xref: /illumos-gate/usr/src/uts/common/io/bge/bge_main2.c (revision 94fff7907278e4540aa7abee2b1b0ea71d36f7fa)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 
22 /*
23  * Copyright 2008 Sun Microsystems, Inc.  All rights reserved.
24  * Use is subject to license terms.
25  */
26 
27 #include "bge_impl.h"
28 #include <sys/sdt.h>
29 #include <sys/mac.h>
30 
31 /*
32  * This is the string displayed by modinfo, etc.
33  * Make sure you keep the version ID up to date!
34  */
35 static char bge_ident[] = "Broadcom Gb Ethernet v1.0";
36 
37 /*
38  * Property names
39  */
40 static char debug_propname[] = "bge-debug-flags";
41 static char clsize_propname[] = "cache-line-size";
42 static char latency_propname[] = "latency-timer";
43 static char localmac_boolname[] = "local-mac-address?";
44 static char localmac_propname[] = "local-mac-address";
45 static char macaddr_propname[] = "mac-address";
46 static char subdev_propname[] = "subsystem-id";
47 static char subven_propname[] = "subsystem-vendor-id";
48 static char rxrings_propname[] = "bge-rx-rings";
49 static char txrings_propname[] = "bge-tx-rings";
50 static char fm_cap[] = "fm-capable";
51 static char default_mtu[] = "default_mtu";
52 
53 static int bge_add_intrs(bge_t *, int);
54 static void bge_rem_intrs(bge_t *);
55 
56 /*
57  * Describes the chip's DMA engine
58  */
59 static ddi_dma_attr_t dma_attr = {
60 	DMA_ATTR_V0,			/* dma_attr version	*/
61 	0x0000000000000000ull,		/* dma_attr_addr_lo	*/
62 	0xFFFFFFFFFFFFFFFFull,		/* dma_attr_addr_hi	*/
63 	0x00000000FFFFFFFFull,		/* dma_attr_count_max	*/
64 	0x0000000000000001ull,		/* dma_attr_align	*/
65 	0x00000FFF,			/* dma_attr_burstsizes	*/
66 	0x00000001,			/* dma_attr_minxfer	*/
67 	0x000000000000FFFFull,		/* dma_attr_maxxfer	*/
68 	0xFFFFFFFFFFFFFFFFull,		/* dma_attr_seg		*/
69 	1,				/* dma_attr_sgllen 	*/
70 	0x00000001,			/* dma_attr_granular 	*/
71 	DDI_DMA_FLAGERR			/* dma_attr_flags */
72 };
73 
74 /*
75  * PIO access attributes for registers
76  */
77 static ddi_device_acc_attr_t bge_reg_accattr = {
78 	DDI_DEVICE_ATTR_V0,
79 	DDI_NEVERSWAP_ACC,
80 	DDI_STRICTORDER_ACC,
81 	DDI_FLAGERR_ACC
82 };
83 
84 /*
85  * DMA access attributes for descriptors: NOT to be byte swapped.
86  */
87 static ddi_device_acc_attr_t bge_desc_accattr = {
88 	DDI_DEVICE_ATTR_V0,
89 	DDI_NEVERSWAP_ACC,
90 	DDI_STRICTORDER_ACC,
91 	DDI_FLAGERR_ACC
92 };
93 
94 /*
95  * DMA access attributes for data: NOT to be byte swapped.
96  */
97 static ddi_device_acc_attr_t bge_data_accattr = {
98 	DDI_DEVICE_ATTR_V0,
99 	DDI_NEVERSWAP_ACC,
100 	DDI_STRICTORDER_ACC
101 };
102 
103 static int		bge_m_start(void *);
104 static void		bge_m_stop(void *);
105 static int		bge_m_promisc(void *, boolean_t);
106 static int		bge_m_multicst(void *, boolean_t, const uint8_t *);
107 static int		bge_m_unicst(void *, const uint8_t *);
108 static void		bge_m_resources(void *);
109 static void		bge_m_ioctl(void *, queue_t *, mblk_t *);
110 static boolean_t	bge_m_getcapab(void *, mac_capab_t, void *);
111 static int		bge_unicst_set(void *, const uint8_t *,
112     mac_addr_slot_t);
113 static int		bge_m_unicst_add(void *, mac_multi_addr_t *);
114 static int		bge_m_unicst_remove(void *, mac_addr_slot_t);
115 static int		bge_m_unicst_modify(void *, mac_multi_addr_t *);
116 static int		bge_m_unicst_get(void *, mac_multi_addr_t *);
117 static int		bge_m_setprop(void *, const char *, mac_prop_id_t,
118     uint_t, const void *);
119 static int		bge_m_getprop(void *, const char *, mac_prop_id_t,
120     uint_t, uint_t, void *, uint_t *);
121 static int		bge_set_priv_prop(bge_t *, const char *, uint_t,
122     const void *);
123 static int		bge_get_priv_prop(bge_t *, const char *, uint_t,
124     uint_t, void *);
125 
126 #define	BGE_M_CALLBACK_FLAGS\
127 	(MC_RESOURCES | MC_IOCTL | MC_GETCAPAB | MC_SETPROP | MC_GETPROP)
128 
129 static mac_callbacks_t bge_m_callbacks = {
130 	BGE_M_CALLBACK_FLAGS,
131 	bge_m_stat,
132 	bge_m_start,
133 	bge_m_stop,
134 	bge_m_promisc,
135 	bge_m_multicst,
136 	bge_m_unicst,
137 	bge_m_tx,
138 	bge_m_resources,
139 	bge_m_ioctl,
140 	bge_m_getcapab,
141 	NULL,
142 	NULL,
143 	bge_m_setprop,
144 	bge_m_getprop
145 };
146 
147 mac_priv_prop_t bge_priv_prop[] = {
148 	{"_adv_asym_pause_cap", MAC_PROP_PERM_RW},
149 	{"_adv_pause_cap", MAC_PROP_PERM_RW}
150 };
151 
152 #define	BGE_MAX_PRIV_PROPS \
153 	(sizeof (bge_priv_prop) / sizeof (mac_priv_prop_t))
154 
155 /*
156  * ========== Transmit and receive ring reinitialisation ==========
157  */
158 
159 /*
160  * These <reinit> routines each reset the specified ring to an initial
161  * state, assuming that the corresponding <init> routine has already
162  * been called exactly once.
163  */
164 
165 static void
166 bge_reinit_send_ring(send_ring_t *srp)
167 {
168 	bge_queue_t *txbuf_queue;
169 	bge_queue_item_t *txbuf_head;
170 	sw_txbuf_t *txbuf;
171 	sw_sbd_t *ssbdp;
172 	uint32_t slot;
173 
174 	/*
175 	 * Reinitialise control variables ...
176 	 */
177 	srp->tx_flow = 0;
178 	srp->tx_next = 0;
179 	srp->txfill_next = 0;
180 	srp->tx_free = srp->desc.nslots;
181 	ASSERT(mutex_owned(srp->tc_lock));
182 	srp->tc_next = 0;
183 	srp->txpkt_next = 0;
184 	srp->tx_block = 0;
185 	srp->tx_nobd = 0;
186 	srp->tx_nobuf = 0;
187 
188 	/*
189 	 * Initialize the tx buffer push queue
190 	 */
191 	mutex_enter(srp->freetxbuf_lock);
192 	mutex_enter(srp->txbuf_lock);
193 	txbuf_queue = &srp->freetxbuf_queue;
194 	txbuf_queue->head = NULL;
195 	txbuf_queue->count = 0;
196 	txbuf_queue->lock = srp->freetxbuf_lock;
197 	srp->txbuf_push_queue = txbuf_queue;
198 
199 	/*
200 	 * Initialize the tx buffer pop queue
201 	 */
202 	txbuf_queue = &srp->txbuf_queue;
203 	txbuf_queue->head = NULL;
204 	txbuf_queue->count = 0;
205 	txbuf_queue->lock = srp->txbuf_lock;
206 	srp->txbuf_pop_queue = txbuf_queue;
207 	txbuf_head = srp->txbuf_head;
208 	txbuf = srp->txbuf;
209 	for (slot = 0; slot < srp->tx_buffers; ++slot) {
210 		txbuf_head->item = txbuf;
211 		txbuf_head->next = txbuf_queue->head;
212 		txbuf_queue->head = txbuf_head;
213 		txbuf_queue->count++;
214 		txbuf++;
215 		txbuf_head++;
216 	}
217 	mutex_exit(srp->txbuf_lock);
218 	mutex_exit(srp->freetxbuf_lock);
219 
220 	/*
221 	 * Zero and sync all the h/w Send Buffer Descriptors
222 	 */
223 	DMA_ZERO(srp->desc);
224 	DMA_SYNC(srp->desc, DDI_DMA_SYNC_FORDEV);
225 	bzero(srp->pktp, BGE_SEND_BUF_MAX * sizeof (*srp->pktp));
226 	ssbdp = srp->sw_sbds;
227 	for (slot = 0; slot < srp->desc.nslots; ++ssbdp, ++slot)
228 		ssbdp->pbuf = NULL;
229 }
230 
231 static void
232 bge_reinit_recv_ring(recv_ring_t *rrp)
233 {
234 	/*
235 	 * Reinitialise control variables ...
236 	 */
237 	rrp->rx_next = 0;
238 }
239 
240 static void
241 bge_reinit_buff_ring(buff_ring_t *brp, uint32_t ring)
242 {
243 	bge_rbd_t *hw_rbd_p;
244 	sw_rbd_t *srbdp;
245 	uint32_t bufsize;
246 	uint32_t nslots;
247 	uint32_t slot;
248 
249 	static uint16_t ring_type_flag[BGE_BUFF_RINGS_MAX] = {
250 		RBD_FLAG_STD_RING,
251 		RBD_FLAG_JUMBO_RING,
252 		RBD_FLAG_MINI_RING
253 	};
254 
255 	/*
256 	 * Zero, initialise and sync all the h/w Receive Buffer Descriptors
257 	 * Note: all the remaining fields (<type>, <flags>, <ip_cksum>,
258 	 * <tcp_udp_cksum>, <error_flag>, <vlan_tag>, and <reserved>)
259 	 * should be zeroed, and so don't need to be set up specifically
260 	 * once the whole area has been cleared.
261 	 */
262 	DMA_ZERO(brp->desc);
263 
264 	hw_rbd_p = DMA_VPTR(brp->desc);
265 	nslots = brp->desc.nslots;
266 	ASSERT(brp->buf[0].nslots == nslots/BGE_SPLIT);
267 	bufsize = brp->buf[0].size;
268 	srbdp = brp->sw_rbds;
269 	for (slot = 0; slot < nslots; ++hw_rbd_p, ++srbdp, ++slot) {
270 		hw_rbd_p->host_buf_addr = srbdp->pbuf.cookie.dmac_laddress;
271 		hw_rbd_p->index = (uint16_t)slot;
272 		hw_rbd_p->len = (uint16_t)bufsize;
273 		hw_rbd_p->opaque = srbdp->pbuf.token;
274 		hw_rbd_p->flags |= ring_type_flag[ring];
275 	}
276 
277 	DMA_SYNC(brp->desc, DDI_DMA_SYNC_FORDEV);
278 
279 	/*
280 	 * Finally, reinitialise the ring control variables ...
281 	 */
282 	brp->rf_next = (nslots != 0) ? (nslots-1) : 0;
283 }
284 
285 /*
286  * Reinitialize all rings
287  */
288 static void
289 bge_reinit_rings(bge_t *bgep)
290 {
291 	uint32_t ring;
292 
293 	ASSERT(mutex_owned(bgep->genlock));
294 
295 	/*
296 	 * Send Rings ...
297 	 */
298 	for (ring = 0; ring < bgep->chipid.tx_rings; ++ring)
299 		bge_reinit_send_ring(&bgep->send[ring]);
300 
301 	/*
302 	 * Receive Return Rings ...
303 	 */
304 	for (ring = 0; ring < bgep->chipid.rx_rings; ++ring)
305 		bge_reinit_recv_ring(&bgep->recv[ring]);
306 
307 	/*
308 	 * Receive Producer Rings ...
309 	 */
310 	for (ring = 0; ring < BGE_BUFF_RINGS_USED; ++ring)
311 		bge_reinit_buff_ring(&bgep->buff[ring], ring);
312 }
313 
314 /*
315  * ========== Internal state management entry points ==========
316  */
317 
318 #undef	BGE_DBG
319 #define	BGE_DBG		BGE_DBG_NEMO	/* debug flag for this code	*/
320 
321 /*
322  * These routines provide all the functionality required by the
323  * corresponding GLD entry points, but don't update the GLD state
324  * so they can be called internally without disturbing our record
325  * of what GLD thinks we should be doing ...
326  */
327 
328 /*
329  *	bge_reset() -- reset h/w & rings to initial state
330  */
331 static int
332 #ifdef BGE_IPMI_ASF
333 bge_reset(bge_t *bgep, uint_t asf_mode)
334 #else
335 bge_reset(bge_t *bgep)
336 #endif
337 {
338 	uint32_t	ring;
339 	int retval;
340 
341 	BGE_TRACE(("bge_reset($%p)", (void *)bgep));
342 
343 	ASSERT(mutex_owned(bgep->genlock));
344 
345 	/*
346 	 * Grab all the other mutexes in the world (this should
347 	 * ensure no other threads are manipulating driver state)
348 	 */
349 	for (ring = 0; ring < BGE_RECV_RINGS_MAX; ++ring)
350 		mutex_enter(bgep->recv[ring].rx_lock);
351 	for (ring = 0; ring < BGE_BUFF_RINGS_MAX; ++ring)
352 		mutex_enter(bgep->buff[ring].rf_lock);
353 	rw_enter(bgep->errlock, RW_WRITER);
354 	for (ring = 0; ring < BGE_SEND_RINGS_MAX; ++ring)
355 		mutex_enter(bgep->send[ring].tx_lock);
356 	for (ring = 0; ring < BGE_SEND_RINGS_MAX; ++ring)
357 		mutex_enter(bgep->send[ring].tc_lock);
358 
359 #ifdef BGE_IPMI_ASF
360 	retval = bge_chip_reset(bgep, B_TRUE, asf_mode);
361 #else
362 	retval = bge_chip_reset(bgep, B_TRUE);
363 #endif
364 	bge_reinit_rings(bgep);
365 
366 	/*
367 	 * Free the world ...
368 	 */
369 	for (ring = BGE_SEND_RINGS_MAX; ring-- > 0; )
370 		mutex_exit(bgep->send[ring].tc_lock);
371 	for (ring = 0; ring < BGE_SEND_RINGS_MAX; ++ring)
372 		mutex_exit(bgep->send[ring].tx_lock);
373 	rw_exit(bgep->errlock);
374 	for (ring = BGE_BUFF_RINGS_MAX; ring-- > 0; )
375 		mutex_exit(bgep->buff[ring].rf_lock);
376 	for (ring = BGE_RECV_RINGS_MAX; ring-- > 0; )
377 		mutex_exit(bgep->recv[ring].rx_lock);
378 
379 	BGE_DEBUG(("bge_reset($%p) done", (void *)bgep));
380 	return (retval);
381 }
382 
383 /*
384  *	bge_stop() -- stop processing, don't reset h/w or rings
385  */
386 static void
387 bge_stop(bge_t *bgep)
388 {
389 	BGE_TRACE(("bge_stop($%p)", (void *)bgep));
390 
391 	ASSERT(mutex_owned(bgep->genlock));
392 
393 #ifdef BGE_IPMI_ASF
394 	if (bgep->asf_enabled) {
395 		bgep->asf_pseudostop = B_TRUE;
396 	} else {
397 #endif
398 		bge_chip_stop(bgep, B_FALSE);
399 #ifdef BGE_IPMI_ASF
400 	}
401 #endif
402 
403 	BGE_DEBUG(("bge_stop($%p) done", (void *)bgep));
404 }
405 
406 /*
407  *	bge_start() -- start transmitting/receiving
408  */
409 static int
410 bge_start(bge_t *bgep, boolean_t reset_phys)
411 {
412 	int retval;
413 
414 	BGE_TRACE(("bge_start($%p, %d)", (void *)bgep, reset_phys));
415 
416 	ASSERT(mutex_owned(bgep->genlock));
417 
418 	/*
419 	 * Start chip processing, including enabling interrupts
420 	 */
421 	retval = bge_chip_start(bgep, reset_phys);
422 
423 	BGE_DEBUG(("bge_start($%p, %d) done", (void *)bgep, reset_phys));
424 	return (retval);
425 }
426 
427 /*
428  * bge_restart - restart transmitting/receiving after error or suspend
429  */
430 int
431 bge_restart(bge_t *bgep, boolean_t reset_phys)
432 {
433 	int retval = DDI_SUCCESS;
434 	ASSERT(mutex_owned(bgep->genlock));
435 
436 #ifdef BGE_IPMI_ASF
437 	if (bgep->asf_enabled) {
438 		if (bge_reset(bgep, ASF_MODE_POST_INIT) != DDI_SUCCESS)
439 			retval = DDI_FAILURE;
440 	} else
441 		if (bge_reset(bgep, ASF_MODE_NONE) != DDI_SUCCESS)
442 			retval = DDI_FAILURE;
443 #else
444 	if (bge_reset(bgep) != DDI_SUCCESS)
445 		retval = DDI_FAILURE;
446 #endif
447 	if (bgep->bge_mac_state == BGE_MAC_STARTED) {
448 		if (bge_start(bgep, reset_phys) != DDI_SUCCESS)
449 			retval = DDI_FAILURE;
450 		bgep->watchdog = 0;
451 		ddi_trigger_softintr(bgep->drain_id);
452 	}
453 
454 	BGE_DEBUG(("bge_restart($%p, %d) done", (void *)bgep, reset_phys));
455 	return (retval);
456 }
457 
458 
459 /*
460  * ========== Nemo-required management entry points ==========
461  */
462 
463 #undef	BGE_DBG
464 #define	BGE_DBG		BGE_DBG_NEMO	/* debug flag for this code	*/
465 
466 /*
467  *	bge_m_stop() -- stop transmitting/receiving
468  */
469 static void
470 bge_m_stop(void *arg)
471 {
472 	bge_t *bgep = arg;		/* private device info	*/
473 	send_ring_t *srp;
474 	uint32_t ring;
475 
476 	BGE_TRACE(("bge_m_stop($%p)", arg));
477 
478 	/*
479 	 * Just stop processing, then record new GLD state
480 	 */
481 	mutex_enter(bgep->genlock);
482 	if (!(bgep->progress & PROGRESS_INTR)) {
483 		/* can happen during autorecovery */
484 		mutex_exit(bgep->genlock);
485 		return;
486 	}
487 	bge_stop(bgep);
488 
489 	bgep->link_update_timer = 0;
490 	bgep->link_state = LINK_STATE_UNKNOWN;
491 	mac_link_update(bgep->mh, bgep->link_state);
492 
493 	/*
494 	 * Free the possible tx buffers allocated in tx process.
