xref: /illumos-gate/usr/src/uts/common/io/bge/bge_chip2.c (revision ddb365bfc9e868ad24ccdcb0dc91af18b10df082)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 
22 /*
23  * Copyright (c) 2010-2013, by Broadcom, Inc.
24  * All Rights Reserved.
25  */
26 
27 /*
28  * Copyright (c) 2002, 2010, Oracle and/or its affiliates.
29  * All rights reserved.
30  * Copyright 2016 Nexenta Systems, Inc.  All rights reserved.
31  */
32 
33 #include "bge_impl.h"
34 
35 #define	PIO_ADDR(bgep, offset)	((void *)((caddr_t)(bgep)->io_regs+(offset)))
36 #define	APE_ADDR(bgep, offset)	((void *)((caddr_t)(bgep)->ape_regs+(offset)))
37 
38 /*
39  * Future features ... ?
40  */
41 #define	BGE_CFG_IO8	1	/* 8/16-bit cfg space BIS/BIC	*/
42 #define	BGE_IND_IO32	1	/* indirect access code		*/
43 #define	BGE_SEE_IO32	1	/* SEEPROM access code		*/
44 #define	BGE_FLASH_IO32	1	/* FLASH access code		*/
45 
46 /*
47  * BGE MSI tunable:
48  *
49  * By default MSI is enabled on all supported platforms but it is disabled
50  * for some Broadcom chips due to known MSI hardware issues. Currently MSI
51  * is enabled only for 5714C A2 and 5715C A2 broadcom chips.
52  */
53 boolean_t bge_enable_msi = B_TRUE;
54 
55 /*
56  * PCI-X/PCI-E relaxed ordering tunable for OS/Nexus driver
57  */
58 boolean_t bge_relaxed_ordering = B_TRUE;
59 
60 /*
61  * Patchable globals:
62  *
63  *	bge_autorecover
64  *		Enables/disables automatic recovery after fault detection
65  *
66  *	bge_mlcr_default
67  *		Value to program into the MLCR; controls the chip's GPIO pins
68  *
69  *	bge_dma_{rd,wr}prio
70  *		Relative priorities of DMA reads & DMA writes respectively.
71  *		These may each be patched to any value 0-3.  Equal values
72  *		will give "fair" (round-robin) arbitration for PCI access.
73  *		Unequal values will give one or the other function priority.
74  *
75  *	bge_dma_rwctrl
76  *		Value to put in the Read/Write DMA control register.  See
77  *	        the Broadcom PRM for things you can fiddle with in this
78  *		register ...
79  *
80  *	bge_{tx,rx}_{count,ticks}_{norm,intr}
81  *		Send/receive interrupt coalescing parameters.  Counts are
82  *		#s of descriptors, ticks are in microseconds.  *norm* values
83  *		apply between status updates/interrupts; the *intr* values
84  *		refer to the 'during-interrupt' versions - see the PRM.
85  *
86  *		NOTE: these values have been determined by measurement. They
87  *		differ significantly from the values recommended in the PRM.
88  */
89 static uint32_t bge_autorecover = 1;
90 static uint32_t bge_mlcr_default_5714 = MLCR_DEFAULT_5714;
91 
92 static uint32_t bge_dma_rdprio = 1;
93 static uint32_t bge_dma_wrprio = 0;
94 static uint32_t bge_dma_rwctrl = PDRWCR_VAR_DEFAULT;
95 static uint32_t bge_dma_rwctrl_5721 = PDRWCR_VAR_5721;
96 static uint32_t bge_dma_rwctrl_5714 = PDRWCR_VAR_5714;
97 static uint32_t bge_dma_rwctrl_5715 = PDRWCR_VAR_5715;
98 
99 uint32_t bge_rx_ticks_norm = 128;
100 uint32_t bge_tx_ticks_norm = 512;
101 uint32_t bge_rx_count_norm = 8;
102 uint32_t bge_tx_count_norm = 128;
103 
104 static uint32_t bge_rx_ticks_intr = 128;
105 static uint32_t bge_tx_ticks_intr = 0;		/* 8 for FJ2+ !?!?	*/
106 static uint32_t bge_rx_count_intr = 2;
107 static uint32_t bge_tx_count_intr = 0;
108 
109 /*
110  * Memory pool configuration parameters.
111  *
112  * These are generally specific to each member of the chip family, since
113  * each one may have a different memory size/configuration.
114  *
115  * Setting the mbuf pool length for a specific type of chip to 0 inhibits
116  * the driver from programming the various registers; instead they are left
117  * at their hardware defaults.  This is the preferred option for later chips
118  * (5705+), whereas the older chips *required* these registers to be set,
119  * since the h/w default was 0 ;-(
120  */
121 static uint32_t bge_mbuf_pool_base	= MBUF_POOL_BASE_DEFAULT;
122 static uint32_t bge_mbuf_pool_base_5704	= MBUF_POOL_BASE_5704;
123 static uint32_t bge_mbuf_pool_base_5705	= MBUF_POOL_BASE_5705;
124 static uint32_t bge_mbuf_pool_base_5721 = MBUF_POOL_BASE_5721;
125 static uint32_t bge_mbuf_pool_len	= MBUF_POOL_LENGTH_DEFAULT;
126 static uint32_t bge_mbuf_pool_len_5704	= MBUF_POOL_LENGTH_5704;
127 static uint32_t bge_mbuf_pool_len_5705	= 0;	/* use h/w default	*/
128 static uint32_t bge_mbuf_pool_len_5721	= 0;
129 
130 /*
131  * Various high and low water marks, thresholds, etc ...
132  *
133  * Note: these are taken from revision 7 of the PRM, and some are different
134  * from both the values in earlier PRMs *and* those determined experimentally
135  * and used in earlier versions of this driver ...
136  */
137 static uint32_t bge_mbuf_hi_water	= MBUF_HIWAT_DEFAULT;
138 static uint32_t bge_mbuf_lo_water_rmac	= MAC_RX_MBUF_LOWAT_DEFAULT;
139 static uint32_t bge_mbuf_lo_water_rdma	= RDMA_MBUF_LOWAT_DEFAULT;
140 
141 static uint32_t bge_dmad_lo_water	= DMAD_POOL_LOWAT_DEFAULT;
142 static uint32_t bge_dmad_hi_water	= DMAD_POOL_HIWAT_DEFAULT;
143 static uint32_t bge_lowat_recv_frames	= LOWAT_MAX_RECV_FRAMES_DEFAULT;
144 
145 static uint32_t bge_replenish_std	= STD_RCV_BD_REPLENISH_DEFAULT;
146 static uint32_t bge_replenish_mini	= MINI_RCV_BD_REPLENISH_DEFAULT;
147 static uint32_t bge_replenish_jumbo	= JUMBO_RCV_BD_REPLENISH_DEFAULT;
148 
149 static uint32_t	bge_watchdog_count	= 1 << 16;
150 static uint16_t bge_dma_miss_limit	= 20;
151 
152 static uint32_t bge_stop_start_on_sync	= 0;
153 
154 /*
155  * bge_intr_max_loop controls the maximum loop number within bge_intr.
156  * When loading NIC with heavy network traffic, it is useful.
157  * Increasing this value could have positive effect to throughput,
158  * but it might also increase ticks of a bge ISR stick on CPU, which might
159  * lead to bad UI interactive experience. So tune this with caution.
160  */
161 static int bge_intr_max_loop = 1;
162 
163 /*
164  * ========== Low-level chip & ring buffer manipulation ==========
165  */
166 
167 #define	BGE_DBG		BGE_DBG_REGS	/* debug flag for this code	*/
168 
169 
170 /*
171  * Config space read-modify-write routines
172  */
173 
174 #if	BGE_CFG_IO8
175 
176 static void bge_cfg_clr16(bge_t *bgep, bge_regno_t regno, uint16_t bits);
177 #pragma	inline(bge_cfg_clr16)
178 
179 static void
180 bge_cfg_clr16(bge_t *bgep, bge_regno_t regno, uint16_t bits)
181 {
182 	uint16_t regval;
183 
184 	BGE_TRACE(("bge_cfg_clr16($%p, 0x%lx, 0x%x)",
185 	    (void *)bgep, regno, bits));
186 
187 	regval = pci_config_get16(bgep->cfg_handle, regno);
188 
189 	BGE_DEBUG(("bge_cfg_clr16($%p, 0x%lx, 0x%x): 0x%x => 0x%x",
190 	    (void *)bgep, regno, bits, regval, regval & ~bits));
191 
192 	regval &= ~bits;
193 	pci_config_put16(bgep->cfg_handle, regno, regval);
194 }
195 
196 #endif	/* BGE_CFG_IO8 */
197 
198 static void bge_cfg_clr32(bge_t *bgep, bge_regno_t regno, uint32_t bits);
199 #pragma	inline(bge_cfg_clr32)
200 
201 static void
202 bge_cfg_clr32(bge_t *bgep, bge_regno_t regno, uint32_t bits)
203 {
204 	uint32_t regval;
205 
206 	BGE_TRACE(("bge_cfg_clr32($%p, 0x%lx, 0x%x)",
207 	    (void *)bgep, regno, bits));
208 
209 	regval = pci_config_get32(bgep->cfg_handle, regno);
210 
211 	BGE_DEBUG(("bge_cfg_clr32($%p, 0x%lx, 0x%x): 0x%x => 0x%x",
212 	    (void *)bgep, regno, bits, regval, regval & ~bits));
213 
214 	regval &= ~bits;
215 	pci_config_put32(bgep->cfg_handle, regno, regval);
216 }
217 
218 #if	BGE_IND_IO32
219 
220 /*
221  * Indirect access to registers & RISC scratchpads, using config space
222  * accesses only.
223  *
224  * This isn't currently used, but someday we might want to use it for
225  * restoring the Subsystem Device/Vendor registers (which aren't directly
226  * writable in Config Space), or for downloading firmware into the RISCs
227  *
228  * In any case there are endian issues to be resolved before this code is
229  * enabled; the bizarre way that bytes get twisted by this chip AND by
230  * the PCI bridge in SPARC systems mean that we shouldn't enable it until
231  * it's been thoroughly tested for all access sizes on all supported
232  * architectures (SPARC *and* x86!).
233  */
234 uint32_t bge_ind_get32(bge_t *bgep, bge_regno_t regno);
235 #pragma	inline(bge_ind_get32)
236 
237 uint32_t
238 bge_ind_get32(bge_t *bgep, bge_regno_t regno)
239 {
240 	uint32_t val;
241 
242 	BGE_TRACE(("bge_ind_get32($%p, 0x%lx)", (void *)bgep, regno));
243 
244 #ifdef __sparc
245 	if (DEVICE_5717_SERIES_CHIPSETS(bgep) ||
246 	    DEVICE_5725_SERIES_CHIPSETS(bgep) ||
247 	    DEVICE_57765_SERIES_CHIPSETS(bgep)) {
248 		regno = LE_32(regno);
249 	}
250 #endif
251 	pci_config_put32(bgep->cfg_handle, PCI_CONF_BGE_RIAAR, regno);
252 	val = pci_config_get32(bgep->cfg_handle, PCI_CONF_BGE_RIADR);
253 
254 	BGE_DEBUG(("bge_ind_get32($%p, 0x%lx) => 0x%x",
255 	    (void *)bgep, regno, val));
256 
257 	val = LE_32(val);
258 
259 	return (val);
260 }
261 
262 void bge_ind_put32(bge_t *bgep, bge_regno_t regno, uint32_t val);
263 #pragma	inline(bge_ind_put32)
264 
265 void
266 bge_ind_put32(bge_t *bgep, bge_regno_t regno, uint32_t val)
267 {
268 	BGE_TRACE(("bge_ind_put32($%p, 0x%lx, 0x%x)",
269 	    (void *)bgep, regno, val));
270 
271 	val = LE_32(val);
272 #ifdef __sparc
273 	if (DEVICE_5717_SERIES_CHIPSETS(bgep) ||
274 	    DEVICE_5725_SERIES_CHIPSETS(bgep) ||
275 	    DEVICE_57765_SERIES_CHIPSETS(bgep)) {
276 		regno = LE_32(regno);
277 	}
278 #endif
279 	pci_config_put32(bgep->cfg_handle, PCI_CONF_BGE_RIAAR, regno);
280 	pci_config_put32(bgep->cfg_handle, PCI_CONF_BGE_RIADR, val);
281 }
282 
283 #endif	/* BGE_IND_IO32 */
284 
285 #if	BGE_DEBUGGING
286 
287 static void bge_pci_check(bge_t *bgep);
288 #pragma	no_inline(bge_pci_check)
289 
290 static void
291 bge_pci_check(bge_t *bgep)
292 {
293 	uint16_t pcistatus;
294 
295 	pcistatus = pci_config_get16(bgep->cfg_handle, PCI_CONF_STAT);
296 	if ((pcistatus & (PCI_STAT_R_MAST_AB | PCI_STAT_R_TARG_AB)) != 0)
297 		BGE_DEBUG(("bge_pci_check($%p): PCI status 0x%x",
298 		    (void *)bgep, pcistatus));
299 }
300 
301 #endif	/* BGE_DEBUGGING */
302 
303 /*
304  * Perform first-stage chip (re-)initialisation, using only config-space
305  * accesses:
306  *
307  * + Read the vendor/device/revision/subsystem/cache-line-size registers,
308  *   returning the data in the structure pointed to by <idp>.
309  * + Configure the target-mode endianness (swap) options.
310  * + Disable interrupts and enable Memory Space accesses.
311  * + Enable or disable Bus Mastering according to the <enable_dma> flag.
312  *
313  * This sequence is adapted from Broadcom document 570X-PG102-R,
314  * page 102, steps 1-3, 6-8 and 11-13.  The omitted parts of the sequence
315  * are 4 and 5 (Reset Core and wait) which are handled elsewhere.
316  *
317  * This function MUST be called before any non-config-space accesses
318  * are made; on this first call <enable_dma> is B_FALSE, and it
319  * effectively performs steps 3-1(!) of the initialisation sequence
320  * (the rest are not required but should be harmless).
321  *
322  * It MUST also be called after a chip reset, as this disables
323  * Memory Space cycles!  In this case, <enable_dma> is B_TRUE, and
324  * it is effectively performing steps 6-8.
325  */
326 void bge_chip_cfg_init(bge_t *bgep, chip_id_t *cidp, boolean_t enable_dma);
327 #pragma	no_inline(bge_chip_cfg_init)
328 
329 void
330 bge_chip_cfg_init(bge_t *bgep, chip_id_t *cidp, boolean_t enable_dma)
331 {
332 	ddi_acc_handle_t handle;
333 	uint16_t command;
334 	uint32_t mhcr;
335 	uint32_t prodid;
336 	uint32_t pci_state;
337 	uint16_t value16;
338 	int i;
339 
340 	BGE_TRACE(("bge_chip_cfg_init($%p, $%p, %d)",
341 	    (void *)bgep, (void *)cidp, enable_dma));
342 
343 	/*
344 	 * Step 3: save PCI cache line size and subsystem vendor ID
345 	 *
346 	 * Read all the config-space registers that characterise the
347 	 * chip, specifically vendor/device/revision/subsystem vendor
348 	 * and subsystem device id.  We expect (but don't check) that
349 	 * (vendor == VENDOR_ID_BROADCOM) && (device == DEVICE_ID_5704)
350 	 *
351 	 * Also save all bus-transaction related registers (cache-line
352 	 * size, bus-grant/latency parameters, etc).  Some of these are
353 	 * cleared by reset, so we'll have to restore them later.  This
354 	 * comes from the Broadcom document 570X-PG102-R ...
355 	 *
356 	 * Note: Broadcom document 570X-PG102-R seems to be in error
357 	 * here w.r.t. the offsets of the Subsystem Vendor ID and
358 	 * Subsystem (Device) ID registers, which are the opposite way
359 	 * round according to the PCI standard.  For good measure, we
360 	 * save/restore both anyway.
361 	 */
362 	handle = bgep->cfg_handle;
363 
364 	/*
365 	 * For some chipsets (e.g., BCM5718), if MHCR_ENABLE_ENDIAN_BYTE_SWAP
366 	 * has been set in PCI_CONF_COMM already, we need to write the
367 	 * byte-swapped value to it. So we just write zero first for simplicity.
368 	 */
369 	cidp->device = pci_config_get16(handle, PCI_CONF_DEVID);
370 	if (DEVICE_5717_SERIES_CHIPSETS(bgep) ||
371 	    DEVICE_5725_SERIES_CHIPSETS(bgep) ||
372 	    DEVICE_57765_SERIES_CHIPSETS(bgep)) {
373 		pci_config_put32(handle, PCI_CONF_BGE_MHCR, 0);
374 	}
375 
376 	mhcr = pci_config_get32(handle, PCI_CONF_BGE_MHCR);
377 	cidp->asic_rev = (mhcr & MHCR_CHIP_REV_MASK);
378 	cidp->asic_rev_prod_id = 0;
379 	if ((cidp->asic_rev & 0xf0000000) == CHIP_ASIC_REV_USE_PROD_ID_REG) {
380 		prodid = CHIP_ASIC_REV_PROD_ID_REG;
381 		if (DEVICE_5717_SERIES_CHIPSETS(bgep) ||
382 		    DEVICE_5725_SERIES_CHIPSETS(bgep)) {
383 			prodid = CHIP_ASIC_REV_PROD_ID_GEN2_REG;
384 		} else if (DEVICE_57765_SERIES_CHIPSETS(bgep)) {
385 			prodid = CHIP_ASIC_REV_PROD_ID_GEN15_REG;
386 		}
387 		cidp->asic_rev_prod_id = pci_config_get32(handle, prodid);
388 	}
389 
390 	cidp->businfo = pci_config_get32(handle, PCI_CONF_BGE_PCISTATE);
391 	cidp->command = pci_config_get16(handle, PCI_CONF_COMM);
392 
393 	cidp->vendor = pci_config_get16(handle, PCI_CONF_VENID);
394 	cidp->subven = pci_config_get16(handle, PCI_CONF_SUBVENID);
395 	cidp->subdev = pci_config_get16(handle, PCI_CONF_SUBSYSID);
396 	cidp->revision = pci_config_get8(handle, PCI_CONF_REVID);
397 	cidp->clsize = pci_config_get8(handle, PCI_CONF_CACHE_LINESZ);
398 	cidp->latency = pci_config_get8(handle, PCI_CONF_LATENCY_TIMER);
399 
400 	/* 5717 C0 is treated just like 5720 A0 */
401 	if (pci_config_get16(bgep->cfg_handle, PCI_CONF_DEVID) ==
402 	    DEVICE_ID_5717_C0) {
403 		cidp->device = DEVICE_ID_5720;
404 	}
405 
406 	BGE_DEBUG(("bge_chip_cfg_init: %s bus is %s and %s; #INTA is %s",
407 	    cidp->businfo & PCISTATE_BUS_IS_PCI ? "PCI" : "PCI-X",
408 	    cidp->businfo & PCISTATE_BUS_IS_FAST ? "fast" : "slow",
409 	    cidp->businfo & PCISTATE_BUS_IS_32_BIT ? "narrow" : "wide",
410 	    cidp->businfo & PCISTATE_INTA_STATE ? "high" : "low"));
411 	BGE_DEBUG(("bge_chip_cfg_init: vendor 0x%x device 0x%x revision 0x%x",
412 	    cidp->vendor, cidp->device, cidp->revision));
413 	BGE_DEBUG(("bge_chip_cfg_init: subven 0x%x subdev 0x%x asic_rev 0x%x",
414 	    cidp->subven, cidp->subdev, cidp->asic_rev));
415 	BGE_DEBUG(("bge_chip_cfg_init: clsize %d latency %d command 0x%x",
416 	    cidp->clsize, cidp->latency, cidp->command));
417 
418 	/*
419 	 * Step 2 (also step 6): disable and clear interrupts.
420 	 * Steps 11-13: configure PIO endianness options, and enable
421 	 * indirect register access.  We'll also select any other
422 	 * options controlled by the MHCR (e.g. tagged status, mask
423 	 * interrupt mode) at this stage ...
424 	 *
425 	 * Note: internally, the chip is 64-bit and BIG-endian, but
426 	 * since it talks to the host over a (LITTLE-endian) PCI bus,
427 	 * it normally swaps bytes around at the PCI interface.
428 	 * However, the PCI host bridge on SPARC systems normally
429 	 * swaps the byte lanes around too, since SPARCs are also
430 	 * BIG-endian.  So it turns out that on SPARC, the right
431 	 * option is to tell the chip to swap (and the host bridge
432 	 * will swap back again), whereas on x86 we ask the chip
433 	 * NOT to swap, so the natural little-endianness of the
434 	 * PCI bus is assumed.  Then the only thing that doesn't
435 	 * automatically work right is access to an 8-byte register
436 	 * by a little-endian host; but we don't want to set the
437 	 * MHCR_ENABLE_REGISTER_WORD_SWAP bit because then 4-byte
438 	 * accesses don't go where expected ;-(  So we live with
439 	 * that, and perform word-swaps in software in the few cases
440 	 * where a chip register is defined as an 8-byte value --
441 	 * see the code below for details ...
442 	 *
443 	 * Note: the meaning of the 'MASK_INTERRUPT_MODE' bit isn't
444 	 * very clear in the register description in the PRM, but
445 	 * Broadcom document 570X-PG104-R page 248 explains a little
446 	 * more (under "Broadcom Mask Mode").  The bit changes the way
447 	 * the MASK_PCI_INT_OUTPUT bit works: with MASK_INTERRUPT_MODE
448 	 * clear, the chip interprets MASK_PCI_INT_OUTPUT in the same
449 	 * way as the 5700 did, which isn't very convenient.  Setting
450 	 * the MASK_INTERRUPT_MODE bit makes the MASK_PCI_INT_OUTPUT
451 	 * bit do just what its name says -- MASK the PCI #INTA output
452 	 * (i.e. deassert the signal at the pin) leaving all internal
453 	 * state unchanged.  This is much more convenient for our
454 	 * interrupt handler, so we set MASK_INTERRUPT_MODE here.
455 	 *
456 	 * Note: the inconvenient semantics of the interrupt mailbox
457 	 * (nonzero disables and acknowledges/clears the interrupt,
458 	 * zero enables AND CLEARS it) would make race conditions
459 	 * likely in the interrupt handler:
460 	 *
461 	 * (1)	acknowledge & disable interrupts
462 	 * (2)	while (more to do)
463 	 *		process packets
464 	 * (3)	enable interrupts -- also clears pending
465 	 *
466 	 * If the chip received more packets and internally generated
467 	 * an interrupt between the check at (2) and the mbox write
468 	 * at (3), this interrupt would be lost :-(
469 	 *
470 	 * The best way to avoid this is to use TAGGED STATUS mode,
471 	 * where the chip includes a unique tag in each status block
472 	 * update, and the host, when re-enabling interrupts, passes
473 	 * the last tag it saw back to the chip; then the chip can
474 	 * see whether the host is truly up to date, and regenerate
475 	 * its interrupt if not.
476 	 */
477 	mhcr = MHCR_ENABLE_INDIRECT_ACCESS |
478 	       MHCR_ENABLE_PCI_STATE_RW |
479 	       MHCR_ENABLE_TAGGED_STATUS_MODE |
480 	       MHCR_MASK_INTERRUPT_MODE |
481 	       MHCR_CLEAR_INTERRUPT_INTA;
482 	if (bgep->intr_type == DDI_INTR_TYPE_FIXED)
483 		mhcr |= MHCR_MASK_PCI_INT_OUTPUT;
484 
485 #ifdef	_BIG_ENDIAN
486 	mhcr |= MHCR_ENABLE_ENDIAN_WORD_SWAP | MHCR_ENABLE_ENDIAN_BYTE_SWAP;
487 #endif	/* _BIG_ENDIAN */
488 	pci_config_put32(handle, PCI_CONF_BGE_MHCR, mhcr);
489 
490 #ifdef BGE_IPMI_ASF
491 	bgep->asf_wordswapped = B_FALSE;
492 #endif
493 
494 	pci_state = (PCISTATE_EXT_ROM_ENABLE | PCISTATE_EXT_ROM_RETRY);
495 	/* allow reads and writes to the APE register and memory space */
496 	if (bgep->ape_enabled) {
497 		pci_state |= PCISTATE_ALLOW_APE_CTLSPC_WR |
498 		    PCISTATE_ALLOW_APE_SHMEM_WR | PCISTATE_ALLOW_APE_PSPACE_WR;
499 	}
500 	pci_config_put32(bgep->cfg_handle, PCI_CONF_BGE_PCISTATE, pci_state);
501 
502 	/*
503 	 * Step 1 (also step 7): Enable PCI Memory Space accesses
504 	 *			 Disable Memory Write/Invalidate
505 	 *			 Enable or disable Bus Mastering
506 	 *
507 	 * Note that all other bits are taken from the original value saved
508 	 * the first time through here, rather than from the current register
509 	 * value, 'cos that will have been cleared by a soft RESET since.
510 	 * In this way we preserve the OBP/nexus-parent's preferred settings
511 	 * of the parity-error and system-error enable bits across multiple
512 	 * chip RESETs.
513 	 */
514 	command = bgep->chipid.command | PCI_COMM_MAE;
515 	command &= ~(PCI_COMM_ME|PCI_COMM_MEMWR_INVAL);
516 	if (enable_dma)
517 		command |= PCI_COMM_ME;
518 	/*
519 	 * on BCM5714 revision A0, false parity error gets generated
520 	 * due to a logic bug. Provide a workaround by disabling parity
521 	 * error.
522 	 */
523 	if (((cidp->device == DEVICE_ID_5714C) ||
524 	    (cidp->device == DEVICE_ID_5714S)) &&
525 	    (cidp->revision == REVISION_ID_5714_A0)) {
526 		command &= ~PCI_COMM_PARITY_DETECT;
527 	}
528 	pci_config_put16(handle, PCI_CONF_COMM, command);
529 
530 	/*
531 	 * On some PCI-E device, there were instances when
532 	 * the device was still link training.
533 	 */
534 	if (bgep->chipid.pci_type == BGE_PCI_E) {
535 		i = 0;
536 		value16 = pci_config_get16(handle, PCI_CONF_COMM);
537 		while ((value16 != command) && (i < 100)) {
538 			drv_usecwait(200);
539 			value16 = pci_config_get16(handle, PCI_CONF_COMM);
540 			++i;
541 		}
542 	}
543 
544 	/*
545 	 * Clear any remaining error status bits
546 	 */
547 	pci_config_put16(handle, PCI_CONF_STAT, ~0);
548 
549 	/*
550 	 * Do following if and only if the device is NOT BCM5714C OR
551 	 * BCM5715C
552 	 */
553 	if (!((cidp->device == DEVICE_ID_5714C) ||
554 	    (cidp->device == DEVICE_ID_5715C))) {
555 		/*
556 		 * Make sure these indirect-access registers are sane
557 		 * rather than random after power-up or reset
558 		 */
559 		pci_config_put32(handle, PCI_CONF_BGE_RIAAR, 0);
560 		pci_config_put32(handle, PCI_CONF_BGE_MWBAR, 0);
561 	}
562 	/*
563 	 * Step 8: Disable PCI-X/PCI-E Relaxed Ordering
564 	 */
565 	bge_cfg_clr16(bgep, PCIX_CONF_COMM, PCIX_COMM_RELAXED);
566 
567 	if (cidp->pci_type == BGE_PCI_E) {
568 		if (DEVICE_5723_SERIES_CHIPSETS(bgep)) {
569 			bge_cfg_clr16(bgep, PCI_CONF_DEV_CTRL_5723,
570 			    DEV_CTRL_NO_SNOOP | DEV_CTRL_RELAXED);
571 		} else if (DEVICE_5717_SERIES_CHIPSETS(bgep) ||
572 		           DEVICE_5725_SERIES_CHIPSETS(bgep) ||
573 			   DEVICE_57765_SERIES_CHIPSETS(bgep)) {
574 			bge_cfg_clr16(bgep, PCI_CONF_DEV_CTRL_5717,
575 			    DEV_CTRL_NO_SNOOP | DEV_CTRL_RELAXED);
576 		} else {
577 			bge_cfg_clr16(bgep, PCI_CONF_DEV_CTRL,
578 			    DEV_CTRL_NO_SNOOP | DEV_CTRL_RELAXED);
579 		}
580 	}
581 }
582 
583 #ifdef __amd64
584 /*
585  * Distinguish CPU types
586  *
587  * These use to  distinguish AMD64 or Intel EM64T of CPU running mode.
588  * If CPU runs on Intel EM64T mode,the 64bit operation cannot works fine
589  * for PCI-Express based network interface card. This is the work-around
590  * for those nics.
591  */
592 static boolean_t bge_get_em64t_type(void);
593 #pragma	inline(bge_get_em64t_type)
594 
595 static boolean_t
596 bge_get_em64t_type(void)
597 {
598 
599 	return (x86_vendor == X86_VENDOR_Intel);
600 }
601 #endif
602 
603 /*
604  * Operating register get/set access routines
605  */
606 
607 uint32_t bge_reg_get32(bge_t *bgep, bge_regno_t regno);
608 #pragma	inline(bge_reg_get32)
609 
610 uint32_t
611 bge_reg_get32(bge_t *bgep, bge_regno_t regno)
612 {
613 	BGE_TRACE(("bge_reg_get32($%p, 0x%lx)",
614 	    (void *)bgep, regno));
615 
616 	return (ddi_get32(bgep->io_handle, PIO_ADDR(bgep, regno)));
617 }
618 
619 void bge_reg_put32(bge_t *bgep, bge_regno_t regno, uint32_t data);
620 #pragma	inline(bge_reg_put32)
621 
622 void
623 bge_reg_put32(bge_t *bgep, bge_regno_t regno, uint32_t data)
624 {
625 	BGE_TRACE(("bge_reg_put32($%p, 0x%lx, 0x%x)",
626 	    (void *)bgep, regno, data));
627 
628 	ddi_put32(bgep->io_handle, PIO_ADDR(bgep, regno), data);
629 	BGE_PCICHK(bgep);
630 }
631 
632 void bge_reg_set32(bge_t *bgep, bge_regno_t regno, uint32_t bits);
633 #pragma	inline(bge_reg_set32)
634 
635 void
636 bge_reg_set32(bge_t *bgep, bge_regno_t regno, uint32_t bits)
637 {
638 	uint32_t regval;
639 
640 	BGE_TRACE(("bge_reg_set32($%p, 0x%lx, 0x%x)",
641 	    (void *)bgep, regno, bits));
642 
643 	regval = bge_reg_get32(bgep, regno);
644 	regval |= bits;
645 	bge_reg_put32(bgep, regno, regval);
646 }
647 
648 void bge_reg_clr32(bge_t *bgep, bge_regno_t regno, uint32_t bits);
649 #pragma	inline(bge_reg_clr32)
650 
651 void
652 bge_reg_clr32(bge_t *bgep, bge_regno_t regno, uint32_t bits)
653 {
654 	uint32_t regval;
655 
656 	BGE_TRACE(("bge_reg_clr32($%p, 0x%lx, 0x%x)",
657 	    (void *)bgep, regno, bits));
658 
659 	regval = bge_reg_get32(bgep, regno);
660 	regval &= ~bits;
661 	bge_reg_put32(bgep, regno, regval);
662 }
663 
664 static uint64_t bge_reg_get64(bge_t *bgep, bge_regno_t regno);
665 #pragma	inline(bge_reg_get64)
666 
667 static uint64_t
668 bge_reg_get64(bge_t *bgep, bge_regno_t regno)
669 {
670 	uint64_t regval;
671 
672 #ifdef	__amd64
673 	if (DEVICE_5723_SERIES_CHIPSETS(bgep) ||
674 	    bge_get_em64t_type() ||
675 	    DEVICE_5717_SERIES_CHIPSETS(bgep) ||
676 	    DEVICE_5725_SERIES_CHIPSETS(bgep) ||
677 	    DEVICE_57765_SERIES_CHIPSETS(bgep)) {
678 		regval = ddi_get32(bgep->io_handle, PIO_ADDR(bgep, regno + 4));
679 		regval <<= 32;
680 		regval |= ddi_get32(bgep->io_handle, PIO_ADDR(bgep, regno));
681 	} else {
682 		regval = ddi_get64(bgep->io_handle, PIO_ADDR(bgep, regno));
683 	}
684 #elif defined(__sparc)
685 	if (DEVICE_5723_SERIES_CHIPSETS(bgep) ||
686 	    DEVICE_5717_SERIES_CHIPSETS(bgep) ||
687 	    DEVICE_5725_SERIES_CHIPSETS(bgep) ||
688 	    DEVICE_57765_SERIES_CHIPSETS(bgep)) {
689 		regval = ddi_get32(bgep->io_handle, PIO_ADDR(bgep, regno));
690 		regval <<= 32;
691 		regval |= ddi_get32(bgep->io_handle, PIO_ADDR(bgep, regno + 4));
692 	} else {
693 		regval = ddi_get64(bgep->io_handle, PIO_ADDR(bgep, regno));
694 	}
695 #else
696 	regval = ddi_get64(bgep->io_handle, PIO_ADDR(bgep, regno));
697 #endif
698 
699 #ifdef	_LITTLE_ENDIAN
700 	regval = (regval >> 32) | (regval << 32);
701 #endif	/* _LITTLE_ENDIAN */
702 
703 	BGE_TRACE(("bge_reg_get64($%p, 0x%lx) = 0x%016llx",
704 	    (void *)bgep, regno, regval));
705 
706 	return (regval);
707 }
708 
709 static void bge_reg_put64(bge_t *bgep, bge_regno_t regno, uint64_t data);
710 #pragma	inline(bge_reg_put64)
711 
712 static void
713 bge_reg_put64(bge_t *bgep, bge_regno_t regno, uint64_t data)
714 {
715 	BGE_TRACE(("bge_reg_put64($%p, 0x%lx, 0x%016llx)",
716 	    (void *)bgep, regno, data));
717 
718 #ifdef	_LITTLE_ENDIAN
719 	data = ((data >> 32) | (data << 32));
720 #endif	/* _LITTLE_ENDIAN */
721 
722 #ifdef	__amd64
723 	if (DEVICE_5723_SERIES_CHIPSETS(bgep) ||
724 	    bge_get_em64t_type() ||
725 	    DEVICE_5717_SERIES_CHIPSETS(bgep) ||
726 	    DEVICE_5725_SERIES_CHIPSETS(bgep) ||
727 	    DEVICE_57765_SERIES_CHIPSETS(bgep)) {
728 		ddi_put32(bgep->io_handle,
729 		    PIO_ADDR(bgep, regno), (uint32_t)data);
730 		BGE_PCICHK(bgep);
731 		ddi_put32(bgep->io_handle,
732 		    PIO_ADDR(bgep, regno + 4), (uint32_t)(data >> 32));
733 
734 	} else {
735 		ddi_put64(bgep->io_handle, PIO_ADDR(bgep, regno), data);
736 	}
737 #elif defined(__sparc)
738 	if (DEVICE_5723_SERIES_CHIPSETS(bgep) ||
739 	    DEVICE_5717_SERIES_CHIPSETS(bgep) ||
740 	    DEVICE_5725_SERIES_CHIPSETS(bgep) ||
741 	    DEVICE_57765_SERIES_CHIPSETS(bgep)) {
742 		ddi_put32(bgep->io_handle,
743 		    PIO_ADDR(bgep, regno + 4), (uint32_t)data);
744 		BGE_PCICHK(bgep);
745 		ddi_put32(bgep->io_handle,
746 		    PIO_ADDR(bgep, regno), (uint32_t)(data >> 32));
747 	} else {
748 		ddi_put64(bgep->io_handle, PIO_ADDR(bgep, regno), data);
749 	}
750 #else
751 	ddi_put64(bgep->io_handle, PIO_ADDR(bgep, regno), data);
752 #endif
753 
754 	BGE_PCICHK(bgep);
755 }
756 
757 /*
758  * The DDI doesn't provide get/put functions for 128 bit data
759  * so we put RCBs out as two 64-bit chunks instead.
760  */
761 static void bge_reg_putrcb(bge_t *bgep, bge_regno_t addr, bge_rcb_t *rcbp);
762 #pragma	inline(bge_reg_putrcb)
763 
764 static void
765 bge_reg_putrcb(bge_t *bgep, bge_regno_t addr, bge_rcb_t *rcbp)
766 {
767 	uint64_t *p;
768 
769 	BGE_TRACE(("bge_reg_putrcb($%p, 0x%lx, 0x%016llx:%04x:%04x:%08x)",
770 	    (void *)bgep, addr, rcbp->host_ring_addr,
771 	    rcbp->max_len, rcbp->flags, rcbp->nic_ring_addr));
772 
773 	ASSERT((addr % sizeof (*rcbp)) == 0);
774 
775 	p = (void *)rcbp;
776 	bge_reg_put64(bgep, addr, *p++);
777 	bge_reg_put64(bgep, addr+8, *p);
778 }
779 
780 void bge_mbx_put(bge_t *bgep, bge_regno_t regno, uint64_t data);
781 #pragma	inline(bge_mbx_put)
782 
783 void
784 bge_mbx_put(bge_t *bgep, bge_regno_t regno, uint64_t data)
785 {
786 	if (DEVICE_5906_SERIES_CHIPSETS(bgep))
787 		regno += INTERRUPT_LP_MBOX_0_REG - INTERRUPT_MBOX_0_REG + 4;
788 
789 	BGE_TRACE(("bge_mbx_put($%p, 0x%lx, 0x%016llx)",
790 	    (void *)bgep, regno, data));
791 
792 	/*
793 	 * Mailbox registers are nominally 64 bits on the 5701, but
794 	 * the MSW isn't used.  On the 5703, they're only 32 bits
795 	 * anyway.  So here we just write the lower(!) 32 bits -
796 	 * remembering that the chip is big-endian, even though the
797 	 * PCI bus is little-endian ...
798 	 */
799 #ifdef	_BIG_ENDIAN
800 	ddi_put32(bgep->io_handle, PIO_ADDR(bgep, regno+4), (uint32_t)data);
801 #else
802 	ddi_put32(bgep->io_handle, PIO_ADDR(bgep, regno), (uint32_t)data);
803 #endif	/* _BIG_ENDIAN */
804 	BGE_PCICHK(bgep);
805 }
806 
807 uint32_t bge_mbx_get(bge_t *bgep, bge_regno_t regno);
808 #pragma inline(bge_mbx_get)
809 
810 uint32_t
811 bge_mbx_get(bge_t *bgep, bge_regno_t regno)
812 {
813 	uint32_t val32;
814 
815 	if (DEVICE_5906_SERIES_CHIPSETS(bgep))
816 		regno += INTERRUPT_LP_MBOX_0_REG - INTERRUPT_MBOX_0_REG + 4;
817 
818 	BGE_TRACE(("bge_mbx_get($%p, 0x%lx)",
819 	    (void *)bgep, regno));
820 
821 #ifdef	_BIG_ENDIAN
822 	val32 = ddi_get32(bgep->io_handle, PIO_ADDR(bgep, regno+4));
823 #else
824 	val32 = ddi_get32(bgep->io_handle, PIO_ADDR(bgep, regno));
825 #endif	/* _BIG_ENDIAN */
826 	BGE_PCICHK(bgep);
827 
828 	BGE_DEBUG(("bge_mbx_get($%p, 0x%lx) => 0x%08x",
829 	    (void *)bgep, regno, val32));
830 
831 	return (val32);
832 }
833 
834 
835 #if	BGE_DEBUGGING
836 
837 void bge_led_mark(bge_t *bgep);
838 #pragma	no_inline(bge_led_mark)
839 
840 void
841 bge_led_mark(bge_t *bgep)
842 {
843 	uint32_t led_ctrl = LED_CONTROL_OVERRIDE_LINK |
844 	    LED_CONTROL_1000MBPS_LED |
845 	    LED_CONTROL_100MBPS_LED |
846 	    LED_CONTROL_10MBPS_LED;
847 
848 	/*
849 	 * Blink all three LINK LEDs on simultaneously, then all off,
850 	 * then restore to automatic hardware control.  This is used
851 	 * in laboratory testing to trigger a logic analyser or scope.
