xref: /illumos-gate/usr/src/uts/common/io/bge/bge_impl.h (revision f48205be61a214698b763ff550ab9e657525104c)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 
22 /*
23  * Copyright 2007 Sun Microsystems, Inc.  All rights reserved.
24  * Use is subject to license terms.
25  */
26 
27 #ifndef _BGE_IMPL_H
28 #define	_BGE_IMPL_H
29 
30 #pragma ident	"%Z%%M%	%I%	%E% SMI"
31 
32 #ifdef __cplusplus
33 extern "C" {
34 #endif
35 
36 #include <sys/types.h>
37 #include <sys/stream.h>
38 #include <sys/strsun.h>
39 #include <sys/strsubr.h>
40 #include <sys/stat.h>
41 #include <sys/pci.h>
42 #include <sys/note.h>
43 #include <sys/modctl.h>
44 #include <sys/crc32.h>
45 #ifdef	__sparcv9
46 #include <v9/sys/membar.h>
47 #endif	/* __sparcv9 */
48 #include <sys/kstat.h>
49 #include <sys/ethernet.h>
50 #include <sys/vlan.h>
51 #include <sys/errno.h>
52 #include <sys/dlpi.h>
53 #include <sys/devops.h>
54 #include <sys/debug.h>
55 #include <sys/cyclic.h>
56 #include <sys/conf.h>
57 
58 #include <netinet/ip6.h>
59 
60 #include <inet/common.h>
61 #include <inet/ip.h>
62 #include <inet/mi.h>
63 #include <inet/nd.h>
64 #include <sys/pattr.h>
65 
66 #include <sys/dditypes.h>
67 #include <sys/ddi.h>
68 #include <sys/sunddi.h>
69 
70 #include <sys/ddifm.h>
71 #include <sys/fm/protocol.h>
72 #include <sys/fm/util.h>
73 #include <sys/fm/io/ddi.h>
74 
75 #include <sys/mac.h>
76 #include <sys/mac_ether.h>
77 
78 #ifdef __amd64
79 #include <sys/x86_archext.h>
80 #endif
81 
82 /*
83  * <sys/ethernet.h> *may* already have provided the typedef ether_addr_t;
84  * but of course C doesn't provide a way to check this directly.  So here
85  * we rely on the fact that the symbol ETHERTYPE_AT was added to the
86  * header file (as a #define, which we *can* test for) at the same time
87  * as the typedef for ether_addr_t ;-!
88  */
89 #ifndef	ETHERTYPE_AT
90 typedef uchar_t ether_addr_t[ETHERADDRL];
91 #endif	/* ETHERTYPE_AT */
92 
93 /*
94  * Reconfiguring the network devices requires the net_config privilege
95  * in Solaris 10+.
96  */
97 extern int secpolicy_net_config(const cred_t *, boolean_t);
98 
99 #include <sys/netlb.h>			/* originally from cassini	*/
100 #include <sys/miiregs.h>		/* by fjlite out of intel 	*/
101 
102 #include "bge.h"
103 #include "bge_hw.h"
104 
105 /*
106  * Compile-time feature switches ...
107  */
108 #define	BGE_DO_PPIO		0	/* peek/poke ioctls		*/
109 #define	BGE_RX_SOFTINT		0	/* softint per receive ring	*/
110 #define	BGE_CHOOSE_SEND_METHOD	0	/* send by copying only		*/
111 
112 /*
113  * NOTES:
114  *
115  * #defines:
116  *
117  *	BGE_PCI_CONFIG_RNUMBER and BGE_PCI_OPREGS_RNUMBER are the
118  *	register-set numbers to use for the config space registers
119  *	and the operating registers respectively.  On an OBP-based
120  *	machine, regset 0 refers to CONFIG space, and regset 1 will
121  *	be the operating registers in MEMORY space.  If an expansion
122  *	ROM is fitted, it may appear as a further register set.
123  *
124  *	BGE_DMA_MODE defines the mode (STREAMING/CONSISTENT) used
125  *	for the data buffers.  The descriptors are always set up
126  *	in CONSISTENT mode.
127  *
128  *	BGE_HEADROOM defines how much space we'll leave in allocated
129  *	mblks before the first valid data byte.  This should be chosen
130  *	to be 2 modulo 4, so that once the ethernet header (14 bytes)
131  *	has been stripped off, the packet data will be 4-byte aligned.
132  *	The remaining space can be used by upstream modules to prepend
133  *	any headers required.
134  */
135 
136 #define	BGE_PCI_CONFIG_RNUMBER	0
137 #define	BGE_PCI_OPREGS_RNUMBER	1
138 #define	BGE_DMA_MODE		DDI_DMA_STREAMING
139 #define	BGE_HEADROOM		34
140 
141 /*
142  *	BGE_HALFTICK is half the period of the cyclic callback (in
143  *	nanoseconds), chosen so that 0.5s <= cyclic period <= 1s.
144  *	Other time values are derived as odd multiples of this value
145  *	so that there's little chance of ambiguity w.r.t. which tick
146  *	a timeout expires on.
147  *
148  *	BGE_PHY_STABLE_TIME is the period for which the contents of the
149  *	PHY's status register must remain unchanging before we accept
150  *	that the link has come up.  [Sometimes the link comes up, only
151  *	to go down again within a short time as the autonegotiation
152  *	process cycles through various options before finding the best
153  *	compatible mode.  We don't want to report repeated link up/down
154  *	cycles, so we wait until we think it's stable.]
155  *
156  *	BGE_SERDES_STABLE_TIME is the analogous value for the SerDes
157  *	interface.  It's much shorter, 'cos the SerDes doesn't show
158  *	these effects as much as the copper PHY.
159  *
160  *	BGE_LINK_SETTLE_TIME is the period during which we regard link
161  *	up/down cycles as an normal event after resetting/reprogramming
162  *	the PHY.  During this time, link up/down messages are sent to
163  *	the log only, not the console.  At any other time, link change
164  *	events are regarded as unexpected and sent to both console & log.
165  *
166  *	These latter two values have no theoretical justification, but
167  *	are derived from observations and heuristics - the values below
168  *	just seem to work quite well.
169  */
170 
171 #define	BGE_HALFTICK		268435456LL		/* 2**28 ns!	*/
172 #define	BGE_CYCLIC_PERIOD	(2*BGE_HALFTICK)	/*    ~0.5s	*/
173 #define	BGE_SERDES_STABLE_TIME	(3*BGE_HALFTICK)	/*    ~0.8s	*/
174 #define	BGE_PHY_STABLE_TIME	(11*BGE_HALFTICK)	/*    ~3.0s	*/
175 #define	BGE_LINK_SETTLE_TIME	(111*BGE_HALFTICK)	/*   ~30.0s	*/
176 
177 /*
178  * Indices used to identify the different buffer rings internally
179  */
180 #define	BGE_STD_BUFF_RING	0
181 #define	BGE_JUMBO_BUFF_RING	1
182 #define	BGE_MINI_BUFF_RING	2
183 
184 /*
185  * Current implementation limits
186  */
187 #define	BGE_BUFF_RINGS_USED	2		/* std & jumbo ring	*/
188 						/* for now		*/
189 #define	BGE_RECV_RINGS_USED	16		/* up to 16 rtn rings	*/
190 						/* for now		*/
191 #define	BGE_SEND_RINGS_USED	4		/* up to 4 tx rings	*/
192 						/* for now		*/
193 #define	BGE_HASH_TABLE_SIZE	128		/* may be 256 later	*/
194 
195 /*
196  * Ring/buffer size parameters
197  *
198  * All of the (up to) 16 TX rings & and the corresponding buffers are the
199  * same size.
200  *
201  * Each of the (up to) 3 receive producer (aka buffer) rings is a different
202  * size and has different sized buffers associated with it too.
203  *
204  * The (up to) 16 receive return rings have no buffers associated with them.