495 	 */
496 #ifdef BGE_IPMI_ASF
497 	if (!bgep->asf_pseudostop)
498 #endif
499 	{
500 		rw_enter(bgep->errlock, RW_WRITER);
501 		for (ring = 0; ring < bgep->chipid.tx_rings; ++ring) {
502 			srp = &bgep->send[ring];
503 			mutex_enter(srp->tx_lock);
504 			if (srp->tx_array > 1)
505 				bge_free_txbuf_arrays(srp);
506 			mutex_exit(srp->tx_lock);
507 		}
508 		rw_exit(bgep->errlock);
509 	}
510 	bgep->bge_mac_state = BGE_MAC_STOPPED;
511 	BGE_DEBUG(("bge_m_stop($%p) done", arg));
512 	if (bge_check_acc_handle(bgep, bgep->io_handle) != DDI_FM_OK)
513 		ddi_fm_service_impact(bgep->devinfo, DDI_SERVICE_UNAFFECTED);
514 	mutex_exit(bgep->genlock);
515 }
516 
517 /*
518  *	bge_m_start() -- start transmitting/receiving
519  */
520 static int
521 bge_m_start(void *arg)
522 {
523 	bge_t *bgep = arg;		/* private device info	*/
524 
525 	BGE_TRACE(("bge_m_start($%p)", arg));
526 
527 	/*
528 	 * Start processing and record new GLD state
529 	 */
530 	mutex_enter(bgep->genlock);
531 	if (!(bgep->progress & PROGRESS_INTR)) {
532 		/* can happen during autorecovery */
533 		ddi_fm_service_impact(bgep->devinfo, DDI_SERVICE_DEGRADED);
534 		mutex_exit(bgep->genlock);
535 		return (EIO);
536 	}
537 #ifdef BGE_IPMI_ASF
538 	if (bgep->asf_enabled) {
539 		if ((bgep->asf_status == ASF_STAT_RUN) &&
540 		    (bgep->asf_pseudostop)) {
541 			bgep->bge_mac_state = BGE_MAC_STARTED;
542 			mutex_exit(bgep->genlock);
543 			return (0);
544 		}
545 	}
546 	if (bge_reset(bgep, ASF_MODE_INIT) != DDI_SUCCESS) {
547 #else
548 	if (bge_reset(bgep) != DDI_SUCCESS) {
549 #endif
550 		(void) bge_check_acc_handle(bgep, bgep->cfg_handle);
551 		(void) bge_check_acc_handle(bgep, bgep->io_handle);
552 		ddi_fm_service_impact(bgep->devinfo, DDI_SERVICE_DEGRADED);
553 		mutex_exit(bgep->genlock);
554 		return (EIO);
555 	}
556 	if (bge_start(bgep, B_TRUE) != DDI_SUCCESS) {
557 		(void) bge_check_acc_handle(bgep, bgep->cfg_handle);
558 		(void) bge_check_acc_handle(bgep, bgep->io_handle);
559 		ddi_fm_service_impact(bgep->devinfo, DDI_SERVICE_DEGRADED);
560 		mutex_exit(bgep->genlock);
561 		return (EIO);
562 	}
563 	bgep->bge_mac_state = BGE_MAC_STARTED;
564 	BGE_DEBUG(("bge_m_start($%p) done", arg));
565 
566 	if (bge_check_acc_handle(bgep, bgep->cfg_handle) != DDI_FM_OK) {
567 		ddi_fm_service_impact(bgep->devinfo, DDI_SERVICE_DEGRADED);
568 		mutex_exit(bgep->genlock);
569 		return (EIO);
570 	}
571 	if (bge_check_acc_handle(bgep, bgep->io_handle) != DDI_FM_OK) {
572 		ddi_fm_service_impact(bgep->devinfo, DDI_SERVICE_DEGRADED);
573 		mutex_exit(bgep->genlock);
574 		return (EIO);
575 	}
576 #ifdef BGE_IPMI_ASF
577 	if (bgep->asf_enabled) {
578 		if (bgep->asf_status != ASF_STAT_RUN) {
579 			/* start ASF heart beat */
580 			bgep->asf_timeout_id = timeout(bge_asf_heartbeat,
581 			    (void *)bgep,
582 			    drv_usectohz(BGE_ASF_HEARTBEAT_INTERVAL));
583 			bgep->asf_status = ASF_STAT_RUN;
584 		}
585 	}
586 #endif
587 	mutex_exit(bgep->genlock);
588 
589 	return (0);
590 }
591 
592 /*
593  *	bge_m_unicst() -- set the physical network address
594  */
595 static int
596 bge_m_unicst(void *arg, const uint8_t *macaddr)
597 {
598 	/*
599 	 * Request to set address in
600 	 * address slot 0, i.e., default address
601 	 */
602 	return (bge_unicst_set(arg, macaddr, 0));
603 }
604 
605 /*
606  *	bge_unicst_set() -- set the physical network address
607  */
608 static int
609 bge_unicst_set(void *arg, const uint8_t *macaddr, mac_addr_slot_t slot)
610 {
611 	bge_t *bgep = arg;		/* private device info	*/
612 
613 	BGE_TRACE(("bge_m_unicst_set($%p, %s)", arg,
614 	    ether_sprintf((void *)macaddr)));
615 	/*
616 	 * Remember the new current address in the driver state
617 	 * Sync the chip's idea of the address too ...
618 	 */
619 	mutex_enter(bgep->genlock);
620 	if (!(bgep->progress & PROGRESS_INTR)) {
621 		/* can happen during autorecovery */
622 		ddi_fm_service_impact(bgep->devinfo, DDI_SERVICE_DEGRADED);
623 		mutex_exit(bgep->genlock);
624 		return (EIO);
625 	}
626 	ethaddr_copy(macaddr, bgep->curr_addr[slot].addr);
627 #ifdef BGE_IPMI_ASF
628 	if (bge_chip_sync(bgep, B_FALSE) == DDI_FAILURE) {
629 #else
630 	if (bge_chip_sync(bgep) == DDI_FAILURE) {
631 #endif
632 		(void) bge_check_acc_handle(bgep, bgep->cfg_handle);
633 		(void) bge_check_acc_handle(bgep, bgep->io_handle);
634 		ddi_fm_service_impact(bgep->devinfo, DDI_SERVICE_DEGRADED);
635 		mutex_exit(bgep->genlock);
636 		return (EIO);
637 	}
638 #ifdef BGE_IPMI_ASF
639 	if (bgep->asf_enabled) {
640 		/*
641 		 * The above bge_chip_sync() function wrote the ethernet MAC
642 		 * addresses registers which destroyed the IPMI/ASF sideband.
643 		 * Here, we have to reset chip to make IPMI/ASF sideband work.
644 		 */
645 		if (bgep->asf_status == ASF_STAT_RUN) {
646 			/*
647 			 * We must stop ASF heart beat before bge_chip_stop(),
648 			 * otherwise some computers (ex. IBM HS20 blade server)
649 			 * may crash.
650 			 */
651 			bge_asf_update_status(bgep);
652 			bge_asf_stop_timer(bgep);
653 			bgep->asf_status = ASF_STAT_STOP;
654 
655 			bge_asf_pre_reset_operations(bgep, BGE_INIT_RESET);
656 		}
657 		bge_chip_stop(bgep, B_FALSE);
658 
659 		if (bge_restart(bgep, B_FALSE) == DDI_FAILURE) {
660 			(void) bge_check_acc_handle(bgep, bgep->cfg_handle);
661 			(void) bge_check_acc_handle(bgep, bgep->io_handle);
662 			ddi_fm_service_impact(bgep->devinfo,
663 			    DDI_SERVICE_DEGRADED);
664 			mutex_exit(bgep->genlock);
665 			return (EIO);
666 		}
667 
668 		/*
669 		 * Start our ASF heartbeat counter as soon as possible.
670 		 */
671 		if (bgep->asf_status != ASF_STAT_RUN) {
672 			/* start ASF heart beat */
673 			bgep->asf_timeout_id = timeout(bge_asf_heartbeat,
674 			    (void *)bgep,
675 			    drv_usectohz(BGE_ASF_HEARTBEAT_INTERVAL));
676 			bgep->asf_status = ASF_STAT_RUN;
677 		}
678 	}
679 #endif
680 	BGE_DEBUG(("bge_m_unicst_set($%p) done", arg));
681 	if (bge_check_acc_handle(bgep, bgep->cfg_handle) != DDI_FM_OK) {
682 		ddi_fm_service_impact(bgep->devinfo, DDI_SERVICE_DEGRADED);
683 		mutex_exit(bgep->genlock);
684 		return (EIO);
685 	}
686 	if (bge_check_acc_handle(bgep, bgep->io_handle) != DDI_FM_OK) {
687 		ddi_fm_service_impact(bgep->devinfo, DDI_SERVICE_DEGRADED);
688 		mutex_exit(bgep->genlock);
689 		return (EIO);
690 	}
691 	mutex_exit(bgep->genlock);
692 
693 	return (0);
694 }
695 
696 /*
697  * The following four routines are used as callbacks for multiple MAC
698  * address support:
699  *    -  bge_m_unicst_add(void *, mac_multi_addr_t *);
700  *    -  bge_m_unicst_remove(void *, mac_addr_slot_t);
701  *    -  bge_m_unicst_modify(void *, mac_multi_addr_t *);
702  *    -  bge_m_unicst_get(void *, mac_multi_addr_t *);
703  */
704 
705 /*
706  * bge_m_unicst_add() - will find an unused address slot, set the
707  * address value to the one specified, reserve that slot and enable
708  * the NIC to start filtering on the new MAC address.
709  * address slot. Returns 0 on success.
710  */
711 static int
712 bge_m_unicst_add(void *arg, mac_multi_addr_t *maddr)
713 {
714 	bge_t *bgep = arg;		/* private device info	*/
715 	mac_addr_slot_t slot;
716 	int err;
717 
718 	if (mac_unicst_verify(bgep->mh,
719 	    maddr->mma_addr, maddr->mma_addrlen) == B_FALSE)
720 		return (EINVAL);
721 
722 	mutex_enter(bgep->genlock);
723 	if (bgep->unicst_addr_avail == 0) {
724 		/* no slots available */
725 		mutex_exit(bgep->genlock);
726 		return (ENOSPC);
727 	}
728 
729 	/*
730 	 * Primary/default address is in slot 0. The next three
731 	 * addresses are the multiple MAC addresses. So multiple
732 	 * MAC address 0 is in slot 1, 1 in slot 2, and so on.
733 	 * So the first multiple MAC address resides in slot 1.
734 	 */
735 	for (slot = 1; slot < bgep->unicst_addr_total; slot++) {
736 		if (bgep->curr_addr[slot].set == B_FALSE) {
737 			bgep->curr_addr[slot].set = B_TRUE;
738 			break;
739 		}
740 	}
741 
742 	ASSERT(slot < bgep->unicst_addr_total);
743 	bgep->unicst_addr_avail--;
744 	mutex_exit(bgep->genlock);
745 	maddr->mma_slot = slot;
746 
747 	if ((err = bge_unicst_set(bgep, maddr->mma_addr, slot)) != 0) {
748 		mutex_enter(bgep->genlock);
749 		bgep->curr_addr[slot].set = B_FALSE;
750 		bgep->unicst_addr_avail++;
751 		mutex_exit(bgep->genlock);
752 	}
753 	return (err);
754 }
755 
756 /*
757  * bge_m_unicst_remove() - removes a MAC address that was added by a
758  * call to bge_m_unicst_add(). The slot number that was returned in
759  * add() is passed in the call to remove the address.
760  * Returns 0 on success.
761  */
762 static int
763 bge_m_unicst_remove(void *arg, mac_addr_slot_t slot)
764 {
765 	bge_t *bgep = arg;		/* private device info	*/
766 
767 	if (slot <= 0 || slot >= bgep->unicst_addr_total)
768 		return (EINVAL);
769 
770 	mutex_enter(bgep->genlock);
771 	if (bgep->curr_addr[slot].set == B_TRUE) {
772 		bgep->curr_addr[slot].set = B_FALSE;
773 		bgep->unicst_addr_avail++;
774 		mutex_exit(bgep->genlock);
775 		/*
776 		 * Copy the default address to the passed slot
777 		 */
778 		return (bge_unicst_set(bgep, bgep->curr_addr[0].addr, slot));
779 	}
780 	mutex_exit(bgep->genlock);
781 	return (EINVAL);
782 }
783 
784 /*
785  * bge_m_unicst_modify() - modifies the value of an address that
786  * has been added by bge_m_unicst_add(). The new address, address
787  * length and the slot number that was returned in the call to add
788  * should be passed to bge_m_unicst_modify(). mma_flags should be
789  * set to 0. Returns 0 on success.
790  */
791 static int
792 bge_m_unicst_modify(void *arg, mac_multi_addr_t *maddr)
793 {
794 	bge_t *bgep = arg;		/* private device info	*/
795 	mac_addr_slot_t slot;
796 
797 	if (mac_unicst_verify(bgep->mh,
798 	    maddr->mma_addr, maddr->mma_addrlen) == B_FALSE)
799 		return (EINVAL);
800 
801 	slot = maddr->mma_slot;
802 
803 	if (slot <= 0 || slot >= bgep->unicst_addr_total)
804 		return (EINVAL);
805 
806 	mutex_enter(bgep->genlock);
807 	if (bgep->curr_addr[slot].set == B_TRUE) {
808 		mutex_exit(bgep->genlock);
809 		return (bge_unicst_set(bgep, maddr->mma_addr, slot));
810 	}
811 	mutex_exit(bgep->genlock);
812 
813 	return (EINVAL);
814 }
815 
816 /*
817  * bge_m_unicst_get() - will get the MAC address and all other
818  * information related to the address slot passed in mac_multi_addr_t.
819  * mma_flags should be set to 0 in the call.
820  * On return, mma_flags can take the following values:
821  * 1) MMAC_SLOT_UNUSED
822  * 2) MMAC_SLOT_USED | MMAC_VENDOR_ADDR
823  * 3) MMAC_SLOT_UNUSED | MMAC_VENDOR_ADDR
824  * 4) MMAC_SLOT_USED
825  */
826 static int
827 bge_m_unicst_get(void *arg, mac_multi_addr_t *maddr)
828 {
829 	bge_t *bgep = arg;		/* private device info	*/
830 	mac_addr_slot_t slot;
831 
832 	slot = maddr->mma_slot;
833 
834 	if (slot <= 0 || slot >= bgep->unicst_addr_total)
835 		return (EINVAL);
836 
837 	mutex_enter(bgep->genlock);
838 	if (bgep->curr_addr[slot].set == B_TRUE) {
839 		ethaddr_copy(bgep->curr_addr[slot].addr,
840 		    maddr->mma_addr);
841 		maddr->mma_flags = MMAC_SLOT_USED;
842 	} else {
843 		maddr->mma_flags = MMAC_SLOT_UNUSED;
844 	}
845 	mutex_exit(bgep->genlock);
846 
847 	return (0);
848 }
849 
850 extern void bge_wake_factotum(bge_t *);
851 
852 static boolean_t
853 bge_param_locked(mac_prop_id_t pr_num)
854 {
855 	/*
856 	 * All adv_* parameters are locked (read-only) while
857 	 * the device is in any sort of loopback mode ...
858 	 */
859 	switch (pr_num) {
860 		case MAC_PROP_ADV_1000FDX_CAP:
861 		case MAC_PROP_EN_1000FDX_CAP:
862 		case MAC_PROP_ADV_1000HDX_CAP:
863 		case MAC_PROP_EN_1000HDX_CAP:
864 		case MAC_PROP_ADV_100FDX_CAP:
865 		case MAC_PROP_EN_100FDX_CAP:
866 		case MAC_PROP_ADV_100HDX_CAP:
867 		case MAC_PROP_EN_100HDX_CAP:
868 		case MAC_PROP_ADV_10FDX_CAP:
869 		case MAC_PROP_EN_10FDX_CAP:
870 		case MAC_PROP_ADV_10HDX_CAP:
871 		case MAC_PROP_EN_10HDX_CAP:
872 		case MAC_PROP_AUTONEG:
873 		case MAC_PROP_FLOWCTRL:
874 			return (B_TRUE);
875 	}
876 	return (B_FALSE);
877 }
878 /*
879  * callback functions for set/get of properties
880  */
881 static int
882 bge_m_setprop(void *barg, const char *pr_name, mac_prop_id_t pr_num,
883     uint_t pr_valsize, const void *pr_val)
884 {
885 	bge_t *bgep = barg;
886 	int err = 0;
887 	uint32_t cur_mtu, new_mtu;
888 	uint_t	maxsdu;
889 	link_flowctrl_t fl;
890 
891 	mutex_enter(bgep->genlock);
892 	if (bgep->param_loop_mode != BGE_LOOP_NONE &&
893 	    bge_param_locked(pr_num)) {
894 		/*
895 		 * All adv_* parameters are locked (read-only)
896 		 * while the device is in any sort of loopback mode.
