinkage, modinfop)); 2259 } 2260 2261 int 2262 _init(void) 2263 { 2264 int status; 2265 2266 mac_init_ops(&bge_dev_ops, "bge"); 2267 status = mod_install(&modlinkage); 2268 if (status == DDI_SUCCESS) 2269 mutex_init(bge_log_mutex, NULL, MUTEX_DRIVER, NULL); 2270 else 2271 mac_fini_ops(&bge_dev_ops); 2272 return (status); 2273 } 2274 2275 int 2276 _fini(void) 2277 { 2278 int status; 2279 2280 status = mod_remove(&modlinkage); 2281 if (status == DDI_SUCCESS) { 2282 mac_fini_ops(&bge_dev_ops); 2283 mutex_destroy(bge_log_mutex); 2284 } 2285 return (status); 2286 } 2287 2288 2289 /* 2290 * bge_add_intrs: 2291 * 2292 * Register FIXED or MSI interrupts. 2293 */ 2294 static int 2295 bge_add_intrs(bge_t *bgep, int intr_type) 2296 { 2297 dev_info_t *dip = bgep->devinfo; 2298 int avail, actual, intr_size, count = 0; 2299 int i, flag, ret; 2300 2301 bge_log(bgep, "bge_add_intrs: interrupt type 0x%x\n", intr_type); 2302 2303 /* Get number of interrupts */ 2304 ret = ddi_intr_get_nintrs(dip, intr_type, &count); 2305 if ((ret != DDI_SUCCESS) || (count == 0)) { 2306 bge_error(bgep, "ddi_intr_get_nintrs() failure, ret: %d, " 2307 "count: %d", ret, count); 2308 2309 return (DDI_FAILURE); 2310 } 2311 2312 /* Get number of available interrupts */ 2313 ret = ddi_intr_get_navail(dip, intr_type, &avail); 2314 if ((ret != DDI_SUCCESS) || (avail == 0)) { 2315 bge_error(bgep, "ddi_intr_get_navail() failure, " 2316 "ret: %d, avail: %d\n", ret, avail); 2317 2318 return (DDI_FAILURE); 2319 } 2320 2321 if (avail < count) { 2322 bge_log(bgep, "nitrs() returned %d, navail returned %d\n", 2323 count, avail); 2324 } 2325 2326 /* 2327 * BGE hardware generates only single MSI even though it claims 2328 * to support multiple MSIs. So, hard code MSI count value to 1. 2329 */ 2330 if (intr_type == DDI_INTR_TYPE_MSI) { 2331 count = 1; 2332 flag = DDI_INTR_ALLOC_STRICT; 2333 } else { 2334 flag = DDI_INTR_ALLOC_NORMAL; 2335 } 2336 2337 /* Allocate an array of interrupt handles */ 2338 intr_size = count * sizeof (ddi_intr_handle_t); 2339 bgep->htable = kmem_alloc(intr_size, KM_SLEEP); 2340 2341 /* Call ddi_intr_alloc() */ 2342 ret = ddi_intr_alloc(dip, bgep->htable, intr_type, 0, 2343 count, &actual, flag); 2344 2345 if ((ret != DDI_SUCCESS) || (actual == 0)) { 2346 bge_error(bgep, "ddi_intr_alloc() failed %d\n", ret); 2347 2348 kmem_free(bgep->htable, intr_size); 2349 return (DDI_FAILURE); 2350 } 2351 2352 if (actual < count) { 2353 bge_log(bgep, "Requested: %d, Received: %d\n", count, actual); 2354 } 2355 2356 bgep->intr_cnt = actual; 2357 2358 /* 2359 * Get priority for first msi, assume remaining are all the same 2360 */ 2361 if ((ret = ddi_intr_get_pri(bgep->htable[0], &bgep->intr_pri)) != 2362 DDI_SUCCESS) { 2363 bge_error(bgep, "ddi_intr_get_pri() failed %d\n", ret); 2364 2365 /* Free already allocated intr */ 2366 for (i = 0; i < actual; i++) { 2367 (void) ddi_intr_free(bgep->htable[i]); 2368 } 2369 2370 kmem_free(bgep->htable, intr_size); 2371 return (DDI_FAILURE); 2372 } 2373 2374 /* Call ddi_intr_add_handler() */ 2375 for (i = 0; i < actual; i++) { 2376 if ((ret = ddi_intr_add_handler(bgep->htable[i], bge_intr, 2377 (caddr_t)bgep, (caddr_t)(uintptr_t)i)) != DDI_SUCCESS) { 2378 bge_error(bgep, "ddi_intr_add_handler() " 2379 "failed %d\n", ret); 2380 2381 /* Free already allocated intr */ 2382 for (i = 0; i < actual; i++) { 2383 (void) ddi_intr_free(bgep->htable[i]); 2384 } 2385 2386 kmem_free(bgep->htable, intr_size); 2387 return (DDI_FAILURE); 2388 } 2389 } 2390 2391 if ((ret = ddi_intr_get_cap(bgep->htable[0], &bgep->intr_cap)) 2392 != DDI_SUCCESS) { 2393 bge_error(bgep, "ddi_intr_get_cap() failed %d\n", ret); 2394 2395 for (i = 0; i < actual; i++) { 2396 (void) ddi_intr_remove_handler(bgep->htable[i]); 2397 (void) ddi_intr_free(bgep->htable[i]); 2398 } 2399 2400 kmem_free(bgep->htable, intr_size); 2401 return (DDI_FAILURE); 2402 } 2403 2404 return (DDI_SUCCESS); 2405 } 2406 2407 /* 2408 * bge_rem_intrs: 2409 * 2410 * Unregister FIXED or MSI interrupts 2411 */ 2412 static void 2413 bge_rem_intrs(bge_t *bgep) 2414 { 2415 int i; 2416 2417 bge_log(bgep, "bge_rem_intrs\n"); 2418 2419 /* Disable all interrupts */ 2420 if (bgep->intr_cap & DDI_INTR_FLAG_BLOCK) { 2421 /* Call ddi_intr_block_disable() */ 2422 (void) ddi_intr_block_disable(bgep->htable, bgep->intr_cnt); 2423 } else { 2424 for (i = 0; i < bgep->intr_cnt; i++) { 2425 (void) ddi_intr_disable(bgep->htable[i]); 2426 } 2427 } 2428 2429 /* Call ddi_intr_remove_handler() */ 2430 for (i = 0; i < bgep->intr_cnt; i++) { 2431 (void) ddi_intr_remove_handler(bgep->htable[i]); 2432 (void) ddi_intr_free(bgep->htable[i]); 2433 } 2434 2435 kmem_free(bgep->htable, bgep->intr_cnt * sizeof (ddi_intr_handle_t)); 2436 } 2437