1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 22 /* 23 * Copyright 2008 Sun Microsystems, Inc. All rights reserved. 24 * Use is subject to license terms. 25 */ 26 27 #include "bge_impl.h" 28 #include <sys/sdt.h> 29 #include <sys/mac.h> 30 31 /* 32 * This is the string displayed by modinfo, etc. 33 * Make sure you keep the version ID up to date! 34 */ 35 static char bge_ident[] = "Broadcom Gb Ethernet v1.0"; 36 37 /* 38 * Property names 39 */ 40 static char debug_propname[] = "bge-debug-flags"; 41 static char clsize_propname[] = "cache-line-size"; 42 static char latency_propname[] = "latency-timer"; 43 static char localmac_boolname[] = "local-mac-address?"; 44 static char localmac_propname[] = "local-mac-address"; 45 static char macaddr_propname[] = "mac-address"; 46 static char subdev_propname[] = "subsystem-id"; 47 static char subven_propname[] = "subsystem-vendor-id"; 48 static char rxrings_propname[] = "bge-rx-rings"; 49 static char txrings_propname[] = "bge-tx-rings"; 50 static char fm_cap[] = "fm-capable"; 51 static char default_mtu[] = "default_mtu"; 52 53 static int bge_add_intrs(bge_t *, int); 54 static void bge_rem_intrs(bge_t *); 55 56 /* 57 * Describes the chip's DMA engine 58 */ 59 static ddi_dma_attr_t dma_attr = { 60 DMA_ATTR_V0, /* dma_attr version */ 61 0x0000000000000000ull, /* dma_attr_addr_lo */ 62 0xFFFFFFFFFFFFFFFFull, /* dma_attr_addr_hi */ 63 0x00000000FFFFFFFFull, /* dma_attr_count_max */ 64 0x0000000000000001ull, /* dma_attr_align */ 65 0x00000FFF, /* dma_attr_burstsizes */ 66 0x00000001, /* dma_attr_minxfer */ 67 0x000000000000FFFFull, /* dma_attr_maxxfer */ 68 0xFFFFFFFFFFFFFFFFull, /* dma_attr_seg */ 69 1, /* dma_attr_sgllen */ 70 0x00000001, /* dma_attr_granular */ 71 DDI_DMA_FLAGERR /* dma_attr_flags */ 72 }; 73 74 /* 75 * PIO access attributes for registers 76 */ 77 static ddi_device_acc_attr_t bge_reg_accattr = { 78 DDI_DEVICE_ATTR_V0, 79 DDI_NEVERSWAP_ACC, 80 DDI_STRICTORDER_ACC, 81 DDI_FLAGERR_ACC 82 }; 83 84 /* 85 * DMA access attributes for descriptors: NOT to be byte swapped. 86 */ 87 static ddi_device_acc_attr_t bge_desc_accattr = { 88 DDI_DEVICE_ATTR_V0, 89 DDI_NEVERSWAP_ACC, 90 DDI_STRICTORDER_ACC, 91 DDI_FLAGERR_ACC 92 }; 93 94 /* 95 * DMA access attributes for data: NOT to be byte swapped. 96 */ 97 static ddi_device_acc_attr_t bge_data_accattr = { 98 DDI_DEVICE_ATTR_V0, 99 DDI_NEVERSWAP_ACC, 100 DDI_STRICTORDER_ACC 101 }; 102 103 static int bge_m_start(void *); 104 static void bge_m_stop(void *); 105 static int bge_m_promisc(void *, boolean_t); 106 static int bge_m_multicst(void *, boolean_t, const uint8_t *); 107 static int bge_m_unicst(void *, const uint8_t *); 108 static void bge_m_resources(void *); 109 static void bge_m_ioctl(void *, queue_t *, mblk_t *); 110 static boolean_t bge_m_getcapab(void *, mac_capab_t, void *); 111 static int bge_unicst_set(void *, const uint8_t *, 112 mac_addr_slot_t); 113 static int bge_m_unicst_add(void *, mac_multi_addr_t *); 114 static int bge_m_unicst_remove(void *, mac_addr_slot_t); 115 static int bge_m_unicst_modify(void *, mac_multi_addr_t *); 116 static int bge_m_unicst_get(void *, mac_multi_addr_t *); 117 static int bge_m_setprop(void *, const char *, mac_prop_id_t, 118 uint_t, const void *); 119 static int bge_m_getprop(void *, const char *, mac_prop_id_t, 120 uint_t, uint_t, void *); 121 static int bge_set_priv_prop(bge_t *, const char *, uint_t, 122 const void *); 123 static int bge_get_priv_prop(bge_t *, const char *, uint_t, 124 uint_t, void *); 125 126 #define BGE_M_CALLBACK_FLAGS\ 127 (MC_RESOURCES | MC_IOCTL | MC_GETCAPAB | MC_SETPROP | MC_GETPROP) 128 129 static mac_callbacks_t bge_m_callbacks = { 130 BGE_M_CALLBACK_FLAGS, 131 bge_m_stat, 132 bge_m_start, 133 bge_m_stop, 134 bge_m_promisc, 135 bge_m_multicst, 136 bge_m_unicst, 137 bge_m_tx, 138 bge_m_resources, 139 bge_m_ioctl, 140 bge_m_getcapab, 141 NULL, 142 NULL, 143 bge_m_setprop, 144 bge_m_getprop 145 }; 146 147 mac_priv_prop_t bge_priv_prop[] = { 148 {"_adv_asym_pause_cap", MAC_PROP_PERM_RW}, 149 {"_adv_pause_cap", MAC_PROP_PERM_RW} 150 }; 151 152 #define BGE_MAX_PRIV_PROPS \ 153 (sizeof (bge_priv_prop) / sizeof (mac_priv_prop_t)) 154 155 /* 156 * ========== Transmit and receive ring reinitialisation ========== 157 */ 158 159 /* 160 * These <reinit> routines each reset the specified ring to an initial 161 * state, assuming that the corresponding <init> routine has already 162 * been called exactly once. 163 */ 164 165 static void 166 bge_reinit_send_ring(send_ring_t *srp) 167 { 168 bge_queue_t *txbuf_queue; 169 bge_queue_item_t *txbuf_head; 170 sw_txbuf_t *txbuf; 171 sw_sbd_t *ssbdp; 172 uint32_t slot; 173 174 /* 175 * Reinitialise control variables ... 176 */ 177 srp->tx_flow = 0; 178 srp->tx_next = 0; 179 srp->txfill_next = 0; 180 srp->tx_free = srp->desc.nslots; 181 ASSERT(mutex_owned(srp->tc_lock)); 182 srp->tc_next = 0; 183 srp->txpkt_next = 0; 184 srp->tx_block = 0; 185 srp->tx_nobd = 0; 186 srp->tx_nobuf = 0; 187 188 /* 189 * Initialize the tx buffer push queue 190 */ 191 mutex_enter(srp->freetxbuf_lock); 192 mutex_enter(srp->txbuf_lock); 193 txbuf_queue = &srp->freetxbuf_queue; 194 txbuf_queue->head = NULL; 195 txbuf_queue->count = 0; 196 txbuf_queue->lock = srp->freetxbuf_lock; 197 srp->txbuf_push_queue = txbuf_queue; 198 199 /* 200 * Initialize the tx buffer pop queue 201 */ 202 txbuf_queue = &srp->txbuf_queue; 203 txbuf_queue->head = NULL; 204 txbuf_queue->count = 0; 205 txbuf_queue->lock = srp->txbuf_lock; 206 srp->txbuf_pop_queue = txbuf_queue; 207 txbuf_head = srp->txbuf_head; 208 txbuf = srp->txbuf; 209 for (slot = 0; slot < srp->tx_buffers; ++slot) { 210 txbuf_head->item = txbuf; 211 txbuf_head->next = txbuf_queue->head; 212 txbuf_queue->head = txbuf_head; 213 txbuf_queue->count++; 214 txbuf++; 215 txbuf_head++; 216 } 217 mutex_exit(srp->txbuf_lock); 218 mutex_exit(srp->freetxbuf_lock); 219 220 /* 221 * Zero and sync all the h/w Send Buffer Descriptors 222 */ 223 DMA_ZERO(srp->desc); 224 DMA_SYNC(srp->desc, DDI_DMA_SYNC_FORDEV); 225 bzero(srp->pktp, BGE_SEND_BUF_MAX * sizeof (*srp->pktp)); 226 ssbdp = srp->sw_sbds; 227 for (slot = 0; slot < srp->desc.nslots; ++ssbdp, ++slot) 228 ssbdp->pbuf = NULL; 229 } 230 231 static void 232 bge_reinit_recv_ring(recv_ring_t *rrp) 233 { 234 /* 235 * Reinitialise control variables ... 236 */ 237 rrp->rx_next = 0; 238 } 239 240 static void 241 bge_reinit_buff_ring(buff_ring_t *brp, uint32_t ring) 242 { 243 bge_rbd_t *hw_rbd_p; 244 sw_rbd_t *srbdp; 245 uint32_t bufsize; 246 uint32_t nslots; 247 uint32_t slot; 248 249 static uint16_t ring_type_flag[BGE_BUFF_RINGS_MAX] = { 250 RBD_FLAG_STD_RING, 251 RBD_FLAG_JUMBO_RING, 252 RBD_FLAG_MINI_RING 253 }; 254 255 /* 256 * Zero, initialise and sync all the h/w Receive Buffer Descriptors 257 * Note: all the remaining fields (<type>, <flags>, <ip_cksum>, 258 * <tcp_udp_cksum>, <error_flag>, <vlan_tag>, and <reserved>) 259 * should be zeroed, and so don't need to be set up specifically 260 * once the whole area has been cleared. 261 */ 262 DMA_ZERO(brp->desc); 263 264 hw_rbd_p = DMA_VPTR(brp->desc); 265 nslots = brp->desc.nslots; 266 ASSERT(brp->buf[0].nslots == nslots/BGE_SPLIT); 267 bufsize = brp->buf[0].size; 268 srbdp = brp->sw_rbds; 269 for (slot = 0; slot < nslots; ++hw_rbd_p, ++srbdp, ++slot) { 270 hw_rbd_p->host_buf_addr = srbdp->pbuf.cookie.dmac_laddress; 271 hw_rbd_p->index = (uint16_t)slot; 272 hw_rbd_p->len = (uint16_t)bufsize; 273 hw_rbd_p->opaque = srbdp->pbuf.token; 274 hw_rbd_p->flags |= ring_type_flag[ring]; 275 } 276 277 DMA_SYNC(brp->desc, DDI_DMA_SYNC_FORDEV); 278 279 /* 280 * Finally, reinitialise the ring control variables ... 281 */ 282 brp->rf_next = (nslots != 0) ? (nslots-1) : 0; 283 } 284 285 /* 286 * Reinitialize all rings 287 */ 288 static void 289 bge_reinit_rings(bge_t *bgep) 290 { 291 uint32_t ring; 292 293 ASSERT(mutex_owned(bgep->genlock)); 294 295 /* 296 * Send Rings ... 297 */ 298 for (ring = 0; ring < bgep->chipid.tx_rings; ++ring) 299 bge_reinit_send_ring(&bgep->send[ring]); 300 301 /* 302 * Receive Return Rings ... 303 */ 304 for (ring = 0; ring < bgep->chipid.rx_rings; ++ring) 305 bge_reinit_recv_ring(&bgep->recv[ring]); 306 307 /* 308 * Receive Producer Rings ... 309 */ 310 for (ring = 0; ring < BGE_BUFF_RINGS_USED; ++ring) 311 bge_reinit_buff_ring(&bgep->buff[ring], ring); 312 } 313 314 /* 315 * ========== Internal state management entry points ========== 316 */ 317 318 #undef BGE_DBG 319 #define BGE_DBG BGE_DBG_NEMO /* debug flag for this code */ 320 321 /* 322 * These routines provide all the functionality required by the 323 * corresponding GLD entry points, but don't update the GLD state 324 * so they can be called internally without disturbing our record 325 * of what GLD thinks we should be doing ... 326 */ 327 328 /* 329 * bge_reset() -- reset h/w & rings to initial state 330 */ 331 static int 332 #ifdef BGE_IPMI_ASF 333 bge_reset(bge_t *bgep, uint_t asf_mode) 334 #else 335 bge_reset(bge_t *bgep) 336 #endif 337 { 338 uint32_t ring; 339 int retval; 340 341 BGE_TRACE(("bge_reset($%p)", (void *)bgep)); 342 343 ASSERT(mutex_owned(bgep->genlock)); 344 345 /* 346 * Grab all the other mutexes in the world (this should 347 * ensure no other threads are manipulating driver state) 348 */ 349 for (ring = 0; ring < BGE_RECV_RINGS_MAX; ++ring) 350 mutex_enter(bgep->recv[ring].rx_lock); 351 for (ring = 0; ring < BGE_BUFF_RINGS_MAX; ++ring) 352 mutex_enter(bgep->buff[ring].rf_lock); 353 rw_enter(bgep->errlock, RW_WRITER); 354 for (ring = 0; ring < BGE_SEND_RINGS_MAX; ++ring) 355 mutex_enter(bgep->send[ring].tx_lock); 356 for (ring = 0; ring < BGE_SEND_RINGS_MAX; ++ring) 357 mutex_enter(bgep->send[ring].tc_lock); 358 359 #ifdef BGE_IPMI_ASF 360 retval = bge_chip_reset(bgep, B_TRUE, asf_mode); 361 #else 362 retval = bge_chip_reset(bgep, B_TRUE); 363 #endif 364 bge_reinit_rings(bgep); 365 366 /* 367 * Free the world ... 368 */ 369 for (ring = BGE_SEND_RINGS_MAX; ring-- > 0; ) 370 mutex_exit(bgep->send[ring].tc_lock); 371 for (ring = 0; ring < BGE_SEND_RINGS_MAX; ++ring) 372 mutex_exit(bgep->send[ring].tx_lock); 373 rw_exit(bgep->errlock); 374 for (ring = BGE_BUFF_RINGS_MAX; ring-- > 0; ) 375 mutex_exit(bgep->buff[ring].rf_lock); 376 for (ring = BGE_RECV_RINGS_MAX; ring-- > 0; ) 377 mutex_exit(bgep->recv[ring].rx_lock); 378 379 BGE_DEBUG(("bge_reset($%p) done", (void *)bgep)); 380 return (retval); 381 } 382 383 /* 384 * bge_stop() -- stop processing, don't reset h/w or rings 385 */ 386 static void 387 bge_stop(bge_t *bgep) 388 { 389 BGE_TRACE(("bge_stop($%p)", (void *)bgep)); 390 391 ASSERT(mutex_owned(bgep->genlock)); 392 393 #ifdef BGE_IPMI_ASF 394 if (bgep->asf_enabled) { 395 bgep->asf_pseudostop = B_TRUE; 396 } else { 397 #endif 398 bge_chip_stop(bgep, B_FALSE); 399 #ifdef BGE_IPMI_ASF 400 } 401 #endif 402 403 BGE_DEBUG(("bge_stop($%p) done", (void *)bgep)); 404 } 405 406 /* 407 * bge_start() -- start transmitting/receiving 408 */ 409 static int 410 bge_start(bge_t *bgep, boolean_t reset_phys) 411 { 412 int retval; 413 414 BGE_TRACE(("bge_start($%p, %d)", (void *)bgep, reset_phys)); 415 416 ASSERT(mutex_owned(bgep->genlock)); 417 418 /* 419 * Start chip processing, including enabling interrupts 420 */ 421 retval = bge_chip_start(bgep, reset_phys); 422 423 BGE_DEBUG(("bge_start($%p, %d) done", (void *)bgep, reset_phys)); 424 return (retval); 425 } 426 427 /* 428 * bge_restart - restart transmitting/receiving after error or suspend 429 */ 430 int 431 bge_restart(bge_t *bgep, boolean_t reset_phys) 432 { 433 int retval = DDI_SUCCESS; 434 ASSERT(mutex_owned(bgep->genlock)); 435 436 #ifdef BGE_IPMI_ASF 437 if (bgep->asf_enabled) { 438 if (bge_reset(bgep, ASF_MODE_POST_INIT) != DDI_SUCCESS) 439 retval = DDI_FAILURE; 440 } else 441 if (bge_reset(bgep, ASF_MODE_NONE) != DDI_SUCCESS) 442 retval = DDI_FAILURE; 443 #else 444 if (bge_reset(bgep) != DDI_SUCCESS) 445 retval = DDI_FAILURE; 446 #endif 447 if (bgep->bge_mac_state == BGE_MAC_STARTED) { 448 if (bge_start(bgep, reset_phys) != DDI_SUCCESS) 449 retval = DDI_FAILURE; 450 bgep->watchdog = 0; 451 ddi_trigger_softintr(bgep->drain_id); 452 } 453 454 BGE_DEBUG(("bge_restart($%p, %d) done", (void *)bgep, reset_phys)); 455 return (retval); 456 } 457 458 459 /* 460 * ========== Nemo-required management entry points ========== 461 */ 462 463 #undef BGE_DBG 464 #define BGE_DBG BGE_DBG_NEMO /* debug flag for this code */ 465 466 /* 467 * bge_m_stop() -- stop transmitting/receiving 468 */ 469 static void 470 bge_m_stop(void *arg) 471 { 472 bge_t *bgep = arg; /* private device info */ 473 send_ring_t *srp; 474 uint32_t ring; 475 476 BGE_TRACE(("bge_m_stop($%p)", arg)); 477 478 /* 479 * Just stop processing, then record new GLD state 480 */ 481 mutex_enter(bgep->genlock); 482 if (!(bgep->progress & PROGRESS_INTR)) { 483 /* can happen during autorecovery */ 484 mutex_exit(bgep->genlock); 485 return; 486 } 487 bge_stop(bgep); 488 489 bgep->link_update_timer = 0; 490 bgep->link_state = LINK_STATE_UNKNOWN; 491 mac_link_update(bgep->mh, bgep->link_state); 492 493 /* 494 * Free the possible tx buffers allocated in tx process. 495 */ 496 #ifdef BGE_IPMI_ASF 497 if (!bgep->asf_pseudostop) 498 #endif 499 { 500 rw_enter(bgep->errlock, RW_WRITER); 501 for (ring = 0; ring < bgep->chipid.tx_rings; ++ring) { 502 srp = &bgep->send[ring]; 503 mutex_enter(srp->tx_lock); 504 if (srp->tx_array > 1) 505 bge_free_txbuf_arrays(srp); 506 mutex_exit(srp->tx_lock); 507 } 508 rw_exit(bgep->errlock); 509 } 510 bgep->bge_mac_state = BGE_MAC_STOPPED; 511 BGE_DEBUG(("bge_m_stop($%p) done", arg)); 512 if (bge_check_acc_handle(bgep, bgep->io_handle) != DDI_FM_OK) 513 ddi_fm_service_impact(bgep->devinfo, DDI_SERVICE_UNAFFECTED); 514 mutex_exit(bgep->genlock); 515 } 516 517 /* 518 * bge_m_start() -- start transmitting/receiving 519 */ 520 static int 521 bge_m_start(void *arg) 522 { 523 bge_t *bgep = arg; /* private device info */ 524 525 BGE_TRACE(("bge_m_start($%p)", arg)); 526 527 /* 528 * Start processing and record new GLD state 529 */ 530 mutex_enter(bgep->genlock); 531 if (!