852 	 */
853 	bge_reg_set32(bgep, ETHERNET_MAC_LED_CONTROL_REG, led_ctrl);
854 	led_ctrl ^= LED_CONTROL_OVERRIDE_LINK;
855 	bge_reg_clr32(bgep, ETHERNET_MAC_LED_CONTROL_REG, led_ctrl);
856 	led_ctrl = LED_CONTROL_OVERRIDE_LINK;
857 	bge_reg_clr32(bgep, ETHERNET_MAC_LED_CONTROL_REG, led_ctrl);
858 }
859 
860 #endif	/* BGE_DEBUGGING */
861 
862 /*
863  * NIC on-chip memory access routines
864  *
865  * Only 32K of NIC memory is visible at a time, controlled by the
866  * Memory Window Base Address Register (in PCI config space).  Once
867  * this is set, the 32K region of NIC-local memory that it refers
868  * to can be directly addressed in the upper 32K of the 64K of PCI
869  * memory space used for the device.
870  */
871 
872 static void bge_nic_setwin(bge_t *bgep, bge_regno_t base);
873 #pragma	inline(bge_nic_setwin)
874 
875 static void
876 bge_nic_setwin(bge_t *bgep, bge_regno_t base)
877 {
878 	chip_id_t *cidp;
879 
880 	BGE_TRACE(("bge_nic_setwin($%p, 0x%lx)",
881 	    (void *)bgep, base));
882 
883 	ASSERT((base & MWBAR_GRANULE_MASK) == 0);
884 
885 	/*
886 	 * Don't do repeated zero data writes,
887 	 * if the device is BCM5714C/15C.
888 	 */
889 	cidp = &bgep->chipid;
890 	if ((cidp->device == DEVICE_ID_5714C) ||
891 	    (cidp->device == DEVICE_ID_5715C)) {
892 		if (bgep->lastWriteZeroData && (base == (bge_regno_t)0))
893 			return;
894 		/* Adjust lastWriteZeroData */
895 		bgep->lastWriteZeroData = ((base == (bge_regno_t)0) ?
896 		    B_TRUE : B_FALSE);
897 	}
898 #ifdef __sparc
899 	if (DEVICE_5717_SERIES_CHIPSETS(bgep) ||
900 	    DEVICE_5725_SERIES_CHIPSETS(bgep) ||
901 	    DEVICE_57765_SERIES_CHIPSETS(bgep)) {
902 		base = LE_32(base);
903 	}
904 #endif
905 	pci_config_put32(bgep->cfg_handle, PCI_CONF_BGE_MWBAR, base);
906 }
907 
908 static uint32_t bge_nic_get32(bge_t *bgep, bge_regno_t addr);
909 #pragma	inline(bge_nic_get32)
910 
911 static uint32_t
912 bge_nic_get32(bge_t *bgep, bge_regno_t addr)
913 {
914 	uint32_t data;
915 
916 #if defined(BGE_IPMI_ASF) && !defined(__sparc)
917 	if (bgep->asf_enabled && !bgep->asf_wordswapped) {
918 		/* workaround for word swap error */
919 		if (addr & 4)
920 			addr = addr - 4;
921 		else
922 			addr = addr + 4;
923 	}
924 #endif
925 
926 #ifdef __sparc
927 	data = bge_nic_read32(bgep, addr);
928 #else
929 	bge_nic_setwin(bgep, addr & ~MWBAR_GRANULE_MASK);
930 	addr &= MWBAR_GRANULE_MASK;
931 	addr += NIC_MEM_WINDOW_OFFSET;
932 
933 	data = ddi_get32(bgep->io_handle, PIO_ADDR(bgep, addr));
934 #endif
935 
936 	BGE_TRACE(("bge_nic_get32($%p, 0x%lx) = 0x%08x",
937 	    (void *)bgep, addr, data));
938 
939 	return (data);
940 }
941 
942 void bge_nic_put32(bge_t *bgep, bge_regno_t addr, uint32_t data);
943 #pragma inline(bge_nic_put32)
944 
945 void
946 bge_nic_put32(bge_t *bgep, bge_regno_t addr, uint32_t data)
947 {
948 	BGE_TRACE(("bge_nic_put32($%p, 0x%lx, 0x%08x)",
949 	    (void *)bgep, addr, data));
950 
951 #if defined(BGE_IPMI_ASF) && !defined(__sparc)
952 	if (bgep->asf_enabled && !bgep->asf_wordswapped) {
953 		/* workaround for word swap error */
954 		if (addr & 4)
955 			addr = addr - 4;
956 		else
957 			addr = addr + 4;
958 	}
959 #endif
960 
961 #ifdef __sparc
962 	if (DEVICE_5717_SERIES_CHIPSETS(bgep) ||
963 	    DEVICE_5725_SERIES_CHIPSETS(bgep) ||
964 	    DEVICE_57765_SERIES_CHIPSETS(bgep)) {
965 		addr = LE_32(addr);
966 	}
967 	pci_config_put32(bgep->cfg_handle, PCI_CONF_BGE_MWBAR, addr);
968 	data = LE_32(data);
969 	pci_config_put32(bgep->cfg_handle, PCI_CONF_BGE_MWDAR, data);
970 	pci_config_put32(bgep->cfg_handle, PCI_CONF_BGE_MWBAR, 0);
971 #else
972 	bge_nic_setwin(bgep, addr & ~MWBAR_GRANULE_MASK);
973 	addr &= MWBAR_GRANULE_MASK;
974 	addr += NIC_MEM_WINDOW_OFFSET;
975 	ddi_put32(bgep->io_handle, PIO_ADDR(bgep, addr), data);
976 	BGE_PCICHK(bgep);
977 #endif
978 }
979 
980 static uint64_t bge_nic_get64(bge_t *bgep, bge_regno_t addr);
981 #pragma	inline(bge_nic_get64)
982 
983 static uint64_t
984 bge_nic_get64(bge_t *bgep, bge_regno_t addr)
985 {
986 	uint64_t data;
987 
988 	bge_nic_setwin(bgep, addr & ~MWBAR_GRANULE_MASK);
989 	addr &= MWBAR_GRANULE_MASK;
990 	addr += NIC_MEM_WINDOW_OFFSET;
991 
992 #ifdef	__amd64
993 	if (DEVICE_5723_SERIES_CHIPSETS(bgep) ||
994 	    bge_get_em64t_type() ||
995 	    DEVICE_5717_SERIES_CHIPSETS(bgep) ||
996 	    DEVICE_5725_SERIES_CHIPSETS(bgep) ||
997 	    DEVICE_57765_SERIES_CHIPSETS(bgep)) {
998 		data = ddi_get32(bgep->io_handle,
999 		    PIO_ADDR(bgep, addr + 4));
1000 		data <<= 32;
1001 		data |= ddi_get32(bgep->io_handle, PIO_ADDR(bgep, addr));
1002 	} else {
1003 		data = ddi_get64(bgep->io_handle, PIO_ADDR(bgep, addr));
1004 	}
1005 #elif defined(__sparc)
1006 	if (DEVICE_5723_SERIES_CHIPSETS(bgep) ||
1007 	    DEVICE_5717_SERIES_CHIPSETS(bgep) ||
1008 	    DEVICE_5725_SERIES_CHIPSETS(bgep) ||
1009 	    DEVICE_57765_SERIES_CHIPSETS(bgep)) {
1010 		data = ddi_get32(bgep->io_handle, PIO_ADDR(bgep, addr));
1011 		data <<= 32;
1012 		data |= ddi_get32(bgep->io_handle,
1013 		    PIO_ADDR(bgep, addr + 4));
1014 	} else {
1015 		data = ddi_get64(bgep->io_handle, PIO_ADDR(bgep, addr));
1016 	}
1017 #else
1018 	data = ddi_get64(bgep->io_handle, PIO_ADDR(bgep, addr));
1019 #endif
1020 
1021 	BGE_TRACE(("bge_nic_get64($%p, 0x%lx) = 0x%016llx",
1022 	    (void *)bgep, addr, data));
1023 
1024 	return (data);
1025 }
1026 
1027 static void bge_nic_put64(bge_t *bgep, bge_regno_t addr, uint64_t data);
1028 #pragma	inline(bge_nic_put64)
1029 
1030 static void
1031 bge_nic_put64(bge_t *bgep, bge_regno_t addr, uint64_t data)
1032 {
1033 	BGE_TRACE(("bge_nic_put64($%p, 0x%lx, 0x%016llx)",
1034 	    (void *)bgep, addr, data));
1035 
1036 	bge_nic_setwin(bgep, addr & ~MWBAR_GRANULE_MASK);
1037 	addr &= MWBAR_GRANULE_MASK;
1038 	addr += NIC_MEM_WINDOW_OFFSET;
1039 
1040 #ifdef	__amd64
1041 	if (DEVICE_5723_SERIES_CHIPSETS(bgep) ||
1042 	    bge_get_em64t_type() ||
1043 	    DEVICE_5717_SERIES_CHIPSETS(bgep) ||
1044 	    DEVICE_5725_SERIES_CHIPSETS(bgep) ||
1045 	    DEVICE_57765_SERIES_CHIPSETS(bgep)) {
1046 		ddi_put32(bgep->io_handle,
1047 		    PIO_ADDR(bgep, addr + 4), (uint32_t)data);
1048 		BGE_PCICHK(bgep);
1049 		ddi_put32(bgep->io_handle,
1050 		    PIO_ADDR(bgep, addr), (uint32_t)(data >> 32));
1051 	} else {
1052 		ddi_put64(bgep->io_handle, PIO_ADDR(bgep, addr), data);
1053 	}
1054 #elif defined(__sparc)
1055 	if (DEVICE_5723_SERIES_CHIPSETS(bgep) ||
1056 	    DEVICE_5717_SERIES_CHIPSETS(bgep) ||
1057 	    DEVICE_5725_SERIES_CHIPSETS(bgep) ||
1058 	    DEVICE_57765_SERIES_CHIPSETS(bgep)) {
1059 		ddi_put32(bgep->io_handle,
1060 		    PIO_ADDR(bgep, addr + 4), (uint32_t)data);
1061 		BGE_PCICHK(bgep);
1062 		ddi_put32(bgep->io_handle,
1063 		    PIO_ADDR(bgep, addr), (uint32_t)(data >> 32));
1064 	} else {
1065 		ddi_put64(bgep->io_handle, PIO_ADDR(bgep, addr), data);
1066 	}
1067 #else
1068 	ddi_put64(bgep->io_handle, PIO_ADDR(bgep, addr), data);
1069 #endif
1070 
1071 	BGE_PCICHK(bgep);
1072 }
1073 
1074 /*
1075  * The DDI doesn't provide get/put functions for 128 bit data
1076  * so we put RCBs out as two 64-bit chunks instead.
1077  */
1078 static void bge_nic_putrcb(bge_t *bgep, bge_regno_t addr, bge_rcb_t *rcbp);
1079 #pragma	inline(bge_nic_putrcb)
1080 
1081 static void
1082 bge_nic_putrcb(bge_t *bgep, bge_regno_t addr, bge_rcb_t *rcbp)
1083 {
1084 	uint64_t *p;
1085 
1086 	BGE_TRACE(("bge_nic_putrcb($%p, 0x%lx, 0x%016llx:%04x:%04x:%08x)",
1087 	    (void *)bgep, addr, rcbp->host_ring_addr,
1088 	    rcbp->max_len, rcbp->flags, rcbp->nic_ring_addr));
1089 
1090 	ASSERT((addr % sizeof (*rcbp)) == 0);
1091 
1092 	bge_nic_setwin(bgep, addr & ~MWBAR_GRANULE_MASK);
1093 	addr &= MWBAR_GRANULE_MASK;
1094 	addr += NIC_MEM_WINDOW_OFFSET;
1095 
1096 	p = (void *)rcbp;
1097 #ifdef	__amd64
1098 	if (DEVICE_5723_SERIES_CHIPSETS(bgep) ||
1099 	    bge_get_em64t_type() ||
1100 	    DEVICE_5717_SERIES_CHIPSETS(bgep) ||
1101 	    DEVICE_5725_SERIES_CHIPSETS(bgep) ||
1102 	    DEVICE_57765_SERIES_CHIPSETS(bgep)) {
1103 		ddi_put32(bgep->io_handle, PIO_ADDR(bgep, addr),
1104 		    (uint32_t)(*p));
1105 		ddi_put32(bgep->io_handle, PIO_ADDR(bgep, addr + 4),
1106 		    (uint32_t)(*p++ >> 32));
1107 		ddi_put32(bgep->io_handle, PIO_ADDR(bgep, addr + 8),
1108 		    (uint32_t)(*p));
1109 		ddi_put32(bgep->io_handle, PIO_ADDR(bgep, addr + 12),
1110 		    (uint32_t)(*p >> 32));
1111 
1112 	} else {
1113 		ddi_put64(bgep->io_handle, PIO_ADDR(bgep, addr), *p++);
1114 		ddi_put64(bgep->io_handle, PIO_ADDR(bgep, addr+8), *p);
1115 	}
1116 #elif defined(__sparc)
1117 	if (DEVICE_5723_SERIES_CHIPSETS(bgep) ||
1118 	    DEVICE_5717_SERIES_CHIPSETS(bgep) ||
1119 	    DEVICE_5725_SERIES_CHIPSETS(bgep) ||
1120 	    DEVICE_57765_SERIES_CHIPSETS(bgep)) {
1121 		ddi_put32(bgep->io_handle, PIO_ADDR(bgep, addr + 4),
1122 		    (uint32_t)(*p));
1123 		ddi_put32(bgep->io_handle, PIO_ADDR(bgep, addr),
1124 		    (uint32_t)(*p++ >> 32));
1125 		ddi_put32(bgep->io_handle, PIO_ADDR(bgep, addr + 12),
1126 		    (uint32_t)(*p));
1127 		ddi_put32(bgep->io_handle, PIO_ADDR(bgep, addr + 8),
1128 		    (uint32_t)(*p >> 32));
1129 	} else {
1130 		ddi_put64(bgep->io_handle, PIO_ADDR(bgep, addr), *p++);
1131 		ddi_put64(bgep->io_handle, PIO_ADDR(bgep, addr + 8), *p);
1132 	}
1133 #else
1134 	ddi_put64(bgep->io_handle, PIO_ADDR(bgep, addr), *p++);
1135 	ddi_put64(bgep->io_handle, PIO_ADDR(bgep, addr + 8), *p);
1136 #endif
1137 
1138 	BGE_PCICHK(bgep);
1139 }
1140 
1141 static void bge_nic_zero(bge_t *bgep, bge_regno_t addr, uint32_t nbytes);
1142 #pragma	inline(bge_nic_zero)
1143 
1144 static void
1145 bge_nic_zero(bge_t *bgep, bge_regno_t addr, uint32_t nbytes)
1146 {
1147 	BGE_TRACE(("bge_nic_zero($%p, 0x%lx, 0x%x)",
1148 	    (void *)bgep, addr, nbytes));
1149 
1150 	ASSERT((addr & ~MWBAR_GRANULE_MASK) ==
1151 	    ((addr+nbytes) & ~MWBAR_GRANULE_MASK));
1152 
1153 	bge_nic_setwin(bgep, addr & ~MWBAR_GRANULE_MASK);
1154 	addr &= MWBAR_GRANULE_MASK;
1155 	addr += NIC_MEM_WINDOW_OFFSET;
1156 
1157 	(void) ddi_device_zero(bgep->io_handle, PIO_ADDR(bgep, addr),
1158 	    nbytes, 1, DDI_DATA_SZ08_ACC);
1159 	BGE_PCICHK(bgep);
1160 }
1161 
1162 /*
1163  * MII (PHY) register get/set access routines
1164  *
1165  * These use the chip's MII auto-access method, controlled by the
1166  * MII Communication register at 0x044c, so the CPU doesn't have
1167  * to fiddle with the individual bits.
1168  */
1169 
1170 #undef	BGE_DBG
1171 #define	BGE_DBG		BGE_DBG_MII	/* debug flag for this code	*/
1172 
1173 static uint16_t bge_mii_access(bge_t *bgep, bge_regno_t regno,
1174 				uint16_t data, uint32_t cmd);
1175 #pragma	no_inline(bge_mii_access)
1176 
1177 static uint16_t
1178 bge_mii_access(bge_t *bgep, bge_regno_t regno, uint16_t data, uint32_t cmd)
1179 {
1180 	uint32_t timeout;
1181 	uint32_t regval1;
1182 	uint32_t regval2;
1183 
1184 	BGE_TRACE(("bge_mii_access($%p, 0x%lx, 0x%x, 0x%x)",
1185 	    (void *)bgep, regno, data, cmd));
1186 
1187 	ASSERT(mutex_owned(bgep->genlock));
1188 
1189 	/*
1190 	 * Assemble the command ...
1191 	 */
1192 	cmd |= data << MI_COMMS_DATA_SHIFT;
1193 	cmd |= regno << MI_COMMS_REGISTER_SHIFT;
1194 	cmd |= bgep->phy_mii_addr << MI_COMMS_ADDRESS_SHIFT;
1195 	cmd |= MI_COMMS_START;
1196 
1197 	/*
1198 	 * Wait for any command already in progress ...
1199 	 *
1200 	 * Note: this *shouldn't* ever find that there is a command
1201 	 * in progress, because we already hold the <genlock> mutex.
1202 	 * Nonetheless, we have sometimes seen the MI_COMMS_START
1203 	 * bit set here -- it seems that the chip can initiate MII
1204 	 * accesses internally, even with polling OFF.
1205 	 */
1206 	regval1 = regval2 = bge_reg_get32(bgep, MI_COMMS_REG);
1207 	for (timeout = 100; ; ) {
1208 		if ((regval2 & MI_COMMS_START) == 0) {
1209 			bge_reg_put32(bgep, MI_COMMS_REG, cmd);
1210 			break;
1211 		}
1212 		if (--timeout == 0)
1213 			break;
1214 		drv_usecwait(10);
1215 		regval2 = bge_reg_get32(bgep, MI_COMMS_REG);
1216 	}
1217 
1218 	if (timeout == 0)
1219 		return ((uint16_t)~0u);
1220 
1221 	if (timeout != 100)
1222 		BGE_REPORT((bgep, "bge_mii_access: cmd 0x%x -- "
1223 		    "MI_COMMS_START set for %d us; 0x%x->0x%x",
1224 		    cmd, 10*(100-timeout), regval1, regval2));
1225 
1226 	regval1 = bge_reg_get32(bgep, MI_COMMS_REG);
1227 	for (timeout = 1000; ; ) {
1228 		if ((regval1 & MI_COMMS_START) == 0)
1229 			break;
1230 		if (--timeout == 0)
1231 			break;
1232 		drv_usecwait(10);
1233 		regval1 = bge_reg_get32(bgep, MI_COMMS_REG);
1234 	}
1235 
1236 	/*
1237 	 * Drop out early if the READ FAILED bit is set -- this chip
1238 	 * could be a 5703/4S, with a SerDes instead of a PHY!
1239 	 */
1240 	if (regval2 & MI_COMMS_READ_FAILED)
1241 		return ((uint16_t)~0u);
1242 
1243 	if (timeout == 0)
1244 		return ((uint16_t)~0u);
1245 
1246 	/*
1247 	 * The PRM says to wait 5us after seeing the START bit clear
1248 	 * and then re-read the register to get the final value of the
1249 	 * data field, in order to avoid a race condition where the
1250 	 * START bit is clear but the data field isn't yet valid.
1251 	 *
1252 	 * Note: we don't actually seem to be encounter this race;
1253 	 * except when the START bit is seen set again (see below),
1254 	 * the data field doesn't change during this 5us interval.
1255 	 */
1256 	drv_usecwait(5);
1257 	regval2 = bge_reg_get32(bgep, MI_COMMS_REG);
1258 
1259 	/*
1260 	 * Unfortunately, when following the PRMs instructions above,
1261 	 * we have occasionally seen the START bit set again(!) in the
1262 	 * value read after the 5us delay. This seems to be due to the
1263 	 * chip autonomously starting another MII access internally.
1264 	 * In such cases, the command/data/etc fields relate to the
1265 	 * internal command, rather than the one that we thought had
1266 	 * just finished.  So in this case, we fall back to returning
1267 	 * the data from the original read that showed START clear.
1268 	 */
1269 	if (regval2 & MI_COMMS_START) {
1270 		BGE_REPORT((bgep, "bge_mii_access: cmd 0x%x -- "
1271 		    "MI_COMMS_START set after transaction; 0x%x->0x%x",
1272 		    cmd, regval1, regval2));
1273 		regval2 = regval1;
1274 	}
1275 
1276 	if (regval2 & MI_COMMS_START)
1277 		return ((uint16_t)~0u);
1278 
1279 	if (regval2 & MI_COMMS_READ_FAILED)
1280 		return ((uint16_t)~0u);
1281 
1282 	return ((regval2 & MI_COMMS_DATA_MASK) >> MI_COMMS_DATA_SHIFT);
1283 }
1284 
1285 uint16_t bge_mii_get16(bge_t *bgep, bge_regno_t regno);
1286 #pragma	no_inline(bge_mii_get16)
1287 
1288 uint16_t
1289 bge_mii_get16(bge_t *bgep, bge_regno_t regno)
1290 {
1291 	BGE_TRACE(("bge_mii_get16($%p, 0x%lx)",
1292 	    (void *)bgep, regno));
1293 
1294 	ASSERT(mutex_owned(bgep->genlock));
1295 
1296 	if (DEVICE_5906_SERIES_CHIPSETS(bgep) && ((regno == MII_AUX_CONTROL) ||
1297 	    (regno == MII_MSCONTROL)))
1298 		return (0);
1299 
1300 	return (bge_mii_access(bgep, regno, 0, MI_COMMS_COMMAND_READ));
1301 }
1302 
1303 void bge_mii_put16(bge_t *bgep, bge_regno_t regno, uint16_t data);
1304 #pragma	no_inline(bge_mii_put16)
1305 
1306 void
1307 bge_mii_put16(bge_t *bgep, bge_regno_t regno, uint16_t data)
1308 {
1309 	BGE_TRACE(("bge_mii_put16($%p, 0x%lx, 0x%x)",
1310 	    (void *)bgep, regno, data));
1311 
1312 	ASSERT(mutex_owned(bgep->genlock));
1313 
1314 	if (DEVICE_5906_SERIES_CHIPSETS(bgep) && ((regno == MII_AUX_CONTROL) ||
1315 	    (regno == MII_MSCONTROL)))
1316 		return;
1317 
1318 	(void) bge_mii_access(bgep, regno, data, MI_COMMS_COMMAND_WRITE);
1319 }
1320 
1321 uint16_t
1322 bge_phydsp_read(bge_t *bgep, bge_regno_t regno)
1323 {
1324 	BGE_TRACE(("bge_phydsp_read($%p, 0x%lx)",
1325 	          (void *)bgep, regno));
1326 
1327 	ASSERT(mutex_owned(bgep->genlock));
1328 
1329 	bge_mii_put16(bgep, MII_DSP_ADDRESS, regno);
1330 	return bge_mii_get16(bgep, MII_DSP_RW_PORT);
1331 }
1332 
1333 #pragma	no_inline(bge_phydsp_write)
1334 
1335 void
1336 bge_phydsp_write(bge_t *bgep, bge_regno_t regno, uint16_t data)
1337 {
1338 	BGE_TRACE(("bge_phydsp_write($%p, 0x%lx, 0x%x)",
1339 	          (void *)bgep, regno, data));
1340 
1341 	ASSERT(mutex_owned(bgep->genlock));
1342 
1343 	bge_mii_put16(bgep, MII_DSP_ADDRESS, regno);
1344 	bge_mii_put16(bgep, MII_DSP_RW_PORT, data);
1345 }
1346 
1347 #undef	BGE_DBG
1348 #define	BGE_DBG		BGE_DBG_SEEPROM	/* debug flag for this code	*/
1349 
1350 #if	BGE_SEE_IO32 || BGE_FLASH_IO32
1351 
1352 /*
1353  * Basic SEEPROM get/set access routine
1354  *
1355  * This uses the chip's SEEPROM auto-access method, controlled by the
1356  * Serial EEPROM Address/Data Registers at 0x6838/683c, so the CPU
1357  * doesn't have to fiddle with the individual bits.
1358  *
1359  * The caller should hold <genlock> and *also* have already acquired
1360  * the right to access the SEEPROM, via bge_nvmem_acquire() above.
1361  *
1362  * Return value:
1363  *	0 on success,
1364  *	ENODATA on access timeout (maybe retryable: device may just be busy)
1365  *	EPROTO on other h/w or s/w errors.
1366  *
1367  * <*dp> is an input to a SEEPROM_ACCESS_WRITE operation, or an output
1368  * from a (successful) SEEPROM_ACCESS_READ.
1369  */
1370 static int bge_seeprom_access(bge_t *bgep, uint32_t cmd, bge_regno_t addr,
1371 				uint32_t *dp);
1372 #pragma	no_inline(bge_seeprom_access)
1373 
1374 static int
1375 bge_seeprom_access(bge_t *bgep, uint32_t cmd, bge_regno_t addr, uint32_t *dp)
1376 {
1377 	uint32_t tries;
1378 	uint32_t regval;
1379 
1380 	ASSERT(mutex_owned(bgep->genlock));
1381 
1382 	/*
1383 	 * On the newer chips that support both SEEPROM & Flash, we need
1384 	 * to specifically enable SEEPROM access (Flash is the default).
1385 	 * On older chips, we don't; SEEPROM is the only NVtype supported,
1386 	 * and the NVM control registers don't exist ...
1387 	 */
1388 	switch (bgep->chipid.nvtype) {
1389 	case BGE_NVTYPE_NONE:
1390 	case BGE_NVTYPE_UNKNOWN:
1391 		_NOTE(NOTREACHED)
1392 	case BGE_NVTYPE_SEEPROM:
1393 		break;
1394 
1395 	case BGE_NVTYPE_LEGACY_SEEPROM:
1396 	case BGE_NVTYPE_UNBUFFERED_FLASH:
1397 	case BGE_NVTYPE_BUFFERED_FLASH:
1398 	default:
1399 		bge_reg_set32(bgep, NVM_CONFIG1_REG,
1400 		    NVM_CFG1_LEGACY_SEEPROM_MODE);
1401 		break;
1402 	}
1403 
1404 	/*
1405 	 * Check there's no command in progress.
1406 	 *
1407 	 * Note: this *shouldn't* ever find that there is a command
1408 	 * in progress, because we already hold the <genlock> mutex.
1409 	 * Also, to ensure we don't have a conflict with the chip's
1410 	 * internal firmware or a process accessing the same (shared)
1411 	 * SEEPROM through the other port of a 5704, we've already
1412 	 * been through the "software arbitration" protocol.
1413 	 * So this is just a final consistency check: we shouldn't
1414 	 * see EITHER the START bit (command started but not complete)
1415 	 * OR the COMPLETE bit (command completed but not cleared).
1416 	 */
1417 	regval = bge_reg_get32(bgep, SERIAL_EEPROM_ADDRESS_REG);
1418 	if (regval & SEEPROM_ACCESS_START)
1419 		return (EPROTO);
1420 	if (regval & SEEPROM_ACCESS_COMPLETE)
1421 		return (EPROTO);
1422 
1423 	/*
1424 	 * Assemble the command ...
1425 	 */
1426 	cmd |= addr & SEEPROM_ACCESS_ADDRESS_MASK;
1427 	addr >>= SEEPROM_ACCESS_ADDRESS_SIZE;
1428 	addr <<= SEEPROM_ACCESS_DEVID_SHIFT;
1429 	cmd |= addr & SEEPROM_ACCESS_DEVID_MASK;
1430 	cmd |= SEEPROM_ACCESS_START;
1431 	cmd |= SEEPROM_ACCESS_COMPLETE;
1432 	cmd |= regval & SEEPROM_ACCESS_HALFCLOCK_MASK;
1433 
1434 	bge_reg_put32(bgep, SERIAL_EEPROM_DATA_REG, *dp);
1435 	bge_reg_put32(bgep, SERIAL_EEPROM_ADDRESS_REG, cmd);
1436 
1437 	/*
1438 	 * By observation, a successful access takes ~20us on a 5703/4,
1439 	 * but apparently much longer (up to 1000us) on the obsolescent
1440 	 * BCM5700/BCM5701.  We want to be sure we don't get any false
1441 	 * timeouts here; but OTOH, we don't want a bogus access to lock
1442 	 * out interrupts for longer than necessary. So we'll allow up
1443 	 * to 1000us ...
1444 	 */
1445 	for (tries = 0; tries < 1000; ++tries) {
1446 		regval = bge_reg_get32(bgep, SERIAL_EEPROM_ADDRESS_REG);
1447 		if (regval & SEEPROM_ACCESS_COMPLETE)
1448 			break;
1449 		drv_usecwait(1);
1450 	}
1451 
1452 	if (regval & SEEPROM_ACCESS_COMPLETE) {
1453 		/*
1454 		 * All OK; read the SEEPROM data register, then write back
1455 		 * the value read from the address register in order to
1456 		 * clear the <complete> bit and leave the SEEPROM access
1457 		 * state machine idle, ready for the next access ...
1458 		 */
1459 		BGE_DEBUG(("bge_seeprom_access: complete after %d us", tries));
1460 		*dp = bge_reg_get32(bgep, SERIAL_EEPROM_DATA_REG);
1461 		bge_reg_put32(bgep, SERIAL_EEPROM_ADDRESS_REG, regval);
1462 		return (0);
1463 	}
1464 
1465 	/*
1466 	 * Hmm ... what happened here?
1467 	 *
1468 	 * Most likely, the user addressed a non-existent SEEPROM. Or
1469 	 * maybe the SEEPROM was busy internally (e.g. processing a write)
1470 	 * and didn't respond to being addressed. Either way, it's left
1471 	 * the SEEPROM access state machine wedged. So we'll reset it
1472 	 * before we leave, so it's ready for next time ...
1473 	 */
1474 	BGE_DEBUG(("bge_seeprom_access: timed out after %d us", tries));
1475 	bge_reg_set32(bgep, SERIAL_EEPROM_ADDRESS_REG, SEEPROM_ACCESS_INIT);
1476 	return (ENODATA);
1477 }
1478 
1479 /*
1480  * Basic Flash get/set access routine
1481  *
1482  * These use the chip's Flash auto-access method, controlled by the
1483  * Flash Access Registers at 0x7000-701c, so the CPU doesn't have to
1484  * fiddle with the individual bits.
1485  *
1486  * The caller should hold <genlock> and *also* have already acquired
1487  * the right to access the Flash, via bge_nvmem_acquire() above.
1488  *
1489  * Return value:
1490  *	0 on success,
1491  *	ENODATA on access timeout (maybe retryable: device may just be busy)
1492  *	ENODEV if the NVmem device is missing or otherwise unusable
1493  *
1494  * <*dp> is an input to a NVM_FLASH_CMD_WR operation, or an output
1495  * from a (successful) NVM_FLASH_CMD_RD.
1496  */
1497 static int bge_flash_access(bge_t *bgep, uint32_t cmd, bge_regno_t addr,
1498 				uint32_t *dp);
1499 #pragma	no_inline(bge_flash_access)
1500 
1501 static int
1502 bge_flash_access(bge_t *bgep, uint32_t cmd, bge_regno_t addr, uint32_t *dp)
1503 {
1504 	uint32_t tries;
1505 	uint32_t regval;
1506 
1507 	ASSERT(mutex_owned(bgep->genlock));
1508 
1509 	/*
1510 	 * On the newer chips that support both SEEPROM & Flash, we need
1511 	 * to specifically disable SEEPROM access while accessing Flash.
1512 	 * The older chips don't support Flash, and the NVM registers don't
1513 	 * exist, so we shouldn't be here at all!
1514 	 */
1515 	switch (bgep->chipid.nvtype) {
1516 	case BGE_NVTYPE_NONE:
1517 	case BGE_NVTYPE_UNKNOWN:
1518 		_NOTE(NOTREACHED)
1519 	case BGE_NVTYPE_SEEPROM:
1520 		return (ENODEV);
1521 
1522 	case BGE_NVTYPE_LEGACY_SEEPROM:
1523 	case BGE_NVTYPE_UNBUFFERED_FLASH:
1524 	case BGE_NVTYPE_BUFFERED_FLASH:
1525 	default:
1526 		bge_reg_clr32(bgep, NVM_CONFIG1_REG,
1527 		    NVM_CFG1_LEGACY_SEEPROM_MODE);
1528 		break;
1529 	}
1530 
1531 	/*
1532 	 * Assemble the command ...
1533 	 */
1534 	addr &= NVM_FLASH_ADDR_MASK;
1535 	cmd |= NVM_FLASH_CMD_DOIT;
1536 	cmd |= NVM_FLASH_CMD_FIRST;
1537 	cmd |= NVM_FLASH_CMD_LAST;
1538 	cmd |= NVM_FLASH_CMD_DONE;
1539 
1540 	bge_reg_put32(bgep, NVM_FLASH_WRITE_REG, *dp);
1541 	bge_reg_put32(bgep, NVM_FLASH_ADDR_REG, addr);
1542 	bge_reg_put32(bgep, NVM_FLASH_CMD_REG, cmd);
1543 
1544 	/*
1545 	 * Allow up to 1000ms ...
1546 	 */
1547 	for (tries = 0; tries < 1000; ++tries) {
1548 		regval = bge_reg_get32(bgep, NVM_FLASH_CMD_REG);
1549 		if (regval & NVM_FLASH_CMD_DONE)
1550 			break;
1551 		drv_usecwait(1);
1552 	}
1553 
1554 	if (regval & NVM_FLASH_CMD_DONE) {
1555 		/*
1556 		 * All OK; read the data from the Flash read register
1557 		 */
1558 		BGE_DEBUG(("bge_flash_access: complete after %d us", tries));
1559 		*dp = bge_reg_get32(bgep, NVM_FLASH_READ_REG);
1560 		return (0);
1561 	}
1562 
1563 	/*
1564 	 * Hmm ... what happened here?
1565 	 *
1566 	 * Most likely, the user addressed a non-existent Flash. Or
1567 	 * maybe the Flash was busy internally (e.g. processing a write)
1568 	 * and didn't respond to being addressed. Either way, there's
1569 	 * nothing we can here ...
1570 	 */
1571 	BGE_DEBUG(("bge_flash_access: timed out after %d us", tries));
1572 	return (ENODATA);
1573 }
1574 
1575 /*
1576  * The next two functions regulate access to the NVram (if fitted).
1577  *
1578  * On a 5704 (dual core) chip, there's only one SEEPROM and one Flash
1579  * (SPI) interface, but they can be accessed through either port. These
1580  * are managed by different instance of this driver and have no software
1581  * state in common.
1582  *
1583  * In addition (and even on a single core chip) the chip's internal
1584  * firmware can access the SEEPROM/Flash, most notably after a RESET
1585  * when it may download code to run internally.
1586  *
1587  * So we need to arbitrate between these various software agents.  For
1588  * this purpose, the chip provides the Software Arbitration Register,
1589  * which implements hardware(!) arbitration.
1590  *
1591  * This functionality didn't exist on older (5700/5701) chips, so there's
1592  * nothing we can do by way of arbitration on those; also, if there's no
1593  * SEEPROM/Flash fitted (or we couldn't determine what type), there's also
1594  * nothing to do.
1595  *
1596  * The internal firmware appears to use Request 0, which is the highest
1597  * priority.  So we'd like to use Request 2, leaving one higher and one
1598  * lower for any future developments ... but apparently this doesn't
1599  * always work.  So for now, the code uses Request 1 ;-(
1600  */
1601 
1602 #define	NVM_READ_REQ	NVM_READ_REQ1
1603 #define	NVM_RESET_REQ	NVM_RESET_REQ1
1604 #define	NVM_SET_REQ	NVM_SET_REQ1
1605 
1606 static void bge_nvmem_relinquish(bge_t *bgep);
1607 #pragma	no_inline(bge_nvmem_relinquish)
1608 
1609 static void
1610 bge_nvmem_relinquish(bge_t *bgep)
1611 {
1612 	ASSERT(mutex_owned(bgep->genlock));
1613 
1614 	switch (bgep->chipid.nvtype) {
1615 	case BGE_NVTYPE_NONE:
1616 	case BGE_NVTYPE_UNKNOWN:
1617 		_NOTE(NOTREACHED)
1618 		return;
1619 
1620 	case BGE_NVTYPE_SEEPROM:
1621 		/*
1622 		 * No arbitration performed, no release needed
1623 		 */
1624 		return;
1625 
1626 	case BGE_NVTYPE_LEGACY_SEEPROM:
1627 	case BGE_NVTYPE_UNBUFFERED_FLASH:
1628 	case BGE_NVTYPE_BUFFERED_FLASH:
1629 	default:
1630 		break;
1631 	}
1632 
1633 	/*
1634 	 * Our own request should be present (whether or not granted) ...
1635 	 */
1636 	(void) bge_reg_get32(bgep, NVM_SW_ARBITRATION_REG);
1637 
1638 	/*
1639 	 * ... this will make it go away.
1640 	 */
1641 	bge_reg_put32(bgep, NVM_SW_ARBITRATION_REG, NVM_RESET_REQ);
1642 	(void) bge_reg_get32(bgep, NVM_SW_ARBITRATION_REG);
1643 }
1644 
1645 /*
1646  * Arbitrate for access to the NVmem, if necessary
1647  *
1648  * Return value:
1649  *	0 on success
1650  *	EAGAIN if the device is in use (retryable)
1651  *	ENODEV if the NVmem device is missing or otherwise unusable
1652  */
1653 static int bge_nvmem_acquire(bge_t *bgep);
1654 #pragma	no_inline(bge_nvmem_acquire)
1655 
1656 static int
1657 bge_nvmem_acquire(bge_t *bgep)
1658 {
1659 	uint32_t regval;
1660 	uint32_t tries;
1661 
1662 	ASSERT(mutex_owned(bgep->genlock));
1663 
1664 	switch (bgep->chipid.nvtype) {
1665 	case BGE_NVTYPE_NONE:
1666 	case BGE_NVTYPE_UNKNOWN:
1667 		/*
1668 		 * Access denied: no (recognisable) device fitted
1669 		 */
1670 		return (ENODEV);
1671 
1672 	case BGE_NVTYPE_SEEPROM:
1673 		/*
1674 		 * Access granted: no arbitration needed (or possible)
1675 		 */
1676 		return (0);
1677 
1678 	case BGE_NVTYPE_LEGACY_SEEPROM:
1679 	case BGE_NVTYPE_UNBUFFERED_FLASH:
1680 	case BGE_NVTYPE_BUFFERED_FLASH:
1681 	default:
1682 		/*
1683 		 * Access conditional: conduct arbitration protocol
1684 		 */
1685 		break;
1686 	}
1687 
1688 	/*
1689 	 * We're holding the per-port mutex <genlock>, so no-one other
1690 	 * thread can be attempting to access the NVmem through *this*
1691 	 * port. But it could be in use by the *other* port (of a 5704),
1692 	 * or by the chip's internal firmware, so we have to go through
1693 	 * the full (hardware) arbitration protocol ...
