xref: /illumos-gate/usr/src/uts/common/io/bge/bge_chip2.c (revision ac20c57d6652cecf7859e3346336b9a48e5d5f82)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 
22 /*
23  * Copyright 2007 Sun Microsystems, Inc.  All rights reserved.
24  * Use is subject to license terms.
25  */
26 
27 #pragma ident	"%Z%%M%	%I%	%E% SMI"
28 
29 #include "bge_impl.h"
30 
31 #define	PIO_ADDR(bgep, offset)	((void *)((caddr_t)(bgep)->io_regs+(offset)))
32 
33 /*
34  * Future features ... ?
35  */
36 #define	BGE_CFG_IO8	1	/* 8/16-bit cfg space BIS/BIC	*/
37 #define	BGE_IND_IO32	1	/* indirect access code		*/
38 #define	BGE_SEE_IO32	1	/* SEEPROM access code		*/
39 #define	BGE_FLASH_IO32	1	/* FLASH access code		*/
40 
41 /*
42  * BGE MSI tunable:
43  *
44  * By default MSI is enabled on all supported platforms but it is disabled
45  * for some Broadcom chips due to known MSI hardware issues. Currently MSI
46  * is enabled only for 5714C A2 and 5715C A2 broadcom chips.
47  */
48 #if defined(__sparc)
49 boolean_t bge_enable_msi = B_TRUE;
50 #else
51 boolean_t bge_enable_msi = B_FALSE;
52 #endif
53 
54 /*
55  * PCI-X/PCI-E relaxed ordering tunable for OS/Nexus driver
56  */
57 boolean_t bge_relaxed_ordering = B_TRUE;
58 
59 /*
60  * Property names
61  */
62 static char knownids_propname[] = "bge-known-subsystems";
63 
64 /*
65  * Patchable globals:
66  *
67  *	bge_autorecover
68  *		Enables/disables automatic recovery after fault detection
69  *
70  *	bge_mlcr_default
71  *		Value to program into the MLCR; controls the chip's GPIO pins
72  *
73  *	bge_dma_{rd,wr}prio
74  *		Relative priorities of DMA reads & DMA writes respectively.
75  *		These may each be patched to any value 0-3.  Equal values
76  *		will give "fair" (round-robin) arbitration for PCI access.
77  *		Unequal values will give one or the other function priority.
78  *
79  *	bge_dma_rwctrl
80  *		Value to put in the Read/Write DMA control register.  See
81  *	        the Broadcom PRM for things you can fiddle with in this
82  *		register ...
83  *
84  *	bge_{tx,rx}_{count,ticks}_{norm,intr}
85  *		Send/receive interrupt coalescing parameters.  Counts are
86  *		#s of descriptors, ticks are in microseconds.  *norm* values
87  *		apply between status updates/interrupts; the *intr* values
88  *		refer to the 'during-interrupt' versions - see the PRM.
89  *
90  *		NOTE: these values have been determined by measurement. They
91  *		differ significantly from the values recommended in the PRM.
92  */
93 static uint32_t bge_autorecover = 1;
94 static uint32_t bge_mlcr_default = MLCR_DEFAULT;
95 static uint32_t bge_mlcr_default_5714 = MLCR_DEFAULT_5714;
96 
97 static uint32_t bge_dma_rdprio = 1;
98 static uint32_t bge_dma_wrprio = 0;
99 static uint32_t bge_dma_rwctrl = PDRWCR_VAR_DEFAULT;
100 static uint32_t bge_dma_rwctrl_5721 = PDRWCR_VAR_5721;
101 static uint32_t bge_dma_rwctrl_5714 = PDRWCR_VAR_5714;
102 static uint32_t bge_dma_rwctrl_5715 = PDRWCR_VAR_5715;
103 
104 uint32_t bge_rx_ticks_norm = 128;
105 uint32_t bge_tx_ticks_norm = 2048;		/* 8 for FJ2+ !?!?	*/
106 uint32_t bge_rx_count_norm = 8;
107 uint32_t bge_tx_count_norm = 128;
108 
109 static uint32_t bge_rx_ticks_intr = 128;
110 static uint32_t bge_tx_ticks_intr = 0;		/* 8 for FJ2+ !?!?	*/
111 static uint32_t bge_rx_count_intr = 2;
112 static uint32_t bge_tx_count_intr = 0;
113 
114 /*
115  * Memory pool configuration parameters.
116  *
117  * These are generally specific to each member of the chip family, since
118  * each one may have a different memory size/configuration.
119  *
120  * Setting the mbuf pool length for a specific type of chip to 0 inhibits
121  * the driver from programming the various registers; instead they are left
122  * at their hardware defaults.  This is the preferred option for later chips
123  * (5705+), whereas the older chips *required* these registers to be set,
124  * since the h/w default was 0 ;-(
125  */
126 static uint32_t bge_mbuf_pool_base	= MBUF_POOL_BASE_DEFAULT;
127 static uint32_t bge_mbuf_pool_base_5704	= MBUF_POOL_BASE_5704;
128 static uint32_t bge_mbuf_pool_base_5705	= MBUF_POOL_BASE_5705;
129 static uint32_t bge_mbuf_pool_base_5721 = MBUF_POOL_BASE_5721;
130 static uint32_t bge_mbuf_pool_len	= MBUF_POOL_LENGTH_DEFAULT;
131 static uint32_t bge_mbuf_pool_len_5704	= MBUF_POOL_LENGTH_5704;
132 static uint32_t bge_mbuf_pool_len_5705	= 0;	/* use h/w default	*/
133 static uint32_t bge_mbuf_pool_len_5721	= 0;
134 
135 /*
136  * Various high and low water marks, thresholds, etc ...