(bgep->progress & PROGRESS_INTR)) { 532 /* can happen during autorecovery */ 533 ddi_fm_service_impact(bgep->devinfo, DDI_SERVICE_DEGRADED); 534 mutex_exit(bgep->genlock); 535 return (EIO); 536 } 537 #ifdef BGE_IPMI_ASF 538 if (bgep->asf_enabled) { 539 if ((bgep->asf_status == ASF_STAT_RUN) && 540 (bgep->asf_pseudostop)) { 541 bgep->bge_mac_state = BGE_MAC_STARTED; 542 mutex_exit(bgep->genlock); 543 return (0); 544 } 545 } 546 if (bge_reset(bgep, ASF_MODE_INIT) != DDI_SUCCESS) { 547 #else 548 if (bge_reset(bgep) != DDI_SUCCESS) { 549 #endif 550 (void) bge_check_acc_handle(bgep, bgep->cfg_handle); 551 (void) bge_check_acc_handle(bgep, bgep->io_handle); 552 ddi_fm_service_impact(bgep->devinfo, DDI_SERVICE_DEGRADED); 553 mutex_exit(bgep->genlock); 554 return (EIO); 555 } 556 if (bge_start(bgep, B_TRUE) != DDI_SUCCESS) { 557 (void) bge_check_acc_handle(bgep, bgep->cfg_handle); 558 (void) bge_check_acc_handle(bgep, bgep->io_handle); 559 ddi_fm_service_impact(bgep->devinfo, DDI_SERVICE_DEGRADED); 560 mutex_exit(bgep->genlock); 561 return (EIO); 562 } 563 bgep->bge_mac_state = BGE_MAC_STARTED; 564 BGE_DEBUG(("bge_m_start($%p) done", arg)); 565 566 if (bge_check_acc_handle(bgep, bgep->cfg_handle) != DDI_FM_OK) { 567 ddi_fm_service_impact(bgep->devinfo, DDI_SERVICE_DEGRADED); 568 mutex_exit(bgep->genlock); 569 return (EIO); 570 } 571 if (bge_check_acc_handle(bgep, bgep->io_handle) != DDI_FM_OK) { 572 ddi_fm_service_impact(bgep->devinfo, DDI_SERVICE_DEGRADED); 573 mutex_exit(bgep->genlock); 574 return (EIO); 575 } 576 #ifdef BGE_IPMI_ASF 577 if (bgep->asf_enabled) { 578 if (bgep->asf_status != ASF_STAT_RUN) { 579 /* start ASF heart beat */ 580 bgep->asf_timeout_id = timeout(bge_asf_heartbeat, 581 (void *)bgep, 582 drv_usectohz(BGE_ASF_HEARTBEAT_INTERVAL)); 583 bgep->asf_status = ASF_STAT_RUN; 584 } 585 } 586 #endif 587 mutex_exit(bgep->genlock); 588 589 return (0); 590 } 591 592 /* 593 * bge_m_unicst() -- set the physical network address 594 */ 595 static int 596 bge_m_unicst(void *arg, const uint8_t *macaddr) 597 { 598 /* 599 * Request to set address in 600 * address slot 0, i.e., default address 601 */ 602 return (bge_unicst_set(arg, macaddr, 0)); 603 } 604 605 /* 606 * bge_unicst_set() -- set the physical network address 607 */ 608 static int 609 bge_unicst_set(void *arg, const uint8_t *macaddr, mac_addr_slot_t slot) 610 { 611 bge_t *bgep = arg; /* private device info */ 612 613 BGE_TRACE(("bge_m_unicst_set($%p, %s)", arg, 614 ether_sprintf((void *)macaddr))); 615 /* 616 * Remember the new current address in the driver state 617 * Sync the chip's idea of the address too ... 618 */ 619 mutex_enter(bgep->genlock); 620 if (!(bgep->progress & PROGRESS_INTR)) { 621 /* can happen during autorecovery */ 622 ddi_fm_service_impact(bgep->devinfo, DDI_SERVICE_DEGRADED); 623 mutex_exit(bgep->genlock); 624 return (EIO); 625 } 626 ethaddr_copy(macaddr, bgep->curr_addr[slot].addr); 627 #ifdef BGE_IPMI_ASF 628 if (bge_chip_sync(bgep, B_FALSE) == DDI_FAILURE) { 629 #else 630 if (bge_chip_sync(bgep) == DDI_FAILURE) { 631 #endif 632 (void) bge_check_acc_handle(bgep, bgep->cfg_handle); 633 (void) bge_check_acc_handle(bgep, bgep->io_handle); 634 ddi_fm_service_impact(bgep->devinfo, DDI_SERVICE_DEGRADED); 635 mutex_exit(bgep->genlock); 636 return (EIO); 637 } 638 #ifdef BGE_IPMI_ASF 639 if (bgep->asf_enabled) { 640 /* 641 * The above bge_chip_sync() function wrote the ethernet MAC 642 * addresses registers which destroyed the IPMI/ASF sideband. 643 * Here, we have to reset chip to make IPMI/ASF sideband work. 644 */ 645 if (bgep->asf_status == ASF_STAT_RUN) { 646 /* 647 * We must stop ASF heart beat before bge_chip_stop(), 648 * otherwise some computers (ex. IBM HS20 blade server) 649 * may crash. 650 */ 651 bge_asf_update_status(bgep); 652 bge_asf_stop_timer(bgep); 653 bgep->asf_status = ASF_STAT_STOP; 654 655 bge_asf_pre_reset_operations(bgep, BGE_INIT_RESET); 656 } 657 bge_chip_stop(bgep, B_FALSE); 658 659 if (bge_restart(bgep, B_FALSE) == DDI_FAILURE) { 660 (void) bge_check_acc_handle(bgep, bgep->cfg_handle); 661 (void) bge_check_acc_handle(bgep, bgep->io_handle); 662 ddi_fm_service_impact(bgep->devinfo, 663 DDI_SERVICE_DEGRADED); 664 mutex_exit(bgep->genlock); 665 return (EIO); 666 } 667 668 /* 669 * Start our ASF heartbeat counter as soon as possible. 670 */ 671 if (bgep->asf_status != ASF_STAT_RUN) { 672 /* start ASF heart beat */ 673 bgep->asf_timeout_id = timeout(bge_asf_heartbeat, 674 (void *)bgep, 675 drv_usectohz(BGE_ASF_HEARTBEAT_INTERVAL)); 676 bgep->asf_status = ASF_STAT_RUN; 677 } 678 } 679 #endif 680 BGE_DEBUG(("bge_m_unicst_set($%p) done", arg)); 681 if (bge_check_acc_handle(bgep, bgep->cfg_handle) != DDI_FM_OK) { 682 ddi_fm_service_impact(bgep->devinfo, DDI_SERVICE_DEGRADED); 683 mutex_exit(bgep->genlock); 684 return (EIO); 685 } 686 if (bge_check_acc_handle(bgep, bgep->io_handle) != DDI_FM_OK) { 687 ddi_fm_service_impact(bgep->devinfo, DDI_SERVICE_DEGRADED); 688 mutex_exit(bgep->genlock); 689 return (EIO); 690 } 691 mutex_exit(bgep->genlock); 692 693 return (0); 694 } 695 696 /* 697 * The following four routines are used as callbacks for multiple MAC 698 * address support: 699 * - bge_m_unicst_add(void *, mac_multi_addr_t *); 700 * - bge_m_unicst_remove(void *, mac_addr_slot_t); 701 * - bge_m_unicst_modify(void *, mac_multi_addr_t *); 702 * - bge_m_unicst_get(void *, mac_multi_addr_t *); 703 */ 704 705 /* 706 * bge_m_unicst_add() - will find an unused address slot, set the 707 * address value to the one specified, reserve that slot and enable 708 * the NIC to start filtering on the new MAC address. 709 * address slot. Returns 0 on success. 710 */ 711 static int 712 bge_m_unicst_add(void *arg, mac_multi_addr_t *maddr) 713 { 714 bge_t *bgep = arg; /* private device info */ 715 mac_addr_slot_t slot; 716 int err; 717 718 if (mac_unicst_verify(bgep->mh, 719 maddr->mma_addr, maddr->mma_addrlen) == B_FALSE) 720 return (EINVAL); 721 722 mutex_enter(bgep->genlock); 723 if (bgep->unicst_addr_avail == 0) { 724 /* no slots available */ 725 mutex_exit(bgep->genlock); 726 return (ENOSPC); 727 } 728 729 /* 730 * Primary/default address is in slot 0. The next three 731 * addresses are the multiple MAC addresses. So multiple 732 * MAC address 0 is in slot 1, 1 in slot 2, and so on. 733 * So the first multiple MAC address resides in slot 1. 734 */ 735 for (slot = 1; slot < bgep->unicst_addr_total; slot++) { 736 if (bgep->curr_addr[slot].set == B_FALSE) { 737 bgep->curr_addr[slot].set = B_TRUE; 738 break; 739 } 740 } 741 742 ASSERT(slot < bgep->unicst_addr_total); 743 bgep->unicst_addr_avail--; 744 mutex_exit(bgep->genlock); 745 maddr->mma_slot = slot; 746 747 if ((err = bge_unicst_set(bgep, maddr->mma_addr, slot)) != 0) { 748 mutex_enter(bgep->genlock); 749 bgep->curr_addr[slot].set = B_FALSE; 750 bgep->unicst_addr_avail++; 751 mutex_exit(bgep->genlock); 752 } 753 return (err); 754 } 755 756 /* 757 * bge_m_unicst_remove() - removes a MAC address that was added by a 758 * call to bge_m_unicst_add(). The slot number that was returned in 759 * add() is passed in the call to remove the address. 760 * Returns 0 on success. 761 */ 762 static int 763 bge_m_unicst_remove(void *arg, mac_addr_slot_t slot) 764 { 765 bge_t *bgep = arg; /* private device info */ 766 767 if (slot <= 0 || slot >= bgep->unicst_addr_total) 768 return (EINVAL); 769 770 mutex_enter(bgep->genlock); 771 if (bgep->curr_addr[slot].set == B_TRUE) { 772 bgep->curr_addr[slot].set = B_FALSE; 773 bgep->unicst_addr_avail++; 774 mutex_exit(bgep->genlock); 775 /* 776 * Copy the default address to the passed slot 777 */ 778 return (bge_unicst_set(bgep, bgep->curr_addr[0].addr, slot)); 779 } 780 mutex_exit(bgep->genlock); 781 return (EINVAL); 782 } 783 784 /* 785 * bge_m_unicst_modify() - modifies the value of an address that 786 * has been added by bge_m_unicst_add(). The new address, address 787 * length and the slot number that was returned in the call to add 788 * should be passed to bge_m_unicst_modify(). mma_flags should be 789 * set to 0. Returns 0 on success. 790 */ 791 static int 792 bge_m_unicst_modify(void *arg, mac_multi_addr_t *maddr) 793 { 794 bge_t *bgep = arg; /* private device info */ 795 mac_addr_slot_t slot; 796 797 if (mac_unicst_verify(bgep->mh, 798 maddr->mma_addr, maddr->mma_addrlen) == B_FALSE) 799 return (EINVAL); 800 801 slot = maddr->mma_slot; 802 803 if (slot <= 0 || slot >= bgep->unicst_addr_total) 804 return (EINVAL); 805 806 mutex_enter(bgep->genlock); 807 if (bgep->curr_addr[slot].set == B_TRUE) { 808 mutex_exit(bgep->genlock); 809 return (bge_unicst_set(bgep, maddr->mma_addr, slot)); 810 } 811 mutex_exit(bgep->genlock); 812 813 return (EINVAL); 814 } 815 816 /* 817 * bge_m_unicst_get() - will get the MAC address and all other 818 * information related to the address slot passed in mac_multi_addr_t. 819 * mma_flags should be set to 0 in the call. 820 * On return, mma_flags can take the following values: 821 * 1) MMAC_SLOT_UNUSED 822 * 2) MMAC_SLOT_USED | MMAC_VENDOR_ADDR 823 * 3) MMAC_SLOT_UNUSED | MMAC_VENDOR_ADDR 824 * 4) MMAC_SLOT_USED 825 */ 826 static int 827 bge_m_unicst_get(void *arg, mac_multi_addr_t *maddr) 828 { 829 bge_t *bgep = arg; /* private device info */ 830 mac_addr_slot_t slot; 831 832 slot = maddr->mma_slot; 833 834 if (slot <= 0 || slot >= bgep->unicst_addr_total) 835 return (EINVAL); 836 837 mutex_enter(bgep->genlock); 838 if (bgep->curr_addr[slot].set == B_TRUE) { 839 ethaddr_copy(bgep->curr_addr[slot].addr, 840 maddr->mma_addr); 841 maddr->mma_flags = MMAC_SLOT_USED; 842 } else { 843 maddr->mma_flags = MMAC_SLOT_UNUSED; 844 } 845 mutex_exit(bgep->genlock); 846 847 return (0); 848 } 849 850 extern void bge_wake_factotum(bge_t *); 851 852 static boolean_t 853 bge_param_locked(mac_prop_id_t pr_num) 854 { 855 /* 856 * All adv_* parameters are locked (read-only) while 857 * the device is in any sort of loopback mode ... 858 */ 859 switch (pr_num) { 860 case MAC_PROP_ADV_1000FDX_CAP: 861 case MAC_PROP_EN_1000FDX_CAP: 862 case MAC_PROP_ADV_1000HDX_CAP: 863 case MAC_PROP_EN_1000HDX_CAP: 864 case MAC_PROP_ADV_100FDX_CAP: 865 case MAC_PROP_EN_100FDX_CAP: 866 case MAC_PROP_ADV_100HDX_CAP: 867 case MAC_PROP_EN_100HDX_CAP: 868 case MAC_PROP_ADV_10FDX_CAP: 869 case MAC_PROP_EN_10FDX_CAP: 870 case MAC_PROP_ADV_10HDX_CAP: 871 case MAC_PROP_EN_10HDX_CAP: 872 case MAC_PROP_AUTONEG: 873 case MAC_PROP_FLOWCTRL: 874 return (B_TRUE); 875 } 876 return (B_FALSE); 877 } 878 /* 879 * callback functions for set/get of properties 880 */ 881 static int 882 bge_m_setprop(void *barg, const char *pr_name, mac_prop_id_t pr_num, 883 uint_t pr_valsize, const void *pr_val) 884 { 885 bge_t *bgep = barg; 886 int err = 0; 887 uint32_t cur_mtu, new_mtu; 888 uint_t maxsdu; 889 link_flowctrl_t fl; 890 891 mutex_enter(bgep->genlock); 892 if (bgep->param_loop_mode != BGE_LOOP_NONE && 893 bge_param_locked(pr_num)) { 894 /* 895 * All adv_* parameters are locked (read-only) 896 * while the device is in any sort of loopback mode. 897 */ 898 mutex_exit(bgep->genlock); 899 return (EBUSY); 900 } 901 if ((bgep->chipid.flags & CHIP_FLAG_SERDES) && 902 ((pr_num == MAC_PROP_EN_100FDX_CAP) || 903 (pr_num == MAC_PROP_EN_100FDX_CAP) || 904 (pr_num == MAC_PROP_EN_10FDX_CAP) || 905 (pr_num == MAC_PROP_EN_10HDX_CAP))) { 906 /* 907 * these properties are read/write on copper, 908 * read-only and 0 on serdes 909 */ 910 mutex_exit(bgep->genlock); 911 return (ENOTSUP); 912 } 913 if ((DEVICE_5906_SERIES_CHIPSETS(bgep) && 914 (pr_num == MAC_PROP_EN_1000FDX_CAP) || 915 (pr_num == MAC_PROP_EN_1000HDX_CAP))) { 916 mutex_exit(bgep->genlock); 917 return (ENOTSUP); 918 } 919 920 switch (pr_num) { 921 case MAC_PROP_EN_1000FDX_CAP: 922 bgep->param_en_1000fdx = *(uint8_t *)pr_val; 923 bgep->param_adv_1000fdx = *(uint8_t *)pr_val; 924 goto reprogram; 925 case MAC_PROP_EN_1000HDX_CAP: 926 bgep->param_en_1000hdx = *(uint8_t *)pr_val; 927 bgep->param_adv_1000hdx = *(uint8_t *)pr_val; 928 goto reprogram; 929 case MAC_PROP_EN_100FDX_CAP: 930 bgep->param_en_100fdx = *(uint8_t *)pr_val; 931 bgep->param_adv_100fdx = *(uint8_t *)pr_val; 932 goto reprogram; 933 case MAC_PROP_EN_100HDX_CAP: 934 bgep->param_en_100hdx = *(uint8_t *)pr_val; 935 bgep->param_adv_100hdx = *(uint8_t *)pr_val; 936 goto reprogram; 937 case MAC_PROP_EN_10FDX_CAP: 938 bgep->param_en_10fdx = *(uint8_t *)pr_val; 939 bgep->param_adv_10fdx = *(uint8_t *)pr_val; 940 goto reprogram; 941 case MAC_PROP_EN_10HDX_CAP: 942 bgep->param_en_10hdx = *(uint8_t *)pr_val; 943 bgep->param_adv_10hdx = *(uint8_t *)pr_val; 944 reprogram: 945 if (err == 0 && bge_reprogram(bgep) == IOC_INVAL) 946 err = EINVAL; 947 break; 948 case MAC_PROP_ADV_1000FDX_CAP: 949 case MAC_PROP_ADV_1000HDX_CAP: 950 case MAC_PROP_ADV_100FDX_CAP: 951 case MAC_PROP_ADV_100HDX_CAP: 952 case MAC_PROP_ADV_10FDX_CAP: 953 case MAC_PROP_ADV_10HDX_CAP: 954 case MAC_PROP_STATUS: 955 case MAC_PROP_SPEED: 956 case MAC_PROP_DUPLEX: 957 err = ENOTSUP; /* read-only prop. Can't set this */ 958 break; 959 case MAC_PROP_AUTONEG: 960 bgep->param_adv_autoneg = *(uint8_t *)pr_val; 961 if (bge_reprogram(bgep) == IOC_INVAL) 962 err = EINVAL; 963 break; 964 case MAC_PROP_MTU: 965 cur_mtu = bgep->chipid.default_mtu; 966 bcopy(pr_val, &new_mtu, sizeof (new_mtu)); 967 968 if (new_mtu == cur_mtu) { 969 err = 0; 970 break; 971 } 972 if (new_mtu < BGE_DEFAULT_MTU || 973 new_mtu > BGE_MAXIMUM_MTU) { 974 err = EINVAL; 975 break; 976 } 977 if ((new_mtu > BGE_DEFAULT_MTU) && 978 (bgep->chipid.flags & CHIP_FLAG_NO_JUMBO)) { 979 err = EINVAL; 980 break; 981 } 982 if (bgep->bge_mac_state == BGE_MAC_STARTED) { 983 err = EBUSY; 984 break; 985 } 986 bgep->chipid.default_mtu = new_mtu; 987 if (bge_chip_id_init(bgep)) { 988 err = EINVAL; 989 break; 990 } 991 maxsdu = bgep->chipid.ethmax_size - 992 sizeof (struct ether_header); 993 err = mac_maxsdu_update(bgep->mh, maxsdu); 994 if (err == 0) { 995 bgep->bge_dma_error = B_TRUE; 996 bgep->manual_reset = B_TRUE; 997 bge_chip_stop(bgep, B_TRUE); 998 bge_wake_factotum(bgep); 999 err = 0; 1000 } 1001 break; 1002 case MAC_PROP_FLOWCTRL: 1003 bcopy(pr_val, &fl, sizeof (fl)); 1004 switch (fl) { 1005 default: 1006 err = ENOTSUP; 1007 break; 1008 case LINK_FLOWCTRL_NONE: 1009 bgep->param_adv_pause = 0; 1010 bgep->param_adv_asym_pause = 0; 1011 1012 bgep->param_link_rx_pause = B_FALSE; 1013 bgep->param_link_tx_pause = B_FALSE; 1014 break; 1015 case LINK_FLOWCTRL_RX: 1016 if (!