xref: /illumos-gate/usr/src/uts/common/io/bge/bge_chip2.c (revision f83ffe1aa13dc057aa65c36bacc83297b35f9be2)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 
22 /*
23  * Copyright 2009 Sun Microsystems, Inc.  All rights reserved.
24  * Use is subject to license terms.
25  */
26 
27 #include "bge_impl.h"
28 
29 #define	PIO_ADDR(bgep, offset)	((void *)((caddr_t)(bgep)->io_regs+(offset)))
30 
31 /*
32  * Future features ... ?
33  */
34 #define	BGE_CFG_IO8	1	/* 8/16-bit cfg space BIS/BIC	*/
35 #define	BGE_IND_IO32	1	/* indirect access code		*/
36 #define	BGE_SEE_IO32	1	/* SEEPROM access code		*/
37 #define	BGE_FLASH_IO32	1	/* FLASH access code		*/
38 
39 /*
40  * BGE MSI tunable:
41  *
42  * By default MSI is enabled on all supported platforms but it is disabled
43  * for some Broadcom chips due to known MSI hardware issues. Currently MSI
44  * is enabled only for 5714C A2 and 5715C A2 broadcom chips.
45  */
46 boolean_t bge_enable_msi = B_TRUE;
47 
48 /*
49  * PCI-X/PCI-E relaxed ordering tunable for OS/Nexus driver
50  */
51 boolean_t bge_relaxed_ordering = B_TRUE;
52 
53 /*
54  * Property names
55  */
56 static char knownids_propname[] = "bge-known-subsystems";
57 
58 /*
59  * Patchable globals:
60  *
61  *	bge_autorecover
62  *		Enables/disables automatic recovery after fault detection
63  *
64  *	bge_mlcr_default
65  *		Value to program into the MLCR; controls the chip's GPIO pins
66  *
67  *	bge_dma_{rd,wr}prio
68  *		Relative priorities of DMA reads & DMA writes respectively.
69  *		These may each be patched to any value 0-3.  Equal values
70  *		will give "fair" (round-robin) arbitration for PCI access.
71  *		Unequal values will give one or the other function priority.
72  *
73  *	bge_dma_rwctrl
74  *		Value to put in the Read/Write DMA control register.  See
75  *	        the Broadcom PRM for things you can fiddle with in this
76  *		register ...
77  *
78  *	bge_{tx,rx}_{count,ticks}_{norm,intr}
79  *		Send/receive interrupt coalescing parameters.  Counts are
80  *		#s of descriptors, ticks are in microseconds.  *norm* values
81  *		apply between status updates/interrupts; the *intr* values
82  *		refer to the 'during-interrupt' versions - see the PRM.
83  *
84  *		NOTE: these values have been determined by measurement. They
85  *		differ significantly from the values recommended in the PRM.
86  */
87 static uint32_t bge_autorecover = 1;
88 static uint32_t bge_mlcr_default_5714 = MLCR_DEFAULT_5714;
89 
90 static uint32_t bge_dma_rdprio = 1;
91 static uint32_t bge_dma_wrprio = 0;
92 static uint32_t bge_dma_rwctrl = PDRWCR_VAR_DEFAULT;
93 static uint32_t bge_dma_rwctrl_5721 = PDRWCR_VAR_5721;
94 static uint32_t bge_dma_rwctrl_5714 = PDRWCR_VAR_5714;
95 static uint32_t bge_dma_rwctrl_5715 = PDRWCR_VAR_5715;
96 
97 uint32_t bge_rx_ticks_norm = 128;
98 uint32_t bge_tx_ticks_norm = 2048;		/* 8 for FJ2+ !?!?	*/
99 uint32_t bge_rx_count_norm = 8;
100 uint32_t bge_tx_count_norm = 128;
101 
102 static uint32_t bge_rx_ticks_intr = 128;
103 static uint32_t bge_tx_ticks_intr = 0;		/* 8 for FJ2+ !?!?	*/
104 static uint32_t bge_rx_count_intr = 2;
105 static uint32_t bge_tx_count_intr = 0;
106 
107 /*
108  * Memory pool configuration parameters.
109  *
110  * These are generally specific to each member of the chip family, since
111  * each one may have a different memory size/configuration.
112  *
113  * Setting the mbuf pool length for a specific type of chip to 0 inhibits
114  * the driver from programming the various registers; instead they are left
115  * at their hardware defaults.  This is the preferred option for later chips
116  * (5705+), whereas the older chips *required* these registers to be set,
117  * since the h/w default was 0 ;-(
118  */
119 static uint32_t bge_mbuf_pool_base	= MBUF_POOL_BASE_DEFAULT;
120 static uint32_t bge_mbuf_pool_base_5704	= MBUF_POOL_BASE_5704;
121 static uint32_t bge_mbuf_pool_base_5705	= MBUF_POOL_BASE_5705;
122 static uint32_t bge_mbuf_pool_base_5721 = MBUF_POOL_BASE_5721;
123 static uint32_t bge_mbuf_pool_len	= MBUF_POOL_LENGTH_DEFAULT;
124 static uint32_t bge_mbuf_pool_len_5704	= MBUF_POOL_LENGTH_5704;
125 static uint32_t bge_mbuf_pool_len_5705	= 0;	/* use h/w default	*/
126 static uint32_t bge_mbuf_pool_len_5721	= 0;
127 
128 /*
129  * Various high and low water marks, thresholds, etc ...
130  *
131  * Note: these are taken from revision 7 of the PRM, and some are different
132  * from both the values in earlier PRMs *and* those determined experimentally
133  * and used in earlier versions of this driver ...
134  */
135 static uint32_t bge_mbuf_hi_water	= MBUF_HIWAT_DEFAULT;
136 static uint32_t bge_mbuf_lo_water_rmac	= MAC_RX_MBUF_LOWAT_DEFAULT;
137 static uint32_t bge_mbuf_lo_water_rdma	= RDMA_MBUF_LOWAT_DEFAULT;
138 
139 static uint32_t bge_dmad_lo_water	= DMAD_POOL_LOWAT_DEFAULT;
140 static uint32_t bge_dmad_hi_water	= DMAD_POOL_HIWAT_DEFAULT;
141 static uint32_t bge_lowat_recv_frames	= LOWAT_MAX_RECV_FRAMES_DEFAULT;
142 
143 static uint32_t bge_replenish_std	= STD_RCV_BD_REPLENISH_DEFAULT;
144 static uint32_t bge_replenish_mini	= MINI_RCV_BD_REPLENISH_DEFAULT;
145 static uint32_t bge_replenish_jumbo	= JUMBO_RCV_BD_REPLENISH_DEFAULT;
146 
147 static uint32_t	bge_watchdog_count	= 1 << 16;
148 static uint16_t bge_dma_miss_limit	= 20;
149 
150 static uint32_t bge_stop_start_on_sync	= 0;
151 
152 boolean_t bge_jumbo_enable		= B_TRUE;
153 
154 /*
155  * bge_intr_max_loop controls the maximum loop number within bge_intr.
156  * When loading NIC with heavy network traffic, it is useful.
157  * Increasing this value could have positive effect to throughput,
158  * but it might also increase ticks of a bge ISR stick on CPU, which might
159  * lead to bad UI interactive experience. So tune this with caution.
160  */
161 static int bge_intr_max_loop = 1;
162 
163 /*
164  * ========== Low-level chip & ring buffer manipulation ==========
165  */
166 
167 #define	BGE_DBG		BGE_DBG_REGS	/* debug flag for this code	*/
168 
169 
170 /*
171  * Config space read-modify-write routines
172  */
173 
174 #if	BGE_CFG_IO8
175 
176 static void bge_cfg_clr16(bge_t *bgep, bge_regno_t regno, uint16_t bits);
177 #pragma	inline(bge_cfg_clr16)
178 
179 static void
180 bge_cfg_clr16(bge_t *bgep, bge_regno_t regno, uint16_t bits)
181 {
182 	uint16_t regval;
183 
184 	BGE_TRACE(("bge_cfg_clr16($%p, 0x%lx, 0x%x)",
185 	    (void *)bgep, regno, bits));
186 
187 	regval = pci_config_get16(bgep->cfg_handle, regno);
188 
189 	BGE_DEBUG(("bge_cfg_clr16($%p, 0x%lx, 0x%x): 0x%x => 0x%x",
190 	    (void *)bgep, regno, bits, regval, regval & ~bits));
191 
192 	regval &= ~bits;
193 	pci_config_put16(bgep->cfg_handle, regno, regval);
194 }
195 
196 #endif	/* BGE_CFG_IO8 */
197 
198 static void bge_cfg_clr32(bge_t *bgep, bge_regno_t regno, uint32_t bits);
199 #pragma	inline(bge_cfg_clr32)
200 
201 static void
202 bge_cfg_clr32(bge_t *bgep, bge_regno_t regno, uint32_t bits)
203 {
204 	uint32_t regval;
205 
206 	BGE_TRACE(("bge_cfg_clr32($%p, 0x%lx, 0x%x)",
207 	    (void *)bgep, regno, bits));
208 
209 	regval = pci_config_get32(bgep->cfg_handle, regno);
210 
211 	BGE_DEBUG(("bge_cfg_clr32($%p, 0x%lx, 0x%x): 0x%x => 0x%x",
212 	    (void *)bgep, regno, bits, regval, regval & ~bits));
213 
214 	regval &= ~bits;
215 	pci_config_put32(bgep->cfg_handle, regno, regval);
216 }
217 
218 #if	BGE_IND_IO32
219 
220 /*
221  * Indirect access to registers & RISC scratchpads, using config space
222  * accesses only.
223  *
224  * This isn't currently used, but someday we might want to use it for
225  * restoring the Subsystem Device/Vendor registers (which aren't directly
226  * writable in Config Space), or for downloading firmware into the RISCs
227  *
228  * In any case there are endian issues to be resolved before this code is
229  * enabled; the bizarre way that bytes get twisted by this chip AND by
230  * the PCI bridge in SPARC systems mean that we shouldn't enable it until
231  * it's been thoroughly tested for all access sizes on all supported
232  * architectures (SPARC *and* x86!).
233  */
234 uint32_t bge_ind_get32(bge_t *bgep, bge_regno_t regno);
235 #pragma	inline(bge_ind_get32)
236 
237 uint32_t
238 bge_ind_get32(bge_t *bgep, bge_regno_t regno)
239 {
240 	uint32_t val;
241 
242 	BGE_TRACE(("bge_ind_get32($%p, 0x%lx)", (void *)bgep, regno));
243 
244 	pci_config_put32(bgep->cfg_handle, PCI_CONF_BGE_RIAAR, regno);
245 	val = pci_config_get32(bgep->cfg_handle, PCI_CONF_BGE_RIADR);
246 
247 	BGE_DEBUG(("bge_ind_get32($%p, 0x%lx) => 0x%x",
248 	    (void *)bgep, regno, val));
249 
250 	val = LE_32(val);
251 
252 	return (val);
253 }
254 
255 void bge_ind_put32(bge_t *bgep, bge_regno_t regno, uint32_t val);
256 #pragma	inline(bge_ind_put32)
257 
258 void
259 bge_ind_put32(bge_t *bgep, bge_regno_t regno, uint32_t val)
260 {
261 	BGE_TRACE(("bge_ind_put32($%p, 0x%lx, 0x%x)",
262 	    (void *)bgep, regno, val));
263 
264 	val = LE_32(val);
265 	pci_config_put32(bgep->cfg_handle, PCI_CONF_BGE_RIAAR, regno);
266 	pci_config_put32(bgep->cfg_handle, PCI_CONF_BGE_RIADR, val);
267 }
268 
269 #endif	/* BGE_IND_IO32 */
270 
271 #if	BGE_DEBUGGING
272 
273 static void bge_pci_check(bge_t *bgep);
274 #pragma	no_inline(bge_pci_check)
275 
276 static void
277 bge_pci_check(bge_t *bgep)
278 {
279 	uint16_t pcistatus;
280 
281 	pcistatus = pci_config_get16(bgep->cfg_handle, PCI_CONF_STAT);
282 	if ((pcistatus & (PCI_STAT_R_MAST_AB | PCI_STAT_R_TARG_AB)) != 0)
283 		BGE_DEBUG(("bge_pci_check($%p): PCI status 0x%x",
284 		    (void *)bgep, pcistatus));
285 }
286 
287 #endif	/* BGE_DEBUGGING */
288 
289 /*
290  * Perform first-stage chip (re-)initialisation, using only config-space
291  * accesses:
292  *
293  * + Read the vendor/device/revision/subsystem/cache-line-size registers,
294  *   returning the data in the structure pointed to by <idp>.
295  * + Configure the target-mode endianness (swap) options.
296  * + Disable interrupts and enable Memory Space accesses.
297  * + Enable or disable Bus Mastering according to the <enable_dma> flag.
298  *
299  * This sequence is adapted from Broadcom document 570X-PG102-R,
300  * page 102, steps 1-3, 6-8 and 11-13.  The omitted parts of the sequence
301  * are 4 and 5 (Reset Core and wait) which are handled elsewhere.
302  *
303  * This function MUST be called before any non-config-space accesses
304  * are made; on this first call <enable_dma> is B_FALSE, and it
305  * effectively performs steps 3-1(!) of the initialisation sequence
306  * (the rest are not required but should be harmless).
307  *
308  * It MUST also be called after a chip reset, as this disables
309  * Memory Space cycles!  In this case, <enable_dma> is B_TRUE, and
310  * it is effectively performing steps 6-8.
311  */
312 void bge_chip_cfg_init(bge_t *bgep, chip_id_t *cidp, boolean_t enable_dma);
313 #pragma	no_inline(bge_chip_cfg_init)
314 
315 void
316 bge_chip_cfg_init(bge_t *bgep, chip_id_t *cidp, boolean_t enable_dma)
317 {
318 	ddi_acc_handle_t handle;
319 	uint16_t command;
320 	uint32_t mhcr;
321 	uint16_t value16;
322 	int i;
323 
324 	BGE_TRACE(("bge_chip_cfg_init($%p, $%p, %d)",
325 	    (void *)bgep, (void *)cidp, enable_dma));
326 
327 	/*
328 	 * Step 3: save PCI cache line size and subsystem vendor ID
329 	 *
330 	 * Read all the config-space registers that characterise the
331 	 * chip, specifically vendor/device/revision/subsystem vendor
332 	 * and subsystem device id.  We expect (but don't check) that
333 	 * (vendor == VENDOR_ID_BROADCOM) && (device == DEVICE_ID_5704)
334 	 *
335 	 * Also save all bus-transaction related registers (cache-line
336 	 * size, bus-grant/latency parameters, etc).  Some of these are
337 	 * cleared by reset, so we'll have to restore them later.  This
338 	 * comes from the Broadcom document 570X-PG102-R ...
339 	 *
340 	 * Note: Broadcom document 570X-PG102-R seems to be in error
341 	 * here w.r.t. the offsets of the Subsystem Vendor ID and
342 	 * Subsystem (Device) ID registers, which are the opposite way
343 	 * round according to the PCI standard.  For good measure, we
344 	 * save/restore both anyway.
345 	 */
346 	handle = bgep->cfg_handle;
347 
348 	mhcr = pci_config_get32(handle, PCI_CONF_BGE_MHCR);
349 	cidp->asic_rev = mhcr & MHCR_CHIP_REV_MASK;
350 	cidp->businfo = pci_config_get32(handle, PCI_CONF_BGE_PCISTATE);
351 	cidp->command = pci_config_get16(handle, PCI_CONF_COMM);
352 
353 	cidp->vendor = pci_config_get16(handle, PCI_CONF_VENID);
354 	cidp->device = pci_config_get16(handle, PCI_CONF_DEVID);
355 	cidp->subven = pci_config_get16(handle, PCI_CONF_SUBVENID);
356 	cidp->subdev = pci_config_get16(handle, PCI_CONF_SUBSYSID);
357 	cidp->revision = pci_config_get8(handle, PCI_CONF_REVID);
358 	cidp->clsize = pci_config_get8(handle, PCI_CONF_CACHE_LINESZ);
359 	cidp->latency = pci_config_get8(handle, PCI_CONF_LATENCY_TIMER);
360 
361 	BGE_DEBUG(("bge_chip_cfg_init: %s bus is %s and %s; #INTA is %s",
362 	    cidp->businfo & PCISTATE_BUS_IS_PCI ? "PCI" : "PCI-X",
363 	    cidp->businfo & PCISTATE_BUS_IS_FAST ? "fast" : "slow",
364 	    cidp->businfo & PCISTATE_BUS_IS_32_BIT ? "narrow" : "wide",
365 	    cidp->businfo & PCISTATE_INTA_STATE ? "high" : "low"));
366 	BGE_DEBUG(("bge_chip_cfg_init: vendor 0x%x device 0x%x revision 0x%x",
367 	    cidp->vendor, cidp->device, cidp->revision));
368 	BGE_DEBUG(("bge_chip_cfg_init: subven 0x%x subdev 0x%x asic_rev 0x%x",
369 	    cidp->subven, cidp->subdev, cidp->asic_rev));
370 	BGE_DEBUG(("bge_chip_cfg_init: clsize %d latency %d command 0x%x",
371 	    cidp->clsize, cidp->latency, cidp->command));
372 
373 	/*
374 	 * Step 2 (also step 6): disable and clear interrupts.
375 	 * Steps 11-13: configure PIO endianness options, and enable
376 	 * indirect register access.  We'll also select any other
377 	 * options controlled by the MHCR (e.g. tagged status, mask
378 	 * interrupt mode) at this stage ...
379 	 *
380 	 * Note: internally, the chip is 64-bit and BIG-endian, but
381 	 * since it talks to the host over a (LITTLE-endian) PCI bus,
382 	 * it normally swaps bytes around at the PCI interface.
383 	 * However, the PCI host bridge on SPARC systems normally
384 	 * swaps the byte lanes around too, since SPARCs are also
385 	 * BIG-endian.  So it turns out that on SPARC, the right
386 	 * option is to tell the chip to swap (and the host bridge
387 	 * will swap back again), whereas on x86 we ask the chip
388 	 * NOT to swap, so the natural little-endianness of the
389 	 * PCI bus is assumed.  Then the only thing that doesn't
390 	 * automatically work right is access to an 8-byte register
391 	 * by a little-endian host; but we don't want to set the
392 	 * MHCR_ENABLE_REGISTER_WORD_SWAP bit because then 4-byte
393 	 * accesses don't go where expected ;-(  So we live with
394 	 * that, and perform word-swaps in software in the few cases
395 	 * where a chip register is defined as an 8-byte value --
396 	 * see the code below for details ...
397 	 *
398 	 * Note: the meaning of the 'MASK_INTERRUPT_MODE' bit isn't
399 	 * very clear in the register description in the PRM, but
400 	 * Broadcom document 570X-PG104-R page 248 explains a little
401 	 * more (under "Broadcom Mask Mode").  The bit changes the way
402 	 * the MASK_PCI_INT_OUTPUT bit works: with MASK_INTERRUPT_MODE
403 	 * clear, the chip interprets MASK_PCI_INT_OUTPUT in the same
404 	 * way as the 5700 did, which isn't very convenient.  Setting
405 	 * the MASK_INTERRUPT_MODE bit makes the MASK_PCI_INT_OUTPUT
406 	 * bit do just what its name says -- MASK the PCI #INTA output
407 	 * (i.e. deassert the signal at the pin) leaving all internal
408 	 * state unchanged.  This is much more convenient for our
409 	 * interrupt handler, so we set MASK_INTERRUPT_MODE here.
410 	 *
411 	 * Note: the inconvenient semantics of the interrupt mailbox
412 	 * (nonzero disables and acknowledges/clears the interrupt,
413 	 * zero enables AND CLEARS it) would make race conditions
414 	 * likely in the interrupt handler:
415 	 *
416 	 * (1)	acknowledge & disable interrupts
417 	 * (2)	while (more to do)
418 	 * 		process packets
419 	 * (3)	enable interrupts -- also clears pending
420 	 *
421 	 * If the chip received more packets and internally generated
422 	 * an interrupt between the check at (2) and the mbox write
423 	 * at (3), this interrupt would be lost :-(
424 	 *
425 	 * The best way to avoid this is to use TAGGED STATUS mode,
426 	 * where the chip includes a unique tag in each status block
427 	 * update, and the host, when re-enabling interrupts, passes
428 	 * the last tag it saw back to the chip; then the chip can
429 	 * see whether the host is truly up to date, and regenerate
430 	 * its interrupt if not.
431 	 */
432 	mhcr =	MHCR_ENABLE_INDIRECT_ACCESS |
433 	    MHCR_ENABLE_TAGGED_STATUS_MODE |
434 	    MHCR_MASK_INTERRUPT_MODE |
435 	    MHCR_CLEAR_INTERRUPT_INTA;
436 
437 	if (bgep->intr_type == DDI_INTR_TYPE_FIXED)
438 		mhcr |= MHCR_MASK_PCI_INT_OUTPUT;
439 
440 #ifdef	_BIG_ENDIAN
441 	mhcr |= MHCR_ENABLE_ENDIAN_WORD_SWAP | MHCR_ENABLE_ENDIAN_BYTE_SWAP;
442 #endif	/* _BIG_ENDIAN */
443 
444 	pci_config_put32(handle, PCI_CONF_BGE_MHCR, mhcr);
445 
446 #ifdef BGE_IPMI_ASF
447 	bgep->asf_wordswapped = B_FALSE;
448 #endif
449 	/*
450 	 * Step 1 (also step 7): Enable PCI Memory Space accesses
451 	 *			 Disable Memory Write/Invalidate
452 	 *			 Enable or disable Bus Mastering
453 	 *
454 	 * Note that all other bits are taken from the original value saved
455 	 * the first time through here, rather than from the current register
456 	 * value, 'cos that will have been cleared by a soft RESET since.
457 	 * In this way we preserve the OBP/nexus-parent's preferred settings
458 	 * of the parity-error and system-error enable bits across multiple
459 	 * chip RESETs.
460 	 */
461 	command = bgep->chipid.command | PCI_COMM_MAE;
462 	command &= ~(PCI_COMM_ME|PCI_COMM_MEMWR_INVAL);
463 	if (enable_dma)
464 		command |= PCI_COMM_ME;
465 	/*
466 	 * on BCM5714 revision A0, false parity error gets generated
467 	 * due to a logic bug. Provide a workaround by disabling parity
468 	 * error.
469 	 */
470 	if (((cidp->device == DEVICE_ID_5714C) ||
471 	    (cidp->device == DEVICE_ID_5714S)) &&
472 	    (cidp->revision == REVISION_ID_5714_A0)) {
473 		command &= ~PCI_COMM_PARITY_DETECT;
474 	}
475 	pci_config_put16(handle, PCI_CONF_COMM, command);
476 
477 	/*
478 	 * On some PCI-E device, there were instances when
479 	 * the device was still link training.
480 	 */
481 	if (bgep->chipid.pci_type == BGE_PCI_E) {
482 		i = 0;
483 		value16 = pci_config_get16(handle, PCI_CONF_COMM);
484 		while ((value16 != command) && (i < 100)) {
485 			drv_usecwait(200);
486 			value16 = pci_config_get16(handle, PCI_CONF_COMM);
487 			++i;
488 		}
489 	}
490 
491 	/*
492 	 * Clear any remaining error status bits
493 	 */
494 	pci_config_put16(handle, PCI_CONF_STAT, ~0);
495 
496 	/*
497 	 * Do following if and only if the device is NOT BCM5714C OR
498 	 * BCM5715C
499 	 */
500 	if (!((cidp->device == DEVICE_ID_5714C) ||
501 	    (cidp->device == DEVICE_ID_5715C))) {
502 		/*
503 		 * Make sure these indirect-access registers are sane
504 		 * rather than random after power-up or reset
505 		 */
506 		pci_config_put32(handle, PCI_CONF_BGE_RIAAR, 0);
507 		pci_config_put32(handle, PCI_CONF_BGE_MWBAR, 0);
508 	}
509 	/*
510 	 * Step 8: Disable PCI-X/PCI-E Relaxed Ordering
511 	 */
512 	bge_cfg_clr16(bgep, PCIX_CONF_COMM, PCIX_COMM_RELAXED);
513 
514 	if (cidp->pci_type == BGE_PCI_E) {
515 		if (DEVICE_5723_SERIES_CHIPSETS(bgep)) {
516 			bge_cfg_clr16(bgep, PCI_CONF_DEV_CTRL_5723,
517 			    DEV_CTRL_NO_SNOOP | DEV_CTRL_RELAXED);
518 		} else
519 			bge_cfg_clr16(bgep, PCI_CONF_DEV_CTRL,
520 			    DEV_CTRL_NO_SNOOP | DEV_CTRL_RELAXED);
521 	}
522 }
523 
524 #ifdef __amd64
525 /*
526  * Distinguish CPU types
527  *
528  * These use to  distinguish AMD64 or Intel EM64T of CPU running mode.
529  * If CPU runs on Intel EM64T mode,the 64bit operation cannot works fine
530  * for PCI-Express based network interface card. This is the work-around
531  * for those nics.
532  */
533 static boolean_t bge_get_em64t_type(void);
534 #pragma	inline(bge_get_em64t_type)
535 
536 static boolean_t
537 bge_get_em64t_type(void)
538 {
539 
540 	return (x86_vendor == X86_VENDOR_Intel);
541 }
542 #endif
543 
544 /*
545  * Operating register get/set access routines
546  */
547 
548 uint32_t bge_reg_get32(bge_t *bgep, bge_regno_t regno);
549 #pragma	inline(bge_reg_get32)
550 
551 uint32_t
552 bge_reg_get32(bge_t *bgep, bge_regno_t regno)
553 {
554 	BGE_TRACE(("bge_reg_get32($%p, 0x%lx)",
555 	    (void *)bgep, regno));
556 
557 	return (ddi_get32(bgep->io_handle, PIO_ADDR(bgep, regno)));
558 }
559 
560 void bge_reg_put32(bge_t *bgep, bge_regno_t regno, uint32_t data);
561 #pragma	inline(bge_reg_put32)
562 
563 void
564 bge_reg_put32(bge_t *bgep, bge_regno_t regno, uint32_t data)
565 {
566 	BGE_TRACE(("bge_reg_put32($%p, 0x%lx, 0x%x)",
567 	    (void *)bgep, regno, data));
568 
569 	ddi_put32(bgep->io_handle, PIO_ADDR(bgep, regno), data);
570 	BGE_PCICHK(bgep);
571 }
572 
573 void bge_reg_set32(bge_t *bgep, bge_regno_t regno, uint32_t bits);
574 #pragma	inline(bge_reg_set32)
575 
576 void
577 bge_reg_set32(bge_t *bgep, bge_regno_t regno, uint32_t bits)
578 {
579 	uint32_t regval;
580 
581 	BGE_TRACE(("bge_reg_set32($%p, 0x%lx, 0x%x)",
582 	    (void *)bgep, regno, bits));
583 
584 	regval = bge_reg_get32(bgep, regno);
585 	regval |= bits;
586 	bge_reg_put32(bgep, regno, regval);
587 }
588 
589 void bge_reg_clr32(bge_t *bgep, bge_regno_t regno, uint32_t bits);
590 #pragma	inline(bge_reg_clr32)
591 
592 void
593 bge_reg_clr32(bge_t *bgep, bge_regno_t regno, uint32_t bits)
594 {
595 	uint32_t regval;
596 
597 	BGE_TRACE(("bge_reg_clr32($%p, 0x%lx, 0x%x)",
598 	    (void *)bgep, regno, bits));
599 
600 	regval = bge_reg_get32(bgep, regno);
601 	regval &= ~bits;
602 	bge_reg_put32(bgep, regno, regval);
603 }
604 
605 static uint64_t bge_reg_get64(bge_t *bgep, bge_regno_t regno);
606 #pragma	inline(bge_reg_get64)
607 
608 static uint64_t
609 bge_reg_get64(bge_t *bgep, bge_regno_t regno)
610 {
611 	uint64_t regval;
612 
613 #ifdef	__amd64
614 	if (DEVICE_5723_SERIES_CHIPSETS(bgep) || bge_get_em64t_type()) {
615 		regval = ddi_get32(bgep->io_handle, PIO_ADDR(bgep, regno + 4));
616 		regval <<= 32;
617 		regval |= ddi_get32(bgep->io_handle, PIO_ADDR(bgep, regno));
618 	} else {
619 		regval = ddi_get64(bgep->io_handle, PIO_ADDR(bgep, regno));
620 	}
621 #elif defined(__sparc)
622 	if (DEVICE_5723_SERIES_CHIPSETS(bgep)) {
623 		regval = ddi_get32(bgep->io_handle, PIO_ADDR(bgep, regno));
624 		regval <<= 32;
625 		regval |= ddi_get32(bgep->io_handle, PIO_ADDR(bgep, regno + 4));
626 	} else {
627 		regval = ddi_get64(bgep->io_handle, PIO_ADDR(bgep, regno));
628 	}
629 #else
630 	regval = ddi_get64(bgep->io_handle, PIO_ADDR(bgep, regno));
631 #endif
632 
633 #ifdef	_LITTLE_ENDIAN
634 	regval = (regval >> 32) | (regval << 32);
635 #endif	/* _LITTLE_ENDIAN */
636 
637 	BGE_TRACE(("bge_reg_get64($%p, 0x%lx) = 0x%016llx",
638 	    (void *)bgep, regno, regval));
639 
640 	return (regval);
641 }
642 
643 static void bge_reg_put64(bge_t *bgep, bge_regno_t regno, uint64_t data);
644 #pragma	inline(bge_reg_put64)
645 
646 static void
647 bge_reg_put64(bge_t *bgep, bge_regno_t regno, uint64_t data)
648 {
649 	BGE_TRACE(("bge_reg_put64($%p, 0x%lx, 0x%016llx)",
650 	    (void *)bgep, regno, data));
651 
652 #ifdef	_LITTLE_ENDIAN
653 	data = ((data >> 32) | (data << 32));
654 #endif	/* _LITTLE_ENDIAN */
655 
656 #ifdef	__amd64
657 	if (DEVICE_5723_SERIES_CHIPSETS(bgep) || bge_get_em64t_type()) {
658 		ddi_put32(bgep->io_handle,
659 		    PIO_ADDR(bgep, regno), (uint32_t)data);
660 		BGE_PCICHK(bgep);
661 		ddi_put32(bgep->io_handle,
662 		    PIO_ADDR(bgep, regno + 4), (uint32_t)(data >> 32));
663 
664 	} else {
665 		ddi_put64(bgep->io_handle, PIO_ADDR(bgep, regno), data);
666 	}
667 #elif defined(__sparc)
668 	if (DEVICE_5723_SERIES_CHIPSETS(bgep)) {
669 		ddi_put32(bgep->io_handle,
670 		    PIO_ADDR(bgep, regno + 4), (uint32_t)data);
671 		BGE_PCICHK(bgep);
672 		ddi_put32(bgep->io_handle,
673 		    PIO_ADDR(bgep, regno), (uint32_t)(data >> 32));
674 	} else {
675 		ddi_put64(bgep->io_handle, PIO_ADDR(bgep, regno), data);
676 	}
677 #else
678 	ddi_put64(bgep->io_handle, PIO_ADDR(bgep, regno), data);
679 #endif
680 
681 	BGE_PCICHK(bgep);
682 }
683 
684 /*
685  * The DDI doesn't provide get/put functions for 128 bit data
686  * so we put RCBs out as two 64-bit chunks instead.
687  */
688 static void bge_reg_putrcb(bge_t *bgep, bge_regno_t addr, bge_rcb_t *rcbp);
689 #pragma	inline(bge_reg_putrcb)
690 
691 static void
692 bge_reg_putrcb(bge_t *bgep, bge_regno_t addr, bge_rcb_t *rcbp)
693 {
694 	uint64_t *p;
695 
696 	BGE_TRACE(("bge_reg_putrcb($%p, 0x%lx, 0x%016llx:%04x:%04x:%08x)",
697 	    (void *)bgep, addr, rcbp->host_ring_addr,
698 	    rcbp->max_len, rcbp->flags, rcbp->nic_ring_addr));
699 
700 	ASSERT((addr % sizeof (*rcbp)) == 0);
701 
702 	p = (void *)rcbp;
703 	bge_reg_put64(bgep, addr, *p++);
704 	bge_reg_put64(bgep, addr+8, *p);
705 }
706 
707 void bge_mbx_put(bge_t *bgep, bge_regno_t regno, uint64_t data);
708 #pragma	inline(bge_mbx_put)
709 
710 void
711 bge_mbx_put(bge_t *bgep, bge_regno_t regno, uint64_t data)
712 {
713 	if (DEVICE_5906_SERIES_CHIPSETS(bgep))
714 		regno += INTERRUPT_LP_MBOX_0_REG - INTERRUPT_MBOX_0_REG + 4;
715 
716 	BGE_TRACE(("bge_mbx_put($%p, 0x%lx, 0x%016llx)",
717 	    (void *)bgep, regno, data));
718 
719 	/*
720 	 * Mailbox registers are nominally 64 bits on the 5701, but
721 	 * the MSW isn't used.  On the 5703, they're only 32 bits
722 	 * anyway.  So here we just write the lower(!) 32 bits -
723 	 * remembering that the chip is big-endian, even though the
724 	 * PCI bus is little-endian ...