1694 	 *
1695 	 * Note that *because* we're holding <genlock>, the interrupt handler
1696 	 * won't be able to progress.  So we're only willing to spin for a
1697 	 * fairly short time.  Specifically:
1698 	 *
1699 	 *	We *must* wait long enough for the hardware to resolve all
1700 	 *	requests and determine the winner.  Fortunately, this is
1701 	 *	"almost instantaneous", even as observed by GHz CPUs.
1702 	 *
1703 	 *	A successful access by another Solaris thread (via either
1704 	 *	port) typically takes ~20us.  So waiting a bit longer than
1705 	 *	that will give a good chance of success, if the other user
1706 	 *	*is* another thread on the other port.
1707 	 *
1708 	 *	However, the internal firmware can hold on to the NVmem
1709 	 *	for *much* longer: at least 10 milliseconds just after a
1710 	 *	RESET, and maybe even longer if the NVmem actually contains
1711 	 *	code to download and run on the internal CPUs.
1712 	 *
1713 	 * So, we'll allow 50us; if that's not enough then it's up to the
1714 	 * caller to retry later (hence the choice of return code EAGAIN).
1715 	 */
1716 	regval = bge_reg_get32(bgep, NVM_SW_ARBITRATION_REG);
1717 	bge_reg_put32(bgep, NVM_SW_ARBITRATION_REG, NVM_SET_REQ);
1718 
1719 	for (tries = 0; tries < 50; ++tries) {
1720 		regval = bge_reg_get32(bgep, NVM_SW_ARBITRATION_REG);
1721 		if (regval & NVM_WON_REQ1)
1722 			break;
1723 		drv_usecwait(1);
1724 	}
1725 
1726 	if (regval & NVM_WON_REQ1) {
1727 		BGE_DEBUG(("bge_nvmem_acquire: won after %d us", tries));
1728 		return (0);
1729 	}
1730 
1731 	/*
1732 	 * Somebody else must be accessing the NVmem, so abandon our
1733 	 * attempt take control of it.  The caller can try again later ...
1734 	 */
1735 	BGE_DEBUG(("bge_nvmem_acquire: lost after %d us", tries));
1736 	bge_nvmem_relinquish(bgep);
1737 	return (EAGAIN);
1738 }
1739 
1740 /*
1741  * This code assumes that the GPIO1 bit has been wired up to the NVmem
1742  * write protect line in such a way that the NVmem is protected when
1743  * GPIO1 is an input, or is an output but driven high.  Thus, to make the
1744  * NVmem writable we have to change GPIO1 to an output AND drive it low.
1745  *
1746  * Note: there's only one set of GPIO pins on a 5704, even though they
1747  * can be accessed through either port.  So the chip has to resolve what
1748  * happens if the two ports program a single pin differently ... the rule
1749  * it uses is that if the ports disagree about the *direction* of a pin,
1750  * "output" wins over "input", but if they disagree about its *value* as
1751  * an output, then the pin is TRISTATED instead!  In such a case, no-one
1752  * wins, and the external signal does whatever the external circuitry
1753  * defines as the default -- which we've assumed is the PROTECTED state.
1754  * So, we always change GPIO1 back to being an *input* whenever we're not
1755  * specifically using it to unprotect the NVmem. This allows either port
1756  * to update the NVmem, although obviously only one at a time!
1757  *
1758  * The caller should hold <genlock> and *also* have already acquired the
1759  * right to access the NVmem, via bge_nvmem_acquire() above.
1760  */
1761 static void bge_nvmem_protect(bge_t *bgep, boolean_t protect);
1762 #pragma	inline(bge_nvmem_protect)
1763 
1764 static void
1765 bge_nvmem_protect(bge_t *bgep, boolean_t protect)
1766 {
1767 	uint32_t regval;
1768 
1769 	ASSERT(mutex_owned(bgep->genlock));
1770 
1771 	regval = bge_reg_get32(bgep, MISC_LOCAL_CONTROL_REG);
1772 	if (protect) {
1773 		regval |= MLCR_MISC_PINS_OUTPUT_1;
1774 		regval &= ~MLCR_MISC_PINS_OUTPUT_ENABLE_1;
1775 	} else {
1776 		regval &= ~MLCR_MISC_PINS_OUTPUT_1;
1777 		regval |= MLCR_MISC_PINS_OUTPUT_ENABLE_1;
1778 	}
1779 	bge_reg_put32(bgep, MISC_LOCAL_CONTROL_REG, regval);
1780 }
1781 
1782 /*
1783  * Now put it all together ...
1784  *
1785  * Try to acquire control of the NVmem; if successful, then:
1786  *	unprotect it (if we want to write to it)
1787  *	perform the requested access
1788  *	reprotect it (after a write)
1789  *	relinquish control
1790  *
1791  * Return value:
1792  *	0 on success,
1793  *	EAGAIN if the device is in use (retryable)
1794  *	ENODATA on access timeout (maybe retryable: device may just be busy)
1795  *	ENODEV if the NVmem device is missing or otherwise unusable
1796  *	EPROTO on other h/w or s/w errors.
1797  */
1798 static int
1799 bge_nvmem_rw32(bge_t *bgep, uint32_t cmd, bge_regno_t addr, uint32_t *dp)
1800 {
1801 	int err;
1802 
1803 	if ((err = bge_nvmem_acquire(bgep)) == 0) {
1804 		switch (cmd) {
1805 		case BGE_SEE_READ:
1806 			err = bge_seeprom_access(bgep,
1807 			    SEEPROM_ACCESS_READ, addr, dp);
1808 			break;
1809 
1810 		case BGE_SEE_WRITE:
1811 			bge_nvmem_protect(bgep, B_FALSE);
1812 			err = bge_seeprom_access(bgep,
1813 			    SEEPROM_ACCESS_WRITE, addr, dp);
1814 			bge_nvmem_protect(bgep, B_TRUE);
1815 			break;
1816 
1817 		case BGE_FLASH_READ:
1818 			if (DEVICE_5721_SERIES_CHIPSETS(bgep) ||
1819 			    DEVICE_5723_SERIES_CHIPSETS(bgep) ||
1820 			    DEVICE_5717_SERIES_CHIPSETS(bgep) ||
1821 			    DEVICE_5725_SERIES_CHIPSETS(bgep) ||
1822 			    DEVICE_5714_SERIES_CHIPSETS(bgep) ||
1823 			    DEVICE_57765_SERIES_CHIPSETS(bgep)) {
1824 				bge_reg_set32(bgep, NVM_ACCESS_REG,
1825 				    NVM_ACCESS_ENABLE);
1826 			}
1827 			err = bge_flash_access(bgep,
1828 			    NVM_FLASH_CMD_RD, addr, dp);
1829 			if (DEVICE_5721_SERIES_CHIPSETS(bgep) ||
1830 			    DEVICE_5723_SERIES_CHIPSETS(bgep) ||
1831 			    DEVICE_5717_SERIES_CHIPSETS(bgep) ||
1832 			    DEVICE_5725_SERIES_CHIPSETS(bgep) ||
1833 			    DEVICE_5714_SERIES_CHIPSETS(bgep) ||
1834 			    DEVICE_57765_SERIES_CHIPSETS(bgep)) {
1835 				bge_reg_clr32(bgep, NVM_ACCESS_REG,
1836 				    NVM_ACCESS_ENABLE);
1837 			}
1838 			break;
1839 
1840 		case BGE_FLASH_WRITE:
1841 			if (DEVICE_5721_SERIES_CHIPSETS(bgep) ||
1842 			    DEVICE_5723_SERIES_CHIPSETS(bgep) ||
1843 			    DEVICE_5717_SERIES_CHIPSETS(bgep) ||
1844 			    DEVICE_5725_SERIES_CHIPSETS(bgep) ||
1845 			    DEVICE_5714_SERIES_CHIPSETS(bgep) ||
1846 			    DEVICE_57765_SERIES_CHIPSETS(bgep)) {
1847 				bge_reg_set32(bgep, NVM_ACCESS_REG,
1848 				    NVM_WRITE_ENABLE|NVM_ACCESS_ENABLE);
1849 			}
1850 			bge_nvmem_protect(bgep, B_FALSE);
1851 			err = bge_flash_access(bgep,
1852 			    NVM_FLASH_CMD_WR, addr, dp);
1853 			bge_nvmem_protect(bgep, B_TRUE);
1854 			if (DEVICE_5721_SERIES_CHIPSETS(bgep) ||
1855 			    DEVICE_5723_SERIES_CHIPSETS(bgep) ||
1856 			    DEVICE_5717_SERIES_CHIPSETS(bgep) ||
1857 			    DEVICE_5725_SERIES_CHIPSETS(bgep) ||
1858 			    DEVICE_5714_SERIES_CHIPSETS(bgep) ||
1859 			    DEVICE_57765_SERIES_CHIPSETS(bgep)) {
1860 				bge_reg_clr32(bgep, NVM_ACCESS_REG,
1861 				    NVM_WRITE_ENABLE|NVM_ACCESS_ENABLE);
1862 			}
1863 
1864 			break;
1865 
1866 		default:
1867 			_NOTE(NOTREACHED)
1868 			break;
1869 		}
1870 		bge_nvmem_relinquish(bgep);
1871 	}
1872 
1873 	BGE_DEBUG(("bge_nvmem_rw32: err %d", err));
1874 	return (err);
1875 }
1876 
1877 static uint32_t
1878 bge_nvmem_access_cmd(bge_t *bgep, boolean_t read)
1879 {
1880 	switch (bgep->chipid.nvtype) {
1881 	case BGE_NVTYPE_NONE:
1882 	case BGE_NVTYPE_UNKNOWN:
1883 	default:
1884 		return 0;
1885 
1886 	case BGE_NVTYPE_SEEPROM:
1887 	case BGE_NVTYPE_LEGACY_SEEPROM:
1888 		return (read ? BGE_SEE_READ : BGE_SEE_WRITE);
1889 
1890 	case BGE_NVTYPE_UNBUFFERED_FLASH:
1891 	case BGE_NVTYPE_BUFFERED_FLASH:
1892 		return (read ? BGE_FLASH_READ : BGE_FLASH_WRITE);
1893 	}
1894 }
1895 
1896 
1897 int
1898 bge_nvmem_read32(bge_t *bgep, bge_regno_t addr, uint32_t *dp)
1899 {
1900 	return (bge_nvmem_rw32(bgep, bge_nvmem_access_cmd(bgep, B_TRUE),
1901 	    addr, dp));
1902 }
1903 
1904 
1905 int
1906 bge_nvmem_write32(bge_t *bgep, bge_regno_t addr, uint32_t *dp)
1907 {
1908 	return (bge_nvmem_rw32(bgep, bge_nvmem_access_cmd(bgep, B_FALSE),
1909 	    addr, dp));
1910 }
1911 
1912 
1913 /*
1914  * Attempt to get a MAC address from the SEEPROM or Flash, if any
1915  */
1916 static uint64_t bge_get_nvmac(bge_t *bgep);
1917 #pragma no_inline(bge_get_nvmac)
1918 
1919 static uint64_t
1920 bge_get_nvmac(bge_t *bgep)
1921 {
1922 	uint32_t mac_high;
1923 	uint32_t mac_low;
1924 	uint32_t addr;
1925 	uint32_t cmd;
1926 	uint64_t mac;
1927 
1928 	BGE_TRACE(("bge_get_nvmac($%p)",
1929 	    (void *)bgep));
1930 
1931 	switch (bgep->chipid.nvtype) {
1932 	case BGE_NVTYPE_NONE:
1933 	case BGE_NVTYPE_UNKNOWN:
1934 	default:
1935 		return (0ULL);
1936 
1937 	case BGE_NVTYPE_SEEPROM:
1938 	case BGE_NVTYPE_LEGACY_SEEPROM:
1939 		cmd = BGE_SEE_READ;
1940 		break;
1941 
1942 	case BGE_NVTYPE_UNBUFFERED_FLASH:
1943 	case BGE_NVTYPE_BUFFERED_FLASH:
1944 		cmd = BGE_FLASH_READ;
1945 		break;
1946 	}
1947 
1948 	if (DEVICE_5906_SERIES_CHIPSETS(bgep))
1949 		addr = NVMEM_DATA_MAC_ADDRESS_5906;
1950 	else
1951 		addr = NVMEM_DATA_MAC_ADDRESS;
1952 
1953 	if (bge_nvmem_rw32(bgep, cmd, addr, &mac_high))
1954 		return (0ULL);
1955 	addr += 4;
1956 	if (bge_nvmem_rw32(bgep, cmd, addr, &mac_low))
1957 		return (0ULL);
1958 
1959 	/*
1960 	 * The Broadcom chip is natively BIG-endian, so that's how the
1961 	 * MAC address is represented in NVmem.  We may need to swap it
1962 	 * around on a little-endian host ...
1963 	 */
1964 #ifdef	_BIG_ENDIAN
1965 	mac = mac_high;
1966 	mac = mac << 32;
1967 	mac |= mac_low;
1968 #else
1969 	mac = BGE_BSWAP_32(mac_high);
1970 	mac = mac << 32;
1971 	mac |= BGE_BSWAP_32(mac_low);
1972 #endif	/* _BIG_ENDIAN */
1973 
1974 	return (mac);
1975 }
1976 
1977 #else	/* BGE_SEE_IO32 || BGE_FLASH_IO32 */
1978 
1979 /*
1980  * Dummy version for when we're not supporting NVmem access
1981  */
1982 static uint64_t bge_get_nvmac(bge_t *bgep);
1983 #pragma inline(bge_get_nvmac)
1984 
1985 static uint64_t
1986 bge_get_nvmac(bge_t *bgep)
1987 {
1988 	_NOTE(ARGUNUSED(bgep))
1989 	return (0ULL);
1990 }
1991 
1992 #endif	/* BGE_SEE_IO32 || BGE_FLASH_IO32 */
1993 
1994 /*
1995  * Determine the type of NVmem that is (or may be) attached to this chip,
1996  */
1997 static enum bge_nvmem_type bge_nvmem_id(bge_t *bgep);
1998 #pragma no_inline(bge_nvmem_id)
1999 
2000 static enum bge_nvmem_type
2001 bge_nvmem_id(bge_t *bgep)
2002 {
2003 	enum bge_nvmem_type nvtype;
2004 	uint32_t config1;
2005 
2006 	BGE_TRACE(("bge_nvmem_id($%p)",
2007 	    (void *)bgep));
2008 
2009 	switch (bgep->chipid.device) {
2010 	default:
2011 		/*
2012 		 * We shouldn't get here; it means we don't recognise
2013 		 * the chip, which means we don't know how to determine
2014 		 * what sort of NVmem (if any) it has.  So we'll say
2015 		 * NONE, to disable the NVmem access code ...
2016 		 */
2017 		nvtype = BGE_NVTYPE_NONE;
2018 		break;
2019 
2020 	case DEVICE_ID_5700:
2021 	case DEVICE_ID_5700x:
2022 	case DEVICE_ID_5701:
2023 		/*
2024 		 * These devices support *only* SEEPROMs
2025 		 */
2026 		nvtype = BGE_NVTYPE_SEEPROM;
2027 		break;
2028 
2029 	case DEVICE_ID_5702:
2030 	case DEVICE_ID_5702fe:
2031 	case DEVICE_ID_5703C:
2032 	case DEVICE_ID_5703S:
2033 	case DEVICE_ID_5704C:
2034 	case DEVICE_ID_5704S:
2035 	case DEVICE_ID_5704:
2036 	case DEVICE_ID_5705M:
2037 	case DEVICE_ID_5705C:
2038 	case DEVICE_ID_5705_2:
2039 	case DEVICE_ID_5717:
2040 	case DEVICE_ID_5718:
2041 	case DEVICE_ID_5719:
2042 	case DEVICE_ID_5720:
2043 	case DEVICE_ID_5724:
2044 	case DEVICE_ID_5725:
2045 	case DEVICE_ID_5727:
2046 	case DEVICE_ID_57780:
2047 	case DEVICE_ID_5780:
2048 	case DEVICE_ID_5782:
2049 	case DEVICE_ID_5785:
2050 	case DEVICE_ID_5787:
2051 	case DEVICE_ID_5787M:
2052 	case DEVICE_ID_5788:
2053 	case DEVICE_ID_5789:
2054 	case DEVICE_ID_5751:
2055 	case DEVICE_ID_5751M:
2056 	case DEVICE_ID_5752:
2057 	case DEVICE_ID_5752M:
2058 	case DEVICE_ID_5754:
2059 	case DEVICE_ID_5755:
2060 	case DEVICE_ID_5755M:
2061 	case DEVICE_ID_5756M:
2062 	case DEVICE_ID_5721:
2063 	case DEVICE_ID_5722:
2064 	case DEVICE_ID_5723:
2065 	case DEVICE_ID_5761:
2066 	case DEVICE_ID_5761E:
2067 	case DEVICE_ID_5764:
2068 	case DEVICE_ID_5714C:
2069 	case DEVICE_ID_5714S:
2070 	case DEVICE_ID_5715C:
2071 	case DEVICE_ID_5715S:
2072 	case DEVICE_ID_57761:
2073 	case DEVICE_ID_57762:
2074 	case DEVICE_ID_57765:
2075 	case DEVICE_ID_57766:
2076 	case DEVICE_ID_57781:
2077 	case DEVICE_ID_57782:
2078 	case DEVICE_ID_57785:
2079 	case DEVICE_ID_57786:
2080 	case DEVICE_ID_57791:
2081 	case DEVICE_ID_57795:
2082 		config1 = bge_reg_get32(bgep, NVM_CONFIG1_REG);
2083 		if (config1 & NVM_CFG1_FLASH_MODE)
2084 			if (config1 & NVM_CFG1_BUFFERED_MODE)
2085 				nvtype = BGE_NVTYPE_BUFFERED_FLASH;
2086 			else
2087 				nvtype = BGE_NVTYPE_UNBUFFERED_FLASH;
2088 		else
2089 			nvtype = BGE_NVTYPE_LEGACY_SEEPROM;
2090 		break;
2091 	case DEVICE_ID_5906:
2092 	case DEVICE_ID_5906M:
2093 		nvtype = BGE_NVTYPE_BUFFERED_FLASH;
2094 		break;
2095 	}
2096 
2097 	return (nvtype);
2098 }
2099 
2100 #undef	BGE_DBG
2101 #define	BGE_DBG		BGE_DBG_APE	/* debug flag for this code	*/
2102 
2103 uint32_t bge_ape_get32(bge_t *bgep, bge_regno_t regno);
2104 #pragma	inline(bge_ape_get32)
2105 
2106 uint32_t
2107 bge_ape_get32(bge_t *bgep, bge_regno_t regno)
2108 {
2109 	BGE_TRACE(("bge_ape_get32($%p, 0x%lx)",
2110 	    (void *)bgep, regno));
2111 
2112 	return (ddi_get32(bgep->ape_handle, APE_ADDR(bgep, regno)));
2113 }
2114 
2115 void bge_ape_put32(bge_t *bgep, bge_regno_t regno, uint32_t data);
2116 #pragma	inline(bge_ape_put32)
2117 
2118 void
2119 bge_ape_put32(bge_t *bgep, bge_regno_t regno, uint32_t data)
2120 {
2121 	BGE_TRACE(("bge_ape_put32($%p, 0x%lx, 0x%x)",
2122 	    (void *)bgep, regno, data));
2123 
2124 	ddi_put32(bgep->ape_handle, APE_ADDR(bgep, regno), data);
2125 	BGE_PCICHK(bgep);
2126 }
2127 
2128 void
2129 bge_ape_lock_init(bge_t *bgep)
2130 {
2131 	int i;
2132 	uint32_t regbase;
2133 	uint32_t bit;
2134 
2135 	BGE_TRACE(("bge_ape_lock_init($%p)", (void *)bgep));
2136 
2137 	if (bgep->chipid.device == DEVICE_ID_5761)
2138 		regbase = BGE_APE_LOCK_GRANT;
2139 	else
2140 		regbase = BGE_APE_PER_LOCK_GRANT;
2141 
2142 	/* Make sure the driver hasn't any stale locks. */
2143 	for (i = BGE_APE_LOCK_PHY0; i <= BGE_APE_LOCK_GPIO; i++) {
2144 		switch (i) {
2145 		case BGE_APE_LOCK_PHY0:
2146 		case BGE_APE_LOCK_PHY1:
2147 		case BGE_APE_LOCK_PHY2:
2148 		case BGE_APE_LOCK_PHY3:
2149 			bit = APE_LOCK_GRANT_DRIVER;
2150 			break;
2151 		default:
2152 			if (!bgep->pci_func)
2153 				bit = APE_LOCK_GRANT_DRIVER;
2154 			else
2155 				bit = 1 << bgep->pci_func;
2156 		}
2157 		bge_ape_put32(bgep, regbase + 4 * i, bit);
2158 	}
2159 }
2160 
2161 static int
2162 bge_ape_lock(bge_t *bgep, int locknum)
2163 {
2164 	int i, off;
2165 	int ret = 0;
2166 	uint32_t status;
2167 	uint32_t req;
2168 	uint32_t gnt;
2169 	uint32_t bit;
2170 
2171 	BGE_TRACE(("bge_ape_lock($%p, 0x%x)", (void *)bgep, locknum));
2172 
2173 	if (!bgep->ape_enabled)
2174 		return (0);
2175 
2176 	switch (locknum) {
2177 	case BGE_APE_LOCK_GPIO:
2178 		if (bgep->chipid.device == DEVICE_ID_5761)
2179 			return (0);
2180 		/* FALLTHROUGH */
2181 	case BGE_APE_LOCK_GRC:
2182 	case BGE_APE_LOCK_MEM:
2183 		if (!bgep->pci_func)
2184 			bit = APE_LOCK_REQ_DRIVER;
2185 		else
2186 			bit = 1 << bgep->pci_func;
2187 		break;
2188 	case BGE_APE_LOCK_PHY0:
2189 	case BGE_APE_LOCK_PHY1:
2190 	case BGE_APE_LOCK_PHY2:
2191 	case BGE_APE_LOCK_PHY3:
2192 		bit = APE_LOCK_REQ_DRIVER;
2193 		break;
2194 	default:
2195 		return (-1);
2196 	}
2197 
2198 	if (bgep->chipid.device == DEVICE_ID_5761) {
2199 		req = BGE_APE_LOCK_REQ;
2200 		gnt = BGE_APE_LOCK_GRANT;
2201 	} else {
2202 		req = BGE_APE_PER_LOCK_REQ;
2203 		gnt = BGE_APE_PER_LOCK_GRANT;
2204 	}
2205 
2206 	off = 4 * locknum;
2207 
2208 	bge_ape_put32(bgep, req + off, bit);
2209 
2210 	/* Wait for up to 1 millisecond to acquire lock. */
2211 	for (i = 0; i < 100; i++) {
2212 		status = bge_ape_get32(bgep, gnt + off);
2213 		if (status == bit)
2214 			break;
2215 		drv_usecwait(10);
2216 	}
2217 
2218 	if (status != bit) {
2219 		/* Revoke the lock request. */
2220 		bge_ape_put32(bgep, gnt + off, bit);
2221 		ret = -1;
2222 	}
2223 
2224 	return (ret);
2225 }
2226 
2227 static void
2228 bge_ape_unlock(bge_t *bgep, int locknum)
2229 {
2230 	uint32_t gnt;
2231 	uint32_t bit;
2232 
2233 	BGE_TRACE(("bge_ape_unlock($%p, 0x%x)", (void *)bgep, locknum));
2234 
2235 	if (!bgep->ape_enabled)
2236 		return;
2237 
2238 	switch (locknum) {
2239 	case BGE_APE_LOCK_GPIO:
2240 		if (bgep->chipid.device == DEVICE_ID_5761)
2241 			return;
2242 		/* FALLTHROUGH */
2243 	case BGE_APE_LOCK_GRC:
2244 	case BGE_APE_LOCK_MEM:
2245 		if (!bgep->pci_func)
2246 			bit = APE_LOCK_GRANT_DRIVER;
2247 		else
2248 			bit = 1 << bgep->pci_func;
2249 		break;
2250 	case BGE_APE_LOCK_PHY0:
2251 	case BGE_APE_LOCK_PHY1:
2252 	case BGE_APE_LOCK_PHY2:
2253 	case BGE_APE_LOCK_PHY3:
2254 		bit = APE_LOCK_GRANT_DRIVER;
2255 		break;
2256 	default:
2257 		return;
2258 	}
2259 
2260 	if (bgep->chipid.device == DEVICE_ID_5761)
2261 		gnt = BGE_APE_LOCK_GRANT;
2262 	else
2263 		gnt = BGE_APE_PER_LOCK_GRANT;
2264 
2265 	bge_ape_put32(bgep, gnt + 4 * locknum, bit);
2266 }
2267 
2268 /* wait for pending event to finish, if successful returns with MEM locked */
2269 static int
2270 bge_ape_event_lock(bge_t *bgep, uint32_t timeout_us)
2271 {
2272 	uint32_t apedata;
2273 
2274 	BGE_TRACE(("bge_ape_event_lock($%p, %d)", (void *)bgep, timeout_us));
2275 
2276 	ASSERT(timeout_us > 0);
2277 
2278 	while (timeout_us) {
2279 		if (bge_ape_lock(bgep, BGE_APE_LOCK_MEM))
2280 			return (-1);
2281 
2282 		apedata = bge_ape_get32(bgep, BGE_APE_EVENT_STATUS);
2283 		if (!(apedata & APE_EVENT_STATUS_EVENT_PENDING))
2284 			break;
2285 
2286 		bge_ape_unlock(bgep, BGE_APE_LOCK_MEM);
2287 
2288 		drv_usecwait(10);
2289 		timeout_us -= (timeout_us > 10) ? 10 : timeout_us;
2290 	}
2291 
2292 	return (timeout_us ? 0 : -1);
2293 }
2294 
2295 /* wait for pending event to finish, returns non-zero if not finished */
2296 static int
2297 bge_ape_wait_for_event(bge_t *bgep, uint32_t timeout_us)
2298 {
2299 	uint32_t i;
2300 	uint32_t apedata;
2301 
2302 	BGE_TRACE(("bge_ape_wait_for_event($%p, %d)", (void *)bgep, timeout_us));
2303 
2304 	ASSERT(timeout_us > 0);
2305 
2306 	for (i = 0; i < timeout_us / 10; i++) {
2307 		apedata = bge_ape_get32(bgep, BGE_APE_EVENT_STATUS);
2308 
2309 		if (!(apedata & APE_EVENT_STATUS_EVENT_PENDING))
2310 			break;
2311 
2312 		drv_usecwait(10);
2313 	}
2314 
2315 	return (i == timeout_us / 10);
2316 }
2317 
2318 int
2319 bge_ape_scratchpad_read(bge_t *bgep, uint32_t *data, uint32_t base_off,
2320     uint32_t lenToRead)
2321 {
2322 	int err;
2323 	uint32_t i;
2324 	uint32_t bufoff;
2325 	uint32_t msgoff;
2326 	uint32_t maxlen;
2327 	uint32_t apedata;
2328 
2329 	BGE_TRACE(("bge_ape_scratchpad_read($%p, %p, 0x%0x, %d)",
2330 	    (void *)bgep, (void*)data, base_off, lenToRead));
2331 
2332 	if (!bgep->ape_has_ncsi)
2333 		return (0);
2334 
2335 	apedata = bge_ape_get32(bgep, BGE_APE_SEG_SIG);
2336 	if (apedata != APE_SEG_SIG_MAGIC)
2337 		return (-1);
2338 
2339 	apedata = bge_ape_get32(bgep, BGE_APE_FW_STATUS);
2340 	if (!(apedata & APE_FW_STATUS_READY))
2341 		return (-1);
2342 
2343 	bufoff = (bge_ape_get32(bgep, BGE_APE_SEG_MSG_BUF_OFF) +
2344 	          BGE_APE_SHMEM_BASE);
2345 	msgoff = bufoff + 2 * sizeof(uint32_t);
2346 	maxlen = bge_ape_get32(bgep, BGE_APE_SEG_MSG_BUF_LEN);
2347 
2348 	while (lenToRead) {
2349 		uint32_t transferLen;
2350 
2351 		/* Cap xfer sizes to scratchpad limits. */
2352 		transferLen = (lenToRead > maxlen) ? maxlen : lenToRead;
2353 		lenToRead -= transferLen;
2354 
2355 		apedata = bge_ape_get32(bgep, BGE_APE_FW_STATUS);
2356 		if (!(apedata & APE_FW_STATUS_READY))
2357 			return (-1);
2358 
2359 		/* Wait for up to 1 millisecond for APE to service previous event. */
2360 		err = bge_ape_event_lock(bgep, 1000);
2361 		if (err)
2362 			return (err);
2363 
2364 		apedata = (APE_EVENT_STATUS_DRIVER_EVNT |
2365 		           APE_EVENT_STATUS_SCRTCHPD_READ |
2366 		           APE_EVENT_STATUS_EVENT_PENDING);
2367 		bge_ape_put32(bgep, BGE_APE_EVENT_STATUS, apedata);
2368 
2369 		bge_ape_put32(bgep, bufoff, base_off);
2370 		bge_ape_put32(bgep, bufoff + sizeof(uint32_t), transferLen);
2371 
2372 		bge_ape_unlock(bgep, BGE_APE_LOCK_MEM);
2373 		bge_ape_put32(bgep, BGE_APE_EVENT, APE_EVENT_1);
2374 
2375 		base_off += transferLen;
2376 
2377 		if (bge_ape_wait_for_event(bgep, 30000))
2378 			return (-1);
2379 
2380 		for (i = 0; transferLen; i += 4, transferLen -= 4) {
2381 			uint32_t val = bge_ape_get32(bgep, msgoff + i);
2382 			memcpy(data, &val, sizeof(uint32_t));
2383 			data++;
2384 		}
2385 	}
2386 
2387 	return (0);
2388 }
2389 
2390 int
2391 bge_ape_scratchpad_write(bge_t *bgep, uint32_t dstoff, uint32_t *data,
2392     uint32_t lenToWrite)
2393 {
2394 	int err;
2395 	uint32_t i;
2396 	uint32_t bufoff;
2397 	uint32_t msgoff;
2398 	uint32_t maxlen;
2399 	uint32_t apedata;
2400 
2401 	BGE_TRACE(("bge_ape_scratchpad_write($%p, %d, %p, %d)",
2402 	    (void *)bgep, dstoff, data, lenToWrite));
2403 
2404 	if (!bgep->ape_has_ncsi)
2405 		return (0);
2406 
2407 	apedata = bge_ape_get32(bgep, BGE_APE_SEG_SIG);
2408 	if (apedata != APE_SEG_SIG_MAGIC)
2409 		return (-1);
2410 
2411 	apedata = bge_ape_get32(bgep, BGE_APE_FW_STATUS);
2412 	if (!(apedata & APE_FW_STATUS_READY))
2413 		return (-1);
2414 
2415 	bufoff = (bge_ape_get32(bgep, BGE_APE_SEG_MSG_BUF_OFF) +
2416 	          BGE_APE_SHMEM_BASE);
2417 	msgoff = bufoff + 2 * sizeof(uint32_t);
2418 	maxlen = bge_ape_get32(bgep, BGE_APE_SEG_MSG_BUF_LEN);
2419 
2420 	while (lenToWrite) {
2421 		uint32_t transferLen;
2422 
2423 		/* Cap xfer sizes to scratchpad limits. */
2424 		transferLen = (lenToWrite > maxlen) ? maxlen : lenToWrite;
2425 		lenToWrite -= transferLen;
2426 
2427 		/* Wait for up to 1 millisecond for
2428 		 * APE to service previous event.
2429 		 */
2430 		err = bge_ape_event_lock(bgep, 1000);
2431 		if (err)
2432 			return (err);
2433 
2434 		bge_ape_put32(bgep, bufoff, dstoff);
2435 		bge_ape_put32(bgep, bufoff + sizeof(uint32_t), transferLen);
2436 		apedata = msgoff;
2437 
2438 		dstoff += transferLen;
2439 
2440 		for (i = 0; transferLen; i += 4, transferLen -= 4) {
2441 			bge_ape_put32(bgep, apedata, *data++);
2442 			apedata += sizeof(uint32_t);
2443 		}
2444 
2445 		apedata = (APE_EVENT_STATUS_DRIVER_EVNT |
2446 		           APE_EVENT_STATUS_SCRTCHPD_WRITE |
2447 		           APE_EVENT_STATUS_EVENT_PENDING);
2448 		bge_ape_put32(bgep, BGE_APE_EVENT_STATUS, apedata);
2449 
2450 		bge_ape_unlock(bgep, BGE_APE_LOCK_MEM);
2451 		bge_ape_put32(bgep, BGE_APE_EVENT, APE_EVENT_1);
2452 	}
2453 
2454 	return (0);
2455 }
2456 
2457 static int
2458 bge_ape_send_event(bge_t *bgep, uint32_t event)
2459 {
2460 	int err;
2461 	uint32_t apedata;
2462 
2463 	BGE_TRACE(("bge_ape_send_event($%p, %d)", (void *)bgep, event));
2464 
2465 	apedata = bge_ape_get32(bgep, BGE_APE_SEG_SIG);
2466 	if (apedata != APE_SEG_SIG_MAGIC)
2467 		return (-1);
2468 
2469 	apedata = bge_ape_get32(bgep, BGE_APE_FW_STATUS);
2470 	if (!(apedata & APE_FW_STATUS_READY))
2471 		return (-1);
2472 
2473 	/* Wait for up to 1 millisecond for APE to service previous event. */
2474 	err = bge_ape_event_lock(bgep, 1000);
2475 	if (err)
2476 		return (err);
2477 
2478 	bge_ape_put32(bgep, BGE_APE_EVENT_STATUS,
2479 	              event | APE_EVENT_STATUS_EVENT_PENDING);
2480 
2481 	bge_ape_unlock(bgep, BGE_APE_LOCK_MEM);
2482 	bge_ape_put32(bgep, BGE_APE_EVENT, APE_EVENT_1);
2483 
2484 	return 0;
2485 }
2486 
2487 static void
2488 bge_ape_driver_state_change(bge_t *bgep, int mode)
2489 {
2490 	uint32_t event;
2491 	uint32_t apedata;
2492 
2493 	BGE_TRACE(("bge_ape_driver_state_change($%p, %d)",
2494 	    (void *)bgep, mode));
2495 
2496 	if (!bgep->ape_enabled)
2497 		return;
2498 
2499 	switch (mode) {
2500 	case BGE_INIT_RESET:
2501 		bge_ape_put32(bgep, BGE_APE_HOST_SEG_SIG,
2502 		              APE_HOST_SEG_SIG_MAGIC);
2503 		bge_ape_put32(bgep, BGE_APE_HOST_SEG_LEN,
2504 		              APE_HOST_SEG_LEN_MAGIC);
2505 		apedata = bge_ape_get32(bgep, BGE_APE_HOST_INIT_COUNT);
2506 		bge_ape_put32(bgep, BGE_APE_HOST_INIT_COUNT, ++apedata);
2507 		bge_ape_put32(bgep, BGE_APE_HOST_DRIVER_ID,
2508 		              APE_HOST_DRIVER_ID_MAGIC(1, 0));
2509 		bge_ape_put32(bgep, BGE_APE_HOST_BEHAVIOR,
2510 		              APE_HOST_BEHAV_NO_PHYLOCK);
2511 		bge_ape_put32(bgep, BGE_APE_HOST_DRVR_STATE,
2512 		              BGE_APE_HOST_DRVR_STATE_START);
2513 
2514 		event = APE_EVENT_STATUS_STATE_START;
2515 		break;
2516 	case BGE_SHUTDOWN_RESET:
2517 		/* With the interface we are currently using,
2518 		 * APE does not track driver state.  Wiping
2519 		 * out the HOST SEGMENT SIGNATURE forces
2520 		 * the APE to assume OS absent status.
2521 		 */
2522 		bge_ape_put32(bgep, BGE_APE_HOST_SEG_SIG, 0x0);
2523 
2524 #if 0
2525 		if (WOL supported) {
2526 			bge_ape_put32(bgep, BGE_APE_HOST_WOL_SPEED,
2527 			              BGE_APE_HOST_WOL_SPEED_AUTO);
2528 			apedata = BGE_APE_HOST_DRVR_STATE_WOL;
2529 		} else
2530 #endif
2531 			apedata = BGE_APE_HOST_DRVR_STATE_UNLOAD;
2532 
2533 		bge_ape_put32(bgep, BGE_APE_HOST_DRVR_STATE, apedata);
2534 
2535 		event = APE_EVENT_STATUS_STATE_UNLOAD;
2536 		break;
2537 	case BGE_SUSPEND_RESET:
2538 		event = APE_EVENT_STATUS_STATE_SUSPEND;
2539 		break;
2540 	default:
2541 		return;
2542 	}
2543 
2544 	event |= APE_EVENT_STATUS_DRIVER_EVNT | APE_EVENT_STATUS_STATE_CHNGE;
2545 
2546 	bge_ape_send_event(bgep, event);
2547 }
2548 
2549 #undef	BGE_DBG
2550 #define	BGE_DBG		BGE_DBG_CHIP	/* debug flag for this code	*/
2551 
2552 static void
2553 bge_init_recv_rule(bge_t *bgep)
2554 {
2555 	bge_recv_rule_t *rulep = bgep->recv_rules;
2556 	uint32_t i;
2557 
2558 	/*
2559 	 * Initialize receive rule registers.
2560 	 * Note that rules may persist across each bge_m_start/stop() call.
2561 	 */
2562 	for (i = 0; i < RECV_RULES_NUM_MAX; i++, rulep++) {
2563 		bge_reg_put32(bgep, RECV_RULE_MASK_REG(i), rulep->mask_value);
2564 		bge_reg_put32(bgep, RECV_RULE_CONTROL_REG(i), rulep->control);
2565 	}
2566 }
2567 
2568 /*
2569  * Using the values captured by bge_chip_cfg_init(), and additional probes
2570  * as required, characterise the chip fully: determine the label by which
2571  * to refer to this chip, the correct settings for various registers, and
2572  * of course whether the device and/or subsystem are supported!
2573  */
2574 int bge_chip_id_init(bge_t *bgep);
2575 #pragma	no_inline(bge_chip_id_init)
2576 
2577 int
2578 bge_chip_id_init(bge_t *bgep)
2579 {
2580 	char buf[MAXPATHLEN];		/* any risk of stack overflow?	*/
2581 	boolean_t dev_ok;
2582 	chip_id_t *cidp;
2583 	uint32_t subid;
2584 	char *devname;
2585 	char *sysname;
2586 	int *ids;
2587 	int err;
2588 	uint_t i;
2589 
2590 	dev_ok = B_FALSE;
2591 	cidp = &bgep->chipid;
2592 
2593 	/*
2594 	 * Check the PCI device ID to determine the generic chip type and
2595 	 * select parameters that depend on this.