((bgep->param_lp_pause == 0) && 1017 (bgep->param_lp_asym_pause == 1))) { 1018 err = EINVAL; 1019 break; 1020 } 1021 bgep->param_adv_pause = 1; 1022 bgep->param_adv_asym_pause = 1; 1023 1024 bgep->param_link_rx_pause = B_TRUE; 1025 bgep->param_link_tx_pause = B_FALSE; 1026 break; 1027 case LINK_FLOWCTRL_TX: 1028 if (!((bgep->param_lp_pause == 1) && 1029 (bgep->param_lp_asym_pause == 1))) { 1030 err = EINVAL; 1031 break; 1032 } 1033 bgep->param_adv_pause = 0; 1034 bgep->param_adv_asym_pause = 1; 1035 1036 bgep->param_link_rx_pause = B_FALSE; 1037 bgep->param_link_tx_pause = B_TRUE; 1038 break; 1039 case LINK_FLOWCTRL_BI: 1040 if (bgep->param_lp_pause != 1) { 1041 err = EINVAL; 1042 break; 1043 } 1044 bgep->param_adv_pause = 1; 1045 1046 bgep->param_link_rx_pause = B_TRUE; 1047 bgep->param_link_tx_pause = B_TRUE; 1048 break; 1049 } 1050 1051 if (err == 0) { 1052 if (bge_reprogram(bgep) == IOC_INVAL) 1053 err = EINVAL; 1054 } 1055 1056 break; 1057 case MAC_PROP_PRIVATE: 1058 err = bge_set_priv_prop(bgep, pr_name, pr_valsize, 1059 pr_val); 1060 break; 1061 default: 1062 err = ENOTSUP; 1063 break; 1064 } 1065 mutex_exit(bgep->genlock); 1066 return (err); 1067 } 1068 1069 static int 1070 bge_m_getprop(void *barg, const char *pr_name, mac_prop_id_t pr_num, 1071 uint_t pr_flags, uint_t pr_valsize, void *pr_val) 1072 { 1073 bge_t *bgep = barg; 1074 int err = 0; 1075 link_flowctrl_t fl; 1076 uint64_t speed; 1077 int flags = bgep->chipid.flags; 1078 boolean_t is_default = (pr_flags & MAC_PROP_DEFAULT); 1079 1080 if (pr_valsize == 0) 1081 return (EINVAL); 1082 bzero(pr_val, pr_valsize); 1083 switch (pr_num) { 1084 case MAC_PROP_DUPLEX: 1085 if (pr_valsize < sizeof (link_duplex_t)) 1086 return (EINVAL); 1087 bcopy(&bgep->param_link_duplex, pr_val, 1088 sizeof (link_duplex_t)); 1089 break; 1090 case MAC_PROP_SPEED: 1091 if (pr_valsize < sizeof (speed)) 1092 return (EINVAL); 1093 speed = bgep->param_link_speed * 1000000ull; 1094 bcopy(&speed, pr_val, sizeof (speed)); 1095 break; 1096 case MAC_PROP_STATUS: 1097 if (pr_valsize < sizeof (link_state_t)) 1098 return (EINVAL); 1099 bcopy(&bgep->link_state, pr_val, 1100 sizeof (link_state_t)); 1101 break; 1102 case MAC_PROP_AUTONEG: 1103 if (is_default) 1104 *(uint8_t *)pr_val = 1; 1105 else 1106 *(uint8_t *)pr_val = bgep->param_adv_autoneg; 1107 break; 1108 case MAC_PROP_FLOWCTRL: 1109 if (pr_valsize < sizeof (fl)) 1110 return (EINVAL); 1111 if (is_default) { 1112 fl = LINK_FLOWCTRL_BI; 1113 bcopy(&fl, pr_val, sizeof (fl)); 1114 break; 1115 } 1116 1117 if (bgep->param_link_rx_pause && 1118 !bgep->param_link_tx_pause) 1119 fl = LINK_FLOWCTRL_RX; 1120 1121 if (!bgep->param_link_rx_pause && 1122 !bgep->param_link_tx_pause) 1123 fl = LINK_FLOWCTRL_NONE; 1124 1125 if (!bgep->param_link_rx_pause && 1126 bgep->param_link_tx_pause) 1127 fl = LINK_FLOWCTRL_TX; 1128 1129 if (bgep->param_link_rx_pause && 1130 bgep->param_link_tx_pause) 1131 fl = LINK_FLOWCTRL_BI; 1132 bcopy(&fl, pr_val, sizeof (fl)); 1133 break; 1134 case MAC_PROP_ADV_1000FDX_CAP: 1135 if (is_default) { 1136 if (DEVICE_5906_SERIES_CHIPSETS(bgep)) 1137 *(uint8_t *)pr_val = 0; 1138 else 1139 *(uint8_t *)pr_val = 1; 1140 } 1141 else 1142 *(uint8_t *)pr_val = bgep->param_adv_1000fdx; 1143 break; 1144 case MAC_PROP_EN_1000FDX_CAP: 1145 if (is_default) { 1146 if (DEVICE_5906_SERIES_CHIPSETS(bgep)) 1147 *(uint8_t *)pr_val = 0; 1148 else 1149 *(uint8_t *)pr_val = 1; 1150 } 1151 else 1152 *(uint8_t *)pr_val = bgep->param_en_1000fdx; 1153 break; 1154 case MAC_PROP_ADV_1000HDX_CAP: 1155 if (is_default) { 1156 if (DEVICE_5906_SERIES_CHIPSETS(bgep)) 1157 *(uint8_t *)pr_val = 0; 1158 else 1159 *(uint8_t *)pr_val = 1; 1160 } 1161 else 1162 *(uint8_t *)pr_val = bgep->param_adv_1000hdx; 1163 break; 1164 case MAC_PROP_EN_1000HDX_CAP: 1165 if (is_default) { 1166 if (DEVICE_5906_SERIES_CHIPSETS(bgep)) 1167 *(uint8_t *)pr_val = 0; 1168 else 1169 *(uint8_t *)pr_val = 1; 1170 } 1171 else 1172 *(uint8_t *)pr_val = bgep->param_en_1000hdx; 1173 break; 1174 case MAC_PROP_ADV_100FDX_CAP: 1175 if (is_default) { 1176 *(uint8_t *)pr_val = 1177 ((flags & CHIP_FLAG_SERDES) ? 0 : 1); 1178 } else { 1179 *(uint8_t *)pr_val = bgep->param_adv_100fdx; 1180 } 1181 break; 1182 case MAC_PROP_EN_100FDX_CAP: 1183 if (is_default) { 1184 *(uint8_t *)pr_val = 1185 ((flags & CHIP_FLAG_SERDES) ? 0 : 1); 1186 } else { 1187 *(uint8_t *)pr_val = bgep->param_en_100fdx; 1188 } 1189 break; 1190 case MAC_PROP_ADV_100HDX_CAP: 1191 if (is_default) { 1192 *(uint8_t *)pr_val = 1193 ((flags & CHIP_FLAG_SERDES) ? 0 : 1); 1194 } else { 1195 *(uint8_t *)pr_val = bgep->param_adv_100hdx; 1196 } 1197 break; 1198 case MAC_PROP_EN_100HDX_CAP: 1199 if (is_default) { 1200 *(uint8_t *)pr_val = 1201 ((flags & CHIP_FLAG_SERDES) ? 0 : 1); 1202 } else { 1203 *(uint8_t *)pr_val = bgep->param_en_100hdx; 1204 } 1205 break; 1206 case MAC_PROP_ADV_10FDX_CAP: 1207 if (is_default) { 1208 *(uint8_t *)pr_val = 1209 ((flags & CHIP_FLAG_SERDES) ? 0 : 1); 1210 } else { 1211 *(uint8_t *)pr_val = bgep->param_adv_10fdx; 1212 } 1213 break; 1214 case MAC_PROP_EN_10FDX_CAP: 1215 if (is_default) { 1216 *(uint8_t *)pr_val = 1217 ((flags & CHIP_FLAG_SERDES) ? 0 : 1); 1218 } else { 1219 *(uint8_t *)pr_val = bgep->param_en_10fdx; 1220 } 1221 break; 1222 case MAC_PROP_ADV_10HDX_CAP: 1223 if (is_default) { 1224 *(uint8_t *)pr_val = 1225 ((flags & CHIP_FLAG_SERDES) ? 0 : 1); 1226 } else { 1227 *(uint8_t *)pr_val = bgep->param_adv_10hdx; 1228 } 1229 break; 1230 case MAC_PROP_EN_10HDX_CAP: 1231 if (is_default) { 1232 *(uint8_t *)pr_val = 1233 ((flags & CHIP_FLAG_SERDES) ? 0 : 1); 1234 } else { 1235 *(uint8_t *)pr_val = bgep->param_en_10hdx; 1236 } 1237 break; 1238 case MAC_PROP_ADV_100T4_CAP: 1239 case MAC_PROP_EN_100T4_CAP: 1240 *(uint8_t *)pr_val = 0; 1241 break; 1242 case MAC_PROP_PRIVATE: 1243 err = bge_get_priv_prop(bgep, pr_name, pr_flags, 1244 pr_valsize, pr_val); 1245 return (err); 1246 default: 1247 return (ENOTSUP); 1248 } 1249 return (0); 1250 } 1251 1252 /* ARGSUSED */ 1253 static int 1254 bge_set_priv_prop(bge_t *bgep, const char *pr_name, uint_t pr_valsize, 1255 const void *pr_val) 1256 { 1257 int err = 0; 1258 long result; 1259 1260 if (strcmp(pr_name, "_adv_pause_cap") == 0) { 1261 (void) ddi_strtol(pr_val, (char **)NULL, 0, &result); 1262 if (result > 1 || result < 0) { 1263 err = EINVAL; 1264 } else { 1265 bgep->param_adv_pause = (uint32_t)result; 1266 if (bge_reprogram(bgep) == IOC_INVAL) 1267 err = EINVAL; 1268 } 1269 return (err); 1270 } 1271 if (strcmp(pr_name, "_adv_asym_pause_cap") == 0) { 1272 (void) ddi_strtol(pr_val, (char **)NULL, 0, &result); 1273 if (result > 1 || result < 0) { 1274 err = EINVAL; 1275 } else { 1276 bgep->param_adv_asym_pause = (uint32_t)result; 1277 if (bge_reprogram(bgep) == IOC_INVAL) 1278 err = EINVAL; 1279 } 1280 return (err); 1281 } 1282 if (strcmp(pr_name, "_drain_max") == 0) { 1283 1284 /* 1285 * on the Tx side, we need to update the h/w register for 1286 * real packet transmission per packet. The drain_max parameter 1287 * is used to reduce the register access. This parameter 1288 * controls the max number of packets that we will hold before 1289 * updating the bge h/w to trigger h/w transmit. The bge 1290 * chipset usually has a max of 512 Tx descriptors, thus 1291 * the upper bound on drain_max is 512. 1292 */ 1293 if (pr_val == NULL) { 1294 err = EINVAL; 1295 return (err); 1296 } 1297 (void) ddi_strtol(pr_val, (char **)NULL, 0, &result); 1298 if (result > 512 || result < 1) 1299 err = EINVAL; 1300 else { 1301 bgep->param_drain_max = (uint32_t)result; 1302 if (bge_reprogram(bgep) == IOC_INVAL) 1303 err = EINVAL; 1304 } 1305 return (err); 1306 } 1307 if (strcmp(pr_name, "_msi_cnt") == 0) { 1308 1309 if (pr_val == NULL) { 1310 err = EINVAL; 1311 return (err); 1312 } 1313 (void) ddi_strtol(pr_val, (char **)NULL, 0, &result); 1314 if (result > 7 || result < 0) 1315 err = EINVAL; 1316 else { 1317 bgep->param_msi_cnt = (uint32_t)result; 1318 if (bge_reprogram(bgep) == IOC_INVAL) 1319 err = EINVAL; 1320 } 1321 return (err); 1322 } 1323 if (strcmp(pr_name, "_intr_coalesce_blank_time") == 0) { 1324 if (ddi_strtol(pr_val, (char **)NULL, 0, &result) != 0) 1325 return (EINVAL); 1326 1327 bgep->chipid.rx_ticks_norm = (uint32_t)result; 1328 return (0); 1329 } 1330 1331 if (strcmp(pr_name, "_intr_coalesce_pkt_cnt") == 0) { 1332 if (ddi_strtol(pr_val, (char **)NULL, 0, &result) != 0) 1333 return (EINVAL); 1334 1335 bgep->chipid.rx_count_norm = (uint32_t)result; 1336 return (0); 1337 } 1338 return (ENOTSUP); 1339 } 1340 1341 static int 1342 bge_get_priv_prop(bge_t *bge, const char *pr_name, uint_t pr_flags, 1343 uint_t pr_valsize, void *pr_val) 1344 { 1345 int err = ENOTSUP; 1346 boolean_t is_default = (pr_flags & MAC_PROP_DEFAULT); 1347 int value; 1348 1349 if (strcmp(pr_name, "_adv_pause_cap") == 0) { 1350 value = (is_default? 1 : bge->param_adv_pause); 1351 err = 0; 1352 goto done; 1353 } 1354 if (strcmp(pr_name, "_adv_asym_pause_cap") == 0) { 1355 value = (is_default? 1 : bge->param_adv_asym_pause); 1356 err = 0; 1357 goto done; 1358 } 1359 if (strcmp(pr_name, "_drain_max") == 0) { 1360 value = (is_default? 64 : bge->param_drain_max); 1361 err = 0; 1362 goto done; 1363 } 1364 if (strcmp(pr_name, "_msi_cnt") == 0) { 1365 value = (is_default? 0 : bge->param_msi_cnt); 1366 err = 0; 1367 goto done; 1368 } 1369 1370 if (strcmp(pr_name, "_intr_coalesce_blank_time") == 0) { 1371 value = (is_default? bge_rx_ticks_norm : 1372 bge->chipid.rx_ticks_norm); 1373 err = 0; 1374 goto done; 1375 } 1376 1377 if (strcmp(pr_name, "_intr_coalesce_pkt_cnt") == 0) { 1378 value = (is_default? bge_rx_count_norm : 1379 bge->chipid.rx_count_norm); 1380 err = 0; 1381 goto done; 1382 } 1383 1384 done: 1385 if (err == 0) { 1386 (void) snprintf(pr_val, pr_valsize, "%d", value); 1387 } 1388 return (err); 1389 } 1390 1391 /* 1392 * Compute the index of the required bit in the multicast hash map. 1393 * This must mirror the way the hardware actually does it! 1394 * See Broadcom document 570X-PG102-R page 125. 1395 */ 1396 static uint32_t 1397 bge_hash_index(const uint8_t *mca) 1398 { 1399 uint32_t hash; 1400 1401 CRC32(hash, mca, ETHERADDRL, -1U, crc32_table); 1402 1403 return (hash); 1404 } 1405 1406 /* 1407 * bge_m_multicst_add() -- enable/disable a multicast address 1408 */ 1409 static int 1410 bge_m_multicst(void *arg, boolean_t add, const uint8_t *mca) 1411 { 1412 bge_t *bgep = arg; /* private device info */ 1413 uint32_t hash; 1414 uint32_t index; 1415 uint32_t word; 1416 uint32_t bit; 1417 uint8_t *refp; 1418 1419 BGE_TRACE(("bge_m_multicst($%p, %s, %s)", arg, 1420 (add) ? "add" : "remove", ether_sprintf((void *)mca))); 1421 1422 /* 1423 * Precalculate all required masks, pointers etc ... 1424 */ 1425 hash = bge_hash_index(mca); 1426 index = hash % BGE_HASH_TABLE_SIZE; 1427 word = index/32u; 1428 bit = 1 << (index % 32u); 1429 refp = &bgep->mcast_refs[index]; 1430 1431 BGE_DEBUG(("bge_m_multicst: hash 0x%x index %d (%d:0x%x) = %d", 1432 hash, index, word, bit, *refp)); 1433 1434 /* 1435 * We must set the appropriate bit in the hash map (and the 1436 * corresponding h/w register) when the refcount goes from 0 1437 * to >0, and clear it when the last ref goes away (refcount 1438 * goes from >0 back to 0). If we change the hash map, we 1439 * must also update the chip's hardware map registers. 1440 */ 1441 mutex_enter(bgep->genlock); 1442 if (!(bgep->progress & PROGRESS_INTR)) { 1443 /* can happen during autorecovery */ 1444 ddi_fm_service_impact(bgep->devinfo, DDI_SERVICE_DEGRADED); 1445 mutex_exit(bgep->genlock); 1446 return (EIO); 1447 } 1448 if (add) { 1449 if ((*refp)++ == 0) { 1450 bgep->mcast_hash[word] |= bit; 1451 #ifdef BGE_IPMI_ASF 1452 if (bge_chip_sync(bgep, B_TRUE) == DDI_FAILURE) { 1453 #else 1454 if (bge_chip_sync(bgep) == DDI_FAILURE) { 1455 #endif 1456 (void) bge_check_acc_handle(bgep, 1457 bgep->cfg_handle); 1458 (void) bge_check_acc_handle(bgep, 1459 bgep->io_handle); 1460 ddi_fm_service_impact(bgep->devinfo, 1461 DDI_SERVICE_DEGRADED); 1462 mutex_exit(bgep->genlock); 1463 return (EIO); 1464 } 1465 } 1466 } else { 1467 if (--(*refp) == 0) { 1468 bgep->mcast_hash[word] &= ~bit; 1469 #ifdef BGE_IPMI_ASF 1470 if (bge_chip_sync(bgep, B_TRUE) == DDI_FAILURE) { 1471 #else 1472 if (bge_chip_sync(bgep) == DDI_FAILURE) { 1473 #endif 1474 (void) bge_check_acc_handle(bgep, 1475 bgep->cfg_handle); 1476 (void) bge_check_acc_handle(bgep, 1477 bgep->io_handle); 1478 ddi_fm_service_impact(bgep->devinfo, 1479 DDI_SERVICE_DEGRADED); 1480 mutex_exit(bgep->genlock); 1481 return (EIO); 1482 } 1483 } 1484 } 1485 BGE_DEBUG(("bge_m_multicst($%p) done", arg)); 1486 if (bge_check_acc_handle(bgep, bgep->cfg_handle) != DDI_FM_OK) { 1487 ddi_fm_service_impact(bgep->devinfo, DDI_SERVICE_DEGRADED); 1488 mutex_exit(bgep->genlock); 1489 return (EIO); 1490 } 1491 if (bge_check_acc_handle(bgep, bgep->io_handle) != DDI_FM_OK) { 1492 ddi_fm_service_impact(bgep->devinfo, DDI_SERVICE_DEGRADED); 1493 mutex_exit(bgep->genlock); 1494 return (EIO); 1495 } 1496 mutex_exit(bgep->genlock); 1497 1498 return (0); 1499 } 1500 1501 /* 1502 * bge_m_promisc() -- set or reset promiscuous mode on the board 1503 * 1504 * Program the hardware to enable/disable promiscuous and/or 1505 * receive-all-multicast modes. 