725 	 */
726 #ifdef	_BIG_ENDIAN
727 	ddi_put32(bgep->io_handle, PIO_ADDR(bgep, regno+4), (uint32_t)data);
728 #else
729 	ddi_put32(bgep->io_handle, PIO_ADDR(bgep, regno), (uint32_t)data);
730 #endif	/* _BIG_ENDIAN */
731 	BGE_PCICHK(bgep);
732 }
733 
734 uint32_t bge_mbx_get(bge_t *bgep, bge_regno_t regno);
735 #pragma inline(bge_mbx_get)
736 
737 uint32_t
738 bge_mbx_get(bge_t *bgep, bge_regno_t regno)
739 {
740 	uint32_t val32;
741 
742 	if (DEVICE_5906_SERIES_CHIPSETS(bgep))
743 		regno += INTERRUPT_LP_MBOX_0_REG - INTERRUPT_MBOX_0_REG + 4;
744 
745 	BGE_TRACE(("bge_mbx_get($%p, 0x%lx)",
746 	    (void *)bgep, regno));
747 
748 #ifdef	_BIG_ENDIAN
749 	val32 = ddi_get32(bgep->io_handle, PIO_ADDR(bgep, regno+4));
750 #else
751 	val32 = ddi_get32(bgep->io_handle, PIO_ADDR(bgep, regno));
752 #endif	/* _BIG_ENDIAN */
753 	BGE_PCICHK(bgep);
754 
755 	return (val32);
756 }
757 
758 
759 #if	BGE_DEBUGGING
760 
761 void bge_led_mark(bge_t *bgep);
762 #pragma	no_inline(bge_led_mark)
763 
764 void
765 bge_led_mark(bge_t *bgep)
766 {
767 	uint32_t led_ctrl = LED_CONTROL_OVERRIDE_LINK |
768 	    LED_CONTROL_1000MBPS_LED |
769 	    LED_CONTROL_100MBPS_LED |
770 	    LED_CONTROL_10MBPS_LED;
771 
772 	/*
773 	 * Blink all three LINK LEDs on simultaneously, then all off,
774 	 * then restore to automatic hardware control.  This is used
775 	 * in laboratory testing to trigger a logic analyser or scope.
776 	 */
777 	bge_reg_set32(bgep, ETHERNET_MAC_LED_CONTROL_REG, led_ctrl);
778 	led_ctrl ^= LED_CONTROL_OVERRIDE_LINK;
779 	bge_reg_clr32(bgep, ETHERNET_MAC_LED_CONTROL_REG, led_ctrl);
780 	led_ctrl = LED_CONTROL_OVERRIDE_LINK;
781 	bge_reg_clr32(bgep, ETHERNET_MAC_LED_CONTROL_REG, led_ctrl);
782 }
783 
784 #endif	/* BGE_DEBUGGING */
785 
786 /*
787  * NIC on-chip memory access routines
788  *
789  * Only 32K of NIC memory is visible at a time, controlled by the
790  * Memory Window Base Address Register (in PCI config space).  Once
791  * this is set, the 32K region of NIC-local memory that it refers
792  * to can be directly addressed in the upper 32K of the 64K of PCI
793  * memory space used for the device.
794  */
795 
796 static void bge_nic_setwin(bge_t *bgep, bge_regno_t base);
797 #pragma	inline(bge_nic_setwin)
798 
799 static void
800 bge_nic_setwin(bge_t *bgep, bge_regno_t base)
801 {
802 	chip_id_t *cidp;
803 
804 	BGE_TRACE(("bge_nic_setwin($%p, 0x%lx)",
805 	    (void *)bgep, base));
806 
807 	ASSERT((base & MWBAR_GRANULE_MASK) == 0);
808 
809 	/*
810 	 * Don't do repeated zero data writes,
811 	 * if the device is BCM5714C/15C.
812 	 */
813 	cidp = &bgep->chipid;
814 	if ((cidp->device == DEVICE_ID_5714C) ||
815 	    (cidp->device == DEVICE_ID_5715C)) {
816 		if (bgep->lastWriteZeroData && (base == (bge_regno_t)0))
817 			return;
818 		/* Adjust lastWriteZeroData */
819 		bgep->lastWriteZeroData = ((base == (bge_regno_t)0) ?
820 		    B_TRUE : B_FALSE);
821 	}
822 	pci_config_put32(bgep->cfg_handle, PCI_CONF_BGE_MWBAR, base);
823 }
824 
825 static uint32_t bge_nic_get32(bge_t *bgep, bge_regno_t addr);
826 #pragma	inline(bge_nic_get32)
827 
828 static uint32_t
829 bge_nic_get32(bge_t *bgep, bge_regno_t addr)
830 {
831 	uint32_t data;
832 
833 #if defined(BGE_IPMI_ASF) && !defined(__sparc)
834 	if (bgep->asf_enabled && !bgep->asf_wordswapped) {
835 		/* workaround for word swap error */
836 		if (addr & 4)
837 			addr = addr - 4;
838 		else
839 			addr = addr + 4;
840 	}
841 #endif
842 
843 #ifdef __sparc
844 	data = bge_nic_read32(bgep, addr);
845 #else
846 	bge_nic_setwin(bgep, addr & ~MWBAR_GRANULE_MASK);
847 	addr &= MWBAR_GRANULE_MASK;
848 	addr += NIC_MEM_WINDOW_OFFSET;
849 
850 	data = ddi_get32(bgep->io_handle, PIO_ADDR(bgep, addr));
851 #endif
852 
853 	BGE_TRACE(("bge_nic_get32($%p, 0x%lx) = 0x%08x",
854 	    (void *)bgep, addr, data));
855 
856 	return (data);
857 }
858 
859 void bge_nic_put32(bge_t *bgep, bge_regno_t addr, uint32_t data);
860 #pragma inline(bge_nic_put32)
861 
862 void
863 bge_nic_put32(bge_t *bgep, bge_regno_t addr, uint32_t data)
864 {
865 	BGE_TRACE(("bge_nic_put32($%p, 0x%lx, 0x%08x)",
866 	    (void *)bgep, addr, data));
867 
868 #if defined(BGE_IPMI_ASF) && !defined(__sparc)
869 	if (bgep->asf_enabled && !bgep->asf_wordswapped) {
870 		/* workaround for word swap error */
871 		if (addr & 4)
872 			addr = addr - 4;
873 		else
874 			addr = addr + 4;
875 	}
876 #endif
877 
878 #ifdef __sparc
879 	pci_config_put32(bgep->cfg_handle, PCI_CONF_BGE_MWBAR, addr);
880 	data = LE_32(data);
881 	pci_config_put32(bgep->cfg_handle, PCI_CONF_BGE_MWDAR, data);
882 	pci_config_put32(bgep->cfg_handle, PCI_CONF_BGE_MWBAR, 0);
883 #else
884 	bge_nic_setwin(bgep, addr & ~MWBAR_GRANULE_MASK);
885 	addr &= MWBAR_GRANULE_MASK;
886 	addr += NIC_MEM_WINDOW_OFFSET;
887 	ddi_put32(bgep->io_handle, PIO_ADDR(bgep, addr), data);
888 	BGE_PCICHK(bgep);
889 #endif
890 }
891 
892 static uint64_t bge_nic_get64(bge_t *bgep, bge_regno_t addr);
893 #pragma	inline(bge_nic_get64)
894 
895 static uint64_t
896 bge_nic_get64(bge_t *bgep, bge_regno_t addr)
897 {
898 	uint64_t data;
899 
900 	bge_nic_setwin(bgep, addr & ~MWBAR_GRANULE_MASK);
901 	addr &= MWBAR_GRANULE_MASK;
902 	addr += NIC_MEM_WINDOW_OFFSET;
903 
904 #ifdef	__amd64
905 		if (DEVICE_5723_SERIES_CHIPSETS(bgep) || bge_get_em64t_type()) {
906 			data = ddi_get32(bgep->io_handle, PIO_ADDR(bgep, addr));
907 			data <<= 32;
908 			data |= ddi_get32(bgep->io_handle,
909 			    PIO_ADDR(bgep, addr + 4));
910 		} else {
911 			data = ddi_get64(bgep->io_handle, PIO_ADDR(bgep, addr));
912 		}
913 #elif defined(__sparc)
914 		if (DEVICE_5723_SERIES_CHIPSETS(bgep)) {
915 			data = ddi_get32(bgep->io_handle, PIO_ADDR(bgep, addr));
916 			data <<= 32;
917 			data |= ddi_get32(bgep->io_handle,
918 			    PIO_ADDR(bgep, addr + 4));
919 		} else {
920 			data = ddi_get64(bgep->io_handle, PIO_ADDR(bgep, addr));
921 		}
922 #else
923 		data = ddi_get64(bgep->io_handle, PIO_ADDR(bgep, addr));
924 #endif
925 
926 	BGE_TRACE(("bge_nic_get64($%p, 0x%lx) = 0x%016llx",
927 	    (void *)bgep, addr, data));
928 
929 	return (data);
930 }
931 
932 static void bge_nic_put64(bge_t *bgep, bge_regno_t addr, uint64_t data);
933 #pragma	inline(bge_nic_put64)
934 
935 static void
936 bge_nic_put64(bge_t *bgep, bge_regno_t addr, uint64_t data)
937 {
938 	BGE_TRACE(("bge_nic_put64($%p, 0x%lx, 0x%016llx)",
939 	    (void *)bgep, addr, data));
940 
941 	bge_nic_setwin(bgep, addr & ~MWBAR_GRANULE_MASK);
942 	addr &= MWBAR_GRANULE_MASK;
943 	addr += NIC_MEM_WINDOW_OFFSET;
944 
945 #ifdef	__amd64
946 	if (DEVICE_5723_SERIES_CHIPSETS(bgep) || bge_get_em64t_type()) {
947 		ddi_put32(bgep->io_handle,
948 		    PIO_ADDR(bgep, addr), (uint32_t)data);
949 		BGE_PCICHK(bgep);
950 		ddi_put32(bgep->io_handle,
951 		    PIO_ADDR(bgep, addr + 4), (uint32_t)(data >> 32));
952 	} else {
953 		ddi_put64(bgep->io_handle, PIO_ADDR(bgep, addr), data);
954 	}
955 #elif defined(__sparc)
956 	if (DEVICE_5723_SERIES_CHIPSETS(bgep)) {
957 		ddi_put32(bgep->io_handle,
958 		    PIO_ADDR(bgep, addr + 4), (uint32_t)data);
959 		BGE_PCICHK(bgep);
960 		ddi_put32(bgep->io_handle,
961 		    PIO_ADDR(bgep, addr), (uint32_t)(data >> 32));
962 	} else {
963 		ddi_put64(bgep->io_handle, PIO_ADDR(bgep, addr), data);
964 	}
965 #else
966 	ddi_put64(bgep->io_handle, PIO_ADDR(bgep, addr), data);
967 #endif
968 
969 	BGE_PCICHK(bgep);
970 }
971 
972 /*
973  * The DDI doesn't provide get/put functions for 128 bit data
974  * so we put RCBs out as two 64-bit chunks instead.
975  */
976 static void bge_nic_putrcb(bge_t *bgep, bge_regno_t addr, bge_rcb_t *rcbp);
977 #pragma	inline(bge_nic_putrcb)
978 
979 static void
980 bge_nic_putrcb(bge_t *bgep, bge_regno_t addr, bge_rcb_t *rcbp)
981 {
982 	uint64_t *p;
983 
984 	BGE_TRACE(("bge_nic_putrcb($%p, 0x%lx, 0x%016llx:%04x:%04x:%08x)",
985 	    (void *)bgep, addr, rcbp->host_ring_addr,
986 	    rcbp->max_len, rcbp->flags, rcbp->nic_ring_addr));
987 
988 	ASSERT((addr % sizeof (*rcbp)) == 0);
989 
990 	bge_nic_setwin(bgep, addr & ~MWBAR_GRANULE_MASK);
991 	addr &= MWBAR_GRANULE_MASK;
992 	addr += NIC_MEM_WINDOW_OFFSET;
993 
994 	p = (void *)rcbp;
995 #ifdef	__amd64
996 	if (DEVICE_5723_SERIES_CHIPSETS(bgep) || bge_get_em64t_type()) {
997 		ddi_put32(bgep->io_handle, PIO_ADDR(bgep, addr),
998 		    (uint32_t)(*p));
999 		ddi_put32(bgep->io_handle, PIO_ADDR(bgep, addr + 4),
1000 		    (uint32_t)(*p >> 32));
1001 		ddi_put32(bgep->io_handle, PIO_ADDR(bgep, addr + 8),
1002 		    (uint32_t)(*(p + 1)));
1003 		ddi_put32(bgep->io_handle, PIO_ADDR(bgep, addr + 12),
1004 		    (uint32_t)(*p >> 32));
1005 
1006 	} else {
1007 		ddi_put64(bgep->io_handle, PIO_ADDR(bgep, addr), *p++);
1008 		ddi_put64(bgep->io_handle, PIO_ADDR(bgep, addr+8), *p);
1009 	}
1010 #elif defined(__sparc)
1011 	if (DEVICE_5723_SERIES_CHIPSETS(bgep)) {
1012 		ddi_put32(bgep->io_handle, PIO_ADDR(bgep, addr + 4),
1013 		    (uint32_t)(*p));
1014 		ddi_put32(bgep->io_handle, PIO_ADDR(bgep, addr),
1015 		    (uint32_t)(*p >> 32));
1016 		ddi_put32(bgep->io_handle, PIO_ADDR(bgep, addr + 12),
1017 		    (uint32_t)(*(p + 1)));
1018 		ddi_put32(bgep->io_handle, PIO_ADDR(bgep, addr + 8),
1019 		    (uint32_t)(*p >> 32));
1020 	} else {
1021 		ddi_put64(bgep->io_handle, PIO_ADDR(bgep, addr), *p++);
1022 		ddi_put64(bgep->io_handle, PIO_ADDR(bgep, addr + 8), *p);
1023 	}
1024 #else
1025 	ddi_put64(bgep->io_handle, PIO_ADDR(bgep, addr), *p++);
1026 	ddi_put64(bgep->io_handle, PIO_ADDR(bgep, addr + 8), *p);
1027 #endif
1028 
1029 	BGE_PCICHK(bgep);
1030 }
1031 
1032 static void bge_nic_zero(bge_t *bgep, bge_regno_t addr, uint32_t nbytes);
1033 #pragma	inline(bge_nic_zero)
1034 
1035 static void
1036 bge_nic_zero(bge_t *bgep, bge_regno_t addr, uint32_t nbytes)
1037 {
1038 	BGE_TRACE(("bge_nic_zero($%p, 0x%lx, 0x%x)",
1039 	    (void *)bgep, addr, nbytes));
1040 
1041 	ASSERT((addr & ~MWBAR_GRANULE_MASK) ==
1042 	    ((addr+nbytes) & ~MWBAR_GRANULE_MASK));
1043 
1044 	bge_nic_setwin(bgep, addr & ~MWBAR_GRANULE_MASK);
1045 	addr &= MWBAR_GRANULE_MASK;
1046 	addr += NIC_MEM_WINDOW_OFFSET;
1047 
1048 	(void) ddi_device_zero(bgep->io_handle, PIO_ADDR(bgep, addr),
1049 	    nbytes, 1, DDI_DATA_SZ08_ACC);
1050 	BGE_PCICHK(bgep);
1051 }
1052 
1053 /*
1054  * MII (PHY) register get/set access routines
1055  *
1056  * These use the chip's MII auto-access method, controlled by the
1057  * MII Communication register at 0x044c, so the CPU doesn't have
1058  * to fiddle with the individual bits.
1059  */
1060 
1061 #undef	BGE_DBG
1062 #define	BGE_DBG		BGE_DBG_MII	/* debug flag for this code	*/
1063 
1064 static uint16_t bge_mii_access(bge_t *bgep, bge_regno_t regno,
1065 				uint16_t data, uint32_t cmd);
1066 #pragma	no_inline(bge_mii_access)
1067 
1068 static uint16_t
1069 bge_mii_access(bge_t *bgep, bge_regno_t regno, uint16_t data, uint32_t cmd)
1070 {
1071 	uint32_t timeout;
1072 	uint32_t regval1;
1073 	uint32_t regval2;
1074 
1075 	BGE_TRACE(("bge_mii_access($%p, 0x%lx, 0x%x, 0x%x)",
1076 	    (void *)bgep, regno, data, cmd));
1077 
1078 	ASSERT(mutex_owned(bgep->genlock));
1079 
1080 	/*
1081 	 * Assemble the command ...
1082 	 */
1083 	cmd |= data << MI_COMMS_DATA_SHIFT;
1084 	cmd |= regno << MI_COMMS_REGISTER_SHIFT;
1085 	cmd |= bgep->phy_mii_addr << MI_COMMS_ADDRESS_SHIFT;
1086 	cmd |= MI_COMMS_START;
1087 
1088 	/*
1089 	 * Wait for any command already in progress ...
1090 	 *
1091 	 * Note: this *shouldn't* ever find that there is a command
1092 	 * in progress, because we already hold the <genlock> mutex.
1093 	 * Nonetheless, we have sometimes seen the MI_COMMS_START
1094 	 * bit set here -- it seems that the chip can initiate MII
1095 	 * accesses internally, even with polling OFF.
1096 	 */
1097 	regval1 = regval2 = bge_reg_get32(bgep, MI_COMMS_REG);
1098 	for (timeout = 100; ; ) {
1099 		if ((regval2 & MI_COMMS_START) == 0) {
1100 			bge_reg_put32(bgep, MI_COMMS_REG, cmd);
1101 			break;
1102 		}
1103 		if (--timeout == 0)
1104 			break;
1105 		drv_usecwait(10);
1106 		regval2 = bge_reg_get32(bgep, MI_COMMS_REG);
1107 	}
1108 
1109 	if (timeout == 0)
1110 		return ((uint16_t)~0u);
1111 
1112 	if (timeout != 100)
1113 		BGE_REPORT((bgep, "bge_mii_access: cmd 0x%x -- "
1114 		    "MI_COMMS_START set for %d us; 0x%x->0x%x",
1115 		    cmd, 10*(100-timeout), regval1, regval2));
1116 
1117 	regval1 = bge_reg_get32(bgep, MI_COMMS_REG);
1118 	for (timeout = 1000; ; ) {
1119 		if ((regval1 & MI_COMMS_START) == 0)
1120 			break;
1121 		if (--timeout == 0)
1122 			break;
1123 		drv_usecwait(10);
1124 		regval1 = bge_reg_get32(bgep, MI_COMMS_REG);
1125 	}
1126 
1127 	/*
1128 	 * Drop out early if the READ FAILED bit is set -- this chip
1129 	 * could be a 5703/4S, with a SerDes instead of a PHY!
1130 	 */
1131 	if (regval2 & MI_COMMS_READ_FAILED)
1132 		return ((uint16_t)~0u);
1133 
1134 	if (timeout == 0)
1135 		return ((uint16_t)~0u);
1136 
1137 	/*
1138 	 * The PRM says to wait 5us after seeing the START bit clear
1139 	 * and then re-read the register to get the final value of the
1140 	 * data field, in order to avoid a race condition where the
1141 	 * START bit is clear but the data field isn't yet valid.
1142 	 *
1143 	 * Note: we don't actually seem to be encounter this race;
1144 	 * except when the START bit is seen set again (see below),
1145 	 * the data field doesn't change during this 5us interval.
1146 	 */
1147 	drv_usecwait(5);
1148 	regval2 = bge_reg_get32(bgep, MI_COMMS_REG);
1149 
1150 	/*
1151 	 * Unfortunately, when following the PRMs instructions above,
1152 	 * we have occasionally seen the START bit set again(!) in the
1153 	 * value read after the 5us delay. This seems to be due to the
1154 	 * chip autonomously starting another MII access internally.
1155 	 * In such cases, the command/data/etc fields relate to the
1156 	 * internal command, rather than the one that we thought had
1157 	 * just finished.  So in this case, we fall back to returning
1158 	 * the data from the original read that showed START clear.
1159 	 */
1160 	if (regval2 & MI_COMMS_START) {
1161 		BGE_REPORT((bgep, "bge_mii_access: cmd 0x%x -- "
1162 		    "MI_COMMS_START set after transaction; 0x%x->0x%x",
1163 		    cmd, regval1, regval2));
1164 		regval2 = regval1;
1165 	}
1166 
1167 	if (regval2 & MI_COMMS_START)
1168 		return ((uint16_t)~0u);
1169 
1170 	if (regval2 & MI_COMMS_READ_FAILED)
1171 		return ((uint16_t)~0u);
1172 
1173 	return ((regval2 & MI_COMMS_DATA_MASK) >> MI_COMMS_DATA_SHIFT);
1174 }
1175 
1176 uint16_t bge_mii_get16(bge_t *bgep, bge_regno_t regno);
1177 #pragma	no_inline(bge_mii_get16)
1178 
1179 uint16_t
1180 bge_mii_get16(bge_t *bgep, bge_regno_t regno)
1181 {
1182 	BGE_TRACE(("bge_mii_get16($%p, 0x%lx)",
1183 	    (void *)bgep, regno));
1184 
1185 	ASSERT(mutex_owned(bgep->genlock));
1186 
1187 	if (DEVICE_5906_SERIES_CHIPSETS(bgep) && ((regno == MII_AUX_CONTROL) ||
1188 	    (regno == MII_1000BASE_T_CONTROL)))
1189 		return (0);
1190 
1191 	return (bge_mii_access(bgep, regno, 0, MI_COMMS_COMMAND_READ));
1192 }
1193 
1194 void bge_mii_put16(bge_t *bgep, bge_regno_t regno, uint16_t data);
1195 #pragma	no_inline(bge_mii_put16)
1196 
1197 void
1198 bge_mii_put16(bge_t *bgep, bge_regno_t regno, uint16_t data)
1199 {
1200 	BGE_TRACE(("bge_mii_put16($%p, 0x%lx, 0x%x)",
1201 	    (void *)bgep, regno, data));
1202 
1203 	ASSERT(mutex_owned(bgep->genlock));
1204 
1205 	if (DEVICE_5906_SERIES_CHIPSETS(bgep) && ((regno == MII_AUX_CONTROL) ||
1206 	    (regno == MII_1000BASE_T_CONTROL)))
1207 		return;
1208 
1209 	(void) bge_mii_access(bgep, regno, data, MI_COMMS_COMMAND_WRITE);
1210 }
1211 
1212 #undef	BGE_DBG
1213 #define	BGE_DBG		BGE_DBG_SEEPROM	/* debug flag for this code	*/
1214 
1215 #if	BGE_SEE_IO32 || BGE_FLASH_IO32
1216 
1217 /*
1218  * Basic SEEPROM get/set access routine
1219  *
1220  * This uses the chip's SEEPROM auto-access method, controlled by the
1221  * Serial EEPROM Address/Data Registers at 0x6838/683c, so the CPU
1222  * doesn't have to fiddle with the individual bits.
1223  *
1224  * The caller should hold <genlock> and *also* have already acquired
1225  * the right to access the SEEPROM, via bge_nvmem_acquire() above.
1226  *
1227  * Return value:
1228  *	0 on success,
1229  *	ENODATA on access timeout (maybe retryable: device may just be busy)
1230  *	EPROTO on other h/w or s/w errors.
1231  *
1232  * <*dp> is an input to a SEEPROM_ACCESS_WRITE operation, or an output
1233  * from a (successful) SEEPROM_ACCESS_READ.
1234  */
1235 static int bge_seeprom_access(bge_t *bgep, uint32_t cmd, bge_regno_t addr,
1236 				uint32_t *dp);
1237 #pragma	no_inline(bge_seeprom_access)
1238 
1239 static int
1240 bge_seeprom_access(bge_t *bgep, uint32_t cmd, bge_regno_t addr, uint32_t *dp)
1241 {
1242 	uint32_t tries;
1243 	uint32_t regval;
1244 
1245 	ASSERT(mutex_owned(bgep->genlock));
1246 
1247 	/*
1248 	 * On the newer chips that support both SEEPROM & Flash, we need
1249 	 * to specifically enable SEEPROM access (Flash is the default).
1250 	 * On older chips, we don't; SEEPROM is the only NVtype supported,
1251 	 * and the NVM control registers don't exist ...
1252 	 */
1253 	switch (bgep->chipid.nvtype) {
1254 	case BGE_NVTYPE_NONE:
1255 	case BGE_NVTYPE_UNKNOWN:
1256 		_NOTE(NOTREACHED)
1257 	case BGE_NVTYPE_SEEPROM:
1258 		break;
1259 
1260 	case BGE_NVTYPE_LEGACY_SEEPROM:
1261 	case BGE_NVTYPE_UNBUFFERED_FLASH:
1262 	case BGE_NVTYPE_BUFFERED_FLASH:
1263 	default:
1264 		bge_reg_set32(bgep, NVM_CONFIG1_REG,
1265 		    NVM_CFG1_LEGACY_SEEPROM_MODE);
1266 		break;
1267 	}
1268 
1269 	/*
1270 	 * Check there's no command in progress.
1271 	 *
1272 	 * Note: this *shouldn't* ever find that there is a command
1273 	 * in progress, because we already hold the <genlock> mutex.
1274 	 * Also, to ensure we don't have a conflict with the chip's
1275 	 * internal firmware or a process accessing the same (shared)
1276 	 * SEEPROM through the other port of a 5704, we've already
1277 	 * been through the "software arbitration" protocol.
1278 	 * So this is just a final consistency check: we shouldn't
1279 	 * see EITHER the START bit (command started but not complete)
1280 	 * OR the COMPLETE bit (command completed but not cleared).
1281 	 */
1282 	regval = bge_reg_get32(bgep, SERIAL_EEPROM_ADDRESS_REG);
1283 	if (regval & SEEPROM_ACCESS_START)
1284 		return (EPROTO);
1285 	if (regval & SEEPROM_ACCESS_COMPLETE)
1286 		return (EPROTO);
1287 
1288 	/*
1289 	 * Assemble the command ...
1290 	 */
1291 	cmd |= addr & SEEPROM_ACCESS_ADDRESS_MASK;
1292 	addr >>= SEEPROM_ACCESS_ADDRESS_SIZE;
1293 	addr <<= SEEPROM_ACCESS_DEVID_SHIFT;
1294 	cmd |= addr & SEEPROM_ACCESS_DEVID_MASK;
1295 	cmd |= SEEPROM_ACCESS_START;
1296 	cmd |= SEEPROM_ACCESS_COMPLETE;
1297 	cmd |= regval & SEEPROM_ACCESS_HALFCLOCK_MASK;
1298 
1299 	bge_reg_put32(bgep, SERIAL_EEPROM_DATA_REG, *dp);
1300 	bge_reg_put32(bgep, SERIAL_EEPROM_ADDRESS_REG, cmd);
1301 
1302 	/*
1303 	 * By observation, a successful access takes ~20us on a 5703/4,
1304 	 * but apparently much longer (up to 1000us) on the obsolescent
1305 	 * BCM5700/BCM5701.  We want to be sure we don't get any false
1306 	 * timeouts here; but OTOH, we don't want a bogus access to lock
1307 	 * out interrupts for longer than necessary. So we'll allow up
1308 	 * to 1000us ...
1309 	 */
1310 	for (tries = 0; tries < 1000; ++tries) {
1311 		regval = bge_reg_get32(bgep, SERIAL_EEPROM_ADDRESS_REG);
1312 		if (regval & SEEPROM_ACCESS_COMPLETE)
1313 			break;
1314 		drv_usecwait(1);
1315 	}
1316 
1317 	if (regval & SEEPROM_ACCESS_COMPLETE) {
1318 		/*
1319 		 * All OK; read the SEEPROM data register, then write back
1320 		 * the value read from the address register in order to
1321 		 * clear the <complete> bit and leave the SEEPROM access
1322 		 * state machine idle, ready for the next access ...
1323 		 */
1324 		BGE_DEBUG(("bge_seeprom_access: complete after %d us", tries));
1325 		*dp = bge_reg_get32(bgep, SERIAL_EEPROM_DATA_REG);
1326 		bge_reg_put32(bgep, SERIAL_EEPROM_ADDRESS_REG, regval);
1327 		return (0);
1328 	}
1329 
1330 	/*
1331 	 * Hmm ... what happened here?
1332 	 *
1333 	 * Most likely, the user addressed a non-existent SEEPROM. Or
1334 	 * maybe the SEEPROM was busy internally (e.g. processing a write)
1335 	 * and didn't respond to being addressed. Either way, it's left
1336 	 * the SEEPROM access state machine wedged. So we'll reset it
1337 	 * before we leave, so it's ready for next time ...
1338 	 */
1339 	BGE_DEBUG(("bge_seeprom_access: timed out after %d us", tries));
1340 	bge_reg_set32(bgep, SERIAL_EEPROM_ADDRESS_REG, SEEPROM_ACCESS_INIT);
1341 	return (ENODATA);
1342 }
1343 
1344 /*
1345  * Basic Flash get/set access routine
1346  *
1347  * These use the chip's Flash auto-access method, controlled by the
1348  * Flash Access Registers at 0x7000-701c, so the CPU doesn't have to
1349  * fiddle with the individual bits.
1350  *
1351  * The caller should hold <genlock> and *also* have already acquired
1352  * the right to access the Flash, via bge_nvmem_acquire() above.
1353  *
1354  * Return value:
1355  *	0 on success,
1356  *	ENODATA on access timeout (maybe retryable: device may just be busy)
1357  *	ENODEV if the NVmem device is missing or otherwise unusable
1358  *
1359  * <*dp> is an input to a NVM_FLASH_CMD_WR operation, or an output
1360  * from a (successful) NVM_FLASH_CMD_RD.
1361  */
1362 static int bge_flash_access(bge_t *bgep, uint32_t cmd, bge_regno_t addr,
1363 				uint32_t *dp);
1364 #pragma	no_inline(bge_flash_access)
1365 
1366 static int
1367 bge_flash_access(bge_t *bgep, uint32_t cmd, bge_regno_t addr, uint32_t *dp)
1368 {
1369 	uint32_t tries;
1370 	uint32_t regval;
1371 
1372 	ASSERT(mutex_owned(bgep->genlock));
1373 
1374 	/*
1375 	 * On the newer chips that support both SEEPROM & Flash, we need
1376 	 * to specifically disable SEEPROM access while accessing Flash.
1377 	 * The older chips don't support Flash, and the NVM registers don't
1378 	 * exist, so we shouldn't be here at all!
1379 	 */
1380 	switch (bgep->chipid.nvtype) {
1381 	case BGE_NVTYPE_NONE:
1382 	case BGE_NVTYPE_UNKNOWN:
1383 		_NOTE(NOTREACHED)
1384 	case BGE_NVTYPE_SEEPROM:
1385 		return (ENODEV);
1386 
1387 	case BGE_NVTYPE_LEGACY_SEEPROM:
1388 	case BGE_NVTYPE_UNBUFFERED_FLASH:
1389 	case BGE_NVTYPE_BUFFERED_FLASH:
1390 	default:
1391 		bge_reg_clr32(bgep, NVM_CONFIG1_REG,
1392 		    NVM_CFG1_LEGACY_SEEPROM_MODE);
1393 		break;
1394 	}
1395 
1396 	/*
1397 	 * Assemble the command ...
1398 	 */
1399 	addr &= NVM_FLASH_ADDR_MASK;
1400 	cmd |= NVM_FLASH_CMD_DOIT;
1401 	cmd |= NVM_FLASH_CMD_FIRST;
1402 	cmd |= NVM_FLASH_CMD_LAST;
1403 	cmd |= NVM_FLASH_CMD_DONE;
1404 
1405 	bge_reg_put32(bgep, NVM_FLASH_WRITE_REG, *dp);
1406 	bge_reg_put32(bgep, NVM_FLASH_ADDR_REG, addr);
1407 	bge_reg_put32(bgep, NVM_FLASH_CMD_REG, cmd);
1408 
1409 	/*
1410 	 * Allow up to 1000ms ...
1411 	 */
1412 	for (tries = 0; tries < 1000; ++tries) {
1413 		regval = bge_reg_get32(bgep, NVM_FLASH_CMD_REG);
1414 		if (regval & NVM_FLASH_CMD_DONE)
1415 			break;
1416 		drv_usecwait(1);
1417 	}
1418 
1419 	if (regval & NVM_FLASH_CMD_DONE) {
1420 		/*
1421 		 * All OK; read the data from the Flash read register
1422 		 */
1423 		BGE_DEBUG(("bge_flash_access: complete after %d us", tries));
1424 		*dp = bge_reg_get32(bgep, NVM_FLASH_READ_REG);
1425 		return (0);
1426 	}
1427 
1428 	/*
1429 	 * Hmm ... what happened here?
1430 	 *
1431 	 * Most likely, the user addressed a non-existent Flash. Or
1432 	 * maybe the Flash was busy internally (e.g. processing a write)
1433 	 * and didn't respond to being addressed. Either way, there's
1434 	 * nothing we can here ...
1435 	 */
1436 	BGE_DEBUG(("bge_flash_access: timed out after %d us", tries));
1437 	return (ENODATA);
1438 }
1439 
1440 /*
1441  * The next two functions regulate access to the NVram (if fitted).
1442  *
1443  * On a 5704 (dual core) chip, there's only one SEEPROM and one Flash
1444  * (SPI) interface, but they can be accessed through either port. These
1445  * are managed by different instance of this driver and have no software
1446  * state in common.
1447  *
1448  * In addition (and even on a single core chip) the chip's internal
1449  * firmware can access the SEEPROM/Flash, most notably after a RESET
1450  * when it may download code to run internally.
1451  *
1452  * So we need to arbitrate between these various software agents.  For
1453  * this purpose, the chip provides the Software Arbitration Register,
1454  * which implements hardware(!) arbitration.