2596 	 *
2597 	 * Note: because the SPARC platforms in general don't fit the
2598 	 * SEEPROM 'behind' the chip, the PCI revision ID register reads
2599 	 * as zero - which is why we use <asic_rev> rather than <revision>
2600 	 * below ...
2601 	 *
2602 	 * Note: in general we can't distinguish between the Copper/SerDes
2603 	 * versions by ID alone, as some Copper devices (e.g. some but not
2604 	 * all 5703Cs) have the same ID as the SerDes equivalents.  So we
2605 	 * treat them the same here, and the MII code works out the media
2606 	 * type later on ...
2607 	 */
2608 	cidp->mbuf_base = bge_mbuf_pool_base;
2609 	cidp->mbuf_length = bge_mbuf_pool_len;
2610 	cidp->recv_slots = BGE_RECV_SLOTS_USED;
2611 	cidp->bge_dma_rwctrl = bge_dma_rwctrl;
2612 	cidp->pci_type = BGE_PCI_X;
2613 	cidp->statistic_type = BGE_STAT_BLK;
2614 	cidp->mbuf_lo_water_rdma = bge_mbuf_lo_water_rdma;
2615 	cidp->mbuf_lo_water_rmac = bge_mbuf_lo_water_rmac;
2616 	cidp->mbuf_hi_water = bge_mbuf_hi_water;
2617 	cidp->rx_ticks_norm = bge_rx_ticks_norm;
2618 	cidp->rx_count_norm = bge_rx_count_norm;
2619 	cidp->tx_ticks_norm = bge_tx_ticks_norm;
2620 	cidp->tx_count_norm = bge_tx_count_norm;
2621 	cidp->mask_pci_int = MHCR_MASK_PCI_INT_OUTPUT;
2622 
2623 	if (cidp->rx_rings == 0 || cidp->rx_rings > BGE_RECV_RINGS_MAX)
2624 		cidp->rx_rings = BGE_RECV_RINGS_DEFAULT;
2625 	if (cidp->tx_rings == 0 || cidp->tx_rings > BGE_SEND_RINGS_MAX)
2626 		cidp->tx_rings = BGE_SEND_RINGS_DEFAULT;
2627 
2628 	cidp->msi_enabled = B_FALSE;
2629 
2630 	switch (cidp->device) {
2631 	case DEVICE_ID_5717:
2632 	case DEVICE_ID_5718:
2633 	case DEVICE_ID_5719:
2634 	case DEVICE_ID_5720:
2635 	case DEVICE_ID_5724:
2636 	case DEVICE_ID_5725:
2637 	case DEVICE_ID_5727:
2638 	case DEVICE_ID_57761:
2639 	case DEVICE_ID_57762:
2640 	case DEVICE_ID_57765:
2641 	case DEVICE_ID_57766:
2642 	case DEVICE_ID_57781:
2643 	case DEVICE_ID_57782:
2644 	case DEVICE_ID_57785:
2645 	case DEVICE_ID_57786:
2646 	case DEVICE_ID_57791:
2647 	case DEVICE_ID_57795:
2648 		if (cidp->device == DEVICE_ID_5717) {
2649 			cidp->chip_label = 5717;
2650 		} else if (cidp->device == DEVICE_ID_5718) {
2651 			cidp->chip_label = 5718;
2652 		} else if (cidp->device == DEVICE_ID_5719) {
2653 			cidp->chip_label = 5719;
2654 		} else if (cidp->device == DEVICE_ID_5720) {
2655 			if (pci_config_get16(bgep->cfg_handle, PCI_CONF_DEVID) ==
2656 			    DEVICE_ID_5717_C0) {
2657 				cidp->chip_label = 5717;
2658 			} else {
2659 				cidp->chip_label = 5720;
2660 			}
2661 		} else if (cidp->device == DEVICE_ID_5724) {
2662 			cidp->chip_label = 5724;
2663 		} else if (cidp->device == DEVICE_ID_5725) {
2664 			cidp->chip_label = 5725;
2665 		} else if (cidp->device == DEVICE_ID_5727) {
2666 			cidp->chip_label = 5727;
2667 		} else if (cidp->device == DEVICE_ID_57761) {
2668 			cidp->chip_label = 57761;
2669 		} else if (cidp->device == DEVICE_ID_57762) {
2670 			cidp->chip_label = 57762;
2671 		} else if (cidp->device == DEVICE_ID_57765) {
2672 			cidp->chip_label = 57765;
2673 		} else if (cidp->device == DEVICE_ID_57766) {
2674 			cidp->chip_label = 57766;
2675 		} else if (cidp->device == DEVICE_ID_57781) {
2676 			cidp->chip_label = 57781;
2677 		} else if (cidp->device == DEVICE_ID_57782) {
2678 			cidp->chip_label = 57782;
2679 		} else if (cidp->device == DEVICE_ID_57785) {
2680 			cidp->chip_label = 57785;
2681 		} else if (cidp->device == DEVICE_ID_57786) {
2682 			cidp->chip_label = 57786;
2683 		} else if (cidp->device == DEVICE_ID_57791) {
2684 			cidp->chip_label = 57791;
2685 		} else if (cidp->device == DEVICE_ID_57795) {
2686 			cidp->chip_label = 57795;
2687 		}
2688 
2689 		cidp->msi_enabled = bge_enable_msi;
2690 #ifdef __sparc
2691 		cidp->mask_pci_int = LE_32(MHCR_MASK_PCI_INT_OUTPUT);
2692 #endif
2693 		cidp->bge_dma_rwctrl = LE_32(PDRWCR_VAR_5717);
2694 		cidp->pci_type = BGE_PCI_E;
2695 		cidp->mbuf_lo_water_rdma = RDMA_MBUF_LOWAT_5705;
2696 		cidp->mbuf_lo_water_rmac = MAC_RX_MBUF_LOWAT_5717;
2697 		cidp->mbuf_hi_water = MBUF_HIWAT_5717;
2698 		cidp->mbuf_base = bge_mbuf_pool_base_5705;
2699 		cidp->mbuf_length = bge_mbuf_pool_len_5705;
2700 		cidp->recv_slots = BGE_RECV_SLOTS_5705;
2701 		if (DEVICE_57765_SERIES_CHIPSETS(bgep)) {
2702 			cidp->bge_mlcr_default = MLCR_DEFAULT_57765;
2703 		} else {
2704 			cidp->bge_mlcr_default = MLCR_DEFAULT_5717;
2705 		}
2706 		cidp->rx_rings = BGE_RECV_RINGS_MAX_5705;
2707 		cidp->tx_rings = BGE_SEND_RINGS_MAX_5705;
2708 		cidp->statistic_type = BGE_STAT_REG;
2709 		dev_ok = B_TRUE;
2710 		break;
2711 
2712 	case DEVICE_ID_5700:
2713 	case DEVICE_ID_5700x:
2714 		cidp->chip_label = 5700;
2715 		cidp->flags |= CHIP_FLAG_PARTIAL_CSUM;
2716 		break;
2717 
2718 	case DEVICE_ID_5701:
2719 		cidp->chip_label = 5701;
2720 		dev_ok = B_TRUE;
2721 		cidp->flags |= CHIP_FLAG_PARTIAL_CSUM;
2722 		break;
2723 
2724 	case DEVICE_ID_5702:
2725 	case DEVICE_ID_5702fe:
2726 		cidp->chip_label = 5702;
2727 		dev_ok = B_TRUE;
2728 		cidp->flags |= CHIP_FLAG_PARTIAL_CSUM;
2729 		cidp->pci_type = BGE_PCI;
2730 		break;
2731 
2732 	case DEVICE_ID_5703C:
2733 	case DEVICE_ID_5703S:
2734 	case DEVICE_ID_5703:
2735 		/*
2736 		 * Revision A0 of the 5703/5793 had various errata
2737 		 * that we can't or don't work around, so it's not
2738 		 * supported, but all later versions are
2739 		 */
2740 		cidp->chip_label = cidp->subven == VENDOR_ID_SUN ? 5793 : 5703;
2741 		if (bgep->chipid.asic_rev != MHCR_CHIP_REV_5703_A0)
2742 			dev_ok = B_TRUE;
2743 		cidp->flags |= CHIP_FLAG_PARTIAL_CSUM;
2744 		break;
2745 
2746 	case DEVICE_ID_5704C:
2747 	case DEVICE_ID_5704S:
2748 	case DEVICE_ID_5704:
2749 		cidp->chip_label = cidp->subven == VENDOR_ID_SUN ? 5794 : 5704;
2750 		cidp->mbuf_base = bge_mbuf_pool_base_5704;
2751 		cidp->mbuf_length = bge_mbuf_pool_len_5704;
2752 		dev_ok = B_TRUE;
2753 		cidp->flags |= CHIP_FLAG_PARTIAL_CSUM;
2754 		break;
2755 
2756 	case DEVICE_ID_5705C:
2757 	case DEVICE_ID_5705M:
2758 	case DEVICE_ID_5705MA3:
2759 	case DEVICE_ID_5705F:
2760 	case DEVICE_ID_5705_2:
2761 	case DEVICE_ID_5754:
2762 		if (cidp->device == DEVICE_ID_5754) {
2763 			cidp->chip_label = 5754;
2764 			cidp->pci_type = BGE_PCI_E;
2765 		} else {
2766 			cidp->chip_label = 5705;
2767 			cidp->pci_type = BGE_PCI;
2768 			cidp->flags |= CHIP_FLAG_PARTIAL_CSUM;
2769 		}
2770 		cidp->mbuf_lo_water_rdma = RDMA_MBUF_LOWAT_5705;
2771 		cidp->mbuf_lo_water_rmac = MAC_RX_MBUF_LOWAT_5705;
2772 		cidp->mbuf_hi_water = MBUF_HIWAT_5705;
2773 		cidp->mbuf_base = bge_mbuf_pool_base_5705;
2774 		cidp->mbuf_length = bge_mbuf_pool_len_5705;
2775 		cidp->recv_slots = BGE_RECV_SLOTS_5705;
2776 		cidp->rx_rings = BGE_RECV_RINGS_MAX_5705;
2777 		cidp->tx_rings = BGE_SEND_RINGS_MAX_5705;
2778 		cidp->flags |= CHIP_FLAG_NO_JUMBO;
2779 		cidp->statistic_type = BGE_STAT_REG;
2780 		dev_ok = B_TRUE;
2781 		break;
2782 
2783 	case DEVICE_ID_5906:
2784 	case DEVICE_ID_5906M:
2785 		cidp->chip_label = 5906;
2786 		cidp->pci_type = BGE_PCI_E;
2787 		cidp->mbuf_lo_water_rdma = RDMA_MBUF_LOWAT_5906;
2788 		cidp->mbuf_lo_water_rmac = MAC_RX_MBUF_LOWAT_5906;
2789 		cidp->mbuf_hi_water = MBUF_HIWAT_5906;
2790 		cidp->mbuf_base = bge_mbuf_pool_base;
2791 		cidp->mbuf_length = bge_mbuf_pool_len;
2792 		cidp->recv_slots = BGE_RECV_SLOTS_5705;
2793 		cidp->rx_rings = BGE_RECV_RINGS_MAX_5705;
2794 		cidp->tx_rings = BGE_SEND_RINGS_MAX_5705;
2795 		cidp->flags |= CHIP_FLAG_NO_JUMBO;
2796 		cidp->statistic_type = BGE_STAT_REG;
2797 		dev_ok = B_TRUE;
2798 		break;
2799 
2800 	case DEVICE_ID_5753:
2801 		cidp->chip_label = 5753;
2802 		cidp->pci_type = BGE_PCI_E;
2803 		cidp->mbuf_lo_water_rdma = RDMA_MBUF_LOWAT_5705;
2804 		cidp->mbuf_lo_water_rmac = MAC_RX_MBUF_LOWAT_5705;
2805 		cidp->mbuf_hi_water = MBUF_HIWAT_5705;
2806 		cidp->mbuf_base = bge_mbuf_pool_base_5705;
2807 		cidp->mbuf_length = bge_mbuf_pool_len_5705;
2808 		cidp->recv_slots = BGE_RECV_SLOTS_5705;
2809 		cidp->bge_mlcr_default |= MLCR_MISC_PINS_OUTPUT_ENABLE_1;
2810 		cidp->rx_rings = BGE_RECV_RINGS_MAX_5705;
2811 		cidp->tx_rings = BGE_SEND_RINGS_MAX_5705;
2812 		cidp->flags |= CHIP_FLAG_NO_JUMBO;
2813 		cidp->statistic_type = BGE_STAT_REG;
2814 		dev_ok = B_TRUE;
2815 		break;
2816 
2817 	case DEVICE_ID_5755:
2818 	case DEVICE_ID_5755M:
2819 		cidp->chip_label = 5755;
2820 		cidp->pci_type = BGE_PCI_E;
2821 		cidp->mbuf_lo_water_rdma = RDMA_MBUF_LOWAT_5705;
2822 		cidp->mbuf_lo_water_rmac = MAC_RX_MBUF_LOWAT_5705;
2823 		cidp->mbuf_hi_water = MBUF_HIWAT_5705;
2824 		cidp->mbuf_base = bge_mbuf_pool_base_5705;
2825 		cidp->mbuf_length = bge_mbuf_pool_len_5705;
2826 		cidp->recv_slots = BGE_RECV_SLOTS_5705;
2827 		cidp->bge_mlcr_default |= MLCR_MISC_PINS_OUTPUT_ENABLE_1;
2828 		cidp->rx_rings = BGE_RECV_RINGS_MAX_5705;
2829 		cidp->tx_rings = BGE_SEND_RINGS_MAX_5705;
2830 		cidp->flags |= CHIP_FLAG_NO_JUMBO;
2831 		if (cidp->device == DEVICE_ID_5755M)
2832 			cidp->flags |= CHIP_FLAG_PARTIAL_CSUM;
2833 		cidp->statistic_type = BGE_STAT_REG;
2834 		dev_ok = B_TRUE;
2835 		break;
2836 
2837 	case DEVICE_ID_5756M:
2838 		/*
2839 		 * This is nearly identical to the 5755M.
2840 		 * (Actually reports the 5755 chip ID.)
2841 		 */
2842 		cidp->chip_label = 5756;
2843 		cidp->pci_type = BGE_PCI_E;
2844 		cidp->mbuf_lo_water_rdma = RDMA_MBUF_LOWAT_5705;
2845 		cidp->mbuf_lo_water_rmac = MAC_RX_MBUF_LOWAT_5705;
2846 		cidp->mbuf_hi_water = MBUF_HIWAT_5705;
2847 		cidp->mbuf_base = bge_mbuf_pool_base_5705;
2848 		cidp->mbuf_length = bge_mbuf_pool_len_5705;
2849 		cidp->recv_slots = BGE_RECV_SLOTS_5705;
2850 		cidp->bge_mlcr_default |= MLCR_MISC_PINS_OUTPUT_ENABLE_1;
2851 		cidp->rx_rings = BGE_RECV_RINGS_MAX_5705;
2852 		cidp->tx_rings = BGE_SEND_RINGS_MAX_5705;
2853 		cidp->flags |= CHIP_FLAG_NO_JUMBO;
2854 		cidp->statistic_type = BGE_STAT_REG;
2855 		dev_ok = B_TRUE;
2856 		break;
2857 
2858 	case DEVICE_ID_5787:
2859 	case DEVICE_ID_5787M:
2860 		cidp->chip_label = 5787;
2861 		cidp->pci_type = BGE_PCI_E;
2862 		cidp->mbuf_lo_water_rdma = RDMA_MBUF_LOWAT_5705;
2863 		cidp->mbuf_lo_water_rmac = MAC_RX_MBUF_LOWAT_5705;
2864 		cidp->mbuf_hi_water = MBUF_HIWAT_5705;
2865 		cidp->mbuf_base = bge_mbuf_pool_base_5705;
2866 		cidp->mbuf_length = bge_mbuf_pool_len_5705;
2867 		cidp->recv_slots = BGE_RECV_SLOTS_5705;
2868 		cidp->bge_mlcr_default |= MLCR_MISC_PINS_OUTPUT_ENABLE_1;
2869 		cidp->rx_rings = BGE_RECV_RINGS_MAX_5705;
2870 		cidp->tx_rings = BGE_SEND_RINGS_MAX_5705;
2871 		cidp->flags |= CHIP_FLAG_NO_JUMBO;
2872 		cidp->statistic_type = BGE_STAT_REG;
2873 		dev_ok = B_TRUE;
2874 		break;
2875 
2876 	case DEVICE_ID_5723:
2877 	case DEVICE_ID_5761:
2878 	case DEVICE_ID_5761E:
2879 	case DEVICE_ID_57780:
2880 		cidp->msi_enabled = bge_enable_msi;
2881 		/*
2882 		 * We don't use MSI for BCM5764 and BCM5785, as the
2883 		 * status block may fail to update when the network
2884 		 * traffic is heavy.
2885 		 */
2886 		/* FALLTHRU */
2887 	case DEVICE_ID_5785:
2888 	case DEVICE_ID_5764:
2889 		if (cidp->device == DEVICE_ID_5723)
2890 			cidp->chip_label = 5723;
2891 		else if (cidp->device == DEVICE_ID_5764)
2892 			cidp->chip_label = 5764;
2893 		else if (cidp->device == DEVICE_ID_5785)
2894 			cidp->chip_label = 5785;
2895 		else if (cidp->device == DEVICE_ID_57780)
2896 			cidp->chip_label = 57780;
2897 		else
2898 			cidp->chip_label = 5761;
2899 		cidp->bge_dma_rwctrl = bge_dma_rwctrl_5721;
2900 		cidp->pci_type = BGE_PCI_E;
2901 		cidp->mbuf_lo_water_rdma = RDMA_MBUF_LOWAT_5705;
2902 		cidp->mbuf_lo_water_rmac = MAC_RX_MBUF_LOWAT_5705;
2903 		cidp->mbuf_hi_water = MBUF_HIWAT_5705;
2904 		cidp->mbuf_base = bge_mbuf_pool_base_5705;
2905 		cidp->mbuf_length = bge_mbuf_pool_len_5705;
2906 		cidp->recv_slots = BGE_RECV_SLOTS_5705;
2907 		cidp->bge_mlcr_default |= MLCR_MISC_PINS_OUTPUT_ENABLE_1;
2908 		cidp->rx_rings = BGE_RECV_RINGS_MAX_5705;
2909 		cidp->tx_rings = BGE_SEND_RINGS_MAX_5705;
2910 		cidp->flags |= CHIP_FLAG_NO_JUMBO;
2911 		cidp->statistic_type = BGE_STAT_REG;
2912 		dev_ok = B_TRUE;
2913 		break;
2914 
2915 	/* PCI-X device, identical to 5714 */
2916 	case DEVICE_ID_5780:
2917 		cidp->chip_label = 5780;
2918 		cidp->mbuf_lo_water_rdma = RDMA_MBUF_LOWAT_5705;
2919 		cidp->mbuf_lo_water_rmac = MAC_RX_MBUF_LOWAT_5705;
2920 		cidp->mbuf_hi_water = MBUF_HIWAT_5705;
2921 		cidp->mbuf_base = bge_mbuf_pool_base_5721;
2922 		cidp->mbuf_length = bge_mbuf_pool_len_5721;
2923 		cidp->recv_slots = BGE_RECV_SLOTS_5721;
2924 		cidp->rx_rings = BGE_RECV_RINGS_MAX_5705;
2925 		cidp->tx_rings = BGE_SEND_RINGS_MAX_5705;
2926 		cidp->statistic_type = BGE_STAT_REG;
2927 		dev_ok = B_TRUE;
2928 		break;
2929 
2930 	case DEVICE_ID_5782:
2931 		/*
2932 		 * Apart from the label, we treat this as a 5705(?)
2933 		 */
2934 		cidp->chip_label = 5782;
2935 		cidp->mbuf_lo_water_rdma = RDMA_MBUF_LOWAT_5705;
2936 		cidp->mbuf_lo_water_rmac = MAC_RX_MBUF_LOWAT_5705;
2937 		cidp->mbuf_hi_water = MBUF_HIWAT_5705;
2938 		cidp->mbuf_base = bge_mbuf_pool_base_5705;
2939 		cidp->mbuf_length = bge_mbuf_pool_len_5705;
2940 		cidp->recv_slots = BGE_RECV_SLOTS_5705;
2941 		cidp->rx_rings = BGE_RECV_RINGS_MAX_5705;
2942 		cidp->tx_rings = BGE_SEND_RINGS_MAX_5705;
2943 		cidp->flags |= CHIP_FLAG_NO_JUMBO;
2944 		cidp->flags |= CHIP_FLAG_PARTIAL_CSUM;
2945 		cidp->statistic_type = BGE_STAT_REG;
2946 		dev_ok = B_TRUE;
2947 		break;
2948 
2949 	case DEVICE_ID_5788:
2950 		/*
2951 		 * Apart from the label, we treat this as a 5705(?)
2952 		 */
2953 		cidp->chip_label = 5788;
2954 		cidp->mbuf_lo_water_rdma = RDMA_MBUF_LOWAT_5705;
2955 		cidp->mbuf_lo_water_rmac = MAC_RX_MBUF_LOWAT_5705;
2956 		cidp->mbuf_hi_water = MBUF_HIWAT_5705;
2957 		cidp->mbuf_base = bge_mbuf_pool_base_5705;
2958 		cidp->mbuf_length = bge_mbuf_pool_len_5705;
2959 		cidp->recv_slots = BGE_RECV_SLOTS_5705;
2960 		cidp->rx_rings = BGE_RECV_RINGS_MAX_5705;
2961 		cidp->tx_rings = BGE_SEND_RINGS_MAX_5705;
2962 		cidp->statistic_type = BGE_STAT_REG;
2963 		cidp->flags |= CHIP_FLAG_NO_JUMBO;
2964 		dev_ok = B_TRUE;
2965 		break;
2966 
2967 	case DEVICE_ID_5714C:
2968 		if (cidp->revision >= REVISION_ID_5714_A2)
2969 			cidp->msi_enabled = bge_enable_msi;
2970 		/* FALLTHRU */
2971 	case DEVICE_ID_5714S:
2972 		cidp->chip_label = 5714;
2973 		cidp->mbuf_lo_water_rdma = RDMA_MBUF_LOWAT_5705;
2974 		cidp->mbuf_lo_water_rmac = MAC_RX_MBUF_LOWAT_5705;
2975 		cidp->mbuf_hi_water = MBUF_HIWAT_5705;
2976 		cidp->mbuf_base = bge_mbuf_pool_base_5721;
2977 		cidp->mbuf_length = bge_mbuf_pool_len_5721;
2978 		cidp->recv_slots = BGE_RECV_SLOTS_5721;
2979 		cidp->bge_dma_rwctrl = bge_dma_rwctrl_5714;
2980 		cidp->bge_mlcr_default = bge_mlcr_default_5714;
2981 		cidp->rx_rings = BGE_RECV_RINGS_MAX_5705;
2982 		cidp->tx_rings = BGE_SEND_RINGS_MAX_5705;
2983 		cidp->pci_type = BGE_PCI_E;
2984 		cidp->statistic_type = BGE_STAT_REG;
2985 		dev_ok = B_TRUE;
2986 		break;
2987 
2988 	case DEVICE_ID_5715C:
2989 	case DEVICE_ID_5715S:
2990 		cidp->chip_label = 5715;
2991 		cidp->mbuf_lo_water_rdma = RDMA_MBUF_LOWAT_5705;
2992 		cidp->mbuf_lo_water_rmac = MAC_RX_MBUF_LOWAT_5705;
2993 		cidp->mbuf_hi_water = MBUF_HIWAT_5705;
2994 		cidp->mbuf_base = bge_mbuf_pool_base_5721;
2995 		cidp->mbuf_length = bge_mbuf_pool_len_5721;
2996 		cidp->recv_slots = BGE_RECV_SLOTS_5721;
2997 		cidp->bge_dma_rwctrl = bge_dma_rwctrl_5715;
2998 		cidp->bge_mlcr_default = bge_mlcr_default_5714;
2999 		cidp->rx_rings = BGE_RECV_RINGS_MAX_5705;
3000 		cidp->tx_rings = BGE_SEND_RINGS_MAX_5705;
3001 		cidp->pci_type = BGE_PCI_E;
3002 		cidp->statistic_type = BGE_STAT_REG;
3003 		if (cidp->revision >= REVISION_ID_5715_A2)
3004 			cidp->msi_enabled = bge_enable_msi;
3005 		dev_ok = B_TRUE;
3006 		break;
3007 
3008 	case DEVICE_ID_5721:
3009 		cidp->chip_label = 5721;
3010 		cidp->mbuf_lo_water_rdma = RDMA_MBUF_LOWAT_5705;
3011 		cidp->mbuf_lo_water_rmac = MAC_RX_MBUF_LOWAT_5705;
3012 		cidp->mbuf_hi_water = MBUF_HIWAT_5705;
3013 		cidp->mbuf_base = bge_mbuf_pool_base_5721;
3014 		cidp->mbuf_length = bge_mbuf_pool_len_5721;
3015 		cidp->recv_slots = BGE_RECV_SLOTS_5721;
3016 		cidp->bge_dma_rwctrl = bge_dma_rwctrl_5721;
3017 		cidp->rx_rings = BGE_RECV_RINGS_MAX_5705;
3018 		cidp->tx_rings = BGE_SEND_RINGS_MAX_5705;
3019 		cidp->pci_type = BGE_PCI_E;
3020 		cidp->statistic_type = BGE_STAT_REG;
3021 		cidp->flags |= CHIP_FLAG_NO_JUMBO;
3022 		dev_ok = B_TRUE;
3023 		break;
3024 
3025 	case DEVICE_ID_5722:
3026 		cidp->chip_label = 5722;
3027 		cidp->pci_type = BGE_PCI_E;
3028 		cidp->mbuf_lo_water_rdma = RDMA_MBUF_LOWAT_5705;
3029 		cidp->mbuf_lo_water_rmac = MAC_RX_MBUF_LOWAT_5705;
3030 		cidp->mbuf_hi_water = MBUF_HIWAT_5705;
3031 		cidp->mbuf_base = bge_mbuf_pool_base_5705;
3032 		cidp->mbuf_length = bge_mbuf_pool_len_5705;
3033 		cidp->recv_slots = BGE_RECV_SLOTS_5705;
3034 		cidp->bge_mlcr_default |= MLCR_MISC_PINS_OUTPUT_ENABLE_1;
3035 		cidp->rx_rings = BGE_RECV_RINGS_MAX_5705;
3036 		cidp->tx_rings = BGE_SEND_RINGS_MAX_5705;
3037 		cidp->flags |= CHIP_FLAG_NO_JUMBO;
3038 		cidp->statistic_type = BGE_STAT_REG;
3039 		dev_ok = B_TRUE;
3040 		break;
3041 
3042 	case DEVICE_ID_5751:
3043 	case DEVICE_ID_5751M:
3044 		cidp->chip_label = 5751;
3045 		cidp->mbuf_lo_water_rdma = RDMA_MBUF_LOWAT_5705;
3046 		cidp->mbuf_lo_water_rmac = MAC_RX_MBUF_LOWAT_5705;
3047 		cidp->mbuf_hi_water = MBUF_HIWAT_5705;
3048 		cidp->mbuf_base = bge_mbuf_pool_base_5721;
3049 		cidp->mbuf_length = bge_mbuf_pool_len_5721;
3050 		cidp->recv_slots = BGE_RECV_SLOTS_5721;
3051 		cidp->bge_dma_rwctrl = bge_dma_rwctrl_5721;
3052 		cidp->rx_rings = BGE_RECV_RINGS_MAX_5705;
3053 		cidp->tx_rings = BGE_SEND_RINGS_MAX_5705;
3054 		cidp->pci_type = BGE_PCI_E;
3055 		cidp->statistic_type = BGE_STAT_REG;
3056 		cidp->flags |= CHIP_FLAG_NO_JUMBO;
3057 		dev_ok = B_TRUE;
3058 		break;
3059 
3060 	case DEVICE_ID_5752:
3061 	case DEVICE_ID_5752M:
3062 		cidp->chip_label = 5752;
3063 		cidp->mbuf_lo_water_rdma = RDMA_MBUF_LOWAT_5705;
3064 		cidp->mbuf_lo_water_rmac = MAC_RX_MBUF_LOWAT_5705;
3065 		cidp->mbuf_hi_water = MBUF_HIWAT_5705;
3066 		cidp->mbuf_base = bge_mbuf_pool_base_5721;
3067 		cidp->mbuf_length = bge_mbuf_pool_len_5721;
3068 		cidp->recv_slots = BGE_RECV_SLOTS_5721;
3069 		cidp->bge_dma_rwctrl = bge_dma_rwctrl_5721;
3070 		cidp->rx_rings = BGE_RECV_RINGS_MAX_5705;
3071 		cidp->tx_rings = BGE_SEND_RINGS_MAX_5705;
3072 		cidp->pci_type = BGE_PCI_E;
3073 		cidp->statistic_type = BGE_STAT_REG;
3074 		cidp->flags |= CHIP_FLAG_NO_JUMBO;
3075 		dev_ok = B_TRUE;
3076 		break;
3077 
3078 	case DEVICE_ID_5789:
3079 		cidp->chip_label = 5789;
3080 		cidp->mbuf_base = bge_mbuf_pool_base_5721;
3081 		cidp->mbuf_length = bge_mbuf_pool_len_5721;
3082 		cidp->recv_slots = BGE_RECV_SLOTS_5721;
3083 		cidp->bge_dma_rwctrl = bge_dma_rwctrl_5721;
3084 		cidp->rx_rings = BGE_RECV_RINGS_MAX_5705;
3085 		cidp->tx_rings = BGE_RECV_RINGS_MAX_5705;
3086 		cidp->pci_type = BGE_PCI_E;
3087 		cidp->statistic_type = BGE_STAT_REG;
3088 		cidp->flags |= CHIP_FLAG_PARTIAL_CSUM;
3089 		cidp->flags |= CHIP_FLAG_NO_JUMBO;
3090 		cidp->msi_enabled = B_TRUE;
3091 		dev_ok = B_TRUE;
3092 		break;
3093 
3094 	}
3095 
3096 	/*
3097 	 * Setup the default jumbo parameter.
3098 	 */
3099 	cidp->ethmax_size = ETHERMAX;
3100 	cidp->snd_buff_size = BGE_SEND_BUFF_SIZE_DEFAULT;
3101 	cidp->std_buf_size = BGE_STD_BUFF_SIZE;
3102 
3103 	/*
3104 	 * If jumbo is enabled and this kind of chipset supports jumbo feature,
3105 	 * setup below jumbo specific parameters.
3106 	 *
3107 	 * For BCM5714/5715, there is only one standard receive ring. So the
3108 	 * std buffer size should be set to BGE_JUMBO_BUFF_SIZE when jumbo
3109 	 * feature is enabled.
3110 	 *
3111 	 * For the BCM5718 family we hijack the standard receive ring for
3112 	 * the jumboframe traffic, keeps it simple.
3113 	 */
3114 	if (!(cidp->flags & CHIP_FLAG_NO_JUMBO) &&
3115 	    (cidp->default_mtu > BGE_DEFAULT_MTU)) {
3116 		if (DEVICE_5714_SERIES_CHIPSETS(bgep) ||
3117 		    DEVICE_5717_SERIES_CHIPSETS(bgep) ||
3118 		    DEVICE_5725_SERIES_CHIPSETS(bgep) ||
3119 		    DEVICE_57765_SERIES_CHIPSETS(bgep)) {
3120 			cidp->mbuf_lo_water_rdma =
3121 			    RDMA_MBUF_LOWAT_5714_JUMBO;
3122 			cidp->mbuf_lo_water_rmac =
3123 			    MAC_RX_MBUF_LOWAT_5714_JUMBO;
3124 			cidp->mbuf_hi_water = MBUF_HIWAT_5714_JUMBO;
3125 			cidp->jumbo_slots = 0;
3126 			cidp->std_buf_size = BGE_JUMBO_BUFF_SIZE;
3127 		} else {
3128 			cidp->mbuf_lo_water_rdma =
3129 			    RDMA_MBUF_LOWAT_JUMBO;
3130 			cidp->mbuf_lo_water_rmac =
3131 			    MAC_RX_MBUF_LOWAT_JUMBO;
3132 			cidp->mbuf_hi_water = MBUF_HIWAT_JUMBO;
3133 			cidp->jumbo_slots = BGE_JUMBO_SLOTS_USED;
3134 		}
3135 		cidp->recv_jumbo_size = BGE_JUMBO_BUFF_SIZE;
3136 		cidp->snd_buff_size = BGE_SEND_BUFF_SIZE_JUMBO;
3137 		cidp->ethmax_size = cidp->default_mtu +
3138 		    sizeof (struct ether_header);
3139 	}
3140 
3141 	/*
3142 	 * Identify the NV memory type: SEEPROM or Flash?
3143 	 */
3144 	cidp->nvtype = bge_nvmem_id(bgep);
3145 
3146 	/*
3147 	 * Now check what we've discovered: is this truly a supported
3148 	 * chip on (the motherboard of) a supported platform?
3149 	 *
3150 	 * Possible problems here:
3151 	 * 1)	it's a completely unheard-of chip
3152 	 * 2)	it's a recognised but unsupported chip (e.g. 5701, 5703C-A0)
3153 	 * 3)	it's a chip we would support if it were on the motherboard
3154 	 *	of a Sun platform, but this one isn't ;-(
3155 	 */
3156 	if (cidp->chip_label == 0)
3157 		bge_problem(bgep,
3158 		    "Device 'pci%04x,%04x' not recognized (%d?)",
3159 		    cidp->vendor, cidp->device, cidp->device);
3160 	else if (!dev_ok)
3161 		bge_problem(bgep,
3162 		    "Device 'pci%04x,%04x' (%d) revision %d not supported",
3163 		    cidp->vendor, cidp->device, cidp->chip_label,
3164 		    cidp->revision);
3165 	else
3166 		cidp->flags |= CHIP_FLAG_SUPPORTED;
3167 
3168 	if (bge_check_acc_handle(bgep, bgep->io_handle) != DDI_FM_OK)
3169 		return (EIO);
3170 
3171 	return (0);
3172 }
3173 
3174 void
3175 bge_chip_msi_trig(bge_t *bgep)
3176 {
3177 	uint32_t	regval;
3178 
3179 	regval = bgep->param_msi_cnt<<4;
3180 	bge_reg_set32(bgep, HOST_COALESCE_MODE_REG, regval);
3181 	BGE_DEBUG(("bge_chip_msi_trig:data = %d", regval));
3182 }
3183 
3184 /*
3185  * Various registers that control the chip's internal engines (state
3186  * machines) have a <reset> and <enable> bits (fortunately, in the
3187  * same place in each such register :-).
3188  *
3189  * To reset the state machine, the <reset> bit must be written with 1;
3190  * it will then read back as 1 while the reset is in progress, but
3191  * self-clear to 0 when the reset completes.
3192  *
3193  * To enable a state machine, one must set the <enable> bit, which
3194  * will continue to read back as 0 until the state machine is running.
3195  *
3196  * To disable a state machine, the <enable> bit must be cleared, but
3197  * it will continue to read back as 1 until the state machine actually
3198  * stops.
3199  *
3200  * This routine implements polling for completion of a reset, enable
3201  * or disable operation, returning B_TRUE on success (bit reached the
3202  * required state) or B_FALSE on timeout (200*100us == 20ms).
3203  */
3204 static boolean_t bge_chip_poll_engine(bge_t *bgep, bge_regno_t regno,
3205 					uint32_t mask, uint32_t val);
3206 #pragma	no_inline(bge_chip_poll_engine)
3207 
3208 static boolean_t
3209 bge_chip_poll_engine(bge_t *bgep, bge_regno_t regno,
3210 	uint32_t mask, uint32_t val)
3211 {
3212 	uint32_t regval;
3213 	uint32_t n;
3214 
3215 	BGE_TRACE(("bge_chip_poll_engine($%p, 0x%lx, 0x%x, 0x%x)",
3216 	    (void *)bgep, regno, mask, val));
3217 
3218 	for (n = 200; n; --n) {
3219 		regval = bge_reg_get32(bgep, regno);
3220 		if ((regval & mask) == val)
3221 			return (B_TRUE);
3222 		drv_usecwait(100);
3223 	}
3224 
3225 	bge_problem(bgep, "bge_chip_poll_engine failed: regno = 0x%lx", regno);
3226 	bge_fm_ereport(bgep, DDI_FM_DEVICE_NO_RESPONSE);
3227 	return (B_FALSE);
3228 }
3229 
3230 /*
3231  * Various registers that control the chip's internal engines (state
3232  * machines) have a <reset> bit (fortunately, in the same place in
3233  * each such register :-).  To reset the state machine, this bit must
3234  * be written with 1; it will then read back as 1 while the reset is
3235  * in progress, but self-clear to 0 when the reset completes.
3236  *
3237  * This code sets the bit, then polls for it to read back as zero.
3238  * The return value is B_TRUE on success (reset bit cleared itself),
3239  * or B_FALSE if the state machine didn't recover :(
3240  *
3241  * NOTE: the Core reset is similar to other resets, except that we
3242  * can't poll for completion, since the Core reset disables memory
3243  * access!  So we just have to assume that it will all complete in
3244  * 100us.  See Broadcom document 570X-PG102-R, p102, steps 4-5.
3245  */
3246 static boolean_t bge_chip_reset_engine(bge_t *bgep, bge_regno_t regno);
3247 #pragma	no_inline(bge_chip_reset_engine)
3248 
3249 static boolean_t
3250 bge_chip_reset_engine(bge_t *bgep, bge_regno_t regno)
3251 {
3252 	uint32_t regval;
3253 	uint16_t val16;
3254 	uint32_t val32;
3255 	uint32_t mhcr;
3256 
3257 	regval = bge_reg_get32(bgep, regno);
3258 
3259 	BGE_TRACE(("bge_chip_reset_engine($%p, 0x%lx)",
3260 	    (void *)bgep, regno));
3261 	BGE_DEBUG(("bge_chip_reset_engine: 0x%lx before reset = 0x%08x",
3262 	    regno, regval));
3263 
3264 	regval |= STATE_MACHINE_RESET_BIT;
3265 
3266 	switch (regno) {
3267 	case MISC_CONFIG_REG:
3268 		/*
3269 		 * BCM5714/5721/5751 pcie chip special case. In order to avoid
3270 		 * resetting PCIE block and bringing PCIE link down, bit 29
3271 		 * in the register needs to be set first, and then set it again
3272 		 * while the reset bit is written.
3273 		 * See:P500 of 57xx-PG102-RDS.pdf.