205  * The number of slots per receive return ring must be 2048 if the mini
206  * ring is enabled, otherwise it may be 1024.  See Broadcom document
207  * 570X-PG102-R page 56.
208  *
209  * Note: only the 5700 supported external memory (and therefore the mini
210  * ring); the 5702/3/4 don't.  This driver doesn't support the original
211  * 5700, so we won't ever use the mini ring capability.
212  */
213 
214 #define	BGE_SEND_RINGS_DEFAULT		1
215 #define	BGE_RECV_RINGS_DEFAULT		1
216 
217 #define	BGE_SEND_BUFF_SIZE_DEFAULT	1536
218 #define	BGE_SEND_BUFF_SIZE_JUMBO	9022
219 #define	BGE_SEND_SLOTS_USED	512
220 
221 #define	BGE_STD_BUFF_SIZE	1536		/* 0x600		*/
222 #define	BGE_STD_SLOTS_USED	512
223 
224 #define	BGE_JUMBO_BUFF_SIZE	9022		/* 9k			*/
225 #define	BGE_JUMBO_SLOTS_USED	256
226 
227 #define	BGE_MINI_BUFF_SIZE	128		/* 64? 256?		*/
228 #define	BGE_MINI_SLOTS_USED	0		/* must be 0; see above	*/
229 
230 #define	BGE_RECV_BUFF_SIZE	0
231 #if	BGE_MINI_SLOTS_USED > 0
232 #define	BGE_RECV_SLOTS_USED	2048		/* required		*/
233 #else
234 #define	BGE_RECV_SLOTS_USED	1024		/* could be 2048 anyway	*/
235 #endif
236 
237 #define	BGE_SEND_BUF_NUM	512
238 #define	BGE_SEND_BUF_ARRAY	16
239 #define	BGE_SEND_BUF_ARRAY_JUMBO	3
240 #define	BGE_SEND_BUF_MAX	(BGE_SEND_BUF_NUM*BGE_SEND_BUF_ARRAY)
241 
242 /*
243  * PCI type. PCI-Express or PCI/PCIX
244  */
245 #define	BGE_PCI		0
246 #define	BGE_PCI_E	1
247 #define	BGE_PCI_X	2
248 
249 /*
250  * Statistic type. There are two type of statistic:
251  * statistic block and statistic registers
252  */
253 #define	BGE_STAT_BLK	1
254 #define	BGE_STAT_REG	2
255 
256 /*
257  * MTU.for all chipsets ,the default is 1500 ,and some chipsets
258  * support 9k jumbo frames size
259  */
260 #define	BGE_DEFAULT_MTU		1500
261 #define	BGE_MAXIMUM_MTU		9000
262 
263 /*
264  * Pad the h/w defined status block (which can be up to 80 bytes long)
265  * to a power-of-two boundary
266  */
267 #define	BGE_STATUS_PADDING	(128 - sizeof (bge_status_t))
268 
269 /*
270  * On platforms which support DVMA, we can simply allocate one big piece
271  * of memory for all the Tx buffers and another for the Rx buffers, and
272  * then carve them up as required.  It doesn't matter if they aren't just
273  * one physically contiguous piece each, because both the CPU *and* the
274  * I/O device can see them *as though they were*.
275  *
276  * However, if only physically-addressed DMA is possible, this doesn't
277  * work; we can't expect to get enough contiguously-addressed memory for
278  * all the buffers of each type, so in this case we request a number of
279  * smaller pieces, each still large enough for several buffers but small
280  * enough to fit within "an I/O page" (e.g. 64K).
281  *
282  * The #define below specifies how many pieces of memory are to be used;
283  * 16 has been shown to work on an i86pc architecture but this could be
284  * different on other non-DVMA platforms ...
285  */
286 #ifdef	_DMA_USES_VIRTADDR
287 #define	BGE_SPLIT		1		/* no split required	*/
288 #else
289 #if ((BGE_BUFF_RINGS_USED > 1) || (BGE_SEND_RINGS_USED > 1) || \
290 	(BGE_RECV_RINGS_USED > 1))
291 #define	BGE_SPLIT		128		/* split 128 ways	*/
292 #else
293 #define	BGE_SPLIT		16		/* split 16 ways	*/
294 #endif
295 #endif	/* _DMA_USES_VIRTADDR */
296 
297 #define	BGE_RECV_RINGS_SPLIT	(BGE_RECV_RINGS_MAX + 1)
298 
299 /*
300  * STREAMS parameters
301  */
302 #define	BGE_IDNUM		0		/* zero seems to work	*/
303 #define	BGE_LOWAT		(256)
304 #define	BGE_HIWAT		(256*1024)
305 
306 
307 /*
308  * Basic data types, for clarity in distinguishing 'numbers'
309  * used for different purposes ...
310  *
311  * A <bge_regno_t> is a register 'address' (offset) in any one of
312  * various address spaces (PCI config space, PCI memory-mapped I/O
313  * register space, MII registers, etc).  None of these exceeds 64K,
314  * so we could use a 16-bit representation but pointer-sized objects
315  * are more "natural" in most architectures; they seem to be handled
316  * more efficiently on SPARC and no worse on x86.
317  *
318  * BGE_REGNO_NONE represents the non-existent value in this space.
319  */
320 typedef uintptr_t bge_regno_t;			/* register # (offset)	*/
321 #define	BGE_REGNO_NONE		(~(uintptr_t)0u)
322 
323 /*
324  * Describes one chunk of allocated DMA-able memory
325  *
326  * In some cases, this is a single chunk as allocated from the system;
327  * but we also use this structure to represent slices carved off such
328  * a chunk.  Even when we don't really need all the information, we
329  * use this structure as a convenient way of correlating the various
330  * ways of looking at a piece of memory (kernel VA, IO space DVMA,
331  * handle+offset, etc).
332  */
333 typedef struct {
334 	ddi_acc_handle_t	acc_hdl;	/* handle for memory	*/
335 	void			*mem_va;	/* CPU VA of memory	*/
336 	uint32_t		nslots;		/* number of slots	*/
337 	uint32_t		size;		/* size per slot	*/
338 	size_t			alength;	/* allocated size	*/
339 						/* >= product of above	*/
340 
341 	ddi_dma_handle_t	dma_hdl;	/* DMA handle		*/
342 	offset_t		offset;		/* relative to handle	*/
343 	ddi_dma_cookie_t	cookie;		/* associated cookie	*/
344 	uint32_t		ncookies;	/* must be 1		*/
345 	uint32_t		token;		/* arbitrary identifier	*/
346 } dma_area_t;					/* 0x50 (80) bytes	*/
347 
348 typedef struct bge_queue_item {
349 	struct bge_queue_item	*next;
350 	void			*item;
351 } bge_queue_item_t;
352 
353 typedef struct bge_queue {
354 	bge_queue_item_t	*head;
355 	uint32_t		count;
356 	kmutex_t		*lock;
357 } bge_queue_t;
358 /*
359  * Software version of the Receive Buffer Descriptor
360  * There's one of these for each receive buffer (up to 256/512/1024 per ring).
361  */
362 typedef struct sw_rbd {
363 	dma_area_t		pbuf;		/* (const) related	*/
364 						/* buffer area		*/
365 } sw_rbd_t;					/* 0x50 (80) bytes	*/
366 
367 /*
368  * Software Receive Buffer (Producer) Ring Control Block
369  * There's one of these for each receiver producer ring (up to 3),
370  * but each holds buffers of a different size.