1506 */ 1507 static int 1508 bge_m_promisc(void *arg, boolean_t on) 1509 { 1510 bge_t *bgep = arg; 1511 1512 BGE_TRACE(("bge_m_promisc_set($%p, %d)", arg, on)); 1513 1514 /* 1515 * Store MAC layer specified mode and pass to chip layer to update h/w 1516 */ 1517 mutex_enter(bgep->genlock); 1518 if (!(bgep->progress & PROGRESS_INTR)) { 1519 /* can happen during autorecovery */ 1520 ddi_fm_service_impact(bgep->devinfo, DDI_SERVICE_DEGRADED); 1521 mutex_exit(bgep->genlock); 1522 return (EIO); 1523 } 1524 bgep->promisc = on; 1525 #ifdef BGE_IPMI_ASF 1526 if (bge_chip_sync(bgep, B_TRUE) == DDI_FAILURE) { 1527 #else 1528 if (bge_chip_sync(bgep) == DDI_FAILURE) { 1529 #endif 1530 (void) bge_check_acc_handle(bgep, bgep->cfg_handle); 1531 (void) bge_check_acc_handle(bgep, bgep->io_handle); 1532 ddi_fm_service_impact(bgep->devinfo, DDI_SERVICE_DEGRADED); 1533 mutex_exit(bgep->genlock); 1534 return (EIO); 1535 } 1536 BGE_DEBUG(("bge_m_promisc_set($%p) done", arg)); 1537 if (bge_check_acc_handle(bgep, bgep->cfg_handle) != DDI_FM_OK) { 1538 ddi_fm_service_impact(bgep->devinfo, DDI_SERVICE_DEGRADED); 1539 mutex_exit(bgep->genlock); 1540 return (EIO); 1541 } 1542 if (bge_check_acc_handle(bgep, bgep->io_handle) != DDI_FM_OK) { 1543 ddi_fm_service_impact(bgep->devinfo, DDI_SERVICE_DEGRADED); 1544 mutex_exit(bgep->genlock); 1545 return (EIO); 1546 } 1547 mutex_exit(bgep->genlock); 1548 return (0); 1549 } 1550 1551 /*ARGSUSED*/ 1552 static boolean_t 1553 bge_m_getcapab(void *arg, mac_capab_t cap, void *cap_data) 1554 { 1555 bge_t *bgep = arg; 1556 1557 switch (cap) { 1558 case MAC_CAPAB_HCKSUM: { 1559 uint32_t *txflags = cap_data; 1560 1561 *txflags = HCKSUM_INET_FULL_V4 | HCKSUM_IPHDRCKSUM; 1562 break; 1563 } 1564 1565 case MAC_CAPAB_POLL: 1566 /* 1567 * There's nothing for us to fill in, simply returning 1568 * B_TRUE stating that we support polling is sufficient. 1569 */ 1570 break; 1571 1572 case MAC_CAPAB_MULTIADDRESS: { 1573 multiaddress_capab_t *mmacp = cap_data; 1574 1575 mutex_enter(bgep->genlock); 1576 /* 1577 * The number of MAC addresses made available by 1578 * this capability is one less than the total as 1579 * the primary address in slot 0 is counted in 1580 * the total. 1581 */ 1582 mmacp->maddr_naddr = bgep->unicst_addr_total - 1; 1583 mmacp->maddr_naddrfree = bgep->unicst_addr_avail; 1584 /* No multiple factory addresses, set mma_flag to 0 */ 1585 mmacp->maddr_flag = 0; 1586 mmacp->maddr_handle = bgep; 1587 mmacp->maddr_add = bge_m_unicst_add; 1588 mmacp->maddr_remove = bge_m_unicst_remove; 1589 mmacp->maddr_modify = bge_m_unicst_modify; 1590 mmacp->maddr_get = bge_m_unicst_get; 1591 mmacp->maddr_reserve = NULL; 1592 mutex_exit(bgep->genlock); 1593 break; 1594 } 1595 1596 default: 1597 return (B_FALSE); 1598 } 1599 return (B_TRUE); 1600 } 1601 1602 /* 1603 * Loopback ioctl code 1604 */ 1605 1606 static lb_property_t loopmodes[] = { 1607 { normal, "normal", BGE_LOOP_NONE }, 1608 { external, "1000Mbps", BGE_LOOP_EXTERNAL_1000 }, 1609 { external, "100Mbps", BGE_LOOP_EXTERNAL_100 }, 1610 { external, "10Mbps", BGE_LOOP_EXTERNAL_10 }, 1611 { internal, "PHY", BGE_LOOP_INTERNAL_PHY }, 1612 { internal, "MAC", BGE_LOOP_INTERNAL_MAC } 1613 }; 1614 1615 static enum ioc_reply 1616 bge_set_loop_mode(bge_t *bgep, uint32_t mode) 1617 { 1618 /* 1619 * If the mode isn't being changed, there's nothing to do ... 1620 */ 1621 if (mode == bgep->param_loop_mode) 1622 return (IOC_ACK); 1623 1624 /* 1625 * Validate the requested mode and prepare a suitable message 1626 * to explain the link down/up cycle that the change will 1627 * probably induce ... 1628 */ 1629 switch (mode) { 1630 default: 1631 return (IOC_INVAL); 1632 1633 case BGE_LOOP_NONE: 1634 case BGE_LOOP_EXTERNAL_1000: 1635 case BGE_LOOP_EXTERNAL_100: 1636 case BGE_LOOP_EXTERNAL_10: 1637 case BGE_LOOP_INTERNAL_PHY: 1638 case BGE_LOOP_INTERNAL_MAC: 1639 break; 1640 } 1641 1642 /* 1643 * All OK; tell the caller to reprogram 1644 * the PHY and/or MAC for the new mode ... 1645 */ 1646 bgep->param_loop_mode = mode; 1647 return (IOC_RESTART_ACK); 1648 } 1649 1650 static enum ioc_reply 1651 bge_loop_ioctl(bge_t *bgep, queue_t *wq, mblk_t *mp, struct iocblk *iocp) 1652 { 1653 lb_info_sz_t *lbsp; 1654 lb_property_t *lbpp; 1655 uint32_t *lbmp; 1656 int cmd; 1657 1658 _NOTE(ARGUNUSED(wq)) 1659 1660 /* 1661 * Validate format of ioctl 1662 */ 1663 if (mp->b_cont == NULL) 1664 return (IOC_INVAL); 1665 1666 cmd = iocp->ioc_cmd; 1667 switch (cmd) { 1668 default: 1669 /* NOTREACHED */ 1670 bge_error(bgep, "bge_loop_ioctl: invalid cmd 0x%x", cmd); 1671 return (IOC_INVAL); 1672 1673 case LB_GET_INFO_SIZE: 1674 if (iocp->ioc_count != sizeof (lb_info_sz_t)) 1675 return (IOC_INVAL); 1676 lbsp = (void *)mp->b_cont->b_rptr; 1677 *lbsp = sizeof (loopmodes); 1678 return (IOC_REPLY); 1679 1680 case LB_GET_INFO: 1681 if (iocp->ioc_count != sizeof (loopmodes)) 1682 return (IOC_INVAL); 1683 lbpp = (void *)mp->b_cont->b_rptr; 1684 bcopy(loopmodes, lbpp, sizeof (loopmodes)); 1685 return (IOC_REPLY); 1686 1687 case LB_GET_MODE: 1688 if (iocp->ioc_count != sizeof (uint32_t)) 1689 return (IOC_INVAL); 1690 lbmp = (void *)mp->b_cont->b_rptr; 1691 *lbmp = bgep->param_loop_mode; 1692 return (IOC_REPLY); 1693 1694 case LB_SET_MODE: 1695 if (iocp->ioc_count != sizeof (uint32_t)) 1696 return (IOC_INVAL); 1697 lbmp = (void *)mp->b_cont->b_rptr; 1698 return (bge_set_loop_mode(bgep, *lbmp)); 1699 } 1700 } 1701 1702 /* 1703 * Specific bge IOCTLs, the gld module handles the generic ones. 1704 */ 1705 static void 1706 bge_m_ioctl(void *arg, queue_t *wq, mblk_t *mp) 1707 { 1708 bge_t *bgep = arg; 1709 struct iocblk *iocp; 1710 enum ioc_reply status; 1711 boolean_t need_privilege; 1712 int err; 1713 int cmd; 1714 1715 /* 1716 * Validate the command before bothering with the mutex ... 1717 */ 1718 iocp = (void *)mp->b_rptr; 1719 iocp->ioc_error = 0; 1720 need_privilege = B_TRUE; 1721 cmd = iocp->ioc_cmd; 1722 switch (cmd) { 1723 default: 1724 miocnak(wq, mp, 0, EINVAL); 1725 return; 1726 1727 case BGE_MII_READ: 1728 case BGE_MII_WRITE: 1729 case BGE_SEE_READ: 1730 case BGE_SEE_WRITE: 1731 case BGE_FLASH_READ: 1732 case BGE_FLASH_WRITE: 1733 case BGE_DIAG: 1734 case BGE_PEEK: 1735 case BGE_POKE: 1736 case BGE_PHY_RESET: 1737 case BGE_SOFT_RESET: 1738 case BGE_HARD_RESET: 1739 break; 1740 1741 case LB_GET_INFO_SIZE: 1742 case LB_GET_INFO: 1743 case LB_GET_MODE: 1744 need_privilege = B_FALSE; 1745 /* FALLTHRU */ 1746 case LB_SET_MODE: 1747 break; 1748 1749 } 1750 1751 if (need_privilege) { 1752 /* 1753 * Check for specific net_config privilege on Solaris 10+. 1754 */ 1755 err = secpolicy_net_config(iocp->ioc_cr, B_FALSE); 1756 if (err != 0) { 1757 miocnak(wq, mp, 0, err); 1758 return; 1759 } 1760 } 1761 1762 mutex_enter(bgep->genlock); 1763 if (!(bgep->progress & PROGRESS_INTR)) { 1764 /* can happen during autorecovery */ 1765 mutex_exit(bgep->genlock); 1766 miocnak(wq, mp, 0, EIO); 1767 return; 1768 } 1769 1770 switch (cmd) { 1771 default: 1772 _NOTE(NOTREACHED) 1773 status = IOC_INVAL; 1774 break; 1775 1776 case BGE_MII_READ: 1777 case BGE_MII_WRITE: 1778 case BGE_SEE_READ: 1779 case BGE_SEE_WRITE: 1780 case BGE_FLASH_READ: 1781 case BGE_FLASH_WRITE: 1782 case BGE_DIAG: 1783 case BGE_PEEK: 1784 case BGE_POKE: 1785 case BGE_PHY_RESET: 1786 case BGE_SOFT_RESET: 1787 case BGE_HARD_RESET: 1788 status = bge_chip_ioctl(bgep, wq, mp, iocp); 1789 break; 1790 1791 case LB_GET_INFO_SIZE: 1792 case LB_GET_INFO: 1793 case LB_GET_MODE: 1794 case LB_SET_MODE: 1795 status = bge_loop_ioctl(bgep, wq, mp, iocp); 1796 break; 1797 1798 } 1799 1800 /* 1801 * Do we need to reprogram the PHY and/or the MAC? 1802 * Do it now, while we still have the mutex. 1803 * 1804 * Note: update the PHY first, 'cos it controls the 1805 * speed/duplex parameters that the MAC code uses. 1806 */ 1807 switch (status) { 1808 case IOC_RESTART_REPLY: 1809 case IOC_RESTART_ACK: 1810 if (bge_reprogram(bgep) == IOC_INVAL) 1811 status = IOC_INVAL; 1812 break; 1813 } 1814 1815 if (bge_check_acc_handle(bgep, bgep->cfg_handle) != DDI_FM_OK) { 1816 ddi_fm_service_impact(bgep->devinfo, DDI_SERVICE_DEGRADED); 1817 status = IOC_INVAL; 1818 } 1819 if (bge_check_acc_handle(bgep, bgep->io_handle) != DDI_FM_OK) { 1820 ddi_fm_service_impact(bgep->devinfo, DDI_SERVICE_DEGRADED); 1821 status = IOC_INVAL; 1822 } 1823 mutex_exit(bgep->genlock); 1824 1825 /* 1826 * Finally, decide how to reply 1827 */ 1828 switch (status) { 1829 default: 1830 case IOC_INVAL: 1831 /* 1832 * Error, reply with a NAK and EINVAL or the specified error 1833 */ 1834 miocnak(wq, mp, 0, iocp->ioc_error == 0 ? 1835 EINVAL : iocp->ioc_error); 1836 break; 1837 1838 case IOC_DONE: 1839 /* 1840 * OK, reply already sent 1841 */ 1842 break; 1843 1844 case IOC_RESTART_ACK: 1845 case IOC_ACK: 1846 /* 1847 * OK, reply with an ACK 1848 */ 1849 miocack(wq, mp, 0, 0); 1850 break; 1851 1852 case IOC_RESTART_REPLY: 1853 case IOC_REPLY: 1854 /* 1855 * OK, send prepared reply as ACK or NAK 1856 */ 1857 mp->b_datap->db_type = iocp->ioc_error == 0 ? 1858 M_IOCACK : M_IOCNAK; 1859 qreply(wq, mp); 1860 break; 1861 } 1862 } 1863 1864 static void 1865 bge_resources_add(bge_t *bgep, time_t time, uint_t pkt_cnt) 1866 { 1867 1868 recv_ring_t *rrp; 1869 mac_rx_fifo_t mrf; 1870 int ring; 1871 1872 /* 1873 * Register Rx rings as resources and save mac 1874 * resource id for future reference 1875 */ 1876 mrf.mrf_type = MAC_RX_FIFO; 1877 mrf.mrf_blank = bge_chip_blank; 1878 mrf.mrf_arg = (void *)bgep; 1879 mrf.mrf_normal_blank_time = time; 1880 mrf.mrf_normal_pkt_count = pkt_cnt; 1881 1882 for (ring = 0; ring < bgep->chipid.rx_rings; ring++) { 1883 rrp = &bgep->recv[ring]; 1884 rrp->handle = mac_resource_add(bgep->mh, 1885 (mac_resource_t *)&mrf); 1886 } 1887 } 1888 1889 static void 1890 bge_m_resources(void *arg) 1891 { 1892 bge_t *bgep = arg; 1893 1894 mutex_enter(bgep->genlock); 1895 1896 bge_resources_add(bgep, bgep->chipid.rx_ticks_norm, 1897 bgep->chipid.rx_count_norm); 1898 mutex_exit(bgep->genlock); 1899 } 1900 1901 /* 1902 * ========== Per-instance setup/teardown code ========== 1903 */ 1904 1905 #undef BGE_DBG 1906 #define BGE_DBG BGE_DBG_INIT /* debug flag for this code */ 1907 /* 1908 * Allocate an area of memory and a DMA handle for accessing it 1909 */ 1910 static int 1911 bge_alloc_dma_mem(bge_t *bgep, size_t memsize, ddi_device_acc_attr_t *attr_p, 1912 uint_t dma_flags, dma_area_t *dma_p) 1913 { 1914 caddr_t va; 1915 int err; 1916 1917 BGE_TRACE(("bge_alloc_dma_mem($%p, %ld, $%p, 0x%x, $%p)", 1918 (void *)bgep, memsize, attr_p, dma_flags, dma_p)); 1919 1920 /* 1921 * Allocate handle 1922 */ 1923 err = ddi_dma_alloc_handle(bgep->devinfo, &dma_attr, 1924 DDI_DMA_DONTWAIT, NULL, &dma_p->dma_hdl); 1925 if (err != DDI_SUCCESS) 1926 return (DDI_FAILURE); 1927 1928 /* 1929 * Allocate memory 1930 */ 1931 err = ddi_dma_mem_alloc(dma_p->dma_hdl, memsize, attr_p, 1932 dma_flags, DDI_DMA_DONTWAIT, NULL, &va, &dma_p->alength, 1933 &dma_p->acc_hdl); 1934 if (err != DDI_SUCCESS) 1935 return (DDI_FAILURE); 1936 1937 /* 1938 * Bind the two together 1939 */ 1940 dma_p->mem_va = va; 1941 err = ddi_dma_addr_bind_handle(dma_p->dma_hdl, NULL, 1942 va, dma_p->alength, dma_flags, DDI_DMA_DONTWAIT, NULL, 1943 &dma_p->cookie, &dma_p->ncookies); 1944 1945 BGE_DEBUG(("bge_alloc_dma_mem(): bind %d bytes; err %d, %d cookies", 1946 dma_p->alength, err, dma_p->ncookies)); 1947 1948 if (err != DDI_DMA_MAPPED || dma_p->ncookies != 1) 1949 return (DDI_FAILURE); 1950 1951 dma_p->nslots = ~0U; 1952 dma_p->size = ~0U; 1953 dma_p->token = ~0U; 1954 dma_p->offset = 0; 1955 return (DDI_SUCCESS); 1956 } 1957 1958 /* 1959 * Free one allocated area of DMAable memory 1960 */ 1961 static void 1962 bge_free_dma_mem(dma_area_t *dma_p) 1963 { 1964 if (dma_p->dma_hdl != NULL) { 1965 if (dma_p->ncookies) { 1966 (void) ddi_dma_unbind_handle(dma_p->dma_hdl); 1967 dma_p->ncookies = 0; 1968 } 1969 ddi_dma_free_handle(&dma_p->dma_hdl); 1970 dma_p->dma_hdl = NULL; 1971 } 1972 1973 if (dma_p->acc_hdl != NULL) { 1974 ddi_dma_mem_free(&dma_p->acc_hdl); 1975 dma_p->acc_hdl = NULL; 1976 } 1977 } 1978 /* 1979 * Utility routine to carve a slice off a chunk of allocated memory, 1980 * updating the chunk descriptor accordingly. The size of the slice 1981 * is given by the product of the <qty> and <size> parameters. 1982 */ 1983 static void 1984 bge_slice_chunk(dma_area_t *slice, dma_area_t *chunk, 1985 uint32_t qty, uint32_t size) 1986 { 1987 static uint32_t sequence = 0xbcd5704a; 1988 size_t totsize; 1989 1990 totsize = qty*size; 1991 ASSERT(totsize <= chunk->alength); 1992 1993 *slice = *chunk; 1994 slice->nslots = qty; 1995 slice->size = size; 1996 slice->alength = totsize; 1997 slice->token = ++sequence; 1998 1999 chunk->mem_va = (caddr_t)chunk->mem_va + totsize; 2000 chunk->alength -= totsize; 2001 chunk->offset += totsize; 2002 chunk->cookie.dmac_laddress += totsize; 2003 chunk->cookie.dmac_size -= totsize; 2004 } 2005 2006 /* 2007 * Initialise the specified Receive Producer (Buffer) Ring, using 2008 * the information in the <dma_area> descriptors that it contains 2009 * to set up all the other fields. This routine should be called 2010 * only once for each ring. 2011 */ 2012 static void 2013 bge_init_buff_ring(bge_t *bgep, uint64_t ring) 2014 { 2015 buff_ring_t *brp; 2016 bge_status_t *bsp; 2017 sw_rbd_t *srbdp; 2018 dma_area_t pbuf; 2019 uint32_t bufsize; 2020 uint32_t nslots; 2021 uint32_t slot; 2022 uint32_t split; 2023 2024 static bge_regno_t nic_ring_addrs[BGE_BUFF_RINGS_MAX] = { 2025 NIC_MEM_SHADOW_BUFF_STD, 2026 NIC_MEM_SHADOW_BUFF_JUMBO, 2027 NIC_MEM_SHADOW_BUFF_MINI 2028 }; 2029 static bge_regno_t mailbox_regs[BGE_BUFF_RINGS_MAX] = { 2030 RECV_STD_PROD_INDEX_REG, 2031 RECV_JUMBO_PROD_INDEX_REG, 2032 RECV_MINI_PROD_INDEX_REG 2033 }; 2034 static bge_regno_t buff_cons_xref[BGE_BUFF_RINGS_MAX] = { 2035 STATUS_STD_BUFF_CONS_INDEX, 2036 STATUS_JUMBO_BUFF_CONS_INDEX, 2037 STATUS_MINI_BUFF_CONS_INDEX 2038 }; 2039 2040 BGE_TRACE(("bge_init_buff_ring($%p, %d)", 2041 (void *)bgep, ring)); 2042 2043 brp = &bgep->buff[ring]; 2044 nslots = brp->desc.nslots; 2045 ASSERT(brp->buf[0].nslots == nslots/BGE_SPLIT); 2046 bufsize = brp->buf[0].size; 2047 2048 /* 2049 * Set up the copy of the h/w RCB 2050 * 2051 * Note: unlike Send & Receive Return Rings, (where the max_len 2052 * field holds the number of slots), in a Receive Buffer Ring 2053 * this field indicates the size of each buffer in the ring. 2054 */ 2055 brp->hw_rcb.host_ring_addr = brp->desc.cookie.dmac_laddress; 2056 brp->hw_rcb.max_len = (uint16_t)bufsize; 2057 brp->hw_rcb.flags = nslots > 0 ? 