3274 		 */
3275 		if (DEVICE_5705_SERIES_CHIPSETS(bgep) ||
3276 		    DEVICE_5717_SERIES_CHIPSETS(bgep) ||
3277 		    DEVICE_5725_SERIES_CHIPSETS(bgep) ||
3278 		    DEVICE_5721_SERIES_CHIPSETS(bgep) ||
3279 		    DEVICE_5723_SERIES_CHIPSETS(bgep) ||
3280 		    DEVICE_5714_SERIES_CHIPSETS(bgep) ||
3281 		    DEVICE_5906_SERIES_CHIPSETS(bgep) ||
3282 		    DEVICE_57765_SERIES_CHIPSETS(bgep)) {
3283 			regval |= MISC_CONFIG_GPHY_POWERDOWN_OVERRIDE;
3284 			if (bgep->chipid.pci_type == BGE_PCI_E) {
3285 				if (bgep->chipid.asic_rev ==
3286 				    MHCR_CHIP_REV_5751_A0 ||
3287 				    bgep->chipid.asic_rev ==
3288 				    MHCR_CHIP_REV_5721_A0 ||
3289 				    bgep->chipid.asic_rev ==
3290 				    MHCR_CHIP_REV_5755_A0) {
3291 					val32 = bge_reg_get32(bgep,
3292 					    PHY_TEST_CTRL_REG);
3293 					if (val32 == (PHY_PCIE_SCRAM_MODE |
3294 					    PHY_PCIE_LTASS_MODE))
3295 						bge_reg_put32(bgep,
3296 						    PHY_TEST_CTRL_REG,
3297 						    PHY_PCIE_SCRAM_MODE);
3298 					val32 = pci_config_get32
3299 					    (bgep->cfg_handle,
3300 					    PCI_CONF_BGE_CLKCTL);
3301 					val32 |= CLKCTL_PCIE_A0_FIX;
3302 					pci_config_put32(bgep->cfg_handle,
3303 					    PCI_CONF_BGE_CLKCTL, val32);
3304 				}
3305 				bge_reg_set32(bgep, regno,
3306 				    MISC_CONFIG_GRC_RESET_DISABLE);
3307 				regval |= MISC_CONFIG_GRC_RESET_DISABLE;
3308 			}
3309 		}
3310 
3311 		/*
3312 		 * Special case - causes Core reset
3313 		 *
3314 		 * On SPARC v9 we want to ensure that we don't start
3315 		 * timing until the I/O access has actually reached
3316 		 * the chip, otherwise we might make the next access
3317 		 * too early.  And we can't just force the write out
3318 		 * by following it with a read (even to config space)
3319 		 * because that would cause the fault we're trying
3320 		 * to avoid.  Hence the need for membar_sync() here.
3321 		 */
3322 		ddi_put32(bgep->io_handle, PIO_ADDR(bgep, regno), regval);
3323 #ifdef	__sparcv9
3324 		membar_sync();
3325 #endif	/* __sparcv9 */
3326 		/*
3327 		 * On some platforms,system need about 300us for
3328 		 * link setup.
3329 		 */
3330 		drv_usecwait(300);
3331 		if (DEVICE_5906_SERIES_CHIPSETS(bgep)) {
3332 			bge_reg_set32(bgep, VCPU_STATUS_REG, VCPU_DRV_RESET);
3333 			bge_reg_clr32(
3334 			    bgep, VCPU_EXT_CTL, VCPU_EXT_CTL_HALF);
3335 		}
3336 
3337 		if (bgep->chipid.pci_type == BGE_PCI_E) {
3338 			/* PCI-E device need more reset time */
3339 			drv_usecwait(120000);
3340 
3341 			/*
3342 			 * (re)Disable interrupts as the bit can be reset after a
3343 			 * core clock reset.
3344 			 */
3345 			mhcr = pci_config_get32(bgep->cfg_handle, PCI_CONF_BGE_MHCR);
3346 			pci_config_put32(bgep->cfg_handle, PCI_CONF_BGE_MHCR,
3347 			    mhcr | MHCR_MASK_PCI_INT_OUTPUT);
3348 
3349 			/* Set PCIE max payload size and clear error status. */
3350 			if ((bgep->chipid.chip_label == 5721) ||
3351 			    (bgep->chipid.chip_label == 5751) ||
3352 			    (bgep->chipid.chip_label == 5752) ||
3353 			    (bgep->chipid.chip_label == 5789) ||
3354 			    (bgep->chipid.chip_label == 5906)) {
3355 				pci_config_put16(bgep->cfg_handle,
3356 				    PCI_CONF_DEV_CTRL, READ_REQ_SIZE_MAX);
3357 				pci_config_put16(bgep->cfg_handle,
3358 				    PCI_CONF_DEV_STUS, DEVICE_ERROR_STUS);
3359 			}
3360 
3361 			if ((bgep->chipid.chip_label == 5723) ||
3362 			    (bgep->chipid.chip_label == 5761)) {
3363 				pci_config_put16(bgep->cfg_handle,
3364 				    PCI_CONF_DEV_CTRL_5723, READ_REQ_SIZE_MAX);
3365 				pci_config_put16(bgep->cfg_handle,
3366 				    PCI_CONF_DEV_STUS_5723, DEVICE_ERROR_STUS);
3367 			}
3368 
3369 			if (DEVICE_5717_SERIES_CHIPSETS(bgep) ||
3370 			    DEVICE_5725_SERIES_CHIPSETS(bgep) ||
3371 			    DEVICE_57765_SERIES_CHIPSETS(bgep)) {
3372 				val16 = pci_config_get16(bgep->cfg_handle,
3373 				                         PCI_CONF_DEV_CTRL_5717);
3374 				val16 &= ~READ_REQ_SIZE_MASK;
3375 				val16 |= READ_REQ_SIZE_2K;
3376 				pci_config_put16(bgep->cfg_handle,
3377 				    PCI_CONF_DEV_CTRL_5717, val16);
3378 			}
3379 		}
3380 
3381 		BGE_PCICHK(bgep);
3382 		return (B_TRUE);
3383 
3384 	default:
3385 		bge_reg_put32(bgep, regno, regval);
3386 		return (bge_chip_poll_engine(bgep, regno,
3387 		    STATE_MACHINE_RESET_BIT, 0));
3388 	}
3389 }
3390 
3391 /*
3392  * Various registers that control the chip's internal engines (state
3393  * machines) have an <enable> bit (fortunately, in the same place in
3394  * each such register :-).  To stop the state machine, this bit must
3395  * be written with 0, then polled to see when the state machine has
3396  * actually stopped.
3397  *
3398  * The return value is B_TRUE on success (enable bit cleared), or
3399  * B_FALSE if the state machine didn't stop :(
3400  */
3401 static boolean_t bge_chip_disable_engine(bge_t *bgep, bge_regno_t regno,
3402 						uint32_t morebits);
3403 #pragma	no_inline(bge_chip_disable_engine)
3404 
3405 static boolean_t
3406 bge_chip_disable_engine(bge_t *bgep, bge_regno_t regno, uint32_t morebits)
3407 {
3408 	uint32_t regval;
3409 
3410 	BGE_TRACE(("bge_chip_disable_engine($%p, 0x%lx, 0x%x)",
3411 	    (void *)bgep, regno, morebits));
3412 
3413 	switch (regno) {
3414 	case FTQ_RESET_REG:
3415 		/*
3416 		 * For Schumacher's bugfix CR6490108
3417 		 */
3418 #ifdef BGE_IPMI_ASF
3419 #ifdef BGE_NETCONSOLE
3420 		if (bgep->asf_enabled)
3421 			return (B_TRUE);
3422 #endif
3423 #endif
3424 		/*
3425 		 * Not quite like the others; it doesn't
3426 		 * have an <enable> bit, but instead we
3427 		 * have to set and then clear all the bits
3428 		 */
3429 		bge_reg_put32(bgep, regno, ~(uint32_t)0);
3430 		drv_usecwait(100);
3431 		bge_reg_put32(bgep, regno, 0);
3432 		return (B_TRUE);
3433 
3434 	default:
3435 		if (DEVICE_5704_SERIES_CHIPSETS(bgep)) {
3436 			break;
3437 		}
3438 
3439 		if ((regno == RCV_LIST_SELECTOR_MODE_REG) ||
3440 		    (regno == DMA_COMPLETION_MODE_REG) ||
3441 		    (regno == MBUF_CLUSTER_FREE_MODE_REG) ||
3442 		    (regno == BUFFER_MANAGER_MODE_REG) ||
3443 		    (regno == MEMORY_ARBITER_MODE_REG)) {
3444 			return B_TRUE;
3445 		}
3446 
3447 		break;
3448 	}
3449 
3450 	regval = bge_reg_get32(bgep, regno);
3451 	regval &= ~STATE_MACHINE_ENABLE_BIT;
3452 	regval &= ~morebits;
3453 	bge_reg_put32(bgep, regno, regval);
3454 
3455 	return bge_chip_poll_engine(bgep, regno, STATE_MACHINE_ENABLE_BIT, 0);
3456 }
3457 
3458 /*
3459  * Various registers that control the chip's internal engines (state
3460  * machines) have an <enable> bit (fortunately, in the same place in
3461  * each such register :-).  To start the state machine, this bit must
3462  * be written with 1, then polled to see when the state machine has
3463  * actually started.
3464  *
3465  * The return value is B_TRUE on success (enable bit set), or
3466  * B_FALSE if the state machine didn't start :(
3467  */
3468 static boolean_t bge_chip_enable_engine(bge_t *bgep, bge_regno_t regno,
3469 					uint32_t morebits);
3470 #pragma	no_inline(bge_chip_enable_engine)
3471 
3472 static boolean_t
3473 bge_chip_enable_engine(bge_t *bgep, bge_regno_t regno, uint32_t morebits)
3474 {
3475 	uint32_t regval;
3476 
3477 	BGE_TRACE(("bge_chip_enable_engine($%p, 0x%lx, 0x%x)",
3478 	    (void *)bgep, regno, morebits));
3479 
3480 	switch (regno) {
3481 	case FTQ_RESET_REG:
3482 #ifdef BGE_IPMI_ASF
3483 #ifdef BGE_NETCONSOLE
3484 		if (bgep->asf_enabled)
3485 			return (B_TRUE);
3486 #endif
3487 #endif
3488 		/*
3489 		 * Not quite like the others; it doesn't
3490 		 * have an <enable> bit, but instead we
3491 		 * have to set and then clear all the bits
3492 		 */
3493 		bge_reg_put32(bgep, regno, ~(uint32_t)0);
3494 		drv_usecwait(100);
3495 		bge_reg_put32(bgep, regno, 0);
3496 		return (B_TRUE);
3497 
3498 	default:
3499 		regval = bge_reg_get32(bgep, regno);
3500 		regval |= STATE_MACHINE_ENABLE_BIT;
3501 		regval |= morebits;
3502 		bge_reg_put32(bgep, regno, regval);
3503 		return (bge_chip_poll_engine(bgep, regno,
3504 		    STATE_MACHINE_ENABLE_BIT, STATE_MACHINE_ENABLE_BIT));
3505 	}
3506 }
3507 
3508 /*
3509  * Reprogram the Ethernet, Transmit, and Receive MAC
3510  * modes to match the param_* variables
3511  */
3512 void bge_sync_mac_modes(bge_t *bgep);
3513 #pragma	no_inline(bge_sync_mac_modes)
3514 
3515 void
3516 bge_sync_mac_modes(bge_t *bgep)
3517 {
3518 	uint32_t macmode;
3519 	uint32_t regval;
3520 
3521 	ASSERT(mutex_owned(bgep->genlock));
3522 
3523 	/*
3524 	 * Reprogram the Ethernet MAC mode ...
3525 	 */
3526 	macmode = regval = bge_reg_get32(bgep, ETHERNET_MAC_MODE_REG);
3527 	macmode &= ~ETHERNET_MODE_LINK_POLARITY;
3528 	macmode &= ~ETHERNET_MODE_PORTMODE_MASK;
3529 	if ((bgep->chipid.flags & CHIP_FLAG_SERDES) &&
3530 	    (bgep->param_loop_mode != BGE_LOOP_INTERNAL_MAC)) {
3531 		if (DEVICE_5717_SERIES_CHIPSETS(bgep) ||
3532 		    DEVICE_5725_SERIES_CHIPSETS(bgep) ||
3533 		    DEVICE_5714_SERIES_CHIPSETS(bgep) ||
3534 		    DEVICE_57765_SERIES_CHIPSETS(bgep))
3535 			macmode |= ETHERNET_MODE_PORTMODE_GMII;
3536 		else
3537 			macmode |= ETHERNET_MODE_PORTMODE_TBI;
3538 	} else if (bgep->param_link_speed == 10 ||
3539 	    bgep->param_link_speed == 100)
3540 		macmode |= ETHERNET_MODE_PORTMODE_MII;
3541 	else
3542 		macmode |= ETHERNET_MODE_PORTMODE_GMII;
3543 	if (bgep->param_link_duplex == LINK_DUPLEX_HALF)
3544 		macmode |= ETHERNET_MODE_HALF_DUPLEX;
3545 	else
3546 		macmode &= ~ETHERNET_MODE_HALF_DUPLEX;
3547 	if (bgep->param_loop_mode == BGE_LOOP_INTERNAL_MAC)
3548 		macmode |= ETHERNET_MODE_MAC_LOOPBACK;
3549 	else
3550 		macmode &= ~ETHERNET_MODE_MAC_LOOPBACK;
3551 	bge_reg_put32(bgep, ETHERNET_MAC_MODE_REG, macmode);
3552 	BGE_DEBUG(("bge_sync_mac_modes($%p) Ethernet MAC mode 0x%x => 0x%x",
3553 	    (void *)bgep, regval, macmode));
3554 
3555 	/*
3556 	 * ... the Transmit MAC mode ...
3557 	 */
3558 	macmode = regval = bge_reg_get32(bgep, TRANSMIT_MAC_MODE_REG);
3559 	if (bgep->param_link_tx_pause)
3560 		macmode |= TRANSMIT_MODE_FLOW_CONTROL;
3561 	else
3562 		macmode &= ~TRANSMIT_MODE_FLOW_CONTROL;
3563 	bge_reg_put32(bgep, TRANSMIT_MAC_MODE_REG, macmode);
3564 	BGE_DEBUG(("bge_sync_mac_modes($%p) Transmit MAC mode 0x%x => 0x%x",
3565 	    (void *)bgep, regval, macmode));
3566 
3567 	/*
3568 	 * ... and the Receive MAC mode
3569 	 */
3570 	macmode = regval = bge_reg_get32(bgep, RECEIVE_MAC_MODE_REG);
3571 	if (bgep->param_link_rx_pause)
3572 		macmode |= RECEIVE_MODE_FLOW_CONTROL;
3573 	else
3574 		macmode &= ~RECEIVE_MODE_FLOW_CONTROL;
3575 	bge_reg_put32(bgep, RECEIVE_MAC_MODE_REG, macmode);
3576 	BGE_DEBUG(("bge_sync_mac_modes($%p) Receive MAC mode 0x%x => 0x%x",
3577 	    (void *)bgep, regval, macmode));
3578 
3579 	/*
3580 	 * For BCM5785, we need to configure the link status in the MI Status
3581 	 * register with a write command when auto-polling is disabled.
3582 	 */
3583 	if (bgep->chipid.device == DEVICE_ID_5785)
3584 		if (bgep->param_link_speed == 10)
3585 			bge_reg_put32(bgep, MI_STATUS_REG, MI_STATUS_LINK
3586 			    | MI_STATUS_10MBPS);
3587 		else
3588 			bge_reg_put32(bgep, MI_STATUS_REG, MI_STATUS_LINK);
3589 }
3590 
3591 /*
3592  * bge_chip_sync() -- program the chip with the unicast MAC address,
3593  * the multicast hash table, the required level of promiscuity, and
3594  * the current loopback mode ...
3595  */
3596 #ifdef BGE_IPMI_ASF
3597 int bge_chip_sync(bge_t *bgep, boolean_t asf_keeplive);
3598 #else
3599 int bge_chip_sync(bge_t *bgep);
3600 #endif
3601 #pragma	no_inline(bge_chip_sync)
3602 
3603 int
3604 #ifdef BGE_IPMI_ASF
3605 bge_chip_sync(bge_t *bgep, boolean_t asf_keeplive)
3606 #else
3607 bge_chip_sync(bge_t *bgep)
3608 #endif
3609 {
3610 	void (*opfn)(bge_t *bgep, bge_regno_t reg, uint32_t bits);
3611 	boolean_t promisc;
3612 	uint64_t macaddr;
3613 	uint32_t fill = 0;
3614 	int i, j;
3615 	int retval = DDI_SUCCESS;
3616 
3617 	BGE_TRACE(("bge_chip_sync($%p)",
3618 	    (void *)bgep));
3619 
3620 	ASSERT(mutex_owned(bgep->genlock));
3621 
3622 	promisc = B_FALSE;
3623 	fill = ~(uint32_t)0;
3624 
3625 	if (bgep->promisc)
3626 		promisc = B_TRUE;
3627 	else
3628 		fill = (uint32_t)0;
3629 
3630 	/*
3631 	 * If the TX/RX MAC engines are already running, we should stop
3632 	 * them (and reset the RX engine) before changing the parameters.
3633 	 * If they're not running, this will have no effect ...
3634 	 *
3635 	 * NOTE: this is currently disabled by default because stopping
3636 	 * and restarting the Tx engine may cause an outgoing packet in
3637 	 * transit to be truncated.  Also, stopping and restarting the
3638 	 * Rx engine seems to not work correctly on the 5705.  Testing
3639 	 * has not (yet!) revealed any problems with NOT stopping and
3640 	 * restarting these engines (and Broadcom say their drivers don't
3641 	 * do this), but if it is found to cause problems, this variable
3642 	 * can be patched to re-enable the old behaviour ...
3643 	 */
3644 	if (bge_stop_start_on_sync) {
3645 #ifdef BGE_IPMI_ASF
3646 		if (!bgep->asf_enabled) {
3647 			if (!bge_chip_disable_engine(bgep,
3648 			    RECEIVE_MAC_MODE_REG, RECEIVE_MODE_KEEP_VLAN_TAG))
3649 				retval = DDI_FAILURE;
3650 		} else {
3651 			if (!bge_chip_disable_engine(bgep,
3652 			    RECEIVE_MAC_MODE_REG, 0))
3653 				retval = DDI_FAILURE;
3654 		}
3655 #else
3656 		if (!bge_chip_disable_engine(bgep, RECEIVE_MAC_MODE_REG,
3657 		    RECEIVE_MODE_KEEP_VLAN_TAG))
3658 			retval = DDI_FAILURE;
3659 #endif
3660 		if (!bge_chip_disable_engine(bgep, TRANSMIT_MAC_MODE_REG, 0))
3661 			retval = DDI_FAILURE;
3662 		if (!bge_chip_reset_engine(bgep, RECEIVE_MAC_MODE_REG))
3663 			retval = DDI_FAILURE;
3664 	}
3665 
3666 	/*
3667 	 * Reprogram the hashed multicast address table ...
3668 	 */
3669 	for (i = 0; i < BGE_HASH_TABLE_SIZE/32; ++i)
3670 		bge_reg_put32(bgep, MAC_HASH_REG(i), 0);
3671 
3672 	for (i = 0; i < BGE_HASH_TABLE_SIZE/32; ++i)
3673 		bge_reg_put32(bgep, MAC_HASH_REG(i),
3674 			bgep->mcast_hash[i] | fill);
3675 
3676 #ifdef BGE_IPMI_ASF
3677 	if (!bgep->asf_enabled || !asf_keeplive) {
3678 #endif
3679 		/*
3680 		 * Transform the MAC address(es) from host to chip format, then
3681 		 * reprogram the transmit random backoff seed and the unicast
3682 		 * MAC address(es) ...
3683 		 */
3684 		for (j = 0; j < MAC_ADDRESS_REGS_MAX; j++) {
3685 			for (i = 0, macaddr = 0ull;
3686 			    i < ETHERADDRL; ++i) {
3687 				macaddr <<= 8;
3688 				macaddr |= bgep->curr_addr[j].addr[i];
3689 			}
3690 			fill += (macaddr >> 16) + (macaddr & 0xffffffff);
3691 			bge_reg_put64(bgep, MAC_ADDRESS_REG(j), macaddr);
3692 
3693 			BGE_DEBUG(("bge_chip_sync($%p) "
3694 			    "setting MAC address %012llx",
3695 			    (void *)bgep, macaddr));
3696 		}
3697 #ifdef BGE_IPMI_ASF
3698 	}
3699 #endif
3700 	/*
3701 	 * Set random seed of backoff interval
3702 	 *   - Writing zero means no backoff interval
3703 	 */
3704 	fill = ((fill >> 20) + (fill >> 10) + fill) & 0x3ff;
3705 	if (fill == 0)
3706 		fill = 1;
3707 	bge_reg_put32(bgep, MAC_TX_RANDOM_BACKOFF_REG, fill);
3708 
3709 	/*
3710 	 * Set or clear the PROMISCUOUS mode bit
3711 	 */
3712 	opfn = promisc ? bge_reg_set32 : bge_reg_clr32;
3713 	(*opfn)(bgep, RECEIVE_MAC_MODE_REG, RECEIVE_MODE_PROMISCUOUS);
3714 
3715 	/*
3716 	 * Sync the rest of the MAC modes too ...
3717 	 */
3718 	bge_sync_mac_modes(bgep);
3719 
3720 	/*
3721 	 * Restart RX/TX MAC engines if required ...
3722 	 */
3723 	if (bgep->bge_chip_state == BGE_CHIP_RUNNING) {
3724 		if (!bge_chip_enable_engine(bgep, TRANSMIT_MAC_MODE_REG, 0))
3725 			retval = DDI_FAILURE;
3726 #ifdef BGE_IPMI_ASF
3727 		if (!bgep->asf_enabled) {
3728 			if (!bge_chip_enable_engine(bgep,
3729 			    RECEIVE_MAC_MODE_REG, RECEIVE_MODE_KEEP_VLAN_TAG))
3730 				retval = DDI_FAILURE;
3731 		} else {
3732 			if (!bge_chip_enable_engine(bgep,
3733 			    RECEIVE_MAC_MODE_REG, 0))
3734 				retval = DDI_FAILURE;
3735 		}
3736 #else
3737 		if (!bge_chip_enable_engine(bgep, RECEIVE_MAC_MODE_REG,
3738 		    RECEIVE_MODE_KEEP_VLAN_TAG))
3739 			retval = DDI_FAILURE;
3740 #endif
3741 	}
3742 	return (retval);
3743 }
3744 
3745 #ifndef __sparc
3746 static bge_regno_t quiesce_regs[] = {
3747 	READ_DMA_MODE_REG,
3748 	DMA_COMPLETION_MODE_REG,
3749 	WRITE_DMA_MODE_REG,
3750 	BGE_REGNO_NONE
3751 };
3752 
3753 void bge_chip_stop_nonblocking(bge_t *bgep);
3754 #pragma no_inline(bge_chip_stop_nonblocking)
3755 
3756 /*
3757  * This function is called by bge_quiesce(). We
3758  * turn off all the DMA engines here.
3759  */
3760 void
3761 bge_chip_stop_nonblocking(bge_t *bgep)
3762 {
3763 	bge_regno_t *rbp;
3764 
3765 	/*
3766 	 * Flag that no more activity may be initiated
3767 	 */
3768 	bgep->progress &= ~PROGRESS_READY;
3769 
3770 	rbp = quiesce_regs;
3771 	while (*rbp != BGE_REGNO_NONE) {
3772 		(void) bge_chip_disable_engine(bgep, *rbp, 0);
3773 		++rbp;
3774 	}
3775 
3776 	bgep->bge_chip_state = BGE_CHIP_STOPPED;
3777 }
3778 
3779 #endif
3780 
3781 /*
3782  * bge_chip_stop() -- stop all chip processing
3783  *
3784  * If the <fault> parameter is B_TRUE, we're stopping the chip because
3785  * we've detected a problem internally; otherwise, this is a normal
3786  * (clean) stop (at user request i.e. the last STREAM has been closed).
3787  */
3788 void bge_chip_stop(bge_t *bgep, boolean_t fault);
3789 #pragma	no_inline(bge_chip_stop)
3790 
3791 void
3792 bge_chip_stop(bge_t *bgep, boolean_t fault)
3793 {
3794 	bge_regno_t regno;
3795 	bge_regno_t *rbp;
3796 	boolean_t ok = B_TRUE;
3797 
3798 	BGE_TRACE(("bge_chip_stop($%p)",
3799 	    (void *)bgep));
3800 
3801 	ASSERT(mutex_owned(bgep->genlock));
3802 
3803 	pci_config_put32(bgep->cfg_handle, PCI_CONF_BGE_MHCR,
3804 	    (pci_config_get32(bgep->cfg_handle, PCI_CONF_BGE_MHCR) |
3805 	     MHCR_MASK_PCI_INT_OUTPUT));
3806 
3807 	ok &= bge_chip_disable_engine(bgep, RECEIVE_MAC_MODE_REG, 0);
3808 	ok &= bge_chip_disable_engine(bgep, RCV_BD_INITIATOR_MODE_REG, 0);
3809 	ok &= bge_chip_disable_engine(bgep, RCV_LIST_PLACEMENT_MODE_REG, 0);
3810 	ok &= bge_chip_disable_engine(bgep, RCV_LIST_SELECTOR_MODE_REG, 0);
3811 	ok &= bge_chip_disable_engine(bgep, RCV_DATA_BD_INITIATOR_MODE_REG, 0);
3812 	ok &= bge_chip_disable_engine(bgep, RCV_DATA_COMPLETION_MODE_REG, 0);
3813 	ok &= bge_chip_disable_engine(bgep, RCV_BD_COMPLETION_MODE_REG, 0);
3814 
3815 	ok &= bge_chip_disable_engine(bgep, SEND_BD_SELECTOR_MODE_REG, 0);
3816 	ok &= bge_chip_disable_engine(bgep, SEND_BD_INITIATOR_MODE_REG, 0);
3817 	ok &= bge_chip_disable_engine(bgep, SEND_DATA_INITIATOR_MODE_REG, 0);
3818 	ok &= bge_chip_disable_engine(bgep, READ_DMA_MODE_REG, 0);
3819 	ok &= bge_chip_disable_engine(bgep, SEND_DATA_COMPLETION_MODE_REG, 0);
3820 	ok &= bge_chip_disable_engine(bgep, DMA_COMPLETION_MODE_REG, 0);
3821 	ok &= bge_chip_disable_engine(bgep, SEND_BD_COMPLETION_MODE_REG, 0);
3822 	ok &= bge_chip_disable_engine(bgep, TRANSMIT_MAC_MODE_REG, 0);
3823 
3824 	bge_reg_clr32(bgep, ETHERNET_MAC_MODE_REG, ETHERNET_MODE_ENABLE_TDE);
3825 	drv_usecwait(40);
3826 
3827 	ok &= bge_chip_disable_engine(bgep, HOST_COALESCE_MODE_REG, 0);
3828 	ok &= bge_chip_disable_engine(bgep, WRITE_DMA_MODE_REG, 0);
3829 	ok &= bge_chip_disable_engine(bgep, MBUF_CLUSTER_FREE_MODE_REG, 0);
3830 	ok &= bge_chip_disable_engine(bgep, FTQ_RESET_REG, 0);
3831 	ok &= bge_chip_disable_engine(bgep, BUFFER_MANAGER_MODE_REG, 0);
3832 	ok &= bge_chip_disable_engine(bgep, MEMORY_ARBITER_MODE_REG, 0);
3833 	ok &= bge_chip_disable_engine(bgep, MEMORY_ARBITER_MODE_REG, 0);
3834 
3835 	if (!ok && !fault)
3836 		ddi_fm_service_impact(bgep->devinfo, DDI_SERVICE_UNAFFECTED);
3837 
3838 	/*
3839 	 * Finally, disable (all) MAC events & clear the MAC status
3840 	 */
3841 	bge_reg_put32(bgep, ETHERNET_MAC_EVENT_ENABLE_REG, 0);
3842 	bge_reg_put32(bgep, ETHERNET_MAC_STATUS_REG, ~0);
3843 
3844 	/*
3845 	 * if we're stopping the chip because of a detected fault then do
3846 	 * appropriate actions
3847 	 */
3848 	if (fault) {
3849 		if (bgep->bge_chip_state != BGE_CHIP_FAULT) {
3850 			bgep->bge_chip_state = BGE_CHIP_FAULT;
3851 			if (!bgep->manual_reset)
3852 				ddi_fm_service_impact(bgep->devinfo,
3853 				    DDI_SERVICE_LOST);
3854 			if (bgep->bge_dma_error) {
3855 				/*
3856 				 * need to free buffers in case the fault was
3857 				 * due to a memory error in a buffer - got to
3858 				 * do a fair bit of tidying first
3859 				 */
3860 				if (bgep->progress & PROGRESS_KSTATS) {
3861 					bge_fini_kstats(bgep);
3862 					bgep->progress &= ~PROGRESS_KSTATS;
3863 				}
3864 				if (bgep->progress & PROGRESS_INTR) {
3865 					bge_intr_disable(bgep);
3866 					rw_enter(bgep->errlock, RW_WRITER);
3867 					bge_fini_rings(bgep);
3868 					rw_exit(bgep->errlock);
3869 					bgep->progress &= ~PROGRESS_INTR;
3870 				}
3871 				if (bgep->progress & PROGRESS_BUFS) {
3872 					bge_free_bufs(bgep);
3873 					bgep->progress &= ~PROGRESS_BUFS;
3874 				}
3875 				bgep->bge_dma_error = B_FALSE;
3876 			}
3877 		}
3878 	} else
3879 		bgep->bge_chip_state = BGE_CHIP_STOPPED;
3880 }
3881 
3882 /*
3883  * Poll for completion of chip's ROM firmware; also, at least on the
3884  * first time through, find and return the hardware MAC address, if any.
3885  */
3886 static uint64_t bge_poll_firmware(bge_t *bgep);
3887 #pragma	no_inline(bge_poll_firmware)
3888 
3889 static uint64_t
3890 bge_poll_firmware(bge_t *bgep)
3891 {
3892 	uint64_t magic;
3893 	uint64_t mac;
3894 	uint32_t gen, val;
3895 	uint32_t i;
3896 
3897 	/*
3898 	 * Step 19: poll for firmware completion (GENCOMM port set
3899 	 * to the ones complement of T3_MAGIC_NUMBER).
3900 	 *
3901 	 * While we're at it, we also read the MAC address register;
3902 	 * at some stage the firmware will load this with the
3903 	 * factory-set value.
3904 	 *
3905 	 * When both the magic number and the MAC address are set,
3906 	 * we're done; but we impose a time limit of one second
3907 	 * (1000*1000us) in case the firmware fails in some fashion
3908 	 * or the SEEPROM that provides that MAC address isn't fitted.
3909 	 *
3910 	 * After the first time through (chip state != INITIAL), we
3911 	 * don't need the MAC address to be set (we've already got it
3912 	 * or not, from the first time), so we don't wait for it, but
3913 	 * we still have to wait for the T3_MAGIC_NUMBER.
3914 	 *
3915 	 * Note: the magic number is only a 32-bit quantity, but the NIC
3916 	 * memory is 64-bit (and big-endian) internally.  Addressing the
3917 	 * GENCOMM word as "the upper half of a 64-bit quantity" makes
3918 	 * it work correctly on both big- and little-endian hosts.
3919 	 */
3920 	if (MHCR_CHIP_ASIC_REV(bgep) == MHCR_CHIP_ASIC_REV_5906) {
3921 		for (i = 0; i < 1000; ++i) {
3922 			drv_usecwait(1000);
3923 			val = bge_reg_get32(bgep, VCPU_STATUS_REG);
3924 			if (val & VCPU_INIT_DONE)
3925 				break;
3926 		}
3927 		BGE_DEBUG(("bge_poll_firmware($%p): return after %d loops",
3928 		    (void *)bgep, i));
3929 		mac = bge_reg_get64(bgep, MAC_ADDRESS_REG(0));
3930 	} else {
3931 		for (i = 0; i < 1000; ++i) {
3932 			drv_usecwait(1000);
3933 			gen = bge_nic_get64(bgep, NIC_MEM_GENCOMM) >> 32;
3934 			if (i == 0 && DEVICE_5704_SERIES_CHIPSETS(bgep))
3935 				drv_usecwait(100000);
3936 			mac = bge_reg_get64(bgep, MAC_ADDRESS_REG(0));
3937 #ifdef BGE_IPMI_ASF
3938 			if (!bgep->asf_enabled) {
3939 #endif
3940 				if (gen != ~T3_MAGIC_NUMBER)
3941 					continue;
3942 #ifdef BGE_IPMI_ASF
3943 			}
3944 #endif
3945 			if (mac != 0ULL)
3946 				break;
3947 			if (bgep->bge_chip_state != BGE_CHIP_INITIAL)
3948 				break;
3949 		}
3950 	}
3951 
3952 	magic = bge_nic_get64(bgep, NIC_MEM_GENCOMM);
3953 	BGE_DEBUG(("bge_poll_firmware($%p): PXE magic 0x%x after %d loops",
3954 	    (void *)bgep, gen, i));
3955 	BGE_DEBUG(("bge_poll_firmware: MAC %016llx, GENCOMM %016llx",
3956 	    mac, magic));
3957 
3958 	return (mac);
3959 }
3960 
3961 /*
3962  * Maximum times of trying to get the NVRAM access lock
3963  * by calling bge_nvmem_acquire()
3964  */
3965 #define	MAX_TRY_NVMEM_ACQUIRE	10000
3966 
3967 #ifdef BGE_IPMI_ASF
3968 int bge_chip_reset(bge_t *bgep, boolean_t enable_dma, uint_t asf_mode);
3969 #else
3970 int bge_chip_reset(bge_t *bgep, boolean_t enable_dma);
3971 #endif
3972 #pragma	no_inline(bge_chip_reset)
3973 
3974 int
3975 #ifdef BGE_IPMI_ASF
3976 bge_chip_reset(bge_t *bgep, boolean_t enable_dma, uint_t asf_mode)
3977 #else
3978 bge_chip_reset(bge_t *bgep, boolean_t enable_dma)
3979 #endif
3980 {
3981 	chip_id_t chipid;
3982 	uint64_t mac;
3983 	uint64_t magic;
3984 	uint32_t tmp;
3985 	uint32_t mhcr_base;
3986 	uint32_t mhcr;
3987 	uint32_t sx0;
3988 	uint32_t i, tries;
3989 #ifdef BGE_IPMI_ASF
3990 	uint32_t mailbox;
3991 #endif
3992 	int retval = DDI_SUCCESS;
3993 
3994 	BGE_TRACE(("bge_chip_reset($%p, %d)",
3995 		(void *)bgep, enable_dma));
3996 
3997 	ASSERT(mutex_owned(bgep->genlock));
3998 
3999 	BGE_DEBUG(("bge_chip_reset($%p, %d): current state is %d",
4000 		(void *)bgep, enable_dma, bgep->bge_chip_state));
4001 
4002 	/*
4003 	 * Do we need to stop the chip cleanly before resetting?
4004 	 */
4005 	switch (bgep->bge_chip_state) {
4006 	default:
4007 		_NOTE(NOTREACHED)
4008 		return (DDI_FAILURE);
4009 
4010 	case BGE_CHIP_INITIAL:
4011 	case BGE_CHIP_STOPPED:
4012 	case BGE_CHIP_RESET:
4013 		break;
4014 
4015 	case BGE_CHIP_RUNNING:
4016 	case BGE_CHIP_ERROR:
4017 	case BGE_CHIP_FAULT:
4018 		bge_chip_stop(bgep, B_FALSE);
4019 		break;
4020 	}
4021 
4022 	mhcr_base = MHCR_ENABLE_INDIRECT_ACCESS |
4023 	            MHCR_ENABLE_PCI_STATE_RW |
4024 	            MHCR_ENABLE_TAGGED_STATUS_MODE |
4025 	            MHCR_MASK_INTERRUPT_MODE |
4026 	            MHCR_MASK_PCI_INT_OUTPUT |
4027 	            MHCR_CLEAR_INTERRUPT_INTA;
4028 
4029 #ifdef BGE_IPMI_ASF
4030 	if (bgep->asf_enabled) {
4031 		mhcr = mhcr_base;
4032 #ifdef _BIG_ENDIAN
4033 		mhcr |= (MHCR_ENABLE_ENDIAN_WORD_SWAP |
4034 		         MHCR_ENABLE_ENDIAN_BYTE_SWAP);
4035 #endif
4036 		pci_config_put32(bgep->cfg_handle, PCI_CONF_BGE_MHCR, mhcr);
4037 
4038 		bge_reg_put32(bgep, MEMORY_ARBITER_MODE_REG,
4039 			bge_reg_get32(bgep, MEMORY_ARBITER_MODE_REG) |
4040 			MEMORY_ARBITER_ENABLE);
4041 
4042 		if (asf_mode == ASF_MODE_INIT) {
4043 			bge_asf_pre_reset_operations(bgep, BGE_INIT_RESET);
4044 		} else if (asf_mode == ASF_MODE_SHUTDOWN) {
4045 			bge_asf_pre_reset_operations(bgep, BGE_SHUTDOWN_RESET);
4046 		}
4047 	}
4048 #endif
4049 
4050 	/*
4051 	 * Adapted from Broadcom document 570X-PG102-R, pp 102-116.
4052 	 * Updated to reflect Broadcom document 570X-PG104-R, pp 146-159.
4053 	 *
4054 	 * Before reset Core clock,it is
4055 	 * also required to initialize the Memory Arbiter as specified in step9
4056 	 * and Misc Host Control Register as specified in step-13
4057 	 * Step 4-5: reset Core clock & wait for completion
4058 	 * Steps 6-8: are done by bge_chip_cfg_init()
4059 	 * put the T3_MAGIC_NUMBER into the GENCOMM port before reset
4060 	 */
4061 	if (!bge_chip_enable_engine(bgep, MEMORY_ARBITER_MODE_REG, 0))
4062 		retval = DDI_FAILURE;
4063 
4064 	mhcr = mhcr_base;
4065 #ifdef _BIG_ENDIAN
4066 	mhcr |= (MHCR_ENABLE_ENDIAN_WORD_SWAP |
4067 	         MHCR_ENABLE_ENDIAN_BYTE_SWAP);
4068 #endif
4069 	pci_config_put32(bgep->cfg_handle, PCI_CONF_BGE_MHCR, mhcr);
4070 
4071 #ifdef BGE_IPMI_ASF
4072 	if (bgep->asf_enabled)
4073 		bgep->asf_wordswapped = B_FALSE;
4074 #endif
4075 	/*
4076 	 * NVRAM Corruption Workaround
4077 	 */
4078 	for (tries = 0; tries < MAX_TRY_NVMEM_ACQUIRE; tries++)
4079 		if (bge_nvmem_acquire(bgep) != EAGAIN)
4080 			break;
4081 	if (tries >= MAX_TRY_NVMEM_ACQUIRE)
4082 		BGE_DEBUG(("%s: fail to acquire nvram lock",
4083 			bgep->ifname));
4084 
4085 	bge_ape_lock(bgep, BGE_APE_LOCK_GRC);
4086 
4087 #ifdef BGE_IPMI_ASF
4088 	if (!bgep->asf_enabled) {
4089 #endif
4090 		magic = (uint64_t)T3_MAGIC_NUMBER << 32;
4091 		bge_nic_put64(bgep, NIC_MEM_GENCOMM, magic);
4092 #ifdef BGE_IPMI_ASF
4093 	}
4094 #endif
4095 
4096 	if (DEVICE_5717_SERIES_CHIPSETS(bgep) ||
4097 	    DEVICE_5725_SERIES_CHIPSETS(bgep) ||
4098 	    DEVICE_57765_SERIES_CHIPSETS(bgep)) {
4099 		bge_reg_set32(bgep, FAST_BOOT_PC, 0);
4100 		if (!bge_chip_enable_engine(bgep, MEMORY_ARBITER_MODE_REG, 0))
4101 			retval = DDI_FAILURE;
4102 	}
4103 
4104 	mhcr = mhcr_base;
4105 #ifdef _BIG_ENDIAN
4106 	mhcr |= (MHCR_ENABLE_ENDIAN_WORD_SWAP |
4107 	         MHCR_ENABLE_ENDIAN_BYTE_SWAP);
4108 #endif
4109 	pci_config_put32(bgep->cfg_handle, PCI_CONF_BGE_MHCR, mhcr);
4110 
4111 	if (!bge_chip_reset_engine(bgep, MISC_CONFIG_REG))
4112 		retval = DDI_FAILURE;
4113 
4114 	bge_chip_cfg_init(bgep, &chipid, enable_dma);
4115 
4116 	/*
4117 	 * Step 8a: This may belong elsewhere, but BCM5721 needs
4118 	 * a bit set to avoid a fifo overflow/underflow bug.