897 		 */
898 		mutex_exit(bgep->genlock);
899 		return (EBUSY);
900 	}
901 	if ((bgep->chipid.flags & CHIP_FLAG_SERDES) &&
902 	    ((pr_num == MAC_PROP_EN_100FDX_CAP) ||
903 	    (pr_num == MAC_PROP_EN_100HDX_CAP) ||
904 	    (pr_num == MAC_PROP_EN_10FDX_CAP) ||
905 	    (pr_num == MAC_PROP_EN_10HDX_CAP))) {
906 		/*
907 		 * these properties are read/write on copper,
908 		 * read-only and 0 on serdes
909 		 */
910 		mutex_exit(bgep->genlock);
911 		return (ENOTSUP);
912 	}
913 	if ((DEVICE_5906_SERIES_CHIPSETS(bgep) &&
914 	    (pr_num == MAC_PROP_EN_1000FDX_CAP) ||
915 	    (pr_num == MAC_PROP_EN_1000HDX_CAP))) {
916 		mutex_exit(bgep->genlock);
917 		return (ENOTSUP);
918 	}
919 
920 	switch (pr_num) {
921 		case MAC_PROP_EN_1000FDX_CAP:
922 			bgep->param_en_1000fdx = *(uint8_t *)pr_val;
923 			bgep->param_adv_1000fdx = *(uint8_t *)pr_val;
924 			goto reprogram;
925 		case MAC_PROP_EN_1000HDX_CAP:
926 			bgep->param_en_1000hdx = *(uint8_t *)pr_val;
927 			bgep->param_adv_1000hdx = *(uint8_t *)pr_val;
928 			goto reprogram;
929 		case MAC_PROP_EN_100FDX_CAP:
930 			bgep->param_en_100fdx = *(uint8_t *)pr_val;
931 			bgep->param_adv_100fdx = *(uint8_t *)pr_val;
932 			goto reprogram;
933 		case MAC_PROP_EN_100HDX_CAP:
934 			bgep->param_en_100hdx = *(uint8_t *)pr_val;
935 			bgep->param_adv_100hdx = *(uint8_t *)pr_val;
936 			goto reprogram;
937 		case MAC_PROP_EN_10FDX_CAP:
938 			bgep->param_en_10fdx = *(uint8_t *)pr_val;
939 			bgep->param_adv_10fdx = *(uint8_t *)pr_val;
940 			goto reprogram;
941 		case MAC_PROP_EN_10HDX_CAP:
942 			bgep->param_en_10hdx = *(uint8_t *)pr_val;
943 			bgep->param_adv_10hdx = *(uint8_t *)pr_val;
944 reprogram:
945 			if (err == 0 && bge_reprogram(bgep) == IOC_INVAL)
946 				err = EINVAL;
947 			break;
948 		case MAC_PROP_ADV_1000FDX_CAP:
949 		case MAC_PROP_ADV_1000HDX_CAP:
950 		case MAC_PROP_ADV_100FDX_CAP:
951 		case MAC_PROP_ADV_100HDX_CAP:
952 		case MAC_PROP_ADV_10FDX_CAP:
953 		case MAC_PROP_ADV_10HDX_CAP:
954 		case MAC_PROP_STATUS:
955 		case MAC_PROP_SPEED:
956 		case MAC_PROP_DUPLEX:
957 			err = ENOTSUP; /* read-only prop. Can't set this */
958 			break;
959 		case MAC_PROP_AUTONEG:
960 			bgep->param_adv_autoneg = *(uint8_t *)pr_val;
961 			if (bge_reprogram(bgep) == IOC_INVAL)
962 				err = EINVAL;
963 			break;
964 		case MAC_PROP_MTU:
965 			cur_mtu = bgep->chipid.default_mtu;
966 			bcopy(pr_val, &new_mtu, sizeof (new_mtu));
967 
968 			if (new_mtu == cur_mtu) {
969 				err = 0;
970 				break;
971 			}
972 			if (new_mtu < BGE_DEFAULT_MTU ||
973 			    new_mtu > BGE_MAXIMUM_MTU) {
974 				err = EINVAL;
975 				break;
976 			}
977 			if ((new_mtu > BGE_DEFAULT_MTU) &&
978 			    (bgep->chipid.flags & CHIP_FLAG_NO_JUMBO)) {
979 				err = EINVAL;
980 				break;
981 			}
982 			if (bgep->bge_mac_state == BGE_MAC_STARTED) {
983 				err = EBUSY;
984 				break;
985 			}
986 			bgep->chipid.default_mtu = new_mtu;
987 			if (bge_chip_id_init(bgep)) {
988 				err = EINVAL;
989 				break;
990 			}
991 			maxsdu = bgep->chipid.ethmax_size -
992 			    sizeof (struct ether_header);
993 			err = mac_maxsdu_update(bgep->mh, maxsdu);
994 			if (err == 0) {
995 				bgep->bge_dma_error = B_TRUE;
996 				bgep->manual_reset = B_TRUE;
997 				bge_chip_stop(bgep, B_TRUE);
998 				bge_wake_factotum(bgep);
999 				err = 0;
1000 			}
1001 			break;
1002 		case MAC_PROP_FLOWCTRL:
1003 			bcopy(pr_val, &fl, sizeof (fl));
1004 			switch (fl) {
1005 			default:
1006 				err = ENOTSUP;
1007 				break;
1008 			case LINK_FLOWCTRL_NONE:
1009 				bgep->param_adv_pause = 0;
1010 				bgep->param_adv_asym_pause = 0;
1011 
1012 				bgep->param_link_rx_pause = B_FALSE;
1013 				bgep->param_link_tx_pause = B_FALSE;
1014 				break;
1015 			case LINK_FLOWCTRL_RX:
1016 				if (!((bgep->param_lp_pause == 0) &&
1017 				    (bgep->param_lp_asym_pause == 1))) {
1018 					err = EINVAL;
1019 					break;
1020 				}
1021 				bgep->param_adv_pause = 1;
1022 				bgep->param_adv_asym_pause = 1;
1023 
1024 				bgep->param_link_rx_pause = B_TRUE;
1025 				bgep->param_link_tx_pause = B_FALSE;
1026 				break;
1027 			case LINK_FLOWCTRL_TX:
1028 				if (!((bgep->param_lp_pause == 1) &&
1029 				    (bgep->param_lp_asym_pause == 1))) {
1030 					err = EINVAL;
1031 					break;
1032 				}
1033 				bgep->param_adv_pause = 0;
1034 				bgep->param_adv_asym_pause = 1;
1035 
1036 				bgep->param_link_rx_pause = B_FALSE;
1037 				bgep->param_link_tx_pause = B_TRUE;
1038 				break;
1039 			case LINK_FLOWCTRL_BI:
1040 				if (bgep->param_lp_pause != 1) {
1041 					err = EINVAL;
1042 					break;
1043 				}
1044 				bgep->param_adv_pause = 1;
1045 
1046 				bgep->param_link_rx_pause = B_TRUE;
1047 				bgep->param_link_tx_pause = B_TRUE;
1048 				break;
1049 			}
1050 
1051 			if (err == 0) {
1052 				if (bge_reprogram(bgep) == IOC_INVAL)
1053 					err = EINVAL;
1054 			}
1055 
1056 			break;
1057 		case MAC_PROP_PRIVATE:
1058 			err = bge_set_priv_prop(bgep, pr_name, pr_valsize,
1059 			    pr_val);
1060 			break;
1061 		default:
1062 			err = ENOTSUP;
1063 			break;
1064 	}
1065 	mutex_exit(bgep->genlock);
1066 	return (err);
1067 }
1068 
1069 /* ARGSUSED */
1070 static int
1071 bge_m_getprop(void *barg, const char *pr_name, mac_prop_id_t pr_num,
1072     uint_t pr_flags, uint_t pr_valsize, void *pr_val, uint_t *perm)
1073 {
1074 	bge_t *bgep = barg;
1075 	int err = 0;
1076 	link_flowctrl_t fl;
1077 	uint64_t speed;
1078 	int flags = bgep->chipid.flags;
1079 	boolean_t is_default = (pr_flags & MAC_PROP_DEFAULT);
1080 
1081 	if (pr_valsize == 0)
1082 		return (EINVAL);
1083 	bzero(pr_val, pr_valsize);
1084 
1085 	*perm = MAC_PROP_PERM_RW;
1086 
1087 	mutex_enter(bgep->genlock);
1088 	if ((bgep->param_loop_mode != BGE_LOOP_NONE &&
1089 	    bge_param_locked(pr_num)) ||
1090 	    ((bgep->chipid.flags & CHIP_FLAG_SERDES) &&
1091 	    ((pr_num == MAC_PROP_EN_100FDX_CAP) ||
1092 	    (pr_num == MAC_PROP_EN_100HDX_CAP) ||
1093 	    (pr_num == MAC_PROP_EN_10FDX_CAP) ||
1094 	    (pr_num == MAC_PROP_EN_10HDX_CAP))) ||
1095 	    (DEVICE_5906_SERIES_CHIPSETS(bgep) &&
1096 	    (pr_num == MAC_PROP_EN_1000FDX_CAP) ||
1097 	    (pr_num == MAC_PROP_EN_1000HDX_CAP)))
1098 		*perm = MAC_PROP_PERM_READ;
1099 	mutex_exit(bgep->genlock);
1100 
1101 	switch (pr_num) {
1102 		case MAC_PROP_DUPLEX:
1103 			*perm = MAC_PROP_PERM_READ;
1104 			if (pr_valsize < sizeof (link_duplex_t))
1105 				return (EINVAL);
1106 			bcopy(&bgep->param_link_duplex, pr_val,
1107 			    sizeof (link_duplex_t));
1108 			break;
1109 		case MAC_PROP_SPEED:
1110 			*perm = MAC_PROP_PERM_READ;
1111 			if (pr_valsize < sizeof (speed))
1112 				return (EINVAL);
1113 			speed = bgep->param_link_speed * 1000000ull;
1114 			bcopy(&speed, pr_val, sizeof (speed));
1115 			break;
1116 		case MAC_PROP_STATUS:
1117 			*perm = MAC_PROP_PERM_READ;
1118 			if (pr_valsize < sizeof (link_state_t))
1119 				return (EINVAL);
1120 			bcopy(&bgep->link_state, pr_val,
1121 			    sizeof (link_state_t));
1122 			break;
1123 		case MAC_PROP_AUTONEG:
1124 			if (is_default)
1125 				*(uint8_t *)pr_val = 1;
1126 			else
1127 				*(uint8_t *)pr_val = bgep->param_adv_autoneg;
1128 			break;
1129 		case MAC_PROP_FLOWCTRL:
1130 			if (pr_valsize < sizeof (fl))
1131 				return (EINVAL);
1132 			if (is_default) {
1133 				fl = LINK_FLOWCTRL_BI;
1134 				bcopy(&fl, pr_val, sizeof (fl));
1135 				break;
1136 			}
1137 
1138 			if (bgep->param_link_rx_pause &&
1139 			    !bgep->param_link_tx_pause)
1140 				fl = LINK_FLOWCTRL_RX;
1141 
1142 			if (!bgep->param_link_rx_pause &&
1143 			    !bgep->param_link_tx_pause)
1144 				fl = LINK_FLOWCTRL_NONE;
1145 
1146 			if (!bgep->param_link_rx_pause &&
1147 			    bgep->param_link_tx_pause)
1148 				fl = LINK_FLOWCTRL_TX;
1149 
1150 			if (bgep->param_link_rx_pause &&
1151 			    bgep->param_link_tx_pause)
1152 				fl = LINK_FLOWCTRL_BI;
1153 			bcopy(&fl, pr_val, sizeof (fl));
1154 			break;
1155 		case MAC_PROP_ADV_1000FDX_CAP:
1156 			*perm = MAC_PROP_PERM_READ;
1157 			if (is_default) {
1158 				if (DEVICE_5906_SERIES_CHIPSETS(bgep))
1159 					*(uint8_t *)pr_val = 0;
1160 				else
1161 					*(uint8_t *)pr_val = 1;
1162 			}
1163 			else
1164 				*(uint8_t *)pr_val = bgep->param_adv_1000fdx;
1165 			break;
1166 		case MAC_PROP_EN_1000FDX_CAP:
1167 			if (is_default) {
1168 				if (DEVICE_5906_SERIES_CHIPSETS(bgep))
1169 					*(uint8_t *)pr_val = 0;
1170 				else
1171 					*(uint8_t *)pr_val = 1;
1172 			}
1173 			else
1174 				*(uint8_t *)pr_val = bgep->param_en_1000fdx;
1175 			break;
1176 		case MAC_PROP_ADV_1000HDX_CAP:
1177 			*perm = MAC_PROP_PERM_READ;
1178 			if (is_default) {
1179 				if (DEVICE_5906_SERIES_CHIPSETS(bgep))
1180 					*(uint8_t *)pr_val = 0;
1181 				else
1182 					*(uint8_t *)pr_val = 1;
1183 			}
1184 			else
1185 				*(uint8_t *)pr_val = bgep->param_adv_1000hdx;
1186 			break;
1187 		case MAC_PROP_EN_1000HDX_CAP:
1188 			if (is_default) {
1189 				if (DEVICE_5906_SERIES_CHIPSETS(bgep))
1190 					*(uint8_t *)pr_val = 0;
1191 				else
1192 					*(uint8_t *)pr_val = 1;
1193 			}
1194 			else
1195 				*(uint8_t *)pr_val = bgep->param_en_1000hdx;
1196 			break;
1197 		case MAC_PROP_ADV_100FDX_CAP:
1198 			*perm = MAC_PROP_PERM_READ;
1199 			if (is_default) {
1200 				*(uint8_t *)pr_val =
1201 				    ((flags & CHIP_FLAG_SERDES) ? 0 : 1);
1202 			} else {
1203 				*(uint8_t *)pr_val = bgep->param_adv_100fdx;
1204 			}
1205 			break;
1206 		case MAC_PROP_EN_100FDX_CAP:
1207 			if (is_default) {
1208 				*(uint8_t *)pr_val =
1209 				    ((flags & CHIP_FLAG_SERDES) ? 0 : 1);
1210 			} else {
1211 				*(uint8_t *)pr_val = bgep->param_en_100fdx;
1212 			}
1213 			break;
1214 		case MAC_PROP_ADV_100HDX_CAP:
1215 			*perm = MAC_PROP_PERM_READ;
1216 			if (is_default) {
1217 				*(uint8_t *)pr_val =
1218 				    ((flags & CHIP_FLAG_SERDES) ? 0 : 1);
1219 			} else {
1220 				*(uint8_t *)pr_val = bgep->param_adv_100hdx;
1221 			}
1222 			break;
1223 		case MAC_PROP_EN_100HDX_CAP:
1224 			if (is_default) {
1225 				*(uint8_t *)pr_val =
1226 				    ((flags & CHIP_FLAG_SERDES) ? 0 : 1);
1227 			} else {
1228 				*(uint8_t *)pr_val = bgep->param_en_100hdx;
1229 			}
1230 			break;
1231 		case MAC_PROP_ADV_10FDX_CAP:
1232 			*perm = MAC_PROP_PERM_READ;
1233 			if (is_default) {
1234 				*(uint8_t *)pr_val =
1235 				    ((flags & CHIP_FLAG_SERDES) ? 0 : 1);
1236 			} else {
1237 				*(uint8_t *)pr_val = bgep->param_adv_10fdx;
1238 			}
1239 			break;
1240 		case MAC_PROP_EN_10FDX_CAP:
1241 			if (is_default) {
1242 				*(uint8_t *)pr_val =
1243 				    ((flags & CHIP_FLAG_SERDES) ? 0 : 1);
1244 			} else {
1245 				*(uint8_t *)pr_val = bgep->param_en_10fdx;
1246 			}
1247 			break;
1248 		case MAC_PROP_ADV_10HDX_CAP:
1249 			*perm = MAC_PROP_PERM_READ;
1250 			if (is_default) {
1251 				*(uint8_t *)pr_val =
1252 				    ((flags & CHIP_FLAG_SERDES) ? 0 : 1);
1253 			} else {
1254 				*(uint8_t *)pr_val = bgep->param_adv_10hdx;
1255 			}
1256 			break;
1257 		case MAC_PROP_EN_10HDX_CAP:
1258 			if (is_default) {
1259 				*(uint8_t *)pr_val =
1260 				    ((flags & CHIP_FLAG_SERDES) ? 0 : 1);
1261 			} else {
1262 				*(uint8_t *)pr_val = bgep->param_en_10hdx;
1263 			}
1264 			break;
1265 		case MAC_PROP_ADV_100T4_CAP:
1266 		case MAC_PROP_EN_100T4_CAP:
1267 			*perm = MAC_PROP_PERM_READ;
1268 			*(uint8_t *)pr_val = 0;
1269 			break;
1270 		case MAC_PROP_PRIVATE:
1271 			err = bge_get_priv_prop(bgep, pr_name, pr_flags,
1272 			    pr_valsize, pr_val);
1273 			return (err);
1274 		default:
1275 			return (ENOTSUP);
1276 	}
1277 	return (0);
1278 }
1279 
1280 /* ARGSUSED */
1281 static int
1282 bge_set_priv_prop(bge_t *bgep, const char *pr_name, uint_t pr_valsize,
1283     const void *pr_val)
1284 {
1285 	int err = 0;
1286 	long result;
1287 
1288 	if (strcmp(pr_name, "_adv_pause_cap") == 0) {
1289 		(void) ddi_strtol(pr_val, (char **)NULL, 0, &result);
1290 		if (result > 1 || result < 0) {
1291 			err = EINVAL;
1292 		} else {
1293 			bgep->param_adv_pause = (uint32_t)result;
1294 			if (bge_reprogram(bgep) == IOC_INVAL)
1295 				err = EINVAL;
1296 		}
1297 		return (err);
1298 	}
1299 	if (strcmp(pr_name, "_adv_asym_pause_cap") == 0) {
1300 		(void) ddi_strtol(pr_val, (char **)NULL, 0, &result);
1301 		if (result > 1 || result < 0) {
1302 			err = EINVAL;
1303 		} else {
1304 			bgep->param_adv_asym_pause = (uint32_t)result;
1305 			if (bge_reprogram(bgep) == IOC_INVAL)
1306 				err = EINVAL;
1307 		}
1308 		return (err);
1309 	}
1310 	if (strcmp(pr_name, "_drain_max") == 0) {
1311 
1312 		/*
1313 		 * on the Tx side, we need to update the h/w register for
1314 		 * real packet transmission per packet. The drain_max parameter
1315 		 * is used to reduce the register access. This parameter
1316 		 * controls the max number of packets that we will hold before
1317 		 * updating the bge h/w to trigger h/w transmit. The bge
1318 		 * chipset usually has a max of 512 Tx descriptors, thus
1319 		 * the upper bound on drain_max is 512.
1320 		 */
1321 		if (pr_val == NULL) {
1322 			err = EINVAL;
1323 			return (err);
1324 		}
1325 		(void) ddi_strtol(pr_val, (char **)NULL, 0, &result);
1326 		if (result > 512 || result < 1)
1327 			err = EINVAL;
1328 		else {
1329 			bgep->param_drain_max = (uint32_t)result;
1330 			if (bge_reprogram(bgep) == IOC_INVAL)
1331 				err = EINVAL;
1332 		}
1333 		return (err);
1334 	}
1335 	if (strcmp(pr_name, "_msi_cnt") == 0) {
1336 
1337 		if (pr_val == NULL) {
1338 			err = EINVAL;
1339 			return (err);
1340 		}
1341 		(void) ddi_strtol(pr_val, (char **)NULL, 0, &result);
1342 		if (result > 7 || result < 0)
1343 			err = EINVAL;
1344 		else {
1345 			bgep->param_msi_cnt = (uint32_t)result;
1346 			if (bge_reprogram(bgep) == IOC_INVAL)
1347 				err = EINVAL;
1348 		}
1349 		return (err);
1350 	}
1351 	if (strcmp(pr_name, "_intr_coalesce_blank_time") == 0) {
1352 		if (ddi_strtol(pr_val, (char **)NULL, 0, &result) != 0)
1353 			return (EINVAL);
1354 
1355 		bgep->chipid.rx_ticks_norm = (uint32_t)result;
1356 		return (0);
1357 	}
1358 
1359 	if (strcmp(pr_name, "_intr_coalesce_pkt_cnt") == 0) {
1360 		if (ddi_strtol(pr_val, (char **)NULL, 0, &result) != 0)
1361 			return (EINVAL);
1362 
1363 		bgep->chipid.rx_count_norm = (uint32_t)result;
1364 		return (0);
1365 	}
1366 	return (ENOTSUP);
1367 }
1368 
1369 static int
1370 bge_get_priv_prop(bge_t *bge, const char *pr_name, uint_t pr_flags,
1371     uint_t pr_valsize, void *pr_val)
1372 {
1373 	int err = ENOTSUP;
1374 	boolean_t is_default = (pr_flags & MAC_PROP_DEFAULT);
1375 	int value;
1376 
1377 	if (strcmp(pr_name, "_adv_pause_cap") == 0) {
1378 		value = (is_default? 1 : bge->param_adv_pause);
1379 		err = 0;
1380 		goto done;
1381 	}
1382 	if (strcmp(pr_name, "_adv_asym_pause_cap") == 0) {
1383 		value = (is_default? 1 : bge->param_adv_asym_pause);
1384 		err = 0;
1385 		goto done;
1386 	}
1387 	if (strcmp(pr_name, "_drain_max") == 0) {
1388 		value = (is_default? 64 : bge->param_drain_max);
1389 		err = 0;
1390 		goto done;
1391 	}
1392 	if (strcmp(pr_name, "_msi_cnt") == 0) {
1393 		value = (is_default? 0 : bge->param_msi_cnt);
1394 		err = 0;
1395 		goto done;
1396 	}
1397 
1398 	if (strcmp(pr_name, "_intr_coalesce_blank_time") == 0) {
1399 		value = (is_default? bge_rx_ticks_norm :
1400 		    bge->chipid.rx_ticks_norm);
1401 		err = 0;
1402 		goto done;
1403 	}
1404 
1405 	if (strcmp(pr_name, "_intr_coalesce_pkt_cnt") == 0) {
1406 		value = (is_default? bge_rx_count_norm :
1407 		    bge->chipid.rx_count_norm);
1408 		err = 0;
1409 		goto done;
1410 	}
1411 
1412 done:
1413 	if (err == 0) {
1414 		(void) snprintf(pr_val, pr_valsize, "%d", value);
1415 	}
1416 	return (err);
1417 }
1418 
1419 /*
1420  * Compute the index of the required bit in the multicast hash map.
1421  * This must mirror the way the hardware actually does it!
1422  * See Broadcom document 570X-PG102-R page 125.
1423  */
1424 static uint32_t
1425 bge_hash_index(const uint8_t *mca)
1426 {
1427 	uint32_t hash;
1428 
1429 	CRC32(hash, mca, ETHERADDRL, -1U, crc32_table);
1430 
1431 	return (hash);
1432 }
1433 
1434 /*
1435  *	bge_m_multicst_add() -- enable/disable a multicast address
1436  */
1437 static int
1438 bge_m_multicst(void *arg, boolean_t add, const uint8_t *mca)
1439 {
1440 	bge_t *bgep = arg;		/* private device info	*/
1441 	uint32_t hash;
1442 	uint32_t index;
1443 	uint32_t word;
1444 	uint32_t bit;
1445 	uint8_t *refp;
1446 
1447 	BGE_TRACE(("bge_m_multicst($%p, %s, %s)", arg,
1448 	    (add) ? "add" : "remove", ether_sprintf((void *)mca)));
1449 
1450 	/*
1451 	 * Precalculate all required masks, pointers etc ...
1452 	 */
1453 	hash = bge_hash_index(mca);
1454 	index = hash % BGE_HASH_TABLE_SIZE;
1455 	word = index/32u;
1456 	bit = 1 << (index % 32u);
1457 	refp = &bgep->mcast_refs[index];
1458 
1459 	BGE_DEBUG(("bge_m_multicst: hash 0x%x index %d (%d:0x%x) = %d",
1460 	    hash, index, word, bit, *refp));
1461 
1462 	/*
1463 	 * We must set the appropriate bit in the hash map (and the
1464 	 * corresponding h/w register) when the refcount goes from 0
1465 	 * to >0, and clear it when the last ref goes away (refcount
1466 	 * goes from >0 back to 0).  If we change the hash map, we
1467 	 * must also update the chip's hardware map registers.
1468 	 */
1469 	mutex_enter(bgep->genlock);
1470 	if (!(bgep->progress & PROGRESS_INTR)) {
1471 		/* can happen during autorecovery */
1472 		ddi_fm_service_impact(bgep->devinfo, DDI_SERVICE_DEGRADED);
1473 		mutex_exit(bgep->genlock);
1474 		return (EIO);
1475 	}
1476 	if (add) {
1477 		if ((*refp)++ == 0) {
1478 			bgep->mcast_hash[word] |= bit;
1479 #ifdef BGE_IPMI_ASF
1480 			if (bge_chip_sync(bgep, B_TRUE) == DDI_FAILURE) {
1481 #else
1482 			if (bge_chip_sync(bgep) == DDI_FAILURE) {
1483 #endif
1484 				(void) bge_check_acc_handle(bgep,
1485 				    bgep->cfg_handle);
1486 				(void) bge_check_acc_handle(bgep,
1487 				    bgep->io_handle);
1488 				ddi_fm_service_impact(bgep->devinfo,
1489 				    DDI_SERVICE_DEGRADED);
1490 				mutex_exit(bgep->genlock);
1491 				return (EIO);
1492 			}
1493 		}
1494 	} else {
1495 		if (--(*refp) == 0) {
1496 			bgep->mcast_hash[word] &= ~bit;
1497 #ifdef BGE_IPMI_ASF
1498 			if (bge_chip_sync(bgep, B_TRUE) == DDI_FAILURE) {
1499 #else
1500 			if (bge_chip_sync(bgep) == DDI_FAILURE) {
1501 #endif
1502 				(void) bge_check_acc_handle(bgep,
1503 				    bgep->cfg_handle);
1504 				(void) bge_check_acc_handle(bgep,
1505 				    bgep->io_handle);
1506 				ddi_fm_service_impact(bgep->devinfo,
1507 				    DDI_SERVICE_DEGRADED);
1508 				mutex_exit(bgep->genlock);
1509 				return (EIO);
1510 			}
1511 		}
1512 	}
1513 	BGE_DEBUG(("bge_m_multicst($%p) done", arg));
1514 	if (bge_check_acc_handle(bgep, bgep->cfg_handle) != DDI_FM_OK) {
1515 		ddi_fm_service_impact(bgep->devinfo, DDI_SERVICE_DEGRADED);
1516 		mutex_exit(bgep->genlock);
1517 		return (EIO);
1518 	}
1519 	if (bge_check_acc_handle(bgep, bgep->io_handle) != DDI_FM_OK) {
1520 		ddi_fm_service_impact(bgep->devinfo, DDI_SERVICE_DEGRADED);
1521 		mutex_exit(bgep->genlock);
1522 		return (EIO);
1523 	}
1524 	mutex_exit(bgep->genlock);
1525 
1526 	return (0);
1527 }
1528 
1529 /*
1530  * bge_m_promisc() -- set or reset promiscuous mode on the board
1531  *
1532  *	Program the hardware to enable/disable promiscuous and/or
1533  *	receive-all-multicast modes.