371  */
372 typedef struct buff_ring {
373 	dma_area_t		desc;		/* (const) related h/w	*/
374 						/* descriptor area	*/
375 	dma_area_t		buf[BGE_SPLIT];	/* (const) related	*/
376 						/* buffer area(s)	*/
377 	bge_rcb_t		hw_rcb;		/* (const) image of h/w	*/
378 						/* RCB, and used to	*/
379 	struct bge		*bgep;		/* (const) containing	*/
380 						/* driver soft state	*/
381 						/* initialise same	*/
382 	volatile uint16_t	*cons_index_p;	/* (const) ptr to h/w	*/
383 						/* "consumer index"	*/
384 						/* (in status block)	*/
385 
386 	/*
387 	 * The rf_lock must be held when updating the h/w producer index
388 	 * mailbox register (*chip_mbox_reg), or the s/w producer index
389 	 * (rf_next).
390 	 */
391 	bge_regno_t		chip_mbx_reg;	/* (const) h/w producer	*/
392 						/* index mailbox offset	*/
393 	kmutex_t		rf_lock[1];	/* serialize refill	*/
394 	uint64_t		rf_next;	/* next slot to refill	*/
395 						/* ("producer index")	*/
396 
397 	sw_rbd_t		*sw_rbds; 	/* software descriptors	*/
398 	void			*spare[4];	/* padding		*/
399 } buff_ring_t;					/* 0x100 (256) bytes	*/
400 
401 /*
402  * Software Receive (Return) Ring Control Block
403  * There's one of these for each receiver return ring (up to 16).
404  */
405 typedef struct recv_ring {
406 	/*
407 	 * The elements flagged (const) in the comments below are
408 	 * set up once during initialiation and thereafter unchanged.
409 	 */
410 	dma_area_t		desc;		/* (const) related h/w	*/
411 						/* descriptor area	*/
412 	bge_rcb_t		hw_rcb;		/* (const) image of h/w	*/
413 						/* RCB, and used to	*/
414 						/* initialise same	*/
415 	struct bge		*bgep;		/* (const) containing	*/
416 						/* driver soft state	*/
417 	ddi_softintr_t		rx_softint;	/* (const) per-ring	*/
418 						/* receive callback	*/
419 	volatile uint16_t	*prod_index_p;	/* (const) ptr to h/w	*/
420 						/* "producer index"	*/
421 						/* (in status block)	*/
422 
423 	/*
424 	 * The rx_lock must be held when updating the h/w consumer index
425 	 * mailbox register (*chip_mbox_reg), or the s/w consumer index
426 	 * (rx_next).
427 	 */
428 	bge_regno_t		chip_mbx_reg;	/* (const) h/w consumer	*/
429 						/* index mailbox offset	*/
430 	kmutex_t		rx_lock[1];	/* serialize receive	*/
431 	uint64_t		rx_next;	/* next slot to examine	*/
432 	mac_resource_handle_t	handle;		/* per ring cookie	*/
433 						/* ("producer index")	*/
434 } recv_ring_t;					/* 0x90 (144) bytes	*/
435 
436 /*
437  * Send packet structure
438  */
439 typedef struct send_pkt {
440 	uint16_t		vlan_tci;
441 	uint32_t		pflags;
442 	boolean_t		tx_ready;
443 	bge_queue_item_t	*txbuf_item;
444 } send_pkt_t;
445 
446 /*
447  * Software version of tx buffer structure
448  */
449 typedef struct sw_txbuf {
450 	dma_area_t		buf;
451 	uint32_t		copy_len;
452 } sw_txbuf_t;
453 
454 /*
455  * Software version of the Send Buffer Descriptor
456  * There's one of these for each send buffer (up to 512 per ring)
457  */
458 typedef struct sw_sbd {
459 	dma_area_t		desc;		/* (const) related h/w	*/
460 						/* descriptor area	*/
461 	bge_queue_item_t	*pbuf;		/* (const) related	*/
462 						/* buffer area		*/
463 } sw_sbd_t;
464 
465 /*
466  * Software Send Ring Control Block
467  * There's one of these for each of (up to) 16 send rings
468  */
469 typedef struct send_ring {
470 	/*
471 	 * The elements flagged (const) in the comments below are
472 	 * set up once during initialiation and thereafter unchanged.
473 	 */
474 	dma_area_t		desc;		/* (const) related h/w	*/
475 						/* descriptor area	*/
476 	dma_area_t		buf[BGE_SEND_BUF_ARRAY][BGE_SPLIT];
477 						/* buffer area(s)	*/
478 	bge_rcb_t		hw_rcb;		/* (const) image of h/w	*/
479 						/* RCB, and used to	*/
480 						/* initialise same	*/
481 	struct bge		*bgep;		/* (const) containing	*/
482 						/* driver soft state	*/
483 	volatile uint16_t	*cons_index_p;	/* (const) ptr to h/w	*/
484 						/* "consumer index"	*/
485 						/* (in status block)	*/
486 
487 	bge_regno_t		chip_mbx_reg;	/* (const) h/w producer	*/
488 						/* index mailbox offset	*/
489 	/*
490 	 * Tx buffer queue
491 	 */
492 	bge_queue_t		txbuf_queue;
493 	bge_queue_t		freetxbuf_queue;
494 	bge_queue_t		*txbuf_push_queue;
495 	bge_queue_t		*txbuf_pop_queue;
496 	kmutex_t		txbuf_lock[1];
497 	kmutex_t		freetxbuf_lock[1];
498 	bge_queue_item_t	*txbuf_head;
499 	send_pkt_t		*pktp;
500 	uint64_t		txpkt_next;
501 	uint64_t		txfill_next;
502 	sw_txbuf_t		*txbuf;
503 	uint32_t		tx_buffers;
504 	uint32_t		tx_buffers_low;
505 	uint32_t		tx_array_max;
506 	uint32_t		tx_array;
507 	kmutex_t		tx_lock[1];	/* serialize h/w update	*/
508 						/* ("producer index")	*/
509 	uint64_t		tx_next;	/* next slot to use	*/
510 	uint64_t		tx_flow;	/* # concurrent sends	*/
511 	uint64_t		tx_block;
512 	uint64_t		tx_nobd;
513 	uint64_t		tx_nobuf;
514 	uint64_t		tx_alloc_fail;
515 
516 	/*
517 	 * These counters/indexes are manipulated in the transmit
518 	 * path using atomics rather than mutexes for speed
519 	 */
520 	uint64_t		tx_free;	/* # of slots available	*/
521 
522 	/*
523 	 * The tc_lock must be held while manipulating the s/w consumer
524 	 * index (tc_next).
525 	 */
526 	kmutex_t		tc_lock[1];	/* serialize recycle	*/
527 	uint64_t		tc_next;	/* next slot to recycle	*/
528 						/* ("consumer index")	*/
529 
530 	sw_sbd_t		*sw_sbds; 	/* software descriptors	*/
531 	uint64_t		mac_resid;	/* special per resource id */
532 } send_ring_t;					/* 0x100 (256) bytes	*/
533 
534 typedef struct {
535 	ether_addr_t		addr;		/* in canonical form	*/
536 	uint8_t			spare;
537 	boolean_t		set;		/* B_TRUE => valid	*/
538 } bge_mac_addr_t;
539 
540 /*
541  * The original 5700/01 supported only SEEPROMs.  Later chips (5702+)
542  * support both SEEPROMs (using the same 2-wire CLK/DATA interface for
543  * the hardware and a backwards-compatible software access method), and
544  * buffered or unbuffered FLASH devices connected to the 4-wire SPI bus
545  * and using a new software access method.
546  *
547  * The access methods for SEEPROM and Flash are generally similar, with
548  * the chip handling the serialisation/deserialisation and handshaking,
549  * but the registers used are different, as are a few details of the
550  * protocol, and the timing, so we have to determine which (if any) is
551  * fitted.
552  *
553  * The value UNKNOWN means just that; we haven't yet tried to determine
554  * the device type.
555  *
556  * The value NONE can indicate either that a real and definite absence of
557  * any NVmem has been detected, or that there may be NVmem but we can't
558  * determine its type, perhaps because the NVconfig pins on the chip have
559  * been wired up incorrectly.  In either case, access to the NVmem (if any)
560  * is not supported.