4119 	 */
4120 	if ((bgep->chipid.chip_label == 5721) ||
4121 		(bgep->chipid.chip_label == 5751) ||
4122 		(bgep->chipid.chip_label == 5752) ||
4123 		(bgep->chipid.chip_label == 5755) ||
4124 		(bgep->chipid.chip_label == 5756) ||
4125 		(bgep->chipid.chip_label == 5789) ||
4126 		(bgep->chipid.chip_label == 5906))
4127 		bge_reg_set32(bgep, TLP_CONTROL_REG, TLP_DATA_FIFO_PROTECT);
4128 
4129 	/*
4130 	 * In the 57765 family of devices we need to work around an apparent
4131 	 * transmit hang by dorking with the PCIe serdes training clocks.
4132 	 */
4133 	if (DEVICE_57765_SERIES_CHIPSETS(bgep) &&
4134 	    (CHIP_ASIC_REV_PROD_ID(bgep) >> 8) != CHIP_ASIC_REV_57765_AX) {
4135 		tmp = bge_reg_get32(bgep, CPMU_PADRNG_CTL_REG);
4136 		tmp |= CPMU_PADRNG_CTL_RDIV2;
4137 		bge_reg_set32(bgep, CPMU_PADRNG_CTL_REG, tmp);
4138 	}
4139 
4140 
4141 	/*
4142 	 * Step 9: enable MAC memory arbiter,bit30 and bit31 of 5714/5715 should
4143 	 * not be changed.
4144 	 */
4145 	if (!bge_chip_enable_engine(bgep, MEMORY_ARBITER_MODE_REG, 0))
4146 		retval = DDI_FAILURE;
4147 
4148 	/*
4149 	 * Steps 10-11: configure PIO endianness options and
4150 	 * enable indirect register access -- already done
4151 	 * Steps 12-13: enable writing to the PCI state & clock
4152 	 * control registers -- not required; we aren't going to
4153 	 * use those features.
4154 	 * Steps 14-15: Configure DMA endianness options.  See
4155 	 * the comments on the setting of the MHCR above.
4156 	 */
4157 	tmp = MODE_WORD_SWAP_FRAME | MODE_BYTE_SWAP_FRAME;
4158 #ifdef _BIG_ENDIAN
4159 	tmp |= (MODE_WORD_SWAP_NONFRAME | MODE_BYTE_SWAP_NONFRAME);
4160 #endif
4161 #ifdef BGE_IPMI_ASF
4162 	if (bgep->asf_enabled)
4163 		tmp |= MODE_HOST_STACK_UP;
4164 #endif
4165 	bge_reg_put32(bgep, MODE_CONTROL_REG, tmp);
4166 
4167 #ifdef BGE_IPMI_ASF
4168 	if (bgep->asf_enabled) {
4169 #ifdef __sparc
4170 		bge_reg_put32(bgep, MEMORY_ARBITER_MODE_REG,
4171 			MEMORY_ARBITER_ENABLE |
4172 			bge_reg_get32(bgep, MEMORY_ARBITER_MODE_REG));
4173 #endif
4174 
4175 #ifdef  BGE_NETCONSOLE
4176 		if (!bgep->asf_newhandshake) {
4177 			if ((asf_mode == ASF_MODE_INIT) ||
4178 			(asf_mode == ASF_MODE_POST_INIT)) {
4179 				bge_asf_post_reset_old_mode(bgep,
4180 					BGE_INIT_RESET);
4181 			} else {
4182 				bge_asf_post_reset_old_mode(bgep,
4183 					BGE_SHUTDOWN_RESET);
4184 			}
4185 		}
4186 #endif
4187 
4188 		/* Wait for NVRAM init */
4189 		i = 0;
4190 		drv_usecwait(5000);
4191 		mailbox = bge_nic_get32(bgep, BGE_FIRMWARE_MAILBOX);
4192 
4193 		while ((mailbox != (uint32_t)
4194 			~BGE_MAGIC_NUM_FIRMWARE_INIT_DONE) &&
4195 			(i < 10000)) {
4196 			drv_usecwait(100);
4197 			mailbox = bge_nic_get32(bgep,
4198 				BGE_FIRMWARE_MAILBOX);
4199 			i++;
4200 		}
4201 
4202 #ifndef BGE_NETCONSOLE
4203 		if (!bgep->asf_newhandshake) {
4204 			if ((asf_mode == ASF_MODE_INIT) ||
4205 				(asf_mode == ASF_MODE_POST_INIT)) {
4206 
4207 				bge_asf_post_reset_old_mode(bgep,
4208 					BGE_INIT_RESET);
4209 			} else {
4210 				bge_asf_post_reset_old_mode(bgep,
4211 					BGE_SHUTDOWN_RESET);
4212 			}
4213 		}
4214 #endif
4215 	}
4216 #endif
4217 
4218 	bge_ape_unlock(bgep, BGE_APE_LOCK_GRC);
4219 
4220 	/*
4221 	 * Steps 16-17: poll for firmware completion
4222 	 */
4223 	mac = bge_poll_firmware(bgep);
4224 
4225 	if (bgep->chipid.device == DEVICE_ID_5720) {
4226 		tmp = bge_reg_get32(bgep, CPMU_CLCK_ORIDE_REG);
4227 		bge_reg_put32(bgep, CPMU_CLCK_ORIDE_REG,
4228 		              (tmp & ~CPMU_CLCK_ORIDE_MAC_ORIDE_EN));
4229 	}
4230 
4231 	/*
4232 	 * Step 18: enable external memory -- doesn't apply.
4233 	 *
4234 	 * However we take the opportunity to set the MLCR anyway, as
4235 	 * this register also controls the SEEPROM auto-access method
4236 	 * which we may want to use later ...
4237 	 *
4238 	 * The proper value here depends on the way the chip is wired
4239 	 * into the circuit board, as this register *also* controls which
4240 	 * of the "Miscellaneous I/O" pins are driven as outputs and the
4241 	 * values driven onto those pins!
4242 	 *
4243 	 * See also step 74 in the PRM ...
4244 	 */
4245 	bge_reg_put32(bgep, MISC_LOCAL_CONTROL_REG,
4246 	    bgep->chipid.bge_mlcr_default);
4247 
4248 	if ((bgep->chipid.flags & CHIP_FLAG_SERDES) &&
4249 	    DEVICE_5714_SERIES_CHIPSETS(bgep)) {
4250 		tmp = bge_reg_get32(bgep, SERDES_RX_CONTROL);
4251 		tmp |= SERDES_RX_CONTROL_SIG_DETECT;
4252 		bge_reg_put32(bgep, SERDES_RX_CONTROL, tmp);
4253 	}
4254 
4255 	bge_reg_set32(bgep, SERIAL_EEPROM_ADDRESS_REG, SEEPROM_ACCESS_INIT);
4256 
4257 	/*
4258 	 * Step 20: clear the Ethernet MAC mode register
4259 	 */
4260 	if (bgep->ape_enabled)
4261 		bge_reg_put32(bgep, ETHERNET_MAC_MODE_REG,
4262 		    ETHERNET_MODE_APE_TX_EN | ETHERNET_MODE_APE_RX_EN);
4263 	else
4264 		bge_reg_put32(bgep, ETHERNET_MAC_MODE_REG, 0);
4265 
4266 	/*
4267 	 * Step 21: restore cache-line-size, latency timer, and
4268 	 * subsystem ID registers to their original values (not
4269 	 * those read into the local structure <chipid>, 'cos
4270 	 * that was after they were cleared by the RESET).
4271 	 *
4272 	 * Note: the Subsystem Vendor/Device ID registers are not
4273 	 * directly writable in config space, so we use the shadow
4274 	 * copy in "Page Zero" of register space to restore them
4275 	 * both in one go ...
4276 	 */
4277 	pci_config_put8(bgep->cfg_handle, PCI_CONF_CACHE_LINESZ,
4278 		bgep->chipid.clsize);
4279 	pci_config_put8(bgep->cfg_handle, PCI_CONF_LATENCY_TIMER,
4280 		bgep->chipid.latency);
4281 	bge_reg_put32(bgep, PCI_CONF_SUBVENID,
4282 		(bgep->chipid.subdev << 16) | bgep->chipid.subven);
4283 
4284 	/*
4285 	 * The SEND INDEX registers should be reset to zero by the
4286 	 * global chip reset; if they're not, there'll be trouble
4287 	 * later on.
4288 	 */
4289 	sx0 = bge_reg_get32(bgep, NIC_DIAG_SEND_INDEX_REG(0));
4290 	if (sx0 != 0) {
4291 		BGE_REPORT((bgep, "SEND INDEX - device didn't RESET"));
4292 		bge_fm_ereport(bgep, DDI_FM_DEVICE_INVAL_STATE);
4293 		retval = DDI_FAILURE;
4294 	}
4295 
4296 	/* Enable MSI code */
4297 	if (bgep->intr_type == DDI_INTR_TYPE_MSI)
4298 		bge_reg_set32(bgep, MSI_MODE_REG,
4299 		    MSI_PRI_HIGHEST|MSI_MSI_ENABLE|MSI_ERROR_ATTENTION);
4300 
4301 	/*
4302 	 * On the first time through, save the factory-set MAC address
4303 	 * (if any).  If bge_poll_firmware() above didn't return one
4304 	 * (from a chip register) consider looking in the attached NV
4305 	 * memory device, if any.  Once we have it, we save it in both
4306 	 * register-image (64-bit) and byte-array forms.  All-zero and
4307 	 * all-one addresses are not valid, and we refuse to stash those.
4308 	 */
4309 	if (bgep->bge_chip_state == BGE_CHIP_INITIAL) {
4310 		if (mac == 0ULL)
4311 			mac = bge_get_nvmac(bgep);
4312 		if (mac != 0ULL && mac != ~0ULL) {
4313 			bgep->chipid.hw_mac_addr = mac;
4314 			for (i = ETHERADDRL; i-- != 0; ) {
4315 				bgep->chipid.vendor_addr.addr[i] = (uchar_t)mac;
4316 				mac >>= 8;
4317 			}
4318 			bgep->chipid.vendor_addr.set = B_TRUE;
4319 		}
4320 	}
4321 
4322 #ifdef BGE_IPMI_ASF
4323 	if (bgep->asf_enabled && bgep->asf_newhandshake) {
4324 		if (asf_mode != ASF_MODE_NONE) {
4325 			if ((asf_mode == ASF_MODE_INIT) ||
4326 				(asf_mode == ASF_MODE_POST_INIT)) {
4327 
4328 				bge_asf_post_reset_new_mode(bgep,
4329 					BGE_INIT_RESET);
4330 			} else {
4331 				bge_asf_post_reset_new_mode(bgep,
4332 					BGE_SHUTDOWN_RESET);
4333 			}
4334 		}
4335 	}
4336 #endif
4337 
4338 	/*
4339 	 * Record the new state
4340 	 */
4341 	bgep->chip_resets += 1;
4342 	bgep->bge_chip_state = BGE_CHIP_RESET;
4343 	return (retval);
4344 }
4345 
4346 /*
4347  * bge_chip_start() -- start the chip transmitting and/or receiving,
4348  * including enabling interrupts
4349  */
4350 int bge_chip_start(bge_t *bgep, boolean_t reset_phys);
4351 #pragma	no_inline(bge_chip_start)
4352 
4353 void
4354 bge_chip_coalesce_update(bge_t *bgep)
4355 {
4356 	bge_reg_put32(bgep, SEND_COALESCE_MAX_BD_REG,
4357 	    bgep->chipid.tx_count_norm);
4358 	bge_reg_put32(bgep, SEND_COALESCE_TICKS_REG,
4359 	    bgep->chipid.tx_ticks_norm);
4360 	bge_reg_put32(bgep, RCV_COALESCE_MAX_BD_REG,
4361 	    bgep->chipid.rx_count_norm);
4362 	bge_reg_put32(bgep, RCV_COALESCE_TICKS_REG,
4363 	    bgep->chipid.rx_ticks_norm);
4364 }
4365 
4366 int
4367 bge_chip_start(bge_t *bgep, boolean_t reset_phys)
4368 {
4369 	uint32_t coalmode;
4370 	uint32_t ledctl;
4371 	uint32_t mtu;
4372 	uint32_t maxring;
4373 	uint32_t stats_mask;
4374 	uint32_t dma_wrprio;
4375 	uint64_t ring;
4376 	uint32_t reg;
4377 	uint32_t regval;
4378 	uint32_t mhcr;
4379 	int retval = DDI_SUCCESS;
4380 	int i;
4381 
4382 	BGE_TRACE(("bge_chip_start($%p)",
4383 	    (void *)bgep));
4384 
4385 	ASSERT(mutex_owned(bgep->genlock));
4386 	ASSERT(bgep->bge_chip_state == BGE_CHIP_RESET);
4387 
4388 	/* Initialize EEE, enable MAC control of LPI */
4389 	bge_eee_init(bgep);
4390 
4391 	if (bgep->ape_enabled) {
4392 		/*
4393 		 * Allow reads and writes to the
4394 		 * APE register and memory space.
4395 		 */
4396 		regval = pci_config_get32(bgep->cfg_handle,
4397 		    PCI_CONF_BGE_PCISTATE);
4398 		regval |= PCISTATE_ALLOW_APE_CTLSPC_WR |
4399 		    PCISTATE_ALLOW_APE_SHMEM_WR | PCISTATE_ALLOW_APE_PSPACE_WR;
4400 		pci_config_put32(bgep->cfg_handle,
4401 		    PCI_CONF_BGE_PCISTATE, regval);
4402 	}
4403 
4404 	/*
4405 	 * Taken from Broadcom document 570X-PG102-R, pp 102-116.
4406 	 * The document specifies 95 separate steps to fully
4407 	 * initialise the chip!!!!
4408 	 *
4409 	 * The reset code above has already got us as far as step
4410 	 * 21, so we continue with ...
4411 	 *
4412 	 * Step 22: clear the MAC statistics block
4413 	 * (0x0300-0x0aff in NIC-local memory)
4414 	 */
4415 	if (bgep->chipid.statistic_type == BGE_STAT_BLK)
4416 		bge_nic_zero(bgep, NIC_MEM_STATISTICS,
4417 		    NIC_MEM_STATISTICS_SIZE);
4418 
4419 	/*
4420 	 * Step 23: clear the status block (in host memory)
4421 	 */
4422 	DMA_ZERO(bgep->status_block);
4423 
4424 	/*
4425 	 * Step 24: set DMA read/write control register
4426 	 */
4427 	pci_config_put32(bgep->cfg_handle, PCI_CONF_BGE_PDRWCR,
4428 	    bgep->chipid.bge_dma_rwctrl);
4429 
4430 	/*
4431 	 * Step 25: Configure DMA endianness -- already done (16/17)
4432 	 * Step 26: Configure Host-Based Send Rings
4433 	 * Step 27: Indicate Host Stack Up
4434 	 */
4435 	bge_reg_set32(bgep, MODE_CONTROL_REG,
4436 	    MODE_HOST_SEND_BDS |
4437 	    MODE_HOST_STACK_UP);
4438 
4439 	if (DEVICE_5717_SERIES_CHIPSETS(bgep) ||
4440 	    DEVICE_5725_SERIES_CHIPSETS(bgep) ||
4441 	    DEVICE_57765_SERIES_CHIPSETS(bgep)) {
4442 		reg = (CHIP_ASIC_REV(bgep) == CHIP_ASIC_REV_5762)
4443 		          ? RDMA_RSRV_CTRL_REG2 : RDMA_RSRV_CTRL_REG;
4444 		regval = bge_reg_get32(bgep, reg);
4445 		if ((bgep->chipid.device == DEVICE_ID_5719) ||
4446 		    (bgep->chipid.device == DEVICE_ID_5720) ||
4447 		    (CHIP_ASIC_REV(bgep) == CHIP_ASIC_REV_5762)) {
4448 			regval &= ~(RDMA_RSRV_CTRL_TXMRGN_MASK |
4449 			            RDMA_RSRV_CTRL_FIFO_LWM_MASK |
4450 			            RDMA_RSRV_CTRL_FIFO_HWM_MASK);
4451 			regval |= (RDMA_RSRV_CTRL_TXMRGN_320B |
4452 			           RDMA_RSRV_CTRL_FIFO_LWM_1_5K |
4453 			           RDMA_RSRV_CTRL_FIFO_HWM_1_5K);
4454 		}
4455 		/* Enable the DMA FIFO Overrun fix. */
4456 		bge_reg_put32(bgep, reg,
4457 		    (regval | RDMA_RSRV_CTRL_FIFO_OFLW_FIX));
4458 
4459 		if ((CHIP_ASIC_REV(bgep) == CHIP_ASIC_REV_5719) ||
4460 		    (CHIP_ASIC_REV(bgep) == CHIP_ASIC_REV_5720) ||
4461 		    (CHIP_ASIC_REV(bgep) == CHIP_ASIC_REV_5762)) {
4462 			reg = (CHIP_ASIC_REV(bgep) == CHIP_ASIC_REV_5762)
4463 			          ? RDMA_CORR_CTRL_REG2 : RDMA_CORR_CTRL_REG;
4464 			regval = bge_reg_get32(bgep, reg);
4465 			bge_reg_put32(bgep, reg, (regval |
4466 			                          RDMA_CORR_CTRL_BLEN_BD_4K |
4467 			                          RDMA_CORR_CTRL_BLEN_LSO_4K));
4468 		}
4469 	}
4470 
4471 	/*
4472 	 * Step 28: Configure checksum options:
4473 	 *	Solaris supports the hardware default checksum options.
4474 	 *
4475 	 *	Workaround for Incorrect pseudo-header checksum calculation.
4476 	 */
4477 	if (bgep->chipid.flags & CHIP_FLAG_PARTIAL_CSUM)
4478 		bge_reg_set32(bgep, MODE_CONTROL_REG,
4479 		    MODE_SEND_NO_PSEUDO_HDR_CSUM);
4480 
4481 	/*
4482 	 * Step 29: configure Timer Prescaler.  The value is always the
4483 	 * same: the Core Clock frequency in MHz (66), minus 1, shifted
4484 	 * into bits 7-1.  Don't set bit 0, 'cos that's the RESET bit
4485 	 * for the whole chip!
4486 	 */
4487 	regval = bge_reg_get32(bgep, MISC_CONFIG_REG);
4488 	regval = (regval & 0xffffff00) | MISC_CONFIG_DEFAULT;
4489 	bge_reg_put32(bgep, MISC_CONFIG_REG, regval);
4490 
4491 	if (DEVICE_5906_SERIES_CHIPSETS(bgep)) {
4492 		drv_usecwait(40);
4493 		/* put PHY into ready state */
4494 		bge_reg_clr32(bgep, MISC_CONFIG_REG, MISC_CONFIG_EPHY_IDDQ);
4495 		(void) bge_reg_get32(bgep, MISC_CONFIG_REG); /* flush */
4496 		drv_usecwait(40);
4497 	}
4498 
4499 	/*
4500 	 * Steps 30-31: Configure MAC local memory pool & DMA pool registers
4501 	 *
4502 	 * If the mbuf_length is specified as 0, we just leave these at
4503 	 * their hardware defaults, rather than explicitly setting them.
4504 	 * As the Broadcom HRM,driver better not change the parameters
4505 	 * when the chipsets is 5705/5788/5721/5751/5714 and 5715.
4506 	 */
4507 	if ((bgep->chipid.mbuf_length != 0) &&
4508 	    (DEVICE_5704_SERIES_CHIPSETS(bgep))) {
4509 			bge_reg_put32(bgep, MBUF_POOL_BASE_REG,
4510 			    bgep->chipid.mbuf_base);
4511 			bge_reg_put32(bgep, MBUF_POOL_LENGTH_REG,
4512 			    bgep->chipid.mbuf_length);
4513 			bge_reg_put32(bgep, DMAD_POOL_BASE_REG,
4514 			    DMAD_POOL_BASE_DEFAULT);
4515 			bge_reg_put32(bgep, DMAD_POOL_LENGTH_REG,
4516 			    DMAD_POOL_LENGTH_DEFAULT);
4517 	}
4518 
4519 	/*
4520 	 * Step 32: configure MAC memory pool watermarks
4521 	 */
4522 	bge_reg_put32(bgep, RDMA_MBUF_LOWAT_REG,
4523 	    bgep->chipid.mbuf_lo_water_rdma);
4524 	bge_reg_put32(bgep, MAC_RX_MBUF_LOWAT_REG,
4525 	    bgep->chipid.mbuf_lo_water_rmac);
4526 	bge_reg_put32(bgep, MBUF_HIWAT_REG,
4527 	    bgep->chipid.mbuf_hi_water);
4528 
4529 	/*
4530 	 * Step 33: configure DMA resource watermarks
4531 	 */
4532 	if (DEVICE_5704_SERIES_CHIPSETS(bgep)) {
4533 		bge_reg_put32(bgep, DMAD_POOL_LOWAT_REG,
4534 		    bge_dmad_lo_water);
4535 		bge_reg_put32(bgep, DMAD_POOL_HIWAT_REG,
4536 		    bge_dmad_hi_water);
4537 	}
4538 	bge_reg_put32(bgep, LOWAT_MAX_RECV_FRAMES_REG, bge_lowat_recv_frames);
4539 
4540 	/*
4541 	 * Steps 34-36: enable buffer manager & internal h/w queues
4542 	 */
4543 	regval = STATE_MACHINE_ATTN_ENABLE_BIT;
4544 	if (bgep->chipid.device == DEVICE_ID_5719)
4545 		regval |= BUFFER_MANAGER_MODE_NO_TX_UNDERRUN;
4546 	if (DEVICE_5717_SERIES_CHIPSETS(bgep) ||
4547 	    DEVICE_5725_SERIES_CHIPSETS(bgep) ||
4548 	    DEVICE_57765_SERIES_CHIPSETS(bgep))
4549 		regval |= BUFFER_MANAGER_MODE_MBLOW_ATTN_ENABLE;
4550 	if (!bge_chip_enable_engine(bgep, BUFFER_MANAGER_MODE_REG, regval))
4551 		retval = DDI_FAILURE;
4552 
4553 	if (!bge_chip_enable_engine(bgep, FTQ_RESET_REG, 0))
4554 		retval = DDI_FAILURE;
4555 
4556 	/*
4557 	 * Steps 37-39: initialise Receive Buffer (Producer) RCBs
4558 	 */
4559 	if (DEVICE_5717_SERIES_CHIPSETS(bgep) ||
4560 	    DEVICE_5725_SERIES_CHIPSETS(bgep) ||
4561 	    DEVICE_57765_SERIES_CHIPSETS(bgep)) {
4562 		buff_ring_t *brp = &bgep->buff[BGE_STD_BUFF_RING];
4563 		bge_reg_put64(bgep, STD_RCV_BD_RING_RCB_REG,
4564 		    brp->desc.cookie.dmac_laddress);
4565 		bge_reg_put32(bgep, STD_RCV_BD_RING_RCB_REG + 8,
4566 		    (brp->desc.nslots) << 16 | brp->buf[0].size << 2);
4567 		if (DEVICE_57765_SERIES_CHIPSETS(bgep)) {
4568 			bge_reg_put32(bgep, STD_RCV_BD_RING_RCB_REG + 0xc,
4569 			    NIC_MEM_SHADOW_BUFF_STD);
4570 		} else {
4571 			bge_reg_put32(bgep, STD_RCV_BD_RING_RCB_REG + 0xc,
4572 			    NIC_MEM_SHADOW_BUFF_STD_5717);
4573 		}
4574 	} else {
4575 		bge_reg_putrcb(bgep, STD_RCV_BD_RING_RCB_REG,
4576 		    &bgep->buff[BGE_STD_BUFF_RING].hw_rcb);
4577 	}
4578 
4579 	if (DEVICE_5704_SERIES_CHIPSETS(bgep)) {
4580 		bge_reg_putrcb(bgep, JUMBO_RCV_BD_RING_RCB_REG,
4581 		    &bgep->buff[BGE_JUMBO_BUFF_RING].hw_rcb);
4582 		bge_reg_putrcb(bgep, MINI_RCV_BD_RING_RCB_REG,
4583 		    &bgep->buff[BGE_MINI_BUFF_RING].hw_rcb);
4584 	}
4585 
4586 	/*
4587 	 * Step 40: set Receive Buffer Descriptor Ring replenish thresholds
4588 	 */
4589 	bge_reg_put32(bgep, STD_RCV_BD_REPLENISH_REG, bge_replenish_std);
4590 	if (DEVICE_5704_SERIES_CHIPSETS(bgep)) {
4591 		bge_reg_put32(bgep, JUMBO_RCV_BD_REPLENISH_REG,
4592 		    bge_replenish_jumbo);
4593 		bge_reg_put32(bgep, MINI_RCV_BD_REPLENISH_REG,
4594 		    bge_replenish_mini);
4595 	}
4596 
4597 	/*
4598 	 * Steps 41-43: clear Send Ring Producer Indices and initialise
4599 	 * Send Producer Rings (0x0100-0x01ff in NIC-local memory)
4600 	 */
4601 	if (DEVICE_5704_SERIES_CHIPSETS(bgep))
4602 		maxring = BGE_SEND_RINGS_MAX;
4603 	else
4604 		maxring = BGE_SEND_RINGS_MAX_5705;
4605 	for (ring = 0; ring < maxring; ++ring) {
4606 		bge_mbx_put(bgep, SEND_RING_HOST_INDEX_REG(ring), 0);
4607 		bge_mbx_put(bgep, SEND_RING_NIC_INDEX_REG(ring), 0);
4608 		bge_nic_putrcb(bgep, NIC_MEM_SEND_RING(ring),
4609 		    &bgep->send[ring].hw_rcb);
4610 	}
4611 
4612 	/*
4613 	 * Steps 44-45: initialise Receive Return Rings
4614 	 * (0x0200-0x02ff in NIC-local memory)
4615 	 */
4616 	if (DEVICE_5704_SERIES_CHIPSETS(bgep))
4617 		maxring = BGE_RECV_RINGS_MAX;
4618 	else
4619 		maxring = BGE_RECV_RINGS_MAX_5705;
4620 	for (ring = 0; ring < maxring; ++ring)
4621 		bge_nic_putrcb(bgep, NIC_MEM_RECV_RING(ring),
4622 		    &bgep->recv[ring].hw_rcb);
4623 
4624 	/*
4625 	 * Step 46: initialise Receive Buffer (Producer) Ring indexes
4626 	 */
4627 	bge_mbx_put(bgep, RECV_STD_PROD_INDEX_REG, 0);
4628 	if (DEVICE_5704_SERIES_CHIPSETS(bgep)) {
4629 		bge_mbx_put(bgep, RECV_JUMBO_PROD_INDEX_REG, 0);
4630 		bge_mbx_put(bgep, RECV_MINI_PROD_INDEX_REG, 0);
4631 	}
4632 	/*
4633 	 * Step 47: configure the MAC unicast address
4634 	 * Step 48: configure the random backoff seed
4635 	 * Step 96: set up multicast filters
4636 	 */
4637 #ifdef BGE_IPMI_ASF
4638 	if (bge_chip_sync(bgep, B_FALSE) == DDI_FAILURE)
4639 #else
4640 	if (bge_chip_sync(bgep) == DDI_FAILURE)
4641 #endif
4642 		retval = DDI_FAILURE;
4643 
4644 	/*
4645 	 * Step 49: configure the MTU
4646 	 */
4647 	mtu = bgep->chipid.ethmax_size+ETHERFCSL+VLAN_TAGSZ;
4648 	bge_reg_put32(bgep, MAC_RX_MTU_SIZE_REG, mtu);
4649 
4650 	/*
4651 	 * Step 50: configure the IPG et al
4652 	 */
4653 	bge_reg_put32(bgep, MAC_TX_LENGTHS_REG, MAC_TX_LENGTHS_DEFAULT);
4654 
4655 	/*
4656 	 * Step 51: configure the default Rx Return Ring
4657 	 */
4658 	bge_reg_put32(bgep, RCV_RULES_CONFIG_REG, RCV_RULES_CONFIG_DEFAULT);
4659 
4660 	/*
4661 	 * Steps 52-54: configure Receive List Placement,
4662 	 * and enable Receive List Placement Statistics
4663 	 */
4664 	bge_reg_put32(bgep, RCV_LP_CONFIG_REG,
4665 	    RCV_LP_CONFIG(bgep->chipid.rx_rings));
4666 	switch (MHCR_CHIP_ASIC_REV(bgep)) {
4667 	case MHCR_CHIP_ASIC_REV_5700:
4668 	case MHCR_CHIP_ASIC_REV_5701:
4669 	case MHCR_CHIP_ASIC_REV_5703:
4670 	case MHCR_CHIP_ASIC_REV_5704:
4671 		bge_reg_put32(bgep, RCV_LP_STATS_ENABLE_MASK_REG, ~0);
4672 		break;
4673 	case MHCR_CHIP_ASIC_REV_5705:
4674 		break;
4675 	default:
4676 		stats_mask = bge_reg_get32(bgep, RCV_LP_STATS_ENABLE_MASK_REG);
4677 		stats_mask &= ~RCV_LP_STATS_DISABLE_MACTQ;
4678 		bge_reg_put32(bgep, RCV_LP_STATS_ENABLE_MASK_REG, stats_mask);
4679 		break;
4680 	}
4681 	bge_reg_set32(bgep, RCV_LP_STATS_CONTROL_REG, RCV_LP_STATS_ENABLE);
4682 
4683 	if (bgep->chipid.rx_rings > 1)
4684 		bge_init_recv_rule(bgep);
4685 
4686 	/*
4687 	 * Steps 55-56: enable Send Data Initiator Statistics
4688 	 */
4689 	bge_reg_put32(bgep, SEND_INIT_STATS_ENABLE_MASK_REG, ~0);
4690 	if (DEVICE_5704_SERIES_CHIPSETS(bgep)) {
4691 		bge_reg_put32(bgep, SEND_INIT_STATS_CONTROL_REG,
4692 		    SEND_INIT_STATS_ENABLE | SEND_INIT_STATS_FASTER);
4693 	} else {
4694 		bge_reg_put32(bgep, SEND_INIT_STATS_CONTROL_REG,
4695 		    SEND_INIT_STATS_ENABLE);
4696 	}
4697 	/*
4698 	 * Steps 57-58: stop (?) the Host Coalescing Engine
4699 	 */
4700 	if (!bge_chip_disable_engine(bgep, HOST_COALESCE_MODE_REG, ~0))
4701 		retval = DDI_FAILURE;
4702 
4703 	/*
4704 	 * Steps 59-62: initialise Host Coalescing parameters
4705 	 */
4706 	bge_chip_coalesce_update(bgep);
4707 	if (DEVICE_5704_SERIES_CHIPSETS(bgep)) {
4708 		bge_reg_put32(bgep, SEND_COALESCE_INT_BD_REG,
4709 		    bge_tx_count_intr);
4710 		bge_reg_put32(bgep, SEND_COALESCE_INT_TICKS_REG,
4711 		    bge_tx_ticks_intr);
4712 		bge_reg_put32(bgep, RCV_COALESCE_INT_BD_REG,
4713 		    bge_rx_count_intr);
4714 		bge_reg_put32(bgep, RCV_COALESCE_INT_TICKS_REG,
4715 		    bge_rx_ticks_intr);
4716 	}
4717 
4718 	/*
4719 	 * Steps 63-64: initialise status block & statistics
4720 	 * host memory addresses
4721 	 * The statistic block does not exist in some chipsets
4722 	 * Step 65: initialise Statistics Coalescing Tick Counter
4723 	 */
4724 	bge_reg_put64(bgep, STATUS_BLOCK_HOST_ADDR_REG,
4725 	    bgep->status_block.cookie.dmac_laddress);
4726 
4727 	/*
4728 	 * Steps 66-67: initialise status block & statistics
4729 	 * NIC-local memory addresses
4730 	 */
4731 	if (DEVICE_5704_SERIES_CHIPSETS(bgep)) {
4732 		bge_reg_put64(bgep, STATISTICS_HOST_ADDR_REG,
4733 		    bgep->statistics.cookie.dmac_laddress);
4734 		bge_reg_put32(bgep, STATISTICS_TICKS_REG,
4735 		    STATISTICS_TICKS_DEFAULT);
4736 		bge_reg_put32(bgep, STATUS_BLOCK_BASE_ADDR_REG,
4737 		    NIC_MEM_STATUS_BLOCK);
4738 		bge_reg_put32(bgep, STATISTICS_BASE_ADDR_REG,
4739 		    NIC_MEM_STATISTICS);
4740 	}
4741 
4742 	/*
4743 	 * Steps 68-71: start the Host Coalescing Engine, the Receive BD
4744 	 * Completion Engine, the Receive List Placement Engine, and the
4745 	 * Receive List selector.Pay attention:0x3400 is not exist in BCM5714
4746 	 * and BCM5715.
4747 	 */
4748 
4749 	if (bgep->chipid.device == DEVICE_ID_5719) {
4750 		for (i = 0; i < BGE_NUM_RDMA_CHANNELS; i++) {
4751 			if (bge_reg_get32(bgep, (BGE_RDMA_LENGTH + (i << 2))) >
4752 			    bgep->chipid.default_mtu)
4753 				break;
4754 		}
4755 		if (i < BGE_NUM_RDMA_CHANNELS) {
4756 			regval = bge_reg_get32(bgep, RDMA_CORR_CTRL_REG);
4757 			regval |= RDMA_CORR_CTRL_TX_LENGTH_WA;
4758 			bge_reg_put32(bgep, RDMA_CORR_CTRL_REG, regval);
4759 			bgep->rdma_length_bug_on_5719 = B_TRUE;
4760 		}
4761 	}
4762 
4763 	if (bgep->chipid.tx_rings <= COALESCE_64_BYTE_RINGS &&
4764 	    bgep->chipid.rx_rings <= COALESCE_64_BYTE_RINGS)
4765 		coalmode = COALESCE_64_BYTE_STATUS;
4766 	else
4767 		coalmode = 0;
4768 	if (DEVICE_5717_SERIES_CHIPSETS(bgep) ||
4769 	    DEVICE_5725_SERIES_CHIPSETS(bgep) ||
4770 	    DEVICE_57765_SERIES_CHIPSETS(bgep))
4771 		coalmode = COALESCE_CLR_TICKS_RX;
4772 	if (!bge_chip_enable_engine(bgep, HOST_COALESCE_MODE_REG, coalmode))
4773 		retval = DDI_FAILURE;
4774 	if (!bge_chip_enable_engine(bgep, RCV_BD_COMPLETION_MODE_REG,
4775 	    STATE_MACHINE_ATTN_ENABLE_BIT))
4776 		retval = DDI_FAILURE;
4777 	if (!bge_chip_enable_engine(bgep, RCV_LIST_PLACEMENT_MODE_REG, 0))
4778 		retval = DDI_FAILURE;
4779 
4780 	if (DEVICE_5704_SERIES_CHIPSETS(bgep))
4781 		if (!bge_chip_enable_engine(bgep, RCV_LIST_SELECTOR_MODE_REG,
4782 		    STATE_MACHINE_ATTN_ENABLE_BIT))
4783 			retval = DDI_FAILURE;
4784 
4785 	/*
4786 	 * Step 72: Enable MAC DMA engines
4787 	 * Step 73: Clear & enable MAC statistics
4788 	 */
4789 	if (bgep->ape_enabled) {
4790 		/* XXX put32 instead of set32 ? */
4791 		bge_reg_put32(bgep, ETHERNET_MAC_MODE_REG,
4792 		    ETHERNET_MODE_APE_TX_EN | ETHERNET_MODE_APE_RX_EN);
4793 	}
4794 	bge_reg_set32(bgep, ETHERNET_MAC_MODE_REG,
4795 	    ETHERNET_MODE_ENABLE_FHDE |
4796 	    ETHERNET_MODE_ENABLE_RDE |
4797 	    ETHERNET_MODE_ENABLE_TDE);
4798 	bge_reg_set32(bgep, ETHERNET_MAC_MODE_REG,
4799 	    ETHERNET_MODE_ENABLE_TX_STATS |
4800 	    ETHERNET_MODE_ENABLE_RX_STATS |
4801 	    ETHERNET_MODE_CLEAR_TX_STATS |
4802 	    ETHERNET_MODE_CLEAR_RX_STATS);
4803 
4804 	drv_usecwait(140);
4805 
4806 	if (bgep->ape_enabled) {
4807 		/* Write our heartbeat update interval to APE. */
4808 		bge_ape_put32(bgep, BGE_APE_HOST_HEARTBEAT_INT_MS,
4809 		    APE_HOST_HEARTBEAT_INT_DISABLE);
4810 	}
4811 
4812 	/*
4813 	 * Step 74: configure the MLCR (Miscellaneous Local Control
4814 	 * Register); not required, as we set up the MLCR in step 10
4815 	 * (part of the reset code) above.
4816 	 *
4817 	 * Step 75: clear Interrupt Mailbox 0
4818 	 */
4819 	bge_mbx_put(bgep, INTERRUPT_MBOX_0_REG, 0);
4820 
4821 	/*
4822 	 * Steps 76-87: Gentlemen, start your engines ...
4823 	 *
4824 	 * Enable the DMA Completion Engine, the Write DMA Engine,
4825 	 * the Read DMA Engine, Receive Data Completion Engine,
4826 	 * the MBuf Cluster Free Engine, the Send Data Completion Engine,
4827 	 * the Send BD Completion Engine, the Receive BD Initiator Engine,
4828 	 * the Receive Data Initiator Engine, the Send Data Initiator Engine,
4829 	 * the Send BD Initiator Engine, and the Send BD Selector Engine.
4830 	 *
4831 	 * Beware exhaust fumes?
4832 	 */
4833 	if (DEVICE_5704_SERIES_CHIPSETS(bgep))
4834 		if (!bge_chip_enable_engine(bgep, DMA_COMPLETION_MODE_REG, 0))
4835 			retval = DDI_FAILURE;
4836 	dma_wrprio = (bge_dma_wrprio << DMA_PRIORITY_SHIFT) |
4837 	    ALL_DMA_ATTN_BITS;
4838 	/* the 5723 check here covers all newer chip families (OK) */
4839 	if ((MHCR_CHIP_ASIC_REV(bgep) == MHCR_CHIP_ASIC_REV_5755) ||
4840 	    (MHCR_CHIP_ASIC_REV(bgep) == MHCR_CHIP_ASIC_REV_5723) ||
4841 	    (MHCR_CHIP_ASIC_REV(bgep) == MHCR_CHIP_ASIC_REV_5906)) {
4842 		dma_wrprio |= DMA_STATUS_TAG_FIX_CQ12384;
4843 	}
4844 	if (!bge_chip_enable_engine(bgep, WRITE_DMA_MODE_REG,
4845 	    dma_wrprio))
4846 		retval = DDI_FAILURE;
4847 
4848 	drv_usecwait(40);
4849 
4850 	/*
4851 	 * These chipsets no longer use the rdprio logic (bits 31:30 are
4852 	 * reserved).