1534  */
1535 static int
1536 bge_m_promisc(void *arg, boolean_t on)
1537 {
1538 	bge_t *bgep = arg;
1539 
1540 	BGE_TRACE(("bge_m_promisc_set($%p, %d)", arg, on));
1541 
1542 	/*
1543 	 * Store MAC layer specified mode and pass to chip layer to update h/w
1544 	 */
1545 	mutex_enter(bgep->genlock);
1546 	if (!(bgep->progress & PROGRESS_INTR)) {
1547 		/* can happen during autorecovery */
1548 		ddi_fm_service_impact(bgep->devinfo, DDI_SERVICE_DEGRADED);
1549 		mutex_exit(bgep->genlock);
1550 		return (EIO);
1551 	}
1552 	bgep->promisc = on;
1553 #ifdef BGE_IPMI_ASF
1554 	if (bge_chip_sync(bgep, B_TRUE) == DDI_FAILURE) {
1555 #else
1556 	if (bge_chip_sync(bgep) == DDI_FAILURE) {
1557 #endif
1558 		(void) bge_check_acc_handle(bgep, bgep->cfg_handle);
1559 		(void) bge_check_acc_handle(bgep, bgep->io_handle);
1560 		ddi_fm_service_impact(bgep->devinfo, DDI_SERVICE_DEGRADED);
1561 		mutex_exit(bgep->genlock);
1562 		return (EIO);
1563 	}
1564 	BGE_DEBUG(("bge_m_promisc_set($%p) done", arg));
1565 	if (bge_check_acc_handle(bgep, bgep->cfg_handle) != DDI_FM_OK) {
1566 		ddi_fm_service_impact(bgep->devinfo, DDI_SERVICE_DEGRADED);
1567 		mutex_exit(bgep->genlock);
1568 		return (EIO);
1569 	}
1570 	if (bge_check_acc_handle(bgep, bgep->io_handle) != DDI_FM_OK) {
1571 		ddi_fm_service_impact(bgep->devinfo, DDI_SERVICE_DEGRADED);
1572 		mutex_exit(bgep->genlock);
1573 		return (EIO);
1574 	}
1575 	mutex_exit(bgep->genlock);
1576 	return (0);
1577 }
1578 
1579 /*ARGSUSED*/
1580 static boolean_t
1581 bge_m_getcapab(void *arg, mac_capab_t cap, void *cap_data)
1582 {
1583 	bge_t *bgep = arg;
1584 
1585 	switch (cap) {
1586 	case MAC_CAPAB_HCKSUM: {
1587 		uint32_t *txflags = cap_data;
1588 
1589 		*txflags = HCKSUM_INET_FULL_V4 | HCKSUM_IPHDRCKSUM;
1590 		break;
1591 	}
1592 
1593 	case MAC_CAPAB_POLL:
1594 		/*
1595 		 * There's nothing for us to fill in, simply returning
1596 		 * B_TRUE stating that we support polling is sufficient.
1597 		 */
1598 		break;
1599 
1600 	case MAC_CAPAB_MULTIADDRESS: {
1601 		multiaddress_capab_t	*mmacp = cap_data;
1602 
1603 		mutex_enter(bgep->genlock);
1604 		/*
1605 		 * The number of MAC addresses made available by
1606 		 * this capability is one less than the total as
1607 		 * the primary address in slot 0 is counted in
1608 		 * the total.
1609 		 */
1610 		mmacp->maddr_naddr = bgep->unicst_addr_total - 1;
1611 		mmacp->maddr_naddrfree = bgep->unicst_addr_avail;
1612 		/* No multiple factory addresses, set mma_flag to 0 */
1613 		mmacp->maddr_flag = 0;
1614 		mmacp->maddr_handle = bgep;
1615 		mmacp->maddr_add = bge_m_unicst_add;
1616 		mmacp->maddr_remove = bge_m_unicst_remove;
1617 		mmacp->maddr_modify = bge_m_unicst_modify;
1618 		mmacp->maddr_get = bge_m_unicst_get;
1619 		mmacp->maddr_reserve = NULL;
1620 		mutex_exit(bgep->genlock);
1621 		break;
1622 	}
1623 
1624 	default:
1625 		return (B_FALSE);
1626 	}
1627 	return (B_TRUE);
1628 }
1629 
1630 /*
1631  * Loopback ioctl code
1632  */
1633 
1634 static lb_property_t loopmodes[] = {
1635 	{ normal,	"normal",	BGE_LOOP_NONE		},
1636 	{ external,	"1000Mbps",	BGE_LOOP_EXTERNAL_1000	},
1637 	{ external,	"100Mbps",	BGE_LOOP_EXTERNAL_100	},
1638 	{ external,	"10Mbps",	BGE_LOOP_EXTERNAL_10	},
1639 	{ internal,	"PHY",		BGE_LOOP_INTERNAL_PHY	},
1640 	{ internal,	"MAC",		BGE_LOOP_INTERNAL_MAC	}
1641 };
1642 
1643 static enum ioc_reply
1644 bge_set_loop_mode(bge_t *bgep, uint32_t mode)
1645 {
1646 	/*
1647 	 * If the mode isn't being changed, there's nothing to do ...
1648 	 */
1649 	if (mode == bgep->param_loop_mode)
1650 		return (IOC_ACK);
1651 
1652 	/*
1653 	 * Validate the requested mode and prepare a suitable message
1654 	 * to explain the link down/up cycle that the change will
1655 	 * probably induce ...
1656 	 */
1657 	switch (mode) {
1658 	default:
1659 		return (IOC_INVAL);
1660 
1661 	case BGE_LOOP_NONE:
1662 	case BGE_LOOP_EXTERNAL_1000:
1663 	case BGE_LOOP_EXTERNAL_100:
1664 	case BGE_LOOP_EXTERNAL_10:
1665 	case BGE_LOOP_INTERNAL_PHY:
1666 	case BGE_LOOP_INTERNAL_MAC:
1667 		break;
1668 	}
1669 
1670 	/*
1671 	 * All OK; tell the caller to reprogram
1672 	 * the PHY and/or MAC for the new mode ...
1673 	 */
1674 	bgep->param_loop_mode = mode;
1675 	return (IOC_RESTART_ACK);
1676 }
1677 
1678 static enum ioc_reply
1679 bge_loop_ioctl(bge_t *bgep, queue_t *wq, mblk_t *mp, struct iocblk *iocp)
1680 {
1681 	lb_info_sz_t *lbsp;
1682 	lb_property_t *lbpp;
1683 	uint32_t *lbmp;
1684 	int cmd;
1685 
1686 	_NOTE(ARGUNUSED(wq))
1687 
1688 	/*
1689 	 * Validate format of ioctl
1690 	 */
1691 	if (mp->b_cont == NULL)
1692 		return (IOC_INVAL);
1693 
1694 	cmd = iocp->ioc_cmd;
1695 	switch (cmd) {
1696 	default:
1697 		/* NOTREACHED */
1698 		bge_error(bgep, "bge_loop_ioctl: invalid cmd 0x%x", cmd);
1699 		return (IOC_INVAL);
1700 
1701 	case LB_GET_INFO_SIZE:
1702 		if (iocp->ioc_count != sizeof (lb_info_sz_t))
1703 			return (IOC_INVAL);
1704 		lbsp = (void *)mp->b_cont->b_rptr;
1705 		*lbsp = sizeof (loopmodes);
1706 		return (IOC_REPLY);
1707 
1708 	case LB_GET_INFO:
1709 		if (iocp->ioc_count != sizeof (loopmodes))
1710 			return (IOC_INVAL);
1711 		lbpp = (void *)mp->b_cont->b_rptr;
1712 		bcopy(loopmodes, lbpp, sizeof (loopmodes));
1713 		return (IOC_REPLY);
1714 
1715 	case LB_GET_MODE:
1716 		if (iocp->ioc_count != sizeof (uint32_t))
1717 			return (IOC_INVAL);
1718 		lbmp = (void *)mp->b_cont->b_rptr;
1719 		*lbmp = bgep->param_loop_mode;
1720 		return (IOC_REPLY);
1721 
1722 	case LB_SET_MODE:
1723 		if (iocp->ioc_count != sizeof (uint32_t))
1724 			return (IOC_INVAL);
1725 		lbmp = (void *)mp->b_cont->b_rptr;
1726 		return (bge_set_loop_mode(bgep, *lbmp));
1727 	}
1728 }
1729 
1730 /*
1731  * Specific bge IOCTLs, the gld module handles the generic ones.
1732  */
1733 static void
1734 bge_m_ioctl(void *arg, queue_t *wq, mblk_t *mp)
1735 {
1736 	bge_t *bgep = arg;
1737 	struct iocblk *iocp;
1738 	enum ioc_reply status;
1739 	boolean_t need_privilege;
1740 	int err;
1741 	int cmd;
1742 
1743 	/*
1744 	 * Validate the command before bothering with the mutex ...
1745 	 */
1746 	iocp = (void *)mp->b_rptr;
1747 	iocp->ioc_error = 0;
1748 	need_privilege = B_TRUE;
1749 	cmd = iocp->ioc_cmd;
1750 	switch (cmd) {
1751 	default:
1752 		miocnak(wq, mp, 0, EINVAL);
1753 		return;
1754 
1755 	case BGE_MII_READ:
1756 	case BGE_MII_WRITE:
1757 	case BGE_SEE_READ:
1758 	case BGE_SEE_WRITE:
1759 	case BGE_FLASH_READ:
1760 	case BGE_FLASH_WRITE:
1761 	case BGE_DIAG:
1762 	case BGE_PEEK:
1763 	case BGE_POKE:
1764 	case BGE_PHY_RESET:
1765 	case BGE_SOFT_RESET:
1766 	case BGE_HARD_RESET:
1767 		break;
1768 
1769 	case LB_GET_INFO_SIZE:
1770 	case LB_GET_INFO:
1771 	case LB_GET_MODE:
1772 		need_privilege = B_FALSE;
1773 		/* FALLTHRU */
1774 	case LB_SET_MODE:
1775 		break;
1776 
1777 	}
1778 
1779 	if (need_privilege) {
1780 		/*
1781 		 * Check for specific net_config privilege on Solaris 10+.
1782 		 */
1783 		err = secpolicy_net_config(iocp->ioc_cr, B_FALSE);
1784 		if (err != 0) {
1785 			miocnak(wq, mp, 0, err);
1786 			return;
1787 		}
1788 	}
1789 
1790 	mutex_enter(bgep->genlock);
1791 	if (!(bgep->progress & PROGRESS_INTR)) {
1792 		/* can happen during autorecovery */
1793 		mutex_exit(bgep->genlock);
1794 		miocnak(wq, mp, 0, EIO);
1795 		return;
1796 	}
1797 
1798 	switch (cmd) {
1799 	default:
1800 		_NOTE(NOTREACHED)
1801 		status = IOC_INVAL;
1802 		break;
1803 
1804 	case BGE_MII_READ:
1805 	case BGE_MII_WRITE:
1806 	case BGE_SEE_READ:
1807 	case BGE_SEE_WRITE:
1808 	case BGE_FLASH_READ:
1809 	case BGE_FLASH_WRITE:
1810 	case BGE_DIAG:
1811 	case BGE_PEEK:
1812 	case BGE_POKE:
1813 	case BGE_PHY_RESET:
1814 	case BGE_SOFT_RESET:
1815 	case BGE_HARD_RESET:
1816 		status = bge_chip_ioctl(bgep, wq, mp, iocp);
1817 		break;
1818 
1819 	case LB_GET_INFO_SIZE:
1820 	case LB_GET_INFO:
1821 	case LB_GET_MODE:
1822 	case LB_SET_MODE:
1823 		status = bge_loop_ioctl(bgep, wq, mp, iocp);
1824 		break;
1825 
1826 	}
1827 
1828 	/*
1829 	 * Do we need to reprogram the PHY and/or the MAC?
1830 	 * Do it now, while we still have the mutex.
1831 	 *
1832 	 * Note: update the PHY first, 'cos it controls the
1833 	 * speed/duplex parameters that the MAC code uses.
1834 	 */
1835 	switch (status) {
1836 	case IOC_RESTART_REPLY:
1837 	case IOC_RESTART_ACK:
1838 		if (bge_reprogram(bgep) == IOC_INVAL)
1839 			status = IOC_INVAL;
1840 		break;
1841 	}
1842 
1843 	if (bge_check_acc_handle(bgep, bgep->cfg_handle) != DDI_FM_OK) {
1844 		ddi_fm_service_impact(bgep->devinfo, DDI_SERVICE_DEGRADED);
1845 		status = IOC_INVAL;
1846 	}
1847 	if (bge_check_acc_handle(bgep, bgep->io_handle) != DDI_FM_OK) {
1848 		ddi_fm_service_impact(bgep->devinfo, DDI_SERVICE_DEGRADED);
1849 		status = IOC_INVAL;
1850 	}
1851 	mutex_exit(bgep->genlock);
1852 
1853 	/*
1854 	 * Finally, decide how to reply
1855 	 */
1856 	switch (status) {
1857 	default:
1858 	case IOC_INVAL:
1859 		/*
1860 		 * Error, reply with a NAK and EINVAL or the specified error
1861 		 */
1862 		miocnak(wq, mp, 0, iocp->ioc_error == 0 ?
1863 		    EINVAL : iocp->ioc_error);
1864 		break;
1865 
1866 	case IOC_DONE:
1867 		/*
1868 		 * OK, reply already sent
1869 		 */
1870 		break;
1871 
1872 	case IOC_RESTART_ACK:
1873 	case IOC_ACK:
1874 		/*
1875 		 * OK, reply with an ACK
1876 		 */
1877 		miocack(wq, mp, 0, 0);
1878 		break;
1879 
1880 	case IOC_RESTART_REPLY:
1881 	case IOC_REPLY:
1882 		/*
1883 		 * OK, send prepared reply as ACK or NAK
1884 		 */
1885 		mp->b_datap->db_type = iocp->ioc_error == 0 ?
1886 		    M_IOCACK : M_IOCNAK;
1887 		qreply(wq, mp);
1888 		break;
1889 	}
1890 }
1891 
1892 static void
1893 bge_resources_add(bge_t *bgep, time_t time, uint_t pkt_cnt)
1894 {
1895 
1896 	recv_ring_t *rrp;
1897 	mac_rx_fifo_t mrf;
1898 	int ring;
1899 
1900 	/*
1901 	 * Register Rx rings as resources and save mac
1902 	 * resource id for future reference
1903 	 */
1904 	mrf.mrf_type = MAC_RX_FIFO;
1905 	mrf.mrf_blank = bge_chip_blank;
1906 	mrf.mrf_arg = (void *)bgep;
1907 	mrf.mrf_normal_blank_time = time;
1908 	mrf.mrf_normal_pkt_count = pkt_cnt;
1909 
1910 	for (ring = 0; ring < bgep->chipid.rx_rings; ring++) {
1911 		rrp = &bgep->recv[ring];
1912 		rrp->handle = mac_resource_add(bgep->mh,
1913 		    (mac_resource_t *)&mrf);
1914 	}
1915 }
1916 
1917 static void
1918 bge_m_resources(void *arg)
1919 {
1920 	bge_t *bgep = arg;
1921 
1922 	mutex_enter(bgep->genlock);
1923 
1924 	bge_resources_add(bgep, bgep->chipid.rx_ticks_norm,
1925 	    bgep->chipid.rx_count_norm);
1926 	mutex_exit(bgep->genlock);
1927 }
1928 
1929 /*
1930  * ========== Per-instance setup/teardown code ==========
1931  */
1932 
1933 #undef	BGE_DBG
1934 #define	BGE_DBG		BGE_DBG_INIT	/* debug flag for this code	*/
1935 /*
1936  * Allocate an area of memory and a DMA handle for accessing it
1937  */
1938 static int
1939 bge_alloc_dma_mem(bge_t *bgep, size_t memsize, ddi_device_acc_attr_t *attr_p,
1940 	uint_t dma_flags, dma_area_t *dma_p)
1941 {
1942 	caddr_t va;
1943 	int err;
1944 
1945 	BGE_TRACE(("bge_alloc_dma_mem($%p, %ld, $%p, 0x%x, $%p)",
1946 	    (void *)bgep, memsize, attr_p, dma_flags, dma_p));
1947 
1948 	/*
1949 	 * Allocate handle
1950 	 */
1951 	err = ddi_dma_alloc_handle(bgep->devinfo, &dma_attr,
1952 	    DDI_DMA_DONTWAIT, NULL, &dma_p->dma_hdl);
1953 	if (err != DDI_SUCCESS)
1954 		return (DDI_FAILURE);
1955 
1956 	/*
1957 	 * Allocate memory
1958 	 */
1959 	err = ddi_dma_mem_alloc(dma_p->dma_hdl, memsize, attr_p,
1960 	    dma_flags, DDI_DMA_DONTWAIT, NULL, &va, &dma_p->alength,
1961 	    &dma_p->acc_hdl);
1962 	if (err != DDI_SUCCESS)
1963 		return (DDI_FAILURE);
1964 
1965 	/*
1966 	 * Bind the two together
1967 	 */
1968 	dma_p->mem_va = va;
1969 	err = ddi_dma_addr_bind_handle(dma_p->dma_hdl, NULL,
1970 	    va, dma_p->alength, dma_flags, DDI_DMA_DONTWAIT, NULL,
1971 	    &dma_p->cookie, &dma_p->ncookies);
1972 
1973 	BGE_DEBUG(("bge_alloc_dma_mem(): bind %d bytes; err %d, %d cookies",
1974 	    dma_p->alength, err, dma_p->ncookies));
1975 
1976 	if (err != DDI_DMA_MAPPED || dma_p->ncookies != 1)
1977 		return (DDI_FAILURE);
1978 
1979 	dma_p->nslots = ~0U;
1980 	dma_p->size = ~0U;
1981 	dma_p->token = ~0U;
1982 	dma_p->offset = 0;
1983 	return (DDI_SUCCESS);
1984 }
1985 
1986 /*
1987  * Free one allocated area of DMAable memory
1988  */
1989 static void
1990 bge_free_dma_mem(dma_area_t *dma_p)
1991 {
1992 	if (dma_p->dma_hdl != NULL) {
1993 		if (dma_p->ncookies) {
1994 			(void) ddi_dma_unbind_handle(dma_p->dma_hdl);
1995 			dma_p->ncookies = 0;
1996 		}
1997 		ddi_dma_free_handle(&dma_p->dma_hdl);
1998 		dma_p->dma_hdl = NULL;
1999 	}
2000 
2001 	if (dma_p->acc_hdl != NULL) {
2002 		ddi_dma_mem_free(&dma_p->acc_hdl);
2003 		dma_p->acc_hdl = NULL;
2004 	}
2005 }
2006 /*
2007  * Utility routine to carve a slice off a chunk of allocated memory,
2008  * updating the chunk descriptor accordingly.  The size of the slice
2009  * is given by the product of the <qty> and <size> parameters.
2010  */
2011 static void
2012 bge_slice_chunk(dma_area_t *slice, dma_area_t *chunk,
2013 	uint32_t qty, uint32_t size)
2014 {
2015 	static uint32_t sequence = 0xbcd5704a;
2016 	size_t totsize;
2017 
2018 	totsize = qty*size;
2019 	ASSERT(totsize <= chunk->alength);
2020 
2021 	*slice = *chunk;
2022 	slice->nslots = qty;
2023 	slice->size = size;
2024 	slice->alength = totsize;
2025 	slice->token = ++sequence;
2026 
2027 	chunk->mem_va = (caddr_t)chunk->mem_va + totsize;
2028 	chunk->alength -= totsize;
2029 	chunk->offset += totsize;
2030 	chunk->cookie.dmac_laddress += totsize;
2031 	chunk->cookie.dmac_size -= totsize;
2032 }
2033 
2034 /*
2035  * Initialise the specified Receive Producer (Buffer) Ring, using
2036  * the information in the <dma_area> descriptors that it contains
2037  * to set up all the other fields. This routine should be called
2038  * only once for each ring.