1455  *
1456  * This functionality didn't exist on older (5700/5701) chips, so there's
1457  * nothing we can do by way of arbitration on those; also, if there's no
1458  * SEEPROM/Flash fitted (or we couldn't determine what type), there's also
1459  * nothing to do.
1460  *
1461  * The internal firmware appears to use Request 0, which is the highest
1462  * priority.  So we'd like to use Request 2, leaving one higher and one
1463  * lower for any future developments ... but apparently this doesn't
1464  * always work.  So for now, the code uses Request 1 ;-(
1465  */
1466 
1467 #define	NVM_READ_REQ	NVM_READ_REQ1
1468 #define	NVM_RESET_REQ	NVM_RESET_REQ1
1469 #define	NVM_SET_REQ	NVM_SET_REQ1
1470 
1471 static void bge_nvmem_relinquish(bge_t *bgep);
1472 #pragma	no_inline(bge_nvmem_relinquish)
1473 
1474 static void
1475 bge_nvmem_relinquish(bge_t *bgep)
1476 {
1477 	ASSERT(mutex_owned(bgep->genlock));
1478 
1479 	switch (bgep->chipid.nvtype) {
1480 	case BGE_NVTYPE_NONE:
1481 	case BGE_NVTYPE_UNKNOWN:
1482 		_NOTE(NOTREACHED)
1483 		return;
1484 
1485 	case BGE_NVTYPE_SEEPROM:
1486 		/*
1487 		 * No arbitration performed, no release needed
1488 		 */
1489 		return;
1490 
1491 	case BGE_NVTYPE_LEGACY_SEEPROM:
1492 	case BGE_NVTYPE_UNBUFFERED_FLASH:
1493 	case BGE_NVTYPE_BUFFERED_FLASH:
1494 	default:
1495 		break;
1496 	}
1497 
1498 	/*
1499 	 * Our own request should be present (whether or not granted) ...
1500 	 */
1501 	(void) bge_reg_get32(bgep, NVM_SW_ARBITRATION_REG);
1502 
1503 	/*
1504 	 * ... this will make it go away.
1505 	 */
1506 	bge_reg_put32(bgep, NVM_SW_ARBITRATION_REG, NVM_RESET_REQ);
1507 	(void) bge_reg_get32(bgep, NVM_SW_ARBITRATION_REG);
1508 }
1509 
1510 /*
1511  * Arbitrate for access to the NVmem, if necessary
1512  *
1513  * Return value:
1514  *	0 on success
1515  *	EAGAIN if the device is in use (retryable)
1516  *	ENODEV if the NVmem device is missing or otherwise unusable
1517  */
1518 static int bge_nvmem_acquire(bge_t *bgep);
1519 #pragma	no_inline(bge_nvmem_acquire)
1520 
1521 static int
1522 bge_nvmem_acquire(bge_t *bgep)
1523 {
1524 	uint32_t regval;
1525 	uint32_t tries;
1526 
1527 	ASSERT(mutex_owned(bgep->genlock));
1528 
1529 	switch (bgep->chipid.nvtype) {
1530 	case BGE_NVTYPE_NONE:
1531 	case BGE_NVTYPE_UNKNOWN:
1532 		/*
1533 		 * Access denied: no (recognisable) device fitted
1534 		 */
1535 		return (ENODEV);
1536 
1537 	case BGE_NVTYPE_SEEPROM:
1538 		/*
1539 		 * Access granted: no arbitration needed (or possible)
1540 		 */
1541 		return (0);
1542 
1543 	case BGE_NVTYPE_LEGACY_SEEPROM:
1544 	case BGE_NVTYPE_UNBUFFERED_FLASH:
1545 	case BGE_NVTYPE_BUFFERED_FLASH:
1546 	default:
1547 		/*
1548 		 * Access conditional: conduct arbitration protocol
1549 		 */
1550 		break;
1551 	}
1552 
1553 	/*
1554 	 * We're holding the per-port mutex <genlock>, so no-one other
1555 	 * thread can be attempting to access the NVmem through *this*
1556 	 * port. But it could be in use by the *other* port (of a 5704),
1557 	 * or by the chip's internal firmware, so we have to go through
1558 	 * the full (hardware) arbitration protocol ...
1559 	 *
1560 	 * Note that *because* we're holding <genlock>, the interrupt handler
1561 	 * won't be able to progress.  So we're only willing to spin for a
1562 	 * fairly short time.  Specifically:
1563 	 *
1564 	 *	We *must* wait long enough for the hardware to resolve all
1565 	 *	requests and determine the winner.  Fortunately, this is
1566 	 *	"almost instantaneous", even as observed by GHz CPUs.
1567 	 *
1568 	 *	A successful access by another Solaris thread (via either
1569 	 *	port) typically takes ~20us.  So waiting a bit longer than
1570 	 *	that will give a good chance of success, if the other user
1571 	 *	*is* another thread on the other port.
1572 	 *
1573 	 *	However, the internal firmware can hold on to the NVmem
1574 	 *	for *much* longer: at least 10 milliseconds just after a
1575 	 *	RESET, and maybe even longer if the NVmem actually contains
1576 	 *	code to download and run on the internal CPUs.
1577 	 *
1578 	 * So, we'll allow 50us; if that's not enough then it's up to the
1579 	 * caller to retry later (hence the choice of return code EAGAIN).
1580 	 */
1581 	regval = bge_reg_get32(bgep, NVM_SW_ARBITRATION_REG);
1582 	bge_reg_put32(bgep, NVM_SW_ARBITRATION_REG, NVM_SET_REQ);
1583 
1584 	for (tries = 0; tries < 50; ++tries) {
1585 		regval = bge_reg_get32(bgep, NVM_SW_ARBITRATION_REG);
1586 		if (regval & NVM_WON_REQ1)
1587 			break;
1588 		drv_usecwait(1);
1589 	}
1590 
1591 	if (regval & NVM_WON_REQ1) {
1592 		BGE_DEBUG(("bge_nvmem_acquire: won after %d us", tries));
1593 		return (0);
1594 	}
1595 
1596 	/*
1597 	 * Somebody else must be accessing the NVmem, so abandon our
1598 	 * attempt take control of it.  The caller can try again later ...
1599 	 */
1600 	BGE_DEBUG(("bge_nvmem_acquire: lost after %d us", tries));
1601 	bge_nvmem_relinquish(bgep);
1602 	return (EAGAIN);
1603 }
1604 
1605 /*
1606  * This code assumes that the GPIO1 bit has been wired up to the NVmem
1607  * write protect line in such a way that the NVmem is protected when
1608  * GPIO1 is an input, or is an output but driven high.  Thus, to make the
1609  * NVmem writable we have to change GPIO1 to an output AND drive it low.
1610  *
1611  * Note: there's only one set of GPIO pins on a 5704, even though they
1612  * can be accessed through either port.  So the chip has to resolve what
1613  * happens if the two ports program a single pin differently ... the rule
1614  * it uses is that if the ports disagree about the *direction* of a pin,
1615  * "output" wins over "input", but if they disagree about its *value* as
1616  * an output, then the pin is TRISTATED instead!  In such a case, no-one
1617  * wins, and the external signal does whatever the external circuitry
1618  * defines as the default -- which we've assumed is the PROTECTED state.
1619  * So, we always change GPIO1 back to being an *input* whenever we're not
1620  * specifically using it to unprotect the NVmem. This allows either port
1621  * to update the NVmem, although obviously only one at a time!
1622  *
1623  * The caller should hold <genlock> and *also* have already acquired the
1624  * right to access the NVmem, via bge_nvmem_acquire() above.
1625  */
1626 static void bge_nvmem_protect(bge_t *bgep, boolean_t protect);
1627 #pragma	inline(bge_nvmem_protect)
1628 
1629 static void
1630 bge_nvmem_protect(bge_t *bgep, boolean_t protect)
1631 {
1632 	uint32_t regval;
1633 
1634 	ASSERT(mutex_owned(bgep->genlock));
1635 
1636 	regval = bge_reg_get32(bgep, MISC_LOCAL_CONTROL_REG);
1637 	if (protect) {
1638 		regval |= MLCR_MISC_PINS_OUTPUT_1;
1639 		regval &= ~MLCR_MISC_PINS_OUTPUT_ENABLE_1;
1640 	} else {
1641 		regval &= ~MLCR_MISC_PINS_OUTPUT_1;
1642 		regval |= MLCR_MISC_PINS_OUTPUT_ENABLE_1;
1643 	}
1644 	bge_reg_put32(bgep, MISC_LOCAL_CONTROL_REG, regval);
1645 }
1646 
1647 /*
1648  * Now put it all together ...
1649  *
1650  * Try to acquire control of the NVmem; if successful, then:
1651  *	unprotect it (if we want to write to it)
1652  *	perform the requested access
1653  *	reprotect it (after a write)
1654  *	relinquish control
1655  *
1656  * Return value:
1657  *	0 on success,
1658  *	EAGAIN if the device is in use (retryable)
1659  *	ENODATA on access timeout (maybe retryable: device may just be busy)
1660  *	ENODEV if the NVmem device is missing or otherwise unusable
1661  *	EPROTO on other h/w or s/w errors.
1662  */
1663 static int
1664 bge_nvmem_rw32(bge_t *bgep, uint32_t cmd, bge_regno_t addr, uint32_t *dp)
1665 {
1666 	int err;
1667 
1668 	if ((err = bge_nvmem_acquire(bgep)) == 0) {
1669 		switch (cmd) {
1670 		case BGE_SEE_READ:
1671 			err = bge_seeprom_access(bgep,
1672 			    SEEPROM_ACCESS_READ, addr, dp);
1673 			break;
1674 
1675 		case BGE_SEE_WRITE:
1676 			bge_nvmem_protect(bgep, B_FALSE);
1677 			err = bge_seeprom_access(bgep,
1678 			    SEEPROM_ACCESS_WRITE, addr, dp);
1679 			bge_nvmem_protect(bgep, B_TRUE);
1680 			break;
1681 
1682 		case BGE_FLASH_READ:
1683 			if (DEVICE_5721_SERIES_CHIPSETS(bgep) ||
1684 			    DEVICE_5723_SERIES_CHIPSETS(bgep) ||
1685 			    DEVICE_5714_SERIES_CHIPSETS(bgep)) {
1686 				bge_reg_set32(bgep, NVM_ACCESS_REG,
1687 				    NVM_ACCESS_ENABLE);
1688 			}
1689 			err = bge_flash_access(bgep,
1690 			    NVM_FLASH_CMD_RD, addr, dp);
1691 			if (DEVICE_5721_SERIES_CHIPSETS(bgep) ||
1692 			    DEVICE_5723_SERIES_CHIPSETS(bgep) ||
1693 			    DEVICE_5714_SERIES_CHIPSETS(bgep)) {
1694 				bge_reg_clr32(bgep, NVM_ACCESS_REG,
1695 				    NVM_ACCESS_ENABLE);
1696 			}
1697 			break;
1698 
1699 		case BGE_FLASH_WRITE:
1700 			if (DEVICE_5721_SERIES_CHIPSETS(bgep) ||
1701 			    DEVICE_5723_SERIES_CHIPSETS(bgep) ||
1702 			    DEVICE_5714_SERIES_CHIPSETS(bgep)) {
1703 				bge_reg_set32(bgep, NVM_ACCESS_REG,
1704 				    NVM_WRITE_ENABLE|NVM_ACCESS_ENABLE);
1705 			}
1706 			bge_nvmem_protect(bgep, B_FALSE);
1707 			err = bge_flash_access(bgep,
1708 			    NVM_FLASH_CMD_WR, addr, dp);
1709 			bge_nvmem_protect(bgep, B_TRUE);
1710 			if (DEVICE_5721_SERIES_CHIPSETS(bgep) ||
1711 			    DEVICE_5723_SERIES_CHIPSETS(bgep) ||
1712 			    DEVICE_5714_SERIES_CHIPSETS(bgep)) {
1713 				bge_reg_clr32(bgep, NVM_ACCESS_REG,
1714 				    NVM_WRITE_ENABLE|NVM_ACCESS_ENABLE);
1715 			}
1716 
1717 			break;
1718 
1719 		default:
1720 			_NOTE(NOTREACHED)
1721 			break;
1722 		}
1723 		bge_nvmem_relinquish(bgep);
1724 	}
1725 
1726 	BGE_DEBUG(("bge_nvmem_rw32: err %d", err));
1727 	return (err);
1728 }
1729 
1730 /*
1731  * Attempt to get a MAC address from the SEEPROM or Flash, if any
1732  */
1733 static uint64_t bge_get_nvmac(bge_t *bgep);
1734 #pragma no_inline(bge_get_nvmac)
1735 
1736 static uint64_t
1737 bge_get_nvmac(bge_t *bgep)
1738 {
1739 	uint32_t mac_high;
1740 	uint32_t mac_low;
1741 	uint32_t addr;
1742 	uint32_t cmd;
1743 	uint64_t mac;
1744 
1745 	BGE_TRACE(("bge_get_nvmac($%p)",
1746 	    (void *)bgep));
1747 
1748 	switch (bgep->chipid.nvtype) {
1749 	case BGE_NVTYPE_NONE:
1750 	case BGE_NVTYPE_UNKNOWN:
1751 	default:
1752 		return (0ULL);
1753 
1754 	case BGE_NVTYPE_SEEPROM:
1755 	case BGE_NVTYPE_LEGACY_SEEPROM:
1756 		cmd = BGE_SEE_READ;
1757 		break;
1758 
1759 	case BGE_NVTYPE_UNBUFFERED_FLASH:
1760 	case BGE_NVTYPE_BUFFERED_FLASH:
1761 		cmd = BGE_FLASH_READ;
1762 		break;
1763 	}
1764 
1765 	if (DEVICE_5906_SERIES_CHIPSETS(bgep))
1766 		addr = NVMEM_DATA_MAC_ADDRESS_5906;
1767 	else
1768 		addr = NVMEM_DATA_MAC_ADDRESS;
1769 
1770 	if (bge_nvmem_rw32(bgep, cmd, addr, &mac_high))
1771 		return (0ULL);
1772 	addr += 4;
1773 	if (bge_nvmem_rw32(bgep, cmd, addr, &mac_low))
1774 		return (0ULL);
1775 
1776 	/*
1777 	 * The Broadcom chip is natively BIG-endian, so that's how the
1778 	 * MAC address is represented in NVmem.  We may need to swap it
1779 	 * around on a little-endian host ...
1780 	 */
1781 #ifdef	_BIG_ENDIAN
1782 	mac = mac_high;
1783 	mac = mac << 32;
1784 	mac |= mac_low;
1785 #else
1786 	mac = BGE_BSWAP_32(mac_high);
1787 	mac = mac << 32;
1788 	mac |= BGE_BSWAP_32(mac_low);
1789 #endif	/* _BIG_ENDIAN */
1790 
1791 	return (mac);
1792 }
1793 
1794 #else	/* BGE_SEE_IO32 || BGE_FLASH_IO32 */
1795 
1796 /*
1797  * Dummy version for when we're not supporting NVmem access
1798  */
1799 static uint64_t bge_get_nvmac(bge_t *bgep);
1800 #pragma inline(bge_get_nvmac)
1801 
1802 static uint64_t
1803 bge_get_nvmac(bge_t *bgep)
1804 {
1805 	_NOTE(ARGUNUSED(bgep))
1806 	return (0ULL);
1807 }
1808 
1809 #endif	/* BGE_SEE_IO32 || BGE_FLASH_IO32 */
1810 
1811 /*
1812  * Determine the type of NVmem that is (or may be) attached to this chip,
1813  */
1814 static enum bge_nvmem_type bge_nvmem_id(bge_t *bgep);
1815 #pragma no_inline(bge_nvmem_id)
1816 
1817 static enum bge_nvmem_type
1818 bge_nvmem_id(bge_t *bgep)
1819 {
1820 	enum bge_nvmem_type nvtype;
1821 	uint32_t config1;
1822 
1823 	BGE_TRACE(("bge_nvmem_id($%p)",
1824 	    (void *)bgep));
1825 
1826 	switch (bgep->chipid.device) {
1827 	default:
1828 		/*
1829 		 * We shouldn't get here; it means we don't recognise
1830 		 * the chip, which means we don't know how to determine
1831 		 * what sort of NVmem (if any) it has.  So we'll say
1832 		 * NONE, to disable the NVmem access code ...
1833 		 */
1834 		nvtype = BGE_NVTYPE_NONE;
1835 		break;
1836 
1837 	case DEVICE_ID_5700:
1838 	case DEVICE_ID_5700x:
1839 	case DEVICE_ID_5701:
1840 		/*
1841 		 * These devices support *only* SEEPROMs
1842 		 */
1843 		nvtype = BGE_NVTYPE_SEEPROM;
1844 		break;
1845 
1846 	case DEVICE_ID_5702:
1847 	case DEVICE_ID_5702fe:
1848 	case DEVICE_ID_5703C:
1849 	case DEVICE_ID_5703S:
1850 	case DEVICE_ID_5704C:
1851 	case DEVICE_ID_5704S:
1852 	case DEVICE_ID_5704:
1853 	case DEVICE_ID_5705M:
1854 	case DEVICE_ID_5705C:
1855 	case DEVICE_ID_5705_2:
1856 	case DEVICE_ID_5780:
1857 	case DEVICE_ID_5782:
1858 	case DEVICE_ID_5787:
1859 	case DEVICE_ID_5787M:
1860 	case DEVICE_ID_5788:
1861 	case DEVICE_ID_5789:
1862 	case DEVICE_ID_5751:
1863 	case DEVICE_ID_5751M:
1864 	case DEVICE_ID_5752:
1865 	case DEVICE_ID_5752M:
1866 	case DEVICE_ID_5754:
1867 	case DEVICE_ID_5755:
1868 	case DEVICE_ID_5755M:
1869 	case DEVICE_ID_5756M:
1870 	case DEVICE_ID_5721:
1871 	case DEVICE_ID_5722:
1872 	case DEVICE_ID_5723:
1873 	case DEVICE_ID_5714C:
1874 	case DEVICE_ID_5714S:
1875 	case DEVICE_ID_5715C:
1876 	case DEVICE_ID_5715S:
1877 		config1 = bge_reg_get32(bgep, NVM_CONFIG1_REG);
1878 		if (config1 & NVM_CFG1_FLASH_MODE)
1879 			if (config1 & NVM_CFG1_BUFFERED_MODE)
1880 				nvtype = BGE_NVTYPE_BUFFERED_FLASH;
1881 			else
1882 				nvtype = BGE_NVTYPE_UNBUFFERED_FLASH;
1883 		else
1884 			nvtype = BGE_NVTYPE_LEGACY_SEEPROM;
1885 		break;
1886 	case DEVICE_ID_5906:
1887 	case DEVICE_ID_5906M:
1888 		nvtype = BGE_NVTYPE_BUFFERED_FLASH;
1889 		break;
1890 	}
1891 
1892 	return (nvtype);
1893 }
1894 
1895 #undef	BGE_DBG
1896 #define	BGE_DBG		BGE_DBG_CHIP	/* debug flag for this code	*/
1897 
1898 static void
1899 bge_init_recv_rule(bge_t *bgep)
1900 {
1901 	bge_recv_rule_t *rulep = bgep->recv_rules;
1902 	uint32_t i;
1903 
1904 	/*
1905 	 * Initialize receive rule registers.
1906 	 * Note that rules may persist across each bge_m_start/stop() call.
1907 	 */
1908 	for (i = 0; i < RECV_RULES_NUM_MAX; i++, rulep++) {
1909 		bge_reg_put32(bgep, RECV_RULE_MASK_REG(i), rulep->mask_value);
1910 		bge_reg_put32(bgep, RECV_RULE_CONTROL_REG(i), rulep->control);
1911 	}
1912 }
1913 
1914 /*
1915  * Using the values captured by bge_chip_cfg_init(), and additional probes
1916  * as required, characterise the chip fully: determine the label by which
1917  * to refer to this chip, the correct settings for various registers, and
1918  * of course whether the device and/or subsystem are supported!
1919  */
1920 int bge_chip_id_init(bge_t *bgep);
1921 #pragma	no_inline(bge_chip_id_init)
1922 
1923 int
1924 bge_chip_id_init(bge_t *bgep)
1925 {
1926 	char buf[MAXPATHLEN];		/* any risk of stack overflow?	*/
1927 	boolean_t sys_ok;
1928 	boolean_t dev_ok;
1929 	chip_id_t *cidp;
1930 	uint32_t subid;
1931 	char *devname;
1932 	char *sysname;
1933 	int *ids;
1934 	int err;
1935 	uint_t i;
1936 
1937 	sys_ok = dev_ok = B_FALSE;
1938 	cidp = &bgep->chipid;
1939 
1940 	/*
1941 	 * Check the PCI device ID to determine the generic chip type and
1942 	 * select parameters that depend on this.
1943 	 *
1944 	 * Note: because the SPARC platforms in general don't fit the
1945 	 * SEEPROM 'behind' the chip, the PCI revision ID register reads
1946 	 * as zero - which is why we use <asic_rev> rather than <revision>
1947 	 * below ...
1948 	 *
1949 	 * Note: in general we can't distinguish between the Copper/SerDes
1950 	 * versions by ID alone, as some Copper devices (e.g. some but not
1951 	 * all 5703Cs) have the same ID as the SerDes equivalents.  So we
1952 	 * treat them the same here, and the MII code works out the media
1953 	 * type later on ...
1954 	 */
1955 	cidp->mbuf_base = bge_mbuf_pool_base;
1956 	cidp->mbuf_length = bge_mbuf_pool_len;
1957 	cidp->recv_slots = BGE_RECV_SLOTS_USED;
1958 	cidp->bge_dma_rwctrl = bge_dma_rwctrl;
1959 	cidp->pci_type = BGE_PCI_X;
1960 	cidp->statistic_type = BGE_STAT_BLK;
1961 	cidp->mbuf_lo_water_rdma = bge_mbuf_lo_water_rdma;
1962 	cidp->mbuf_lo_water_rmac = bge_mbuf_lo_water_rmac;
1963 	cidp->mbuf_hi_water = bge_mbuf_hi_water;
1964 	cidp->rx_ticks_norm = bge_rx_ticks_norm;
1965 	cidp->rx_count_norm = bge_rx_count_norm;
1966 
1967 	if (cidp->rx_rings == 0 || cidp->rx_rings > BGE_RECV_RINGS_MAX)
1968 		cidp->rx_rings = BGE_RECV_RINGS_DEFAULT;
1969 	if (cidp->tx_rings == 0 || cidp->tx_rings > BGE_SEND_RINGS_MAX)
1970 		cidp->tx_rings = BGE_SEND_RINGS_DEFAULT;
1971 
1972 	cidp->msi_enabled = B_FALSE;
1973 
1974 	switch (cidp->device) {
1975 	case DEVICE_ID_5700:
1976 	case DEVICE_ID_5700x:
1977 		cidp->chip_label = 5700;
1978 		cidp->flags |= CHIP_FLAG_PARTIAL_CSUM;
1979 		break;
1980 
1981 	case DEVICE_ID_5701:
1982 		cidp->chip_label = 5701;
1983 		dev_ok = B_TRUE;
1984 		cidp->flags |= CHIP_FLAG_PARTIAL_CSUM;
1985 		break;
1986 
1987 	case DEVICE_ID_5702:
1988 	case DEVICE_ID_5702fe:
1989 		cidp->chip_label = 5702;
1990 		dev_ok = B_TRUE;
1991 		cidp->flags |= CHIP_FLAG_PARTIAL_CSUM;
1992 		cidp->pci_type = BGE_PCI;
1993 		break;
1994 
1995 	case DEVICE_ID_5703C:
1996 	case DEVICE_ID_5703S:
1997 	case DEVICE_ID_5703:
1998 		/*
1999 		 * Revision A0 of the 5703/5793 had various errata
2000 		 * that we can't or don't work around, so it's not
2001 		 * supported, but all later versions are
2002 		 */
2003 		cidp->chip_label = cidp->subven == VENDOR_ID_SUN ? 5793 : 5703;
2004 		if (bgep->chipid.asic_rev != MHCR_CHIP_REV_5703_A0)
2005 			dev_ok = B_TRUE;
2006 		cidp->flags |= CHIP_FLAG_PARTIAL_CSUM;
2007 		break;
2008 
2009 	case DEVICE_ID_5704C:
2010 	case DEVICE_ID_5704S:
2011 	case DEVICE_ID_5704:
2012 		cidp->chip_label = cidp->subven == VENDOR_ID_SUN ? 5794 : 5704;
2013 		cidp->mbuf_base = bge_mbuf_pool_base_5704;
2014 		cidp->mbuf_length = bge_mbuf_pool_len_5704;
2015 		dev_ok = B_TRUE;
2016 		cidp->flags |= CHIP_FLAG_PARTIAL_CSUM;
2017 		break;
2018 
2019 	case DEVICE_ID_5705C:
2020 	case DEVICE_ID_5705M:
2021 	case DEVICE_ID_5705MA3:
2022 	case DEVICE_ID_5705F:
2023 	case DEVICE_ID_5705_2:
2024 	case DEVICE_ID_5754:
2025 		if (cidp->device == DEVICE_ID_5754) {
2026 			cidp->chip_label = 5754;
2027 			cidp->pci_type = BGE_PCI_E;
2028 		} else {
2029 			cidp->chip_label = 5705;
2030 			cidp->pci_type = BGE_PCI;
2031 		}
2032 		cidp->mbuf_lo_water_rdma = RDMA_MBUF_LOWAT_5705;
2033 		cidp->mbuf_lo_water_rmac = MAC_RX_MBUF_LOWAT_5705;
2034 		cidp->mbuf_hi_water = MBUF_HIWAT_5705;
2035 		cidp->mbuf_base = bge_mbuf_pool_base_5705;
2036 		cidp->mbuf_length = bge_mbuf_pool_len_5705;
2037 		cidp->recv_slots = BGE_RECV_SLOTS_5705;
2038 		cidp->rx_rings = BGE_RECV_RINGS_MAX_5705;
2039 		cidp->tx_rings = BGE_SEND_RINGS_MAX_5705;
2040 		cidp->flags |= CHIP_FLAG_NO_JUMBO;
2041 		cidp->flags |= CHIP_FLAG_PARTIAL_CSUM;
2042 		cidp->statistic_type = BGE_STAT_REG;
2043 		dev_ok = B_TRUE;
2044 		break;
2045 
2046 	case DEVICE_ID_5906:
2047 	case DEVICE_ID_5906M:
2048 		cidp->chip_label = 5906;
2049 		cidp->pci_type = BGE_PCI_E;
2050 		cidp->mbuf_lo_water_rdma = RDMA_MBUF_LOWAT_5906;
2051 		cidp->mbuf_lo_water_rmac = MAC_RX_MBUF_LOWAT_5906;
2052 		cidp->mbuf_hi_water = MBUF_HIWAT_5906;
2053 		cidp->mbuf_base = bge_mbuf_pool_base;
2054 		cidp->mbuf_length = bge_mbuf_pool_len;
2055 		cidp->recv_slots = BGE_RECV_SLOTS_5705;
2056 		cidp->rx_rings = BGE_RECV_RINGS_MAX_5705;
2057 		cidp->tx_rings = BGE_SEND_RINGS_MAX_5705;
2058 		cidp->flags |= CHIP_FLAG_NO_JUMBO;
2059 		cidp->statistic_type = BGE_STAT_REG;
2060 		dev_ok = B_TRUE;
2061 		break;
2062 
2063 	case DEVICE_ID_5753:
2064 		cidp->chip_label = 5753;
2065 		cidp->pci_type = BGE_PCI_E;
2066 		cidp->mbuf_lo_water_rdma = RDMA_MBUF_LOWAT_5705;
2067 		cidp->mbuf_lo_water_rmac = MAC_RX_MBUF_LOWAT_5705;
2068 		cidp->mbuf_hi_water = MBUF_HIWAT_5705;
2069 		cidp->mbuf_base = bge_mbuf_pool_base_5705;
2070 		cidp->mbuf_length = bge_mbuf_pool_len_5705;
2071 		cidp->recv_slots = BGE_RECV_SLOTS_5705;
2072 		cidp->bge_mlcr_default |= MLCR_MISC_PINS_OUTPUT_ENABLE_1;
2073 		cidp->rx_rings = BGE_RECV_RINGS_MAX_5705;
2074 		cidp->tx_rings = BGE_SEND_RINGS_MAX_5705;
2075 		cidp->flags |= CHIP_FLAG_NO_JUMBO;
2076 		cidp->statistic_type = BGE_STAT_REG;
2077 		dev_ok = B_TRUE;
2078 		break;
2079 
2080 	case DEVICE_ID_5755:
2081 	case DEVICE_ID_5755M:
2082 		cidp->chip_label = 5755;
2083 		cidp->pci_type = BGE_PCI_E;
2084 		cidp->mbuf_lo_water_rdma = RDMA_MBUF_LOWAT_5705;
2085 		cidp->mbuf_lo_water_rmac = MAC_RX_MBUF_LOWAT_5705;
2086 		cidp->mbuf_hi_water = MBUF_HIWAT_5705;
2087 		cidp->mbuf_base = bge_mbuf_pool_base_5705;
2088 		cidp->mbuf_length = bge_mbuf_pool_len_5705;
2089 		cidp->recv_slots = BGE_RECV_SLOTS_5705;
2090 		cidp->bge_mlcr_default |= MLCR_MISC_PINS_OUTPUT_ENABLE_1;
2091 		cidp->rx_rings = BGE_RECV_RINGS_MAX_5705;
2092 		cidp->tx_rings = BGE_SEND_RINGS_MAX_5705;
2093 		cidp->flags |= CHIP_FLAG_NO_JUMBO;
2094 		cidp->flags |= CHIP_FLAG_PARTIAL_CSUM;
2095 		cidp->statistic_type = BGE_STAT_REG;
2096 		dev_ok = B_TRUE;
2097 		break;
2098 
2099 	case DEVICE_ID_5756M:
2100 		/*
2101 		 * This is nearly identical to the 5755M.
2102 		 * (Actually reports the 5755 chip ID.)
2103 		 */
2104 		cidp->chip_label = 5756;
2105 		cidp->pci_type = BGE_PCI_E;
2106 		cidp->mbuf_lo_water_rdma = RDMA_MBUF_LOWAT_5705;
2107 		cidp->mbuf_lo_water_rmac = MAC_RX_MBUF_LOWAT_5705;
2108 		cidp->mbuf_hi_water = MBUF_HIWAT_5705;
2109 		cidp->mbuf_base = bge_mbuf_pool_base_5705;
2110 		cidp->mbuf_length = bge_mbuf_pool_len_5705;
2111 		cidp->recv_slots = BGE_RECV_SLOTS_5705;
2112 		cidp->bge_mlcr_default |= MLCR_MISC_PINS_OUTPUT_ENABLE_1;
2113 		cidp->rx_rings = BGE_RECV_RINGS_MAX_5705;
2114 		cidp->tx_rings = BGE_SEND_RINGS_MAX_5705;
2115 		cidp->flags |= CHIP_FLAG_NO_JUMBO;
2116 		cidp->statistic_type = BGE_STAT_REG;
2117 		dev_ok = B_TRUE;
2118 		break;
2119 
2120 	case DEVICE_ID_5787:
2121 	case DEVICE_ID_5787M:
2122 		cidp->chip_label = 5787;
2123 		cidp->pci_type = BGE_PCI_E;
2124 		cidp->mbuf_lo_water_rdma = RDMA_MBUF_LOWAT_5705;
2125 		cidp->mbuf_lo_water_rmac = MAC_RX_MBUF_LOWAT_5705;
2126 		cidp->mbuf_hi_water = MBUF_HIWAT_5705;
2127 		cidp->mbuf_base = bge_mbuf_pool_base_5705;
2128 		cidp->mbuf_length = bge_mbuf_pool_len_5705;
2129 		cidp->recv_slots = BGE_RECV_SLOTS_5705;
2130 		cidp->bge_mlcr_default |= MLCR_MISC_PINS_OUTPUT_ENABLE_1;
2131 		cidp->rx_rings = BGE_RECV_RINGS_MAX_5705;
2132 		cidp->tx_rings = BGE_SEND_RINGS_MAX_5705;
2133 		cidp->flags |= CHIP_FLAG_NO_JUMBO;
2134 		cidp->statistic_type = BGE_STAT_REG;
2135 		dev_ok = B_TRUE;
2136 		break;
2137 
2138 	case DEVICE_ID_5723:
2139 		cidp->chip_label = 5723;
2140 		cidp->bge_dma_rwctrl = bge_dma_rwctrl_5721;
2141 		cidp->msi_enabled = bge_enable_msi;
2142 		cidp->pci_type = BGE_PCI_E;
2143 		cidp->mbuf_lo_water_rdma = RDMA_MBUF_LOWAT_5705;
2144 		cidp->mbuf_lo_water_rmac = MAC_RX_MBUF_LOWAT_5705;
2145 		cidp->mbuf_hi_water = MBUF_HIWAT_5705;
2146 		cidp->mbuf_base = bge_mbuf_pool_base_5705;
2147 		cidp->mbuf_length = bge_mbuf_pool_len_5705;
2148 		cidp->recv_slots = BGE_RECV_SLOTS_5705;
2149 		cidp->bge_mlcr_default |= MLCR_MISC_PINS_OUTPUT_ENABLE_1;
2150 		cidp->rx_rings = BGE_RECV_RINGS_MAX_5705;
2151 		cidp->tx_rings = BGE_SEND_RINGS_MAX_5705;
2152 		cidp->flags |= CHIP_FLAG_NO_JUMBO;
2153 		cidp->statistic_type = BGE_STAT_REG;
2154 		dev_ok = B_TRUE;
2155 		break;
2156 
2157 	case DEVICE_ID_5780:
2158 		cidp->chip_label = 5780;
2159 		cidp->mbuf_lo_water_rdma = RDMA_MBUF_LOWAT_5705;
2160 		cidp->mbuf_lo_water_rmac = MAC_RX_MBUF_LOWAT_5705;
2161 		cidp->mbuf_hi_water = MBUF_HIWAT_5705;
2162 		cidp->mbuf_base = bge_mbuf_pool_base_5705;
2163 		cidp->mbuf_length = bge_mbuf_pool_len_5705;
2164 		cidp->recv_slots = BGE_RECV_SLOTS_5705;
2165 		cidp->rx_rings = BGE_RECV_RINGS_MAX_5705;
2166 		cidp->tx_rings = BGE_SEND_RINGS_MAX_5705;
2167 		cidp->flags |= CHIP_FLAG_NO_JUMBO;
2168 		cidp->statistic_type = BGE_STAT_REG;
2169 		cidp->pci_type = BGE_PCI;
2170 		dev_ok = B_TRUE;
2171 		break;
2172 
2173 	case DEVICE_ID_5782:
2174 		/*
2175 		 * Apart from the label, we treat this as a 5705(?)