561  */
562 enum bge_nvmem_type {
563 	BGE_NVTYPE_NONE = -1,			/* (or indeterminable)	*/
564 	BGE_NVTYPE_UNKNOWN,			/* not yet checked	*/
565 	BGE_NVTYPE_SEEPROM,			/* BCM5700/5701 only	*/
566 	BGE_NVTYPE_LEGACY_SEEPROM,		/* 5702+		*/
567 	BGE_NVTYPE_UNBUFFERED_FLASH,		/* 5702+		*/
568 	BGE_NVTYPE_BUFFERED_FLASH		/* 5702+		*/
569 };
570 
571 /*
572  * Describes the characteristics of a specific chip
573  *
574  * Note: elements from <businfo> to <latency> are filled in by during
575  * the first phase of chip initialisation (see bge_chip_cfg_init()).
576  * The remaining ones are determined just after the first RESET, in
577  * bge_poll_firmware().  Thereafter, the entire structure is readonly.
578  */
579 typedef struct {
580 	uint32_t		asic_rev;	/* masked from MHCR	*/
581 	uint32_t		businfo;	/* from private reg	*/
582 	uint16_t		command;	/* saved during attach	*/
583 
584 	uint16_t		vendor;		/* vendor-id		*/
585 	uint16_t		device;		/* device-id		*/
586 	uint16_t		subven;		/* subsystem-vendor-id	*/
587 	uint16_t		subdev;		/* subsystem-id		*/
588 	uint8_t			revision;	/* revision-id		*/
589 	uint8_t			clsize;		/* cache-line-size	*/
590 	uint8_t			latency;	/* latency-timer	*/
591 
592 	uint8_t			flags;
593 	uint16_t		chip_label;	/* numeric part only	*/
594 						/* (e.g. 5703/5794/etc)	*/
595 	uint32_t		mbuf_base;	/* Mbuf pool parameters */
596 	uint32_t		mbuf_length;	/* depend on chiptype	*/
597 	uint32_t		pci_type;
598 	uint32_t		statistic_type;
599 	uint32_t		bge_dma_rwctrl;
600 	uint32_t		bge_mlcr_default;
601 	uint32_t		recv_slots;	/* receive ring size    */
602 	enum bge_nvmem_type	nvtype;		/* SEEPROM or Flash	*/
603 
604 	uint16_t		jumbo_slots;
605 	uint16_t		ethmax_size;
606 	uint16_t		snd_buff_size;
607 	uint16_t		recv_jumbo_size;
608 	uint16_t		std_buf_size;
609 	uint32_t		mbuf_hi_water;
610 	uint32_t		mbuf_lo_water_rmac;
611 	uint32_t		mbuf_lo_water_rdma;
612 
613 	uint32_t		rx_rings;	/* from bge.conf	*/
614 	uint32_t		tx_rings;	/* from bge.conf	*/
615 	uint32_t		default_mtu;	/* from bge.conf	*/
616 
617 	uint64_t		hw_mac_addr;	/* from chip register	*/
618 	bge_mac_addr_t		vendor_addr;	/* transform of same	*/
619 	boolean_t		msi_enabled;	/* default to true */
620 } chip_id_t;
621 
622 #define	CHIP_FLAG_SUPPORTED	0x80
623 #define	CHIP_FLAG_SERDES	0x40
624 #define	CHIP_FLAG_PARTIAL_CSUM	0x20
625 #define	CHIP_FLAG_NO_JUMBO	0x1
626 
627 /*
628  * Collection of physical-layer functions to:
629  *	(re)initialise the physical layer
630  *	update it to match software settings
631  *	check for link status change
632  */
633 typedef struct {
634 	int			(*phys_restart)(struct bge *, boolean_t);
635 	int			(*phys_update)(struct bge *);
636 	boolean_t		(*phys_check)(struct bge *, boolean_t);
637 } phys_ops_t;
638 
639 /*
640  * Named Data (ND) Parameter Management Structure
641  */
642 typedef struct {
643 	int			ndp_info;
644 	int			ndp_min;
645 	int			ndp_max;
646 	int			ndp_val;
647 	char			*ndp_name;
648 } nd_param_t;					/* 0x18 (24) bytes	*/
649 
650 /*
651  * NDD parameter indexes, divided into:
652  *
653  *	read-only parameters describing the hardware's capabilities
654  *	read-write parameters controlling the advertised capabilities
655  *	read-only parameters describing the partner's capabilities
656  *	read-only parameters describing the link state
657  */
658 enum {
659 	PARAM_AUTONEG_CAP,
660 	PARAM_PAUSE_CAP,
661 	PARAM_ASYM_PAUSE_CAP,
662 	PARAM_1000FDX_CAP,
663 	PARAM_1000HDX_CAP,
664 	PARAM_100T4_CAP,
665 	PARAM_100FDX_CAP,
666 	PARAM_100HDX_CAP,
667 	PARAM_10FDX_CAP,
668 	PARAM_10HDX_CAP,
669 
670 	PARAM_ADV_AUTONEG_CAP,
671 	PARAM_ADV_PAUSE_CAP,
672 	PARAM_ADV_ASYM_PAUSE_CAP,
673 	PARAM_ADV_1000FDX_CAP,
674 	PARAM_ADV_1000HDX_CAP,
675 	PARAM_ADV_100T4_CAP,
676 	PARAM_ADV_100FDX_CAP,
677 	PARAM_ADV_100HDX_CAP,
678 	PARAM_ADV_10FDX_CAP,
679 	PARAM_ADV_10HDX_CAP,
680 
681 	PARAM_LP_AUTONEG_CAP,
682 	PARAM_LP_PAUSE_CAP,
683 	PARAM_LP_ASYM_PAUSE_CAP,
684 	PARAM_LP_1000FDX_CAP,
685 	PARAM_LP_1000HDX_CAP,
686 	PARAM_LP_100T4_CAP,
687 	PARAM_LP_100FDX_CAP,
688 	PARAM_LP_100HDX_CAP,
689 	PARAM_LP_10FDX_CAP,
690 	PARAM_LP_10HDX_CAP,
691 
692 	PARAM_LINK_STATUS,
693 	PARAM_LINK_SPEED,
694 	PARAM_LINK_DUPLEX,
695 
696 	PARAM_LINK_AUTONEG,
697 	PARAM_LINK_RX_PAUSE,
698 	PARAM_LINK_TX_PAUSE,
699 
700 	PARAM_LOOP_MODE,
701 	PARAM_MSI_CNT,
702 
703 	PARAM_DRAIN_MAX,
704 
705 	PARAM_COUNT
706 };
707 
708 /*
709  * Actual state of the BCM570x chip
710  */
711 enum bge_chip_state {
712 	BGE_CHIP_FAULT = -2,			/* fault, need reset	*/
713 	BGE_CHIP_ERROR,				/* error, want reset	*/
714 	BGE_CHIP_INITIAL,			/* Initial state only	*/
715 	BGE_CHIP_RESET,				/* reset, need init	*/
716 	BGE_CHIP_STOPPED,			/* Tx/Rx stopped	*/
717 	BGE_CHIP_RUNNING			/* with interrupts	*/
718 };
719 
720 enum bge_mac_state {
721 	BGE_MAC_STOPPED = 0,
722 	BGE_MAC_STARTED
723 };
724 
725 /*
726  * (Internal) return values from ioctl subroutines
727  */
728 enum ioc_reply {
729 	IOC_INVAL = -1,				/* bad, NAK with EINVAL	*/
730 	IOC_DONE,				/* OK, reply sent	*/
731 	IOC_ACK,				/* OK, just send ACK	*/
732 	IOC_REPLY,				/* OK, just send reply	*/
733 	IOC_RESTART_ACK,			/* OK, restart & ACK	*/
734 	IOC_RESTART_REPLY			/* OK, restart & reply	*/
735 };
736 
737 /*
738  * (Internal) return values from send_msg subroutines
739  */
740 enum send_status {
741 	SEND_FAIL = -1,				/* Not OK		*/
742 	SEND_KEEP,				/* OK, msg queued	*/
743 	SEND_FREE				/* OK, free msg		*/
744 };
745 
746 /*
747  * (Internal) enumeration of this driver's kstats
748  */
749 enum {
750 	BGE_KSTAT_RAW = 0,
751 	BGE_KSTAT_STATS,
752 	BGE_KSTAT_PARAMS,
753 	BGE_KSTAT_CHIPID,
754 	BGE_KSTAT_DRIVER,
755 	BGE_KSTAT_PHYS,
756 	BGE_KSTAT_MII,
757 
758 	BGE_KSTAT_COUNT
759 };
760 
761 #define	BGE_MAX_RESOURCES 255
762 
763 /*
764  * Per-instance soft-state structure
765  */
766 typedef struct bge {
767 	/*
768 	 * These fields are set by attach() and unchanged thereafter ...