0 : RCB_FLAG_RING_DISABLED; 2058 brp->hw_rcb.nic_ring_addr = nic_ring_addrs[ring]; 2059 2060 /* 2061 * Other one-off initialisation of per-ring data 2062 */ 2063 brp->bgep = bgep; 2064 bsp = DMA_VPTR(bgep->status_block); 2065 brp->cons_index_p = &bsp->buff_cons_index[buff_cons_xref[ring]]; 2066 brp->chip_mbx_reg = mailbox_regs[ring]; 2067 mutex_init(brp->rf_lock, NULL, MUTEX_DRIVER, 2068 DDI_INTR_PRI(bgep->intr_pri)); 2069 2070 /* 2071 * Allocate the array of s/w Receive Buffer Descriptors 2072 */ 2073 srbdp = kmem_zalloc(nslots*sizeof (*srbdp), KM_SLEEP); 2074 brp->sw_rbds = srbdp; 2075 2076 /* 2077 * Now initialise each array element once and for all 2078 */ 2079 for (split = 0; split < BGE_SPLIT; ++split) { 2080 pbuf = brp->buf[split]; 2081 for (slot = 0; slot < nslots/BGE_SPLIT; ++srbdp, ++slot) 2082 bge_slice_chunk(&srbdp->pbuf, &pbuf, 1, bufsize); 2083 ASSERT(pbuf.alength == 0); 2084 } 2085 } 2086 2087 /* 2088 * Clean up initialisation done above before the memory is freed 2089 */ 2090 static void 2091 bge_fini_buff_ring(bge_t *bgep, uint64_t ring) 2092 { 2093 buff_ring_t *brp; 2094 sw_rbd_t *srbdp; 2095 2096 BGE_TRACE(("bge_fini_buff_ring($%p, %d)", 2097 (void *)bgep, ring)); 2098 2099 brp = &bgep->buff[ring]; 2100 srbdp = brp->sw_rbds; 2101 kmem_free(srbdp, brp->desc.nslots*sizeof (*srbdp)); 2102 2103 mutex_destroy(brp->rf_lock); 2104 } 2105 2106 /* 2107 * Initialise the specified Receive (Return) Ring, using the 2108 * information in the <dma_area> descriptors that it contains 2109 * to set up all the other fields. This routine should be called 2110 * only once for each ring. 2111 */ 2112 static void 2113 bge_init_recv_ring(bge_t *bgep, uint64_t ring) 2114 { 2115 recv_ring_t *rrp; 2116 bge_status_t *bsp; 2117 uint32_t nslots; 2118 2119 BGE_TRACE(("bge_init_recv_ring($%p, %d)", 2120 (void *)bgep, ring)); 2121 2122 /* 2123 * The chip architecture requires that receive return rings have 2124 * 512 or 1024 or 2048 elements per ring. See 570X-PG108-R page 103. 2125 */ 2126 rrp = &bgep->recv[ring]; 2127 nslots = rrp->desc.nslots; 2128 ASSERT(nslots == 0 || nslots == 512 || 2129 nslots == 1024 || nslots == 2048); 2130 2131 /* 2132 * Set up the copy of the h/w RCB 2133 */ 2134 rrp->hw_rcb.host_ring_addr = rrp->desc.cookie.dmac_laddress; 2135 rrp->hw_rcb.max_len = (uint16_t)nslots; 2136 rrp->hw_rcb.flags = nslots > 0 ? 0 : RCB_FLAG_RING_DISABLED; 2137 rrp->hw_rcb.nic_ring_addr = 0; 2138 2139 /* 2140 * Other one-off initialisation of per-ring data 2141 */ 2142 rrp->bgep = bgep; 2143 bsp = DMA_VPTR(bgep->status_block); 2144 rrp->prod_index_p = RECV_INDEX_P(bsp, ring); 2145 rrp->chip_mbx_reg = RECV_RING_CONS_INDEX_REG(ring); 2146 mutex_init(rrp->rx_lock, NULL, MUTEX_DRIVER, 2147 DDI_INTR_PRI(bgep->intr_pri)); 2148 } 2149 2150 2151 /* 2152 * Clean up initialisation done above before the memory is freed 2153 */ 2154 static void 2155 bge_fini_recv_ring(bge_t *bgep, uint64_t ring) 2156 { 2157 recv_ring_t *rrp; 2158 2159 BGE_TRACE(("bge_fini_recv_ring($%p, %d)", 2160 (void *)bgep, ring)); 2161 2162 rrp = &bgep->recv[ring]; 2163 if (rrp->rx_softint) 2164 ddi_remove_softintr(rrp->rx_softint); 2165 mutex_destroy(rrp->rx_lock); 2166 } 2167 2168 /* 2169 * Initialise the specified Send Ring, using the information in the 2170 * <dma_area> descriptors that it contains to set up all the other 2171 * fields. This routine should be called only once for each ring. 2172 */ 2173 static void 2174 bge_init_send_ring(bge_t *bgep, uint64_t ring) 2175 { 2176 send_ring_t *srp; 2177 bge_status_t *bsp; 2178 sw_sbd_t *ssbdp; 2179 dma_area_t desc; 2180 dma_area_t pbuf; 2181 uint32_t nslots; 2182 uint32_t slot; 2183 uint32_t split; 2184 sw_txbuf_t *txbuf; 2185 2186 BGE_TRACE(("bge_init_send_ring($%p, %d)", 2187 (void *)bgep, ring)); 2188 2189 /* 2190 * The chip architecture requires that host-based send rings 2191 * have 512 elements per ring. See 570X-PG102-R page 56. 2192 */ 2193 srp = &bgep->send[ring]; 2194 nslots = srp->desc.nslots; 2195 ASSERT(nslots == 0 || nslots == 512); 2196 2197 /* 2198 * Set up the copy of the h/w RCB 2199 */ 2200 srp->hw_rcb.host_ring_addr = srp->desc.cookie.dmac_laddress; 2201 srp->hw_rcb.max_len = (uint16_t)nslots; 2202 srp->hw_rcb.flags = nslots > 0 ? 0 : RCB_FLAG_RING_DISABLED; 2203 srp->hw_rcb.nic_ring_addr = NIC_MEM_SHADOW_SEND_RING(ring, nslots); 2204 2205 /* 2206 * Other one-off initialisation of per-ring data 2207 */ 2208 srp->bgep = bgep; 2209 bsp = DMA_VPTR(bgep->status_block); 2210 srp->cons_index_p = SEND_INDEX_P(bsp, ring); 2211 srp->chip_mbx_reg = SEND_RING_HOST_INDEX_REG(ring); 2212 mutex_init(srp->tx_lock, NULL, MUTEX_DRIVER, 2213 DDI_INTR_PRI(bgep->intr_pri)); 2214 mutex_init(srp->txbuf_lock, NULL, MUTEX_DRIVER, 2215 DDI_INTR_PRI(bgep->intr_pri)); 2216 mutex_init(srp->freetxbuf_lock, NULL, MUTEX_DRIVER, 2217 DDI_INTR_PRI(bgep->intr_pri)); 2218 mutex_init(srp->tc_lock, NULL, MUTEX_DRIVER, 2219 DDI_INTR_PRI(bgep->intr_pri)); 2220 if (nslots == 0) 2221 return; 2222 2223 /* 2224 * Allocate the array of s/w Send Buffer Descriptors 2225 */ 2226 ssbdp = kmem_zalloc(nslots*sizeof (*ssbdp), KM_SLEEP); 2227 txbuf = kmem_zalloc(BGE_SEND_BUF_MAX*sizeof (*txbuf), KM_SLEEP); 2228 srp->txbuf_head = 2229 kmem_zalloc(BGE_SEND_BUF_MAX*sizeof (bge_queue_item_t), KM_SLEEP); 2230 srp->pktp = kmem_zalloc(BGE_SEND_BUF_MAX*sizeof (send_pkt_t), KM_SLEEP); 2231 srp->sw_sbds = ssbdp; 2232 srp->txbuf = txbuf; 2233 srp->tx_buffers = BGE_SEND_BUF_NUM; 2234 srp->tx_buffers_low = srp->tx_buffers / 4; 2235 if (bgep->chipid.snd_buff_size > BGE_SEND_BUFF_SIZE_DEFAULT) 2236 srp->tx_array_max = BGE_SEND_BUF_ARRAY_JUMBO; 2237 else 2238 srp->tx_array_max = BGE_SEND_BUF_ARRAY; 2239 srp->tx_array = 1; 2240 2241 /* 2242 * Chunk tx desc area 2243 */ 2244 desc = srp->desc; 2245 for (slot = 0; slot < nslots; ++ssbdp, ++slot) { 2246 bge_slice_chunk(&ssbdp->desc, &desc, 1, 2247 sizeof (bge_sbd_t)); 2248 } 2249 ASSERT(desc.alength == 0); 2250 2251 /* 2252 * Chunk tx buffer area 2253 */ 2254 for (split = 0; split < BGE_SPLIT; ++split) { 2255 pbuf = srp->buf[0][split]; 2256 for (slot = 0; slot < BGE_SEND_BUF_NUM/BGE_SPLIT; ++slot) { 2257 bge_slice_chunk(&txbuf->buf, &pbuf, 1, 2258 bgep->chipid.snd_buff_size); 2259 txbuf++; 2260 } 2261 ASSERT(pbuf.alength == 0); 2262 } 2263 } 2264 2265 /* 2266 * Clean up initialisation done above before the memory is freed 2267 */ 2268 static void 2269 bge_fini_send_ring(bge_t *bgep, uint64_t ring) 2270 { 2271 send_ring_t *srp; 2272 uint32_t array; 2273 uint32_t split; 2274 uint32_t nslots; 2275 2276 BGE_TRACE(("bge_fini_send_ring($%p, %d)", 2277 (void *)bgep, ring)); 2278 2279 srp = &bgep->send[ring]; 2280 mutex_destroy(srp->tc_lock); 2281 mutex_destroy(srp->freetxbuf_lock); 2282 mutex_destroy(srp->txbuf_lock); 2283 mutex_destroy(srp->tx_lock); 2284 nslots = srp->desc.nslots; 2285 if (nslots == 0) 2286 return; 2287 2288 for (array = 1; array < srp->tx_array; ++array) 2289 for (split = 0; split < BGE_SPLIT; ++split) 2290 bge_free_dma_mem(&srp->buf[array][split]); 2291 kmem_free(srp->sw_sbds, nslots*sizeof (*srp->sw_sbds)); 2292 kmem_free(srp->txbuf_head, BGE_SEND_BUF_MAX*sizeof (*srp->txbuf_head)); 2293 kmem_free(srp->txbuf, BGE_SEND_BUF_MAX*sizeof (*srp->txbuf)); 2294 kmem_free(srp->pktp, BGE_SEND_BUF_MAX*sizeof (*srp->pktp)); 2295 srp->sw_sbds = NULL; 2296 srp->txbuf_head = NULL; 2297 srp->txbuf = NULL; 2298 srp->pktp = NULL; 2299 } 2300 2301 /* 2302 * Initialise all transmit, receive, and buffer rings. 2303 */ 2304 void 2305 bge_init_rings(bge_t *bgep) 2306 { 2307 uint32_t ring; 2308 2309 BGE_TRACE(("bge_init_rings($%p)", (void *)bgep)); 2310 2311 /* 2312 * Perform one-off initialisation of each ring ... 2313 */ 2314 for (ring = 0; ring < BGE_SEND_RINGS_MAX; ++ring) 2315 bge_init_send_ring(bgep, ring); 2316 for (ring = 0; ring < BGE_RECV_RINGS_MAX; ++ring) 2317 bge_init_recv_ring(bgep, ring); 2318 for (ring = 0; ring < BGE_BUFF_RINGS_MAX; ++ring) 2319 bge_init_buff_ring(bgep, ring); 2320 } 2321 2322 /* 2323 * Undo the work of bge_init_rings() above before the memory is freed 2324 */ 2325 void 2326 bge_fini_rings(bge_t *bgep) 2327 { 2328 uint32_t ring; 2329 2330 BGE_TRACE(("bge_fini_rings($%p)", (void *)bgep)); 2331 2332 for (ring = 0; ring < BGE_BUFF_RINGS_MAX; ++ring) 2333 bge_fini_buff_ring(bgep, ring); 2334 for (ring = 0; ring < BGE_RECV_RINGS_MAX; ++ring) 2335 bge_fini_recv_ring(bgep, ring); 2336 for (ring = 0; ring < BGE_SEND_RINGS_MAX; ++ring) 2337 bge_fini_send_ring(bgep, ring); 2338 } 2339 2340 /* 2341 * Called from the bge_m_stop() to free the tx buffers which are 2342 * allocated from the tx process. 2343 */ 2344 void 2345 bge_free_txbuf_arrays(send_ring_t *srp) 2346 { 2347 uint32_t array; 2348 uint32_t split; 2349 2350 ASSERT(mutex_owned(srp->tx_lock)); 2351 2352 /* 2353 * Free the extra tx buffer DMA area 2354 */ 2355 for (array = 1; array < srp->tx_array; ++array) 2356 for (split = 0; split < BGE_SPLIT; ++split) 2357 bge_free_dma_mem(&srp->buf[array][split]); 2358 2359 /* 2360 * Restore initial tx buffer numbers 2361 */ 2362 srp->tx_array = 1; 2363 srp->tx_buffers = BGE_SEND_BUF_NUM; 2364 srp->tx_buffers_low = srp->tx_buffers / 4; 2365 srp->tx_flow = 0; 2366 bzero(srp->pktp, BGE_SEND_BUF_MAX * sizeof (*srp->pktp)); 2367 } 2368 2369 /* 2370 * Called from tx process to allocate more tx buffers 2371 */ 2372 bge_queue_item_t * 2373 bge_alloc_txbuf_array(bge_t *bgep, send_ring_t *srp) 2374 { 2375 bge_queue_t *txbuf_queue; 2376 bge_queue_item_t *txbuf_item_last; 2377 bge_queue_item_t *txbuf_item; 2378 bge_queue_item_t *txbuf_item_rtn; 2379 sw_txbuf_t *txbuf; 2380 dma_area_t area; 2381 size_t txbuffsize; 2382 uint32_t slot; 2383 uint32_t array; 2384 uint32_t split; 2385 uint32_t err; 2386 2387 ASSERT(mutex_owned(srp->tx_lock)); 2388 2389 array = srp->tx_array; 2390 if (array >= srp->tx_array_max) 2391 return (NULL); 2392 2393 /* 2394 * Allocate memory & handles for TX buffers 2395 */ 2396 txbuffsize = BGE_SEND_BUF_NUM*bgep->chipid.snd_buff_size; 2397 ASSERT((txbuffsize % BGE_SPLIT) == 0); 2398 for (split = 0; split < BGE_SPLIT; ++split) { 2399 err = bge_alloc_dma_mem(bgep, txbuffsize/BGE_SPLIT, 2400 &bge_data_accattr, DDI_DMA_WRITE | BGE_DMA_MODE, 2401 &srp->buf[array][split]); 2402 if (err != DDI_SUCCESS) { 2403 /* Free the last already allocated OK chunks */ 2404 for (slot = 0; slot <= split; ++slot) 2405 bge_free_dma_mem(&srp->buf[array][slot]); 2406 srp->tx_alloc_fail++; 2407 return (NULL); 2408 } 2409 } 2410 2411 /* 2412 * Chunk tx buffer area 2413 */ 2414 txbuf = srp->txbuf + array*BGE_SEND_BUF_NUM; 2415 for (split = 0; split < BGE_SPLIT; ++split) { 2416 area = srp->buf[array][split]; 2417 for (slot = 0; slot < BGE_SEND_BUF_NUM/BGE_SPLIT; ++slot) { 2418 bge_slice_chunk(&txbuf->buf, &area, 1, 2419 bgep->chipid.snd_buff_size); 2420 txbuf++; 2421 } 2422 } 2423 2424 /* 2425 * Add above buffers to the tx buffer pop queue 2426 */ 2427 txbuf_item = srp->txbuf_head + array*BGE_SEND_BUF_NUM; 2428 txbuf = srp->txbuf + array*BGE_SEND_BUF_NUM; 2429 txbuf_item_last = NULL; 2430 for (slot = 0; slot < BGE_SEND_BUF_NUM; ++slot) { 2431 txbuf_item->item = txbuf; 2432 txbuf_item->next = txbuf_item_last; 2433 txbuf_item_last = txbuf_item; 2434 txbuf++; 2435 txbuf_item++; 2436 } 2437 txbuf_item = srp->txbuf_head + array*BGE_SEND_BUF_NUM; 2438 txbuf_item_rtn = txbuf_item; 2439 txbuf_item++; 2440 txbuf_queue = srp->txbuf_pop_queue; 2441 mutex_enter(txbuf_queue->lock); 2442 txbuf_item->next = txbuf_queue->head; 2443 txbuf_queue->head = txbuf_item_last; 2444 txbuf_queue->count += BGE_SEND_BUF_NUM - 1; 2445 mutex_exit(txbuf_queue->lock); 2446 2447 srp->tx_array++; 2448 srp->tx_buffers += BGE_SEND_BUF_NUM; 2449 srp->tx_buffers_low = srp->tx_buffers / 4; 2450 2451 return (txbuf_item_rtn); 2452 } 2453 2454 /* 2455 * This function allocates all the transmit and receive buffers 2456 * and descriptors, in four chunks. 