2039  */
2040 static void
2041 bge_init_buff_ring(bge_t *bgep, uint64_t ring)
2042 {
2043 	buff_ring_t *brp;
2044 	bge_status_t *bsp;
2045 	sw_rbd_t *srbdp;
2046 	dma_area_t pbuf;
2047 	uint32_t bufsize;
2048 	uint32_t nslots;
2049 	uint32_t slot;
2050 	uint32_t split;
2051 
2052 	static bge_regno_t nic_ring_addrs[BGE_BUFF_RINGS_MAX] = {
2053 		NIC_MEM_SHADOW_BUFF_STD,
2054 		NIC_MEM_SHADOW_BUFF_JUMBO,
2055 		NIC_MEM_SHADOW_BUFF_MINI
2056 	};
2057 	static bge_regno_t mailbox_regs[BGE_BUFF_RINGS_MAX] = {
2058 		RECV_STD_PROD_INDEX_REG,
2059 		RECV_JUMBO_PROD_INDEX_REG,
2060 		RECV_MINI_PROD_INDEX_REG
2061 	};
2062 	static bge_regno_t buff_cons_xref[BGE_BUFF_RINGS_MAX] = {
2063 		STATUS_STD_BUFF_CONS_INDEX,
2064 		STATUS_JUMBO_BUFF_CONS_INDEX,
2065 		STATUS_MINI_BUFF_CONS_INDEX
2066 	};
2067 
2068 	BGE_TRACE(("bge_init_buff_ring($%p, %d)",
2069 	    (void *)bgep, ring));
2070 
2071 	brp = &bgep->buff[ring];
2072 	nslots = brp->desc.nslots;
2073 	ASSERT(brp->buf[0].nslots == nslots/BGE_SPLIT);
2074 	bufsize = brp->buf[0].size;
2075 
2076 	/*
2077 	 * Set up the copy of the h/w RCB
2078 	 *
2079 	 * Note: unlike Send & Receive Return Rings, (where the max_len
2080 	 * field holds the number of slots), in a Receive Buffer Ring
2081 	 * this field indicates the size of each buffer in the ring.
2082 	 */
2083 	brp->hw_rcb.host_ring_addr = brp->desc.cookie.dmac_laddress;
2084 	brp->hw_rcb.max_len = (uint16_t)bufsize;
2085 	brp->hw_rcb.flags = nslots > 0 ? 0 : RCB_FLAG_RING_DISABLED;
2086 	brp->hw_rcb.nic_ring_addr = nic_ring_addrs[ring];
2087 
2088 	/*
2089 	 * Other one-off initialisation of per-ring data
2090 	 */
2091 	brp->bgep = bgep;
2092 	bsp = DMA_VPTR(bgep->status_block);
2093 	brp->cons_index_p = &bsp->buff_cons_index[buff_cons_xref[ring]];
2094 	brp->chip_mbx_reg = mailbox_regs[ring];
2095 	mutex_init(brp->rf_lock, NULL, MUTEX_DRIVER,
2096 	    DDI_INTR_PRI(bgep->intr_pri));
2097 
2098 	/*
2099 	 * Allocate the array of s/w Receive Buffer Descriptors
2100 	 */
2101 	srbdp = kmem_zalloc(nslots*sizeof (*srbdp), KM_SLEEP);
2102 	brp->sw_rbds = srbdp;
2103 
2104 	/*
2105 	 * Now initialise each array element once and for all
2106 	 */
2107 	for (split = 0; split < BGE_SPLIT; ++split) {
2108 		pbuf = brp->buf[split];
2109 		for (slot = 0; slot < nslots/BGE_SPLIT; ++srbdp, ++slot)
2110 			bge_slice_chunk(&srbdp->pbuf, &pbuf, 1, bufsize);
2111 		ASSERT(pbuf.alength == 0);
2112 	}
2113 }
2114 
2115 /*
2116  * Clean up initialisation done above before the memory is freed
2117  */
2118 static void
2119 bge_fini_buff_ring(bge_t *bgep, uint64_t ring)
2120 {
2121 	buff_ring_t *brp;
2122 	sw_rbd_t *srbdp;
2123 
2124 	BGE_TRACE(("bge_fini_buff_ring($%p, %d)",
2125 	    (void *)bgep, ring));
2126 
2127 	brp = &bgep->buff[ring];
2128 	srbdp = brp->sw_rbds;
2129 	kmem_free(srbdp, brp->desc.nslots*sizeof (*srbdp));
2130 
2131 	mutex_destroy(brp->rf_lock);
2132 }
2133 
2134 /*
2135  * Initialise the specified Receive (Return) Ring, using the
2136  * information in the <dma_area> descriptors that it contains
2137  * to set up all the other fields. This routine should be called
2138  * only once for each ring.
2139  */
2140 static void
2141 bge_init_recv_ring(bge_t *bgep, uint64_t ring)
2142 {
2143 	recv_ring_t *rrp;
2144 	bge_status_t *bsp;
2145 	uint32_t nslots;
2146 
2147 	BGE_TRACE(("bge_init_recv_ring($%p, %d)",
2148 	    (void *)bgep, ring));
2149 
2150 	/*
2151 	 * The chip architecture requires that receive return rings have
2152 	 * 512 or 1024 or 2048 elements per ring.  See 570X-PG108-R page 103.
2153 	 */
2154 	rrp = &bgep->recv[ring];
2155 	nslots = rrp->desc.nslots;
2156 	ASSERT(nslots == 0 || nslots == 512 ||
2157 	    nslots == 1024 || nslots == 2048);
2158 
2159 	/*
2160 	 * Set up the copy of the h/w RCB
2161 	 */
2162 	rrp->hw_rcb.host_ring_addr = rrp->desc.cookie.dmac_laddress;
2163 	rrp->hw_rcb.max_len = (uint16_t)nslots;
2164 	rrp->hw_rcb.flags = nslots > 0 ? 0 : RCB_FLAG_RING_DISABLED;
2165 	rrp->hw_rcb.nic_ring_addr = 0;
2166 
2167 	/*
2168 	 * Other one-off initialisation of per-ring data
2169 	 */
2170 	rrp->bgep = bgep;
2171 	bsp = DMA_VPTR(bgep->status_block);
2172 	rrp->prod_index_p = RECV_INDEX_P(bsp, ring);
2173 	rrp->chip_mbx_reg = RECV_RING_CONS_INDEX_REG(ring);
2174 	mutex_init(rrp->rx_lock, NULL, MUTEX_DRIVER,
2175 	    DDI_INTR_PRI(bgep->intr_pri));
2176 }
2177 
2178 
2179 /*
2180  * Clean up initialisation done above before the memory is freed
2181  */
2182 static void
2183 bge_fini_recv_ring(bge_t *bgep, uint64_t ring)
2184 {
2185 	recv_ring_t *rrp;
2186 
2187 	BGE_TRACE(("bge_fini_recv_ring($%p, %d)",
2188 	    (void *)bgep, ring));
2189 
2190 	rrp = &bgep->recv[ring];
2191 	if (rrp->rx_softint)
2192 		ddi_remove_softintr(rrp->rx_softint);
2193 	mutex_destroy(rrp->rx_lock);
2194 }
2195 
2196 /*
2197  * Initialise the specified Send Ring, using the information in the
2198  * <dma_area> descriptors that it contains to set up all the other
2199  * fields. This routine should be called only once for each ring.
2200  */
2201 static void
2202 bge_init_send_ring(bge_t *bgep, uint64_t ring)
2203 {
2204 	send_ring_t *srp;
2205 	bge_status_t *bsp;
2206 	sw_sbd_t *ssbdp;
2207 	dma_area_t desc;
2208 	dma_area_t pbuf;
2209 	uint32_t nslots;
2210 	uint32_t slot;
2211 	uint32_t split;
2212 	sw_txbuf_t *txbuf;
2213 
2214 	BGE_TRACE(("bge_init_send_ring($%p, %d)",
2215 	    (void *)bgep, ring));
2216 
2217 	/*
2218 	 * The chip architecture requires that host-based send rings
2219 	 * have 512 elements per ring.  See 570X-PG102-R page 56.
2220 	 */
2221 	srp = &bgep->send[ring];
2222 	nslots = srp->desc.nslots;
2223 	ASSERT(nslots == 0 || nslots == 512);
2224 
2225 	/*
2226 	 * Set up the copy of the h/w RCB
2227 	 */
2228 	srp->hw_rcb.host_ring_addr = srp->desc.cookie.dmac_laddress;
2229 	srp->hw_rcb.max_len = (uint16_t)nslots;
2230 	srp->hw_rcb.flags = nslots > 0 ? 0 : RCB_FLAG_RING_DISABLED;
2231 	srp->hw_rcb.nic_ring_addr = NIC_MEM_SHADOW_SEND_RING(ring, nslots);
2232 
2233 	/*
2234 	 * Other one-off initialisation of per-ring data
2235 	 */
2236 	srp->bgep = bgep;
2237 	bsp = DMA_VPTR(bgep->status_block);
2238 	srp->cons_index_p = SEND_INDEX_P(bsp, ring);
2239 	srp->chip_mbx_reg = SEND_RING_HOST_INDEX_REG(ring);
2240 	mutex_init(srp->tx_lock, NULL, MUTEX_DRIVER,
2241 	    DDI_INTR_PRI(bgep->intr_pri));
2242 	mutex_init(srp->txbuf_lock, NULL, MUTEX_DRIVER,
2243 	    DDI_INTR_PRI(bgep->intr_pri));
2244 	mutex_init(srp->freetxbuf_lock, NULL, MUTEX_DRIVER,
2245 	    DDI_INTR_PRI(bgep->intr_pri));
2246 	mutex_init(srp->tc_lock, NULL, MUTEX_DRIVER,
2247 	    DDI_INTR_PRI(bgep->intr_pri));
2248 	if (nslots == 0)
2249 		return;
2250 
2251 	/*
2252 	 * Allocate the array of s/w Send Buffer Descriptors
2253 	 */
2254 	ssbdp = kmem_zalloc(nslots*sizeof (*ssbdp), KM_SLEEP);
2255 	txbuf = kmem_zalloc(BGE_SEND_BUF_MAX*sizeof (*txbuf), KM_SLEEP);
2256 	srp->txbuf_head =
2257 	    kmem_zalloc(BGE_SEND_BUF_MAX*sizeof (bge_queue_item_t), KM_SLEEP);
2258 	srp->pktp = kmem_zalloc(BGE_SEND_BUF_MAX*sizeof (send_pkt_t), KM_SLEEP);
2259 	srp->sw_sbds = ssbdp;
2260 	srp->txbuf = txbuf;
2261 	srp->tx_buffers = BGE_SEND_BUF_NUM;
2262 	srp->tx_buffers_low = srp->tx_buffers / 4;
2263 	if (bgep->chipid.snd_buff_size > BGE_SEND_BUFF_SIZE_DEFAULT)
2264 		srp->tx_array_max = BGE_SEND_BUF_ARRAY_JUMBO;
2265 	else
2266 		srp->tx_array_max = BGE_SEND_BUF_ARRAY;
2267 	srp->tx_array = 1;
2268 
2269 	/*
2270 	 * Chunk tx desc area
2271 	 */
2272 	desc = srp->desc;
2273 	for (slot = 0; slot < nslots; ++ssbdp, ++slot) {
2274 		bge_slice_chunk(&ssbdp->desc, &desc, 1,
2275 		    sizeof (bge_sbd_t));
2276 	}
2277 	ASSERT(desc.alength == 0);
2278 
2279 	/*
2280 	 * Chunk tx buffer area
2281 	 */
2282 	for (split = 0; split < BGE_SPLIT; ++split) {
2283 		pbuf = srp->buf[0][split];
2284 		for (slot = 0; slot < BGE_SEND_BUF_NUM/BGE_SPLIT; ++slot) {
2285 			bge_slice_chunk(&txbuf->buf, &pbuf, 1,
2286 			    bgep->chipid.snd_buff_size);
2287 			txbuf++;
2288 		}
2289 		ASSERT(pbuf.alength == 0);
2290 	}
2291 }
2292 
2293 /*
2294  * Clean up initialisation done above before the memory is freed
2295  */
2296 static void
2297 bge_fini_send_ring(bge_t *bgep, uint64_t ring)
2298 {
2299 	send_ring_t *srp;
2300 	uint32_t array;
2301 	uint32_t split;
2302 	uint32_t nslots;
2303 
2304 	BGE_TRACE(("bge_fini_send_ring($%p, %d)",
2305 	    (void *)bgep, ring));
2306 
2307 	srp = &bgep->send[ring];
2308 	mutex_destroy(srp->tc_lock);
2309 	mutex_destroy(srp->freetxbuf_lock);
2310 	mutex_destroy(srp->txbuf_lock);
2311 	mutex_destroy(srp->tx_lock);
2312 	nslots = srp->desc.nslots;
2313 	if (nslots == 0)
2314 		return;
2315 
2316 	for (array = 1; array < srp->tx_array; ++array)
2317 		for (split = 0; split < BGE_SPLIT; ++split)
2318 			bge_free_dma_mem(&srp->buf[array][split]);
2319 	kmem_free(srp->sw_sbds, nslots*sizeof (*srp->sw_sbds));
2320 	kmem_free(srp->txbuf_head, BGE_SEND_BUF_MAX*sizeof (*srp->txbuf_head));
2321 	kmem_free(srp->txbuf, BGE_SEND_BUF_MAX*sizeof (*srp->txbuf));
2322 	kmem_free(srp->pktp, BGE_SEND_BUF_MAX*sizeof (*srp->pktp));
2323 	srp->sw_sbds = NULL;
2324 	srp->txbuf_head = NULL;
2325 	srp->txbuf = NULL;
2326 	srp->pktp = NULL;
2327 }
2328 
2329 /*
2330  * Initialise all transmit, receive, and buffer rings.
2331  */
2332 void
2333 bge_init_rings(bge_t *bgep)
2334 {
2335 	uint32_t ring;
2336 
2337 	BGE_TRACE(("bge_init_rings($%p)", (void *)bgep));
2338 
2339 	/*
2340 	 * Perform one-off initialisation of each ring ...
2341 	 */
2342 	for (ring = 0; ring < BGE_SEND_RINGS_MAX; ++ring)
2343 		bge_init_send_ring(bgep, ring);
2344 	for (ring = 0; ring < BGE_RECV_RINGS_MAX; ++ring)
2345 		bge_init_recv_ring(bgep, ring);
2346 	for (ring = 0; ring < BGE_BUFF_RINGS_MAX; ++ring)
2347 		bge_init_buff_ring(bgep, ring);
2348 }
2349 
2350 /*
2351  * Undo the work of bge_init_rings() above before the memory is freed
2352  */
2353 void
2354 bge_fini_rings(bge_t *bgep)
2355 {
2356 	uint32_t ring;
2357 
2358 	BGE_TRACE(("bge_fini_rings($%p)", (void *)bgep));
2359 
2360 	for (ring = 0; ring < BGE_BUFF_RINGS_MAX; ++ring)
2361 		bge_fini_buff_ring(bgep, ring);
2362 	for (ring = 0; ring < BGE_RECV_RINGS_MAX; ++ring)
2363 		bge_fini_recv_ring(bgep, ring);
2364 	for (ring = 0; ring < BGE_SEND_RINGS_MAX; ++ring)
2365 		bge_fini_send_ring(bgep, ring);
2366 }
2367 
2368 /*
2369  * Called from the bge_m_stop() to free the tx buffers which are
2370  * allocated from the tx process.
2371  */
2372 void
2373 bge_free_txbuf_arrays(send_ring_t *srp)
2374 {
2375 	uint32_t array;
2376 	uint32_t split;
2377 
2378 	ASSERT(mutex_owned(srp->tx_lock));
2379 
2380 	/*
2381 	 * Free the extra tx buffer DMA area
2382 	 */
2383 	for (array = 1; array < srp->tx_array; ++array)
2384 		for (split = 0; split < BGE_SPLIT; ++split)
2385 			bge_free_dma_mem(&srp->buf[array][split]);
2386 
2387 	/*
2388 	 * Restore initial tx buffer numbers
2389 	 */
2390 	srp->tx_array = 1;
2391 	srp->tx_buffers = BGE_SEND_BUF_NUM;
2392 	srp->tx_buffers_low = srp->tx_buffers / 4;
2393 	srp->tx_flow = 0;
2394 	bzero(srp->pktp, BGE_SEND_BUF_MAX * sizeof (*srp->pktp));
2395 }
2396 
2397 /*
2398  * Called from tx process to allocate more tx buffers
2399  */
2400 bge_queue_item_t *
2401 bge_alloc_txbuf_array(bge_t *bgep, send_ring_t *srp)
2402 {
2403 	bge_queue_t *txbuf_queue;
2404 	bge_queue_item_t *txbuf_item_last;
2405 	bge_queue_item_t *txbuf_item;
2406 	bge_queue_item_t *txbuf_item_rtn;
2407 	sw_txbuf_t *txbuf;
2408 	dma_area_t area;
2409 	size_t txbuffsize;
2410 	uint32_t slot;
2411 	uint32_t array;
2412 	uint32_t split;
2413 	uint32_t err;
2414 
2415 	ASSERT(mutex_owned(srp->tx_lock));
2416 
2417 	array = srp->tx_array;
2418 	if (array >= srp->tx_array_max)
2419 		return (NULL);
2420 
2421 	/*
2422 	 * Allocate memory & handles for TX buffers
2423 	 */
2424 	txbuffsize = BGE_SEND_BUF_NUM*bgep->chipid.snd_buff_size;
2425 	ASSERT((txbuffsize % BGE_SPLIT) == 0);
2426 	for (split = 0; split < BGE_SPLIT; ++split) {
2427 		err = bge_alloc_dma_mem(bgep, txbuffsize/BGE_SPLIT,
2428 		    &bge_data_accattr, DDI_DMA_WRITE | BGE_DMA_MODE,
2429 		    &srp->buf[array][split]);
2430 		if (err != DDI_SUCCESS) {
2431 			/* Free the last already allocated OK chunks */
2432 			for (slot = 0; slot <= split; ++slot)
2433 				bge_free_dma_mem(&srp->buf[array][slot]);
2434 			srp->tx_alloc_fail++;
2435 			return (NULL);
2436 		}
2437 	}
2438 
2439 	/*
2440 	 * Chunk tx buffer area
2441 	 */
2442 	txbuf = srp->txbuf + array*BGE_SEND_BUF_NUM;
2443 	for (split = 0; split < BGE_SPLIT; ++split) {
2444 		area = srp->buf[array][split];
2445 		for (slot = 0; slot < BGE_SEND_BUF_NUM/BGE_SPLIT; ++slot) {
2446 			bge_slice_chunk(&txbuf->buf, &area, 1,
2447 			    bgep->chipid.snd_buff_size);
2448 			txbuf++;
2449 		}
2450 	}
2451 
2452 	/*
2453 	 * Add above buffers to the tx buffer pop queue
2454 	 */
2455 	txbuf_item = srp->txbuf_head + array*BGE_SEND_BUF_NUM;
2456 	txbuf = srp->txbuf + array*BGE_SEND_BUF_NUM;
2457 	txbuf_item_last = NULL;
2458 	for (slot = 0; slot < BGE_SEND_BUF_NUM; ++slot) {
2459 		txbuf_item->item = txbuf;
2460 		txbuf_item->next = txbuf_item_last;
2461 		txbuf_item_last = txbuf_item;
2462 		txbuf++;
2463 		txbuf_item++;
2464 	}
2465 	txbuf_item = srp->txbuf_head + array*BGE_SEND_BUF_NUM;
2466 	txbuf_item_rtn = txbuf_item;
2467 	txbuf_item++;
2468 	txbuf_queue = srp->txbuf_pop_queue;
2469 	mutex_enter(txbuf_queue->lock);
2470 	txbuf_item->next = txbuf_queue->head;
2471 	txbuf_queue->head = txbuf_item_last;
2472 	txbuf_queue->count += BGE_SEND_BUF_NUM - 1;
2473 	mutex_exit(txbuf_queue->lock);
2474 
2475 	srp->tx_array++;
2476 	srp->tx_buffers += BGE_SEND_BUF_NUM;
2477 	srp->tx_buffers_low = srp->tx_buffers / 4;
2478 
2479 	return (txbuf_item_rtn);
2480 }
2481 
2482 /*
2483  * This function allocates all the transmit and receive buffers
2484  * and descriptors, in four chunks.