2176 		 */
2177 		cidp->chip_label = 5782;
2178 		cidp->mbuf_lo_water_rdma = RDMA_MBUF_LOWAT_5705;
2179 		cidp->mbuf_lo_water_rmac = MAC_RX_MBUF_LOWAT_5705;
2180 		cidp->mbuf_hi_water = MBUF_HIWAT_5705;
2181 		cidp->mbuf_base = bge_mbuf_pool_base_5705;
2182 		cidp->mbuf_length = bge_mbuf_pool_len_5705;
2183 		cidp->recv_slots = BGE_RECV_SLOTS_5705;
2184 		cidp->rx_rings = BGE_RECV_RINGS_MAX_5705;
2185 		cidp->tx_rings = BGE_SEND_RINGS_MAX_5705;
2186 		cidp->flags |= CHIP_FLAG_NO_JUMBO;
2187 		cidp->flags |= CHIP_FLAG_PARTIAL_CSUM;
2188 		cidp->statistic_type = BGE_STAT_REG;
2189 		dev_ok = B_TRUE;
2190 		break;
2191 
2192 	case DEVICE_ID_5788:
2193 		/*
2194 		 * Apart from the label, we treat this as a 5705(?)
2195 		 */
2196 		cidp->chip_label = 5788;
2197 		cidp->mbuf_lo_water_rdma = RDMA_MBUF_LOWAT_5705;
2198 		cidp->mbuf_lo_water_rmac = MAC_RX_MBUF_LOWAT_5705;
2199 		cidp->mbuf_hi_water = MBUF_HIWAT_5705;
2200 		cidp->mbuf_base = bge_mbuf_pool_base_5705;
2201 		cidp->mbuf_length = bge_mbuf_pool_len_5705;
2202 		cidp->recv_slots = BGE_RECV_SLOTS_5705;
2203 		cidp->rx_rings = BGE_RECV_RINGS_MAX_5705;
2204 		cidp->tx_rings = BGE_SEND_RINGS_MAX_5705;
2205 		cidp->statistic_type = BGE_STAT_REG;
2206 		cidp->flags |= CHIP_FLAG_NO_JUMBO;
2207 		dev_ok = B_TRUE;
2208 		break;
2209 
2210 	case DEVICE_ID_5714C:
2211 		if (cidp->revision >= REVISION_ID_5714_A2)
2212 			cidp->msi_enabled = bge_enable_msi;
2213 		/* FALLTHRU */
2214 	case DEVICE_ID_5714S:
2215 		cidp->chip_label = 5714;
2216 		cidp->mbuf_lo_water_rdma = RDMA_MBUF_LOWAT_5705;
2217 		cidp->mbuf_lo_water_rmac = MAC_RX_MBUF_LOWAT_5705;
2218 		cidp->mbuf_hi_water = MBUF_HIWAT_5705;
2219 		cidp->mbuf_base = bge_mbuf_pool_base_5721;
2220 		cidp->mbuf_length = bge_mbuf_pool_len_5721;
2221 		cidp->recv_slots = BGE_RECV_SLOTS_5721;
2222 		cidp->bge_dma_rwctrl = bge_dma_rwctrl_5714;
2223 		cidp->bge_mlcr_default = bge_mlcr_default_5714;
2224 		cidp->rx_rings = BGE_RECV_RINGS_MAX_5705;
2225 		cidp->tx_rings = BGE_SEND_RINGS_MAX_5705;
2226 		cidp->pci_type = BGE_PCI_E;
2227 		cidp->statistic_type = BGE_STAT_REG;
2228 		dev_ok = B_TRUE;
2229 		break;
2230 
2231 	case DEVICE_ID_5715C:
2232 	case DEVICE_ID_5715S:
2233 		cidp->chip_label = 5715;
2234 		cidp->mbuf_lo_water_rdma = RDMA_MBUF_LOWAT_5705;
2235 		cidp->mbuf_lo_water_rmac = MAC_RX_MBUF_LOWAT_5705;
2236 		cidp->mbuf_hi_water = MBUF_HIWAT_5705;
2237 		cidp->mbuf_base = bge_mbuf_pool_base_5721;
2238 		cidp->mbuf_length = bge_mbuf_pool_len_5721;
2239 		cidp->recv_slots = BGE_RECV_SLOTS_5721;
2240 		cidp->bge_dma_rwctrl = bge_dma_rwctrl_5715;
2241 		cidp->bge_mlcr_default = bge_mlcr_default_5714;
2242 		cidp->rx_rings = BGE_RECV_RINGS_MAX_5705;
2243 		cidp->tx_rings = BGE_SEND_RINGS_MAX_5705;
2244 		cidp->pci_type = BGE_PCI_E;
2245 		cidp->statistic_type = BGE_STAT_REG;
2246 		if (cidp->revision >= REVISION_ID_5715_A2)
2247 			cidp->msi_enabled = bge_enable_msi;
2248 		dev_ok = B_TRUE;
2249 		break;
2250 
2251 	case DEVICE_ID_5721:
2252 		cidp->chip_label = 5721;
2253 		cidp->mbuf_lo_water_rdma = RDMA_MBUF_LOWAT_5705;
2254 		cidp->mbuf_lo_water_rmac = MAC_RX_MBUF_LOWAT_5705;
2255 		cidp->mbuf_hi_water = MBUF_HIWAT_5705;
2256 		cidp->mbuf_base = bge_mbuf_pool_base_5721;
2257 		cidp->mbuf_length = bge_mbuf_pool_len_5721;
2258 		cidp->recv_slots = BGE_RECV_SLOTS_5721;
2259 		cidp->bge_dma_rwctrl = bge_dma_rwctrl_5721;
2260 		cidp->rx_rings = BGE_RECV_RINGS_MAX_5705;
2261 		cidp->tx_rings = BGE_SEND_RINGS_MAX_5705;
2262 		cidp->pci_type = BGE_PCI_E;
2263 		cidp->statistic_type = BGE_STAT_REG;
2264 		cidp->flags |= CHIP_FLAG_NO_JUMBO;
2265 		dev_ok = B_TRUE;
2266 		break;
2267 
2268 	case DEVICE_ID_5722:
2269 		cidp->chip_label = 5722;
2270 		cidp->pci_type = BGE_PCI_E;
2271 		cidp->mbuf_lo_water_rdma = RDMA_MBUF_LOWAT_5705;
2272 		cidp->mbuf_lo_water_rmac = MAC_RX_MBUF_LOWAT_5705;
2273 		cidp->mbuf_hi_water = MBUF_HIWAT_5705;
2274 		cidp->mbuf_base = bge_mbuf_pool_base_5705;
2275 		cidp->mbuf_length = bge_mbuf_pool_len_5705;
2276 		cidp->recv_slots = BGE_RECV_SLOTS_5705;
2277 		cidp->bge_mlcr_default |= MLCR_MISC_PINS_OUTPUT_ENABLE_1;
2278 		cidp->rx_rings = BGE_RECV_RINGS_MAX_5705;
2279 		cidp->tx_rings = BGE_SEND_RINGS_MAX_5705;
2280 		cidp->flags |= CHIP_FLAG_NO_JUMBO;
2281 		cidp->statistic_type = BGE_STAT_REG;
2282 		dev_ok = B_TRUE;
2283 		break;
2284 
2285 	case DEVICE_ID_5751:
2286 	case DEVICE_ID_5751M:
2287 		cidp->chip_label = 5751;
2288 		cidp->mbuf_lo_water_rdma = RDMA_MBUF_LOWAT_5705;
2289 		cidp->mbuf_lo_water_rmac = MAC_RX_MBUF_LOWAT_5705;
2290 		cidp->mbuf_hi_water = MBUF_HIWAT_5705;
2291 		cidp->mbuf_base = bge_mbuf_pool_base_5721;
2292 		cidp->mbuf_length = bge_mbuf_pool_len_5721;
2293 		cidp->recv_slots = BGE_RECV_SLOTS_5721;
2294 		cidp->bge_dma_rwctrl = bge_dma_rwctrl_5721;
2295 		cidp->rx_rings = BGE_RECV_RINGS_MAX_5705;
2296 		cidp->tx_rings = BGE_SEND_RINGS_MAX_5705;
2297 		cidp->pci_type = BGE_PCI_E;
2298 		cidp->statistic_type = BGE_STAT_REG;
2299 		cidp->flags |= CHIP_FLAG_NO_JUMBO;
2300 		dev_ok = B_TRUE;
2301 		break;
2302 
2303 	case DEVICE_ID_5752:
2304 	case DEVICE_ID_5752M:
2305 		cidp->chip_label = 5752;
2306 		cidp->mbuf_lo_water_rdma = RDMA_MBUF_LOWAT_5705;
2307 		cidp->mbuf_lo_water_rmac = MAC_RX_MBUF_LOWAT_5705;
2308 		cidp->mbuf_hi_water = MBUF_HIWAT_5705;
2309 		cidp->mbuf_base = bge_mbuf_pool_base_5721;
2310 		cidp->mbuf_length = bge_mbuf_pool_len_5721;
2311 		cidp->recv_slots = BGE_RECV_SLOTS_5721;
2312 		cidp->bge_dma_rwctrl = bge_dma_rwctrl_5721;
2313 		cidp->rx_rings = BGE_RECV_RINGS_MAX_5705;
2314 		cidp->tx_rings = BGE_SEND_RINGS_MAX_5705;
2315 		cidp->pci_type = BGE_PCI_E;
2316 		cidp->statistic_type = BGE_STAT_REG;
2317 		cidp->flags |= CHIP_FLAG_NO_JUMBO;
2318 		dev_ok = B_TRUE;
2319 		break;
2320 
2321 	case DEVICE_ID_5789:
2322 		cidp->chip_label = 5789;
2323 		cidp->mbuf_base = bge_mbuf_pool_base_5721;
2324 		cidp->mbuf_length = bge_mbuf_pool_len_5721;
2325 		cidp->recv_slots = BGE_RECV_SLOTS_5721;
2326 		cidp->bge_dma_rwctrl = bge_dma_rwctrl_5721;
2327 		cidp->rx_rings = BGE_RECV_RINGS_MAX_5705;
2328 		cidp->tx_rings = BGE_RECV_RINGS_MAX_5705;
2329 		cidp->pci_type = BGE_PCI_E;
2330 		cidp->statistic_type = BGE_STAT_REG;
2331 		cidp->flags |= CHIP_FLAG_PARTIAL_CSUM;
2332 		cidp->flags |= CHIP_FLAG_NO_JUMBO;
2333 		cidp->msi_enabled = B_TRUE;
2334 		dev_ok = B_TRUE;
2335 		break;
2336 
2337 	}
2338 
2339 	/*
2340 	 * Setup the default jumbo parameter.
2341 	 */
2342 	cidp->ethmax_size = ETHERMAX;
2343 	cidp->snd_buff_size = BGE_SEND_BUFF_SIZE_DEFAULT;
2344 	cidp->std_buf_size = BGE_STD_BUFF_SIZE;
2345 
2346 	/*
2347 	 * If jumbo is enabled and this kind of chipset supports jumbo feature,
2348 	 * setup below jumbo specific parameters.
2349 	 *
2350 	 * For BCM5714/5715, there is only one standard receive ring. So the
2351 	 * std buffer size should be set to BGE_JUMBO_BUFF_SIZE when jumbo
2352 	 * feature is enabled.
2353 	 */
2354 	if (bge_jumbo_enable &&
2355 	    !(cidp->flags & CHIP_FLAG_NO_JUMBO) &&
2356 	    (cidp->default_mtu > BGE_DEFAULT_MTU) &&
2357 	    (cidp->default_mtu <= BGE_MAXIMUM_MTU)) {
2358 		if (DEVICE_5714_SERIES_CHIPSETS(bgep)) {
2359 			cidp->mbuf_lo_water_rdma =
2360 			    RDMA_MBUF_LOWAT_5714_JUMBO;
2361 			cidp->mbuf_lo_water_rmac =
2362 			    MAC_RX_MBUF_LOWAT_5714_JUMBO;
2363 			cidp->mbuf_hi_water = MBUF_HIWAT_5714_JUMBO;
2364 			cidp->jumbo_slots = 0;
2365 			cidp->std_buf_size = BGE_JUMBO_BUFF_SIZE;
2366 		} else {
2367 			cidp->mbuf_lo_water_rdma =
2368 			    RDMA_MBUF_LOWAT_JUMBO;
2369 			cidp->mbuf_lo_water_rmac =
2370 			    MAC_RX_MBUF_LOWAT_JUMBO;
2371 			cidp->mbuf_hi_water = MBUF_HIWAT_JUMBO;
2372 			cidp->jumbo_slots = BGE_JUMBO_SLOTS_USED;
2373 		}
2374 		cidp->recv_jumbo_size = BGE_JUMBO_BUFF_SIZE;
2375 		cidp->snd_buff_size = BGE_SEND_BUFF_SIZE_JUMBO;
2376 		cidp->ethmax_size = cidp->default_mtu +
2377 		    sizeof (struct ether_header);
2378 	}
2379 
2380 	/*
2381 	 * Identify the NV memory type: SEEPROM or Flash?
2382 	 */
2383 	cidp->nvtype = bge_nvmem_id(bgep);
2384 
2385 	/*
2386 	 * Now, we want to check whether this device is part of a
2387 	 * supported subsystem (e.g., on the motherboard of a Sun
2388 	 * branded platform).
2389 	 *
2390 	 * Rule 1: If the Subsystem Vendor ID is "Sun", then it's OK ;-)
2391 	 */
2392 	if (cidp->subven == VENDOR_ID_SUN)
2393 		sys_ok = B_TRUE;
2394 
2395 	/*
2396 	 * Rule 2: If it's on the list on known subsystems, then it's OK.
2397 	 * Note: 0x14e41647 should *not* appear in the list, but the code
2398 	 * doesn't enforce that.
2399 	 */
2400 	err = ddi_prop_lookup_int_array(DDI_DEV_T_ANY, bgep->devinfo,
2401 	    DDI_PROP_DONTPASS, knownids_propname, &ids, &i);
2402 	if (err == DDI_PROP_SUCCESS) {
2403 		/*
2404 		 * Got the list; scan for a matching subsystem vendor/device
2405 		 */
2406 		subid = (cidp->subven << 16) | cidp->subdev;
2407 		while (i--)
2408 			if (ids[i] == subid)
2409 				sys_ok = B_TRUE;
2410 		ddi_prop_free(ids);
2411 	}
2412 
2413 	/*
2414 	 * Rule 3: If it's a Taco/ENWS motherboard device, then it's OK
2415 	 *
2416 	 * Unfortunately, early SunBlade 1500s and 2500s didn't reprogram
2417 	 * the Subsystem Vendor ID, so it defaults to Broadcom.  Therefore,
2418 	 * we have to check specially for the exact device paths to the
2419 	 * motherboard devices on those platforms ;-(
2420 	 *
2421 	 * Note: we can't just use the "supported-subsystems" mechanism
2422 	 * above, because the entry would have to be 0x14e41647 -- which
2423 	 * would then accept *any* plugin card that *didn't* contain a
2424 	 * (valid) SEEPROM ;-(
2425 	 */
2426 	sysname = ddi_node_name(ddi_root_node());
2427 	devname = ddi_pathname(bgep->devinfo, buf);
2428 	ASSERT(strlen(devname) > 0);
2429 	if (strcmp(sysname, "SUNW,Sun-Blade-1500") == 0)	/* Taco */
2430 		if (strcmp(devname, "/pci@1f,700000/network@2") == 0)
2431 			sys_ok = B_TRUE;
2432 	if (strcmp(sysname, "SUNW,Sun-Blade-2500") == 0)	/* ENWS */
2433 		if (strcmp(devname, "/pci@1c,600000/network@3") == 0)
2434 			sys_ok = B_TRUE;
2435 
2436 	/*
2437 	 * Now check what we've discovered: is this truly a supported
2438 	 * chip on (the motherboard of) a supported platform?
2439 	 *
2440 	 * Possible problems here:
2441 	 * 1)	it's a completely unheard-of chip (e.g. 5761)
2442 	 * 2)	it's a recognised but unsupported chip (e.g. 5701, 5703C-A0)
2443 	 * 3)	it's a chip we would support if it were on the motherboard
2444 	 *	of a Sun platform, but this one isn't ;-(
2445 	 */
2446 	if (cidp->chip_label == 0)
2447 		bge_problem(bgep,
2448 		    "Device 'pci%04x,%04x' not recognized (%d?)",
2449 		    cidp->vendor, cidp->device, cidp->device);
2450 	else if (!dev_ok)
2451 		bge_problem(bgep,
2452 		    "Device 'pci%04x,%04x' (%d) revision %d not supported",
2453 		    cidp->vendor, cidp->device, cidp->chip_label,
2454 		    cidp->revision);
2455 #if	BGE_DEBUGGING
2456 	else if (!sys_ok)
2457 		bge_problem(bgep,
2458 		    "%d-based subsystem 'pci%04x,%04x' not validated",
2459 		    cidp->chip_label, cidp->subven, cidp->subdev);
2460 #endif
2461 	else
2462 		cidp->flags |= CHIP_FLAG_SUPPORTED;
2463 	if (bge_check_acc_handle(bgep, bgep->io_handle) != DDI_FM_OK)
2464 		return (EIO);
2465 	return (0);
2466 }
2467 
2468 void
2469 bge_chip_msi_trig(bge_t *bgep)
2470 {
2471 	uint32_t	regval;
2472 
2473 	regval = bgep->param_msi_cnt<<4;
2474 	bge_reg_set32(bgep, HOST_COALESCE_MODE_REG, regval);
2475 	BGE_DEBUG(("bge_chip_msi_trig:data = %d", regval));
2476 }
2477 
2478 /*
2479  * Various registers that control the chip's internal engines (state
2480  * machines) have a <reset> and <enable> bits (fortunately, in the
2481  * same place in each such register :-).
2482  *
2483  * To reset the state machine, the <reset> bit must be written with 1;
2484  * it will then read back as 1 while the reset is in progress, but
2485  * self-clear to 0 when the reset completes.
2486  *
2487  * To enable a state machine, one must set the <enable> bit, which
2488  * will continue to read back as 0 until the state machine is running.
2489  *
2490  * To disable a state machine, the <enable> bit must be cleared, but
2491  * it will continue to read back as 1 until the state machine actually
2492  * stops.
2493  *
2494  * This routine implements polling for completion of a reset, enable
2495  * or disable operation, returning B_TRUE on success (bit reached the
2496  * required state) or B_FALSE on timeout (200*100us == 20ms).
2497  */
2498 static boolean_t bge_chip_poll_engine(bge_t *bgep, bge_regno_t regno,
2499 					uint32_t mask, uint32_t val);
2500 #pragma	no_inline(bge_chip_poll_engine)
2501 
2502 static boolean_t
2503 bge_chip_poll_engine(bge_t *bgep, bge_regno_t regno,
2504 	uint32_t mask, uint32_t val)
2505 {
2506 	uint32_t regval;
2507 	uint32_t n;
2508 
2509 	BGE_TRACE(("bge_chip_poll_engine($%p, 0x%lx, 0x%x, 0x%x)",
2510 	    (void *)bgep, regno, mask, val));
2511 
2512 	for (n = 200; n; --n) {
2513 		regval = bge_reg_get32(bgep, regno);
2514 		if ((regval & mask) == val)
2515 			return (B_TRUE);
2516 		drv_usecwait(100);
2517 	}
2518 
2519 	bge_fm_ereport(bgep, DDI_FM_DEVICE_NO_RESPONSE);
2520 	return (B_FALSE);
2521 }
2522 
2523 /*
2524  * Various registers that control the chip's internal engines (state
2525  * machines) have a <reset> bit (fortunately, in the same place in
2526  * each such register :-).  To reset the state machine, this bit must
2527  * be written with 1; it will then read back as 1 while the reset is
2528  * in progress, but self-clear to 0 when the reset completes.
2529  *
2530  * This code sets the bit, then polls for it to read back as zero.
2531  * The return value is B_TRUE on success (reset bit cleared itself),
2532  * or B_FALSE if the state machine didn't recover :(
2533  *
2534  * NOTE: the Core reset is similar to other resets, except that we
2535  * can't poll for completion, since the Core reset disables memory
2536  * access!  So we just have to assume that it will all complete in
2537  * 100us.  See Broadcom document 570X-PG102-R, p102, steps 4-5.
2538  */
2539 static boolean_t bge_chip_reset_engine(bge_t *bgep, bge_regno_t regno);
2540 #pragma	no_inline(bge_chip_reset_engine)
2541 
2542 static boolean_t
2543 bge_chip_reset_engine(bge_t *bgep, bge_regno_t regno)
2544 {
2545 	uint32_t regval;
2546 	uint32_t val32;
2547 
2548 	regval = bge_reg_get32(bgep, regno);
2549 
2550 	BGE_TRACE(("bge_chip_reset_engine($%p, 0x%lx)",
2551 	    (void *)bgep, regno));
2552 	BGE_DEBUG(("bge_chip_reset_engine: 0x%lx before reset = 0x%08x",
2553 	    regno, regval));
2554 
2555 	regval |= STATE_MACHINE_RESET_BIT;
2556 
2557 	switch (regno) {
2558 	case MISC_CONFIG_REG:
2559 		/*
2560 		 * BCM5714/5721/5751 pcie chip special case. In order to avoid
2561 		 * resetting PCIE block and bringing PCIE link down, bit 29
2562 		 * in the register needs to be set first, and then set it again
2563 		 * while the reset bit is written.
2564 		 * See:P500 of 57xx-PG102-RDS.pdf.
2565 		 */
2566 		if (DEVICE_5705_SERIES_CHIPSETS(bgep)||
2567 		    DEVICE_5721_SERIES_CHIPSETS(bgep)||
2568 		    DEVICE_5723_SERIES_CHIPSETS(bgep)||
2569 		    DEVICE_5714_SERIES_CHIPSETS(bgep)||
2570 		    DEVICE_5906_SERIES_CHIPSETS(bgep)) {
2571 			regval |= MISC_CONFIG_GPHY_POWERDOWN_OVERRIDE;
2572 			if (bgep->chipid.pci_type == BGE_PCI_E) {
2573 				if (bgep->chipid.asic_rev ==
2574 				    MHCR_CHIP_REV_5751_A0 ||
2575 				    bgep->chipid.asic_rev ==
2576 				    MHCR_CHIP_REV_5721_A0 ||
2577 				    bgep->chipid.asic_rev ==
2578 				    MHCR_CHIP_REV_5755_A0) {
2579 					val32 = bge_reg_get32(bgep,
2580 					    PHY_TEST_CTRL_REG);
2581 					if (val32 == (PHY_PCIE_SCRAM_MODE |
2582 					    PHY_PCIE_LTASS_MODE))
2583 						bge_reg_put32(bgep,
2584 						    PHY_TEST_CTRL_REG,
2585 						    PHY_PCIE_SCRAM_MODE);
2586 					val32 = pci_config_get32
2587 					    (bgep->cfg_handle,
2588 					    PCI_CONF_BGE_CLKCTL);
2589 					val32 |= CLKCTL_PCIE_A0_FIX;
2590 					pci_config_put32(bgep->cfg_handle,
2591 					    PCI_CONF_BGE_CLKCTL, val32);
2592 				}
2593 				bge_reg_set32(bgep, regno,
2594 				    MISC_CONFIG_GRC_RESET_DISABLE);
2595 				regval |= MISC_CONFIG_GRC_RESET_DISABLE;
2596 			}
2597 		}
2598 
2599 		/*
2600 		 * Special case - causes Core reset
2601 		 *
2602 		 * On SPARC v9 we want to ensure that we don't start
2603 		 * timing until the I/O access has actually reached
2604 		 * the chip, otherwise we might make the next access
2605 		 * too early.  And we can't just force the write out
2606 		 * by following it with a read (even to config space)
2607 		 * because that would cause the fault we're trying
2608 		 * to avoid.  Hence the need for membar_sync() here.
2609 		 */
2610 		ddi_put32(bgep->io_handle, PIO_ADDR(bgep, regno), regval);
2611 #ifdef	__sparcv9
2612 		membar_sync();
2613 #endif	/* __sparcv9 */
2614 		/*
2615 		 * On some platforms,system need about 300us for
2616 		 * link setup.
2617 		 */
2618 		drv_usecwait(300);
2619 		if (DEVICE_5906_SERIES_CHIPSETS(bgep)) {
2620 			bge_reg_set32(bgep, VCPU_STATUS_REG, VCPU_DRV_RESET);
2621 			bge_reg_clr32(
2622 			    bgep, VCPU_EXT_CTL, VCPU_EXT_CTL_HALF);
2623 		}
2624 
2625 		if (bgep->chipid.pci_type == BGE_PCI_E) {
2626 			/* PCI-E device need more reset time */
2627 			drv_usecwait(120000);
2628 
2629 			/* Set PCIE max payload size and clear error status. */
2630 			if ((bgep->chipid.chip_label == 5721) ||
2631 			    (bgep->chipid.chip_label == 5751) ||
2632 			    (bgep->chipid.chip_label == 5752) ||
2633 			    (bgep->chipid.chip_label == 5789) ||
2634 			    (bgep->chipid.chip_label == 5906)) {
2635 				pci_config_put16(bgep->cfg_handle,
2636 				    PCI_CONF_DEV_CTRL, READ_REQ_SIZE_MAX);
2637 				pci_config_put16(bgep->cfg_handle,
2638 				    PCI_CONF_DEV_STUS, DEVICE_ERROR_STUS);
2639 			}
2640 
2641 			if (bgep->chipid.chip_label == 5723) {
2642 				pci_config_put16(bgep->cfg_handle,
2643 				    PCI_CONF_DEV_CTRL_5723, READ_REQ_SIZE_MAX);
2644 				pci_config_put16(bgep->cfg_handle,
2645 				    PCI_CONF_DEV_STUS_5723, DEVICE_ERROR_STUS);
2646 			}
2647 		}
2648 
2649 		BGE_PCICHK(bgep);
2650 		return (B_TRUE);
2651 
2652 	default:
2653 		bge_reg_put32(bgep, regno, regval);
2654 		return (bge_chip_poll_engine(bgep, regno,
2655 		    STATE_MACHINE_RESET_BIT, 0));
2656 	}
2657 }
2658 
2659 /*
2660  * Various registers that control the chip's internal engines (state
2661  * machines) have an <enable> bit (fortunately, in the same place in
2662  * each such register :-).  To stop the state machine, this bit must
2663  * be written with 0, then polled to see when the state machine has
2664  * actually stopped.
2665  *
2666  * The return value is B_TRUE on success (enable bit cleared), or
2667  * B_FALSE if the state machine didn't stop :(
2668  */
2669 static boolean_t bge_chip_disable_engine(bge_t *bgep, bge_regno_t regno,
2670 						uint32_t morebits);
2671 #pragma	no_inline(bge_chip_disable_engine)
2672 
2673 static boolean_t
2674 bge_chip_disable_engine(bge_t *bgep, bge_regno_t regno, uint32_t morebits)
2675 {
2676 	uint32_t regval;
2677 
2678 	BGE_TRACE(("bge_chip_disable_engine($%p, 0x%lx, 0x%x)",
2679 	    (void *)bgep, regno, morebits));
2680 
2681 	switch (regno) {
2682 	case FTQ_RESET_REG:
2683 		/*
2684 		 * For Schumacher's bugfix CR6490108
2685 		 */
2686 #ifdef BGE_IPMI_ASF
2687 #ifdef BGE_NETCONSOLE
2688 		if (bgep->asf_enabled)
2689 			return (B_TRUE);
2690 #endif
2691 #endif
2692 		/*
2693 		 * Not quite like the others; it doesn't
2694 		 * have an <enable> bit, but instead we
2695 		 * have to set and then clear all the bits
2696 		 */
2697 		bge_reg_put32(bgep, regno, ~(uint32_t)0);
2698 		drv_usecwait(100);
2699 		bge_reg_put32(bgep, regno, 0);
2700 		return (B_TRUE);
2701 
2702 	default:
2703 		regval = bge_reg_get32(bgep, regno);
2704 		regval &= ~STATE_MACHINE_ENABLE_BIT;
2705 		regval &= ~morebits;
2706 		bge_reg_put32(bgep, regno, regval);
2707 		return (bge_chip_poll_engine(bgep, regno,
2708 		    STATE_MACHINE_ENABLE_BIT, 0));
2709 	}
2710 }
2711 
2712 /*
2713  * Various registers that control the chip's internal engines (state
2714  * machines) have an <enable> bit (fortunately, in the same place in
2715  * each such register :-).  To start the state machine, this bit must
2716  * be written with 1, then polled to see when the state machine has
2717  * actually started.
2718  *
2719  * The return value is B_TRUE on success (enable bit set), or
2720  * B_FALSE if the state machine didn't start :(
2721  */
2722 static boolean_t bge_chip_enable_engine(bge_t *bgep, bge_regno_t regno,
2723 					uint32_t morebits);
2724 #pragma	no_inline(bge_chip_enable_engine)
2725 
2726 static boolean_t
2727 bge_chip_enable_engine(bge_t *bgep, bge_regno_t regno, uint32_t morebits)
2728 {
2729 	uint32_t regval;
2730 
2731 	BGE_TRACE(("bge_chip_enable_engine($%p, 0x%lx, 0x%x)",
2732 	    (void *)bgep, regno, morebits));
2733 
2734 	switch (regno) {
2735 	case FTQ_RESET_REG:
2736 #ifdef BGE_IPMI_ASF
2737 #ifdef BGE_NETCONSOLE
2738 		if (bgep->asf_enabled)
2739 			return (B_TRUE);
2740 #endif
2741 #endif
2742 		/*
2743 		 * Not quite like the others; it doesn't
2744 		 * have an <enable> bit, but instead we
2745 		 * have to set and then clear all the bits
2746 		 */
2747 		bge_reg_put32(bgep, regno, ~(uint32_t)0);
2748 		drv_usecwait(100);
2749 		bge_reg_put32(bgep, regno, 0);
2750 		return (B_TRUE);
2751 
2752 	default:
2753 		regval = bge_reg_get32(bgep, regno);
2754 		regval |= STATE_MACHINE_ENABLE_BIT;
2755 		regval |= morebits;
2756 		bge_reg_put32(bgep, regno, regval);
2757 		return (bge_chip_poll_engine(bgep, regno,
2758 		    STATE_MACHINE_ENABLE_BIT, STATE_MACHINE_ENABLE_BIT));
2759 	}
2760 }
2761 
2762 /*
2763  * Reprogram the Ethernet, Transmit, and Receive MAC
2764  * modes to match the param_* variables
2765  */
2766 void bge_sync_mac_modes(bge_t *bgep);
2767 #pragma	no_inline(bge_sync_mac_modes)
2768 
2769 void
2770 bge_sync_mac_modes(bge_t *bgep)
2771 {
2772 	uint32_t macmode;
2773 	uint32_t regval;
2774 
2775 	ASSERT(mutex_owned(bgep->genlock));
2776 
2777 	/*
2778 	 * Reprogram the Ethernet MAC mode ...
2779 	 */
2780 	macmode = regval = bge_reg_get32(bgep, ETHERNET_MAC_MODE_REG);
2781 	if ((bgep->chipid.flags & CHIP_FLAG_SERDES) &&
2782 	    (bgep->param_loop_mode != BGE_LOOP_INTERNAL_MAC))
2783 		if (DEVICE_5714_SERIES_CHIPSETS(bgep))
2784 			macmode |= ETHERNET_MODE_LINK_POLARITY;
2785 		else
2786 			macmode &= ~ETHERNET_MODE_LINK_POLARITY;
2787 	else
2788 		macmode |= ETHERNET_MODE_LINK_POLARITY;
2789 	macmode &= ~ETHERNET_MODE_PORTMODE_MASK;
2790 	if ((bgep->chipid.flags & CHIP_FLAG_SERDES) &&
2791 	    (bgep->param_loop_mode != BGE_LOOP_INTERNAL_MAC)) {
2792 		if (DEVICE_5714_SERIES_CHIPSETS(bgep))
2793 			macmode |= ETHERNET_MODE_PORTMODE_GMII;
2794 		else
2795 			macmode |= ETHERNET_MODE_PORTMODE_TBI;
2796 	} else if (bgep->param_link_speed == 10 ||
2797 	    bgep->param_link_speed == 100)
2798 		macmode |= ETHERNET_MODE_PORTMODE_MII;
2799 	else
2800 		macmode |= ETHERNET_MODE_PORTMODE_GMII;
2801 	if (bgep->param_link_duplex == LINK_DUPLEX_HALF)
2802 		macmode |= ETHERNET_MODE_HALF_DUPLEX;
2803 	else
2804 		macmode &= ~ETHERNET_MODE_HALF_DUPLEX;
2805 	if (bgep->param_loop_mode == BGE_LOOP_INTERNAL_MAC)
2806 		macmode |= ETHERNET_MODE_MAC_LOOPBACK;
2807 	else
2808 		macmode &= ~ETHERNET_MODE_MAC_LOOPBACK;
2809 	bge_reg_put32(bgep, ETHERNET_MAC_MODE_REG, macmode);
2810 	BGE_DEBUG(("bge_sync_mac_modes($%p) Ethernet MAC mode 0x%x => 0x%x",
2811 	    (void *)bgep, regval, macmode));
2812 
2813 	/*
2814 	 * ... the Transmit MAC mode ...