2457 */ 2458 int 2459 bge_alloc_bufs(bge_t *bgep) 2460 { 2461 dma_area_t area; 2462 size_t rxbuffsize; 2463 size_t txbuffsize; 2464 size_t rxbuffdescsize; 2465 size_t rxdescsize; 2466 size_t txdescsize; 2467 uint32_t ring; 2468 uint32_t rx_rings = bgep->chipid.rx_rings; 2469 uint32_t tx_rings = bgep->chipid.tx_rings; 2470 int split; 2471 int err; 2472 2473 BGE_TRACE(("bge_alloc_bufs($%p)", 2474 (void *)bgep)); 2475 2476 rxbuffsize = BGE_STD_SLOTS_USED*bgep->chipid.std_buf_size; 2477 rxbuffsize += bgep->chipid.jumbo_slots*bgep->chipid.recv_jumbo_size; 2478 rxbuffsize += BGE_MINI_SLOTS_USED*BGE_MINI_BUFF_SIZE; 2479 2480 txbuffsize = BGE_SEND_BUF_NUM*bgep->chipid.snd_buff_size; 2481 txbuffsize *= tx_rings; 2482 2483 rxdescsize = rx_rings*bgep->chipid.recv_slots; 2484 rxdescsize *= sizeof (bge_rbd_t); 2485 2486 rxbuffdescsize = BGE_STD_SLOTS_USED; 2487 rxbuffdescsize += bgep->chipid.jumbo_slots; 2488 rxbuffdescsize += BGE_MINI_SLOTS_USED; 2489 rxbuffdescsize *= sizeof (bge_rbd_t); 2490 2491 txdescsize = tx_rings*BGE_SEND_SLOTS_USED; 2492 txdescsize *= sizeof (bge_sbd_t); 2493 txdescsize += sizeof (bge_statistics_t); 2494 txdescsize += sizeof (bge_status_t); 2495 txdescsize += BGE_STATUS_PADDING; 2496 2497 /* 2498 * Enable PCI relaxed ordering only for RX/TX data buffers 2499 */ 2500 if (bge_relaxed_ordering) 2501 dma_attr.dma_attr_flags |= DDI_DMA_RELAXED_ORDERING; 2502 2503 /* 2504 * Allocate memory & handles for RX buffers 2505 */ 2506 ASSERT((rxbuffsize % BGE_SPLIT) == 0); 2507 for (split = 0; split < BGE_SPLIT; ++split) { 2508 err = bge_alloc_dma_mem(bgep, rxbuffsize/BGE_SPLIT, 2509 &bge_data_accattr, DDI_DMA_READ | BGE_DMA_MODE, 2510 &bgep->rx_buff[split]); 2511 if (err != DDI_SUCCESS) 2512 return (DDI_FAILURE); 2513 } 2514 2515 /* 2516 * Allocate memory & handles for TX buffers 2517 */ 2518 ASSERT((txbuffsize % BGE_SPLIT) == 0); 2519 for (split = 0; split < BGE_SPLIT; ++split) { 2520 err = bge_alloc_dma_mem(bgep, txbuffsize/BGE_SPLIT, 2521 &bge_data_accattr, DDI_DMA_WRITE | BGE_DMA_MODE, 2522 &bgep->tx_buff[split]); 2523 if (err != DDI_SUCCESS) 2524 return (DDI_FAILURE); 2525 } 2526 2527 dma_attr.dma_attr_flags &= ~DDI_DMA_RELAXED_ORDERING; 2528 2529 /* 2530 * Allocate memory & handles for receive return rings 2531 */ 2532 ASSERT((rxdescsize % rx_rings) == 0); 2533 for (split = 0; split < rx_rings; ++split) { 2534 err = bge_alloc_dma_mem(bgep, rxdescsize/rx_rings, 2535 &bge_desc_accattr, DDI_DMA_RDWR | DDI_DMA_CONSISTENT, 2536 &bgep->rx_desc[split]); 2537 if (err != DDI_SUCCESS) 2538 return (DDI_FAILURE); 2539 } 2540 2541 /* 2542 * Allocate memory & handles for buffer (producer) descriptor rings 2543 */ 2544 err = bge_alloc_dma_mem(bgep, rxbuffdescsize, &bge_desc_accattr, 2545 DDI_DMA_RDWR | DDI_DMA_CONSISTENT, &bgep->rx_desc[split]); 2546 if (err != DDI_SUCCESS) 2547 return (DDI_FAILURE); 2548 2549 /* 2550 * Allocate memory & handles for TX descriptor rings, 2551 * status block, and statistics area 2552 */ 2553 err = bge_alloc_dma_mem(bgep, txdescsize, &bge_desc_accattr, 2554 DDI_DMA_RDWR | DDI_DMA_CONSISTENT, &bgep->tx_desc); 2555 if (err != DDI_SUCCESS) 2556 return (DDI_FAILURE); 2557 2558 /* 2559 * Now carve up each of the allocated areas ... 2560 */ 2561 for (split = 0; split < BGE_SPLIT; ++split) { 2562 area = bgep->rx_buff[split]; 2563 bge_slice_chunk(&bgep->buff[BGE_STD_BUFF_RING].buf[split], 2564 &area, BGE_STD_SLOTS_USED/BGE_SPLIT, 2565 bgep->chipid.std_buf_size); 2566 bge_slice_chunk(&bgep->buff[BGE_JUMBO_BUFF_RING].buf[split], 2567 &area, bgep->chipid.jumbo_slots/BGE_SPLIT, 2568 bgep->chipid.recv_jumbo_size); 2569 bge_slice_chunk(&bgep->buff[BGE_MINI_BUFF_RING].buf[split], 2570 &area, BGE_MINI_SLOTS_USED/BGE_SPLIT, 2571 BGE_MINI_BUFF_SIZE); 2572 } 2573 2574 for (split = 0; split < BGE_SPLIT; ++split) { 2575 area = bgep->tx_buff[split]; 2576 for (ring = 0; ring < tx_rings; ++ring) 2577 bge_slice_chunk(&bgep->send[ring].buf[0][split], 2578 &area, BGE_SEND_BUF_NUM/BGE_SPLIT, 2579 bgep->chipid.snd_buff_size); 2580 for (; ring < BGE_SEND_RINGS_MAX; ++ring) 2581 bge_slice_chunk(&bgep->send[ring].buf[0][split], 2582 &area, 0, bgep->chipid.snd_buff_size); 2583 } 2584 2585 for (ring = 0; ring < rx_rings; ++ring) 2586 bge_slice_chunk(&bgep->recv[ring].desc, &bgep->rx_desc[ring], 2587 bgep->chipid.recv_slots, sizeof (bge_rbd_t)); 2588 2589 area = bgep->rx_desc[rx_rings]; 2590 for (; ring < BGE_RECV_RINGS_MAX; ++ring) 2591 bge_slice_chunk(&bgep->recv[ring].desc, &area, 2592 0, sizeof (bge_rbd_t)); 2593 bge_slice_chunk(&bgep->buff[BGE_STD_BUFF_RING].desc, &area, 2594 BGE_STD_SLOTS_USED, sizeof (bge_rbd_t)); 2595 bge_slice_chunk(&bgep->buff[BGE_JUMBO_BUFF_RING].desc, &area, 2596 bgep->chipid.jumbo_slots, sizeof (bge_rbd_t)); 2597 bge_slice_chunk(&bgep->buff[BGE_MINI_BUFF_RING].desc, &area, 2598 BGE_MINI_SLOTS_USED, sizeof (bge_rbd_t)); 2599 ASSERT(area.alength == 0); 2600 2601 area = bgep->tx_desc; 2602 for (ring = 0; ring < tx_rings; ++ring) 2603 bge_slice_chunk(&bgep->send[ring].desc, &area, 2604 BGE_SEND_SLOTS_USED, sizeof (bge_sbd_t)); 2605 for (; ring < BGE_SEND_RINGS_MAX; ++ring) 2606 bge_slice_chunk(&bgep->send[ring].desc, &area, 2607 0, sizeof (bge_sbd_t)); 2608 bge_slice_chunk(&bgep->statistics, &area, 1, sizeof (bge_statistics_t)); 2609 bge_slice_chunk(&bgep->status_block, &area, 1, sizeof (bge_status_t)); 2610 ASSERT(area.alength == BGE_STATUS_PADDING); 2611 DMA_ZERO(bgep->status_block); 2612 2613 return (DDI_SUCCESS); 2614 } 2615 2616 /* 2617 * This routine frees the transmit and receive buffers and descriptors. 2618 * Make sure the chip is stopped before calling it! 2619 */ 2620 void 2621 bge_free_bufs(bge_t *bgep) 2622 { 2623 int split; 2624 2625 BGE_TRACE(("bge_free_bufs($%p)", 2626 (void *)bgep)); 2627 2628 bge_free_dma_mem(&bgep->tx_desc); 2629 for (split = 0; split < BGE_RECV_RINGS_SPLIT; ++split) 2630 bge_free_dma_mem(&bgep->rx_desc[split]); 2631 for (split = 0; split < BGE_SPLIT; ++split) 2632 bge_free_dma_mem(&bgep->tx_buff[split]); 2633 for (split = 0; split < BGE_SPLIT; ++split) 2634 bge_free_dma_mem(&bgep->rx_buff[split]); 2635 } 2636 2637 /* 2638 * Determine (initial) MAC address ("BIA") to use for this interface 2639 */ 2640 2641 static void 2642 bge_find_mac_address(bge_t *bgep, chip_id_t *cidp) 2643 { 2644 struct ether_addr sysaddr; 2645 char propbuf[8]; /* "true" or "false", plus NUL */ 2646 uchar_t *bytes; 2647 int *ints; 2648 uint_t nelts; 2649 int err; 2650 2651 BGE_TRACE(("bge_find_mac_address($%p)", 2652 (void *)bgep)); 2653 2654 BGE_DEBUG(("bge_find_mac_address: hw_mac_addr %012llx, => %s (%sset)", 2655 cidp->hw_mac_addr, 2656 ether_sprintf((void *)cidp->vendor_addr.addr), 2657 cidp->vendor_addr.set ? "" : "not ")); 2658 2659 /* 2660 * The "vendor's factory-set address" may already have 2661 * been extracted from the chip, but if the property 2662 * "local-mac-address" is set we use that instead. It 2663 * will normally be set by OBP, but it could also be 2664 * specified in a .conf file(!) 2665 * 2666 * There doesn't seem to be a way to define byte-array 2667 * properties in a .conf, so we check whether it looks 2668 * like an array of 6 ints instead. 2669 * 2670 * Then, we check whether it looks like an array of 6 2671 * bytes (which it should, if OBP set it). If we can't 2672 * make sense of it either way, we'll ignore it. 2673 */ 2674 err = ddi_prop_lookup_int_array(DDI_DEV_T_ANY, bgep->devinfo, 2675 DDI_PROP_DONTPASS, localmac_propname, &ints, &nelts); 2676 if (err == DDI_PROP_SUCCESS) { 2677 if (nelts == ETHERADDRL) { 2678 while (nelts--) 2679 cidp->vendor_addr.addr[nelts] = ints[nelts]; 2680 cidp->vendor_addr.set = B_TRUE; 2681 } 2682 ddi_prop_free(ints); 2683 } 2684 2685 err = ddi_prop_lookup_byte_array(DDI_DEV_T_ANY, bgep->devinfo, 2686 DDI_PROP_DONTPASS, localmac_propname, &bytes, &nelts); 2687 if (err == DDI_PROP_SUCCESS) { 2688 if (nelts == ETHERADDRL) { 2689 while (nelts--) 2690 cidp->vendor_addr.addr[nelts] = bytes[nelts]; 2691 cidp->vendor_addr.set = B_TRUE; 2692 } 2693 ddi_prop_free(bytes); 2694 } 2695 2696 BGE_DEBUG(("bge_find_mac_address: +local %s (%sset)", 2697 ether_sprintf((void *)cidp->vendor_addr.addr), 2698 cidp->vendor_addr.set ? "" : "not ")); 2699 2700 /* 2701 * Look up the OBP property "local-mac-address?". Note that even 2702 * though its value is a string (which should be "true" or "false"), 2703 * it can't be decoded by ddi_prop_lookup_string(9F). So, we zero 2704 * the buffer first and then fetch the property as an untyped array; 2705 * this may or may not include a final NUL, but since there will 2706 * always be one left at the end of the buffer we can now treat it 2707 * as a string anyway. 2708 */ 2709 nelts = sizeof (propbuf); 2710 bzero(propbuf, nelts--); 2711 err = ddi_getlongprop_buf(DDI_DEV_T_ANY, bgep->devinfo, 2712 DDI_PROP_CANSLEEP, localmac_boolname, propbuf, (int *)&nelts); 2713 2714 /* 2715 * Now, if the address still isn't set from the hardware (SEEPROM) 2716 * or the OBP or .conf property, OR if the user has foolishly set 2717 * 'local-mac-address? = false', use "the system address" instead 2718 * (but only if it's non-null i.e. has been set from the IDPROM). 2719 */ 2720 if (cidp->vendor_addr.set == B_FALSE || strcmp(propbuf, "false") == 0) 2721 if (localetheraddr(NULL, &sysaddr) != 0) { 2722 ethaddr_copy(&sysaddr, cidp->vendor_addr.addr); 2723 cidp->vendor_addr.set = B_TRUE; 2724 } 2725 2726 BGE_DEBUG(("bge_find_mac_address: +system %s (%sset)", 2727 ether_sprintf((void *)cidp->vendor_addr.addr), 2728 cidp->vendor_addr.set ? "" : "not ")); 2729 2730 /* 2731 * Finally(!), if there's a valid "mac-address" property (created 2732 * if we netbooted from this interface), we must use this instead 2733 * of any of the above to ensure that the NFS/install server doesn't 2734 * get confused by the address changing as Solaris takes over! 2735 */ 2736 err = ddi_prop_lookup_byte_array(DDI_DEV_T_ANY, bgep->devinfo, 2737 DDI_PROP_DONTPASS, macaddr_propname, &bytes, &nelts); 2738 if (err == DDI_PROP_SUCCESS) { 2739 if (nelts == ETHERADDRL) { 2740 while (nelts--) 2741 cidp->vendor_addr.addr[nelts] = bytes[nelts]; 2742 cidp->vendor_addr.set = B_TRUE; 2743 } 2744 ddi_prop_free(bytes); 2745 } 2746 2747 BGE_DEBUG(("bge_find_mac_address: =final %s (%sset)", 2748 ether_sprintf((void *)cidp->vendor_addr.addr), 2749 cidp->vendor_addr.set ? "" : "not ")); 2750 } 2751 2752 2753 /*ARGSUSED*/ 2754 int 2755 bge_check_acc_handle(bge_t *bgep, ddi_acc_handle_t handle) 2756 { 2757 ddi_fm_error_t de; 2758 2759 ddi_fm_acc_err_get(handle, &de, DDI_FME_VERSION); 2760 ddi_fm_acc_err_clear(handle, DDI_FME_VERSION); 2761 return (de.fme_status); 2762 } 2763 2764 /*ARGSUSED*/ 2765 int 2766 bge_check_dma_handle(bge_t *bgep, ddi_dma_handle_t handle) 2767 { 2768 ddi_fm_error_t de; 2769 2770 ASSERT(bgep->progress & PROGRESS_BUFS); 2771 ddi_fm_dma_err_get(handle, &de, DDI_FME_VERSION); 2772 return (de.fme_status); 2773 } 2774 2775 /* 2776 * The IO fault service error handling callback function 2777 */ 2778 /*ARGSUSED*/ 2779 static int 2780 bge_fm_error_cb(dev_info_t *dip, ddi_fm_error_t *err, const void *impl_data) 2781 { 2782 /* 2783 * as the driver can always deal with an error in any dma or 2784 * access handle, we can just return the fme_status value. 2785 */ 2786 pci_ereport_post(dip, err, NULL); 2787 return (err->fme_status); 2788 } 2789 2790 static void 2791 bge_fm_init(bge_t *bgep) 2792 { 2793 ddi_iblock_cookie_t iblk; 2794 2795 /* Only register with IO Fault Services if we have some capability */ 2796 if (bgep->fm_capabilities) { 2797 bge_reg_accattr.devacc_attr_access = DDI_FLAGERR_ACC; 2798 bge_desc_accattr.devacc_attr_access = DDI_FLAGERR_ACC; 2799 dma_attr.dma_attr_flags = DDI_DMA_FLAGERR; 2800 2801 /* Register capabilities with IO Fault Services */ 2802 ddi_fm_init(bgep->devinfo, &bgep->fm_capabilities, &iblk); 2803 2804 /* 2805 * Initialize pci ereport capabilities if ereport capable 2806 */ 2807 if (DDI_FM_EREPORT_CAP(bgep->fm_capabilities) || 2808 DDI_FM_ERRCB_CAP(bgep->fm_capabilities)) 2809 pci_ereport_setup(bgep->devinfo); 2810 2811 /* 2812 * Register error callback if error callback capable 2813 */ 2814 if (DDI_FM_ERRCB_CAP(bgep->fm_capabilities)) 2815 ddi_fm_handler_register(bgep->devinfo, 2816 bge_fm_error_cb, (void*) bgep); 2817 } else { 2818 /* 2819 * These fields have to be cleared of FMA if there are no 2820 * FMA capabilities at runtime. 2821 */ 2822 bge_reg_accattr.devacc_attr_access = DDI_DEFAULT_ACC; 2823 bge_desc_accattr.devacc_attr_access = DDI_DEFAULT_ACC; 2824 dma_attr.dma_attr_flags = 0; 2825 } 2826 } 2827 2828 static void 2829 bge_fm_fini(bge_t *bgep) 2830 { 2831 /* Only unregister FMA capabilities if we registered some */ 2832 if (bgep->fm_capabilities) { 2833 2834 /* 2835 * Release any resources allocated by pci_ereport_setup() 2836 */ 2837 if (DDI_FM_EREPORT_CAP(bgep->fm_capabilities) || 2838 DDI_FM_ERRCB_CAP(bgep->fm_capabilities)) 2839 pci_ereport_teardown(bgep->devinfo); 2840 2841 /* 2842 * Un-register error callback if error callback capable 2843 */ 2844 if (DDI_FM_ERRCB_CAP(bgep->fm_capabilities)) 2845 ddi_fm_handler_unregister(bgep->devinfo); 2846 2847 /* Unregister from IO Fault Services */ 2848 ddi_fm_fini(bgep->devinfo); 2849 } 2850 } 2851 2852 static void 2853 #ifdef BGE_IPMI_ASF 2854 bge_unattach(bge_t *bgep, uint_t asf_mode) 2855 #else 2856 bge_unattach(bge_t *bgep) 2857 #endif 2858 { 2859 BGE_TRACE(("bge_unattach($%p)", 2860 (void *)bgep)); 2861 2862 /* 2863 * Flag that no more activity may be initiated 2864 */ 2865 bgep->progress &= ~PROGRESS_READY; 2866 2867 /* 2868 * Quiesce the PHY and MAC (leave it reset but still powered). 2869 * Clean up and free all BGE data structures 2870 */ 2871 if (bgep->periodic_id != NULL) { 2872 ddi_periodic_delete(bgep->periodic_id); 2873 bgep->periodic_id = NULL; 2874 } 2875 if (bgep->progress & PROGRESS_KSTATS) 2876 bge_fini_kstats(bgep); 2877 if (bgep->progress & PROGRESS_PHY) 2878 bge_phys_reset(bgep); 2879 if (bgep->progress & PROGRESS_HWINT) { 2880 mutex_enter(bgep->genlock); 2881 #ifdef BGE_IPMI_ASF 2882 if (bge_chip_reset(bgep, B_FALSE, asf_mode) != DDI_SUCCESS) 2883 #else 2884 if (bge_chip_reset(bgep, B_FALSE) != DDI_SUCCESS) 2885 #endif 2886 ddi_fm_service_impact(bgep->devinfo, 2887 DDI_SERVICE_UNAFFECTED); 2888 #ifdef BGE_IPMI_ASF 2889 if (bgep->asf_enabled) { 2890 /* 2891 * This register has been overlaid. We restore its 2892 * initial value here. 2893 */ 2894 bge_nic_put32(bgep, BGE_NIC_DATA_SIG_ADDR, 2895 BGE_NIC_DATA_SIG); 2896 } 2897 #endif 2898 if (bge_check_acc_handle(bgep, bgep->cfg_handle) != DDI_FM_OK) 2899 ddi_fm_service_impact(bgep->devinfo, 2900 DDI_SERVICE_UNAFFECTED); 2901 if (bge_check_acc_handle(bgep, bgep->io_handle) != DDI_FM_OK) 2902 ddi_fm_service_impact(bgep->devinfo, 2903 DDI_SERVICE_UNAFFECTED); 2904 mutex_exit(bgep->genlock); 2905 } 2906 if (bgep->progress & PROGRESS_INTR) { 2907 bge_intr_disable(bgep); 2908 bge_fini_rings(bgep); 2909 } 2910 if (bgep->progress & PROGRESS_HWINT) { 2911 bge_rem_intrs(bgep); 2912 rw_destroy(bgep->errlock); 2913 mutex_destroy(bgep->softintrlock); 2914 mutex_destroy(bgep->genlock); 2915 } 2916 if (bgep->progress & PROGRESS_FACTOTUM) 2917 ddi_remove_softintr(bgep->factotum_id); 2918 if (bgep->progress & PROGRESS_RESCHED) 2919 ddi_remove_softintr(bgep->drain_id); 2920 if (bgep->progress & PROGRESS_BUFS) 2921 bge_free_bufs(bgep); 2922 if (bgep->progress & PROGRESS_REGS) 2923 ddi_regs_map_free(&bgep->io_handle); 2924 if (bgep->progress & PROGRESS_CFG) 2925 pci_config_teardown(&bgep->cfg_handle); 2926 2927 bge_fm_fini(bgep); 2928 2929 ddi_remove_minor_node(bgep->devinfo, NULL); 2930 kmem_free(bgep->pstats, sizeof (bge_statistics_reg_t)); 2931 kmem_free(bgep, sizeof (*bgep)); 2932 } 2933 2934 static int 2935 bge_resume(dev_info_t *devinfo) 2936 { 2937 bge_t *bgep; /* Our private data */ 2938 chip_id_t *cidp; 2939 chip_id_t chipid; 2940 2941 bgep = ddi_get_driver_private(devinfo); 2942 if (bgep == NULL) 2943 return (DDI_FAILURE); 2944 2945 /* 2946 * Refuse to resume if the data structures aren't consistent 2947 */ 2948 if (bgep->devinfo != devinfo) 2949 return (DDI_FAILURE); 2950 2951 #ifdef BGE_IPMI_ASF 2952 /* 2953 * Power management hasn't been supported in BGE now. If you 2954 * want to implement it, please add the ASF/IPMI related 2955 * code here. 2956 */ 2957 2958 #endif 2959 2960 /* 2961 * Read chip ID & set up config space command register(s) 2962 * Refuse to resume if the chip has changed its identity! 