769 	 */
770 	dev_info_t		*devinfo;	/* device instance	*/
771 	mac_handle_t		mh;		/* mac module handle	*/
772 	ddi_acc_handle_t	cfg_handle;	/* DDI I/O handle	*/
773 	ddi_acc_handle_t	io_handle;	/* DDI I/O handle	*/
774 	void			*io_regs;	/* mapped registers	*/
775 	cyclic_id_t		cyclic_id;	/* cyclic callback	*/
776 	ddi_softintr_t		factotum_id;	/* factotum callback	*/
777 	ddi_softintr_t		drain_id;	/* reschedule callback	*/
778 
779 	ddi_intr_handle_t 	*htable;	/* For array of interrupts */
780 	int			intr_type;	/* What type of interrupt */
781 	int			intr_cnt;	/* # of intrs count returned */
782 	uint_t			intr_pri;	/* Interrupt priority	*/
783 	int			intr_cap;	/* Interrupt capabilities */
784 	uint32_t		progress;	/* attach tracking	*/
785 	uint32_t		debug;		/* per-instance debug	*/
786 	chip_id_t		chipid;
787 	const phys_ops_t	*physops;
788 	char			ifname[8];	/* "bge0" ... "bge999"	*/
789 
790 	int			fm_capabilities;	/* FMA capabilities */
791 
792 	/*
793 	 * These structures describe the blocks of memory allocated during
794 	 * attach().  They remain unchanged thereafter, although the memory
795 	 * they describe is carved up into various separate regions and may
796 	 * therefore be described by other structures as well.
797 	 */
798 	dma_area_t		tx_desc;	/* transmit descriptors	*/
799 	dma_area_t		rx_desc[BGE_RECV_RINGS_SPLIT];
800 						/* receive descriptors	*/
801 	dma_area_t		tx_buff[BGE_SPLIT];
802 	dma_area_t		rx_buff[BGE_SPLIT];
803 
804 	/*
805 	 * The memory described by the <dma_area> structures above
806 	 * is carved up into various pieces, which are described by
807 	 * the structures below.
808 	 */
809 	dma_area_t		statistics;	/* describes hardware	*/
810 						/* statistics area	*/
811 	dma_area_t		status_block;	/* describes hardware	*/
812 						/* status block		*/
813 	/*
814 	 * For the BCM5705/5788/5721/5751/5752/5714 and 5715,
815 	 * the statistic block is not available,the statistic counter must
816 	 * be gotten from statistic registers.And bge_statistics_reg_t record
817 	 * the statistic registers value
818 	 */
819 	bge_statistics_reg_t	*pstats;
820 
821 	/*
822 	 * Runtime read-write data starts here ...
823 	 *
824 	 * 3 Buffer Rings (std/jumbo/mini)
825 	 * 16 Receive (Return) Rings
826 	 * 16 Send Rings
827 	 *
828 	 * Note: they're not necessarily all used.
829 	 */
830 	buff_ring_t		buff[BGE_BUFF_RINGS_MAX]; /*  3*0x0100	*/
831 	recv_ring_t		recv[BGE_RECV_RINGS_MAX]; /* 16*0x0090	*/
832 	send_ring_t		send[BGE_SEND_RINGS_MAX]; /* 16*0x0100	*/
833 
834 	/*
835 	 * Locks:
836 	 *
837 	 * Each buffer ring contains its own <rf_lock> which regulates
838 	 *	ring refilling.
839 	 *
840 	 * Each receive (return) ring contains its own <rx_lock> which
841 	 *	protects the critical cyclic counters etc.
842 	 *
843 	 * Each send ring contains two locks: <tx_lock> for the send-path
844 	 * 	protocol data and <tc_lock> for send-buffer recycling.
845 	 *
846 	 * Finally <genlock> is a general lock, protecting most other
847 	 *	operational data in the state structure and chip register
848 	 *	accesses.  It is acquired by the interrupt handler and
849 	 *	most "mode-control" routines.
850 	 *
851 	 * Any of the locks can be acquired singly, but where multiple
852 	 * locks are acquired, they *must* be in the order:
853 	 *
854 	 *	genlock >>> rx_lock >>> rf_lock >>> tx_lock >>> tc_lock.
855 	 *
856 	 * and within any one class of lock the rings must be locked in
857 	 * ascending order (send[0].tc_lock >>> send[1].tc_lock), etc.
858 	 *
859 	 * Note: actually I don't believe there's any need to acquire
860 	 * locks on multiple rings, or even locks of all these classes
861 	 * concurrently; but I've set out the above order so there is a
862 	 * clear definition of lock hierarchy in case it's ever needed.