2815 	 */
2816 	macmode = regval = bge_reg_get32(bgep, TRANSMIT_MAC_MODE_REG);
2817 	if (bgep->param_link_tx_pause)
2818 		macmode |= TRANSMIT_MODE_FLOW_CONTROL;
2819 	else
2820 		macmode &= ~TRANSMIT_MODE_FLOW_CONTROL;
2821 	bge_reg_put32(bgep, TRANSMIT_MAC_MODE_REG, macmode);
2822 	BGE_DEBUG(("bge_sync_mac_modes($%p) Transmit MAC mode 0x%x => 0x%x",
2823 	    (void *)bgep, regval, macmode));
2824 
2825 	/*
2826 	 * ... and the Receive MAC mode
2827 	 */
2828 	macmode = regval = bge_reg_get32(bgep, RECEIVE_MAC_MODE_REG);
2829 	if (bgep->param_link_rx_pause)
2830 		macmode |= RECEIVE_MODE_FLOW_CONTROL;
2831 	else
2832 		macmode &= ~RECEIVE_MODE_FLOW_CONTROL;
2833 	bge_reg_put32(bgep, RECEIVE_MAC_MODE_REG, macmode);
2834 	BGE_DEBUG(("bge_sync_mac_modes($%p) Receive MAC mode 0x%x => 0x%x",
2835 	    (void *)bgep, regval, macmode));
2836 }
2837 
2838 /*
2839  * bge_chip_sync() -- program the chip with the unicast MAC address,
2840  * the multicast hash table, the required level of promiscuity, and
2841  * the current loopback mode ...
2842  */
2843 #ifdef BGE_IPMI_ASF
2844 int bge_chip_sync(bge_t *bgep, boolean_t asf_keeplive);
2845 #else
2846 int bge_chip_sync(bge_t *bgep);
2847 #endif
2848 #pragma	no_inline(bge_chip_sync)
2849 
2850 int
2851 #ifdef BGE_IPMI_ASF
2852 bge_chip_sync(bge_t *bgep, boolean_t asf_keeplive)
2853 #else
2854 bge_chip_sync(bge_t *bgep)
2855 #endif
2856 {
2857 	void (*opfn)(bge_t *bgep, bge_regno_t reg, uint32_t bits);
2858 	boolean_t promisc;
2859 	uint64_t macaddr;
2860 	uint32_t fill = 0;
2861 	int i, j;
2862 	int retval = DDI_SUCCESS;
2863 
2864 	BGE_TRACE(("bge_chip_sync($%p)",
2865 	    (void *)bgep));
2866 
2867 	ASSERT(mutex_owned(bgep->genlock));
2868 
2869 	promisc = B_FALSE;
2870 	fill = ~(uint32_t)0;
2871 
2872 	if (bgep->promisc)
2873 		promisc = B_TRUE;
2874 	else
2875 		fill = (uint32_t)0;
2876 
2877 	/*
2878 	 * If the TX/RX MAC engines are already running, we should stop
2879 	 * them (and reset the RX engine) before changing the parameters.
2880 	 * If they're not running, this will have no effect ...
2881 	 *
2882 	 * NOTE: this is currently disabled by default because stopping
2883 	 * and restarting the Tx engine may cause an outgoing packet in
2884 	 * transit to be truncated.  Also, stopping and restarting the
2885 	 * Rx engine seems to not work correctly on the 5705.  Testing
2886 	 * has not (yet!) revealed any problems with NOT stopping and
2887 	 * restarting these engines (and Broadcom say their drivers don't
2888 	 * do this), but if it is found to cause problems, this variable
2889 	 * can be patched to re-enable the old behaviour ...
2890 	 */
2891 	if (bge_stop_start_on_sync) {
2892 #ifdef BGE_IPMI_ASF
2893 		if (!bgep->asf_enabled) {
2894 			if (!bge_chip_disable_engine(bgep,
2895 			    RECEIVE_MAC_MODE_REG, RECEIVE_MODE_KEEP_VLAN_TAG))
2896 				retval = DDI_FAILURE;
2897 		} else {
2898 			if (!bge_chip_disable_engine(bgep,
2899 			    RECEIVE_MAC_MODE_REG, 0))
2900 				retval = DDI_FAILURE;
2901 		}
2902 #else
2903 		if (!bge_chip_disable_engine(bgep, RECEIVE_MAC_MODE_REG,
2904 		    RECEIVE_MODE_KEEP_VLAN_TAG))
2905 			retval = DDI_FAILURE;
2906 #endif
2907 		if (!bge_chip_disable_engine(bgep, TRANSMIT_MAC_MODE_REG, 0))
2908 			retval = DDI_FAILURE;
2909 		if (!bge_chip_reset_engine(bgep, RECEIVE_MAC_MODE_REG))
2910 			retval = DDI_FAILURE;
2911 	}
2912 
2913 	/*
2914 	 * Reprogram the hashed multicast address table ...
2915 	 */
2916 	for (i = 0; i < BGE_HASH_TABLE_SIZE/32; ++i)
2917 		bge_reg_put32(bgep, MAC_HASH_REG(i), 0);
2918 
2919 	for (i = 0; i < BGE_HASH_TABLE_SIZE/32; ++i)
2920 		bge_reg_put32(bgep, MAC_HASH_REG(i),
2921 			bgep->mcast_hash[i] | fill);
2922 
2923 #ifdef BGE_IPMI_ASF
2924 	if (!bgep->asf_enabled || !asf_keeplive) {
2925 #endif
2926 		/*
2927 		 * Transform the MAC address(es) from host to chip format, then
2928 		 * reprogram the transmit random backoff seed and the unicast
2929 		 * MAC address(es) ...
2930 		 */
2931 		for (j = 0; j < MAC_ADDRESS_REGS_MAX; j++) {
2932 			for (i = 0, macaddr = 0ull;
2933 			    i < ETHERADDRL; ++i) {
2934 				macaddr <<= 8;
2935 				macaddr |= bgep->curr_addr[j].addr[i];
2936 			}
2937 			fill += (macaddr >> 16) + (macaddr & 0xffffffff);
2938 			bge_reg_put64(bgep, MAC_ADDRESS_REG(j), macaddr);
2939 
2940 			BGE_DEBUG(("bge_chip_sync($%p) "
2941 			    "setting MAC address %012llx",
2942 			    (void *)bgep, macaddr));
2943 		}
2944 #ifdef BGE_IPMI_ASF
2945 	}
2946 #endif
2947 	/*
2948 	 * Set random seed of backoff interval
2949 	 *   - Writing zero means no backoff interval
2950 	 */
2951 	fill = ((fill >> 20) + (fill >> 10) + fill) & 0x3ff;
2952 	if (fill == 0)
2953 		fill = 1;
2954 	bge_reg_put32(bgep, MAC_TX_RANDOM_BACKOFF_REG, fill);
2955 
2956 	/*
2957 	 * Set or clear the PROMISCUOUS mode bit
2958 	 */
2959 	opfn = promisc ? bge_reg_set32 : bge_reg_clr32;
2960 	(*opfn)(bgep, RECEIVE_MAC_MODE_REG, RECEIVE_MODE_PROMISCUOUS);
2961 
2962 	/*
2963 	 * Sync the rest of the MAC modes too ...
2964 	 */
2965 	bge_sync_mac_modes(bgep);
2966 
2967 	/*
2968 	 * Restart RX/TX MAC engines if required ...
2969 	 */
2970 	if (bgep->bge_chip_state == BGE_CHIP_RUNNING) {
2971 		if (!bge_chip_enable_engine(bgep, TRANSMIT_MAC_MODE_REG, 0))
2972 			retval = DDI_FAILURE;
2973 #ifdef BGE_IPMI_ASF
2974 		if (!bgep->asf_enabled) {
2975 			if (!bge_chip_enable_engine(bgep,
2976 			    RECEIVE_MAC_MODE_REG, RECEIVE_MODE_KEEP_VLAN_TAG))
2977 				retval = DDI_FAILURE;
2978 		} else {
2979 			if (!bge_chip_enable_engine(bgep,
2980 			    RECEIVE_MAC_MODE_REG, 0))
2981 				retval = DDI_FAILURE;
2982 		}
2983 #else
2984 		if (!bge_chip_enable_engine(bgep, RECEIVE_MAC_MODE_REG,
2985 		    RECEIVE_MODE_KEEP_VLAN_TAG))
2986 			retval = DDI_FAILURE;
2987 #endif
2988 	}
2989 	return (retval);
2990 }
2991 
2992 /*
2993  * This array defines the sequence of state machine control registers
2994  * in which the <enable> bit must be cleared to bring the chip to a
2995  * clean stop.  Taken from Broadcom document 570X-PG102-R, p116.
2996  */
2997 static bge_regno_t shutdown_engine_regs[] = {
2998 	RECEIVE_MAC_MODE_REG,
2999 	RCV_BD_INITIATOR_MODE_REG,
3000 	RCV_LIST_PLACEMENT_MODE_REG,
3001 	RCV_LIST_SELECTOR_MODE_REG,		/* BCM5704 series only	*/
3002 	RCV_DATA_BD_INITIATOR_MODE_REG,
3003 	RCV_DATA_COMPLETION_MODE_REG,
3004 	RCV_BD_COMPLETION_MODE_REG,
3005 
3006 	SEND_BD_SELECTOR_MODE_REG,
3007 	SEND_BD_INITIATOR_MODE_REG,
3008 	SEND_DATA_INITIATOR_MODE_REG,
3009 	READ_DMA_MODE_REG,
3010 	SEND_DATA_COMPLETION_MODE_REG,
3011 	DMA_COMPLETION_MODE_REG,		/* BCM5704 series only	*/
3012 	SEND_BD_COMPLETION_MODE_REG,
3013 	TRANSMIT_MAC_MODE_REG,
3014 
3015 	HOST_COALESCE_MODE_REG,
3016 	WRITE_DMA_MODE_REG,
3017 	MBUF_CLUSTER_FREE_MODE_REG,		/* BCM5704 series only	*/
3018 	FTQ_RESET_REG,		/* special - see code	*/
3019 	BUFFER_MANAGER_MODE_REG,		/* BCM5704 series only	*/
3020 	MEMORY_ARBITER_MODE_REG,		/* BCM5704 series only	*/
3021 	BGE_REGNO_NONE		/* terminator		*/
3022 };
3023 
3024 #ifndef __sparc
3025 static bge_regno_t quiesce_regs[] = {
3026 	READ_DMA_MODE_REG,
3027 	DMA_COMPLETION_MODE_REG,
3028 	WRITE_DMA_MODE_REG,
3029 	BGE_REGNO_NONE
3030 };
3031 
3032 void bge_chip_stop_nonblocking(bge_t *bgep);
3033 #pragma no_inline(bge_chip_stop_nonblocking)
3034 
3035 /*
3036  * This function is called by bge_quiesce(). We
3037  * turn off all the DMA engines here.
3038  */
3039 void
3040 bge_chip_stop_nonblocking(bge_t *bgep)
3041 {
3042 	bge_regno_t *rbp;
3043 
3044 	/*
3045 	 * Flag that no more activity may be initiated
3046 	 */
3047 	bgep->progress &= ~PROGRESS_READY;
3048 
3049 	rbp = quiesce_regs;
3050 	while (*rbp != BGE_REGNO_NONE) {
3051 		(void) bge_chip_disable_engine(bgep, *rbp, 0);
3052 		++rbp;
3053 	}
3054 
3055 	bgep->bge_chip_state = BGE_CHIP_STOPPED;
3056 }
3057 
3058 #endif
3059 
3060 /*
3061  * bge_chip_stop() -- stop all chip processing
3062  *
3063  * If the <fault> parameter is B_TRUE, we're stopping the chip because
3064  * we've detected a problem internally; otherwise, this is a normal
3065  * (clean) stop (at user request i.e. the last STREAM has been closed).
3066  */
3067 void bge_chip_stop(bge_t *bgep, boolean_t fault);
3068 #pragma	no_inline(bge_chip_stop)
3069 
3070 void
3071 bge_chip_stop(bge_t *bgep, boolean_t fault)
3072 {
3073 	bge_regno_t regno;
3074 	bge_regno_t *rbp;
3075 	boolean_t ok;
3076 
3077 	BGE_TRACE(("bge_chip_stop($%p)",
3078 	    (void *)bgep));
3079 
3080 	ASSERT(mutex_owned(bgep->genlock));
3081 
3082 	rbp = shutdown_engine_regs;
3083 	/*
3084 	 * When driver try to shutdown the BCM5705/5788/5721/5751/
3085 	 * 5752/5714 and 5715 chipsets,the buffer manager and the mem
3086 	 * -ory arbiter should not be disabled.
3087 	 */
3088 	for (ok = B_TRUE; (regno = *rbp) != BGE_REGNO_NONE; ++rbp) {
3089 			if (DEVICE_5704_SERIES_CHIPSETS(bgep))
3090 				ok &= bge_chip_disable_engine(bgep, regno, 0);
3091 			else if ((regno != RCV_LIST_SELECTOR_MODE_REG) &&
3092 			    (regno != DMA_COMPLETION_MODE_REG) &&
3093 			    (regno != MBUF_CLUSTER_FREE_MODE_REG)&&
3094 			    (regno != BUFFER_MANAGER_MODE_REG) &&
3095 			    (regno != MEMORY_ARBITER_MODE_REG))
3096 				ok &= bge_chip_disable_engine(bgep,
3097 				    regno, 0);
3098 	}
3099 
3100 	if (!ok && !fault)
3101 		ddi_fm_service_impact(bgep->devinfo, DDI_SERVICE_UNAFFECTED);
3102 
3103 	/*
3104 	 * Finally, disable (all) MAC events & clear the MAC status
3105 	 */
3106 	bge_reg_put32(bgep, ETHERNET_MAC_EVENT_ENABLE_REG, 0);
3107 	bge_reg_put32(bgep, ETHERNET_MAC_STATUS_REG, ~0);
3108 
3109 	/*
3110 	 * if we're stopping the chip because of a detected fault then do
3111 	 * appropriate actions
3112 	 */
3113 	if (fault) {
3114 		if (bgep->bge_chip_state != BGE_CHIP_FAULT) {
3115 			bgep->bge_chip_state = BGE_CHIP_FAULT;
3116 			if (!bgep->manual_reset)
3117 				ddi_fm_service_impact(bgep->devinfo,
3118 				    DDI_SERVICE_LOST);
3119 			if (bgep->bge_dma_error) {
3120 				/*
3121 				 * need to free buffers in case the fault was
3122 				 * due to a memory error in a buffer - got to
3123 				 * do a fair bit of tidying first
3124 				 */
3125 				if (bgep->progress & PROGRESS_KSTATS) {
3126 					bge_fini_kstats(bgep);
3127 					bgep->progress &= ~PROGRESS_KSTATS;
3128 				}
3129 				if (bgep->progress & PROGRESS_INTR) {
3130 					bge_intr_disable(bgep);
3131 					rw_enter(bgep->errlock, RW_WRITER);
3132 					bge_fini_rings(bgep);
3133 					rw_exit(bgep->errlock);
3134 					bgep->progress &= ~PROGRESS_INTR;
3135 				}
3136 				if (bgep->progress & PROGRESS_BUFS) {
3137 					bge_free_bufs(bgep);
3138 					bgep->progress &= ~PROGRESS_BUFS;
3139 				}
3140 				bgep->bge_dma_error = B_FALSE;
3141 			}
3142 		}
3143 	} else
3144 		bgep->bge_chip_state = BGE_CHIP_STOPPED;
3145 }
3146 
3147 /*
3148  * Poll for completion of chip's ROM firmware; also, at least on the
3149  * first time through, find and return the hardware MAC address, if any.
3150  */
3151 static uint64_t bge_poll_firmware(bge_t *bgep);
3152 #pragma	no_inline(bge_poll_firmware)
3153 
3154 static uint64_t
3155 bge_poll_firmware(bge_t *bgep)
3156 {
3157 	uint64_t magic;
3158 	uint64_t mac;
3159 	uint32_t gen, val;
3160 	uint32_t i;
3161 
3162 	/*
3163 	 * Step 19: poll for firmware completion (GENCOMM port set
3164 	 * to the ones complement of T3_MAGIC_NUMBER).
3165 	 *
3166 	 * While we're at it, we also read the MAC address register;
3167 	 * at some stage the firmware will load this with the
3168 	 * factory-set value.
3169 	 *
3170 	 * When both the magic number and the MAC address are set,
3171 	 * we're done; but we impose a time limit of one second
3172 	 * (1000*1000us) in case the firmware fails in some fashion
3173 	 * or the SEEPROM that provides that MAC address isn't fitted.
3174 	 *
3175 	 * After the first time through (chip state != INITIAL), we
3176 	 * don't need the MAC address to be set (we've already got it
3177 	 * or not, from the first time), so we don't wait for it, but
3178 	 * we still have to wait for the T3_MAGIC_NUMBER.
3179 	 *
3180 	 * Note: the magic number is only a 32-bit quantity, but the NIC
3181 	 * memory is 64-bit (and big-endian) internally.  Addressing the
3182 	 * GENCOMM word as "the upper half of a 64-bit quantity" makes
3183 	 * it work correctly on both big- and little-endian hosts.
3184 	 */
3185 	if (MHCR_CHIP_ASIC_REV(bgep->chipid.asic_rev) ==
3186 	    MHCR_CHIP_ASIC_REV_5906) {
3187 		for (i = 0; i < 1000; ++i) {
3188 			drv_usecwait(1000);
3189 			val = bge_reg_get32(bgep, VCPU_STATUS_REG);
3190 			if (val & VCPU_INIT_DONE)
3191 				break;
3192 		}
3193 		BGE_DEBUG(("bge_poll_firmware($%p): return after %d loops",
3194 		    (void *)bgep, i));
3195 		mac = bge_reg_get64(bgep, MAC_ADDRESS_REG(0));
3196 	} else {
3197 		for (i = 0; i < 1000; ++i) {
3198 			drv_usecwait(1000);
3199 			gen = bge_nic_get64(bgep, NIC_MEM_GENCOMM) >> 32;
3200 			if (i == 0 && DEVICE_5704_SERIES_CHIPSETS(bgep))
3201 				drv_usecwait(100000);
3202 			mac = bge_reg_get64(bgep, MAC_ADDRESS_REG(0));
3203 #ifdef BGE_IPMI_ASF
3204 			if (!bgep->asf_enabled) {
3205 #endif
3206 				if (gen != ~T3_MAGIC_NUMBER)
3207 					continue;
3208 #ifdef BGE_IPMI_ASF
3209 			}
3210 #endif
3211 			if (mac != 0ULL)
3212 				break;
3213 			if (bgep->bge_chip_state != BGE_CHIP_INITIAL)
3214 				break;
3215 		}
3216 	}
3217 
3218 	magic = bge_nic_get64(bgep, NIC_MEM_GENCOMM);
3219 	BGE_DEBUG(("bge_poll_firmware($%p): PXE magic 0x%x after %d loops",
3220 	    (void *)bgep, gen, i));
3221 	BGE_DEBUG(("bge_poll_firmware: MAC %016llx, GENCOMM %016llx",
3222 	    mac, magic));
3223 
3224 	return (mac);
3225 }
3226 
3227 /*
3228  * Maximum times of trying to get the NVRAM access lock
3229  * by calling bge_nvmem_acquire()
3230  */
3231 #define	MAX_TRY_NVMEM_ACQUIRE	10000
3232 
3233 #ifdef BGE_IPMI_ASF
3234 int bge_chip_reset(bge_t *bgep, boolean_t enable_dma, uint_t asf_mode);
3235 #else
3236 int bge_chip_reset(bge_t *bgep, boolean_t enable_dma);
3237 #endif
3238 #pragma	no_inline(bge_chip_reset)
3239 
3240 int
3241 #ifdef BGE_IPMI_ASF
3242 bge_chip_reset(bge_t *bgep, boolean_t enable_dma, uint_t asf_mode)
3243 #else
3244 bge_chip_reset(bge_t *bgep, boolean_t enable_dma)
3245 #endif
3246 {
3247 	chip_id_t chipid;
3248 	uint64_t mac;
3249 	uint64_t magic;
3250 	uint32_t modeflags;
3251 	uint32_t mhcr;
3252 	uint32_t sx0;
3253 	uint32_t i, tries;
3254 #ifdef BGE_IPMI_ASF
3255 	uint32_t mailbox;
3256 #endif
3257 	int retval = DDI_SUCCESS;
3258 
3259 	BGE_TRACE(("bge_chip_reset($%p, %d)",
3260 		(void *)bgep, enable_dma));
3261 
3262 	ASSERT(mutex_owned(bgep->genlock));
3263 
3264 	BGE_DEBUG(("bge_chip_reset($%p, %d): current state is %d",
3265 		(void *)bgep, enable_dma, bgep->bge_chip_state));
3266 
3267 	/*
3268 	 * Do we need to stop the chip cleanly before resetting?
3269 	 */
3270 	switch (bgep->bge_chip_state) {
3271 	default:
3272 		_NOTE(NOTREACHED)
3273 		return (DDI_FAILURE);
3274 
3275 	case BGE_CHIP_INITIAL:
3276 	case BGE_CHIP_STOPPED:
3277 	case BGE_CHIP_RESET:
3278 		break;
3279 
3280 	case BGE_CHIP_RUNNING:
3281 	case BGE_CHIP_ERROR:
3282 	case BGE_CHIP_FAULT:
3283 		bge_chip_stop(bgep, B_FALSE);
3284 		break;
3285 	}
3286 
3287 #ifdef BGE_IPMI_ASF
3288 	if (bgep->asf_enabled) {
3289 #ifdef __sparc
3290 		mhcr = MHCR_ENABLE_INDIRECT_ACCESS |
3291 			MHCR_ENABLE_TAGGED_STATUS_MODE |
3292 			MHCR_MASK_INTERRUPT_MODE |
3293 			MHCR_MASK_PCI_INT_OUTPUT |
3294 			MHCR_CLEAR_INTERRUPT_INTA |
3295 			MHCR_ENABLE_ENDIAN_WORD_SWAP |
3296 			MHCR_ENABLE_ENDIAN_BYTE_SWAP;
3297 		pci_config_put32(bgep->cfg_handle, PCI_CONF_BGE_MHCR, mhcr);
3298 		bge_reg_put32(bgep, MEMORY_ARBITER_MODE_REG,
3299 			bge_reg_get32(bgep, MEMORY_ARBITER_MODE_REG) |
3300 			MEMORY_ARBITER_ENABLE);
3301 #endif
3302 		if (asf_mode == ASF_MODE_INIT) {
3303 			bge_asf_pre_reset_operations(bgep, BGE_INIT_RESET);
3304 		} else if (asf_mode == ASF_MODE_SHUTDOWN) {
3305 			bge_asf_pre_reset_operations(bgep, BGE_SHUTDOWN_RESET);
3306 		}
3307 	}
3308 #endif
3309 	/*
3310 	 * Adapted from Broadcom document 570X-PG102-R, pp 102-116.
3311 	 * Updated to reflect Broadcom document 570X-PG104-R, pp 146-159.
3312 	 *
3313 	 * Before reset Core clock,it is
3314 	 * also required to initialize the Memory Arbiter as specified in step9
3315 	 * and Misc Host Control Register as specified in step-13
3316 	 * Step 4-5: reset Core clock & wait for completion
3317 	 * Steps 6-8: are done by bge_chip_cfg_init()
3318 	 * put the T3_MAGIC_NUMBER into the GENCOMM port before reset
3319 	 */
3320 	if (!bge_chip_enable_engine(bgep, MEMORY_ARBITER_MODE_REG, 0))
3321 		retval = DDI_FAILURE;
3322 
3323 	mhcr = MHCR_ENABLE_INDIRECT_ACCESS |
3324 	    MHCR_ENABLE_TAGGED_STATUS_MODE |
3325 	    MHCR_MASK_INTERRUPT_MODE |
3326 	    MHCR_MASK_PCI_INT_OUTPUT |
3327 	    MHCR_CLEAR_INTERRUPT_INTA;
3328 #ifdef  _BIG_ENDIAN
3329 	mhcr |= MHCR_ENABLE_ENDIAN_WORD_SWAP | MHCR_ENABLE_ENDIAN_BYTE_SWAP;
3330 #endif  /* _BIG_ENDIAN */
3331 	pci_config_put32(bgep->cfg_handle, PCI_CONF_BGE_MHCR, mhcr);
3332 #ifdef BGE_IPMI_ASF
3333 	if (bgep->asf_enabled)
3334 		bgep->asf_wordswapped = B_FALSE;
3335 #endif
3336 	/*
3337 	 * NVRAM Corruption Workaround
3338 	 */
3339 	for (tries = 0; tries < MAX_TRY_NVMEM_ACQUIRE; tries++)
3340 		if (bge_nvmem_acquire(bgep) != EAGAIN)
3341 			break;
3342 	if (tries >= MAX_TRY_NVMEM_ACQUIRE)
3343 		BGE_DEBUG(("%s: fail to acquire nvram lock",
3344 			bgep->ifname));
3345 
3346 #ifdef BGE_IPMI_ASF
3347 	if (!bgep->asf_enabled) {
3348 #endif
3349 		magic = (uint64_t)T3_MAGIC_NUMBER << 32;
3350 		bge_nic_put64(bgep, NIC_MEM_GENCOMM, magic);
3351 #ifdef BGE_IPMI_ASF
3352 	}
3353 #endif
3354 
3355 	if (!bge_chip_reset_engine(bgep, MISC_CONFIG_REG))
3356 		retval = DDI_FAILURE;
3357 	bge_chip_cfg_init(bgep, &chipid, enable_dma);
3358 
3359 	/*
3360 	 * Step 8a: This may belong elsewhere, but BCM5721 needs
3361 	 * a bit set to avoid a fifo overflow/underflow bug.
3362 	 */
3363 	if ((bgep->chipid.chip_label == 5721) ||
3364 		(bgep->chipid.chip_label == 5751) ||
3365 		(bgep->chipid.chip_label == 5752) ||
3366 		(bgep->chipid.chip_label == 5755) ||
3367 		(bgep->chipid.chip_label == 5756) ||
3368 		(bgep->chipid.chip_label == 5789) ||
3369 		(bgep->chipid.chip_label == 5906))
3370 		bge_reg_set32(bgep, TLP_CONTROL_REG, TLP_DATA_FIFO_PROTECT);
3371 
3372 
3373 	/*
3374 	 * Step 9: enable MAC memory arbiter,bit30 and bit31 of 5714/5715 should
3375 	 * not be changed.
3376 	 */
3377 	if (!bge_chip_enable_engine(bgep, MEMORY_ARBITER_MODE_REG, 0))
3378 		retval = DDI_FAILURE;
3379 
3380 	/*
3381 	 * Steps 10-11: configure PIO endianness options and
3382 	 * enable indirect register access -- already done
3383 	 * Steps 12-13: enable writing to the PCI state & clock
3384 	 * control registers -- not required; we aren't going to
3385 	 * use those features.
3386 	 * Steps 14-15: Configure DMA endianness options.  See
3387 	 * the comments on the setting of the MHCR above.
3388 	 */
3389 #ifdef	_BIG_ENDIAN
3390 	modeflags = MODE_WORD_SWAP_FRAME | MODE_BYTE_SWAP_FRAME |
3391 		    MODE_WORD_SWAP_NONFRAME | MODE_BYTE_SWAP_NONFRAME;
3392 #else
3393 	modeflags = MODE_WORD_SWAP_FRAME | MODE_BYTE_SWAP_FRAME;
3394 #endif	/* _BIG_ENDIAN */
3395 #ifdef BGE_IPMI_ASF
3396 	if (bgep->asf_enabled)
3397 		modeflags |= MODE_HOST_STACK_UP;
3398 #endif
3399 	bge_reg_put32(bgep, MODE_CONTROL_REG, modeflags);
3400 
3401 #ifdef BGE_IPMI_ASF
3402 	if (bgep->asf_enabled) {
3403 #ifdef __sparc
3404 		bge_reg_put32(bgep, MEMORY_ARBITER_MODE_REG,
3405 			MEMORY_ARBITER_ENABLE |
3406 			bge_reg_get32(bgep, MEMORY_ARBITER_MODE_REG));
3407 #endif
3408 
3409 #ifdef  BGE_NETCONSOLE
3410 		if (!bgep->asf_newhandshake) {
3411 			if ((asf_mode == ASF_MODE_INIT) ||
3412 			(asf_mode == ASF_MODE_POST_INIT)) {
3413 				bge_asf_post_reset_old_mode(bgep,
3414 					BGE_INIT_RESET);
3415 			} else {
3416 				bge_asf_post_reset_old_mode(bgep,
3417 					BGE_SHUTDOWN_RESET);
3418 			}
3419 		}
3420 #endif
3421 
3422 		/* Wait for NVRAM init */
3423 		i = 0;
3424 		drv_usecwait(5000);
3425 		mailbox = bge_nic_get32(bgep, BGE_FIRMWARE_MAILBOX);
3426 
3427 		while ((mailbox != (uint32_t)
3428 			~BGE_MAGIC_NUM_FIRMWARE_INIT_DONE) &&
3429 			(i < 10000)) {
3430 			drv_usecwait(100);
3431 			mailbox = bge_nic_get32(bgep,
3432 				BGE_FIRMWARE_MAILBOX);
3433 			i++;
3434 		}
3435 
3436 #ifndef BGE_NETCONSOLE
3437 		if (!bgep->asf_newhandshake) {
3438 			if ((asf_mode == ASF_MODE_INIT) ||
3439 				(asf_mode == ASF_MODE_POST_INIT)) {
3440 
3441 				bge_asf_post_reset_old_mode(bgep,
3442 					BGE_INIT_RESET);
3443 			} else {
3444 				bge_asf_post_reset_old_mode(bgep,
3445 					BGE_SHUTDOWN_RESET);
3446 			}
3447 		}
3448 #endif
3449 	}
3450 #endif
3451 	/*
3452 	 * Steps 16-17: poll for firmware completion
3453 	 */
3454 	mac = bge_poll_firmware(bgep);
3455 
3456 	/*
3457 	 * Step 18: enable external memory -- doesn't apply.
3458 	 *
3459 	 * However we take the opportunity to set the MLCR anyway, as
3460 	 * this register also controls the SEEPROM auto-access method
3461 	 * which we may want to use later ...
3462 	 *
3463 	 * The proper value here depends on the way the chip is wired
3464 	 * into the circuit board, as this register *also* controls which
3465 	 * of the "Miscellaneous I/O" pins are driven as outputs and the
3466 	 * values driven onto those pins!
3467 	 *
3468 	 * See also step 74 in the PRM ...
3469 	 */
3470 	bge_reg_put32(bgep, MISC_LOCAL_CONTROL_REG,
3471 	    bgep->chipid.bge_mlcr_default);
3472 	bge_reg_set32(bgep, SERIAL_EEPROM_ADDRESS_REG, SEEPROM_ACCESS_INIT);
3473 
3474 	/*
3475 	 * Step 20: clear the Ethernet MAC mode register
3476 	 */
3477 	bge_reg_put32(bgep, ETHERNET_MAC_MODE_REG, 0);
3478 
3479 	/*
3480 	 * Step 21: restore cache-line-size, latency timer, and
3481 	 * subsystem ID registers to their original values (not
3482 	 * those read into the local structure <chipid>, 'cos
3483 	 * that was after they were cleared by the RESET).
3484 	 *
3485 	 * Note: the Subsystem Vendor/Device ID registers are not
3486 	 * directly writable in config space, so we use the shadow
3487 	 * copy in "Page Zero" of register space to restore them
3488 	 * both in one go ...
3489 	 */
3490 	pci_config_put8(bgep->cfg_handle, PCI_CONF_CACHE_LINESZ,
3491 		bgep->chipid.clsize);
3492 	pci_config_put8(bgep->cfg_handle, PCI_CONF_LATENCY_TIMER,
3493 		bgep->chipid.latency);
3494 	bge_reg_put32(bgep, PCI_CONF_SUBVENID,
3495 		(bgep->chipid.subdev << 16) | bgep->chipid.subven);
3496 
3497 	/*
3498 	 * The SEND INDEX registers should be reset to zero by the
3499 	 * global chip reset; if they're not, there'll be trouble
3500 	 * later on.