2963 */ 2964 cidp = &bgep->chipid; 2965 mutex_enter(bgep->genlock); 2966 bge_chip_cfg_init(bgep, &chipid, B_FALSE); 2967 if (bge_check_acc_handle(bgep, bgep->cfg_handle) != DDI_FM_OK) { 2968 ddi_fm_service_impact(bgep->devinfo, DDI_SERVICE_LOST); 2969 mutex_exit(bgep->genlock); 2970 return (DDI_FAILURE); 2971 } 2972 mutex_exit(bgep->genlock); 2973 if (chipid.vendor != cidp->vendor) 2974 return (DDI_FAILURE); 2975 if (chipid.device != cidp->device) 2976 return (DDI_FAILURE); 2977 if (chipid.revision != cidp->revision) 2978 return (DDI_FAILURE); 2979 if (chipid.asic_rev != cidp->asic_rev) 2980 return (DDI_FAILURE); 2981 2982 /* 2983 * All OK, reinitialise h/w & kick off GLD scheduling 2984 */ 2985 mutex_enter(bgep->genlock); 2986 if (bge_restart(bgep, B_TRUE) != DDI_SUCCESS) { 2987 (void) bge_check_acc_handle(bgep, bgep->cfg_handle); 2988 (void) bge_check_acc_handle(bgep, bgep->io_handle); 2989 ddi_fm_service_impact(bgep->devinfo, DDI_SERVICE_LOST); 2990 mutex_exit(bgep->genlock); 2991 return (DDI_FAILURE); 2992 } 2993 if (bge_check_acc_handle(bgep, bgep->cfg_handle) != DDI_FM_OK) { 2994 ddi_fm_service_impact(bgep->devinfo, DDI_SERVICE_LOST); 2995 mutex_exit(bgep->genlock); 2996 return (DDI_FAILURE); 2997 } 2998 if (bge_check_acc_handle(bgep, bgep->io_handle) != DDI_FM_OK) { 2999 ddi_fm_service_impact(bgep->devinfo, DDI_SERVICE_LOST); 3000 mutex_exit(bgep->genlock); 3001 return (DDI_FAILURE); 3002 } 3003 mutex_exit(bgep->genlock); 3004 return (DDI_SUCCESS); 3005 } 3006 3007 /* 3008 * attach(9E) -- Attach a device to the system 3009 * 3010 * Called once for each board successfully probed. 3011 */ 3012 static int 3013 bge_attach(dev_info_t *devinfo, ddi_attach_cmd_t cmd) 3014 { 3015 bge_t *bgep; /* Our private data */ 3016 mac_register_t *macp; 3017 chip_id_t *cidp; 3018 caddr_t regs; 3019 int instance; 3020 int err; 3021 int intr_types; 3022 #ifdef BGE_IPMI_ASF 3023 uint32_t mhcrValue; 3024 #ifdef __sparc 3025 uint16_t value16; 3026 #endif 3027 #ifdef BGE_NETCONSOLE 3028 int retval; 3029 #endif 3030 #endif 3031 3032 instance = ddi_get_instance(devinfo); 3033 3034 BGE_GTRACE(("bge_attach($%p, %d) instance %d", 3035 (void *)devinfo, cmd, instance)); 3036 BGE_BRKPT(NULL, "bge_attach"); 3037 3038 switch (cmd) { 3039 default: 3040 return (DDI_FAILURE); 3041 3042 case DDI_RESUME: 3043 return (bge_resume(devinfo)); 3044 3045 case DDI_ATTACH: 3046 break; 3047 } 3048 3049 bgep = kmem_zalloc(sizeof (*bgep), KM_SLEEP); 3050 bgep->pstats = kmem_zalloc(sizeof (bge_statistics_reg_t), KM_SLEEP); 3051 ddi_set_driver_private(devinfo, bgep); 3052 bgep->bge_guard = BGE_GUARD; 3053 bgep->devinfo = devinfo; 3054 bgep->param_drain_max = 64; 3055 bgep->param_msi_cnt = 0; 3056 bgep->param_loop_mode = 0; 3057 3058 /* 3059 * Initialize more fields in BGE private data 3060 */ 3061 bgep->debug = ddi_prop_get_int(DDI_DEV_T_ANY, devinfo, 3062 DDI_PROP_DONTPASS, debug_propname, bge_debug); 3063 (void) snprintf(bgep->ifname, sizeof (bgep->ifname), "%s%d", 3064 BGE_DRIVER_NAME, instance); 3065 3066 /* 3067 * Initialize for fma support 3068 */ 3069 bgep->fm_capabilities = ddi_prop_get_int(DDI_DEV_T_ANY, devinfo, 3070 DDI_PROP_DONTPASS, fm_cap, 3071 DDI_FM_EREPORT_CAPABLE | DDI_FM_ACCCHK_CAPABLE | 3072 DDI_FM_DMACHK_CAPABLE | DDI_FM_ERRCB_CAPABLE); 3073 BGE_DEBUG(("bgep->fm_capabilities = %d", bgep->fm_capabilities)); 3074 bge_fm_init(bgep); 3075 3076 /* 3077 * Look up the IOMMU's page size for DVMA mappings (must be 3078 * a power of 2) and convert to a mask. This can be used to 3079 * determine whether a message buffer crosses a page boundary. 3080 * Note: in 2s complement binary notation, if X is a power of 3081 * 2, then -X has the representation "11...1100...00". 3082 */ 3083 bgep->pagemask = dvma_pagesize(devinfo); 3084 ASSERT(ddi_ffs(bgep->pagemask) == ddi_fls(bgep->pagemask)); 3085 bgep->pagemask = -bgep->pagemask; 3086 3087 /* 3088 * Map config space registers 3089 * Read chip ID & set up config space command register(s) 3090 * 3091 * Note: this leaves the chip accessible by Memory Space 3092 * accesses, but with interrupts and Bus Mastering off. 3093 * This should ensure that nothing untoward will happen 3094 * if it has been left active by the (net-)bootloader. 3095 * We'll re-enable Bus Mastering once we've reset the chip, 3096 * and allow interrupts only when everything else is set up. 3097 */ 3098 err = pci_config_setup(devinfo, &bgep->cfg_handle); 3099 #ifdef BGE_IPMI_ASF 3100 #ifdef __sparc 3101 value16 = pci_config_get16(bgep->cfg_handle, PCI_CONF_COMM); 3102 value16 = value16 | (PCI_COMM_MAE | PCI_COMM_ME); 3103 pci_config_put16(bgep->cfg_handle, PCI_CONF_COMM, value16); 3104 mhcrValue = MHCR_ENABLE_INDIRECT_ACCESS | 3105 MHCR_ENABLE_TAGGED_STATUS_MODE | 3106 MHCR_MASK_INTERRUPT_MODE | 3107 MHCR_MASK_PCI_INT_OUTPUT | 3108 MHCR_CLEAR_INTERRUPT_INTA | 3109 MHCR_ENABLE_ENDIAN_WORD_SWAP | 3110 MHCR_ENABLE_ENDIAN_BYTE_SWAP; 3111 pci_config_put32(bgep->cfg_handle, PCI_CONF_BGE_MHCR, mhcrValue); 3112 bge_ind_put32(bgep, MEMORY_ARBITER_MODE_REG, 3113 bge_ind_get32(bgep, MEMORY_ARBITER_MODE_REG) | 3114 MEMORY_ARBITER_ENABLE); 3115 #else 3116 mhcrValue = pci_config_get32(bgep->cfg_handle, PCI_CONF_BGE_MHCR); 3117 #endif 3118 if (mhcrValue & MHCR_ENABLE_ENDIAN_WORD_SWAP) { 3119 bgep->asf_wordswapped = B_TRUE; 3120 } else { 3121 bgep->asf_wordswapped = B_FALSE; 3122 } 3123 bge_asf_get_config(bgep); 3124 #endif 3125 if (err != DDI_SUCCESS) { 3126 bge_problem(bgep, "pci_config_setup() failed"); 3127 goto attach_fail; 3128 } 3129 bgep->progress |= PROGRESS_CFG; 3130 cidp = &bgep->chipid; 3131 bzero(cidp, sizeof (*cidp)); 3132 bge_chip_cfg_init(bgep, cidp, B_FALSE); 3133 if (bge_check_acc_handle(bgep, bgep->cfg_handle) != DDI_FM_OK) { 3134 ddi_fm_service_impact(bgep->devinfo, DDI_SERVICE_LOST); 3135 goto attach_fail; 3136 } 3137 3138 #ifdef BGE_IPMI_ASF 3139 if (DEVICE_5721_SERIES_CHIPSETS(bgep) || 3140 DEVICE_5714_SERIES_CHIPSETS(bgep)) { 3141 bgep->asf_newhandshake = B_TRUE; 3142 } else { 3143 bgep->asf_newhandshake = B_FALSE; 3144 } 3145 #endif 3146 3147 /* 3148 * Update those parts of the chip ID derived from volatile 3149 * registers with the values seen by OBP (in case the chip 3150 * has been reset externally and therefore lost them). 3151 */ 3152 cidp->subven = ddi_prop_get_int(DDI_DEV_T_ANY, devinfo, 3153 DDI_PROP_DONTPASS, subven_propname, cidp->subven); 3154 cidp->subdev = ddi_prop_get_int(DDI_DEV_T_ANY, devinfo, 3155 DDI_PROP_DONTPASS, subdev_propname, cidp->subdev); 3156 cidp->clsize = ddi_prop_get_int(DDI_DEV_T_ANY, devinfo, 3157 DDI_PROP_DONTPASS, clsize_propname, cidp->clsize); 3158 cidp->latency = ddi_prop_get_int(DDI_DEV_T_ANY, devinfo, 3159 DDI_PROP_DONTPASS, latency_propname, cidp->latency); 3160 cidp->rx_rings = ddi_prop_get_int(DDI_DEV_T_ANY, devinfo, 3161 DDI_PROP_DONTPASS, rxrings_propname, cidp->rx_rings); 3162 cidp->tx_rings = ddi_prop_get_int(DDI_DEV_T_ANY, devinfo, 3163 DDI_PROP_DONTPASS, txrings_propname, cidp->tx_rings); 3164 3165 if (bge_jumbo_enable == B_TRUE) { 3166 cidp->default_mtu = ddi_prop_get_int(DDI_DEV_T_ANY, devinfo, 3167 DDI_PROP_DONTPASS, default_mtu, BGE_DEFAULT_MTU); 3168 if ((cidp->default_mtu < BGE_DEFAULT_MTU)|| 3169 (cidp->default_mtu > BGE_MAXIMUM_MTU)) { 3170 cidp->default_mtu = BGE_DEFAULT_MTU; 3171 } 3172 } 3173 /* 3174 * Map operating registers 3175 */ 3176 err = ddi_regs_map_setup(devinfo, BGE_PCI_OPREGS_RNUMBER, 3177 ®s, 0, 0, &bge_reg_accattr, &bgep->io_handle); 3178 if (err != DDI_SUCCESS) { 3179 bge_problem(bgep, "ddi_regs_map_setup() failed"); 3180 goto attach_fail; 3181 } 3182 bgep->io_regs = regs; 3183 bgep->progress |= PROGRESS_REGS; 3184 3185 /* 3186 * Characterise the device, so we know its requirements. 3187 * Then allocate the appropriate TX and RX descriptors & buffers. 3188 */ 3189 if (bge_chip_id_init(bgep) == EIO) { 3190 ddi_fm_service_impact(bgep->devinfo, DDI_SERVICE_LOST); 3191 goto attach_fail; 3192 } 3193 3194 3195 err = bge_alloc_bufs(bgep); 3196 if (err != DDI_SUCCESS) { 3197 bge_problem(bgep, "DMA buffer allocation failed"); 3198 goto attach_fail; 3199 } 3200 bgep->progress |= PROGRESS_BUFS; 3201 3202 /* 3203 * Add the softint handlers: 3204 * 3205 * Both of these handlers are used to avoid restrictions on the 3206 * context and/or mutexes required for some operations. In 3207 * particular, the hardware interrupt handler and its subfunctions 3208 * can detect a number of conditions that we don't want to handle 3209 * in that context or with that set of mutexes held. So, these 3210 * softints are triggered instead: 3211 * 3212 * the <resched> softint is triggered if we have previously 3213 * had to refuse to send a packet because of resource shortage 3214 * (we've run out of transmit buffers), but the send completion 3215 * interrupt handler has now detected that more buffers have 3216 * become available. 3217 * 3218 * the <factotum> is triggered if the h/w interrupt handler 3219 * sees the <link state changed> or <error> bits in the status 3220 * block. It's also triggered periodically to poll the link 3221 * state, just in case we aren't getting link status change 3222 * interrupts ... 3223 */ 3224 err = ddi_add_softintr(devinfo, DDI_SOFTINT_LOW, &bgep->drain_id, 3225 NULL, NULL, bge_send_drain, (caddr_t)bgep); 3226 if (err != DDI_SUCCESS) { 3227 bge_problem(bgep, "ddi_add_softintr() failed"); 3228 goto attach_fail; 3229 } 3230 bgep->progress |= PROGRESS_RESCHED; 3231 err = ddi_add_softintr(devinfo, DDI_SOFTINT_LOW, &bgep->factotum_id, 3232 NULL, NULL, bge_chip_factotum, (caddr_t)bgep); 3233 if (err != DDI_SUCCESS) { 3234 bge_problem(bgep, "ddi_add_softintr() failed"); 3235 goto attach_fail; 3236 } 3237 bgep->progress |= PROGRESS_FACTOTUM; 3238 3239 /* Get supported interrupt types */ 3240 if (ddi_intr_get_supported_types(devinfo, &intr_types) != DDI_SUCCESS) { 3241 bge_error(bgep, "ddi_intr_get_supported_types failed\n"); 3242 3243 goto attach_fail; 3244 } 3245 3246 BGE_DEBUG(("%s: ddi_intr_get_supported_types() returned: %x", 3247 bgep->ifname, intr_types)); 3248 3249 if ((intr_types & DDI_INTR_TYPE_MSI) && bgep->chipid.msi_enabled) { 3250 if (bge_add_intrs(bgep, DDI_INTR_TYPE_MSI) != DDI_SUCCESS) { 3251 bge_error(bgep, "MSI registration failed, " 3252 "trying FIXED interrupt type\n"); 3253 } else { 3254 BGE_DEBUG(("%s: Using MSI interrupt type", 3255 bgep->ifname)); 3256 bgep->intr_type = DDI_INTR_TYPE_MSI; 3257 bgep->progress |= PROGRESS_HWINT; 3258 } 3259 } 3260 3261 if (!(bgep->progress & PROGRESS_HWINT) && 3262 (intr_types & DDI_INTR_TYPE_FIXED)) { 3263 if (bge_add_intrs(bgep, DDI_INTR_TYPE_FIXED) != DDI_SUCCESS) { 3264 bge_error(bgep, "FIXED interrupt " 3265 "registration failed\n"); 3266 goto attach_fail; 3267 } 3268 3269 BGE_DEBUG(("%s: Using FIXED interrupt type", bgep->ifname)); 3270 3271 bgep->intr_type = DDI_INTR_TYPE_FIXED; 3272 bgep->progress |= PROGRESS_HWINT; 3273 } 3274 3275 if (!(bgep->progress & PROGRESS_HWINT)) { 3276 bge_error(bgep, "No interrupts registered\n"); 3277 goto attach_fail; 3278 } 3279 3280 /* 3281 * Note that interrupts are not enabled yet as 3282 * mutex locks are not initialized. Initialize mutex locks. 3283 */ 3284 mutex_init(bgep->genlock, NULL, MUTEX_DRIVER, 3285 DDI_INTR_PRI(bgep->intr_pri)); 3286 mutex_init(bgep->softintrlock, NULL, MUTEX_DRIVER, 3287 DDI_INTR_PRI(bgep->intr_pri)); 3288 rw_init(bgep->errlock, NULL, RW_DRIVER, 3289 DDI_INTR_PRI(bgep->intr_pri)); 3290 3291 /* 3292 * Initialize rings. 3293 */ 3294 bge_init_rings(bgep); 3295 3296 /* 3297 * Now that mutex locks are initialized, enable interrupts. 