863 	 *
864 	 * Note: the combinations of locks that are actually held
865 	 * concurrently are:
866 	 *
867 	 *	genlock >>>			(bge_chip_interrupt())
868 	 *		rx_lock[i] >>>		(bge_receive())
869 	 *			rf_lock[n]	(bge_refill())
870 	 *		tc_lock[i]		(bge_recycle())
871 	 */
872 	kmutex_t		genlock[1];
873 	krwlock_t		errlock[1];
874 	kmutex_t		softintrlock[1];
875 
876 	/*
877 	 * Current Ethernet addresses and multicast hash (bitmap) and
878 	 * refcount tables, protected by <genlock>
879 	 */
880 	bge_mac_addr_t		curr_addr[MAC_ADDRESS_REGS_MAX];
881 	uint32_t		mcast_hash[BGE_HASH_TABLE_SIZE/32];
882 	uint8_t			mcast_refs[BGE_HASH_TABLE_SIZE];
883 	uint32_t		unicst_addr_total; /* total unicst addresses */
884 	uint32_t		unicst_addr_avail;
885 					/* unused unicst addr slots */
886 
887 	/*
888 	 * Link state data (protected by genlock)
889 	 */
890 	const char		*link_mode_msg;	/* describes link mode	*/
891 	const char		*link_down_msg;	/* reason for link DOWN	*/
892 	const char		*link_up_msg;	/* comment on link UP	*/
893 
894 	link_state_t		link_state;
895 
896 	/*
897 	 * Physical layer (PHY/SerDes) state data (protected by genlock)
898 	 */
899 	hrtime_t		phys_write_time; /* when last written	*/
900 	hrtime_t		phys_event_time; /* when status changed	*/
901 	hrtime_t		phys_delta_time; /* time to settle	*/
902 
903 	/*
904 	 * Physical layer: copper only
905 	 */
906 	bge_regno_t		phy_mii_addr;	/* should be (const) 1!	*/
907 	uint16_t		phy_gen_status;
908 	uint16_t		phy_aux_status;
909 
910 	/*
911 	 * Physical layer: serdes only
912 	 */
913 	uint32_t		serdes_status;
914 	uint32_t		serdes_advert;
915 	uint32_t		serdes_lpadv;
916 
917 	/*
918 	 * Driver kstats, protected by <genlock> where necessary
919 	 */
920 	kstat_t			*bge_kstats[BGE_KSTAT_COUNT];
921 
922 	/*
923 	 * Miscellaneous operating variables (protected by genlock)
924 	 */
925 	uint64_t		chip_resets;	/* # of chip RESETs	*/
926 	uint64_t		missed_dmas;	/* # of missed DMAs	*/
927 	uint64_t		missed_updates;	/* # of missed updates	*/
928 	enum bge_mac_state	bge_mac_state;	/* definitions above	*/
929 	enum bge_chip_state	bge_chip_state;	/* definitions above	*/
930 	boolean_t		send_hw_tcp_csum;
931 	boolean_t		recv_hw_tcp_csum;
932 	boolean_t		promisc;
933 
934 	/*
935 	 * Miscellaneous operating variables (not synchronised)
936 	 */
937 	uint32_t		watchdog;	/* watches for Tx stall	*/
938 	boolean_t		bge_intr_running;
939 	boolean_t		bge_dma_error;
940 	boolean_t		tx_resched_needed;
941 	uint64_t		tx_resched;
942 	uint32_t		factotum_flag;	/* softint pending	*/
943 	uintptr_t		pagemask;
944 
945 	/*
946 	 * NDD parameters (protected by genlock)
947 	 */
948 	caddr_t			nd_data_p;
949 	nd_param_t		*nd_params;
950 
951 	/*
952 	 * A flag to prevent excessive config space accesses
953 	 * on platforms having BCM5714C/15C
954 	 */
955 	boolean_t		lastWriteZeroData;
956 
957 	/*
958 	 * Spare space, plus guard element used to check data integrity
959 	 */
960 	uint64_t		spare[5];
961 	uint64_t		bge_guard;
962 
963 	/*
964 	 * Receive rules configure
965 	 */
966 	bge_recv_rule_t	recv_rules[RECV_RULES_NUM_MAX];
967 
968 #ifdef BGE_IPMI_ASF
969 	boolean_t		asf_enabled;
970 	boolean_t		asf_wordswapped;
971 	boolean_t		asf_newhandshake;
972 	boolean_t		asf_pseudostop;
973 
974 	uint32_t		asf_status;
975 	timeout_id_t		asf_timeout_id;
976 #endif
977 } bge_t;
978 
979 /*
980  * 'Progress' bit flags ...
981  */
982 #define	PROGRESS_CFG		0x0001	/* config space mapped		*/
983 #define	PROGRESS_REGS		0x0002	/* registers mapped		*/
984 #define	PROGRESS_BUFS		0x0004	/* ring buffers allocated	*/
985 #define	PROGRESS_RESCHED	0x0010	/* resched softint registered	*/
986 #define	PROGRESS_FACTOTUM	0x0020	/* factotum softint registered	*/
987 #define	PROGRESS_HWINT		0x0040	/* h/w interrupt registered	*/
988 					/* and mutexen initialised	*/
989 #define	PROGRESS_INTR		0x0080	/* Intrs enabled		*/
990 #define	PROGRESS_PHY		0x0100	/* PHY initialised		*/
991 #define	PROGRESS_NDD		0x1000	/* NDD parameters set up	*/
992 #define	PROGRESS_KSTATS		0x2000	/* kstats created		*/
993 #define	PROGRESS_READY		0x8000	/* ready for work		*/
994 
995 /*
996  * Shorthand for the NDD parameters
997  */
998 #define	param_adv_autoneg	nd_params[PARAM_ADV_AUTONEG_CAP].ndp_val
999 #define	param_adv_pause		nd_params[PARAM_ADV_PAUSE_CAP].ndp_val
1000 #define	param_adv_asym_pause	nd_params[PARAM_ADV_ASYM_PAUSE_CAP].ndp_val
1001 #define	param_adv_1000fdx	nd_params[PARAM_ADV_1000FDX_CAP].ndp_val
1002 #define	param_adv_1000hdx	nd_params[PARAM_ADV_1000HDX_CAP].ndp_val
1003 #define	param_adv_100fdx	nd_params[PARAM_ADV_100FDX_CAP].ndp_val
1004 #define	param_adv_100hdx	nd_params[PARAM_ADV_100HDX_CAP].ndp_val
1005 #define	param_adv_10fdx		nd_params[PARAM_ADV_10FDX_CAP].ndp_val
1006 #define	param_adv_10hdx		nd_params[PARAM_ADV_10HDX_CAP].ndp_val
1007 
1008 #define	param_lp_autoneg	nd_params[PARAM_LP_AUTONEG_CAP].ndp_val
1009 #define	param_lp_pause		nd_params[PARAM_LP_PAUSE_CAP].ndp_val
1010 #define	param_lp_asym_pause	nd_params[PARAM_LP_ASYM_PAUSE_CAP].ndp_val
1011 #define	param_lp_1000fdx	nd_params[PARAM_LP_1000FDX_CAP].ndp_val
1012 #define	param_lp_1000hdx	nd_params[PARAM_LP_1000HDX_CAP].ndp_val
1013 #define	param_lp_100fdx		nd_params[PARAM_LP_100FDX_CAP].ndp_val
1014 #define	param_lp_100hdx		nd_params[PARAM_LP_100HDX_CAP].ndp_val
1015 #define	param_lp_10fdx		nd_params[PARAM_LP_10FDX_CAP].ndp_val
1016 #define	param_lp_10hdx		nd_params[PARAM_LP_10HDX_CAP].ndp_val
1017 
1018 #define	param_link_up		nd_params[PARAM_LINK_STATUS].ndp_val
1019 #define	param_link_speed	nd_params[PARAM_LINK_SPEED].ndp_val
1020 #define	param_link_duplex	nd_params[PARAM_LINK_DUPLEX].ndp_val
1021 
1022 #define	param_link_autoneg	nd_params[PARAM_LINK_AUTONEG].ndp_val
1023 #define	param_link_rx_pause	nd_params[PARAM_LINK_RX_PAUSE].ndp_val
1024 #define	param_link_tx_pause	nd_params[PARAM_LINK_TX_PAUSE].ndp_val
1025 
1026 #define	param_loop_mode		nd_params[PARAM_LOOP_MODE].ndp_val
1027 #define	param_msi_cnt		nd_params[PARAM_MSI_CNT].ndp_val
1028 #define	param_drain_max		nd_params[PARAM_DRAIN_MAX].ndp_val
1029 
1030 /*
1031  * Sync a DMA area described by a dma_area_t
1032  */
1033 #define	DMA_SYNC(area, flag)	((void) ddi_dma_sync((area).dma_hdl,	\
1034 				    (area).offset, (area).alength, (flag)))
1035 
1036 /*
1037  * Find the (kernel virtual) address of block of memory
1038  * described by a dma_area_t
1039  */
1040 #define	DMA_VPTR(area)		((area).mem_va)
1041 
1042 /*
1043  * Zero a block of memory described by a dma_area_t
1044  */
1045 #define	DMA_ZERO(area)		bzero(DMA_VPTR(area), (area).alength)
1046 
1047 /*
1048  * Next value of a cyclic index
1049  */
1050 #define	NEXT(index, limit)	((index)+1 < (limit) ? (index)+1 : 0)
1051 
1052 /*
1053  * Property lookups
1054  */
1055 #define	BGE_PROP_EXISTS(d, n)	ddi_prop_exists(DDI_DEV_T_ANY, (d),	\
1056 					DDI_PROP_DONTPASS, (n))
1057 #define	BGE_PROP_GET_INT(d, n)	ddi_prop_get_int(DDI_DEV_T_ANY, (d),	\
1058 					DDI_PROP_DONTPASS, (n), -1)
1059 
1060 /*
1061  * Copy an ethernet address
1062  */
1063 #define	ethaddr_copy(src, dst)	bcopy((src), (dst), ETHERADDRL)
1064 
1065 /*
1066  * Endian swap
1067  */
1068 /* BEGIN CSTYLED */
1069 #define BGE_BSWAP_32(x)		((((x) & 0xff000000) >> 24)  |		\
1070                                  (((x) & 0x00ff0000) >> 8)   |		\
1071                                  (((x) & 0x0000ff00) << 8)   |		\
1072                                  (((x) & 0x000000ff) << 24))
1073 /* END CSTYLED */
1074 
1075 /*
1076  * Marker value placed at the end of the driver's state
1077  */
1078 #define	BGE_GUARD		0x1919306009031802
1079 
1080 /*
1081  * Bit flags in the 'debug' word ...