3501 	 */
3502 	sx0 = bge_reg_get32(bgep, NIC_DIAG_SEND_INDEX_REG(0));
3503 	if (sx0 != 0) {
3504 		BGE_REPORT((bgep, "SEND INDEX - device didn't RESET"));
3505 		bge_fm_ereport(bgep, DDI_FM_DEVICE_INVAL_STATE);
3506 		retval = DDI_FAILURE;
3507 	}
3508 
3509 	/* Enable MSI code */
3510 	if (bgep->intr_type == DDI_INTR_TYPE_MSI)
3511 		bge_reg_set32(bgep, MSI_MODE_REG,
3512 		    MSI_PRI_HIGHEST|MSI_MSI_ENABLE|MSI_ERROR_ATTENTION);
3513 
3514 	/*
3515 	 * On the first time through, save the factory-set MAC address
3516 	 * (if any).  If bge_poll_firmware() above didn't return one
3517 	 * (from a chip register) consider looking in the attached NV
3518 	 * memory device, if any.  Once we have it, we save it in both
3519 	 * register-image (64-bit) and byte-array forms.  All-zero and
3520 	 * all-one addresses are not valid, and we refuse to stash those.
3521 	 */
3522 	if (bgep->bge_chip_state == BGE_CHIP_INITIAL) {
3523 		if (mac == 0ULL)
3524 			mac = bge_get_nvmac(bgep);
3525 		if (mac != 0ULL && mac != ~0ULL) {
3526 			bgep->chipid.hw_mac_addr = mac;
3527 			for (i = ETHERADDRL; i-- != 0; ) {
3528 				bgep->chipid.vendor_addr.addr[i] = (uchar_t)mac;
3529 				mac >>= 8;
3530 			}
3531 			bgep->chipid.vendor_addr.set = B_TRUE;
3532 		}
3533 	}
3534 
3535 #ifdef BGE_IPMI_ASF
3536 	if (bgep->asf_enabled && bgep->asf_newhandshake) {
3537 		if (asf_mode != ASF_MODE_NONE) {
3538 			if ((asf_mode == ASF_MODE_INIT) ||
3539 				(asf_mode == ASF_MODE_POST_INIT)) {
3540 
3541 				bge_asf_post_reset_new_mode(bgep,
3542 					BGE_INIT_RESET);
3543 			} else {
3544 				bge_asf_post_reset_new_mode(bgep,
3545 					BGE_SHUTDOWN_RESET);
3546 			}
3547 		}
3548 	}
3549 #endif
3550 
3551 	/*
3552 	 * Record the new state
3553 	 */
3554 	bgep->chip_resets += 1;
3555 	bgep->bge_chip_state = BGE_CHIP_RESET;
3556 	return (retval);
3557 }
3558 
3559 /*
3560  * bge_chip_start() -- start the chip transmitting and/or receiving,
3561  * including enabling interrupts
3562  */
3563 int bge_chip_start(bge_t *bgep, boolean_t reset_phys);
3564 #pragma	no_inline(bge_chip_start)
3565 
3566 int
3567 bge_chip_start(bge_t *bgep, boolean_t reset_phys)
3568 {
3569 	uint32_t coalmode;
3570 	uint32_t ledctl;
3571 	uint32_t mtu;
3572 	uint32_t maxring;
3573 	uint32_t stats_mask;
3574 	uint32_t dma_wrprio;
3575 	uint64_t ring;
3576 	int retval = DDI_SUCCESS;
3577 
3578 	BGE_TRACE(("bge_chip_start($%p)",
3579 	    (void *)bgep));
3580 
3581 	ASSERT(mutex_owned(bgep->genlock));
3582 	ASSERT(bgep->bge_chip_state == BGE_CHIP_RESET);
3583 
3584 	/*
3585 	 * Taken from Broadcom document 570X-PG102-R, pp 102-116.
3586 	 * The document specifies 95 separate steps to fully
3587 	 * initialise the chip!!!!
3588 	 *
3589 	 * The reset code above has already got us as far as step
3590 	 * 21, so we continue with ...
3591 	 *
3592 	 * Step 22: clear the MAC statistics block
3593 	 * (0x0300-0x0aff in NIC-local memory)
3594 	 */
3595 	if (bgep->chipid.statistic_type == BGE_STAT_BLK)
3596 		bge_nic_zero(bgep, NIC_MEM_STATISTICS,
3597 		    NIC_MEM_STATISTICS_SIZE);
3598 
3599 	/*
3600 	 * Step 23: clear the status block (in host memory)
3601 	 */
3602 	DMA_ZERO(bgep->status_block);
3603 
3604 	/*
3605 	 * Step 24: set DMA read/write control register
3606 	 */
3607 	pci_config_put32(bgep->cfg_handle, PCI_CONF_BGE_PDRWCR,
3608 	    bgep->chipid.bge_dma_rwctrl);
3609 
3610 	/*
3611 	 * Step 25: Configure DMA endianness -- already done (16/17)
3612 	 * Step 26: Configure Host-Based Send Rings
3613 	 * Step 27: Indicate Host Stack Up
3614 	 */
3615 	bge_reg_set32(bgep, MODE_CONTROL_REG,
3616 	    MODE_HOST_SEND_BDS |
3617 	    MODE_HOST_STACK_UP);
3618 
3619 	/*
3620 	 * Step 28: Configure checksum options:
3621 	 *	Solaris supports the hardware default checksum options.
3622 	 *
3623 	 *	Workaround for Incorrect pseudo-header checksum calculation.
3624 	 */
3625 	if (bgep->chipid.flags & CHIP_FLAG_PARTIAL_CSUM)
3626 		bge_reg_set32(bgep, MODE_CONTROL_REG,
3627 		    MODE_SEND_NO_PSEUDO_HDR_CSUM);
3628 
3629 	/*
3630 	 * Step 29: configure Timer Prescaler.  The value is always the
3631 	 * same: the Core Clock frequency in MHz (66), minus 1, shifted
3632 	 * into bits 7-1.  Don't set bit 0, 'cos that's the RESET bit
3633 	 * for the whole chip!
3634 	 */
3635 	bge_reg_put32(bgep, MISC_CONFIG_REG, MISC_CONFIG_DEFAULT);
3636 
3637 	if (DEVICE_5906_SERIES_CHIPSETS(bgep)) {
3638 		drv_usecwait(40);
3639 		/* put PHY into ready state */
3640 		bge_reg_clr32(bgep, MISC_CONFIG_REG, MISC_CONFIG_EPHY_IDDQ);
3641 		(void) bge_reg_get32(bgep, MISC_CONFIG_REG); /* flush */
3642 		drv_usecwait(40);
3643 	}
3644 
3645 	/*
3646 	 * Steps 30-31: Configure MAC local memory pool & DMA pool registers
3647 	 *
3648 	 * If the mbuf_length is specified as 0, we just leave these at
3649 	 * their hardware defaults, rather than explicitly setting them.
3650 	 * As the Broadcom HRM,driver better not change the parameters
3651 	 * when the chipsets is 5705/5788/5721/5751/5714 and 5715.
3652 	 */
3653 	if ((bgep->chipid.mbuf_length != 0) &&
3654 	    (DEVICE_5704_SERIES_CHIPSETS(bgep))) {
3655 			bge_reg_put32(bgep, MBUF_POOL_BASE_REG,
3656 			    bgep->chipid.mbuf_base);
3657 			bge_reg_put32(bgep, MBUF_POOL_LENGTH_REG,
3658 			    bgep->chipid.mbuf_length);
3659 			bge_reg_put32(bgep, DMAD_POOL_BASE_REG,
3660 			    DMAD_POOL_BASE_DEFAULT);
3661 			bge_reg_put32(bgep, DMAD_POOL_LENGTH_REG,
3662 			    DMAD_POOL_LENGTH_DEFAULT);
3663 	}
3664 
3665 	/*
3666 	 * Step 32: configure MAC memory pool watermarks
3667 	 */
3668 	bge_reg_put32(bgep, RDMA_MBUF_LOWAT_REG,
3669 	    bgep->chipid.mbuf_lo_water_rdma);
3670 	bge_reg_put32(bgep, MAC_RX_MBUF_LOWAT_REG,
3671 	    bgep->chipid.mbuf_lo_water_rmac);
3672 	bge_reg_put32(bgep, MBUF_HIWAT_REG,
3673 	    bgep->chipid.mbuf_hi_water);
3674 
3675 	/*
3676 	 * Step 33: configure DMA resource watermarks
3677 	 */
3678 	if (DEVICE_5704_SERIES_CHIPSETS(bgep)) {
3679 		bge_reg_put32(bgep, DMAD_POOL_LOWAT_REG,
3680 		    bge_dmad_lo_water);
3681 		bge_reg_put32(bgep, DMAD_POOL_HIWAT_REG,
3682 		    bge_dmad_hi_water);
3683 	}
3684 	bge_reg_put32(bgep, LOWAT_MAX_RECV_FRAMES_REG, bge_lowat_recv_frames);
3685 
3686 	/*
3687 	 * Steps 34-36: enable buffer manager & internal h/w queues
3688 	 */
3689 	if (!bge_chip_enable_engine(bgep, BUFFER_MANAGER_MODE_REG,
3690 	    STATE_MACHINE_ATTN_ENABLE_BIT))
3691 		retval = DDI_FAILURE;
3692 	if (!bge_chip_enable_engine(bgep, FTQ_RESET_REG, 0))
3693 		retval = DDI_FAILURE;
3694 
3695 	/*
3696 	 * Steps 37-39: initialise Receive Buffer (Producer) RCBs
3697 	 */
3698 	bge_reg_putrcb(bgep, STD_RCV_BD_RING_RCB_REG,
3699 	    &bgep->buff[BGE_STD_BUFF_RING].hw_rcb);
3700 	if (DEVICE_5704_SERIES_CHIPSETS(bgep)) {
3701 		bge_reg_putrcb(bgep, JUMBO_RCV_BD_RING_RCB_REG,
3702 		    &bgep->buff[BGE_JUMBO_BUFF_RING].hw_rcb);
3703 		bge_reg_putrcb(bgep, MINI_RCV_BD_RING_RCB_REG,
3704 		    &bgep->buff[BGE_MINI_BUFF_RING].hw_rcb);
3705 	}
3706 
3707 	/*
3708 	 * Step 40: set Receive Buffer Descriptor Ring replenish thresholds
3709 	 */
3710 	bge_reg_put32(bgep, STD_RCV_BD_REPLENISH_REG, bge_replenish_std);
3711 	if (DEVICE_5704_SERIES_CHIPSETS(bgep)) {
3712 		bge_reg_put32(bgep, JUMBO_RCV_BD_REPLENISH_REG,
3713 		    bge_replenish_jumbo);
3714 		bge_reg_put32(bgep, MINI_RCV_BD_REPLENISH_REG,
3715 		    bge_replenish_mini);
3716 	}
3717 
3718 	/*
3719 	 * Steps 41-43: clear Send Ring Producer Indices and initialise
3720 	 * Send Producer Rings (0x0100-0x01ff in NIC-local memory)
3721 	 */
3722 	if (DEVICE_5704_SERIES_CHIPSETS(bgep))
3723 		maxring = BGE_SEND_RINGS_MAX;
3724 	else
3725 		maxring = BGE_SEND_RINGS_MAX_5705;
3726 	for (ring = 0; ring < maxring; ++ring) {
3727 		bge_mbx_put(bgep, SEND_RING_HOST_INDEX_REG(ring), 0);
3728 		bge_mbx_put(bgep, SEND_RING_NIC_INDEX_REG(ring), 0);
3729 		bge_nic_putrcb(bgep, NIC_MEM_SEND_RING(ring),
3730 		    &bgep->send[ring].hw_rcb);
3731 	}
3732 
3733 	/*
3734 	 * Steps 44-45: initialise Receive Return Rings
3735 	 * (0x0200-0x02ff in NIC-local memory)
3736 	 */
3737 	if (DEVICE_5704_SERIES_CHIPSETS(bgep))
3738 		maxring = BGE_RECV_RINGS_MAX;
3739 	else
3740 		maxring = BGE_RECV_RINGS_MAX_5705;
3741 	for (ring = 0; ring < maxring; ++ring)
3742 		bge_nic_putrcb(bgep, NIC_MEM_RECV_RING(ring),
3743 		    &bgep->recv[ring].hw_rcb);
3744 
3745 	/*
3746 	 * Step 46: initialise Receive Buffer (Producer) Ring indexes
3747 	 */
3748 	bge_mbx_put(bgep, RECV_STD_PROD_INDEX_REG, 0);
3749 	if (DEVICE_5704_SERIES_CHIPSETS(bgep)) {
3750 		bge_mbx_put(bgep, RECV_JUMBO_PROD_INDEX_REG, 0);
3751 		bge_mbx_put(bgep, RECV_MINI_PROD_INDEX_REG, 0);
3752 	}
3753 	/*
3754 	 * Step 47: configure the MAC unicast address
3755 	 * Step 48: configure the random backoff seed
3756 	 * Step 96: set up multicast filters
3757 	 */
3758 #ifdef BGE_IPMI_ASF
3759 	if (bge_chip_sync(bgep, B_FALSE) == DDI_FAILURE)
3760 #else
3761 	if (bge_chip_sync(bgep) == DDI_FAILURE)
3762 #endif
3763 		retval = DDI_FAILURE;
3764 
3765 	/*
3766 	 * Step 49: configure the MTU
3767 	 */
3768 	mtu = bgep->chipid.ethmax_size+ETHERFCSL+VLAN_TAGSZ;
3769 	bge_reg_put32(bgep, MAC_RX_MTU_SIZE_REG, mtu);
3770 
3771 	/*
3772 	 * Step 50: configure the IPG et al
3773 	 */
3774 	bge_reg_put32(bgep, MAC_TX_LENGTHS_REG, MAC_TX_LENGTHS_DEFAULT);
3775 
3776 	/*
3777 	 * Step 51: configure the default Rx Return Ring
3778 	 */
3779 	bge_reg_put32(bgep, RCV_RULES_CONFIG_REG, RCV_RULES_CONFIG_DEFAULT);
3780 
3781 	/*
3782 	 * Steps 52-54: configure Receive List Placement,
3783 	 * and enable Receive List Placement Statistics
3784 	 */
3785 	bge_reg_put32(bgep, RCV_LP_CONFIG_REG,
3786 	    RCV_LP_CONFIG(bgep->chipid.rx_rings));
3787 	switch (MHCR_CHIP_ASIC_REV(bgep->chipid.asic_rev)) {
3788 	case MHCR_CHIP_ASIC_REV_5700:
3789 	case MHCR_CHIP_ASIC_REV_5701:
3790 	case MHCR_CHIP_ASIC_REV_5703:
3791 	case MHCR_CHIP_ASIC_REV_5704:
3792 		bge_reg_put32(bgep, RCV_LP_STATS_ENABLE_MASK_REG, ~0);
3793 		break;
3794 	case MHCR_CHIP_ASIC_REV_5705:
3795 		break;
3796 	default:
3797 		stats_mask = bge_reg_get32(bgep, RCV_LP_STATS_ENABLE_MASK_REG);
3798 		stats_mask &= ~RCV_LP_STATS_DISABLE_MACTQ;
3799 		bge_reg_put32(bgep, RCV_LP_STATS_ENABLE_MASK_REG, stats_mask);
3800 		break;
3801 	}
3802 	bge_reg_set32(bgep, RCV_LP_STATS_CONTROL_REG, RCV_LP_STATS_ENABLE);
3803 
3804 	if (bgep->chipid.rx_rings > 1)
3805 		bge_init_recv_rule(bgep);
3806 
3807 	/*
3808 	 * Steps 55-56: enable Send Data Initiator Statistics
3809 	 */
3810 	bge_reg_put32(bgep, SEND_INIT_STATS_ENABLE_MASK_REG, ~0);
3811 	if (DEVICE_5704_SERIES_CHIPSETS(bgep)) {
3812 		bge_reg_put32(bgep, SEND_INIT_STATS_CONTROL_REG,
3813 		    SEND_INIT_STATS_ENABLE | SEND_INIT_STATS_FASTER);
3814 	} else {
3815 		bge_reg_put32(bgep, SEND_INIT_STATS_CONTROL_REG,
3816 		    SEND_INIT_STATS_ENABLE);
3817 	}
3818 	/*
3819 	 * Steps 57-58: stop (?) the Host Coalescing Engine
3820 	 */
3821 	if (!bge_chip_disable_engine(bgep, HOST_COALESCE_MODE_REG, ~0))
3822 		retval = DDI_FAILURE;
3823 
3824 	/*
3825 	 * Steps 59-62: initialise Host Coalescing parameters
3826 	 */
3827 	bge_reg_put32(bgep, SEND_COALESCE_MAX_BD_REG, bge_tx_count_norm);
3828 	bge_reg_put32(bgep, SEND_COALESCE_TICKS_REG, bge_tx_ticks_norm);
3829 	bge_reg_put32(bgep, RCV_COALESCE_MAX_BD_REG, bge_rx_count_norm);
3830 	bge_reg_put32(bgep, RCV_COALESCE_TICKS_REG, bge_rx_ticks_norm);
3831 	if (DEVICE_5704_SERIES_CHIPSETS(bgep)) {
3832 		bge_reg_put32(bgep, SEND_COALESCE_INT_BD_REG,
3833 		    bge_tx_count_intr);
3834 		bge_reg_put32(bgep, SEND_COALESCE_INT_TICKS_REG,
3835 		    bge_tx_ticks_intr);
3836 		bge_reg_put32(bgep, RCV_COALESCE_INT_BD_REG,
3837 		    bge_rx_count_intr);
3838 		bge_reg_put32(bgep, RCV_COALESCE_INT_TICKS_REG,
3839 		    bge_rx_ticks_intr);
3840 	}
3841 
3842 	/*
3843 	 * Steps 63-64: initialise status block & statistics
3844 	 * host memory addresses
3845 	 * The statistic block does not exist in some chipsets
3846 	 * Step 65: initialise Statistics Coalescing Tick Counter
3847 	 */
3848 	bge_reg_put64(bgep, STATUS_BLOCK_HOST_ADDR_REG,
3849 	    bgep->status_block.cookie.dmac_laddress);
3850 
3851 	/*
3852 	 * Steps 66-67: initialise status block & statistics
3853 	 * NIC-local memory addresses
3854 	 */
3855 	if (DEVICE_5704_SERIES_CHIPSETS(bgep)) {
3856 		bge_reg_put64(bgep, STATISTICS_HOST_ADDR_REG,
3857 		    bgep->statistics.cookie.dmac_laddress);
3858 		bge_reg_put32(bgep, STATISTICS_TICKS_REG,
3859 		    STATISTICS_TICKS_DEFAULT);
3860 		bge_reg_put32(bgep, STATUS_BLOCK_BASE_ADDR_REG,
3861 		    NIC_MEM_STATUS_BLOCK);
3862 		bge_reg_put32(bgep, STATISTICS_BASE_ADDR_REG,
3863 		    NIC_MEM_STATISTICS);
3864 	}
3865 
3866 	/*
3867 	 * Steps 68-71: start the Host Coalescing Engine, the Receive BD
3868 	 * Completion Engine, the Receive List Placement Engine, and the
3869 	 * Receive List selector.Pay attention:0x3400 is not exist in BCM5714
3870 	 * and BCM5715.
3871 	 */
3872 	if (bgep->chipid.tx_rings <= COALESCE_64_BYTE_RINGS &&
3873 	    bgep->chipid.rx_rings <= COALESCE_64_BYTE_RINGS)
3874 		coalmode = COALESCE_64_BYTE_STATUS;
3875 	else
3876 		coalmode = 0;
3877 	if (!bge_chip_enable_engine(bgep, HOST_COALESCE_MODE_REG, coalmode))
3878 		retval = DDI_FAILURE;
3879 	if (!bge_chip_enable_engine(bgep, RCV_BD_COMPLETION_MODE_REG,
3880 	    STATE_MACHINE_ATTN_ENABLE_BIT))
3881 		retval = DDI_FAILURE;
3882 	if (!bge_chip_enable_engine(bgep, RCV_LIST_PLACEMENT_MODE_REG, 0))
3883 		retval = DDI_FAILURE;
3884 
3885 	if (DEVICE_5704_SERIES_CHIPSETS(bgep))
3886 		if (!bge_chip_enable_engine(bgep, RCV_LIST_SELECTOR_MODE_REG,
3887 		    STATE_MACHINE_ATTN_ENABLE_BIT))
3888 			retval = DDI_FAILURE;
3889 
3890 	/*
3891 	 * Step 72: Enable MAC DMA engines
3892 	 * Step 73: Clear & enable MAC statistics
3893 	 */
3894 	bge_reg_set32(bgep, ETHERNET_MAC_MODE_REG,
3895 	    ETHERNET_MODE_ENABLE_FHDE |
3896 	    ETHERNET_MODE_ENABLE_RDE |
3897 	    ETHERNET_MODE_ENABLE_TDE);
3898 	bge_reg_set32(bgep, ETHERNET_MAC_MODE_REG,
3899 	    ETHERNET_MODE_ENABLE_TX_STATS |
3900 	    ETHERNET_MODE_ENABLE_RX_STATS |
3901 	    ETHERNET_MODE_CLEAR_TX_STATS |
3902 	    ETHERNET_MODE_CLEAR_RX_STATS);
3903 
3904 	/*
3905 	 * Step 74: configure the MLCR (Miscellaneous Local Control
3906 	 * Register); not required, as we set up the MLCR in step 10
3907 	 * (part of the reset code) above.
3908 	 *
3909 	 * Step 75: clear Interrupt Mailbox 0
3910 	 */
3911 	bge_mbx_put(bgep, INTERRUPT_MBOX_0_REG, 0);
3912 
3913 	/*
3914 	 * Steps 76-87: Gentlemen, start your engines ...
3915 	 *
3916 	 * Enable the DMA Completion Engine, the Write DMA Engine,
3917 	 * the Read DMA Engine, Receive Data Completion Engine,
3918 	 * the MBuf Cluster Free Engine, the Send Data Completion Engine,
3919 	 * the Send BD Completion Engine, the Receive BD Initiator Engine,
3920 	 * the Receive Data Initiator Engine, the Send Data Initiator Engine,
3921 	 * the Send BD Initiator Engine, and the Send BD Selector Engine.
3922 	 *
3923 	 * Beware exhaust fumes?
3924 	 */
3925 	if (DEVICE_5704_SERIES_CHIPSETS(bgep))
3926 		if (!bge_chip_enable_engine(bgep, DMA_COMPLETION_MODE_REG, 0))
3927 			retval = DDI_FAILURE;
3928 	dma_wrprio = (bge_dma_wrprio << DMA_PRIORITY_SHIFT) |
3929 	    ALL_DMA_ATTN_BITS;
3930 	if ((MHCR_CHIP_ASIC_REV(bgep->chipid.asic_rev) ==
3931 	    MHCR_CHIP_ASIC_REV_5755) ||
3932 	    (MHCR_CHIP_ASIC_REV(bgep->chipid.asic_rev) ==
3933 	    MHCR_CHIP_ASIC_REV_5906)) {
3934 		dma_wrprio |= DMA_STATUS_TAG_FIX_CQ12384;
3935 	}
3936 	if (!bge_chip_enable_engine(bgep, WRITE_DMA_MODE_REG,
3937 	    dma_wrprio))
3938 		retval = DDI_FAILURE;
3939 	if (!bge_chip_enable_engine(bgep, READ_DMA_MODE_REG,
3940 	    (bge_dma_rdprio << DMA_PRIORITY_SHIFT) | ALL_DMA_ATTN_BITS))
3941 		retval = DDI_FAILURE;
3942 	if (!bge_chip_enable_engine(bgep, RCV_DATA_COMPLETION_MODE_REG,
3943 	    STATE_MACHINE_ATTN_ENABLE_BIT))
3944 		retval = DDI_FAILURE;
3945 	if (DEVICE_5704_SERIES_CHIPSETS(bgep))
3946 		if (!bge_chip_enable_engine(bgep,
3947 		    MBUF_CLUSTER_FREE_MODE_REG, 0))
3948 			retval = DDI_FAILURE;
3949 	if (!bge_chip_enable_engine(bgep, SEND_DATA_COMPLETION_MODE_REG, 0))
3950 		retval = DDI_FAILURE;
3951 	if (!bge_chip_enable_engine(bgep, SEND_BD_COMPLETION_MODE_REG,
3952 	    STATE_MACHINE_ATTN_ENABLE_BIT))
3953 		retval = DDI_FAILURE;
3954 	if (!bge_chip_enable_engine(bgep, RCV_BD_INITIATOR_MODE_REG,
3955 	    RCV_BD_DISABLED_RING_ATTN))
3956 		retval = DDI_FAILURE;
3957 	if (!bge_chip_enable_engine(bgep, RCV_DATA_BD_INITIATOR_MODE_REG,
3958 	    RCV_DATA_BD_ILL_RING_ATTN))
3959 		retval = DDI_FAILURE;
3960 	if (!bge_chip_enable_engine(bgep, SEND_DATA_INITIATOR_MODE_REG, 0))
3961 		retval = DDI_FAILURE;
3962 	if (!bge_chip_enable_engine(bgep, SEND_BD_INITIATOR_MODE_REG,
3963 	    STATE_MACHINE_ATTN_ENABLE_BIT))
3964 		retval = DDI_FAILURE;
3965 	if (!bge_chip_enable_engine(bgep, SEND_BD_SELECTOR_MODE_REG,
3966 	    STATE_MACHINE_ATTN_ENABLE_BIT))
3967 		retval = DDI_FAILURE;
3968 
3969 	/*
3970 	 * Step 88: download firmware -- doesn't apply
3971 	 * Steps 89-90: enable Transmit & Receive MAC Engines
3972 	 */
3973 	if (!bge_chip_enable_engine(bgep, TRANSMIT_MAC_MODE_REG, 0))
3974 		retval = DDI_FAILURE;
3975 #ifdef BGE_IPMI_ASF
3976 	if (!bgep->asf_enabled) {
3977 		if (!bge_chip_enable_engine(bgep, RECEIVE_MAC_MODE_REG,
3978 		    RECEIVE_MODE_KEEP_VLAN_TAG))
3979 			retval = DDI_FAILURE;
3980 	} else {
3981 		if (!bge_chip_enable_engine(bgep, RECEIVE_MAC_MODE_REG, 0))
3982 			retval = DDI_FAILURE;
3983 	}
3984 #else
3985 	if (!bge_chip_enable_engine(bgep, RECEIVE_MAC_MODE_REG,
3986 	    RECEIVE_MODE_KEEP_VLAN_TAG))
3987 		retval = DDI_FAILURE;
3988 #endif
3989 
3990 	/*
3991 	 * Step 91: disable auto-polling of PHY status
3992 	 */
3993 	bge_reg_put32(bgep, MI_MODE_REG, MI_MODE_DEFAULT);
3994 
3995 	/*
3996 	 * Step 92: configure D0 power state (not required)
3997 	 * Step 93: initialise LED control register ()
3998 	 */
3999 	ledctl = LED_CONTROL_DEFAULT;
4000 	switch (bgep->chipid.device) {
4001 	case DEVICE_ID_5700:
4002 	case DEVICE_ID_5700x:
4003 	case DEVICE_ID_5701:
4004 		/*
4005 		 * Switch to 5700 (MAC) mode on these older chips
4006 		 */
4007 		ledctl &= ~LED_CONTROL_LED_MODE_MASK;
4008 		ledctl |= LED_CONTROL_LED_MODE_5700;
4009 		break;
4010 
4011 	default:
4012 		break;
4013 	}
4014 	bge_reg_put32(bgep, ETHERNET_MAC_LED_CONTROL_REG, ledctl);
4015 
4016 	/*
4017 	 * Step 94: activate link
4018 	 */
4019 	bge_reg_put32(bgep, MI_STATUS_REG, MI_STATUS_LINK);
4020 
4021 	/*
4022 	 * Step 95: set up physical layer (PHY/SerDes)
4023 	 * restart autoneg (if required)
4024 	 */
4025 	if (reset_phys)
4026 		if (bge_phys_update(bgep) == DDI_FAILURE)
4027 			retval = DDI_FAILURE;
4028 
4029 	/*
4030 	 * Extra step (DSG): hand over all the Receive Buffers to the chip
4031 	 */
4032 	for (ring = 0; ring < BGE_BUFF_RINGS_USED; ++ring)
4033 		bge_mbx_put(bgep, bgep->buff[ring].chip_mbx_reg,
4034 		    bgep->buff[ring].rf_next);
4035 
4036 	/*
4037 	 * MSI bits:The least significant MSI 16-bit word.
4038 	 * ISR will be triggered different.
4039 	 */
4040 	if (bgep->intr_type == DDI_INTR_TYPE_MSI)
4041 		bge_reg_set32(bgep, HOST_COALESCE_MODE_REG, 0x70);
4042 
4043 	/*
4044 	 * Extra step (DSG): select which interrupts are enabled
4045 	 *
4046 	 * Program the Ethernet MAC engine to signal attention on
4047 	 * Link Change events, then enable interrupts on MAC, DMA,
4048 	 * and FLOW attention signals.
4049 	 */
4050 	bge_reg_set32(bgep, ETHERNET_MAC_EVENT_ENABLE_REG,
4051 	    ETHERNET_EVENT_LINK_INT |
4052 	    ETHERNET_STATUS_PCS_ERROR_INT);
4053 #ifdef BGE_IPMI_ASF
4054 	if (bgep->asf_enabled) {
4055 		bge_reg_set32(bgep, MODE_CONTROL_REG,
4056 		    MODE_INT_ON_FLOW_ATTN |
4057 		    MODE_INT_ON_DMA_ATTN |
4058 		    MODE_HOST_STACK_UP|
4059 		    MODE_INT_ON_MAC_ATTN);
4060 	} else {
4061 #endif
4062 		bge_reg_set32(bgep, MODE_CONTROL_REG,
4063 		    MODE_INT_ON_FLOW_ATTN |
4064 		    MODE_INT_ON_DMA_ATTN |
4065 		    MODE_INT_ON_MAC_ATTN);
4066 #ifdef BGE_IPMI_ASF
4067 	}
4068 #endif
4069 
4070 	/*
4071 	 * Step 97: enable PCI interrupts!!!
4072 	 */
4073 	if (bgep->intr_type == DDI_INTR_TYPE_FIXED)
4074 		bge_cfg_clr32(bgep, PCI_CONF_BGE_MHCR,
4075 		    MHCR_MASK_PCI_INT_OUTPUT);
4076 
4077 	/*
4078 	 * All done!
4079 	 */
4080 	bgep->bge_chip_state = BGE_CHIP_RUNNING;
4081 	return (retval);
4082 }
4083 
4084 
4085 /*
4086  * ========== Hardware interrupt handler ==========
4087  */
4088 
4089 #undef	BGE_DBG
4090 #define	BGE_DBG		BGE_DBG_INT	/* debug flag for this code	*/
4091 
4092 /*
4093  * Sync the status block, then atomically clear the specified bits in
4094  * the <flags-and-tag> field of the status block.
4095  * the <flags> word of the status block, returning the value of the
4096  * <tag> and the <flags> before the bits were cleared.
4097  */
4098 static int bge_status_sync(bge_t *bgep, uint64_t bits, uint64_t *flags);
4099 #pragma	inline(bge_status_sync)
4100 
4101 static int
4102 bge_status_sync(bge_t *bgep, uint64_t bits, uint64_t *flags)
4103 {
4104 	bge_status_t *bsp;
4105 	int retval;
4106 
4107 	BGE_TRACE(("bge_status_sync($%p, 0x%llx)",
4108 	    (void *)bgep, bits));
4109 
4110 	ASSERT(bgep->bge_guard == BGE_GUARD);
4111 
4112 	DMA_SYNC(bgep->status_block, DDI_DMA_SYNC_FORKERNEL);
4113 	retval = bge_check_dma_handle(bgep, bgep->status_block.dma_hdl);
4114 	if (retval != DDI_FM_OK)
4115 		return (retval);
4116 
4117 	bsp = DMA_VPTR(bgep->status_block);
4118 	*flags = bge_atomic_clr64(&bsp->flags_n_tag, bits);
4119 
4120 	BGE_DEBUG(("bge_status_sync($%p, 0x%llx) returning 0x%llx",
4121 	    (void *)bgep, bits, *flags));
4122 
4123 	return (retval);
4124 }
4125 
4126 void bge_wake_factotum(bge_t *bgep);
4127 #pragma	inline(bge_wake_factotum)
4128 
4129 void
4130 bge_wake_factotum(bge_t *bgep)
4131 {
4132 	mutex_enter(bgep->softintrlock);
4133 	if (bgep->factotum_flag == 0) {
4134 		bgep->factotum_flag = 1;
4135 		ddi_trigger_softintr(bgep->factotum_id);
4136 	}
4137 	mutex_exit(bgep->softintrlock);
4138 }
4139 
4140 /*
4141  *	bge_intr() -- handle chip interrupts
4142  */
4143 uint_t bge_intr(caddr_t arg1, caddr_t arg2);
4144 #pragma	no_inline(bge_intr)
4145 
4146 uint_t
4147 bge_intr(caddr_t arg1, caddr_t arg2)
4148 {
4149 	bge_t *bgep = (void *)arg1;		/* private device info	*/
4150 	bge_status_t *bsp;
4151 	uint64_t flags;
4152 	uint32_t regval;
4153 	uint_t result;
4154 	int retval, loop_cnt = 0;
4155 
4156 	BGE_TRACE(("bge_intr($%p) ($%p)", arg1, arg2));
4157 
4158 	/*
4159 	 * GLD v2 checks that s/w setup is complete before passing
4160 	 * interrupts to this routine, thus eliminating the old
4161 	 * (and well-known) race condition around ddi_add_intr()
4162 	 */
4163 	ASSERT(bgep->progress & PROGRESS_HWINT);
4164 
4165 	result = DDI_INTR_UNCLAIMED;
4166 	mutex_enter(bgep->genlock);
4167 
4168 	if (bgep->intr_type == DDI_INTR_TYPE_FIXED) {
4169 		/*
4170 		 * Check whether chip's says it's asserting #INTA;
4171 		 * if not, don't process or claim the interrupt.