3298 */ 3299 bge_intr_enable(bgep); 3300 bgep->progress |= PROGRESS_INTR; 3301 3302 /* 3303 * Initialise link state variables 3304 * Stop, reset & reinitialise the chip. 3305 * Initialise the (internal) PHY. 3306 */ 3307 bgep->link_state = LINK_STATE_UNKNOWN; 3308 3309 mutex_enter(bgep->genlock); 3310 3311 /* 3312 * Reset chip & rings to initial state; also reset address 3313 * filtering, promiscuity, loopback mode. 3314 */ 3315 #ifdef BGE_IPMI_ASF 3316 #ifdef BGE_NETCONSOLE 3317 if (bge_reset(bgep, ASF_MODE_INIT) != DDI_SUCCESS) { 3318 #else 3319 if (bge_reset(bgep, ASF_MODE_SHUTDOWN) != DDI_SUCCESS) { 3320 #endif 3321 #else 3322 if (bge_reset(bgep) != DDI_SUCCESS) { 3323 #endif 3324 (void) bge_check_acc_handle(bgep, bgep->cfg_handle); 3325 (void) bge_check_acc_handle(bgep, bgep->io_handle); 3326 ddi_fm_service_impact(bgep->devinfo, DDI_SERVICE_LOST); 3327 mutex_exit(bgep->genlock); 3328 goto attach_fail; 3329 } 3330 3331 #ifdef BGE_IPMI_ASF 3332 if (bgep->asf_enabled) { 3333 bgep->asf_status = ASF_STAT_RUN_INIT; 3334 } 3335 #endif 3336 3337 bzero(bgep->mcast_hash, sizeof (bgep->mcast_hash)); 3338 bzero(bgep->mcast_refs, sizeof (bgep->mcast_refs)); 3339 bgep->promisc = B_FALSE; 3340 bgep->param_loop_mode = BGE_LOOP_NONE; 3341 if (bge_check_acc_handle(bgep, bgep->cfg_handle) != DDI_FM_OK) { 3342 ddi_fm_service_impact(bgep->devinfo, DDI_SERVICE_LOST); 3343 mutex_exit(bgep->genlock); 3344 goto attach_fail; 3345 } 3346 if (bge_check_acc_handle(bgep, bgep->io_handle) != DDI_FM_OK) { 3347 ddi_fm_service_impact(bgep->devinfo, DDI_SERVICE_LOST); 3348 mutex_exit(bgep->genlock); 3349 goto attach_fail; 3350 } 3351 3352 mutex_exit(bgep->genlock); 3353 3354 if (bge_phys_init(bgep) == EIO) { 3355 ddi_fm_service_impact(bgep->devinfo, DDI_SERVICE_LOST); 3356 goto attach_fail; 3357 } 3358 bgep->progress |= PROGRESS_PHY; 3359 3360 /* 3361 * initialize NDD-tweakable parameters 3362 */ 3363 if (bge_nd_init(bgep)) { 3364 bge_problem(bgep, "bge_nd_init() failed"); 3365 goto attach_fail; 3366 } 3367 bgep->progress |= PROGRESS_NDD; 3368 3369 /* 3370 * Create & initialise named kstats 3371 */ 3372 bge_init_kstats(bgep, instance); 3373 bgep->progress |= PROGRESS_KSTATS; 3374 3375 /* 3376 * Determine whether to override the chip's own MAC address 3377 */ 3378 bge_find_mac_address(bgep, cidp); 3379 ethaddr_copy(cidp->vendor_addr.addr, bgep->curr_addr[0].addr); 3380 bgep->curr_addr[0].set = B_TRUE; 3381 3382 bgep->unicst_addr_total = MAC_ADDRESS_REGS_MAX; 3383 /* 3384 * Address available is one less than MAX 3385 * as primary address is not advertised 3386 * as a multiple MAC address. 3387 */ 3388 bgep->unicst_addr_avail = MAC_ADDRESS_REGS_MAX - 1; 3389 3390 if ((macp = mac_alloc(MAC_VERSION)) == NULL) 3391 goto attach_fail; 3392 macp->m_type_ident = MAC_PLUGIN_IDENT_ETHER; 3393 macp->m_driver = bgep; 3394 macp->m_dip = devinfo; 3395 macp->m_src_addr = bgep->curr_addr[0].addr; 3396 macp->m_callbacks = &bge_m_callbacks; 3397 macp->m_min_sdu = 0; 3398 macp->m_max_sdu = cidp->ethmax_size - sizeof (struct ether_header); 3399 macp->m_margin = VLAN_TAGSZ; 3400 macp->m_priv_props = bge_priv_prop; 3401 macp->m_priv_prop_count = BGE_MAX_PRIV_PROPS; 3402 3403 /* 3404 * Finally, we're ready to register ourselves with the MAC layer 3405 * interface; if this succeeds, we're all ready to start() 3406 */ 3407 err = mac_register(macp, &bgep->mh); 3408 mac_free(macp); 3409 if (err != 0) 3410 goto attach_fail; 3411 3412 /* 3413 * Register a periodical handler. 3414 * bge_chip_cyclic() is invoked in kernel context. 3415 */ 3416 bgep->periodic_id = ddi_periodic_add(bge_chip_cyclic, bgep, 3417 BGE_CYCLIC_PERIOD, DDI_IPL_0); 3418 3419 bgep->progress |= PROGRESS_READY; 3420 ASSERT(bgep->bge_guard == BGE_GUARD); 3421 #ifdef BGE_IPMI_ASF 3422 #ifdef BGE_NETCONSOLE 3423 if (bgep->asf_enabled) { 3424 mutex_enter(bgep->genlock); 3425 retval = bge_chip_start(bgep, B_TRUE); 3426 mutex_exit(bgep->genlock); 3427 if (retval != DDI_SUCCESS) 3428 goto attach_fail; 3429 } 3430 #endif 3431 #endif 3432 3433 ddi_report_dev(devinfo); 3434 return (DDI_SUCCESS); 3435 3436 attach_fail: 3437 #ifdef BGE_IPMI_ASF 3438 bge_unattach(bgep, ASF_MODE_SHUTDOWN); 3439 #else 3440 bge_unattach(bgep); 3441 #endif 3442 return (DDI_FAILURE); 3443 } 3444 3445 /* 3446 * bge_suspend() -- suspend transmit/receive for powerdown 3447 */ 3448 static int 3449 bge_suspend(bge_t *bgep) 3450 { 3451 /* 3452 * Stop processing and idle (powerdown) the PHY ... 3453 */ 3454 mutex_enter(bgep->genlock); 3455 #ifdef BGE_IPMI_ASF 3456 /* 3457 * Power management hasn't been supported in BGE now. If you 3458 * want to implement it, please add the ASF/IPMI related 3459 * code here. 3460 */ 3461 #endif 3462 bge_stop(bgep); 3463 if (bge_phys_idle(bgep) != DDI_SUCCESS) { 3464 (void) bge_check_acc_handle(bgep, bgep->io_handle); 3465 ddi_fm_service_impact(bgep->devinfo, DDI_SERVICE_DEGRADED); 3466 mutex_exit(bgep->genlock); 3467 return (DDI_FAILURE); 3468 } 3469 if (bge_check_acc_handle(bgep, bgep->io_handle) != DDI_FM_OK) { 3470 ddi_fm_service_impact(bgep->devinfo, DDI_SERVICE_DEGRADED); 3471 mutex_exit(bgep->genlock); 3472 return (DDI_FAILURE); 3473 } 3474 mutex_exit(bgep->genlock); 3475 3476 return (DDI_SUCCESS); 3477 } 3478 3479 /* 3480 * quiesce(9E) entry point. 3481 * 3482 * This function is called when the system is single-threaded at high 3483 * PIL with preemption disabled. Therefore, this function must not be 3484 * blocked. 3485 * 3486 * This function returns DDI_SUCCESS on success, or DDI_FAILURE on failure. 3487 * DDI_FAILURE indicates an error condition and should almost never happen. 3488 */ 3489 #ifdef __sparc 3490 #define bge_quiesce ddi_quiesce_not_supported 3491 #else 3492 static int 3493 bge_quiesce(dev_info_t *devinfo) 3494 { 3495 bge_t *bgep = ddi_get_driver_private(devinfo); 3496 3497 if (bgep == NULL) 3498 return (DDI_FAILURE); 3499 3500 if (bgep->intr_type == DDI_INTR_TYPE_FIXED) { 3501 bge_reg_set32(bgep, PCI_CONF_BGE_MHCR, 3502 MHCR_MASK_PCI_INT_OUTPUT); 3503 } else { 3504 bge_reg_clr32(bgep, MSI_MODE_REG, MSI_MSI_ENABLE); 3505 } 3506 3507 /* Stop the chip */ 3508 bge_chip_stop_nonblocking(bgep); 3509 3510 return (DDI_SUCCESS); 3511 } 3512 #endif 3513 3514 /* 3515 * detach(9E) -- Detach a device from the system 3516 */ 3517 static int 3518 bge_detach(dev_info_t *devinfo, ddi_detach_cmd_t cmd) 3519 { 3520 bge_t *bgep; 3521 #ifdef BGE_IPMI_ASF 3522 uint_t asf_mode; 3523 asf_mode = ASF_MODE_NONE; 3524 #endif 3525 3526 BGE_GTRACE(("bge_detach($%p, %d)", (void *)devinfo, cmd)); 3527 3528 bgep = ddi_get_driver_private(devinfo); 3529 3530 switch (cmd) { 3531 default: 3532 return (DDI_FAILURE); 3533 3534 case DDI_SUSPEND: 3535 return (bge_suspend(bgep)); 3536 3537 case DDI_DETACH: 3538 break; 3539 } 3540 3541 #ifdef BGE_IPMI_ASF 3542 mutex_enter(bgep->genlock); 3543 if (bgep->asf_enabled && ((bgep->asf_status == ASF_STAT_RUN) || 3544 (bgep->asf_status == ASF_STAT_RUN_INIT))) { 3545 3546 bge_asf_update_status(bgep); 3547 if (bgep->asf_status == ASF_STAT_RUN) { 3548 bge_asf_stop_timer(bgep); 3549 } 3550 bgep->asf_status = ASF_STAT_STOP; 3551 3552 bge_asf_pre_reset_operations(bgep, BGE_SHUTDOWN_RESET); 3553 3554 if (bgep->asf_pseudostop) { 3555 bge_chip_stop(bgep, B_FALSE); 3556 bgep->bge_mac_state = BGE_MAC_STOPPED; 3557 bgep->asf_pseudostop = B_FALSE; 3558 } 3559 3560 asf_mode = ASF_MODE_POST_SHUTDOWN; 3561 3562 if (bge_check_acc_handle(bgep, bgep->cfg_handle) != DDI_FM_OK) 3563 ddi_fm_service_impact(bgep->devinfo, 3564 DDI_SERVICE_UNAFFECTED); 3565 if (bge_check_acc_handle(bgep, bgep->io_handle) != DDI_FM_OK) 3566 ddi_fm_service_impact(bgep->devinfo, 3567 DDI_SERVICE_UNAFFECTED); 3568 } 3569 mutex_exit(bgep->genlock); 3570 #endif 3571 3572 /* 3573 * Unregister from the GLD subsystem. This can fail, in 3574 * particular if there are DLPI style-2 streams still open - 3575 * in which case we just return failure without shutting 3576 * down chip operations. 3577 */ 3578 if (mac_unregister(bgep->mh) != 0) 3579 return (DDI_FAILURE); 3580 3581 /* 3582 * All activity stopped, so we can clean up & exit 3583 */ 3584 #ifdef BGE_IPMI_ASF 3585 bge_unattach(bgep, asf_mode); 3586 #else 3587 bge_unattach(bgep); 3588 #endif 3589 return (DDI_SUCCESS); 3590 } 3591 3592 3593 /* 3594 * ========== Module Loading Data & Entry Points ========== 3595 */ 3596 3597 #undef BGE_DBG 3598 #define BGE_DBG BGE_DBG_INIT /* debug flag for this code */ 3599 3600 DDI_DEFINE_STREAM_OPS(bge_dev_ops, 3601 nulldev, /* identify */ 3602 nulldev, /* probe */ 3603 bge_attach, /* attach */ 3604 bge_detach, /* detach */ 3605 nodev, /* reset */ 3606 NULL, /* cb_ops */ 3607 D_MP, /* bus_ops */ 3608 NULL, /* power */ 3609 bge_quiesce /* quiesce */ 3610 ); 3611 3612 static struct modldrv bge_modldrv = { 3613 &mod_driverops, /* Type of module. This one is a driver */ 3614 bge_ident, /* short description */ 3615 &bge_dev_ops /* driver specific ops */ 3616 }; 3617 3618 static struct modlinkage modlinkage = { 3619 MODREV_1, (void *)&bge_modldrv, NULL 3620 }; 3621 3622 3623 int 3624 _info(struct modinfo *modinfop) 3625 { 3626 return (mod_info(&modlinkage, modinfop)); 3627 } 3628 3629 int 3630 _init(void) 3631 { 3632 int status; 3633 3634 mac_init_ops(&bge_dev_ops, "bge"); 3635 status = mod_install(&modlinkage); 3636 if (status == DDI_SUCCESS) 3637 mutex_init(bge_log_mutex, NULL, MUTEX_DRIVER, NULL); 3638 else 3639 mac_fini_ops(&bge_dev_ops); 3640 return (status); 3641 } 3642 3643 int 3644 _fini(void) 3645 { 3646 int status; 3647 3648 status = mod_remove(&modlinkage); 3649 if (status == DDI_SUCCESS) { 3650 mac_fini_ops(&bge_dev_ops); 3651 mutex_destroy(bge_log_mutex); 3652 } 3653 return (status); 3654 } 3655 3656 3657 /* 3658 * bge_add_intrs: 3659 * 3660 * Register FIXED or MSI interrupts. 3661 */ 3662 static int 3663 bge_add_intrs(bge_t *bgep, int intr_type) 3664 { 3665 dev_info_t *dip = bgep->devinfo; 3666 int avail, actual, intr_size, count = 0; 3667 int i, flag, ret; 3668 3669 BGE_DEBUG(("bge_add_intrs($%p, 0x%x)", (void *)bgep, intr_type)); 3670 3671 /* Get number of interrupts */ 3672 ret = ddi_intr_get_nintrs(dip, intr_type, &count); 3673 if ((ret != DDI_SUCCESS) || (count == 0)) { 3674 bge_error(bgep, "ddi_intr_get_nintrs() failure, ret: %d, " 3675 "count: %d", ret, count); 3676 3677 return (DDI_FAILURE); 3678 } 3679 3680 /* Get number of available interrupts */ 3681 ret = ddi_intr_get_navail(dip, intr_type, &avail); 3682 if ((ret != DDI_SUCCESS) || (avail == 0)) { 3683 bge_error(bgep, "ddi_intr_get_navail() failure, " 3684 "ret: %d, avail: %d\n", ret, avail); 3685 3686 return (DDI_FAILURE); 3687 } 3688 3689 if (avail < count) { 3690 BGE_DEBUG(("%s: nintrs() returned %d, navail returned %d", 3691 bgep->ifname, count, avail)); 3692 } 3693 3694 /* 3695 * BGE hardware generates only single MSI even though it claims 3696 * to support multiple MSIs. So, hard code MSI count value to 1. 3697 */ 3698 if (intr_type == DDI_INTR_TYPE_MSI) { 3699 count = 1; 3700 flag = DDI_INTR_ALLOC_STRICT; 3701 } else { 3702 flag = DDI_INTR_ALLOC_NORMAL; 3703 } 3704 3705 /* Allocate an array of interrupt handles */ 3706 intr_size = count * sizeof (ddi_intr_handle_t); 3707 bgep->htable = kmem_alloc(intr_size, KM_SLEEP); 3708 3709 /* Call ddi_intr_alloc() */ 3710 ret = ddi_intr_alloc(dip, bgep->htable, intr_type, 0, 3711 count, &actual, flag); 3712 3713 if ((ret != DDI_SUCCESS) || (actual == 0)) { 3714 bge_error(bgep, "ddi_intr_alloc() failed %d\n", ret); 3715 3716 kmem_free(bgep->htable, intr_size); 3717 return (DDI_FAILURE); 3718 } 3719 3720 if (actual < count) { 3721 BGE_DEBUG(("%s: Requested: %d, Received: %d", 3722 bgep->ifname, count, actual)); 3723 } 3724 3725 bgep->intr_cnt = actual; 3726 3727 /* 3728 * Get priority for first msi, assume remaining are all the same 3729 */ 3730 if ((ret = ddi_intr_get_pri(bgep->htable[0], &bgep->intr_pri)) != 3731 DDI_SUCCESS) { 3732 bge_error(bgep, "ddi_intr_get_pri() failed %d\n", ret); 3733 3734 /* Free already allocated intr */ 3735 for (i = 0; i < actual; i++) { 3736 (void) ddi_intr_free(bgep->htable[i]); 3737 } 3738 3739 kmem_free(bgep->htable, intr_size); 3740 return (DDI_FAILURE); 3741 } 3742 3743 /* Call ddi_intr_add_handler() */ 3744 for (i = 0; i < actual; i++) { 3745 if ((ret = ddi_intr_add_handler(bgep->htable[i], bge_intr, 3746 (caddr_t)bgep, (caddr_t)(uintptr_t)i)) != DDI_SUCCESS) { 3747 bge_error(bgep, "ddi_intr_add_handler() " 3748 "failed %d\n", ret); 3749 3750 /* Free already allocated intr */ 3751 for (i = 0; i < actual; i++) { 3752 (void) ddi_intr_free(bgep->htable[i]); 3753 } 3754 3755 kmem_free(bgep->htable, intr_size); 3756 return (DDI_FAILURE); 3757 } 3758 } 3759 3760 if ((ret = ddi_intr_get_cap(bgep->htable[0], &bgep->intr_cap)) 3761 != DDI_SUCCESS) { 3762 bge_error(bgep, "ddi_intr_get_cap() failed %d\n", ret); 3763 3764 for (i = 0; i < actual; i++) { 3765 (void) ddi_intr_remove_handler(bgep->htable[i]); 3766 (void) ddi_intr_free(bgep->htable[i]); 3767 } 3768 3769 kmem_free(bgep->htable, intr_size); 3770 return (DDI_FAILURE); 3771 } 3772 3773 return (DDI_SUCCESS); 3774 } 3775 3776 /* 3777 * bge_rem_intrs: 3778 * 3779 * Unregister FIXED or MSI interrupts 3780 */ 3781 static void 3782 bge_rem_intrs(bge_t *bgep) 3783 { 3784 int i; 3785 3786 BGE_DEBUG(("bge_rem_intrs($%p)", (void *)bgep)); 3787 3788 /* Call ddi_intr_remove_handler() */ 3789 for (i = 0; i < bgep->intr_cnt; i++) { 3790 (void) ddi_intr_remove_handler(bgep->htable[i]); 3791 (void) ddi_intr_free(bgep->htable[i]); 3792 } 3793 3794 kmem_free(bgep->htable, bgep->intr_cnt * sizeof (ddi_intr_handle_t)); 3795 } 3796 3797 3798 void 3799 bge_intr_enable(bge_t *bgep) 3800 { 3801 int i; 3802 3803 if (bgep->intr_cap & DDI_INTR_FLAG_BLOCK) { 3804 /* Call ddi_intr_block_enable() for MSI interrupts */ 3805 (void) ddi_intr_block_enable(bgep->htable, bgep->intr_cnt); 3806 } else { 3807 /* Call ddi_intr_enable for MSI or FIXED interrupts */ 3808 for (i = 0; i < bgep->intr_cnt; i++) { 3809 (void) ddi_intr_enable(bgep->htable[i]); 3810 } 3811 } 3812 } 3813 3814 3815 void 3816 bge_intr_disable(bge_t *bgep) 3817 { 3818 int i; 3819 3820 if (bgep->intr_cap & DDI_INTR_FLAG_BLOCK) { 3821 /* Call ddi_intr_block_disable() */ 3822 (void) ddi_intr_block_disable(bgep->htable, bgep->intr_cnt); 3823 } else { 3824 for (i = 0; i < bgep->intr_cnt; i++) { 3825 (void) ddi_intr_disable(bgep->htable[i]); 3826 } 3827 } 3828 } 3829 3830 int 3831 bge_reprogram(bge_t *bgep) 3832 { 3833 int status = 0; 3834 3835 ASSERT(mutex_owned(bgep->genlock)); 3836 3837 if (bge_phys_update(bgep) != DDI_SUCCESS) { 3838 ddi_fm_service_impact(bgep->devinfo, DDI_SERVICE_DEGRADED); 3839 status = IOC_INVAL; 3840 } 3841 #ifdef BGE_IPMI_ASF 3842 if (bge_chip_sync(bgep, B_TRUE) == DDI_FAILURE) { 3843 #else 3844 if (bge_chip_sync(bgep) == DDI_FAILURE) { 3845 #endif 3846 ddi_fm_service_impact(bgep->devinfo, DDI_SERVICE_DEGRADED); 3847 status = IOC_INVAL; 3848 } 3849 if (bgep->intr_type == DDI_INTR_TYPE_MSI) 3850 bge_chip_msi_trig(bgep); 3851 return (status); 3852 } 3853