1082  */
1083 #define	BGE_DBG_STOP		0x00000001	/* early debug_enter()	*/
1084 #define	BGE_DBG_TRACE		0x00000002	/* general flow tracing	*/
1085 
1086 #define	BGE_DBG_REGS		0x00000010	/* low-level accesses	*/
1087 #define	BGE_DBG_MII		0x00000020	/* low-level MII access	*/
1088 #define	BGE_DBG_SEEPROM		0x00000040	/* low-level SEEPROM IO	*/
1089 #define	BGE_DBG_CHIP		0x00000080	/* low(ish)-level code	*/
1090 
1091 #define	BGE_DBG_RECV		0x00000100	/* receive-side code	*/
1092 #define	BGE_DBG_SEND		0x00000200	/* packet-send code	*/
1093 
1094 #define	BGE_DBG_INT		0x00001000	/* interrupt handler	*/
1095 #define	BGE_DBG_FACT		0x00002000	/* factotum (softint)	*/
1096 
1097 #define	BGE_DBG_PHY		0x00010000	/* Copper PHY code	*/
1098 #define	BGE_DBG_SERDES		0x00020000	/* SerDes code		*/
1099 #define	BGE_DBG_PHYS		0x00040000	/* Physical layer code	*/
1100 #define	BGE_DBG_LINK		0x00080000	/* Link status check	*/
1101 
1102 #define	BGE_DBG_INIT		0x00100000	/* initialisation	*/
1103 #define	BGE_DBG_NEMO		0x00200000	/* nemo interaction	*/
1104 #define	BGE_DBG_ADDR		0x00400000	/* address-setting code	*/
1105 #define	BGE_DBG_STATS		0x00800000	/* statistics		*/
1106 
1107 #define	BGE_DBG_IOCTL		0x01000000	/* ioctl handling	*/
1108 #define	BGE_DBG_LOOP		0x02000000	/* loopback ioctl code	*/
1109 #define	BGE_DBG_PPIO		0x04000000	/* Peek/poke ioctls	*/
1110 #define	BGE_DBG_BADIOC		0x08000000	/* unknown ioctls	*/
1111 
1112 #define	BGE_DBG_MCTL		0x10000000	/* mctl (csum) code	*/
1113 #define	BGE_DBG_NDD		0x20000000	/* NDD operations	*/
1114 
1115 /*
1116  * Debugging ...
1117  */
1118 #ifdef	DEBUG
1119 #define	BGE_DEBUGGING		1
1120 #else
1121 #define	BGE_DEBUGGING		0
1122 #endif	/* DEBUG */
1123 
1124 
1125 /*
1126  * 'Do-if-debugging' macro.  The parameter <command> should be one or more
1127  * C statements (but without the *final* semicolon), which will either be
1128  * compiled inline or completely ignored, depending on the BGE_DEBUGGING
1129  * compile-time flag.
1130  *
1131  * You should get a compile-time error (at least on a DEBUG build) if
1132  * your statement isn't actually a statement, rather than unexpected
1133  * run-time behaviour caused by unintended matching of if-then-elses etc.
1134  *
1135  * Note that the BGE_DDB() macro itself can only be used as a statement,
1136  * not an expression, and should always be followed by a semicolon.
1137  */
1138 #if	BGE_DEBUGGING
1139 #define	BGE_DDB(command)	do {					\
1140 					{ command; }			\
1141 					_NOTE(CONSTANTCONDITION)	\
1142 				} while (0)
1143 #else 	/* BGE_DEBUGGING */
1144 #define	BGE_DDB(command)	do {					\
1145 					{ _NOTE(EMPTY); }		\
1146 					_NOTE(CONSTANTCONDITION)	\
1147 				} while (0)
1148 #endif	/* BGE_DEBUGGING */
1149 
1150 /*
1151  * 'Internal' macros used to construct the TRACE/DEBUG macros below.
1152  * These provide the primitive conditional-call capability required.
1153  * Note: the parameter <args> is a parenthesised list of the actual
1154  * printf-style arguments to be passed to the debug function ...
1155  */
1156 #define	BGE_XDB(b, w, f, args)	BGE_DDB(if ((b) & (w)) f args)
1157 #define	BGE_GDB(b, args)	BGE_XDB(b, bge_debug, (*bge_gdb()), args)
1158 #define	BGE_LDB(b, args)	BGE_XDB(b, bgep->debug, (*bge_db(bgep)), args)
1159 #define	BGE_CDB(f, args)	BGE_XDB(BGE_DBG, bgep->debug, f, args)
1160 
1161 /*
1162  * Conditional-print macros.
1163  *
1164  * Define BGE_DBG to be the relevant member of the set of BGE_DBG_* values
1165  * above before using the BGE_GDEBUG() or BGE_DEBUG() macros.  The 'G'
1166  * versions look at the Global debug flag word (bge_debug); the non-G
1167  * versions look in the per-instance data (bgep->debug) and so require a
1168  * variable called 'bgep' to be in scope (and initialised!) before use.
1169  *
1170  * You could redefine BGE_TRC too if you really need two different
1171  * flavours of debugging output in the same area of code, but I don't
1172  * really recommend it.
1173  *
1174  * Note: the parameter <args> is a parenthesised list of the actual
1175  * arguments to be passed to the debug function, usually a printf-style
1176  * format string and corresponding values to be formatted.
1177  */
1178 
1179 #define	BGE_TRC			BGE_DBG_TRACE	/* default 'trace' bit	*/
1180 #define	BGE_GTRACE(args)	BGE_GDB(BGE_TRC, args)
1181 #define	BGE_GDEBUG(args)	BGE_GDB(BGE_DBG, args)
1182 #define	BGE_TRACE(args)		BGE_LDB(BGE_TRC, args)
1183 #define	BGE_DEBUG(args)		BGE_LDB(BGE_DBG, args)
1184 
1185 /*
1186  * Debug-only action macros
1187  */
1188 #define	BGE_BRKPT(bgep, s)	BGE_DDB(bge_dbg_enter(bgep, s))
1189 #define	BGE_MARK(bgep)		BGE_DDB(bge_led_mark(bgep))
1190 #define	BGE_PCICHK(bgep)	BGE_DDB(bge_pci_check(bgep))
1191 #define	BGE_PKTDUMP(args)	BGE_DDB(bge_pkt_dump args)
1192 #define	BGE_REPORT(args)	BGE_DDB(bge_log args)
1193 
1194 /*
1195  * Inter-source-file linkage ...