4853 	 */
4854 	if (DEVICE_5723_SERIES_CHIPSETS(bgep) ||
4855 	    DEVICE_5717_SERIES_CHIPSETS(bgep) ||
4856 	    DEVICE_5725_SERIES_CHIPSETS(bgep))
4857 		bge_dma_rdprio = 0;
4858 	if (!bge_chip_enable_engine(bgep, READ_DMA_MODE_REG,
4859 	    (bge_dma_rdprio << DMA_PRIORITY_SHIFT) | ALL_DMA_ATTN_BITS))
4860 		retval = DDI_FAILURE;
4861 
4862 	drv_usecwait(40);
4863 
4864 	if (!bge_chip_enable_engine(bgep, RCV_DATA_COMPLETION_MODE_REG,
4865 	    STATE_MACHINE_ATTN_ENABLE_BIT))
4866 		retval = DDI_FAILURE;
4867 	if (DEVICE_5704_SERIES_CHIPSETS(bgep))
4868 		if (!bge_chip_enable_engine(bgep,
4869 		    MBUF_CLUSTER_FREE_MODE_REG, 0))
4870 			retval = DDI_FAILURE;
4871 	if (!bge_chip_enable_engine(bgep, SEND_DATA_COMPLETION_MODE_REG, 0))
4872 		retval = DDI_FAILURE;
4873 	if (!bge_chip_enable_engine(bgep, SEND_BD_COMPLETION_MODE_REG,
4874 	    STATE_MACHINE_ATTN_ENABLE_BIT))
4875 		retval = DDI_FAILURE;
4876 	if (!bge_chip_enable_engine(bgep, RCV_BD_INITIATOR_MODE_REG,
4877 	    RCV_BD_DISABLED_RING_ATTN))
4878 		retval = DDI_FAILURE;
4879 	if (!bge_chip_enable_engine(bgep, RCV_DATA_BD_INITIATOR_MODE_REG,
4880 	    RCV_DATA_BD_ILL_RING_ATTN))
4881 		retval = DDI_FAILURE;
4882 	if (!bge_chip_enable_engine(bgep, SEND_DATA_INITIATOR_MODE_REG, 0))
4883 		retval = DDI_FAILURE;
4884 	if (!bge_chip_enable_engine(bgep, SEND_BD_INITIATOR_MODE_REG,
4885 	    STATE_MACHINE_ATTN_ENABLE_BIT))
4886 		retval = DDI_FAILURE;
4887 	if (!bge_chip_enable_engine(bgep, SEND_BD_SELECTOR_MODE_REG,
4888 	    STATE_MACHINE_ATTN_ENABLE_BIT))
4889 		retval = DDI_FAILURE;
4890 
4891 	drv_usecwait(40);
4892 
4893 	/*
4894 	 * Step 88: download firmware -- doesn't apply
4895 	 * Steps 89-90: enable Transmit & Receive MAC Engines
4896 	 */
4897 	regval = 0;
4898 	if (DEVICE_5717_SERIES_CHIPSETS(bgep) ||
4899 	    DEVICE_57765_SERIES_CHIPSETS(bgep)) {
4900 		regval |= TRANSMIT_MODE_MBUF_LOCKUP_FIX;
4901 	}
4902 	if (!bge_chip_enable_engine(bgep, TRANSMIT_MAC_MODE_REG, regval))
4903 		retval = DDI_FAILURE;
4904 
4905 	drv_usecwait(100);
4906 
4907 #ifdef BGE_IPMI_ASF
4908 	if (!bgep->asf_enabled) {
4909 		if (!bge_chip_enable_engine(bgep, RECEIVE_MAC_MODE_REG,
4910 		    RECEIVE_MODE_KEEP_VLAN_TAG))
4911 			retval = DDI_FAILURE;
4912 	} else {
4913 		if (!bge_chip_enable_engine(bgep, RECEIVE_MAC_MODE_REG, 0))
4914 			retval = DDI_FAILURE;
4915 	}
4916 #else
4917 	if (!bge_chip_enable_engine(bgep, RECEIVE_MAC_MODE_REG,
4918 	    RECEIVE_MODE_KEEP_VLAN_TAG))
4919 		retval = DDI_FAILURE;
4920 #endif
4921 
4922 	drv_usecwait(100);
4923 
4924 	/*
4925 	 * Step 91: disable auto-polling of PHY status
4926 	 */
4927 	bge_reg_put32(bgep, MI_MODE_REG, MI_MODE_DEFAULT);
4928 
4929 	/*
4930 	 * Step 92: configure D0 power state (not required)
4931 	 * Step 93: initialise LED control register ()
4932 	 */
4933 	ledctl = LED_CONTROL_DEFAULT;
4934 	switch (bgep->chipid.device) {
4935 	case DEVICE_ID_5700:
4936 	case DEVICE_ID_5700x:
4937 	case DEVICE_ID_5701:
4938 		/*
4939 		 * Switch to 5700 (MAC) mode on these older chips
4940 		 */
4941 		ledctl &= ~LED_CONTROL_LED_MODE_MASK;
4942 		ledctl |= LED_CONTROL_LED_MODE_5700;
4943 		break;
4944 
4945 	default:
4946 		break;
4947 	}
4948 	bge_reg_put32(bgep, ETHERNET_MAC_LED_CONTROL_REG, ledctl);
4949 
4950 	/*
4951 	 * Step 94: activate link
4952 	 */
4953 	bge_reg_put32(bgep, MI_STATUS_REG, MI_STATUS_LINK);
4954 
4955 	/*
4956 	 * Step 95: set up physical layer (PHY/SerDes)
4957 	 * restart autoneg (if required)
4958 	 */
4959 	if (reset_phys)
4960 	{
4961 		if (bge_phys_update(bgep) == DDI_FAILURE)
4962 			retval = DDI_FAILURE;
4963 		/* forcing a mac link update here */
4964 		bge_phys_check(bgep);
4965 		bgep->link_state = (bgep->param_link_up) ? LINK_STATE_UP :
4966 		                                           LINK_STATE_DOWN;
4967 		bge_sync_mac_modes(bgep);
4968 		mac_link_update(bgep->mh, bgep->link_state);
4969 	}
4970 
4971 	/*
4972 	 * Extra step (DSG): hand over all the Receive Buffers to the chip
4973 	 */
4974 	for (ring = 0; ring < BGE_BUFF_RINGS_USED; ++ring)
4975 		bge_mbx_put(bgep, bgep->buff[ring].chip_mbx_reg,
4976 		    bgep->buff[ring].rf_next);
4977 
4978 	/*
4979 	 * MSI bits:The least significant MSI 16-bit word.
4980 	 * ISR will be triggered different.
4981 	 */
4982 	if (bgep->intr_type == DDI_INTR_TYPE_MSI)
4983 		bge_reg_set32(bgep, HOST_COALESCE_MODE_REG, 0x70);
4984 
4985 	/*
4986 	 * Extra step (DSG): select which interrupts are enabled
4987 	 *
4988 	 * Program the Ethernet MAC engine to signal attention on
4989 	 * Link Change events, then enable interrupts on MAC, DMA,
4990 	 * and FLOW attention signals.
4991 	 */
4992 	bge_reg_set32(bgep, ETHERNET_MAC_EVENT_ENABLE_REG,
4993 	    ETHERNET_EVENT_LINK_INT |
4994 	    ETHERNET_STATUS_PCS_ERROR_INT);
4995 #ifdef BGE_IPMI_ASF
4996 	if (bgep->asf_enabled) {
4997 		bge_reg_set32(bgep, MODE_CONTROL_REG,
4998 		    MODE_INT_ON_FLOW_ATTN |
4999 		    MODE_INT_ON_DMA_ATTN |
5000 		    MODE_HOST_STACK_UP|
5001 		    MODE_INT_ON_MAC_ATTN);
5002 	} else {
5003 #endif
5004 		bge_reg_set32(bgep, MODE_CONTROL_REG,
5005 		    MODE_INT_ON_FLOW_ATTN |
5006 		    MODE_INT_ON_DMA_ATTN |
5007 		    MODE_INT_ON_MAC_ATTN);
5008 #ifdef BGE_IPMI_ASF
5009 	}
5010 #endif
5011 
5012 	if (DEVICE_5717_SERIES_CHIPSETS(bgep) ||
5013 	    DEVICE_5725_SERIES_CHIPSETS(bgep) ||
5014 	    DEVICE_57765_SERIES_CHIPSETS(bgep)) {
5015 		bge_cfg_clr16(bgep, PCI_CONF_DEV_CTRL_5717,
5016 		    DEV_CTRL_NO_SNOOP | DEV_CTRL_RELAXED);
5017 #if 0
5018 		mhcr = pci_config_get32(bgep->cfg_handle, PCI_CONF_BGE_MHCR);
5019 		pci_config_put32(bgep->cfg_handle, PCI_CONF_BGE_MHCR,
5020 		                 (mhcr | MHCR_TLP_MINOR_ERR_TOLERANCE));
5021 #endif
5022 	}
5023 
5024 	/*
5025 	 * Step 97: enable PCI interrupts!!!
5026 	 */
5027 	if (bgep->intr_type == DDI_INTR_TYPE_FIXED)
5028 		bge_cfg_clr32(bgep, PCI_CONF_BGE_MHCR,
5029 		    bgep->chipid.mask_pci_int);
5030 
5031 	/*
5032 	 * All done!
5033 	 */
5034 	bgep->bge_chip_state = BGE_CHIP_RUNNING;
5035 	return (retval);
5036 }
5037 
5038 
5039 /*
5040  * ========== Hardware interrupt handler ==========
5041  */
5042 
5043 #undef	BGE_DBG
5044 #define	BGE_DBG		BGE_DBG_INT	/* debug flag for this code	*/
5045 
5046 /*
5047  * Sync the status block, then atomically clear the specified bits in
5048  * the <flags-and-tag> field of the status block.
5049  * the <flags> word of the status block, returning the value of the
5050  * <tag> and the <flags> before the bits were cleared.
5051  */
5052 static int bge_status_sync(bge_t *bgep, uint64_t bits, uint64_t *flags);
5053 #pragma	inline(bge_status_sync)
5054 
5055 static int
5056 bge_status_sync(bge_t *bgep, uint64_t bits, uint64_t *flags)
5057 {
5058 	bge_status_t *bsp;
5059 	int retval;
5060 
5061 	BGE_TRACE(("bge_status_sync($%p, 0x%llx)",
5062 	    (void *)bgep, bits));
5063 
5064 	ASSERT(bgep->bge_guard == BGE_GUARD);
5065 
5066 	DMA_SYNC(bgep->status_block, DDI_DMA_SYNC_FORKERNEL);
5067 	retval = bge_check_dma_handle(bgep, bgep->status_block.dma_hdl);
5068 	if (retval != DDI_FM_OK)
5069 		return (retval);
5070 
5071 	bsp = DMA_VPTR(bgep->status_block);
5072 	*flags = bge_atomic_clr64(&bsp->flags_n_tag, bits);
5073 
5074 	BGE_DEBUG(("bge_status_sync($%p, 0x%llx) returning 0x%llx",
5075 	    (void *)bgep, bits, *flags));
5076 
5077 	return (retval);
5078 }
5079 
5080 void bge_wake_factotum(bge_t *bgep);
5081 #pragma	inline(bge_wake_factotum)
5082 
5083 void
5084 bge_wake_factotum(bge_t *bgep)
5085 {
5086 	mutex_enter(bgep->softintrlock);
5087 	if (bgep->factotum_flag == 0) {
5088 		bgep->factotum_flag = 1;
5089 		ddi_trigger_softintr(bgep->factotum_id);
5090 	}
5091 	mutex_exit(bgep->softintrlock);
5092 }
5093 
5094 static void
5095 bge_intr_error_handler(bge_t *bgep)
5096 {
5097 	uint32_t flow;
5098 	uint32_t rdma;
5099 	uint32_t wdma;
5100 	uint32_t tmac;
5101 	uint32_t rmac;
5102 	uint32_t rxrs;
5103 	uint32_t emac;
5104 	uint32_t msis;
5105 	uint32_t txrs = 0;
5106 
5107 	ASSERT(mutex_owned(bgep->genlock));
5108 
5109 	/*
5110 	 * Read all the registers that show the possible
5111 	 * reasons for the ERROR bit to be asserted
5112 	 */
5113 	flow = bge_reg_get32(bgep, FLOW_ATTN_REG);
5114 	rdma = bge_reg_get32(bgep, READ_DMA_STATUS_REG);
5115 	wdma = bge_reg_get32(bgep, WRITE_DMA_STATUS_REG);
5116 	tmac = bge_reg_get32(bgep, TRANSMIT_MAC_STATUS_REG);
5117 	rmac = bge_reg_get32(bgep, RECEIVE_MAC_STATUS_REG);
5118 	rxrs = bge_reg_get32(bgep, RX_RISC_STATE_REG);
5119 	emac = bge_reg_get32(bgep, ETHERNET_MAC_STATUS_REG);
5120 	msis = bge_reg_get32(bgep, MSI_STATUS_REG);
5121 	if (DEVICE_5704_SERIES_CHIPSETS(bgep))
5122 		txrs = bge_reg_get32(bgep, TX_RISC_STATE_REG);
5123 
5124 	BGE_DEBUG(("factotum($%p) flow 0x%x rdma 0x%x wdma 0x%x emac 0x%x msis 0x%x",
5125 	    (void *)bgep, flow, rdma, wdma, emac, msis));
5126 	BGE_DEBUG(("factotum($%p) tmac 0x%x rmac 0x%x rxrs 0x%08x txrs 0x%08x",
5127 	    (void *)bgep, tmac, rmac, rxrs, txrs));
5128 
5129 	/*
5130 	 * For now, just clear all the errors ...
5131 	 */
5132 	if (DEVICE_5704_SERIES_CHIPSETS(bgep))
5133 		bge_reg_put32(bgep, TX_RISC_STATE_REG, ~0);
5134 	bge_reg_put32(bgep, RX_RISC_STATE_REG, ~0);
5135 	bge_reg_put32(bgep, RECEIVE_MAC_STATUS_REG, ~0);
5136 	bge_reg_put32(bgep, WRITE_DMA_STATUS_REG, ~0);
5137 	bge_reg_put32(bgep, READ_DMA_STATUS_REG, ~0);
5138 	bge_reg_put32(bgep, FLOW_ATTN_REG, ~0);
5139 }
5140 
5141 /*
5142  *	bge_intr() -- handle chip interrupts
5143  */
5144 uint_t bge_intr(caddr_t arg1, caddr_t arg2);
5145 #pragma	no_inline(bge_intr)
5146 
5147 uint_t
5148 bge_intr(caddr_t arg1, caddr_t arg2)
5149 {
5150 	bge_t *bgep = (void *)arg1;		/* private device info	*/
5151 	bge_status_t *bsp;
5152 	uint64_t flags;
5153 	uint32_t regval;
5154 	uint_t result;
5155 	int retval, loop_cnt = 0;
5156 
5157 	BGE_TRACE(("bge_intr($%p) ($%p)", arg1, arg2));
5158 
5159 	/*
5160 	 * GLD v2 checks that s/w setup is complete before passing
5161 	 * interrupts to this routine, thus eliminating the old
5162 	 * (and well-known) race condition around ddi_add_intr()
5163 	 */
5164 	ASSERT(bgep->progress & PROGRESS_HWINT);
5165 
5166 	result = DDI_INTR_UNCLAIMED;
5167 	mutex_enter(bgep->genlock);
5168 
5169 	if (bgep->intr_type == DDI_INTR_TYPE_FIXED) {
5170 		/*
5171 		 * Check whether chip's says it's asserting #INTA;
5172 		 * if not, don't process or claim the interrupt.
5173 		 *
5174 		 * Note that the PCI signal is active low, so the
5175 		 * bit is *zero* when the interrupt is asserted.
5176 		 */
5177 		regval = bge_reg_get32(bgep, MISC_LOCAL_CONTROL_REG);
5178 		if (!(DEVICE_5717_SERIES_CHIPSETS(bgep) ||
5179 		      DEVICE_5725_SERIES_CHIPSETS(bgep) ||
5180 		      DEVICE_57765_SERIES_CHIPSETS(bgep)) &&
5181 		    (regval & MLCR_INTA_STATE)) {
5182 			if (bge_check_acc_handle(bgep, bgep->io_handle)
5183 			    != DDI_FM_OK)
5184 				goto chip_stop;
5185 			mutex_exit(bgep->genlock);
5186 			return (result);
5187 		}
5188 
5189 		/*
5190 		 * Block further PCI interrupts ...
5191 		 */
5192 		bge_reg_set32(bgep, PCI_CONF_BGE_MHCR,
5193 		    bgep->chipid.mask_pci_int);
5194 
5195 	} else {
5196 		/*
5197 		 * Check MSI status
5198 		 */
5199 		regval = bge_reg_get32(bgep, MSI_STATUS_REG);
5200 		if (regval & MSI_ERROR_ATTENTION) {
5201 			BGE_REPORT((bgep, "msi error attention,"
5202 			    " status=0x%x", regval));
5203 			bge_reg_put32(bgep, MSI_STATUS_REG, regval);
5204 		}
5205 	}
5206 
5207 	result = DDI_INTR_CLAIMED;
5208 
5209 	BGE_DEBUG(("bge_intr($%p) ($%p) regval 0x%08x", arg1, arg2, regval));
5210 
5211 	/*
5212 	 * Sync the status block and grab the flags-n-tag from it.
5213 	 * We count the number of interrupts where there doesn't
5214 	 * seem to have been a DMA update of the status block; if
5215 	 * it *has* been updated, the counter will be cleared in
5216 	 * the while() loop below ...
5217 	 */
5218 	bgep->missed_dmas += 1;
5219 	bsp = DMA_VPTR(bgep->status_block);
5220 	for (loop_cnt = 0; loop_cnt < bge_intr_max_loop; loop_cnt++) {
5221 		if (bgep->bge_chip_state != BGE_CHIP_RUNNING) {
5222 			/*
5223 			 * bge_chip_stop() may have freed dma area etc
5224 			 * while we were in this interrupt handler -
5225 			 * better not call bge_status_sync()
5226 			 */
5227 			(void) bge_check_acc_handle(bgep,
5228 			    bgep->io_handle);
5229 			mutex_exit(bgep->genlock);
5230 			return (DDI_INTR_CLAIMED);
5231 		}
5232 
5233 		retval = bge_status_sync(bgep, STATUS_FLAG_UPDATED |
5234 		    STATUS_FLAG_LINK_CHANGED | STATUS_FLAG_ERROR, &flags);
5235 		if (retval != DDI_FM_OK) {
5236 			bgep->bge_dma_error = B_TRUE;
5237 			goto chip_stop;
5238 		}
5239 
5240 		if (!(flags & STATUS_FLAG_UPDATED))
5241 			break;
5242 
5243 		/*
5244 		 * Tell the chip that we're processing the interrupt
5245 		 */
5246 		bge_mbx_put(bgep, INTERRUPT_MBOX_0_REG,
5247 		    INTERRUPT_MBOX_DISABLE(flags));
5248 		if (bge_check_acc_handle(bgep, bgep->io_handle) !=
5249 		    DDI_FM_OK)
5250 			goto chip_stop;
5251 
5252 		if (flags & STATUS_FLAG_LINK_CHANGED) {
5253 			BGE_DEBUG(("bge_intr($%p) ($%p) link event", arg1, arg2));
5254 			if (bge_phys_check(bgep)) {
5255 				bgep->link_state = bgep->param_link_up ?
5256 				    LINK_STATE_UP : LINK_STATE_DOWN;
5257 				bge_sync_mac_modes(bgep);
5258 				mac_link_update(bgep->mh, bgep->link_state);
5259 			}
5260 
5261 			if (bge_check_acc_handle(bgep, bgep->io_handle) !=
5262 			    DDI_FM_OK)
5263 				goto chip_stop;
5264 		}
5265 
5266 		if (flags & STATUS_FLAG_ERROR) {
5267 			bge_intr_error_handler(bgep);
5268 
5269 			if (bge_check_acc_handle(bgep, bgep->io_handle) !=
5270 			    DDI_FM_OK)
5271 				goto chip_stop;
5272 		}
5273 
5274 		/*
5275 		 * Drop the mutex while we:
5276 		 *	Receive any newly-arrived packets
5277 		 *	Recycle any newly-finished send buffers
5278 		 */
5279 		bgep->bge_intr_running = B_TRUE;
5280 		mutex_exit(bgep->genlock);
5281 		bge_receive(bgep, bsp);
5282 		(void) bge_recycle(bgep, bsp);
5283 		mutex_enter(bgep->genlock);
5284 		bgep->bge_intr_running = B_FALSE;
5285 
5286 		/*
5287 		 * Tell the chip we've finished processing, and
5288 		 * give it the tag that we got from the status
5289 		 * block earlier, so that it knows just how far
5290 		 * we've gone.  If it's got more for us to do,
5291 		 * it will now update the status block and try
5292 		 * to assert an interrupt (but we've got the
5293 		 * #INTA blocked at present).  If we see the
5294 		 * update, we'll loop around to do some more.
5295 		 * Eventually we'll get out of here ...
5296 		 */
5297 		bge_mbx_put(bgep, INTERRUPT_MBOX_0_REG,
5298 		    INTERRUPT_MBOX_ENABLE(flags));
5299 		if (bgep->chipid.pci_type == BGE_PCI_E)
5300 			(void) bge_mbx_get(bgep, INTERRUPT_MBOX_0_REG);
5301 		bgep->missed_dmas = 0;
5302 	}
5303 
5304 	if (bgep->missed_dmas) {
5305 		/*
5306 		 * Probably due to the internal status tag not
5307 		 * being reset.  Force a status block update now;
5308 		 * this should ensure that we get an update and
5309 		 * a new interrupt.  After that, we should be in
5310 		 * sync again ...
5311 		 */
5312 		BGE_REPORT((bgep, "interrupt: flags 0x%llx - "
5313 		    "not updated?", flags));
5314 		bgep->missed_updates++;
5315 		bge_reg_set32(bgep, HOST_COALESCE_MODE_REG,
5316 		    COALESCE_NOW);
5317 
5318 		if (bgep->missed_dmas >= bge_dma_miss_limit) {
5319 			/*
5320 			 * If this happens multiple times in a row,
5321 			 * it means DMA is just not working.  Maybe
5322 			 * the chip's failed, or maybe there's a
5323 			 * problem on the PCI bus or in the host-PCI
5324 			 * bridge (Tomatillo).
5325 			 *
5326 			 * At all events, we want to stop further
5327 			 * interrupts and let the recovery code take
5328 			 * over to see whether anything can be done
5329 			 * about it ...
5330 			 */
5331 			bge_fm_ereport(bgep,
5332 			    DDI_FM_DEVICE_BADINT_LIMIT);
5333 			goto chip_stop;
5334 		}
5335 	}
5336 
5337 	/*
5338 	 * Reenable assertion of #INTA, unless there's a DMA fault
5339 	 */
5340 	if (bgep->intr_type == DDI_INTR_TYPE_FIXED) {
5341 		bge_reg_clr32(bgep, PCI_CONF_BGE_MHCR,
5342 		    bgep->chipid.mask_pci_int);
5343 		if (bge_check_acc_handle(bgep, bgep->cfg_handle) !=
5344 		    DDI_FM_OK)
5345 			goto chip_stop;
5346 	}
5347 
5348 	if (bge_check_acc_handle(bgep, bgep->io_handle) != DDI_FM_OK)
5349 		goto chip_stop;
5350 
5351 	mutex_exit(bgep->genlock);
5352 	return (result);
5353 
5354 chip_stop:
5355 
5356 #ifdef BGE_IPMI_ASF
5357 	if (bgep->asf_enabled && bgep->asf_status == ASF_STAT_RUN) {
5358 		/*
5359 		 * We must stop ASF heart beat before
5360 		 * bge_chip_stop(), otherwise some
5361 		 * computers (ex. IBM HS20 blade
5362 		 * server) may crash.
5363 		 */
5364 		bge_asf_update_status(bgep);
5365 		bge_asf_stop_timer(bgep);
5366 		bgep->asf_status = ASF_STAT_STOP;
5367 
5368 		bge_asf_pre_reset_operations(bgep, BGE_INIT_RESET);
5369 		(void) bge_check_acc_handle(bgep, bgep->cfg_handle);
5370 	}
5371 #endif
5372 	bge_chip_stop(bgep, B_TRUE);
5373 	(void) bge_check_acc_handle(bgep, bgep->io_handle);
5374 	mutex_exit(bgep->genlock);
5375 	return (result);
5376 }
5377 
5378 /*
5379  * ========== Factotum, implemented as a softint handler ==========
5380  */
5381 
5382 #undef	BGE_DBG
5383 #define	BGE_DBG		BGE_DBG_FACT	/* debug flag for this code	*/
5384 
5385 /*
5386  * Factotum routine to check for Tx stall, using the 'watchdog' counter
5387  */
5388 static boolean_t bge_factotum_stall_check(bge_t *bgep);
5389 #pragma	no_inline(bge_factotum_stall_check)
5390 
5391 static boolean_t
5392 bge_factotum_stall_check(bge_t *bgep)
5393 {
5394 	uint32_t dogval;
5395 	bge_status_t *bsp;
5396 	uint64_t now = gethrtime();
5397 
5398 	if ((now - bgep->timestamp) < BGE_CYCLIC_PERIOD)
5399 		return (B_FALSE);
5400 
5401 	bgep->timestamp = now;
5402 
5403 	ASSERT(mutex_owned(bgep->genlock));
5404 
5405 	/*
5406 	 * Specific check for Tx stall ...
5407 	 *
5408 	 * The 'watchdog' counter is incremented whenever a packet
5409 	 * is queued, reset to 1 when some (but not all) buffers
5410 	 * are reclaimed, reset to 0 (disabled) when all buffers
5411 	 * are reclaimed, and shifted left here.  If it exceeds the
5412 	 * threshold value, the chip is assumed to have stalled and
5413 	 * is put into the ERROR state.  The factotum will then reset
5414 	 * it on the next pass.
5415 	 *
5416 	 * All of which should ensure that we don't get into a state
5417 	 * where packets are left pending indefinitely!
5418 	 */
5419 	dogval = bge_atomic_shl32(&bgep->watchdog, 1);
5420 	bsp = DMA_VPTR(bgep->status_block);
5421 	if (dogval < bge_watchdog_count || bge_recycle(bgep, bsp))
5422 		return (B_FALSE);
5423 
5424 #if !defined(BGE_NETCONSOLE)
5425 	BGE_REPORT((bgep, "Tx stall detected, watchdog code 0x%x", dogval));
5426 #endif
5427 	bge_fm_ereport(bgep, DDI_FM_DEVICE_STALL);
5428 	return (B_TRUE);
5429 }
5430 
5431 /*
5432  * The factotum is woken up when there's something to do that we'd rather
5433  * not do from inside a hardware interrupt handler or high-level cyclic.
5434  * Its main task is to reset & restart the chip after an error.
5435  */
5436 uint_t bge_chip_factotum(caddr_t arg);
5437 #pragma	no_inline(bge_chip_factotum)
5438 
5439 uint_t
5440 bge_chip_factotum(caddr_t arg)
5441 {
5442 	bge_t *bgep;
5443 	uint_t result;
5444 	boolean_t error;
5445 	int dma_state;
5446 
5447 	bgep = (void *)arg;
5448 
5449 	BGE_TRACE(("bge_chip_factotum($%p)", (void *)bgep));
5450 
5451 	mutex_enter(bgep->softintrlock);
5452 	if (bgep->factotum_flag == 0) {
5453 		mutex_exit(bgep->softintrlock);
5454 		return (DDI_INTR_UNCLAIMED);
5455 	}
5456 	bgep->factotum_flag = 0;
5457 	mutex_exit(bgep->softintrlock);
5458 
5459 	result = DDI_INTR_CLAIMED;
5460 	error = B_FALSE;
5461 
5462 	mutex_enter(bgep->genlock);
5463 	switch (bgep->bge_chip_state) {
5464 	default:
5465 		break;
5466 
5467 	case BGE_CHIP_RUNNING:
5468 
5469 		if (bgep->chipid.device == DEVICE_ID_5700) {
5470 			if (bge_phys_check(bgep)) {
5471 				bgep->link_state = (bgep->param_link_up) ?
5472 				    LINK_STATE_UP : LINK_STATE_DOWN;
5473 				bge_sync_mac_modes(bgep);
5474 				mac_link_update(bgep->mh, bgep->link_state);
5475 			}
5476 		}
5477 
5478 		error = bge_factotum_stall_check(bgep);
5479 		if (dma_state != DDI_FM_OK) {
5480 			bgep->bge_dma_error = B_TRUE;
5481 			error = B_TRUE;
5482 		}
5483 		if (bge_check_acc_handle(bgep, bgep->io_handle) != DDI_FM_OK)
5484 			error = B_TRUE;
5485 		if (error)
5486 			bgep->bge_chip_state = BGE_CHIP_ERROR;
5487 		break;
5488 
5489 	case BGE_CHIP_ERROR:
5490 		error = B_TRUE;
5491 		break;
5492 
5493 	case BGE_CHIP_FAULT:
5494 		/*
5495 		 * Fault detected, time to reset ...
5496 		 */
5497 		if (bge_autorecover) {
5498 			if (!(bgep->progress & PROGRESS_BUFS)) {
5499 				/*
5500 				 * if we can't allocate the ring buffers,
5501 				 * try later
5502 				 */
5503 				if (bge_alloc_bufs(bgep) != DDI_SUCCESS) {
5504 					mutex_exit(bgep->genlock);
5505 					return (result);
5506 				}
5507 				bgep->progress |= PROGRESS_BUFS;
5508 			}
5509 			if (!(bgep->progress & PROGRESS_INTR)) {
5510 				bge_init_rings(bgep);
5511 				bge_intr_enable(bgep);
5512 				bgep->progress |= PROGRESS_INTR;
5513 			}
5514 			if (!(bgep->progress & PROGRESS_KSTATS)) {
5515 				bge_init_kstats(bgep,
5516 				    ddi_get_instance(bgep->devinfo));
5517 				bgep->progress |= PROGRESS_KSTATS;
5518 			}
5519 
5520 			BGE_REPORT((bgep, "automatic recovery activated"));
5521 
5522 			if (bge_restart(bgep, B_FALSE) != DDI_SUCCESS) {
5523 				bgep->bge_chip_state = BGE_CHIP_ERROR;
5524 				error = B_TRUE;
5525 			}
5526 			if (bge_check_acc_handle(bgep, bgep->cfg_handle) !=
5527 			    DDI_FM_OK) {
5528 				bgep->bge_chip_state = BGE_CHIP_ERROR;
5529 				error = B_TRUE;
5530 			}
5531 			if (bge_check_acc_handle(bgep, bgep->io_handle) !=
5532 			    DDI_FM_OK) {
5533 				bgep->bge_chip_state = BGE_CHIP_ERROR;
5534 				error = B_TRUE;
5535 			}
5536 			if (error == B_FALSE) {
5537 #ifdef BGE_IPMI_ASF
5538 				if (bgep->asf_enabled &&
5539 				    bgep->asf_status != ASF_STAT_RUN) {
5540 					bgep->asf_timeout_id = timeout(
5541 					    bge_asf_heartbeat, (void *)bgep,
5542 					    drv_usectohz(
5543 					    BGE_ASF_HEARTBEAT_INTERVAL));
5544 					bgep->asf_status = ASF_STAT_RUN;
5545 				}
5546 #endif
5547 				if (!bgep->manual_reset) {
5548 					ddi_fm_service_impact(bgep->devinfo,
5549 					    DDI_SERVICE_RESTORED);
5550 				}
5551 			}
5552 		}
5553 		break;
5554 	}
5555 
5556 	/*
5557 	 * If an error is detected, stop the chip now, marking it as
5558 	 * faulty, so that it will be reset next time through ...
5559 	 *
5560 	 * Note that if intr_running is set, then bge_intr() has dropped
5561 	 * genlock to call bge_receive/bge_recycle. Can't stop the chip at
5562 	 * this point so have to wait until the next time the factotum runs.
5563 	 */
5564 	if (error && !bgep->bge_intr_running) {
5565 #ifdef BGE_IPMI_ASF
5566 		if (bgep->asf_enabled && (bgep->asf_status == ASF_STAT_RUN)) {
5567 			/*
5568 			 * We must stop ASF heart beat before bge_chip_stop(),
5569 			 * otherwise some computers (ex. IBM HS20 blade server)
5570 			 * may crash.
5571 			 */
5572 			bge_asf_update_status(bgep);
5573 			bge_asf_stop_timer(bgep);
5574 			bgep->asf_status = ASF_STAT_STOP;
5575 
5576 			bge_asf_pre_reset_operations(bgep, BGE_INIT_RESET);
5577 			(void) bge_check_acc_handle(bgep, bgep->cfg_handle);
5578 		}
5579 #endif
5580 		bge_chip_stop(bgep, B_TRUE);
5581 		(void) bge_check_acc_handle(bgep, bgep->io_handle);
5582 	}
5583 	mutex_exit(bgep->genlock);
5584 
5585 	return (result);
5586 }
5587 
5588 /*
5589  * High-level cyclic handler
5590  *
5591  * This routine schedules a (low-level) softint callback to the
5592  * factotum, and prods the chip to update the status block (which
5593  * will cause a hardware interrupt when complete).