2485  */
2486 int
2487 bge_alloc_bufs(bge_t *bgep)
2488 {
2489 	dma_area_t area;
2490 	size_t rxbuffsize;
2491 	size_t txbuffsize;
2492 	size_t rxbuffdescsize;
2493 	size_t rxdescsize;
2494 	size_t txdescsize;
2495 	uint32_t ring;
2496 	uint32_t rx_rings = bgep->chipid.rx_rings;
2497 	uint32_t tx_rings = bgep->chipid.tx_rings;
2498 	int split;
2499 	int err;
2500 
2501 	BGE_TRACE(("bge_alloc_bufs($%p)",
2502 	    (void *)bgep));
2503 
2504 	rxbuffsize = BGE_STD_SLOTS_USED*bgep->chipid.std_buf_size;
2505 	rxbuffsize += bgep->chipid.jumbo_slots*bgep->chipid.recv_jumbo_size;
2506 	rxbuffsize += BGE_MINI_SLOTS_USED*BGE_MINI_BUFF_SIZE;
2507 
2508 	txbuffsize = BGE_SEND_BUF_NUM*bgep->chipid.snd_buff_size;
2509 	txbuffsize *= tx_rings;
2510 
2511 	rxdescsize = rx_rings*bgep->chipid.recv_slots;
2512 	rxdescsize *= sizeof (bge_rbd_t);
2513 
2514 	rxbuffdescsize = BGE_STD_SLOTS_USED;
2515 	rxbuffdescsize += bgep->chipid.jumbo_slots;
2516 	rxbuffdescsize += BGE_MINI_SLOTS_USED;
2517 	rxbuffdescsize *= sizeof (bge_rbd_t);
2518 
2519 	txdescsize = tx_rings*BGE_SEND_SLOTS_USED;
2520 	txdescsize *= sizeof (bge_sbd_t);
2521 	txdescsize += sizeof (bge_statistics_t);
2522 	txdescsize += sizeof (bge_status_t);
2523 	txdescsize += BGE_STATUS_PADDING;
2524 
2525 	/*
2526 	 * Enable PCI relaxed ordering only for RX/TX data buffers
2527 	 */
2528 	if (bge_relaxed_ordering)
2529 		dma_attr.dma_attr_flags |= DDI_DMA_RELAXED_ORDERING;
2530 
2531 	/*
2532 	 * Allocate memory & handles for RX buffers
2533 	 */
2534 	ASSERT((rxbuffsize % BGE_SPLIT) == 0);
2535 	for (split = 0; split < BGE_SPLIT; ++split) {
2536 		err = bge_alloc_dma_mem(bgep, rxbuffsize/BGE_SPLIT,
2537 		    &bge_data_accattr, DDI_DMA_READ | BGE_DMA_MODE,
2538 		    &bgep->rx_buff[split]);
2539 		if (err != DDI_SUCCESS)
2540 			return (DDI_FAILURE);
2541 	}
2542 
2543 	/*
2544 	 * Allocate memory & handles for TX buffers
2545 	 */
2546 	ASSERT((txbuffsize % BGE_SPLIT) == 0);
2547 	for (split = 0; split < BGE_SPLIT; ++split) {
2548 		err = bge_alloc_dma_mem(bgep, txbuffsize/BGE_SPLIT,
2549 		    &bge_data_accattr, DDI_DMA_WRITE | BGE_DMA_MODE,
2550 		    &bgep->tx_buff[split]);
2551 		if (err != DDI_SUCCESS)
2552 			return (DDI_FAILURE);
2553 	}
2554 
2555 	dma_attr.dma_attr_flags &= ~DDI_DMA_RELAXED_ORDERING;
2556 
2557 	/*
2558 	 * Allocate memory & handles for receive return rings
2559 	 */
2560 	ASSERT((rxdescsize % rx_rings) == 0);
2561 	for (split = 0; split < rx_rings; ++split) {
2562 		err = bge_alloc_dma_mem(bgep, rxdescsize/rx_rings,
2563 		    &bge_desc_accattr, DDI_DMA_RDWR | DDI_DMA_CONSISTENT,
2564 		    &bgep->rx_desc[split]);
2565 		if (err != DDI_SUCCESS)
2566 			return (DDI_FAILURE);
2567 	}
2568 
2569 	/*
2570 	 * Allocate memory & handles for buffer (producer) descriptor rings
2571 	 */
2572 	err = bge_alloc_dma_mem(bgep, rxbuffdescsize, &bge_desc_accattr,
2573 	    DDI_DMA_RDWR | DDI_DMA_CONSISTENT, &bgep->rx_desc[split]);
2574 	if (err != DDI_SUCCESS)
2575 		return (DDI_FAILURE);
2576 
2577 	/*
2578 	 * Allocate memory & handles for TX descriptor rings,
2579 	 * status block, and statistics area
2580 	 */
2581 	err = bge_alloc_dma_mem(bgep, txdescsize, &bge_desc_accattr,
2582 	    DDI_DMA_RDWR | DDI_DMA_CONSISTENT, &bgep->tx_desc);
2583 	if (err != DDI_SUCCESS)
2584 		return (DDI_FAILURE);
2585 
2586 	/*
2587 	 * Now carve up each of the allocated areas ...
2588 	 */
2589 	for (split = 0; split < BGE_SPLIT; ++split) {
2590 		area = bgep->rx_buff[split];
2591 		bge_slice_chunk(&bgep->buff[BGE_STD_BUFF_RING].buf[split],
2592 		    &area, BGE_STD_SLOTS_USED/BGE_SPLIT,
2593 		    bgep->chipid.std_buf_size);
2594 		bge_slice_chunk(&bgep->buff[BGE_JUMBO_BUFF_RING].buf[split],
2595 		    &area, bgep->chipid.jumbo_slots/BGE_SPLIT,
2596 		    bgep->chipid.recv_jumbo_size);
2597 		bge_slice_chunk(&bgep->buff[BGE_MINI_BUFF_RING].buf[split],
2598 		    &area, BGE_MINI_SLOTS_USED/BGE_SPLIT,
2599 		    BGE_MINI_BUFF_SIZE);
2600 	}
2601 
2602 	for (split = 0; split < BGE_SPLIT; ++split) {
2603 		area = bgep->tx_buff[split];
2604 		for (ring = 0; ring < tx_rings; ++ring)
2605 			bge_slice_chunk(&bgep->send[ring].buf[0][split],
2606 			    &area, BGE_SEND_BUF_NUM/BGE_SPLIT,
2607 			    bgep->chipid.snd_buff_size);
2608 		for (; ring < BGE_SEND_RINGS_MAX; ++ring)
2609 			bge_slice_chunk(&bgep->send[ring].buf[0][split],
2610 			    &area, 0, bgep->chipid.snd_buff_size);
2611 	}
2612 
2613 	for (ring = 0; ring < rx_rings; ++ring)
2614 		bge_slice_chunk(&bgep->recv[ring].desc, &bgep->rx_desc[ring],
2615 		    bgep->chipid.recv_slots, sizeof (bge_rbd_t));
2616 
2617 	area = bgep->rx_desc[rx_rings];
2618 	for (; ring < BGE_RECV_RINGS_MAX; ++ring)
2619 		bge_slice_chunk(&bgep->recv[ring].desc, &area,
2620 		    0, sizeof (bge_rbd_t));
2621 	bge_slice_chunk(&bgep->buff[BGE_STD_BUFF_RING].desc, &area,
2622 	    BGE_STD_SLOTS_USED, sizeof (bge_rbd_t));
2623 	bge_slice_chunk(&bgep->buff[BGE_JUMBO_BUFF_RING].desc, &area,
2624 	    bgep->chipid.jumbo_slots, sizeof (bge_rbd_t));
2625 	bge_slice_chunk(&bgep->buff[BGE_MINI_BUFF_RING].desc, &area,
2626 	    BGE_MINI_SLOTS_USED, sizeof (bge_rbd_t));
2627 	ASSERT(area.alength == 0);
2628 
2629 	area = bgep->tx_desc;
2630 	for (ring = 0; ring < tx_rings; ++ring)
2631 		bge_slice_chunk(&bgep->send[ring].desc, &area,
2632 		    BGE_SEND_SLOTS_USED, sizeof (bge_sbd_t));
2633 	for (; ring < BGE_SEND_RINGS_MAX; ++ring)
2634 		bge_slice_chunk(&bgep->send[ring].desc, &area,
2635 		    0, sizeof (bge_sbd_t));
2636 	bge_slice_chunk(&bgep->statistics, &area, 1, sizeof (bge_statistics_t));
2637 	bge_slice_chunk(&bgep->status_block, &area, 1, sizeof (bge_status_t));
2638 	ASSERT(area.alength == BGE_STATUS_PADDING);
2639 	DMA_ZERO(bgep->status_block);
2640 
2641 	return (DDI_SUCCESS);
2642 }
2643 
2644 /*
2645  * This routine frees the transmit and receive buffers and descriptors.
2646  * Make sure the chip is stopped before calling it!
2647  */
2648 void
2649 bge_free_bufs(bge_t *bgep)
2650 {
2651 	int split;
2652 
2653 	BGE_TRACE(("bge_free_bufs($%p)",
2654 	    (void *)bgep));
2655 
2656 	bge_free_dma_mem(&bgep->tx_desc);
2657 	for (split = 0; split < BGE_RECV_RINGS_SPLIT; ++split)
2658 		bge_free_dma_mem(&bgep->rx_desc[split]);
2659 	for (split = 0; split < BGE_SPLIT; ++split)
2660 		bge_free_dma_mem(&bgep->tx_buff[split]);
2661 	for (split = 0; split < BGE_SPLIT; ++split)
2662 		bge_free_dma_mem(&bgep->rx_buff[split]);
2663 }
2664 
2665 /*
2666  * Determine (initial) MAC address ("BIA") to use for this interface
2667  */
2668 
2669 static void
2670 bge_find_mac_address(bge_t *bgep, chip_id_t *cidp)
2671 {
2672 	struct ether_addr sysaddr;
2673 	char propbuf[8];		/* "true" or "false", plus NUL	*/
2674 	uchar_t *bytes;
2675 	int *ints;
2676 	uint_t nelts;
2677 	int err;
2678 
2679 	BGE_TRACE(("bge_find_mac_address($%p)",
2680 	    (void *)bgep));
2681 
2682 	BGE_DEBUG(("bge_find_mac_address: hw_mac_addr %012llx, => %s (%sset)",
2683 	    cidp->hw_mac_addr,
2684 	    ether_sprintf((void *)cidp->vendor_addr.addr),
2685 	    cidp->vendor_addr.set ? "" : "not "));
2686 
2687 	/*
2688 	 * The "vendor's factory-set address" may already have
2689 	 * been extracted from the chip, but if the property
2690 	 * "local-mac-address" is set we use that instead.  It
2691 	 * will normally be set by OBP, but it could also be
2692 	 * specified in a .conf file(!)
2693 	 *
2694 	 * There doesn't seem to be a way to define byte-array
2695 	 * properties in a .conf, so we check whether it looks
2696 	 * like an array of 6 ints instead.
2697 	 *
2698 	 * Then, we check whether it looks like an array of 6
2699 	 * bytes (which it should, if OBP set it).  If we can't
2700 	 * make sense of it either way, we'll ignore it.
2701 	 */
2702 	err = ddi_prop_lookup_int_array(DDI_DEV_T_ANY, bgep->devinfo,
2703 	    DDI_PROP_DONTPASS, localmac_propname, &ints, &nelts);
2704 	if (err == DDI_PROP_SUCCESS) {
2705 		if (nelts == ETHERADDRL) {
2706 			while (nelts--)
2707 				cidp->vendor_addr.addr[nelts] = ints[nelts];
2708 			cidp->vendor_addr.set = B_TRUE;
2709 		}
2710 		ddi_prop_free(ints);
2711 	}
2712 
2713 	err = ddi_prop_lookup_byte_array(DDI_DEV_T_ANY, bgep->devinfo,
2714 	    DDI_PROP_DONTPASS, localmac_propname, &bytes, &nelts);
2715 	if (err == DDI_PROP_SUCCESS) {
2716 		if (nelts == ETHERADDRL) {
2717 			while (nelts--)
2718 				cidp->vendor_addr.addr[nelts] = bytes[nelts];
2719 			cidp->vendor_addr.set = B_TRUE;
2720 		}
2721 		ddi_prop_free(bytes);
2722 	}
2723 
2724 	BGE_DEBUG(("bge_find_mac_address: +local %s (%sset)",
2725 	    ether_sprintf((void *)cidp->vendor_addr.addr),
2726 	    cidp->vendor_addr.set ? "" : "not "));
2727 
2728 	/*
2729 	 * Look up the OBP property "local-mac-address?".  Note that even
2730 	 * though its value is a string (which should be "true" or "false"),
2731 	 * it can't be decoded by ddi_prop_lookup_string(9F).  So, we zero
2732 	 * the buffer first and then fetch the property as an untyped array;
2733 	 * this may or may not include a final NUL, but since there will
2734 	 * always be one left at the end of the buffer we can now treat it
2735 	 * as a string anyway.
2736 	 */
2737 	nelts = sizeof (propbuf);
2738 	bzero(propbuf, nelts--);
2739 	err = ddi_getlongprop_buf(DDI_DEV_T_ANY, bgep->devinfo,
2740 	    DDI_PROP_CANSLEEP, localmac_boolname, propbuf, (int *)&nelts);
2741 
2742 	/*
2743 	 * Now, if the address still isn't set from the hardware (SEEPROM)
2744 	 * or the OBP or .conf property, OR if the user has foolishly set
2745 	 * 'local-mac-address? = false', use "the system address" instead
2746 	 * (but only if it's non-null i.e. has been set from the IDPROM).
2747 	 */
2748 	if (cidp->vendor_addr.set == B_FALSE || strcmp(propbuf, "false") == 0)
2749 		if (localetheraddr(NULL, &sysaddr) != 0) {
2750 			ethaddr_copy(&sysaddr, cidp->vendor_addr.addr);
2751 			cidp->vendor_addr.set = B_TRUE;
2752 		}
2753 
2754 	BGE_DEBUG(("bge_find_mac_address: +system %s (%sset)",
2755 	    ether_sprintf((void *)cidp->vendor_addr.addr),
2756 	    cidp->vendor_addr.set ? "" : "not "));
2757 
2758 	/*
2759 	 * Finally(!), if there's a valid "mac-address" property (created
2760 	 * if we netbooted from this interface), we must use this instead
2761 	 * of any of the above to ensure that the NFS/install server doesn't
2762 	 * get confused by the address changing as Solaris takes over!
2763 	 */
2764 	err = ddi_prop_lookup_byte_array(DDI_DEV_T_ANY, bgep->devinfo,
2765 	    DDI_PROP_DONTPASS, macaddr_propname, &bytes, &nelts);
2766 	if (err == DDI_PROP_SUCCESS) {
2767 		if (nelts == ETHERADDRL) {
2768 			while (nelts--)
2769 				cidp->vendor_addr.addr[nelts] = bytes[nelts];
2770 			cidp->vendor_addr.set = B_TRUE;
2771 		}
2772 		ddi_prop_free(bytes);
2773 	}
2774 
2775 	BGE_DEBUG(("bge_find_mac_address: =final %s (%sset)",
2776 	    ether_sprintf((void *)cidp->vendor_addr.addr),
2777 	    cidp->vendor_addr.set ? "" : "not "));
2778 }
2779 
2780 
2781 /*ARGSUSED*/
2782 int
2783 bge_check_acc_handle(bge_t *bgep, ddi_acc_handle_t handle)
2784 {
2785 	ddi_fm_error_t de;
2786 
2787 	ddi_fm_acc_err_get(handle, &de, DDI_FME_VERSION);
2788 	ddi_fm_acc_err_clear(handle, DDI_FME_VERSION);
2789 	return (de.fme_status);
2790 }
2791 
2792 /*ARGSUSED*/
2793 int
2794 bge_check_dma_handle(bge_t *bgep, ddi_dma_handle_t handle)
2795 {
2796 	ddi_fm_error_t de;
2797 
2798 	ASSERT(bgep->progress & PROGRESS_BUFS);
2799 	ddi_fm_dma_err_get(handle, &de, DDI_FME_VERSION);
2800 	return (de.fme_status);
2801 }
2802 
2803 /*
2804  * The IO fault service error handling callback function
2805  */
2806 /*ARGSUSED*/
2807 static int
2808 bge_fm_error_cb(dev_info_t *dip, ddi_fm_error_t *err, const void *impl_data)
2809 {
2810 	/*
2811 	 * as the driver can always deal with an error in any dma or
2812 	 * access handle, we can just return the fme_status value.
2813 	 */
2814 	pci_ereport_post(dip, err, NULL);
2815 	return (err->fme_status);
2816 }
2817 
2818 static void
2819 bge_fm_init(bge_t *bgep)
2820 {
2821 	ddi_iblock_cookie_t iblk;
2822 
2823 	/* Only register with IO Fault Services if we have some capability */
2824 	if (bgep->fm_capabilities) {
2825 		bge_reg_accattr.devacc_attr_access = DDI_FLAGERR_ACC;
2826 		bge_desc_accattr.devacc_attr_access = DDI_FLAGERR_ACC;
2827 		dma_attr.dma_attr_flags = DDI_DMA_FLAGERR;
2828 
2829 		/* Register capabilities with IO Fault Services */
2830 		ddi_fm_init(bgep->devinfo, &bgep->fm_capabilities, &iblk);
2831 
2832 		/*
2833 		 * Initialize pci ereport capabilities if ereport capable
2834 		 */
2835 		if (DDI_FM_EREPORT_CAP(bgep->fm_capabilities) ||
2836 		    DDI_FM_ERRCB_CAP(bgep->fm_capabilities))
2837 			pci_ereport_setup(bgep->devinfo);
2838 
2839 		/*
2840 		 * Register error callback if error callback capable
2841 		 */
2842 		if (DDI_FM_ERRCB_CAP(bgep->fm_capabilities))
2843 			ddi_fm_handler_register(bgep->devinfo,
2844 			    bge_fm_error_cb, (void*) bgep);
2845 	} else {
2846 		/*
2847 		 * These fields have to be cleared of FMA if there are no
2848 		 * FMA capabilities at runtime.
2849 		 */
2850 		bge_reg_accattr.devacc_attr_access = DDI_DEFAULT_ACC;
2851 		bge_desc_accattr.devacc_attr_access = DDI_DEFAULT_ACC;
2852 		dma_attr.dma_attr_flags = 0;
2853 	}
2854 }
2855 
2856 static void
2857 bge_fm_fini(bge_t *bgep)
2858 {
2859 	/* Only unregister FMA capabilities if we registered some */
2860 	if (bgep->fm_capabilities) {
2861 
2862 		/*
2863 		 * Release any resources allocated by pci_ereport_setup()
2864 		 */
2865 		if (DDI_FM_EREPORT_CAP(bgep->fm_capabilities) ||
2866 		    DDI_FM_ERRCB_CAP(bgep->fm_capabilities))
2867 			pci_ereport_teardown(bgep->devinfo);
2868 
2869 		/*
2870 		 * Un-register error callback if error callback capable
2871 		 */
2872 		if (DDI_FM_ERRCB_CAP(bgep->fm_capabilities))
2873 			ddi_fm_handler_unregister(bgep->devinfo);
2874 
2875 		/* Unregister from IO Fault Services */
2876 		ddi_fm_fini(bgep->devinfo);
2877 	}
2878 }
2879 
2880 static void
2881 #ifdef BGE_IPMI_ASF
2882 bge_unattach(bge_t *bgep, uint_t asf_mode)
2883 #else
2884 bge_unattach(bge_t *bgep)
2885 #endif
2886 {
2887 	BGE_TRACE(("bge_unattach($%p)",
2888 		(void *)bgep));
2889 
2890 	/*
2891 	 * Flag that no more activity may be initiated
2892 	 */
2893 	bgep->progress &= ~PROGRESS_READY;
2894 
2895 	/*
2896 	 * Quiesce the PHY and MAC (leave it reset but still powered).
2897 	 * Clean up and free all BGE data structures
2898 	 */
2899 	if (bgep->periodic_id != NULL) {
2900 		ddi_periodic_delete(bgep->periodic_id);
2901 		bgep->periodic_id = NULL;
2902 	}
2903 	if (bgep->progress & PROGRESS_KSTATS)
2904 		bge_fini_kstats(bgep);
2905 	if (bgep->progress & PROGRESS_PHY)
2906 		bge_phys_reset(bgep);
2907 	if (bgep->progress & PROGRESS_HWINT) {
2908 		mutex_enter(bgep->genlock);
2909 #ifdef BGE_IPMI_ASF
2910 		if (bge_chip_reset(bgep, B_FALSE, asf_mode) != DDI_SUCCESS)
2911 #else
2912 		if (bge_chip_reset(bgep, B_FALSE) != DDI_SUCCESS)
2913 #endif
2914 			ddi_fm_service_impact(bgep->devinfo,
2915 			    DDI_SERVICE_UNAFFECTED);
2916 #ifdef BGE_IPMI_ASF
2917 		if (bgep->asf_enabled) {
2918 			/*
2919 			 * This register has been overlaid. We restore its
2920 			 * initial value here.