1196  */
1197 
1198 /* bge_chip.c */
1199 uint16_t bge_mii_get16(bge_t *bgep, bge_regno_t regno);
1200 void bge_mii_put16(bge_t *bgep, bge_regno_t regno, uint16_t value);
1201 uint32_t bge_reg_get32(bge_t *bgep, bge_regno_t regno);
1202 void bge_reg_put32(bge_t *bgep, bge_regno_t regno, uint32_t value);
1203 void bge_reg_set32(bge_t *bgep, bge_regno_t regno, uint32_t bits);
1204 void bge_reg_clr32(bge_t *bgep, bge_regno_t regno, uint32_t bits);
1205 void bge_mbx_put(bge_t *bgep, bge_regno_t regno, uint64_t value);
1206 void bge_chip_cfg_init(bge_t *bgep, chip_id_t *cidp, boolean_t enable_dma);
1207 int bge_chip_id_init(bge_t *bgep);
1208 int bge_chip_start(bge_t *bgep, boolean_t reset_phy);
1209 void bge_chip_stop(bge_t *bgep, boolean_t fault);
1210 #ifdef BGE_IPMI_ASF
1211 void bge_nic_put32(bge_t *bgep, bge_regno_t addr, uint32_t data);
1212 #pragma	inline(bge_nic_put32)
1213 uint32_t bge_nic_read32(bge_t *bgep, bge_regno_t addr);
1214 void bge_ind_put32(bge_t *bgep, bge_regno_t regno, uint32_t val);
1215 #pragma inline(bge_ind_put32)
1216 uint32_t bge_ind_get32(bge_t *bgep, bge_regno_t regno);
1217 #pragma inline(bge_ind_get32)
1218 void bge_asf_update_status(bge_t *bgep);
1219 void bge_asf_heartbeat(void *bgep);
1220 void bge_asf_stop_timer(bge_t *bgep);
1221 void bge_asf_get_config(bge_t *bgep);
1222 void bge_asf_pre_reset_operations(bge_t *bgep, uint32_t mode);
1223 void bge_asf_post_reset_old_mode(bge_t *bgep, uint32_t mode);
1224 void bge_asf_post_reset_new_mode(bge_t *bgep, uint32_t mode);
1225 int bge_chip_reset(bge_t *bgep, boolean_t enable_dma, uint_t asf_mode);
1226 int bge_chip_sync(bge_t *bgep, boolean_t asf_keeplive);
1227 #else
1228 int bge_chip_reset(bge_t *bgep, boolean_t enable_dma);
1229 int bge_chip_sync(bge_t *bgep);
1230 #endif
1231 void bge_chip_blank(void *arg, time_t ticks, uint_t count);
1232 uint_t bge_chip_factotum(caddr_t arg);
1233 void bge_chip_cyclic(void *arg);
1234 enum ioc_reply bge_chip_ioctl(bge_t *bgep, queue_t *wq, mblk_t *mp,
1235 	struct iocblk *iocp);
1236 uint_t bge_intr(caddr_t arg1, caddr_t arg2);
1237 extern uint32_t bge_rx_ticks_norm;
1238 extern uint32_t bge_tx_ticks_norm;
1239 extern uint32_t bge_rx_count_norm;
1240 extern uint32_t bge_tx_count_norm;
1241 extern boolean_t bge_jumbo_enable;
1242 extern boolean_t bge_relaxed_ordering;
1243 
1244 void   bge_chip_msi_trig(bge_t *bgep);
1245 
1246 /* bge_kstats.c */
1247 void bge_init_kstats(bge_t *bgep, int instance);
1248 void bge_fini_kstats(bge_t *bgep);
1249 int bge_m_stat(void *arg, uint_t stat, uint64_t *val);
1250 
1251 /* bge_log.c */
1252 #if	BGE_DEBUGGING
1253 void (*bge_db(bge_t *bgep))(const char *fmt, ...);
1254 void (*bge_gdb(void))(const char *fmt, ...);
1255 void bge_pkt_dump(bge_t *bgep, bge_rbd_t *hbp, sw_rbd_t *sdp, const char *msg);
1256 void bge_dbg_enter(bge_t *bgep, const char *msg);
1257 #endif	/* BGE_DEBUGGING */
1258 void bge_problem(bge_t *bgep, const char *fmt, ...);
1259 void bge_notice(bge_t *bgep, const char *fmt, ...);
1260 void bge_log(bge_t *bgep, const char *fmt, ...);
1261 void bge_error(bge_t *bgep, const char *fmt, ...);
1262 void bge_fm_ereport(bge_t *bgep, char *detail);
1263 extern kmutex_t bge_log_mutex[1];
1264 extern uint32_t bge_debug;
1265 
1266 /* bge_main.c */
1267 int bge_restart(bge_t *bgep, boolean_t reset_phy);
1268 int bge_check_acc_handle(bge_t *bgep, ddi_acc_handle_t handle);
1269 int bge_check_dma_handle(bge_t *bgep, ddi_dma_handle_t handle);
1270 void bge_init_rings(bge_t *bgep);
1271 void bge_fini_rings(bge_t *bgep);
1272 bge_queue_item_t *bge_alloc_txbuf_array(bge_t *bgep, send_ring_t *srp);
1273 void bge_free_txbuf_arrays(send_ring_t *srp);
1274 int bge_alloc_bufs(bge_t *bgep);
1275 void bge_free_bufs(bge_t *bgep);
1276 void bge_intr_enable(bge_t *bgep);
1277 void bge_intr_disable(bge_t *bgep);
1278 
1279 /* bge_phys.c */
1280 int bge_phys_init(bge_t *bgep);
1281 void bge_phys_reset(bge_t *bgep);
1282 int bge_phys_idle(bge_t *bgep);
1283 int bge_phys_update(bge_t *bgep);
1284 boolean_t bge_phys_check(bge_t *bgep);
1285 
1286 /* bge_ndd.c */
1287 int bge_nd_init(bge_t *bgep);
1288 enum ioc_reply bge_nd_ioctl(bge_t *bgep, queue_t *wq, mblk_t *mp,
1289 	struct iocblk *iocp);
1290 void bge_nd_cleanup(bge_t *bgep);
1291 
1292 /* bge_recv.c */
1293 void bge_receive(bge_t *bgep, bge_status_t *bsp);
1294 
1295 /* bge_send.c */
1296 mblk_t *bge_m_tx(void *arg, mblk_t *mp);
1297 void bge_recycle(bge_t *bgep, bge_status_t *bsp);
1298 uint_t bge_send_drain(caddr_t arg);
1299 
1300 /* bge_atomic.c */
1301 uint64_t bge_atomic_reserve(uint64_t *count_p, uint64_t n);
1302 void bge_atomic_renounce(uint64_t *count_p, uint64_t n);
1303 uint64_t bge_atomic_claim(uint64_t *count_p, uint64_t limit);
1304 uint64_t bge_atomic_next(uint64_t *sp, uint64_t limit);
1305 void bge_atomic_sub64(uint64_t *count_p, uint64_t n);
1306 uint64_t bge_atomic_clr64(uint64_t *sp, uint64_t bits);
1307 uint32_t bge_atomic_shl32(uint32_t *sp, uint_t count);
1308 
1309 /*
1310  * Reset type
1311  */
1312 #define	BGE_SHUTDOWN_RESET	0
1313 #define	BGE_INIT_RESET		1
1314 #define	BGE_SUSPEND_RESET	2
1315 
1316 /* For asf_status */
1317 #define	ASF_STAT_NONE		0
1318 #define	ASF_STAT_STOP		1
1319 #define	ASF_STAT_RUN		2
1320 #define	ASF_STAT_RUN_INIT	3	/* attached but don't plumb */
1321 
1322 /* ASF modes for bge_reset() and bge_chip_reset() */
1323 #define	ASF_MODE_NONE		0	/* don't launch asf	 */
1324 #define	ASF_MODE_SHUTDOWN	1	/* asf shutdown mode	 */
1325 #define	ASF_MODE_INIT		2	/* asf init mode	 */
1326 #define	ASF_MODE_POST_SHUTDOWN	3	/* only do post-shutdown */
1327 #define	ASF_MODE_POST_INIT	4	/* only do post-init	 */
1328 
1329 #define	BGE_ASF_HEARTBEAT_INTERVAL		1500000
1330 
1331 #ifdef __cplusplus
1332 }
1333 #endif
1334 
1335 #endif	/* _BGE_IMPL_H */
1336