4172 		 *
4173 		 * Note that the PCI signal is active low, so the
4174 		 * bit is *zero* when the interrupt is asserted.
4175 		 */
4176 		regval = bge_reg_get32(bgep, MISC_LOCAL_CONTROL_REG);
4177 		if (regval & MLCR_INTA_STATE) {
4178 			if (bge_check_acc_handle(bgep, bgep->io_handle)
4179 			    != DDI_FM_OK)
4180 				goto chip_stop;
4181 			mutex_exit(bgep->genlock);
4182 			return (result);
4183 		}
4184 
4185 		/*
4186 		 * Block further PCI interrupts ...
4187 		 */
4188 		bge_reg_set32(bgep, PCI_CONF_BGE_MHCR,
4189 		    MHCR_MASK_PCI_INT_OUTPUT);
4190 
4191 	} else {
4192 		/*
4193 		 * Check MSI status
4194 		 */
4195 		regval = bge_reg_get32(bgep, MSI_STATUS_REG);
4196 		if (regval & MSI_ERROR_ATTENTION) {
4197 			BGE_REPORT((bgep, "msi error attention,"
4198 			    " status=0x%x", regval));
4199 			bge_reg_put32(bgep, MSI_STATUS_REG, regval);
4200 		}
4201 	}
4202 
4203 	result = DDI_INTR_CLAIMED;
4204 
4205 	BGE_DEBUG(("bge_intr($%p) ($%p) regval 0x%08x", arg1, arg2, regval));
4206 
4207 	/*
4208 	 * Sync the status block and grab the flags-n-tag from it.
4209 	 * We count the number of interrupts where there doesn't
4210 	 * seem to have been a DMA update of the status block; if
4211 	 * it *has* been updated, the counter will be cleared in
4212 	 * the while() loop below ...
4213 	 */
4214 	bgep->missed_dmas += 1;
4215 	bsp = DMA_VPTR(bgep->status_block);
4216 	for (loop_cnt = 0; loop_cnt < bge_intr_max_loop; loop_cnt++) {
4217 		if (bgep->bge_chip_state != BGE_CHIP_RUNNING) {
4218 			/*
4219 			 * bge_chip_stop() may have freed dma area etc
4220 			 * while we were in this interrupt handler -
4221 			 * better not call bge_status_sync()
4222 			 */
4223 			(void) bge_check_acc_handle(bgep,
4224 			    bgep->io_handle);
4225 			mutex_exit(bgep->genlock);
4226 			return (DDI_INTR_CLAIMED);
4227 		}
4228 		retval = bge_status_sync(bgep, STATUS_FLAG_UPDATED,
4229 		    &flags);
4230 		if (retval != DDI_FM_OK) {
4231 			bgep->bge_dma_error = B_TRUE;
4232 			goto chip_stop;
4233 		}
4234 
4235 		if (!(flags & STATUS_FLAG_UPDATED))
4236 			break;
4237 
4238 		/*
4239 		 * Tell the chip that we're processing the interrupt
4240 		 */
4241 		bge_mbx_put(bgep, INTERRUPT_MBOX_0_REG,
4242 		    INTERRUPT_MBOX_DISABLE(flags));
4243 		if (bge_check_acc_handle(bgep, bgep->io_handle) !=
4244 		    DDI_FM_OK)
4245 			goto chip_stop;
4246 
4247 		/*
4248 		 * Drop the mutex while we:
4249 		 * 	Receive any newly-arrived packets
4250 		 *	Recycle any newly-finished send buffers
4251 		 */
4252 		bgep->bge_intr_running = B_TRUE;
4253 		mutex_exit(bgep->genlock);
4254 		bge_receive(bgep, bsp);
4255 		bge_recycle(bgep, bsp);
4256 		mutex_enter(bgep->genlock);
4257 		bgep->bge_intr_running = B_FALSE;
4258 
4259 		/*
4260 		 * Tell the chip we've finished processing, and
4261 		 * give it the tag that we got from the status
4262 		 * block earlier, so that it knows just how far
4263 		 * we've gone.  If it's got more for us to do,
4264 		 * it will now update the status block and try
4265 		 * to assert an interrupt (but we've got the
4266 		 * #INTA blocked at present).  If we see the
4267 		 * update, we'll loop around to do some more.
4268 		 * Eventually we'll get out of here ...
4269 		 */
4270 		bge_mbx_put(bgep, INTERRUPT_MBOX_0_REG,
4271 		    INTERRUPT_MBOX_ENABLE(flags));
4272 		if (bgep->chipid.pci_type == BGE_PCI_E)
4273 			(void) bge_mbx_get(bgep, INTERRUPT_MBOX_0_REG);
4274 		bgep->missed_dmas = 0;
4275 	}
4276 
4277 	/*
4278 	 * Check for exceptional conditions that we need to handle
4279 	 *
4280 	 * Link status changed
4281 	 * Status block not updated
4282 	 */
4283 	if (flags & STATUS_FLAG_LINK_CHANGED)
4284 		bge_wake_factotum(bgep);
4285 
4286 	if (bgep->missed_dmas) {
4287 		/*
4288 		 * Probably due to the internal status tag not
4289 		 * being reset.  Force a status block update now;
4290 		 * this should ensure that we get an update and
4291 		 * a new interrupt.  After that, we should be in
4292 		 * sync again ...
4293 		 */
4294 		BGE_REPORT((bgep, "interrupt: flags 0x%llx - "
4295 		    "not updated?", flags));
4296 		bgep->missed_updates++;
4297 		bge_reg_set32(bgep, HOST_COALESCE_MODE_REG,
4298 		    COALESCE_NOW);
4299 
4300 		if (bgep->missed_dmas >= bge_dma_miss_limit) {
4301 			/*
4302 			 * If this happens multiple times in a row,
4303 			 * it means DMA is just not working.  Maybe
4304 			 * the chip's failed, or maybe there's a
4305 			 * problem on the PCI bus or in the host-PCI
4306 			 * bridge (Tomatillo).
4307 			 *
4308 			 * At all events, we want to stop further
4309 			 * interrupts and let the recovery code take
4310 			 * over to see whether anything can be done
4311 			 * about it ...
4312 			 */
4313 			bge_fm_ereport(bgep,
4314 			    DDI_FM_DEVICE_BADINT_LIMIT);
4315 			goto chip_stop;
4316 		}
4317 	}
4318 
4319 	/*
4320 	 * Reenable assertion of #INTA, unless there's a DMA fault
4321 	 */
4322 	if (bgep->intr_type == DDI_INTR_TYPE_FIXED) {
4323 		bge_reg_clr32(bgep, PCI_CONF_BGE_MHCR,
4324 		    MHCR_MASK_PCI_INT_OUTPUT);
4325 		if (bge_check_acc_handle(bgep, bgep->cfg_handle) !=
4326 		    DDI_FM_OK)
4327 			goto chip_stop;
4328 	}
4329 
4330 	if (bge_check_acc_handle(bgep, bgep->io_handle) != DDI_FM_OK)
4331 		goto chip_stop;
4332 
4333 	mutex_exit(bgep->genlock);
4334 	return (result);
4335 
4336 chip_stop:
4337 #ifdef BGE_IPMI_ASF
4338 	if (bgep->asf_enabled && bgep->asf_status == ASF_STAT_RUN) {
4339 		/*
4340 		 * We must stop ASF heart beat before
4341 		 * bge_chip_stop(), otherwise some
4342 		 * computers (ex. IBM HS20 blade
4343 		 * server) may crash.
4344 		 */
4345 		bge_asf_update_status(bgep);
4346 		bge_asf_stop_timer(bgep);
4347 		bgep->asf_status = ASF_STAT_STOP;
4348 
4349 		bge_asf_pre_reset_operations(bgep, BGE_INIT_RESET);
4350 		(void) bge_check_acc_handle(bgep, bgep->cfg_handle);
4351 	}
4352 #endif
4353 	bge_chip_stop(bgep, B_TRUE);
4354 	(void) bge_check_acc_handle(bgep, bgep->io_handle);
4355 	mutex_exit(bgep->genlock);
4356 	return (result);
4357 }
4358 
4359 /*
4360  * ========== Factotum, implemented as a softint handler ==========
4361  */
4362 
4363 #undef	BGE_DBG
4364 #define	BGE_DBG		BGE_DBG_FACT	/* debug flag for this code	*/
4365 
4366 static void bge_factotum_error_handler(bge_t *bgep);
4367 #pragma	no_inline(bge_factotum_error_handler)
4368 
4369 static void
4370 bge_factotum_error_handler(bge_t *bgep)
4371 {
4372 	uint32_t flow;
4373 	uint32_t rdma;
4374 	uint32_t wdma;
4375 	uint32_t tmac;
4376 	uint32_t rmac;
4377 	uint32_t rxrs;
4378 	uint32_t txrs = 0;
4379 
4380 	ASSERT(mutex_owned(bgep->genlock));
4381 
4382 	/*
4383 	 * Read all the registers that show the possible
4384 	 * reasons for the ERROR bit to be asserted
4385 	 */
4386 	flow = bge_reg_get32(bgep, FLOW_ATTN_REG);
4387 	rdma = bge_reg_get32(bgep, READ_DMA_STATUS_REG);
4388 	wdma = bge_reg_get32(bgep, WRITE_DMA_STATUS_REG);
4389 	tmac = bge_reg_get32(bgep, TRANSMIT_MAC_STATUS_REG);
4390 	rmac = bge_reg_get32(bgep, RECEIVE_MAC_STATUS_REG);
4391 	rxrs = bge_reg_get32(bgep, RX_RISC_STATE_REG);
4392 	if (DEVICE_5704_SERIES_CHIPSETS(bgep))
4393 		txrs = bge_reg_get32(bgep, TX_RISC_STATE_REG);
4394 
4395 	BGE_DEBUG(("factotum($%p) flow 0x%x rdma 0x%x wdma 0x%x",
4396 	    (void *)bgep, flow, rdma, wdma));
4397 	BGE_DEBUG(("factotum($%p) tmac 0x%x rmac 0x%x rxrs 0x%08x txrs 0x%08x",
4398 	    (void *)bgep, tmac, rmac, rxrs, txrs));
4399 
4400 	/*
4401 	 * For now, just clear all the errors ...
4402 	 */
4403 	if (DEVICE_5704_SERIES_CHIPSETS(bgep))
4404 		bge_reg_put32(bgep, TX_RISC_STATE_REG, ~0);
4405 	bge_reg_put32(bgep, RX_RISC_STATE_REG, ~0);
4406 	bge_reg_put32(bgep, RECEIVE_MAC_STATUS_REG, ~0);
4407 	bge_reg_put32(bgep, WRITE_DMA_STATUS_REG, ~0);
4408 	bge_reg_put32(bgep, READ_DMA_STATUS_REG, ~0);
4409 	bge_reg_put32(bgep, FLOW_ATTN_REG, ~0);
4410 }
4411 
4412 /*
4413  * Handler for hardware link state change.
4414  *
4415  * When this routine is called, the hardware link state has changed
4416  * and the new state is reflected in the param_* variables.  Here
4417  * we must update the softstate and reprogram the MAC to match.
4418  */
4419 static void bge_factotum_link_handler(bge_t *bgep);
4420 #pragma	no_inline(bge_factotum_link_handler)
4421 
4422 static void
4423 bge_factotum_link_handler(bge_t *bgep)
4424 {
4425 	ASSERT(mutex_owned(bgep->genlock));
4426 
4427 	/*
4428 	 * Update the s/w link_state
4429 	 */
4430 	if (bgep->param_link_up)
4431 		bgep->link_state = LINK_STATE_UP;
4432 	else
4433 		bgep->link_state = LINK_STATE_DOWN;
4434 
4435 	/*
4436 	 * Reprogram the MAC modes to match
4437 	 */
4438 	bge_sync_mac_modes(bgep);
4439 }
4440 
4441 static boolean_t bge_factotum_link_check(bge_t *bgep, int *dma_state);
4442 #pragma	no_inline(bge_factotum_link_check)
4443 
4444 static boolean_t
4445 bge_factotum_link_check(bge_t *bgep, int *dma_state)
4446 {
4447 	boolean_t check;
4448 	uint64_t flags;
4449 	uint32_t tmac_status;
4450 
4451 	ASSERT(mutex_owned(bgep->genlock));
4452 
4453 	/*
4454 	 * Get & clear the writable status bits in the Tx status register
4455 	 * (some bits are write-1-to-clear, others are just readonly).
4456 	 */
4457 	tmac_status = bge_reg_get32(bgep, TRANSMIT_MAC_STATUS_REG);
4458 	bge_reg_put32(bgep, TRANSMIT_MAC_STATUS_REG, tmac_status);
4459 
4460 	/*
4461 	 * Get & clear the ERROR and LINK_CHANGED bits from the status block
4462 	 */
4463 	*dma_state = bge_status_sync(bgep, STATUS_FLAG_ERROR |
4464 	    STATUS_FLAG_LINK_CHANGED, &flags);
4465 	if (*dma_state != DDI_FM_OK)
4466 		return (B_FALSE);
4467 
4468 	/*
4469 	 * Clear any errors flagged in the status block ...
4470 	 */
4471 	if (flags & STATUS_FLAG_ERROR)
4472 		bge_factotum_error_handler(bgep);
4473 
4474 	/*
4475 	 * We need to check the link status if:
4476 	 *	the status block says there's been a link change
4477 	 *	or there's any discrepancy between the various
4478 	 *	flags indicating the link state (link_state,
4479 	 *	param_link_up, and the LINK STATE bit in the
4480 	 *	Transmit MAC status register).
4481 	 */
4482 	check = (flags & STATUS_FLAG_LINK_CHANGED) != 0;
4483 	switch (bgep->link_state) {
4484 	case LINK_STATE_UP:
4485 		check |= (bgep->param_link_up == B_FALSE);
4486 		check |= ((tmac_status & TRANSMIT_STATUS_LINK_UP) == 0);
4487 		break;
4488 
4489 	case LINK_STATE_DOWN:
4490 		check |= (bgep->param_link_up != B_FALSE);
4491 		check |= ((tmac_status & TRANSMIT_STATUS_LINK_UP) != 0);
4492 		break;
4493 
4494 	default:
4495 		check = B_TRUE;
4496 		break;
4497 	}
4498 
4499 	/*
4500 	 * If <check> is false, we're sure the link hasn't changed.
4501 	 * If true, however, it's not yet definitive; we have to call
4502 	 * bge_phys_check() to determine whether the link has settled
4503 	 * into a new state yet ... and if it has, then call the link
4504 	 * state change handler.But when the chip is 5700 in Dell 6650
4505 	 * ,even if check is false, the link may have changed.So we
4506 	 * have to call bge_phys_check() to determine the link state.
4507 	 */
4508 	if (check || bgep->chipid.device == DEVICE_ID_5700) {
4509 		check = bge_phys_check(bgep);
4510 		if (check)
4511 			bge_factotum_link_handler(bgep);
4512 	}
4513 
4514 	return (check);
4515 }
4516 
4517 /*
4518  * Factotum routine to check for Tx stall, using the 'watchdog' counter
4519  */
4520 static boolean_t bge_factotum_stall_check(bge_t *bgep);
4521 #pragma	no_inline(bge_factotum_stall_check)
4522 
4523 static boolean_t
4524 bge_factotum_stall_check(bge_t *bgep)
4525 {
4526 	uint32_t dogval;
4527 
4528 	ASSERT(mutex_owned(bgep->genlock));
4529 
4530 	/*
4531 	 * Specific check for Tx stall ...
4532 	 *
4533 	 * The 'watchdog' counter is incremented whenever a packet
4534 	 * is queued, reset to 1 when some (but not all) buffers
4535 	 * are reclaimed, reset to 0 (disabled) when all buffers
4536 	 * are reclaimed, and shifted left here.  If it exceeds the
4537 	 * threshold value, the chip is assumed to have stalled and
4538 	 * is put into the ERROR state.  The factotum will then reset
4539 	 * it on the next pass.
4540 	 *
4541 	 * All of which should ensure that we don't get into a state
4542 	 * where packets are left pending indefinitely!
4543 	 */
4544 	dogval = bge_atomic_shl32(&bgep->watchdog, 1);
4545 	if (dogval < bge_watchdog_count)
4546 		return (B_FALSE);
4547 
4548 #if !defined(BGE_NETCONSOLE)
4549 	BGE_REPORT((bgep, "Tx stall detected, watchdog code 0x%x", dogval));
4550 #endif
4551 	bge_fm_ereport(bgep, DDI_FM_DEVICE_STALL);
4552 	return (B_TRUE);
4553 }
4554 
4555 /*
4556  * The factotum is woken up when there's something to do that we'd rather
4557  * not do from inside a hardware interrupt handler or high-level cyclic.
4558  * Its two main tasks are:
4559  *	reset & restart the chip after an error
4560  *	check the link status whenever necessary
4561  */
4562 uint_t bge_chip_factotum(caddr_t arg);
4563 #pragma	no_inline(bge_chip_factotum)
4564 
4565 uint_t
4566 bge_chip_factotum(caddr_t arg)
4567 {
4568 	bge_t *bgep;
4569 	uint_t result;
4570 	boolean_t error;
4571 	boolean_t linkchg;
4572 	int dma_state;
4573 
4574 	bgep = (void *)arg;
4575 
4576 	BGE_TRACE(("bge_chip_factotum($%p)", (void *)bgep));
4577 
4578 	mutex_enter(bgep->softintrlock);
4579 	if (bgep->factotum_flag == 0) {
4580 		mutex_exit(bgep->softintrlock);
4581 		return (DDI_INTR_UNCLAIMED);
4582 	}
4583 	bgep->factotum_flag = 0;
4584 	mutex_exit(bgep->softintrlock);
4585 
4586 	result = DDI_INTR_CLAIMED;
4587 	error = B_FALSE;
4588 	linkchg = B_FALSE;
4589 
4590 	mutex_enter(bgep->genlock);
4591 	switch (bgep->bge_chip_state) {
4592 	default:
4593 		break;
4594 
4595 	case BGE_CHIP_RUNNING:
4596 		linkchg = bge_factotum_link_check(bgep, &dma_state);
4597 		error = bge_factotum_stall_check(bgep);
4598 		if (dma_state != DDI_FM_OK) {
4599 			bgep->bge_dma_error = B_TRUE;
4600 			error = B_TRUE;
4601 		}
4602 		if (bge_check_acc_handle(bgep, bgep->io_handle) != DDI_FM_OK)
4603 			error = B_TRUE;
4604 		if (error)
4605 			bgep->bge_chip_state = BGE_CHIP_ERROR;
4606 		break;
4607 
4608 	case BGE_CHIP_ERROR:
4609 		error = B_TRUE;
4610 		break;
4611 
4612 	case BGE_CHIP_FAULT:
4613 		/*
4614 		 * Fault detected, time to reset ...
4615 		 */
4616 		if (bge_autorecover) {
4617 			if (!(bgep->progress & PROGRESS_BUFS)) {
4618 				/*
4619 				 * if we can't allocate the ring buffers,
4620 				 * try later
4621 				 */
4622 				if (bge_alloc_bufs(bgep) != DDI_SUCCESS) {
4623 					mutex_exit(bgep->genlock);
4624 					return (result);
4625 				}
4626 				bgep->progress |= PROGRESS_BUFS;
4627 			}
4628 			if (!(bgep->progress & PROGRESS_INTR)) {
4629 				bge_init_rings(bgep);
4630 				bge_intr_enable(bgep);
4631 				bgep->progress |= PROGRESS_INTR;
4632 			}
4633 			if (!(bgep->progress & PROGRESS_KSTATS)) {
4634 				bge_init_kstats(bgep,
4635 				    ddi_get_instance(bgep->devinfo));
4636 				bgep->progress |= PROGRESS_KSTATS;
4637 			}
4638 
4639 			BGE_REPORT((bgep, "automatic recovery activated"));
4640 
4641 			if (bge_restart(bgep, B_FALSE) != DDI_SUCCESS) {
4642 				bgep->bge_chip_state = BGE_CHIP_ERROR;
4643 				error = B_TRUE;
4644 			}
4645 			if (bge_check_acc_handle(bgep, bgep->cfg_handle) !=
4646 			    DDI_FM_OK) {
4647 				bgep->bge_chip_state = BGE_CHIP_ERROR;
4648 				error = B_TRUE;
4649 			}
4650 			if (bge_check_acc_handle(bgep, bgep->io_handle) !=
4651 			    DDI_FM_OK) {
4652 				bgep->bge_chip_state = BGE_CHIP_ERROR;
4653 				error = B_TRUE;
4654 			}
4655 			if (error == B_FALSE) {
4656 #ifdef BGE_IPMI_ASF
4657 				if (bgep->asf_enabled &&
4658 				    bgep->asf_status != ASF_STAT_RUN) {
4659 					bgep->asf_timeout_id = timeout(
4660 					    bge_asf_heartbeat, (void *)bgep,
4661 					    drv_usectohz(
4662 					    BGE_ASF_HEARTBEAT_INTERVAL));
4663 					bgep->asf_status = ASF_STAT_RUN;
4664 				}
4665 #endif
4666 				if (!bgep->manual_reset) {
4667 					ddi_fm_service_impact(bgep->devinfo,
4668 					    DDI_SERVICE_RESTORED);
4669 				}
4670 			}
4671 		}
4672 		break;
4673 	}
4674 
4675 
4676 	/*
4677 	 * If an error is detected, stop the chip now, marking it as
4678 	 * faulty, so that it will be reset next time through ...
4679 	 *
4680 	 * Note that if intr_running is set, then bge_intr() has dropped
4681 	 * genlock to call bge_receive/bge_recycle. Can't stop the chip at
4682 	 * this point so have to wait until the next time the factotum runs.
4683 	 */
4684 	if (error && !bgep->bge_intr_running) {
4685 #ifdef BGE_IPMI_ASF
4686 		if (bgep->asf_enabled && (bgep->asf_status == ASF_STAT_RUN)) {
4687 			/*
4688 			 * We must stop ASF heart beat before bge_chip_stop(),
4689 			 * otherwise some computers (ex. IBM HS20 blade server)
4690 			 * may crash.
4691 			 */
4692 			bge_asf_update_status(bgep);
4693 			bge_asf_stop_timer(bgep);
4694 			bgep->asf_status = ASF_STAT_STOP;
4695 
4696 			bge_asf_pre_reset_operations(bgep, BGE_INIT_RESET);
4697 			(void) bge_check_acc_handle(bgep, bgep->cfg_handle);
4698 		}
4699 #endif
4700 		bge_chip_stop(bgep, B_TRUE);
4701 		(void) bge_check_acc_handle(bgep, bgep->io_handle);
4702 	}
4703 	mutex_exit(bgep->genlock);
4704 
4705 	/*
4706 	 * If the link state changed, tell the world about it.
4707 	 * Note: can't do this while still holding the mutex.
4708 	 */
4709 	if (bgep->link_update_timer == BGE_LINK_UPDATE_TIMEOUT &&
4710 	    bgep->link_state != LINK_STATE_UNKNOWN)
4711 		linkchg = B_TRUE;
4712 	else if (bgep->link_update_timer < BGE_LINK_UPDATE_TIMEOUT &&
4713 	    bgep->link_state == LINK_STATE_DOWN)
4714 		linkchg = B_FALSE;
4715 
4716 	if (linkchg) {
4717 		mac_link_update(bgep->mh, bgep->link_state);
4718 		bgep->link_update_timer = BGE_LINK_UPDATE_DONE;
4719 	}
4720 	if (bgep->manual_reset) {
4721 		bgep->manual_reset = B_FALSE;
4722 	}
4723 
4724 	return (result);
4725 }
4726 
4727 /*
4728  * High-level cyclic handler
4729  *
4730  * This routine schedules a (low-level) softint callback to the
4731  * factotum, and prods the chip to update the status block (which
4732  * will cause a hardware interrupt when complete).