5594  */
5595 void bge_chip_cyclic(void *arg);
5596 #pragma	no_inline(bge_chip_cyclic)
5597 
5598 void
5599 bge_chip_cyclic(void *arg)
5600 {
5601 	bge_t *bgep;
5602 	uint32_t regval;
5603 
5604 	bgep = arg;
5605 
5606 	switch (bgep->bge_chip_state) {
5607 	default:
5608 		return;
5609 
5610 	case BGE_CHIP_RUNNING:
5611 
5612 		/* XXX I really don't like this forced interrupt... */
5613 		bge_reg_set32(bgep, HOST_COALESCE_MODE_REG, COALESCE_NOW);
5614 		if (bge_check_acc_handle(bgep, bgep->io_handle) != DDI_FM_OK)
5615 			ddi_fm_service_impact(bgep->devinfo,
5616 			    DDI_SERVICE_UNAFFECTED);
5617 
5618 		break;
5619 
5620 	case BGE_CHIP_FAULT:
5621 	case BGE_CHIP_ERROR:
5622 
5623 		break;
5624 	}
5625 
5626 	mutex_enter(bgep->genlock);
5627 
5628 	if (bgep->eee_lpi_wait && !--bgep->eee_lpi_wait) {
5629 		BGE_DEBUG(("eee cyclic, lpi enabled"));
5630 		bge_eee_enable(bgep);
5631 	}
5632 
5633 	if (bgep->rdma_length_bug_on_5719) {
5634 		if ((bge_reg_get32(bgep, STAT_IFHCOUT_UPKGS_REG) +
5635 		     bge_reg_get32(bgep, STAT_IFHCOUT_MPKGS_REG) +
5636 		     bge_reg_get32(bgep, STAT_IFHCOUT_BPKGS_REG)) >
5637 		    BGE_NUM_RDMA_CHANNELS) {
5638 			regval = bge_reg_get32(bgep, RDMA_CORR_CTRL_REG);
5639 			regval &= ~RDMA_CORR_CTRL_TX_LENGTH_WA;
5640 			bge_reg_put32(bgep, RDMA_CORR_CTRL_REG, regval);
5641 			bgep->rdma_length_bug_on_5719 = B_FALSE;
5642 		}
5643 	}
5644 
5645 	mutex_exit(bgep->genlock);
5646 
5647 	bge_wake_factotum(bgep);
5648 
5649 }
5650 
5651 
5652 /*
5653  * ========== Ioctl subfunctions ==========
5654  */
5655 
5656 #undef	BGE_DBG
5657 #define	BGE_DBG		BGE_DBG_PPIO	/* debug flag for this code	*/
5658 
5659 #if	BGE_DEBUGGING || BGE_DO_PPIO
5660 
5661 static void bge_chip_peek_cfg(bge_t *bgep, bge_peekpoke_t *ppd);
5662 #pragma	no_inline(bge_chip_peek_cfg)
5663 
5664 static void
5665 bge_chip_peek_cfg(bge_t *bgep, bge_peekpoke_t *ppd)
5666 {
5667 	uint64_t regval;
5668 	uint64_t regno;
5669 
5670 	BGE_TRACE(("bge_chip_peek_cfg($%p, $%p)",
5671 	    (void *)bgep, (void *)ppd));
5672 
5673 	regno = ppd->pp_acc_offset;
5674 
5675 	switch (ppd->pp_acc_size) {
5676 	case 1:
5677 		regval = pci_config_get8(bgep->cfg_handle, regno);
5678 		break;
5679 
5680 	case 2:
5681 		regval = pci_config_get16(bgep->cfg_handle, regno);
5682 		break;
5683 
5684 	case 4:
5685 		regval = pci_config_get32(bgep->cfg_handle, regno);
5686 		break;
5687 
5688 	case 8:
5689 		regval = pci_config_get64(bgep->cfg_handle, regno);
5690 		break;
5691 	}
5692 
5693 	ppd->pp_acc_data = regval;
5694 }
5695 
5696 static void bge_chip_poke_cfg(bge_t *bgep, bge_peekpoke_t *ppd);
5697 #pragma	no_inline(bge_chip_poke_cfg)
5698 
5699 static void
5700 bge_chip_poke_cfg(bge_t *bgep, bge_peekpoke_t *ppd)
5701 {
5702 	uint64_t regval;
5703 	uint64_t regno;
5704 
5705 	BGE_TRACE(("bge_chip_poke_cfg($%p, $%p)",
5706 	    (void *)bgep, (void *)ppd));
5707 
5708 	regno = ppd->pp_acc_offset;
5709 	regval = ppd->pp_acc_data;
5710 
5711 	switch (ppd->pp_acc_size) {
5712 	case 1:
5713 		pci_config_put8(bgep->cfg_handle, regno, regval);
5714 		break;
5715 
5716 	case 2:
5717 		pci_config_put16(bgep->cfg_handle, regno, regval);
5718 		break;
5719 
5720 	case 4:
5721 		pci_config_put32(bgep->cfg_handle, regno, regval);
5722 		break;
5723 
5724 	case 8:
5725 		pci_config_put64(bgep->cfg_handle, regno, regval);
5726 		break;
5727 	}
5728 }
5729 
5730 static void bge_chip_peek_reg(bge_t *bgep, bge_peekpoke_t *ppd);
5731 #pragma	no_inline(bge_chip_peek_reg)
5732 
5733 static void
5734 bge_chip_peek_reg(bge_t *bgep, bge_peekpoke_t *ppd)
5735 {
5736 	uint64_t regval;
5737 	void *regaddr;
5738 
5739 	BGE_TRACE(("bge_chip_peek_reg($%p, $%p)",
5740 	    (void *)bgep, (void *)ppd));
5741 
5742 	regaddr = PIO_ADDR(bgep, ppd->pp_acc_offset);
5743 
5744 	switch (ppd->pp_acc_size) {
5745 	case 1:
5746 		regval = ddi_get8(bgep->io_handle, regaddr);
5747 		break;
5748 
5749 	case 2:
5750 		regval = ddi_get16(bgep->io_handle, regaddr);
5751 		break;
5752 
5753 	case 4:
5754 		regval = ddi_get32(bgep->io_handle, regaddr);
5755 		break;
5756 
5757 	case 8:
5758 		regval = ddi_get64(bgep->io_handle, regaddr);
5759 		break;
5760 	}
5761 
5762 	ppd->pp_acc_data = regval;
5763 }
5764 
5765 static void bge_chip_poke_reg(bge_t *bgep, bge_peekpoke_t *ppd);
5766 #pragma	no_inline(bge_chip_peek_reg)
5767 
5768 static void
5769 bge_chip_poke_reg(bge_t *bgep, bge_peekpoke_t *ppd)
5770 {
5771 	uint64_t regval;
5772 	void *regaddr;
5773 
5774 	BGE_TRACE(("bge_chip_poke_reg($%p, $%p)",
5775 	    (void *)bgep, (void *)ppd));
5776 
5777 	regaddr = PIO_ADDR(bgep, ppd->pp_acc_offset);
5778 	regval = ppd->pp_acc_data;
5779 
5780 	switch (ppd->pp_acc_size) {
5781 	case 1:
5782 		ddi_put8(bgep->io_handle, regaddr, regval);
5783 		break;
5784 
5785 	case 2:
5786 		ddi_put16(bgep->io_handle, regaddr, regval);
5787 		break;
5788 
5789 	case 4:
5790 		ddi_put32(bgep->io_handle, regaddr, regval);
5791 		break;
5792 
5793 	case 8:
5794 		ddi_put64(bgep->io_handle, regaddr, regval);
5795 		break;
5796 	}
5797 	BGE_PCICHK(bgep);
5798 }
5799 
5800 static void bge_chip_peek_nic(bge_t *bgep, bge_peekpoke_t *ppd);
5801 #pragma	no_inline(bge_chip_peek_nic)
5802 
5803 static void
5804 bge_chip_peek_nic(bge_t *bgep, bge_peekpoke_t *ppd)
5805 {
5806 	uint64_t regoff;
5807 	uint64_t regval;
5808 	void *regaddr;
5809 
5810 	BGE_TRACE(("bge_chip_peek_nic($%p, $%p)",
5811 	    (void *)bgep, (void *)ppd));
5812 
5813 	regoff = ppd->pp_acc_offset;
5814 	bge_nic_setwin(bgep, regoff & ~MWBAR_GRANULE_MASK);
5815 	regoff &= MWBAR_GRANULE_MASK;
5816 	regoff += NIC_MEM_WINDOW_OFFSET;
5817 	regaddr = PIO_ADDR(bgep, regoff);
5818 
5819 	switch (ppd->pp_acc_size) {
5820 	case 1:
5821 		regval = ddi_get8(bgep->io_handle, regaddr);
5822 		break;
5823 
5824 	case 2:
5825 		regval = ddi_get16(bgep->io_handle, regaddr);
5826 		break;
5827 
5828 	case 4:
5829 		regval = ddi_get32(bgep->io_handle, regaddr);
5830 		break;
5831 
5832 	case 8:
5833 		regval = ddi_get64(bgep->io_handle, regaddr);
5834 		break;
5835 	}
5836 
5837 	ppd->pp_acc_data = regval;
5838 }
5839 
5840 static void bge_chip_poke_nic(bge_t *bgep, bge_peekpoke_t *ppd);
5841 #pragma	no_inline(bge_chip_poke_nic)
5842 
5843 static void
5844 bge_chip_poke_nic(bge_t *bgep, bge_peekpoke_t *ppd)
5845 {
5846 	uint64_t regoff;
5847 	uint64_t regval;
5848 	void *regaddr;
5849 
5850 	BGE_TRACE(("bge_chip_poke_nic($%p, $%p)",
5851 	    (void *)bgep, (void *)ppd));
5852 
5853 	regoff = ppd->pp_acc_offset;
5854 	bge_nic_setwin(bgep, regoff & ~MWBAR_GRANULE_MASK);
5855 	regoff &= MWBAR_GRANULE_MASK;
5856 	regoff += NIC_MEM_WINDOW_OFFSET;
5857 	regaddr = PIO_ADDR(bgep, regoff);
5858 	regval = ppd->pp_acc_data;
5859 
5860 	switch (ppd->pp_acc_size) {
5861 	case 1:
5862 		ddi_put8(bgep->io_handle, regaddr, regval);
5863 		break;
5864 
5865 	case 2:
5866 		ddi_put16(bgep->io_handle, regaddr, regval);
5867 		break;
5868 
5869 	case 4:
5870 		ddi_put32(bgep->io_handle, regaddr, regval);
5871 		break;
5872 
5873 	case 8:
5874 		ddi_put64(bgep->io_handle, regaddr, regval);
5875 		break;
5876 	}
5877 	BGE_PCICHK(bgep);
5878 }
5879 
5880 static void bge_chip_peek_mii(bge_t *bgep, bge_peekpoke_t *ppd);
5881 #pragma	no_inline(bge_chip_peek_mii)
5882 
5883 static void
5884 bge_chip_peek_mii(bge_t *bgep, bge_peekpoke_t *ppd)
5885 {
5886 	BGE_TRACE(("bge_chip_peek_mii($%p, $%p)",
5887 	    (void *)bgep, (void *)ppd));
5888 
5889 	ppd->pp_acc_data = bge_mii_get16(bgep, ppd->pp_acc_offset/2);
5890 }
5891 
5892 static void bge_chip_poke_mii(bge_t *bgep, bge_peekpoke_t *ppd);
5893 #pragma	no_inline(bge_chip_poke_mii)
5894 
5895 static void
5896 bge_chip_poke_mii(bge_t *bgep, bge_peekpoke_t *ppd)
5897 {
5898 	BGE_TRACE(("bge_chip_poke_mii($%p, $%p)",
5899 	    (void *)bgep, (void *)ppd));
5900 
5901 	bge_mii_put16(bgep, ppd->pp_acc_offset/2, ppd->pp_acc_data);
5902 }
5903 
5904 #if	BGE_SEE_IO32
5905 
5906 static void bge_chip_peek_seeprom(bge_t *bgep, bge_peekpoke_t *ppd);
5907 #pragma	no_inline(bge_chip_peek_seeprom)
5908 
5909 static void
5910 bge_chip_peek_seeprom(bge_t *bgep, bge_peekpoke_t *ppd)
5911 {
5912 	uint32_t data;
5913 	int err;
5914 
5915 	BGE_TRACE(("bge_chip_peek_seeprom($%p, $%p)",
5916 	    (void *)bgep, (void *)ppd));
5917 
5918 	err = bge_nvmem_rw32(bgep, BGE_SEE_READ, ppd->pp_acc_offset, &data);
5919 	ppd->pp_acc_data = err ? ~0ull : data;
5920 }
5921 
5922 static void bge_chip_poke_seeprom(bge_t *bgep, bge_peekpoke_t *ppd);
5923 #pragma	no_inline(bge_chip_poke_seeprom)
5924 
5925 static void
5926 bge_chip_poke_seeprom(bge_t *bgep, bge_peekpoke_t *ppd)
5927 {
5928 	uint32_t data;
5929 
5930 	BGE_TRACE(("bge_chip_poke_seeprom($%p, $%p)",
5931 	    (void *)bgep, (void *)ppd));
5932 
5933 	data = ppd->pp_acc_data;
5934 	(void) bge_nvmem_rw32(bgep, BGE_SEE_WRITE, ppd->pp_acc_offset, &data);
5935 }
5936 #endif	/* BGE_SEE_IO32 */
5937 
5938 #if	BGE_FLASH_IO32
5939 
5940 static void bge_chip_peek_flash(bge_t *bgep, bge_peekpoke_t *ppd);
5941 #pragma	no_inline(bge_chip_peek_flash)
5942 
5943 static void
5944 bge_chip_peek_flash(bge_t *bgep, bge_peekpoke_t *ppd)
5945 {
5946 	uint32_t data;
5947 	int err;
5948 
5949 	BGE_TRACE(("bge_chip_peek_flash($%p, $%p)",
5950 	    (void *)bgep, (void *)ppd));
5951 
5952 	err = bge_nvmem_rw32(bgep, BGE_FLASH_READ, ppd->pp_acc_offset, &data);
5953 	ppd->pp_acc_data = err ? ~0ull : data;
5954 }
5955 
5956 static void bge_chip_poke_flash(bge_t *bgep, bge_peekpoke_t *ppd);
5957 #pragma	no_inline(bge_chip_poke_flash)
5958 
5959 static void
5960 bge_chip_poke_flash(bge_t *bgep, bge_peekpoke_t *ppd)
5961 {
5962 	uint32_t data;
5963 
5964 	BGE_TRACE(("bge_chip_poke_flash($%p, $%p)",
5965 	    (void *)bgep, (void *)ppd));
5966 
5967 	data = ppd->pp_acc_data;
5968 	(void) bge_nvmem_rw32(bgep, BGE_FLASH_WRITE,
5969 	    ppd->pp_acc_offset, &data);
5970 }
5971 #endif	/* BGE_FLASH_IO32 */
5972 
5973 static void bge_chip_peek_mem(bge_t *bgep, bge_peekpoke_t *ppd);
5974 #pragma	no_inline(bge_chip_peek_mem)
5975 
5976 static void
5977 bge_chip_peek_mem(bge_t *bgep, bge_peekpoke_t *ppd)
5978 {
5979 	uint64_t regval;
5980 	void *vaddr;
5981 
5982 	BGE_TRACE(("bge_chip_peek_bge($%p, $%p)",
5983 	    (void *)bgep, (void *)ppd));
5984 
5985 	vaddr = (void *)(uintptr_t)ppd->pp_acc_offset;
5986 
5987 	switch (ppd->pp_acc_size) {
5988 	case 1:
5989 		regval = *(uint8_t *)vaddr;
5990 		break;
5991 
5992 	case 2:
5993 		regval = *(uint16_t *)vaddr;
5994 		break;
5995 
5996 	case 4:
5997 		regval = *(uint32_t *)vaddr;
5998 		break;
5999 
6000 	case 8:
6001 		regval = *(uint64_t *)vaddr;
6002 		break;
6003 	}
6004 
6005 	BGE_DEBUG(("bge_chip_peek_mem($%p, $%p) peeked 0x%llx from $%p",
6006 	    (void *)bgep, (void *)ppd, regval, vaddr));
6007 
6008 	ppd->pp_acc_data = regval;
6009 }
6010 
6011 static void bge_chip_poke_mem(bge_t *bgep, bge_peekpoke_t *ppd);
6012 #pragma	no_inline(bge_chip_poke_mem)
6013 
6014 static void
6015 bge_chip_poke_mem(bge_t *bgep, bge_peekpoke_t *ppd)
6016 {
6017 	uint64_t regval;
6018 	void *vaddr;
6019 
6020 	BGE_TRACE(("bge_chip_poke_mem($%p, $%p)",
6021 	    (void *)bgep, (void *)ppd));
6022 
6023 	vaddr = (void *)(uintptr_t)ppd->pp_acc_offset;
6024 	regval = ppd->pp_acc_data;
6025 
6026 	BGE_DEBUG(("bge_chip_poke_mem($%p, $%p) poking 0x%llx at $%p",
6027 	    (void *)bgep, (void *)ppd, regval, vaddr));
6028 
6029 	switch (ppd->pp_acc_size) {
6030 	case 1:
6031 		*(uint8_t *)vaddr = (uint8_t)regval;
6032 		break;
6033 
6034 	case 2:
6035 		*(uint16_t *)vaddr = (uint16_t)regval;
6036 		break;
6037 
6038 	case 4:
6039 		*(uint32_t *)vaddr = (uint32_t)regval;
6040 		break;
6041 
6042 	case 8:
6043 		*(uint64_t *)vaddr = (uint64_t)regval;
6044 		break;
6045 	}
6046 }
6047 
6048 static enum ioc_reply bge_pp_ioctl(bge_t *bgep, int cmd, mblk_t *mp,
6049 					struct iocblk *iocp);
6050 #pragma	no_inline(bge_pp_ioctl)
6051 
6052 static enum ioc_reply
6053 bge_pp_ioctl(bge_t *bgep, int cmd, mblk_t *mp, struct iocblk *iocp)
6054 {
6055 	void (*ppfn)(bge_t *bgep, bge_peekpoke_t *ppd);
6056 	bge_peekpoke_t *ppd;
6057 	dma_area_t *areap;
6058 	uint64_t sizemask;
6059 	uint64_t mem_va;
6060 	uint64_t maxoff;
6061 	boolean_t peek;
6062 
6063 	switch (cmd) {
6064 	default:
6065 		/* NOTREACHED */
6066 		bge_error(bgep, "bge_pp_ioctl: invalid cmd 0x%x", cmd);
6067 		return (IOC_INVAL);
6068 
6069 	case BGE_PEEK:
6070 		peek = B_TRUE;
6071 		break;
6072 
6073 	case BGE_POKE:
6074 		peek = B_FALSE;
6075 		break;
6076 	}
6077 
6078 	/*
6079 	 * Validate format of ioctl
6080 	 */
6081 	if (iocp->ioc_count != sizeof (bge_peekpoke_t))
6082 		return (IOC_INVAL);
6083 	if (mp->b_cont == NULL)
6084 		return (IOC_INVAL);
6085 	ppd = (void *)mp->b_cont->b_rptr;
6086 
6087 	/*
6088 	 * Validate request parameters
6089 	 */
6090 	switch (ppd->pp_acc_space) {
6091 	default:
6092 		return (IOC_INVAL);
6093 
6094 	case BGE_PP_SPACE_CFG:
6095 		/*
6096 		 * Config space
6097 		 */
6098 		sizemask = 8|4|2|1;
6099 		mem_va = 0;
6100 		maxoff = PCI_CONF_HDR_SIZE;
6101 		ppfn = peek ? bge_chip_peek_cfg : bge_chip_poke_cfg;
6102 		break;
6103 
6104 	case BGE_PP_SPACE_REG:
6105 		/*
6106 		 * Memory-mapped I/O space
6107 		 */
6108 		sizemask = 8|4|2|1;
6109 		mem_va = 0;
6110 		maxoff = RIAAR_REGISTER_MAX;
6111 		ppfn = peek ? bge_chip_peek_reg : bge_chip_poke_reg;
6112 		break;
6113 
6114 	case BGE_PP_SPACE_NIC:
6115 		/*
6116 		 * NIC on-chip memory
6117 		 */
6118 		sizemask = 8|4|2|1;
6119 		mem_va = 0;
6120 		maxoff = MWBAR_ONCHIP_MAX;
6121 		ppfn = peek ? bge_chip_peek_nic : bge_chip_poke_nic;
6122 		break;
6123 
6124 	case BGE_PP_SPACE_MII:
6125 		/*
6126 		 * PHY's MII registers
6127 		 * NB: all PHY registers are two bytes, but the
6128 		 * addresses increment in ones (word addressing).
6129 		 * So we scale the address here, then undo the
6130 		 * transformation inside the peek/poke functions.
6131 		 */
6132 		ppd->pp_acc_offset *= 2;
6133 		sizemask = 2;
6134 		mem_va = 0;
6135 		maxoff = (MII_MAXREG+1)*2;
6136 		ppfn = peek ? bge_chip_peek_mii : bge_chip_poke_mii;
6137 		break;
6138 
6139 #if	BGE_SEE_IO32
6140 	case BGE_PP_SPACE_SEEPROM:
6141 		/*
6142 		 * Attached SEEPROM(s), if any.
6143 		 * NB: we use the high-order bits of the 'address' as
6144 		 * a device select to accommodate multiple SEEPROMS,
6145 		 * If each one is the maximum size (64kbytes), this
6146 		 * makes them appear contiguous.  Otherwise, there may
6147 		 * be holes in the mapping.  ENxS doesn't have any
6148 		 * SEEPROMs anyway ...
6149 		 */
6150 		sizemask = 4;
6151 		mem_va = 0;
6152 		maxoff = SEEPROM_DEV_AND_ADDR_MASK;
6153 		ppfn = peek ? bge_chip_peek_seeprom : bge_chip_poke_seeprom;
6154 		break;
6155 #endif	/* BGE_SEE_IO32 */
6156 
6157 #if	BGE_FLASH_IO32
6158 	case BGE_PP_SPACE_FLASH:
6159 		/*
6160 		 * Attached Flash device (if any); a maximum of one device
6161 		 * is currently supported.  But it can be up to 1MB (unlike
6162 		 * the 64k limit on SEEPROMs) so why would you need more ;-)
6163 		 */
6164 		sizemask = 4;
6165 		mem_va = 0;
6166 		maxoff = NVM_FLASH_ADDR_MASK;
6167 		ppfn = peek ? bge_chip_peek_flash : bge_chip_poke_flash;
6168 		break;
6169 #endif	/* BGE_FLASH_IO32 */
6170 
6171 	case BGE_PP_SPACE_BGE:
6172 		/*
6173 		 * BGE data structure!
6174 		 */
6175 		sizemask = 8|4|2|1;
6176 		mem_va = (uintptr_t)bgep;
6177 		maxoff = sizeof (*bgep);
6178 		ppfn = peek ? bge_chip_peek_mem : bge_chip_poke_mem;
6179 		break;
6180 
6181 	case BGE_PP_SPACE_STATUS:
6182 	case BGE_PP_SPACE_STATISTICS:
6183 	case BGE_PP_SPACE_TXDESC:
6184 	case BGE_PP_SPACE_TXBUFF:
6185 	case BGE_PP_SPACE_RXDESC:
6186 	case BGE_PP_SPACE_RXBUFF:
6187 		/*
6188 		 * Various DMA_AREAs
6189 		 */
6190 		switch (ppd->pp_acc_space) {
6191 		case BGE_PP_SPACE_TXDESC:
6192 			areap = &bgep->tx_desc;
6193 			break;
6194 		case BGE_PP_SPACE_TXBUFF:
6195 			areap = &bgep->tx_buff[0];
6196 			break;
6197 		case BGE_PP_SPACE_RXDESC:
6198 			areap = &bgep->rx_desc[0];
6199 			break;
6200 		case BGE_PP_SPACE_RXBUFF:
6201 			areap = &bgep->rx_buff[0];
6202 			break;
6203 		case BGE_PP_SPACE_STATUS:
6204 			areap = &bgep->status_block;
6205 			break;
6206 		case BGE_PP_SPACE_STATISTICS:
6207 			if (bgep->chipid.statistic_type == BGE_STAT_BLK)
6208 				areap = &bgep->statistics;
6209 			break;
6210 		}
6211 
6212 		sizemask = 8|4|2|1;
6213 		mem_va = (uintptr_t)areap->mem_va;
6214 		maxoff = areap->alength;
6215 		ppfn = peek ? bge_chip_peek_mem : bge_chip_poke_mem;
6216 		break;
6217 	}
6218 
6219 	switch (ppd->pp_acc_size) {
6220 	default:
6221 		return (IOC_INVAL);
6222 
6223 	case 8:
6224 	case 4:
6225 	case 2:
6226 	case 1:
6227 		if ((ppd->pp_acc_size & sizemask) == 0)
6228 			return (IOC_INVAL);
6229 		break;
6230 	}
6231 
6232 	if ((ppd->pp_acc_offset % ppd->pp_acc_size) != 0)
6233 		return (IOC_INVAL);
6234 
6235 	if (ppd->pp_acc_offset >= maxoff)
6236 		return (IOC_INVAL);
6237 
6238 	if (ppd->pp_acc_offset+ppd->pp_acc_size > maxoff)
6239 		return (IOC_INVAL);
6240 
6241 	/*
6242 	 * All OK - go do it!
6243 	 */
6244 	ppd->pp_acc_offset += mem_va;
6245 	(*ppfn)(bgep, ppd);
6246 	return (peek ? IOC_REPLY : IOC_ACK);
6247 }
6248 
6249 static enum ioc_reply bge_diag_ioctl(bge_t *bgep, int cmd, mblk_t *mp,
6250 					struct iocblk *iocp);
6251 #pragma	no_inline(bge_diag_ioctl)
6252 
6253 static enum ioc_reply
6254 bge_diag_ioctl(bge_t *bgep, int cmd, mblk_t *mp, struct iocblk *iocp)
6255 {
6256 	ASSERT(mutex_owned(bgep->genlock));
6257 
6258 	switch (cmd) {
6259 	default:
6260 		/* NOTREACHED */
6261 		bge_error(bgep, "bge_diag_ioctl: invalid cmd 0x%x", cmd);
6262 		return (IOC_INVAL);
6263 
6264 	case BGE_DIAG:
6265 		/*
6266 		 * Currently a no-op
6267 		 */
6268 		return (IOC_ACK);
6269 
6270 	case BGE_PEEK:
6271 	case BGE_POKE:
6272 		return (bge_pp_ioctl(bgep, cmd, mp, iocp));
6273 
6274 	case BGE_PHY_RESET:
6275 		return (IOC_RESTART_ACK);
6276 
6277 	case BGE_SOFT_RESET:
6278 	case BGE_HARD_RESET:
6279 		/*
6280 		 * Reset and reinitialise the 570x hardware
6281 		 */
6282 		bgep->bge_chip_state = BGE_CHIP_FAULT;
6283 		ddi_trigger_softintr(bgep->factotum_id);
6284 		(void) bge_restart(bgep, cmd == BGE_HARD_RESET);
6285 		return (IOC_ACK);
6286 	}
6287 
6288 	/* NOTREACHED */
6289 }
6290 
6291 #endif	/* BGE_DEBUGGING || BGE_DO_PPIO */
6292 
6293 static enum ioc_reply bge_mii_ioctl(bge_t *bgep, int cmd, mblk_t *mp,
6294 				    struct iocblk *iocp);
6295 #pragma	no_inline(bge_mii_ioctl)
6296 
6297 static enum ioc_reply
6298 bge_mii_ioctl(bge_t *bgep, int cmd, mblk_t *mp, struct iocblk *iocp)
6299 {
6300 	struct bge_mii_rw *miirwp;
6301 
6302 	/*
6303 	 * Validate format of ioctl
6304 	 */
6305 	if (iocp->ioc_count != sizeof (struct bge_mii_rw))
6306 		return (IOC_INVAL);
6307 	if (mp->b_cont == NULL)
6308 		return (IOC_INVAL);
6309 	miirwp = (void *)mp->b_cont->b_rptr;
6310 
6311 	/*
6312 	 * Validate request parameters ...
6313 	 */
6314 	if (miirwp->mii_reg > MII_MAXREG)
6315 		return (IOC_INVAL);
6316 
6317 	switch (cmd) {
6318 	default:
6319 		/* NOTREACHED */
6320 		bge_error(bgep, "bge_mii_ioctl: invalid cmd 0x%x", cmd);
6321 		return (IOC_INVAL);
6322 
6323 	case BGE_MII_READ:
6324 		miirwp->mii_data = bge_mii_get16(bgep, miirwp->mii_reg);
6325 		return (IOC_REPLY);
6326 
6327 	case BGE_MII_WRITE:
6328 		bge_mii_put16(bgep, miirwp->mii_reg, miirwp->mii_data);
6329 		return (IOC_ACK);
6330 	}
6331 
6332 	/* NOTREACHED */
6333 }
6334 
6335 #if	BGE_SEE_IO32
6336 
6337 static enum ioc_reply bge_see_ioctl(bge_t *bgep, int cmd, mblk_t *mp,
6338 				    struct iocblk *iocp);
6339 #pragma	no_inline(bge_see_ioctl)
6340 
6341 static enum ioc_reply
6342 bge_see_ioctl(bge_t *bgep, int cmd, mblk_t *mp, struct iocblk *iocp)
6343 {
6344 	struct bge_see_rw *seerwp;
6345 
6346 	/*
6347 	 * Validate format of ioctl
6348 	 */
6349 	if (iocp->ioc_count != sizeof (struct bge_see_rw))
6350 		return (IOC_INVAL);
6351 	if (mp->b_cont == NULL)
6352 		return (IOC_INVAL);
6353 	seerwp = (void *)mp->b_cont->b_rptr;
6354 
6355 	/*
6356 	 * Validate request parameters ...
6357 	 */
6358 	if (seerwp->see_addr & ~SEEPROM_DEV_AND_ADDR_MASK)
6359 		return (IOC_INVAL);
6360 
6361 	switch (cmd) {
6362 	default:
6363 		/* NOTREACHED */
6364 		bge_error(bgep, "bge_see_ioctl: invalid cmd 0x%x", cmd);
6365 		return (IOC_INVAL);
6366 
6367 	case BGE_SEE_READ:
6368 	case BGE_SEE_WRITE:
6369 		iocp->ioc_error = bge_nvmem_rw32(bgep, cmd,
6370 		    seerwp->see_addr, &seerwp->see_data);
6371 		return (IOC_REPLY);
6372 	}
6373 
6374 	/* NOTREACHED */
6375 }
6376 
6377 #endif	/* BGE_SEE_IO32 */
6378 
6379 #if	BGE_FLASH_IO32
6380 
6381 static enum ioc_reply bge_flash_ioctl(bge_t *bgep, int cmd, mblk_t *mp,
6382 				    struct iocblk *iocp);
6383 #pragma	no_inline(bge_flash_ioctl)
6384 
6385 static enum ioc_reply
6386 bge_flash_ioctl(bge_t *bgep, int cmd, mblk_t *mp, struct iocblk *iocp)
6387 {
6388 	struct bge_flash_rw *flashrwp;
6389 
6390 	/*
6391 	 * Validate format of ioctl
6392 	 */
6393 	if (iocp->ioc_count != sizeof (struct bge_flash_rw))
6394 		return (IOC_INVAL);
6395 	if (mp->b_cont == NULL)
6396 		return (IOC_INVAL);
6397 	flashrwp = (void *)mp->b_cont->b_rptr;
6398 
6399 	/*
6400 	 * Validate request parameters ...
6401 	 */
6402 	if (flashrwp->flash_addr & ~NVM_FLASH_ADDR_MASK)
6403 		return (IOC_INVAL);
6404 
6405 	switch (cmd) {
6406 	default:
6407 		/* NOTREACHED */
6408 		bge_error(bgep, "bge_flash_ioctl: invalid cmd 0x%x", cmd);
6409 		return (IOC_INVAL);
6410 
6411 	case BGE_FLASH_READ:
6412 	case BGE_FLASH_WRITE:
6413 		iocp->ioc_error = bge_nvmem_rw32(bgep, cmd,
6414 		    flashrwp->flash_addr, &flashrwp->flash_data);
6415 		return (IOC_REPLY);
6416 	}
6417 
6418 	/* NOTREACHED */
6419 }
6420 
6421 #endif	/* BGE_FLASH_IO32 */
6422 
6423 enum ioc_reply bge_chip_ioctl(bge_t *bgep, queue_t *wq, mblk_t *mp,
6424 				struct iocblk *iocp);
6425 #pragma	no_inline(bge_chip_ioctl)
6426 
6427 enum ioc_reply
6428 bge_chip_ioctl(bge_t *bgep, queue_t *wq, mblk_t *mp, struct iocblk *iocp)
6429 {
6430 	int cmd;
6431 
6432 	BGE_TRACE(("bge_chip_ioctl($%p, $%p, $%p, $%p)",
6433 	    (void *)bgep, (void *)wq, (void *)mp, (void *)iocp));
6434 
6435 	ASSERT(mutex_owned(bgep->genlock));
6436 
6437 	cmd = iocp->ioc_cmd;
6438 	switch (cmd) {
6439 	default:
6440 		/* NOTREACHED */
6441 		bge_error(bgep, "bge_chip_ioctl: invalid cmd 0x%x", cmd);
6442 		return (IOC_INVAL);
6443 
6444 	case BGE_DIAG:
6445 	case BGE_PEEK:
6446 	case BGE_POKE:
6447 	case BGE_PHY_RESET:
6448 	case BGE_SOFT_RESET:
6449 	case BGE_HARD_RESET:
6450 #if	BGE_DEBUGGING || BGE_DO_PPIO
6451 		return (bge_diag_ioctl(bgep, cmd, mp, iocp));
6452 #else
6453 		return (IOC_INVAL);
6454 #endif	/* BGE_DEBUGGING || BGE_DO_PPIO */
6455 
6456 	case BGE_MII_READ:
6457 	case BGE_MII_WRITE:
6458 		return (bge_mii_ioctl(bgep, cmd, mp, iocp));
6459 
6460 #if	BGE_SEE_IO32
6461 	case BGE_SEE_READ:
6462 	case BGE_SEE_WRITE:
6463 		return (bge_see_ioctl(bgep, cmd, mp, iocp));
6464 #endif	/* BGE_SEE_IO32 */
6465 
6466 #if	BGE_FLASH_IO32
6467 	case BGE_FLASH_READ:
6468 	case BGE_FLASH_WRITE:
6469 		return (bge_flash_ioctl(bgep, cmd, mp, iocp));
6470 #endif	/* BGE_FLASH_IO32 */
6471 	}
6472 
6473 	/* NOTREACHED */
6474 }
6475 
6476 /* ARGSUSED */
6477 void
6478 bge_chip_blank(void *arg, time_t ticks, uint_t count, int flag)
6479 {
6480 	recv_ring_t *rrp = arg;
6481 	bge_t *bgep = rrp->bgep;
6482 
6483 	mutex_enter(bgep->genlock);
6484 	rrp->poll_flag = flag;
6485 #ifdef NOT_YET
6486 	/*
6487 	 * XXX-Sunay: Since most broadcom cards support only one
6488 	 * interrupt but multiple rx rings, we can't disable the
6489 	 * physical interrupt. This need to be done via capability
6490 	 * negotiation depending on the NIC.
6491 	 */
6492 	bge_reg_put32(bgep, RCV_COALESCE_TICKS_REG, ticks);
6493 	bge_reg_put32(bgep, RCV_COALESCE_MAX_BD_REG, count);
6494 #endif
6495 	if (bge_check_acc_handle(bgep, bgep->io_handle) != DDI_FM_OK)
6496 		ddi_fm_service_impact(bgep->devinfo, DDI_SERVICE_UNAFFECTED);
6497 	mutex_exit(bgep->genlock);
6498 }
6499 
6500 #ifdef BGE_IPMI_ASF
6501 
6502 uint32_t
6503 bge_nic_read32(bge_t *bgep, bge_regno_t addr)
6504 {
6505 	uint32_t data;
6506 
6507 #ifndef __sparc
6508 	if (!bgep->asf_wordswapped) {
6509 		/* a workaround word swap error */
6510 		if (addr & 4)
6511 			addr = addr - 4;
6512 		else
6513 			addr = addr + 4;
6514 	}
6515 #else
6516 	if (DEVICE_5717_SERIES_CHIPSETS(bgep) ||
6517 	    DEVICE_5725_SERIES_CHIPSETS(bgep) ||
6518 	    DEVICE_57765_SERIES_CHIPSETS(bgep)) {
6519 		addr = LE_32(addr);
6520 	}
6521 #endif
6522 
6523 	pci_config_put32(bgep->cfg_handle, PCI_CONF_BGE_MWBAR, addr);
6524 	data = pci_config_get32(bgep->cfg_handle, PCI_CONF_BGE_MWDAR);
6525 	pci_config_put32(bgep->cfg_handle, PCI_CONF_BGE_MWBAR, 0);
6526 
6527 	data = LE_32(data);
6528 
6529 	BGE_DEBUG(("bge_nic_read32($%p, 0x%x) => 0x%x",
6530 	    (void *)bgep, addr, data));
6531 
6532 	return (data);
6533 }
6534 
6535 void
6536 bge_asf_update_status(bge_t *bgep)
6537 {
6538 	uint32_t event;
6539 
6540 	bge_nic_put32(bgep, BGE_CMD_MAILBOX, BGE_CMD_NICDRV_ALIVE);
6541 	bge_nic_put32(bgep, BGE_CMD_LENGTH_MAILBOX, 4);
6542 	bge_nic_put32(bgep, BGE_CMD_DATA_MAILBOX,   3);
6543 
6544 	event = bge_reg_get32(bgep, RX_RISC_EVENT_REG);
6545 	bge_reg_put32(bgep, RX_RISC_EVENT_REG, event | RRER_ASF_EVENT);
6546 }
6547 
6548 
6549 /*
6550  * The driver is supposed to notify ASF that the OS is still running
6551  * every three seconds, otherwise the management server may attempt
6552  * to reboot the machine.  If it hasn't actually failed, this is
6553  * not a desirable result.  However, this isn't running as a real-time
6554  * thread, and even if it were, it might not be able to generate the
6555  * heartbeat in a timely manner due to system load.  As it isn't a
6556  * significant strain on the machine, we will set the interval to half
6557  * of the required value.
6558  */
6559 void
6560 bge_asf_heartbeat(void *arg)
6561 {
6562 	bge_t *bgep = (bge_t *)arg;
6563 
6564 	mutex_enter(bgep->genlock);
6565 	bge_asf_update_status((bge_t *)bgep);
6566 	if (bge_check_acc_handle(bgep, bgep->io_handle) != DDI_FM_OK)
6567 		ddi_fm_service_impact(bgep->devinfo, DDI_SERVICE_DEGRADED);
6568 	if (bge_check_acc_handle(bgep, bgep->cfg_handle) != DDI_FM_OK)
6569 		ddi_fm_service_impact(bgep->devinfo, DDI_SERVICE_DEGRADED);
6570 	mutex_exit(bgep->genlock);
6571 	((bge_t *)bgep)->asf_timeout_id = timeout(bge_asf_heartbeat, bgep,
6572 	    drv_usectohz(BGE_ASF_HEARTBEAT_INTERVAL));
6573 }
6574 
6575 
6576 void
6577 bge_asf_stop_timer(bge_t *bgep)
6578 {
6579 	timeout_id_t tmp_id = 0;
6580 
6581 	while ((bgep->asf_timeout_id != 0) &&
6582 	    (tmp_id != bgep->asf_timeout_id)) {
6583 		tmp_id = bgep->asf_timeout_id;
6584 		(void) untimeout(tmp_id);
6585 	}
6586 	bgep->asf_timeout_id = 0;
6587 }
6588 
6589 
6590 
6591 /*
6592  * This function should be placed at the earliest position of bge_attach().
6593  */
6594 void
6595 bge_asf_get_config(bge_t *bgep)
6596 {
6597 	uint32_t nicsig;
6598 	uint32_t niccfg;
6599 
6600 	bgep->asf_enabled = B_FALSE;
6601 
6602 	/* No ASF if APE present. */
6603 	if (bgep->ape_enabled)
6604 		return;
6605 
6606 	nicsig = bge_nic_read32(bgep, BGE_NIC_DATA_SIG_ADDR);
6607 	if (nicsig == BGE_NIC_DATA_SIG) {
6608 		niccfg = bge_nic_read32(bgep, BGE_NIC_DATA_NIC_CFG_ADDR);
6609 		if (niccfg & BGE_NIC_CFG_ENABLE_ASF)
6610 			/*
6611 			 * Here, we don't consider BAXTER, because BGE haven't
6612 			 * supported BAXTER (that is 5752). Also, as I know,
6613 			 * BAXTER doesn't support ASF feature.
6614 			 */
6615 			bgep->asf_enabled = B_TRUE;
6616 		else
6617 			bgep->asf_enabled = B_FALSE;
6618 	} else
6619 		bgep->asf_enabled = B_FALSE;
6620 }
6621 
6622 
6623 void
6624 bge_asf_pre_reset_operations(bge_t *bgep, uint32_t mode)
6625 {
6626 	uint32_t tries;
6627 	uint32_t event;
6628 
6629 	ASSERT(bgep->asf_enabled);
6630 
6631 	/* Issues "pause firmware" command and wait for ACK */
6632 	bge_nic_put32(bgep, BGE_CMD_MAILBOX, BGE_CMD_NICDRV_PAUSE_FW);
6633 	event = bge_reg_get32(bgep, RX_RISC_EVENT_REG);
6634 	bge_reg_put32(bgep, RX_RISC_EVENT_REG, event | RRER_ASF_EVENT);
6635 
6636 	event = bge_reg_get32(bgep, RX_RISC_EVENT_REG);
6637 	tries = 0;
6638 	while ((event & RRER_ASF_EVENT) && (tries < 100)) {
6639 		drv_usecwait(1);
6640 		tries ++;
6641 		event = bge_reg_get32(bgep, RX_RISC_EVENT_REG);
6642 	}
6643 
6644 	bge_nic_put32(bgep, BGE_FIRMWARE_MAILBOX,
6645 	    BGE_MAGIC_NUM_FIRMWARE_INIT_DONE);
6646 
6647 	if (bgep->asf_newhandshake) {
6648 		switch (mode) {
6649 		case BGE_INIT_RESET:
6650 			bge_nic_put32(bgep, BGE_DRV_STATE_MAILBOX,
6651 			    BGE_DRV_STATE_START);
6652 			break;
6653 		case BGE_SHUTDOWN_RESET:
6654 			bge_nic_put32(bgep, BGE_DRV_STATE_MAILBOX,
6655 			    BGE_DRV_STATE_UNLOAD);
6656 			break;
6657 		case BGE_SUSPEND_RESET:
6658 			bge_nic_put32(bgep, BGE_DRV_STATE_MAILBOX,
6659 			    BGE_DRV_STATE_SUSPEND);
6660 			break;
6661 		default:
6662 			break;
6663 		}
6664 	}
6665 
6666 	if (mode == BGE_INIT_RESET ||
6667 	    mode == BGE_SUSPEND_RESET)
6668 		bge_ape_driver_state_change(bgep, mode);
6669 }
6670 
6671 
6672 void
6673 bge_asf_post_reset_old_mode(bge_t *bgep, uint32_t mode)
6674 {
6675 	switch (mode) {
6676 	case BGE_INIT_RESET:
6677 		bge_nic_put32(bgep, BGE_DRV_STATE_MAILBOX,
6678 		    BGE_DRV_STATE_START);
6679 		break;
6680 	case BGE_SHUTDOWN_RESET:
6681 		bge_nic_put32(bgep, BGE_DRV_STATE_MAILBOX,
6682 		    BGE_DRV_STATE_UNLOAD);
6683 		break;
6684 	case BGE_SUSPEND_RESET:
6685 		bge_nic_put32(bgep, BGE_DRV_STATE_MAILBOX,
6686 		    BGE_DRV_STATE_SUSPEND);
6687 		break;
6688 	default:
6689 		break;
6690 	}
6691 }
6692 
6693 
6694 void
6695 bge_asf_post_reset_new_mode(bge_t *bgep, uint32_t mode)
6696 {
6697 	switch (mode) {
6698 	case BGE_INIT_RESET:
6699 		bge_nic_put32(bgep, BGE_DRV_STATE_MAILBOX,
6700 		    BGE_DRV_STATE_START_DONE);
6701 		break;
6702 	case BGE_SHUTDOWN_RESET:
6703 		bge_nic_put32(bgep, BGE_DRV_STATE_MAILBOX,
6704 		    BGE_DRV_STATE_UNLOAD_DONE);
6705 		break;
6706 	default:
6707 		break;
6708 	}
6709 
6710 	if (mode == BGE_SHUTDOWN_RESET)
6711 		bge_ape_driver_state_change(bgep, mode);
6712 }
6713 
6714 #endif /* BGE_IPMI_ASF */
6715