2921 			 */
2922 			bge_nic_put32(bgep, BGE_NIC_DATA_SIG_ADDR,
2923 			    BGE_NIC_DATA_SIG);
2924 		}
2925 #endif
2926 		if (bge_check_acc_handle(bgep, bgep->cfg_handle) != DDI_FM_OK)
2927 			ddi_fm_service_impact(bgep->devinfo,
2928 			    DDI_SERVICE_UNAFFECTED);
2929 		if (bge_check_acc_handle(bgep, bgep->io_handle) != DDI_FM_OK)
2930 			ddi_fm_service_impact(bgep->devinfo,
2931 			    DDI_SERVICE_UNAFFECTED);
2932 		mutex_exit(bgep->genlock);
2933 	}
2934 	if (bgep->progress & PROGRESS_INTR) {
2935 		bge_intr_disable(bgep);
2936 		bge_fini_rings(bgep);
2937 	}
2938 	if (bgep->progress & PROGRESS_HWINT) {
2939 		bge_rem_intrs(bgep);
2940 		rw_destroy(bgep->errlock);
2941 		mutex_destroy(bgep->softintrlock);
2942 		mutex_destroy(bgep->genlock);
2943 	}
2944 	if (bgep->progress & PROGRESS_FACTOTUM)
2945 		ddi_remove_softintr(bgep->factotum_id);
2946 	if (bgep->progress & PROGRESS_RESCHED)
2947 		ddi_remove_softintr(bgep->drain_id);
2948 	if (bgep->progress & PROGRESS_BUFS)
2949 		bge_free_bufs(bgep);
2950 	if (bgep->progress & PROGRESS_REGS)
2951 		ddi_regs_map_free(&bgep->io_handle);
2952 	if (bgep->progress & PROGRESS_CFG)
2953 		pci_config_teardown(&bgep->cfg_handle);
2954 
2955 	bge_fm_fini(bgep);
2956 
2957 	ddi_remove_minor_node(bgep->devinfo, NULL);
2958 	kmem_free(bgep->pstats, sizeof (bge_statistics_reg_t));
2959 	kmem_free(bgep, sizeof (*bgep));
2960 }
2961 
2962 static int
2963 bge_resume(dev_info_t *devinfo)
2964 {
2965 	bge_t *bgep;				/* Our private data	*/
2966 	chip_id_t *cidp;
2967 	chip_id_t chipid;
2968 
2969 	bgep = ddi_get_driver_private(devinfo);
2970 	if (bgep == NULL)
2971 		return (DDI_FAILURE);
2972 
2973 	/*
2974 	 * Refuse to resume if the data structures aren't consistent
2975 	 */
2976 	if (bgep->devinfo != devinfo)
2977 		return (DDI_FAILURE);
2978 
2979 #ifdef BGE_IPMI_ASF
2980 	/*
2981 	 * Power management hasn't been supported in BGE now. If you
2982 	 * want to implement it, please add the ASF/IPMI related
2983 	 * code here.
2984 	 */
2985 
2986 #endif
2987 
2988 	/*
2989 	 * Read chip ID & set up config space command register(s)
2990 	 * Refuse to resume if the chip has changed its identity!
2991 	 */
2992 	cidp = &bgep->chipid;
2993 	mutex_enter(bgep->genlock);
2994 	bge_chip_cfg_init(bgep, &chipid, B_FALSE);
2995 	if (bge_check_acc_handle(bgep, bgep->cfg_handle) != DDI_FM_OK) {
2996 		ddi_fm_service_impact(bgep->devinfo, DDI_SERVICE_LOST);
2997 		mutex_exit(bgep->genlock);
2998 		return (DDI_FAILURE);
2999 	}
3000 	mutex_exit(bgep->genlock);
3001 	if (chipid.vendor != cidp->vendor)
3002 		return (DDI_FAILURE);
3003 	if (chipid.device != cidp->device)
3004 		return (DDI_FAILURE);
3005 	if (chipid.revision != cidp->revision)
3006 		return (DDI_FAILURE);
3007 	if (chipid.asic_rev != cidp->asic_rev)
3008 		return (DDI_FAILURE);
3009 
3010 	/*
3011 	 * All OK, reinitialise h/w & kick off GLD scheduling
3012 	 */
3013 	mutex_enter(bgep->genlock);
3014 	if (bge_restart(bgep, B_TRUE) != DDI_SUCCESS) {
3015 		(void) bge_check_acc_handle(bgep, bgep->cfg_handle);
3016 		(void) bge_check_acc_handle(bgep, bgep->io_handle);
3017 		ddi_fm_service_impact(bgep->devinfo, DDI_SERVICE_LOST);
3018 		mutex_exit(bgep->genlock);
3019 		return (DDI_FAILURE);
3020 	}
3021 	if (bge_check_acc_handle(bgep, bgep->cfg_handle) != DDI_FM_OK) {
3022 		ddi_fm_service_impact(bgep->devinfo, DDI_SERVICE_LOST);
3023 		mutex_exit(bgep->genlock);
3024 		return (DDI_FAILURE);
3025 	}
3026 	if (bge_check_acc_handle(bgep, bgep->io_handle) != DDI_FM_OK) {
3027 		ddi_fm_service_impact(bgep->devinfo, DDI_SERVICE_LOST);
3028 		mutex_exit(bgep->genlock);
3029 		return (DDI_FAILURE);
3030 	}
3031 	mutex_exit(bgep->genlock);
3032 	return (DDI_SUCCESS);
3033 }
3034 
3035 /*
3036  * attach(9E) -- Attach a device to the system
3037  *
3038  * Called once for each board successfully probed.
3039  */
3040 static int
3041 bge_attach(dev_info_t *devinfo, ddi_attach_cmd_t cmd)
3042 {
3043 	bge_t *bgep;				/* Our private data	*/
3044 	mac_register_t *macp;
3045 	chip_id_t *cidp;
3046 	caddr_t regs;
3047 	int instance;
3048 	int err;
3049 	int intr_types;
3050 #ifdef BGE_IPMI_ASF
3051 	uint32_t mhcrValue;
3052 #ifdef __sparc
3053 	uint16_t value16;
3054 #endif
3055 #ifdef BGE_NETCONSOLE
3056 	int retval;
3057 #endif
3058 #endif
3059 
3060 	instance = ddi_get_instance(devinfo);
3061 
3062 	BGE_GTRACE(("bge_attach($%p, %d) instance %d",
3063 	    (void *)devinfo, cmd, instance));
3064 	BGE_BRKPT(NULL, "bge_attach");
3065 
3066 	switch (cmd) {
3067 	default:
3068 		return (DDI_FAILURE);
3069 
3070 	case DDI_RESUME:
3071 		return (bge_resume(devinfo));
3072 
3073 	case DDI_ATTACH:
3074 		break;
3075 	}
3076 
3077 	bgep = kmem_zalloc(sizeof (*bgep), KM_SLEEP);
3078 	bgep->pstats = kmem_zalloc(sizeof (bge_statistics_reg_t), KM_SLEEP);
3079 	ddi_set_driver_private(devinfo, bgep);
3080 	bgep->bge_guard = BGE_GUARD;
3081 	bgep->devinfo = devinfo;
3082 	bgep->param_drain_max = 64;
3083 	bgep->param_msi_cnt = 0;
3084 	bgep->param_loop_mode = 0;
3085 
3086 	/*
3087 	 * Initialize more fields in BGE private data
3088 	 */
3089 	bgep->debug = ddi_prop_get_int(DDI_DEV_T_ANY, devinfo,
3090 	    DDI_PROP_DONTPASS, debug_propname, bge_debug);
3091 	(void) snprintf(bgep->ifname, sizeof (bgep->ifname), "%s%d",
3092 	    BGE_DRIVER_NAME, instance);
3093 
3094 	/*
3095 	 * Initialize for fma support
3096 	 */
3097 	bgep->fm_capabilities = ddi_prop_get_int(DDI_DEV_T_ANY, devinfo,
3098 	    DDI_PROP_DONTPASS, fm_cap,
3099 	    DDI_FM_EREPORT_CAPABLE | DDI_FM_ACCCHK_CAPABLE |
3100 	    DDI_FM_DMACHK_CAPABLE | DDI_FM_ERRCB_CAPABLE);
3101 	BGE_DEBUG(("bgep->fm_capabilities = %d", bgep->fm_capabilities));
3102 	bge_fm_init(bgep);
3103 
3104 	/*
3105 	 * Look up the IOMMU's page size for DVMA mappings (must be
3106 	 * a power of 2) and convert to a mask.  This can be used to
3107 	 * determine whether a message buffer crosses a page boundary.
3108 	 * Note: in 2s complement binary notation, if X is a power of
3109 	 * 2, then -X has the representation "11...1100...00".
3110 	 */
3111 	bgep->pagemask = dvma_pagesize(devinfo);
3112 	ASSERT(ddi_ffs(bgep->pagemask) == ddi_fls(bgep->pagemask));
3113 	bgep->pagemask = -bgep->pagemask;
3114 
3115 	/*
3116 	 * Map config space registers
3117 	 * Read chip ID & set up config space command register(s)
3118 	 *
3119 	 * Note: this leaves the chip accessible by Memory Space
3120 	 * accesses, but with interrupts and Bus Mastering off.
3121 	 * This should ensure that nothing untoward will happen
3122 	 * if it has been left active by the (net-)bootloader.
3123 	 * We'll re-enable Bus Mastering once we've reset the chip,
3124 	 * and allow interrupts only when everything else is set up.
3125 	 */
3126 	err = pci_config_setup(devinfo, &bgep->cfg_handle);
3127 #ifdef BGE_IPMI_ASF
3128 #ifdef __sparc
3129 	value16 = pci_config_get16(bgep->cfg_handle, PCI_CONF_COMM);
3130 	value16 = value16 | (PCI_COMM_MAE | PCI_COMM_ME);
3131 	pci_config_put16(bgep->cfg_handle, PCI_CONF_COMM, value16);
3132 	mhcrValue = MHCR_ENABLE_INDIRECT_ACCESS |
3133 	    MHCR_ENABLE_TAGGED_STATUS_MODE |
3134 	    MHCR_MASK_INTERRUPT_MODE |
3135 	    MHCR_MASK_PCI_INT_OUTPUT |
3136 	    MHCR_CLEAR_INTERRUPT_INTA |
3137 	    MHCR_ENABLE_ENDIAN_WORD_SWAP |
3138 	    MHCR_ENABLE_ENDIAN_BYTE_SWAP;
3139 	pci_config_put32(bgep->cfg_handle, PCI_CONF_BGE_MHCR, mhcrValue);
3140 	bge_ind_put32(bgep, MEMORY_ARBITER_MODE_REG,
3141 	    bge_ind_get32(bgep, MEMORY_ARBITER_MODE_REG) |
3142 	    MEMORY_ARBITER_ENABLE);
3143 #else
3144 	mhcrValue = pci_config_get32(bgep->cfg_handle, PCI_CONF_BGE_MHCR);
3145 #endif
3146 	if (mhcrValue & MHCR_ENABLE_ENDIAN_WORD_SWAP) {
3147 		bgep->asf_wordswapped = B_TRUE;
3148 	} else {
3149 		bgep->asf_wordswapped = B_FALSE;
3150 	}
3151 	bge_asf_get_config(bgep);
3152 #endif
3153 	if (err != DDI_SUCCESS) {
3154 		bge_problem(bgep, "pci_config_setup() failed");
3155 		goto attach_fail;
3156 	}
3157 	bgep->progress |= PROGRESS_CFG;
3158 	cidp = &bgep->chipid;
3159 	bzero(cidp, sizeof (*cidp));
3160 	bge_chip_cfg_init(bgep, cidp, B_FALSE);
3161 	if (bge_check_acc_handle(bgep, bgep->cfg_handle) != DDI_FM_OK) {
3162 		ddi_fm_service_impact(bgep->devinfo, DDI_SERVICE_LOST);
3163 		goto attach_fail;
3164 	}
3165 
3166 #ifdef BGE_IPMI_ASF
3167 	if (DEVICE_5721_SERIES_CHIPSETS(bgep) ||
3168 	    DEVICE_5714_SERIES_CHIPSETS(bgep)) {
3169 		bgep->asf_newhandshake = B_TRUE;
3170 	} else {
3171 		bgep->asf_newhandshake = B_FALSE;
3172 	}
3173 #endif
3174 
3175 	/*
3176 	 * Update those parts of the chip ID derived from volatile
3177 	 * registers with the values seen by OBP (in case the chip
3178 	 * has been reset externally and therefore lost them).
3179 	 */
3180 	cidp->subven = ddi_prop_get_int(DDI_DEV_T_ANY, devinfo,
3181 	    DDI_PROP_DONTPASS, subven_propname, cidp->subven);
3182 	cidp->subdev = ddi_prop_get_int(DDI_DEV_T_ANY, devinfo,
3183 	    DDI_PROP_DONTPASS, subdev_propname, cidp->subdev);
3184 	cidp->clsize = ddi_prop_get_int(DDI_DEV_T_ANY, devinfo,
3185 	    DDI_PROP_DONTPASS, clsize_propname, cidp->clsize);
3186 	cidp->latency = ddi_prop_get_int(DDI_DEV_T_ANY, devinfo,
3187 	    DDI_PROP_DONTPASS, latency_propname, cidp->latency);
3188 	cidp->rx_rings = ddi_prop_get_int(DDI_DEV_T_ANY, devinfo,
3189 	    DDI_PROP_DONTPASS, rxrings_propname, cidp->rx_rings);
3190 	cidp->tx_rings = ddi_prop_get_int(DDI_DEV_T_ANY, devinfo,
3191 	    DDI_PROP_DONTPASS, txrings_propname, cidp->tx_rings);
3192 
3193 	if (bge_jumbo_enable == B_TRUE) {
3194 		cidp->default_mtu = ddi_prop_get_int(DDI_DEV_T_ANY, devinfo,
3195 		    DDI_PROP_DONTPASS, default_mtu, BGE_DEFAULT_MTU);
3196 		if ((cidp->default_mtu < BGE_DEFAULT_MTU)||
3197 		    (cidp->default_mtu > BGE_MAXIMUM_MTU)) {
3198 			cidp->default_mtu = BGE_DEFAULT_MTU;
3199 		}
3200 	}
3201 	/*
3202 	 * Map operating registers
3203 	 */
3204 	err = ddi_regs_map_setup(devinfo, BGE_PCI_OPREGS_RNUMBER,
3205 	    &regs, 0, 0, &bge_reg_accattr, &bgep->io_handle);
3206 	if (err != DDI_SUCCESS) {
3207 		bge_problem(bgep, "ddi_regs_map_setup() failed");
3208 		goto attach_fail;
3209 	}
3210 	bgep->io_regs = regs;
3211 	bgep->progress |= PROGRESS_REGS;
3212 
3213 	/*
3214 	 * Characterise the device, so we know its requirements.
3215 	 * Then allocate the appropriate TX and RX descriptors & buffers.
3216 	 */
3217 	if (bge_chip_id_init(bgep) == EIO) {
3218 		ddi_fm_service_impact(bgep->devinfo, DDI_SERVICE_LOST);
3219 		goto attach_fail;
3220 	}
3221 
3222 
3223 	err = bge_alloc_bufs(bgep);
3224 	if (err != DDI_SUCCESS) {
3225 		bge_problem(bgep, "DMA buffer allocation failed");
3226 		goto attach_fail;
3227 	}
3228 	bgep->progress |= PROGRESS_BUFS;
3229 
3230 	/*
3231 	 * Add the softint handlers:
3232 	 *
3233 	 * Both of these handlers are used to avoid restrictions on the
3234 	 * context and/or mutexes required for some operations.  In
3235 	 * particular, the hardware interrupt handler and its subfunctions
3236 	 * can detect a number of conditions that we don't want to handle
3237 	 * in that context or with that set of mutexes held.  So, these
3238 	 * softints are triggered instead:
3239 	 *
3240 	 * the <resched> softint is triggered if we have previously
3241 	 * had to refuse to send a packet because of resource shortage
3242 	 * (we've run out of transmit buffers), but the send completion
3243 	 * interrupt handler has now detected that more buffers have
3244 	 * become available.
3245 	 *
3246 	 * the <factotum> is triggered if the h/w interrupt handler
3247 	 * sees the <link state changed> or <error> bits in the status
3248 	 * block.  It's also triggered periodically to poll the link
3249 	 * state, just in case we aren't getting link status change
3250 	 * interrupts ...
3251 	 */
3252 	err = ddi_add_softintr(devinfo, DDI_SOFTINT_LOW, &bgep->drain_id,
3253 	    NULL, NULL, bge_send_drain, (caddr_t)bgep);
3254 	if (err != DDI_SUCCESS) {
3255 		bge_problem(bgep, "ddi_add_softintr() failed");
3256 		goto attach_fail;
3257 	}
3258 	bgep->progress |= PROGRESS_RESCHED;
3259 	err = ddi_add_softintr(devinfo, DDI_SOFTINT_LOW, &bgep->factotum_id,
3260 	    NULL, NULL, bge_chip_factotum, (caddr_t)bgep);
3261 	if (err != DDI_SUCCESS) {
3262 		bge_problem(bgep, "ddi_add_softintr() failed");
3263 		goto attach_fail;
3264 	}
3265 	bgep->progress |= PROGRESS_FACTOTUM;
3266 
3267 	/* Get supported interrupt types */
3268 	if (ddi_intr_get_supported_types(devinfo, &intr_types) != DDI_SUCCESS) {
3269 		bge_error(bgep, "ddi_intr_get_supported_types failed\n");
3270 
3271 		goto attach_fail;
3272 	}
3273 
3274 	BGE_DEBUG(("%s: ddi_intr_get_supported_types() returned: %x",
3275 	    bgep->ifname, intr_types));
3276 
3277 	if ((intr_types & DDI_INTR_TYPE_MSI) && bgep->chipid.msi_enabled) {
3278 		if (bge_add_intrs(bgep, DDI_INTR_TYPE_MSI) != DDI_SUCCESS) {
3279 			bge_error(bgep, "MSI registration failed, "
3280 			    "trying FIXED interrupt type\n");
3281 		} else {
3282 			BGE_DEBUG(("%s: Using MSI interrupt type",
3283 			    bgep->ifname));
3284 			bgep->intr_type = DDI_INTR_TYPE_MSI;
3285 			bgep->progress |= PROGRESS_HWINT;
3286 		}
3287 	}
3288 
3289 	if (!(bgep->progress & PROGRESS_HWINT) &&
3290 	    (intr_types & DDI_INTR_TYPE_FIXED)) {
3291 		if (bge_add_intrs(bgep, DDI_INTR_TYPE_FIXED) != DDI_SUCCESS) {
3292 			bge_error(bgep, "FIXED interrupt "
3293 			    "registration failed\n");
3294 			goto attach_fail;
3295 		}
3296 
3297 		BGE_DEBUG(("%s: Using FIXED interrupt type", bgep->ifname));
3298 
3299 		bgep->intr_type = DDI_INTR_TYPE_FIXED;
3300 		bgep->progress |= PROGRESS_HWINT;
3301 	}
3302 
3303 	if (!(bgep->progress & PROGRESS_HWINT)) {
3304 		bge_error(bgep, "No interrupts registered\n");
3305 		goto attach_fail;
3306 	}
3307 
3308 	/*
3309 	 * Note that interrupts are not enabled yet as
3310 	 * mutex locks are not initialized. Initialize mutex locks.
3311 	 */
3312 	mutex_init(bgep->genlock, NULL, MUTEX_DRIVER,
3313 	    DDI_INTR_PRI(bgep->intr_pri));
3314 	mutex_init(bgep->softintrlock, NULL, MUTEX_DRIVER,
3315 	    DDI_INTR_PRI(bgep->intr_pri));
3316 	rw_init(bgep->errlock, NULL, RW_DRIVER,
3317 	    DDI_INTR_PRI(bgep->intr_pri));
3318 
3319 	/*
3320 	 * Initialize rings.
3321 	 */
3322 	bge_init_rings(bgep);
3323 
3324 	/*
3325 	 * Now that mutex locks are initialized, enable interrupts.
3326 	 */
3327 	bge_intr_enable(bgep);
3328 	bgep->progress |= PROGRESS_INTR;
3329 
3330 	/*
3331 	 * Initialise link state variables
3332 	 * Stop, reset & reinitialise the chip.
3333 	 * Initialise the (internal) PHY.
3334 	 */
3335 	bgep->link_state = LINK_STATE_UNKNOWN;
3336 
3337 	mutex_enter(bgep->genlock);
3338 
3339 	/*
3340 	 * Reset chip & rings to initial state; also reset address
3341 	 * filtering, promiscuity, loopback mode.