4733  */
4734 void bge_chip_cyclic(void *arg);
4735 #pragma	no_inline(bge_chip_cyclic)
4736 
4737 void
4738 bge_chip_cyclic(void *arg)
4739 {
4740 	bge_t *bgep;
4741 
4742 	bgep = arg;
4743 
4744 	switch (bgep->bge_chip_state) {
4745 	default:
4746 		return;
4747 
4748 	case BGE_CHIP_RUNNING:
4749 		bge_reg_set32(bgep, HOST_COALESCE_MODE_REG, COALESCE_NOW);
4750 		if (bge_check_acc_handle(bgep, bgep->io_handle) != DDI_FM_OK)
4751 			ddi_fm_service_impact(bgep->devinfo,
4752 			    DDI_SERVICE_UNAFFECTED);
4753 
4754 		if (bgep->link_update_timer < BGE_LINK_UPDATE_TIMEOUT)
4755 			bgep->link_update_timer++;
4756 
4757 		break;
4758 
4759 	case BGE_CHIP_FAULT:
4760 	case BGE_CHIP_ERROR:
4761 		break;
4762 	}
4763 
4764 	bge_wake_factotum(bgep);
4765 }
4766 
4767 
4768 /*
4769  * ========== Ioctl subfunctions ==========
4770  */
4771 
4772 #undef	BGE_DBG
4773 #define	BGE_DBG		BGE_DBG_PPIO	/* debug flag for this code	*/
4774 
4775 #if	BGE_DEBUGGING || BGE_DO_PPIO
4776 
4777 static void bge_chip_peek_cfg(bge_t *bgep, bge_peekpoke_t *ppd);
4778 #pragma	no_inline(bge_chip_peek_cfg)
4779 
4780 static void
4781 bge_chip_peek_cfg(bge_t *bgep, bge_peekpoke_t *ppd)
4782 {
4783 	uint64_t regval;
4784 	uint64_t regno;
4785 
4786 	BGE_TRACE(("bge_chip_peek_cfg($%p, $%p)",
4787 	    (void *)bgep, (void *)ppd));
4788 
4789 	regno = ppd->pp_acc_offset;
4790 
4791 	switch (ppd->pp_acc_size) {
4792 	case 1:
4793 		regval = pci_config_get8(bgep->cfg_handle, regno);
4794 		break;
4795 
4796 	case 2:
4797 		regval = pci_config_get16(bgep->cfg_handle, regno);
4798 		break;
4799 
4800 	case 4:
4801 		regval = pci_config_get32(bgep->cfg_handle, regno);
4802 		break;
4803 
4804 	case 8:
4805 		regval = pci_config_get64(bgep->cfg_handle, regno);
4806 		break;
4807 	}
4808 
4809 	ppd->pp_acc_data = regval;
4810 }
4811 
4812 static void bge_chip_poke_cfg(bge_t *bgep, bge_peekpoke_t *ppd);
4813 #pragma	no_inline(bge_chip_poke_cfg)
4814 
4815 static void
4816 bge_chip_poke_cfg(bge_t *bgep, bge_peekpoke_t *ppd)
4817 {
4818 	uint64_t regval;
4819 	uint64_t regno;
4820 
4821 	BGE_TRACE(("bge_chip_poke_cfg($%p, $%p)",
4822 	    (void *)bgep, (void *)ppd));
4823 
4824 	regno = ppd->pp_acc_offset;
4825 	regval = ppd->pp_acc_data;
4826 
4827 	switch (ppd->pp_acc_size) {
4828 	case 1:
4829 		pci_config_put8(bgep->cfg_handle, regno, regval);
4830 		break;
4831 
4832 	case 2:
4833 		pci_config_put16(bgep->cfg_handle, regno, regval);
4834 		break;
4835 
4836 	case 4:
4837 		pci_config_put32(bgep->cfg_handle, regno, regval);
4838 		break;
4839 
4840 	case 8:
4841 		pci_config_put64(bgep->cfg_handle, regno, regval);
4842 		break;
4843 	}
4844 }
4845 
4846 static void bge_chip_peek_reg(bge_t *bgep, bge_peekpoke_t *ppd);
4847 #pragma	no_inline(bge_chip_peek_reg)
4848 
4849 static void
4850 bge_chip_peek_reg(bge_t *bgep, bge_peekpoke_t *ppd)
4851 {
4852 	uint64_t regval;
4853 	void *regaddr;
4854 
4855 	BGE_TRACE(("bge_chip_peek_reg($%p, $%p)",
4856 	    (void *)bgep, (void *)ppd));
4857 
4858 	regaddr = PIO_ADDR(bgep, ppd->pp_acc_offset);
4859 
4860 	switch (ppd->pp_acc_size) {
4861 	case 1:
4862 		regval = ddi_get8(bgep->io_handle, regaddr);
4863 		break;
4864 
4865 	case 2:
4866 		regval = ddi_get16(bgep->io_handle, regaddr);
4867 		break;
4868 
4869 	case 4:
4870 		regval = ddi_get32(bgep->io_handle, regaddr);
4871 		break;
4872 
4873 	case 8:
4874 		regval = ddi_get64(bgep->io_handle, regaddr);
4875 		break;
4876 	}
4877 
4878 	ppd->pp_acc_data = regval;
4879 }
4880 
4881 static void bge_chip_poke_reg(bge_t *bgep, bge_peekpoke_t *ppd);
4882 #pragma	no_inline(bge_chip_peek_reg)
4883 
4884 static void
4885 bge_chip_poke_reg(bge_t *bgep, bge_peekpoke_t *ppd)
4886 {
4887 	uint64_t regval;
4888 	void *regaddr;
4889 
4890 	BGE_TRACE(("bge_chip_poke_reg($%p, $%p)",
4891 	    (void *)bgep, (void *)ppd));
4892 
4893 	regaddr = PIO_ADDR(bgep, ppd->pp_acc_offset);
4894 	regval = ppd->pp_acc_data;
4895 
4896 	switch (ppd->pp_acc_size) {
4897 	case 1:
4898 		ddi_put8(bgep->io_handle, regaddr, regval);
4899 		break;
4900 
4901 	case 2:
4902 		ddi_put16(bgep->io_handle, regaddr, regval);
4903 		break;
4904 
4905 	case 4:
4906 		ddi_put32(bgep->io_handle, regaddr, regval);
4907 		break;
4908 
4909 	case 8:
4910 		ddi_put64(bgep->io_handle, regaddr, regval);
4911 		break;
4912 	}
4913 	BGE_PCICHK(bgep);
4914 }
4915 
4916 static void bge_chip_peek_nic(bge_t *bgep, bge_peekpoke_t *ppd);
4917 #pragma	no_inline(bge_chip_peek_nic)
4918 
4919 static void
4920 bge_chip_peek_nic(bge_t *bgep, bge_peekpoke_t *ppd)
4921 {
4922 	uint64_t regoff;
4923 	uint64_t regval;
4924 	void *regaddr;
4925 
4926 	BGE_TRACE(("bge_chip_peek_nic($%p, $%p)",
4927 	    (void *)bgep, (void *)ppd));
4928 
4929 	regoff = ppd->pp_acc_offset;
4930 	bge_nic_setwin(bgep, regoff & ~MWBAR_GRANULE_MASK);
4931 	regoff &= MWBAR_GRANULE_MASK;
4932 	regoff += NIC_MEM_WINDOW_OFFSET;
4933 	regaddr = PIO_ADDR(bgep, regoff);
4934 
4935 	switch (ppd->pp_acc_size) {
4936 	case 1:
4937 		regval = ddi_get8(bgep->io_handle, regaddr);
4938 		break;
4939 
4940 	case 2:
4941 		regval = ddi_get16(bgep->io_handle, regaddr);
4942 		break;
4943 
4944 	case 4:
4945 		regval = ddi_get32(bgep->io_handle, regaddr);
4946 		break;
4947 
4948 	case 8:
4949 		regval = ddi_get64(bgep->io_handle, regaddr);
4950 		break;
4951 	}
4952 
4953 	ppd->pp_acc_data = regval;
4954 }
4955 
4956 static void bge_chip_poke_nic(bge_t *bgep, bge_peekpoke_t *ppd);
4957 #pragma	no_inline(bge_chip_poke_nic)
4958 
4959 static void
4960 bge_chip_poke_nic(bge_t *bgep, bge_peekpoke_t *ppd)
4961 {
4962 	uint64_t regoff;
4963 	uint64_t regval;
4964 	void *regaddr;
4965 
4966 	BGE_TRACE(("bge_chip_poke_nic($%p, $%p)",
4967 	    (void *)bgep, (void *)ppd));
4968 
4969 	regoff = ppd->pp_acc_offset;
4970 	bge_nic_setwin(bgep, regoff & ~MWBAR_GRANULE_MASK);
4971 	regoff &= MWBAR_GRANULE_MASK;
4972 	regoff += NIC_MEM_WINDOW_OFFSET;
4973 	regaddr = PIO_ADDR(bgep, regoff);
4974 	regval = ppd->pp_acc_data;
4975 
4976 	switch (ppd->pp_acc_size) {
4977 	case 1:
4978 		ddi_put8(bgep->io_handle, regaddr, regval);
4979 		break;
4980 
4981 	case 2:
4982 		ddi_put16(bgep->io_handle, regaddr, regval);
4983 		break;
4984 
4985 	case 4:
4986 		ddi_put32(bgep->io_handle, regaddr, regval);
4987 		break;
4988 
4989 	case 8:
4990 		ddi_put64(bgep->io_handle, regaddr, regval);
4991 		break;
4992 	}
4993 	BGE_PCICHK(bgep);
4994 }
4995 
4996 static void bge_chip_peek_mii(bge_t *bgep, bge_peekpoke_t *ppd);
4997 #pragma	no_inline(bge_chip_peek_mii)
4998 
4999 static void
5000 bge_chip_peek_mii(bge_t *bgep, bge_peekpoke_t *ppd)
5001 {
5002 	BGE_TRACE(("bge_chip_peek_mii($%p, $%p)",
5003 	    (void *)bgep, (void *)ppd));
5004 
5005 	ppd->pp_acc_data = bge_mii_get16(bgep, ppd->pp_acc_offset/2);
5006 }
5007 
5008 static void bge_chip_poke_mii(bge_t *bgep, bge_peekpoke_t *ppd);
5009 #pragma	no_inline(bge_chip_poke_mii)
5010 
5011 static void
5012 bge_chip_poke_mii(bge_t *bgep, bge_peekpoke_t *ppd)
5013 {
5014 	BGE_TRACE(("bge_chip_poke_mii($%p, $%p)",
5015 	    (void *)bgep, (void *)ppd));
5016 
5017 	bge_mii_put16(bgep, ppd->pp_acc_offset/2, ppd->pp_acc_data);
5018 }
5019 
5020 #if	BGE_SEE_IO32
5021 
5022 static void bge_chip_peek_seeprom(bge_t *bgep, bge_peekpoke_t *ppd);
5023 #pragma	no_inline(bge_chip_peek_seeprom)
5024 
5025 static void
5026 bge_chip_peek_seeprom(bge_t *bgep, bge_peekpoke_t *ppd)
5027 {
5028 	uint32_t data;
5029 	int err;
5030 
5031 	BGE_TRACE(("bge_chip_peek_seeprom($%p, $%p)",
5032 	    (void *)bgep, (void *)ppd));
5033 
5034 	err = bge_nvmem_rw32(bgep, BGE_SEE_READ, ppd->pp_acc_offset, &data);
5035 	ppd->pp_acc_data = err ? ~0ull : data;
5036 }
5037 
5038 static void bge_chip_poke_seeprom(bge_t *bgep, bge_peekpoke_t *ppd);
5039 #pragma	no_inline(bge_chip_poke_seeprom)
5040 
5041 static void
5042 bge_chip_poke_seeprom(bge_t *bgep, bge_peekpoke_t *ppd)
5043 {
5044 	uint32_t data;
5045 
5046 	BGE_TRACE(("bge_chip_poke_seeprom($%p, $%p)",
5047 	    (void *)bgep, (void *)ppd));
5048 
5049 	data = ppd->pp_acc_data;
5050 	(void) bge_nvmem_rw32(bgep, BGE_SEE_WRITE, ppd->pp_acc_offset, &data);
5051 }
5052 #endif	/* BGE_SEE_IO32 */
5053 
5054 #if	BGE_FLASH_IO32
5055 
5056 static void bge_chip_peek_flash(bge_t *bgep, bge_peekpoke_t *ppd);
5057 #pragma	no_inline(bge_chip_peek_flash)
5058 
5059 static void
5060 bge_chip_peek_flash(bge_t *bgep, bge_peekpoke_t *ppd)
5061 {
5062 	uint32_t data;
5063 	int err;
5064 
5065 	BGE_TRACE(("bge_chip_peek_flash($%p, $%p)",
5066 	    (void *)bgep, (void *)ppd));
5067 
5068 	err = bge_nvmem_rw32(bgep, BGE_FLASH_READ, ppd->pp_acc_offset, &data);
5069 	ppd->pp_acc_data = err ? ~0ull : data;
5070 }
5071 
5072 static void bge_chip_poke_flash(bge_t *bgep, bge_peekpoke_t *ppd);
5073 #pragma	no_inline(bge_chip_poke_flash)
5074 
5075 static void
5076 bge_chip_poke_flash(bge_t *bgep, bge_peekpoke_t *ppd)
5077 {
5078 	uint32_t data;
5079 
5080 	BGE_TRACE(("bge_chip_poke_flash($%p, $%p)",
5081 	    (void *)bgep, (void *)ppd));
5082 
5083 	data = ppd->pp_acc_data;
5084 	(void) bge_nvmem_rw32(bgep, BGE_FLASH_WRITE,
5085 	    ppd->pp_acc_offset, &data);
5086 }
5087 #endif	/* BGE_FLASH_IO32 */
5088 
5089 static void bge_chip_peek_mem(bge_t *bgep, bge_peekpoke_t *ppd);
5090 #pragma	no_inline(bge_chip_peek_mem)
5091 
5092 static void
5093 bge_chip_peek_mem(bge_t *bgep, bge_peekpoke_t *ppd)
5094 {
5095 	uint64_t regval;
5096 	void *vaddr;
5097 
5098 	BGE_TRACE(("bge_chip_peek_bge($%p, $%p)",
5099 	    (void *)bgep, (void *)ppd));
5100 
5101 	vaddr = (void *)(uintptr_t)ppd->pp_acc_offset;
5102 
5103 	switch (ppd->pp_acc_size) {
5104 	case 1:
5105 		regval = *(uint8_t *)vaddr;
5106 		break;
5107 
5108 	case 2:
5109 		regval = *(uint16_t *)vaddr;
5110 		break;
5111 
5112 	case 4:
5113 		regval = *(uint32_t *)vaddr;
5114 		break;
5115 
5116 	case 8:
5117 		regval = *(uint64_t *)vaddr;
5118 		break;
5119 	}
5120 
5121 	BGE_DEBUG(("bge_chip_peek_mem($%p, $%p) peeked 0x%llx from $%p",
5122 	    (void *)bgep, (void *)ppd, regval, vaddr));
5123 
5124 	ppd->pp_acc_data = regval;
5125 }
5126 
5127 static void bge_chip_poke_mem(bge_t *bgep, bge_peekpoke_t *ppd);
5128 #pragma	no_inline(bge_chip_poke_mem)
5129 
5130 static void
5131 bge_chip_poke_mem(bge_t *bgep, bge_peekpoke_t *ppd)
5132 {
5133 	uint64_t regval;
5134 	void *vaddr;
5135 
5136 	BGE_TRACE(("bge_chip_poke_mem($%p, $%p)",
5137 	    (void *)bgep, (void *)ppd));
5138 
5139 	vaddr = (void *)(uintptr_t)ppd->pp_acc_offset;
5140 	regval = ppd->pp_acc_data;
5141 
5142 	BGE_DEBUG(("bge_chip_poke_mem($%p, $%p) poking 0x%llx at $%p",
5143 	    (void *)bgep, (void *)ppd, regval, vaddr));
5144 
5145 	switch (ppd->pp_acc_size) {
5146 	case 1:
5147 		*(uint8_t *)vaddr = (uint8_t)regval;
5148 		break;
5149 
5150 	case 2:
5151 		*(uint16_t *)vaddr = (uint16_t)regval;
5152 		break;
5153 
5154 	case 4:
5155 		*(uint32_t *)vaddr = (uint32_t)regval;
5156 		break;
5157 
5158 	case 8:
5159 		*(uint64_t *)vaddr = (uint64_t)regval;
5160 		break;
5161 	}
5162 }
5163 
5164 static enum ioc_reply bge_pp_ioctl(bge_t *bgep, int cmd, mblk_t *mp,
5165 					struct iocblk *iocp);
5166 #pragma	no_inline(bge_pp_ioctl)
5167 
5168 static enum ioc_reply
5169 bge_pp_ioctl(bge_t *bgep, int cmd, mblk_t *mp, struct iocblk *iocp)
5170 {
5171 	void (*ppfn)(bge_t *bgep, bge_peekpoke_t *ppd);
5172 	bge_peekpoke_t *ppd;
5173 	dma_area_t *areap;
5174 	uint64_t sizemask;
5175 	uint64_t mem_va;
5176 	uint64_t maxoff;
5177 	boolean_t peek;
5178 
5179 	switch (cmd) {
5180 	default:
5181 		/* NOTREACHED */
5182 		bge_error(bgep, "bge_pp_ioctl: invalid cmd 0x%x", cmd);
5183 		return (IOC_INVAL);
5184 
5185 	case BGE_PEEK:
5186 		peek = B_TRUE;
5187 		break;
5188 
5189 	case BGE_POKE:
5190 		peek = B_FALSE;
5191 		break;
5192 	}
5193 
5194 	/*
5195 	 * Validate format of ioctl
5196 	 */
5197 	if (iocp->ioc_count != sizeof (bge_peekpoke_t))
5198 		return (IOC_INVAL);
5199 	if (mp->b_cont == NULL)
5200 		return (IOC_INVAL);
5201 	ppd = (void *)mp->b_cont->b_rptr;
5202 
5203 	/*
5204 	 * Validate request parameters
5205 	 */
5206 	switch (ppd->pp_acc_space) {
5207 	default:
5208 		return (IOC_INVAL);
5209 
5210 	case BGE_PP_SPACE_CFG:
5211 		/*
5212 		 * Config space
5213 		 */
5214 		sizemask = 8|4|2|1;
5215 		mem_va = 0;
5216 		maxoff = PCI_CONF_HDR_SIZE;
5217 		ppfn = peek ? bge_chip_peek_cfg : bge_chip_poke_cfg;
5218 		break;
5219 
5220 	case BGE_PP_SPACE_REG:
5221 		/*
5222 		 * Memory-mapped I/O space
5223 		 */
5224 		sizemask = 8|4|2|1;
5225 		mem_va = 0;
5226 		maxoff = RIAAR_REGISTER_MAX;
5227 		ppfn = peek ? bge_chip_peek_reg : bge_chip_poke_reg;
5228 		break;
5229 
5230 	case BGE_PP_SPACE_NIC:
5231 		/*
5232 		 * NIC on-chip memory
5233 		 */
5234 		sizemask = 8|4|2|1;
5235 		mem_va = 0;
5236 		maxoff = MWBAR_ONCHIP_MAX;
5237 		ppfn = peek ? bge_chip_peek_nic : bge_chip_poke_nic;
5238 		break;
5239 
5240 	case BGE_PP_SPACE_MII:
5241 		/*
5242 		 * PHY's MII registers
5243 		 * NB: all PHY registers are two bytes, but the
5244 		 * addresses increment in ones (word addressing).
5245 		 * So we scale the address here, then undo the
5246 		 * transformation inside the peek/poke functions.
5247 		 */
5248 		ppd->pp_acc_offset *= 2;
5249 		sizemask = 2;
5250 		mem_va = 0;
5251 		maxoff = (MII_MAXREG+1)*2;
5252 		ppfn = peek ? bge_chip_peek_mii : bge_chip_poke_mii;
5253 		break;
5254 
5255 #if	BGE_SEE_IO32
5256 	case BGE_PP_SPACE_SEEPROM:
5257 		/*
5258 		 * Attached SEEPROM(s), if any.
5259 		 * NB: we use the high-order bits of the 'address' as
5260 		 * a device select to accommodate multiple SEEPROMS,
5261 		 * If each one is the maximum size (64kbytes), this
5262 		 * makes them appear contiguous.  Otherwise, there may
5263 		 * be holes in the mapping.  ENxS doesn't have any
5264 		 * SEEPROMs anyway ...
5265 		 */
5266 		sizemask = 4;
5267 		mem_va = 0;
5268 		maxoff = SEEPROM_DEV_AND_ADDR_MASK;
5269 		ppfn = peek ? bge_chip_peek_seeprom : bge_chip_poke_seeprom;
5270 		break;
5271 #endif	/* BGE_SEE_IO32 */
5272 
5273 #if	BGE_FLASH_IO32
5274 	case BGE_PP_SPACE_FLASH:
5275 		/*
5276 		 * Attached Flash device (if any); a maximum of one device
5277 		 * is currently supported.  But it can be up to 1MB (unlike
5278 		 * the 64k limit on SEEPROMs) so why would you need more ;-)
5279 		 */
5280 		sizemask = 4;
5281 		mem_va = 0;
5282 		maxoff = NVM_FLASH_ADDR_MASK;
5283 		ppfn = peek ? bge_chip_peek_flash : bge_chip_poke_flash;
5284 		break;
5285 #endif	/* BGE_FLASH_IO32 */
5286 
5287 	case BGE_PP_SPACE_BGE:
5288 		/*
5289 		 * BGE data structure!
5290 		 */
5291 		sizemask = 8|4|2|1;
5292 		mem_va = (uintptr_t)bgep;
5293 		maxoff = sizeof (*bgep);
5294 		ppfn = peek ? bge_chip_peek_mem : bge_chip_poke_mem;
5295 		break;
5296 
5297 	case BGE_PP_SPACE_STATUS:
5298 	case BGE_PP_SPACE_STATISTICS:
5299 	case BGE_PP_SPACE_TXDESC:
5300 	case BGE_PP_SPACE_TXBUFF:
5301 	case BGE_PP_SPACE_RXDESC:
5302 	case BGE_PP_SPACE_RXBUFF:
5303 		/*
5304 		 * Various DMA_AREAs
5305 		 */
5306 		switch (ppd->pp_acc_space) {
5307 		case BGE_PP_SPACE_TXDESC:
5308 			areap = &bgep->tx_desc;
5309 			break;
5310 		case BGE_PP_SPACE_TXBUFF:
5311 			areap = &bgep->tx_buff[0];
5312 			break;
5313 		case BGE_PP_SPACE_RXDESC:
5314 			areap = &bgep->rx_desc[0];
5315 			break;
5316 		case BGE_PP_SPACE_RXBUFF:
5317 			areap = &bgep->rx_buff[0];
5318 			break;
5319 		case BGE_PP_SPACE_STATUS:
5320 			areap = &bgep->status_block;
5321 			break;
5322 		case BGE_PP_SPACE_STATISTICS:
5323 			if (bgep->chipid.statistic_type == BGE_STAT_BLK)
5324 				areap = &bgep->statistics;
5325 			break;
5326 		}
5327 
5328 		sizemask = 8|4|2|1;
5329 		mem_va = (uintptr_t)areap->mem_va;
5330 		maxoff = areap->alength;
5331 		ppfn = peek ? bge_chip_peek_mem : bge_chip_poke_mem;
5332 		break;
5333 	}
5334 
5335 	switch (ppd->pp_acc_size) {
5336 	default:
5337 		return (IOC_INVAL);
5338 
5339 	case 8:
5340 	case 4:
5341 	case 2:
5342 	case 1:
5343 		if ((ppd->pp_acc_size & sizemask) == 0)
5344 			return (IOC_INVAL);
5345 		break;
5346 	}
5347 
5348 	if ((ppd->pp_acc_offset % ppd->pp_acc_size) != 0)
5349 		return (IOC_INVAL);
5350 
5351 	if (ppd->pp_acc_offset >= maxoff)
5352 		return (IOC_INVAL);
5353 
5354 	if (ppd->pp_acc_offset+ppd->pp_acc_size > maxoff)
5355 		return (IOC_INVAL);
5356 
5357 	/*
5358 	 * All OK - go do it!
5359 	 */
5360 	ppd->pp_acc_offset += mem_va;
5361 	(*ppfn)(bgep, ppd);
5362 	return (peek ? IOC_REPLY : IOC_ACK);
5363 }
5364 
5365 static enum ioc_reply bge_diag_ioctl(bge_t *bgep, int cmd, mblk_t *mp,
5366 					struct iocblk *iocp);
5367 #pragma	no_inline(bge_diag_ioctl)
5368 
5369 static enum ioc_reply
5370 bge_diag_ioctl(bge_t *bgep, int cmd, mblk_t *mp, struct iocblk *iocp)
5371 {
5372 	ASSERT(mutex_owned(bgep->genlock));
5373 
5374 	switch (cmd) {
5375 	default:
5376 		/* NOTREACHED */
5377 		bge_error(bgep, "bge_diag_ioctl: invalid cmd 0x%x", cmd);
5378 		return (IOC_INVAL);
5379 
5380 	case BGE_DIAG:
5381 		/*
5382 		 * Currently a no-op
5383 		 */
5384 		return (IOC_ACK);
5385 
5386 	case BGE_PEEK:
5387 	case BGE_POKE:
5388 		return (bge_pp_ioctl(bgep, cmd, mp, iocp));
5389 
5390 	case BGE_PHY_RESET:
5391 		return (IOC_RESTART_ACK);
5392 
5393 	case BGE_SOFT_RESET:
5394 	case BGE_HARD_RESET:
5395 		/*
5396 		 * Reset and reinitialise the 570x hardware
5397 		 */
5398 		bgep->bge_chip_state = BGE_CHIP_FAULT;
5399 		ddi_trigger_softintr(bgep->factotum_id);
5400 		(void) bge_restart(bgep, cmd == BGE_HARD_RESET);
5401 		return (IOC_ACK);
5402 	}
5403 
5404 	/* NOTREACHED */
5405 }
5406 
5407 #endif	/* BGE_DEBUGGING || BGE_DO_PPIO */
5408 
5409 static enum ioc_reply bge_mii_ioctl(bge_t *bgep, int cmd, mblk_t *mp,
5410 				    struct iocblk *iocp);
5411 #pragma	no_inline(bge_mii_ioctl)
5412 
5413 static enum ioc_reply
5414 bge_mii_ioctl(bge_t *bgep, int cmd, mblk_t *mp, struct iocblk *iocp)
5415 {
5416 	struct bge_mii_rw *miirwp;
5417 
5418 	/*
5419 	 * Validate format of ioctl
5420 	 */
5421 	if (iocp->ioc_count != sizeof (struct bge_mii_rw))
5422 		return (IOC_INVAL);
5423 	if (mp->b_cont == NULL)
5424 		return (IOC_INVAL);
5425 	miirwp = (void *)mp->b_cont->b_rptr;
5426 
5427 	/*
5428 	 * Validate request parameters ...
5429 	 */
5430 	if (miirwp->mii_reg > MII_MAXREG)
5431 		return (IOC_INVAL);
5432 
5433 	switch (cmd) {
5434 	default:
5435 		/* NOTREACHED */
5436 		bge_error(bgep, "bge_mii_ioctl: invalid cmd 0x%x", cmd);
5437 		return (IOC_INVAL);
5438 
5439 	case BGE_MII_READ:
5440 		miirwp->mii_data = bge_mii_get16(bgep, miirwp->mii_reg);
5441 		return (IOC_REPLY);
5442 
5443 	case BGE_MII_WRITE:
5444 		bge_mii_put16(bgep, miirwp->mii_reg, miirwp->mii_data);
5445 		return (IOC_ACK);
5446 	}
5447 
5448 	/* NOTREACHED */
5449 }
5450 
5451 #if	BGE_SEE_IO32
5452 
5453 static enum ioc_reply bge_see_ioctl(bge_t *bgep, int cmd, mblk_t *mp,
5454 				    struct iocblk *iocp);
5455 #pragma	no_inline(bge_see_ioctl)
5456 
5457 static enum ioc_reply
5458 bge_see_ioctl(bge_t *bgep, int cmd, mblk_t *mp, struct iocblk *iocp)
5459 {
5460 	struct bge_see_rw *seerwp;
5461 
5462 	/*
5463 	 * Validate format of ioctl
5464 	 */
5465 	if (iocp->ioc_count != sizeof (struct bge_see_rw))
5466 		return (IOC_INVAL);
5467 	if (mp->b_cont == NULL)
5468 		return (IOC_INVAL);
5469 	seerwp = (void *)mp->b_cont->b_rptr;
5470 
5471 	/*
5472 	 * Validate request parameters ...
5473 	 */
5474 	if (seerwp->see_addr & ~SEEPROM_DEV_AND_ADDR_MASK)
5475 		return (IOC_INVAL);
5476 
5477 	switch (cmd) {
5478 	default:
5479 		/* NOTREACHED */
5480 		bge_error(bgep, "bge_see_ioctl: invalid cmd 0x%x", cmd);
5481 		return (IOC_INVAL);
5482 
5483 	case BGE_SEE_READ:
5484 	case BGE_SEE_WRITE:
5485 		iocp->ioc_error = bge_nvmem_rw32(bgep, cmd,
5486 		    seerwp->see_addr, &seerwp->see_data);
5487 		return (IOC_REPLY);
5488 	}
5489 
5490 	/* NOTREACHED */
5491 }
5492 
5493 #endif	/* BGE_SEE_IO32 */
5494 
5495 #if	BGE_FLASH_IO32
5496 
5497 static enum ioc_reply bge_flash_ioctl(bge_t *bgep, int cmd, mblk_t *mp,
5498 				    struct iocblk *iocp);
5499 #pragma	no_inline(bge_flash_ioctl)
5500 
5501 static enum ioc_reply
5502 bge_flash_ioctl(bge_t *bgep, int cmd, mblk_t *mp, struct iocblk *iocp)
5503 {
5504 	struct bge_flash_rw *flashrwp;
5505 
5506 	/*
5507 	 * Validate format of ioctl
5508 	 */
5509 	if (iocp->ioc_count != sizeof (struct bge_flash_rw))
5510 		return (IOC_INVAL);
5511 	if (mp->b_cont == NULL)
5512 		return (IOC_INVAL);
5513 	flashrwp = (void *)mp->b_cont->b_rptr;
5514 
5515 	/*
5516 	 * Validate request parameters ...
5517 	 */
5518 	if (flashrwp->flash_addr & ~NVM_FLASH_ADDR_MASK)
5519 		return (IOC_INVAL);
5520 
5521 	switch (cmd) {
5522 	default:
5523 		/* NOTREACHED */
5524 		bge_error(bgep, "bge_flash_ioctl: invalid cmd 0x%x", cmd);
5525 		return (IOC_INVAL);
5526 
5527 	case BGE_FLASH_READ:
5528 	case BGE_FLASH_WRITE:
5529 		iocp->ioc_error = bge_nvmem_rw32(bgep, cmd,
5530 		    flashrwp->flash_addr, &flashrwp->flash_data);
5531 		return (IOC_REPLY);
5532 	}
5533 
5534 	/* NOTREACHED */
5535 }
5536 
5537 #endif	/* BGE_FLASH_IO32 */
5538 
5539 enum ioc_reply bge_chip_ioctl(bge_t *bgep, queue_t *wq, mblk_t *mp,
5540 				struct iocblk *iocp);
5541 #pragma	no_inline(bge_chip_ioctl)
5542 
5543 enum ioc_reply
5544 bge_chip_ioctl(bge_t *bgep, queue_t *wq, mblk_t *mp, struct iocblk *iocp)
5545 {
5546 	int cmd;
5547 
5548 	BGE_TRACE(("bge_chip_ioctl($%p, $%p, $%p, $%p)",
5549 	    (void *)bgep, (void *)wq, (void *)mp, (void *)iocp));
5550 
5551 	ASSERT(mutex_owned(bgep->genlock));
5552 
5553 	cmd = iocp->ioc_cmd;
5554 	switch (cmd) {
5555 	default:
5556 		/* NOTREACHED */
5557 		bge_error(bgep, "bge_chip_ioctl: invalid cmd 0x%x", cmd);
5558 		return (IOC_INVAL);
5559 
5560 	case BGE_DIAG:
5561 	case BGE_PEEK:
5562 	case BGE_POKE:
5563 	case BGE_PHY_RESET:
5564 	case BGE_SOFT_RESET:
5565 	case BGE_HARD_RESET:
5566 #if	BGE_DEBUGGING || BGE_DO_PPIO
5567 		return (bge_diag_ioctl(bgep, cmd, mp, iocp));
5568 #else
5569 		return (IOC_INVAL);
5570 #endif	/* BGE_DEBUGGING || BGE_DO_PPIO */
5571 
5572 	case BGE_MII_READ:
5573 	case BGE_MII_WRITE:
5574 		return (bge_mii_ioctl(bgep, cmd, mp, iocp));
5575 
5576 #if	BGE_SEE_IO32
5577 	case BGE_SEE_READ:
5578 	case BGE_SEE_WRITE:
5579 		return (bge_see_ioctl(bgep, cmd, mp, iocp));
5580 #endif	/* BGE_SEE_IO32 */
5581 
5582 #if	BGE_FLASH_IO32
5583 	case BGE_FLASH_READ:
5584 	case BGE_FLASH_WRITE:
5585 		return (bge_flash_ioctl(bgep, cmd, mp, iocp));
5586 #endif	/* BGE_FLASH_IO32 */
5587 	}
5588 
5589 	/* NOTREACHED */
5590 }
5591 
5592 /* ARGSUSED */
5593 void
5594 bge_chip_blank(void *arg, time_t ticks, uint_t count, int flag)
5595 {
5596 	recv_ring_t *rrp = arg;
5597 	bge_t *bgep = rrp->bgep;
5598 
5599 	mutex_enter(bgep->genlock);
5600 	rrp->poll_flag = flag;
5601 #ifdef NOT_YET
5602 	/*
5603 	 * XXX-Sunay: Since most broadcom cards support only one
5604 	 * interrupt but multiple rx rings, we can't disable the
5605 	 * physical interrupt. This need to be done via capability
5606 	 * negotiation depending on the NIC.
5607 	 */
5608 	bge_reg_put32(bgep, RCV_COALESCE_TICKS_REG, ticks);
5609 	bge_reg_put32(bgep, RCV_COALESCE_MAX_BD_REG, count);
5610 #endif
5611 	if (bge_check_acc_handle(bgep, bgep->io_handle) != DDI_FM_OK)
5612 		ddi_fm_service_impact(bgep->devinfo, DDI_SERVICE_UNAFFECTED);
5613 	mutex_exit(bgep->genlock);
5614 }
5615 
5616 #ifdef BGE_IPMI_ASF
5617 
5618 uint32_t
5619 bge_nic_read32(bge_t *bgep, bge_regno_t addr)
5620 {
5621 	uint32_t data;
5622 
5623 #ifndef __sparc
5624 	if (!bgep->asf_wordswapped) {
5625 		/* a workaround word swap error */
5626 		if (addr & 4)
5627 			addr = addr - 4;
5628 		else
5629 			addr = addr + 4;
5630 	}
5631 #endif
5632 
5633 	pci_config_put32(bgep->cfg_handle, PCI_CONF_BGE_MWBAR, addr);
5634 	data = pci_config_get32(bgep->cfg_handle, PCI_CONF_BGE_MWDAR);
5635 	pci_config_put32(bgep->cfg_handle, PCI_CONF_BGE_MWBAR, 0);
5636 
5637 	data = LE_32(data);
5638 	return (data);
5639 }
5640 
5641 void
5642 bge_asf_update_status(bge_t *bgep)
5643 {
5644 	uint32_t event;
5645 
5646 	bge_nic_put32(bgep, BGE_CMD_MAILBOX, BGE_CMD_NICDRV_ALIVE);
5647 	bge_nic_put32(bgep, BGE_CMD_LENGTH_MAILBOX, 4);
5648 	bge_nic_put32(bgep, BGE_CMD_DATA_MAILBOX,   3);
5649 
5650 	event = bge_reg_get32(bgep, RX_RISC_EVENT_REG);
5651 	bge_reg_put32(bgep, RX_RISC_EVENT_REG, event | RRER_ASF_EVENT);
5652 }
5653 
5654 
5655 /*
5656  * The driver is supposed to notify ASF that the OS is still running
5657  * every three seconds, otherwise the management server may attempt
5658  * to reboot the machine.  If it hasn't actually failed, this is
5659  * not a desirable result.  However, this isn't running as a real-time
5660  * thread, and even if it were, it might not be able to generate the
5661  * heartbeat in a timely manner due to system load.  As it isn't a
5662  * significant strain on the machine, we will set the interval to half
5663  * of the required value.
5664  */
5665 void
5666 bge_asf_heartbeat(void *arg)
5667 {
5668 	bge_t *bgep = (bge_t *)arg;
5669 
5670 	mutex_enter(bgep->genlock);
5671 	bge_asf_update_status((bge_t *)bgep);
5672 	if (bge_check_acc_handle(bgep, bgep->io_handle) != DDI_FM_OK)
5673 		ddi_fm_service_impact(bgep->devinfo, DDI_SERVICE_DEGRADED);
5674 	if (bge_check_acc_handle(bgep, bgep->cfg_handle) != DDI_FM_OK)
5675 		ddi_fm_service_impact(bgep->devinfo, DDI_SERVICE_DEGRADED);
5676 	mutex_exit(bgep->genlock);
5677 	((bge_t *)bgep)->asf_timeout_id = timeout(bge_asf_heartbeat, bgep,
5678 	    drv_usectohz(BGE_ASF_HEARTBEAT_INTERVAL));
5679 }
5680 
5681 
5682 void
5683 bge_asf_stop_timer(bge_t *bgep)
5684 {
5685 	timeout_id_t tmp_id = 0;
5686 
5687 	while ((bgep->asf_timeout_id != 0) &&
5688 	    (tmp_id != bgep->asf_timeout_id)) {
5689 		tmp_id = bgep->asf_timeout_id;
5690 		(void) untimeout(tmp_id);
5691 	}
5692 	bgep->asf_timeout_id = 0;
5693 }
5694 
5695 
5696 
5697 /*
5698  * This function should be placed at the earliest position of bge_attach().
5699  */
5700 void
5701 bge_asf_get_config(bge_t *bgep)
5702 {
5703 	uint32_t nicsig;
5704 	uint32_t niccfg;
5705 
5706 	bgep->asf_enabled = B_FALSE;
5707 	nicsig = bge_nic_read32(bgep, BGE_NIC_DATA_SIG_ADDR);
5708 	if (nicsig == BGE_NIC_DATA_SIG) {
5709 		niccfg = bge_nic_read32(bgep, BGE_NIC_DATA_NIC_CFG_ADDR);
5710 		if (niccfg & BGE_NIC_CFG_ENABLE_ASF)
5711 			/*
5712 			 * Here, we don't consider BAXTER, because BGE haven't
5713 			 * supported BAXTER (that is 5752). Also, as I know,
5714 			 * BAXTER doesn't support ASF feature.
5715 			 */
5716 			bgep->asf_enabled = B_TRUE;
5717 		else
5718 			bgep->asf_enabled = B_FALSE;
5719 	} else
5720 		bgep->asf_enabled = B_FALSE;
5721 }
5722 
5723 
5724 void
5725 bge_asf_pre_reset_operations(bge_t *bgep, uint32_t mode)
5726 {
5727 	uint32_t tries;
5728 	uint32_t event;
5729 
5730 	ASSERT(bgep->asf_enabled);
5731 
5732 	/* Issues "pause firmware" command and wait for ACK */
5733 	bge_nic_put32(bgep, BGE_CMD_MAILBOX, BGE_CMD_NICDRV_PAUSE_FW);
5734 	event = bge_reg_get32(bgep, RX_RISC_EVENT_REG);
5735 	bge_reg_put32(bgep, RX_RISC_EVENT_REG, event | RRER_ASF_EVENT);
5736 
5737 	event = bge_reg_get32(bgep, RX_RISC_EVENT_REG);
5738 	tries = 0;
5739 	while ((event & RRER_ASF_EVENT) && (tries < 100)) {
5740 		drv_usecwait(1);
5741 		tries ++;
5742 		event = bge_reg_get32(bgep, RX_RISC_EVENT_REG);
5743 	}
5744 
5745 	bge_nic_put32(bgep, BGE_FIRMWARE_MAILBOX,
5746 	    BGE_MAGIC_NUM_FIRMWARE_INIT_DONE);
5747 
5748 	if (bgep->asf_newhandshake) {
5749 		switch (mode) {
5750 		case BGE_INIT_RESET:
5751 			bge_nic_put32(bgep, BGE_DRV_STATE_MAILBOX,
5752 			    BGE_DRV_STATE_START);
5753 			break;
5754 		case BGE_SHUTDOWN_RESET:
5755 			bge_nic_put32(bgep, BGE_DRV_STATE_MAILBOX,
5756 			    BGE_DRV_STATE_UNLOAD);
5757 			break;
5758 		case BGE_SUSPEND_RESET:
5759 			bge_nic_put32(bgep, BGE_DRV_STATE_MAILBOX,
5760 			    BGE_DRV_STATE_SUSPEND);
5761 			break;
5762 		default:
5763 			break;
5764 		}
5765 	}
5766 }
5767 
5768 
5769 void
5770 bge_asf_post_reset_old_mode(bge_t *bgep, uint32_t mode)
5771 {
5772 	switch (mode) {
5773 	case BGE_INIT_RESET:
5774 		bge_nic_put32(bgep, BGE_DRV_STATE_MAILBOX,
5775 		    BGE_DRV_STATE_START);
5776 		break;
5777 	case BGE_SHUTDOWN_RESET:
5778 		bge_nic_put32(bgep, BGE_DRV_STATE_MAILBOX,
5779 		    BGE_DRV_STATE_UNLOAD);
5780 		break;
5781 	case BGE_SUSPEND_RESET:
5782 		bge_nic_put32(bgep, BGE_DRV_STATE_MAILBOX,
5783 		    BGE_DRV_STATE_SUSPEND);
5784 		break;
5785 	default:
5786 		break;
5787 	}
5788 }
5789 
5790 
5791 void
5792 bge_asf_post_reset_new_mode(bge_t *bgep, uint32_t mode)
5793 {
5794 	switch (mode) {
5795 	case BGE_INIT_RESET:
5796 		bge_nic_put32(bgep, BGE_DRV_STATE_MAILBOX,
5797 		    BGE_DRV_STATE_START_DONE);
5798 		break;
5799 	case BGE_SHUTDOWN_RESET:
5800 		bge_nic_put32(bgep, BGE_DRV_STATE_MAILBOX,
5801 		    BGE_DRV_STATE_UNLOAD_DONE);
5802 		break;
5803 	default:
5804 		break;
5805 	}
5806 }
5807 
5808 #endif /* BGE_IPMI_ASF */
5809