3342 	 */
3343 #ifdef BGE_IPMI_ASF
3344 #ifdef BGE_NETCONSOLE
3345 	if (bge_reset(bgep, ASF_MODE_INIT) != DDI_SUCCESS) {
3346 #else
3347 	if (bge_reset(bgep, ASF_MODE_SHUTDOWN) != DDI_SUCCESS) {
3348 #endif
3349 #else
3350 	if (bge_reset(bgep) != DDI_SUCCESS) {
3351 #endif
3352 		(void) bge_check_acc_handle(bgep, bgep->cfg_handle);
3353 		(void) bge_check_acc_handle(bgep, bgep->io_handle);
3354 		ddi_fm_service_impact(bgep->devinfo, DDI_SERVICE_LOST);
3355 		mutex_exit(bgep->genlock);
3356 		goto attach_fail;
3357 	}
3358 
3359 #ifdef BGE_IPMI_ASF
3360 	if (bgep->asf_enabled) {
3361 		bgep->asf_status = ASF_STAT_RUN_INIT;
3362 	}
3363 #endif
3364 
3365 	bzero(bgep->mcast_hash, sizeof (bgep->mcast_hash));
3366 	bzero(bgep->mcast_refs, sizeof (bgep->mcast_refs));
3367 	bgep->promisc = B_FALSE;
3368 	bgep->param_loop_mode = BGE_LOOP_NONE;
3369 	if (bge_check_acc_handle(bgep, bgep->cfg_handle) != DDI_FM_OK) {
3370 		ddi_fm_service_impact(bgep->devinfo, DDI_SERVICE_LOST);
3371 		mutex_exit(bgep->genlock);
3372 		goto attach_fail;
3373 	}
3374 	if (bge_check_acc_handle(bgep, bgep->io_handle) != DDI_FM_OK) {
3375 		ddi_fm_service_impact(bgep->devinfo, DDI_SERVICE_LOST);
3376 		mutex_exit(bgep->genlock);
3377 		goto attach_fail;
3378 	}
3379 
3380 	mutex_exit(bgep->genlock);
3381 
3382 	if (bge_phys_init(bgep) == EIO) {
3383 		ddi_fm_service_impact(bgep->devinfo, DDI_SERVICE_LOST);
3384 		goto attach_fail;
3385 	}
3386 	bgep->progress |= PROGRESS_PHY;
3387 
3388 	/*
3389 	 * initialize NDD-tweakable parameters
3390 	 */
3391 	if (bge_nd_init(bgep)) {
3392 		bge_problem(bgep, "bge_nd_init() failed");
3393 		goto attach_fail;
3394 	}
3395 	bgep->progress |= PROGRESS_NDD;
3396 
3397 	/*
3398 	 * Create & initialise named kstats
3399 	 */
3400 	bge_init_kstats(bgep, instance);
3401 	bgep->progress |= PROGRESS_KSTATS;
3402 
3403 	/*
3404 	 * Determine whether to override the chip's own MAC address
3405 	 */
3406 	bge_find_mac_address(bgep, cidp);
3407 	ethaddr_copy(cidp->vendor_addr.addr, bgep->curr_addr[0].addr);
3408 	bgep->curr_addr[0].set = B_TRUE;
3409 
3410 	bgep->unicst_addr_total = MAC_ADDRESS_REGS_MAX;
3411 	/*
3412 	 * Address available is one less than MAX
3413 	 * as primary address is not advertised
3414 	 * as a multiple MAC address.
3415 	 */
3416 	bgep->unicst_addr_avail = MAC_ADDRESS_REGS_MAX - 1;
3417 
3418 	if ((macp = mac_alloc(MAC_VERSION)) == NULL)
3419 		goto attach_fail;
3420 	macp->m_type_ident = MAC_PLUGIN_IDENT_ETHER;
3421 	macp->m_driver = bgep;
3422 	macp->m_dip = devinfo;
3423 	macp->m_src_addr = bgep->curr_addr[0].addr;
3424 	macp->m_callbacks = &bge_m_callbacks;
3425 	macp->m_min_sdu = 0;
3426 	macp->m_max_sdu = cidp->ethmax_size - sizeof (struct ether_header);
3427 	macp->m_margin = VLAN_TAGSZ;
3428 	macp->m_priv_props = bge_priv_prop;
3429 	macp->m_priv_prop_count = BGE_MAX_PRIV_PROPS;
3430 
3431 	/*
3432 	 * Finally, we're ready to register ourselves with the MAC layer
3433 	 * interface; if this succeeds, we're all ready to start()
3434 	 */
3435 	err = mac_register(macp, &bgep->mh);
3436 	mac_free(macp);
3437 	if (err != 0)
3438 		goto attach_fail;
3439 
3440 	/*
3441 	 * Register a periodical handler.
3442 	 * bge_chip_cyclic() is invoked in kernel context.
3443 	 */
3444 	bgep->periodic_id = ddi_periodic_add(bge_chip_cyclic, bgep,
3445 	    BGE_CYCLIC_PERIOD, DDI_IPL_0);
3446 
3447 	bgep->progress |= PROGRESS_READY;
3448 	ASSERT(bgep->bge_guard == BGE_GUARD);
3449 #ifdef BGE_IPMI_ASF
3450 #ifdef BGE_NETCONSOLE
3451 	if (bgep->asf_enabled) {
3452 		mutex_enter(bgep->genlock);
3453 		retval = bge_chip_start(bgep, B_TRUE);
3454 		mutex_exit(bgep->genlock);
3455 		if (retval != DDI_SUCCESS)
3456 			goto attach_fail;
3457 	}
3458 #endif
3459 #endif
3460 
3461 	ddi_report_dev(devinfo);
3462 	return (DDI_SUCCESS);
3463 
3464 attach_fail:
3465 #ifdef BGE_IPMI_ASF
3466 	bge_unattach(bgep, ASF_MODE_SHUTDOWN);
3467 #else
3468 	bge_unattach(bgep);
3469 #endif
3470 	return (DDI_FAILURE);
3471 }
3472 
3473 /*
3474  *	bge_suspend() -- suspend transmit/receive for powerdown
3475  */
3476 static int
3477 bge_suspend(bge_t *bgep)
3478 {
3479 	/*
3480 	 * Stop processing and idle (powerdown) the PHY ...
3481 	 */
3482 	mutex_enter(bgep->genlock);
3483 #ifdef BGE_IPMI_ASF
3484 	/*
3485 	 * Power management hasn't been supported in BGE now. If you
3486 	 * want to implement it, please add the ASF/IPMI related
3487 	 * code here.
3488 	 */
3489 #endif
3490 	bge_stop(bgep);
3491 	if (bge_phys_idle(bgep) != DDI_SUCCESS) {
3492 		(void) bge_check_acc_handle(bgep, bgep->io_handle);
3493 		ddi_fm_service_impact(bgep->devinfo, DDI_SERVICE_DEGRADED);
3494 		mutex_exit(bgep->genlock);
3495 		return (DDI_FAILURE);
3496 	}
3497 	if (bge_check_acc_handle(bgep, bgep->io_handle) != DDI_FM_OK) {
3498 		ddi_fm_service_impact(bgep->devinfo, DDI_SERVICE_DEGRADED);
3499 		mutex_exit(bgep->genlock);
3500 		return (DDI_FAILURE);
3501 	}
3502 	mutex_exit(bgep->genlock);
3503 
3504 	return (DDI_SUCCESS);
3505 }
3506 
3507 /*
3508  * quiesce(9E) entry point.
3509  *
3510  * This function is called when the system is single-threaded at high
3511  * PIL with preemption disabled. Therefore, this function must not be
3512  * blocked.
3513  *
3514  * This function returns DDI_SUCCESS on success, or DDI_FAILURE on failure.
3515  * DDI_FAILURE indicates an error condition and should almost never happen.
3516  */
3517 #ifdef	__sparc
3518 #define	bge_quiesce	ddi_quiesce_not_supported
3519 #else
3520 static int
3521 bge_quiesce(dev_info_t *devinfo)
3522 {
3523 	bge_t *bgep = ddi_get_driver_private(devinfo);
3524 
3525 	if (bgep == NULL)
3526 		return (DDI_FAILURE);
3527 
3528 	if (bgep->intr_type == DDI_INTR_TYPE_FIXED) {
3529 		bge_reg_set32(bgep, PCI_CONF_BGE_MHCR,
3530 		    MHCR_MASK_PCI_INT_OUTPUT);
3531 	} else {
3532 		bge_reg_clr32(bgep, MSI_MODE_REG, MSI_MSI_ENABLE);
3533 	}
3534 
3535 	/* Stop the chip */
3536 	bge_chip_stop_nonblocking(bgep);
3537 
3538 	return (DDI_SUCCESS);
3539 }
3540 #endif
3541 
3542 /*
3543  * detach(9E) -- Detach a device from the system
3544  */
3545 static int
3546 bge_detach(dev_info_t *devinfo, ddi_detach_cmd_t cmd)
3547 {
3548 	bge_t *bgep;
3549 #ifdef BGE_IPMI_ASF
3550 	uint_t asf_mode;
3551 	asf_mode = ASF_MODE_NONE;
3552 #endif
3553 
3554 	BGE_GTRACE(("bge_detach($%p, %d)", (void *)devinfo, cmd));
3555 
3556 	bgep = ddi_get_driver_private(devinfo);
3557 
3558 	switch (cmd) {
3559 	default:
3560 		return (DDI_FAILURE);
3561 
3562 	case DDI_SUSPEND:
3563 		return (bge_suspend(bgep));
3564 
3565 	case DDI_DETACH:
3566 		break;
3567 	}
3568 
3569 #ifdef BGE_IPMI_ASF
3570 	mutex_enter(bgep->genlock);
3571 	if (bgep->asf_enabled && ((bgep->asf_status == ASF_STAT_RUN) ||
3572 	    (bgep->asf_status == ASF_STAT_RUN_INIT))) {
3573 
3574 		bge_asf_update_status(bgep);
3575 		if (bgep->asf_status == ASF_STAT_RUN) {
3576 			bge_asf_stop_timer(bgep);
3577 		}
3578 		bgep->asf_status = ASF_STAT_STOP;
3579 
3580 		bge_asf_pre_reset_operations(bgep, BGE_SHUTDOWN_RESET);
3581 
3582 		if (bgep->asf_pseudostop) {
3583 			bge_chip_stop(bgep, B_FALSE);
3584 			bgep->bge_mac_state = BGE_MAC_STOPPED;
3585 			bgep->asf_pseudostop = B_FALSE;
3586 		}
3587 
3588 		asf_mode = ASF_MODE_POST_SHUTDOWN;
3589 
3590 		if (bge_check_acc_handle(bgep, bgep->cfg_handle) != DDI_FM_OK)
3591 			ddi_fm_service_impact(bgep->devinfo,
3592 			    DDI_SERVICE_UNAFFECTED);
3593 		if (bge_check_acc_handle(bgep, bgep->io_handle) != DDI_FM_OK)
3594 			ddi_fm_service_impact(bgep->devinfo,
3595 			    DDI_SERVICE_UNAFFECTED);
3596 	}
3597 	mutex_exit(bgep->genlock);
3598 #endif
3599 
3600 	/*
3601 	 * Unregister from the GLD subsystem.  This can fail, in
3602 	 * particular if there are DLPI style-2 streams still open -
3603 	 * in which case we just return failure without shutting
3604 	 * down chip operations.
3605 	 */
3606 	if (mac_unregister(bgep->mh) != 0)
3607 		return (DDI_FAILURE);
3608 
3609 	/*
3610 	 * All activity stopped, so we can clean up & exit
3611 	 */
3612 #ifdef BGE_IPMI_ASF
3613 	bge_unattach(bgep, asf_mode);
3614 #else
3615 	bge_unattach(bgep);
3616 #endif
3617 	return (DDI_SUCCESS);
3618 }
3619 
3620 
3621 /*
3622  * ========== Module Loading Data & Entry Points ==========
3623  */
3624 
3625 #undef	BGE_DBG
3626 #define	BGE_DBG		BGE_DBG_INIT	/* debug flag for this code	*/
3627 
3628 DDI_DEFINE_STREAM_OPS(bge_dev_ops,
3629 	nulldev,	/* identify */
3630 	nulldev,	/* probe */
3631 	bge_attach,	/* attach */
3632 	bge_detach,	/* detach */
3633 	nodev,		/* reset */
3634 	NULL,		/* cb_ops */
3635 	D_MP,		/* bus_ops */
3636 	NULL,		/* power */
3637 	bge_quiesce	/* quiesce */
3638 );
3639 
3640 static struct modldrv bge_modldrv = {
3641 	&mod_driverops,		/* Type of module.  This one is a driver */
3642 	bge_ident,		/* short description */
3643 	&bge_dev_ops		/* driver specific ops */
3644 };
3645 
3646 static struct modlinkage modlinkage = {
3647 	MODREV_1, (void *)&bge_modldrv, NULL
3648 };
3649 
3650 
3651 int
3652 _info(struct modinfo *modinfop)
3653 {
3654 	return (mod_info(&modlinkage, modinfop));
3655 }
3656 
3657 int
3658 _init(void)
3659 {
3660 	int status;
3661 
3662 	mac_init_ops(&bge_dev_ops, "bge");
3663 	status = mod_install(&modlinkage);
3664 	if (status == DDI_SUCCESS)
3665 		mutex_init(bge_log_mutex, NULL, MUTEX_DRIVER, NULL);
3666 	else
3667 		mac_fini_ops(&bge_dev_ops);
3668 	return (status);
3669 }
3670 
3671 int
3672 _fini(void)
3673 {
3674 	int status;
3675 
3676 	status = mod_remove(&modlinkage);
3677 	if (status == DDI_SUCCESS) {
3678 		mac_fini_ops(&bge_dev_ops);
3679 		mutex_destroy(bge_log_mutex);
3680 	}
3681 	return (status);
3682 }
3683 
3684 
3685 /*
3686  * bge_add_intrs:
3687  *
3688  * Register FIXED or MSI interrupts.
3689  */
3690 static int
3691 bge_add_intrs(bge_t *bgep, int	intr_type)
3692 {
3693 	dev_info_t	*dip = bgep->devinfo;
3694 	int		avail, actual, intr_size, count = 0;
3695 	int		i, flag, ret;
3696 
3697 	BGE_DEBUG(("bge_add_intrs($%p, 0x%x)", (void *)bgep, intr_type));
3698 
3699 	/* Get number of interrupts */
3700 	ret = ddi_intr_get_nintrs(dip, intr_type, &count);
3701 	if ((ret != DDI_SUCCESS) || (count == 0)) {
3702 		bge_error(bgep, "ddi_intr_get_nintrs() failure, ret: %d, "
3703 		    "count: %d", ret, count);
3704 
3705 		return (DDI_FAILURE);
3706 	}
3707 
3708 	/* Get number of available interrupts */
3709 	ret = ddi_intr_get_navail(dip, intr_type, &avail);
3710 	if ((ret != DDI_SUCCESS) || (avail == 0)) {
3711 		bge_error(bgep, "ddi_intr_get_navail() failure, "
3712 		    "ret: %d, avail: %d\n", ret, avail);
3713 
3714 		return (DDI_FAILURE);
3715 	}
3716 
3717 	if (avail < count) {
3718 		BGE_DEBUG(("%s: nintrs() returned %d, navail returned %d",
3719 		    bgep->ifname, count, avail));
3720 	}
3721 
3722 	/*
3723 	 * BGE hardware generates only single MSI even though it claims
3724 	 * to support multiple MSIs. So, hard code MSI count value to 1.
3725 	 */
3726 	if (intr_type == DDI_INTR_TYPE_MSI) {
3727 		count = 1;
3728 		flag = DDI_INTR_ALLOC_STRICT;
3729 	} else {
3730 		flag = DDI_INTR_ALLOC_NORMAL;
3731 	}
3732 
3733 	/* Allocate an array of interrupt handles */
3734 	intr_size = count * sizeof (ddi_intr_handle_t);
3735 	bgep->htable = kmem_alloc(intr_size, KM_SLEEP);
3736 
3737 	/* Call ddi_intr_alloc() */
3738 	ret = ddi_intr_alloc(dip, bgep->htable, intr_type, 0,
3739 	    count, &actual, flag);
3740 
3741 	if ((ret != DDI_SUCCESS) || (actual == 0)) {
3742 		bge_error(bgep, "ddi_intr_alloc() failed %d\n", ret);
3743 
3744 		kmem_free(bgep->htable, intr_size);
3745 		return (DDI_FAILURE);
3746 	}
3747 
3748 	if (actual < count) {
3749 		BGE_DEBUG(("%s: Requested: %d, Received: %d",
3750 		    bgep->ifname, count, actual));
3751 	}
3752 
3753 	bgep->intr_cnt = actual;
3754 
3755 	/*
3756 	 * Get priority for first msi, assume remaining are all the same
3757 	 */
3758 	if ((ret = ddi_intr_get_pri(bgep->htable[0], &bgep->intr_pri)) !=
3759 	    DDI_SUCCESS) {
3760 		bge_error(bgep, "ddi_intr_get_pri() failed %d\n", ret);
3761 
3762 		/* Free already allocated intr */
3763 		for (i = 0; i < actual; i++) {
3764 			(void) ddi_intr_free(bgep->htable[i]);
3765 		}
3766 
3767 		kmem_free(bgep->htable, intr_size);
3768 		return (DDI_FAILURE);
3769 	}
3770 
3771 	/* Call ddi_intr_add_handler() */
3772 	for (i = 0; i < actual; i++) {
3773 		if ((ret = ddi_intr_add_handler(bgep->htable[i], bge_intr,
3774 		    (caddr_t)bgep, (caddr_t)(uintptr_t)i)) != DDI_SUCCESS) {
3775 			bge_error(bgep, "ddi_intr_add_handler() "
3776 			    "failed %d\n", ret);
3777 
3778 			/* Free already allocated intr */
3779 			for (i = 0; i < actual; i++) {
3780 				(void) ddi_intr_free(bgep->htable[i]);
3781 			}
3782 
3783 			kmem_free(bgep->htable, intr_size);
3784 			return (DDI_FAILURE);
3785 		}
3786 	}
3787 
3788 	if ((ret = ddi_intr_get_cap(bgep->htable[0], &bgep->intr_cap))
3789 	    != DDI_SUCCESS) {
3790 		bge_error(bgep, "ddi_intr_get_cap() failed %d\n", ret);
3791 
3792 		for (i = 0; i < actual; i++) {
3793 			(void) ddi_intr_remove_handler(bgep->htable[i]);
3794 			(void) ddi_intr_free(bgep->htable[i]);
3795 		}
3796 
3797 		kmem_free(bgep->htable, intr_size);
3798 		return (DDI_FAILURE);
3799 	}
3800 
3801 	return (DDI_SUCCESS);
3802 }
3803 
3804 /*
3805  * bge_rem_intrs:
3806  *
3807  * Unregister FIXED or MSI interrupts
3808  */
3809 static void
3810 bge_rem_intrs(bge_t *bgep)
3811 {
3812 	int	i;
3813 
3814 	BGE_DEBUG(("bge_rem_intrs($%p)", (void *)bgep));
3815 
3816 	/* Call ddi_intr_remove_handler() */
3817 	for (i = 0; i < bgep->intr_cnt; i++) {
3818 		(void) ddi_intr_remove_handler(bgep->htable[i]);
3819 		(void) ddi_intr_free(bgep->htable[i]);
3820 	}
3821 
3822 	kmem_free(bgep->htable, bgep->intr_cnt * sizeof (ddi_intr_handle_t));
3823 }
3824 
3825 
3826 void
3827 bge_intr_enable(bge_t *bgep)
3828 {
3829 	int i;
3830 
3831 	if (bgep->intr_cap & DDI_INTR_FLAG_BLOCK) {
3832 		/* Call ddi_intr_block_enable() for MSI interrupts */
3833 		(void) ddi_intr_block_enable(bgep->htable, bgep->intr_cnt);
3834 	} else {
3835 		/* Call ddi_intr_enable for MSI or FIXED interrupts */
3836 		for (i = 0; i < bgep->intr_cnt; i++) {
3837 			(void) ddi_intr_enable(bgep->htable[i]);
3838 		}
3839 	}
3840 }
3841 
3842 
3843 void
3844 bge_intr_disable(bge_t *bgep)
3845 {
3846 	int i;
3847 
3848 	if (bgep->intr_cap & DDI_INTR_FLAG_BLOCK) {
3849 		/* Call ddi_intr_block_disable() */
3850 		(void) ddi_intr_block_disable(bgep->htable, bgep->intr_cnt);
3851 	} else {
3852 		for (i = 0; i < bgep->intr_cnt; i++) {
3853 			(void) ddi_intr_disable(bgep->htable[i]);
3854 		}
3855 	}
3856 }
3857 
3858 int
3859 bge_reprogram(bge_t *bgep)
3860 {
3861 	int status = 0;
3862 
3863 	ASSERT(mutex_owned(bgep->genlock));
3864 
3865 	if (bge_phys_update(bgep) != DDI_SUCCESS) {
3866 		ddi_fm_service_impact(bgep->devinfo, DDI_SERVICE_DEGRADED);
3867 		status = IOC_INVAL;
3868 	}
3869 #ifdef BGE_IPMI_ASF
3870 	if (bge_chip_sync(bgep, B_TRUE) == DDI_FAILURE) {
3871 #else
3872 	if (bge_chip_sync(bgep) == DDI_FAILURE) {
3873 #endif
3874 		ddi_fm_service_impact(bgep->devinfo, DDI_SERVICE_DEGRADED);
3875 		status = IOC_INVAL;
3876 	}
3877 	if (bgep->intr_type == DDI_INTR_TYPE_MSI)
3878 		bge_chip_msi_trig(bgep);
3879 	return (status);
3880 }
3881