137  *
138  * Note: these are taken from revision 7 of the PRM, and some are different
139  * from both the values in earlier PRMs *and* those determined experimentally
140  * and used in earlier versions of this driver ...
141  */
142 static uint32_t bge_mbuf_hi_water	= MBUF_HIWAT_DEFAULT;
143 static uint32_t bge_mbuf_lo_water_rmac	= MAC_RX_MBUF_LOWAT_DEFAULT;
144 static uint32_t bge_mbuf_lo_water_rdma	= RDMA_MBUF_LOWAT_DEFAULT;
145 
146 static uint32_t bge_dmad_lo_water	= DMAD_POOL_LOWAT_DEFAULT;
147 static uint32_t bge_dmad_hi_water	= DMAD_POOL_HIWAT_DEFAULT;
148 static uint32_t bge_lowat_recv_frames	= LOWAT_MAX_RECV_FRAMES_DEFAULT;
149 
150 static uint32_t bge_replenish_std	= STD_RCV_BD_REPLENISH_DEFAULT;
151 static uint32_t bge_replenish_mini	= MINI_RCV_BD_REPLENISH_DEFAULT;
152 static uint32_t bge_replenish_jumbo	= JUMBO_RCV_BD_REPLENISH_DEFAULT;
153 
154 static uint32_t	bge_watchdog_count	= 1 << 16;
155 static uint16_t bge_dma_miss_limit	= 20;
156 
157 static uint32_t bge_stop_start_on_sync	= 0;
158 
159 boolean_t bge_jumbo_enable		= B_TRUE;
160 static uint32_t bge_default_jumbo_size	= BGE_JUMBO_BUFF_SIZE;
161 
162 /*
163  * bge_intr_max_loop controls the maximum loop number within bge_intr.
164  * When loading NIC with heavy network traffic, it is useful.
165  * Increasing this value could have positive effect to throughput,
166  * but it might also increase ticks of a bge ISR stick on CPU, which might
167  * lead to bad UI interactive experience. So tune this with caution.
168  */
169 static int bge_intr_max_loop = 1;
170 
171 /*
172  * ========== Low-level chip & ring buffer manipulation ==========
173  */
174 
175 #define	BGE_DBG		BGE_DBG_REGS	/* debug flag for this code	*/
176 
177 
178 /*
179  * Config space read-modify-write routines
180  */
181 
182 #if	BGE_CFG_IO8
183 
184 /*
185  * 8- and 16-bit set/clr operations are not used; all the config registers
186  * that we need to do bit-twiddling on are 32 bits wide.  I'll leave the
187  * code here, though, in case we ever find that we do want it after all ...
188  */
189 
190 static void bge_cfg_set8(bge_t *bgep, bge_regno_t regno, uint8_t bits);
191 #pragma	inline(bge_cfg_set8)
192 
193 static void
194 bge_cfg_set8(bge_t *bgep, bge_regno_t regno, uint8_t bits)
195 {
196 	uint8_t regval;
197 
198 	BGE_TRACE(("bge_cfg_set8($%p, 0x%lx, 0x%x)",
199 		(void *)bgep, regno, bits));
200 
201 	regval = pci_config_get8(bgep->cfg_handle, regno);
202 
203 	BGE_DEBUG(("bge_cfg_set8($%p, 0x%lx, 0x%x): 0x%x => 0x%x",
204 		(void *)bgep, regno, bits, regval, regval | bits));
205 
206 	regval |= bits;
207 	pci_config_put8(bgep->cfg_handle, regno, regval);
208 }
209 
210 static void bge_cfg_clr8(bge_t *bgep, bge_regno_t regno, uint8_t bits);
211 #pragma	inline(bge_cfg_clr8)
212 
213 static void
214 bge_cfg_clr8(bge_t *bgep, bge_regno_t regno, uint8_t bits)
215 {
216 	uint8_t regval;
217 
218 	BGE_TRACE(("bge_cfg_clr8($%p, 0x%lx, 0x%x)",
219 		(void *)bgep, regno, bits));
220 
221 	regval = pci_config_get8(bgep->cfg_handle, regno);
222 
223 	BGE_DEBUG(("bge_cfg_clr8($%p, 0x%lx, 0x%x): 0x%x => 0x%x",
224 		(void *)bgep, regno, bits, regval, regval & ~bits));
225 
226 	regval &= ~bits;
227 	pci_config_put8(bgep->cfg_handle, regno, regval);
228 }
229 
230 static void bge_cfg_set16(bge_t *bgep, bge_regno_t regno, uint16_t bits);
231 #pragma	inline(bge_cfg_set16)
232 
233 static void
234 bge_cfg_set16(bge_t *bgep, bge_regno_t regno, uint16_t bits)
235 {
236 	uint16_t regval;
237 
238 	BGE_TRACE(("bge_cfg_set16($%p, 0x%lx, 0x%x)",
239 		(void *)bgep, regno, bits));
240 
241 	regval = pci_config_get16(bgep->cfg_handle, regno);
242 
243 	BGE_DEBUG(("bge_cfg_set16($%p, 0x%lx, 0x%x): 0x%x => 0x%x",
244 		(void *)bgep, regno, bits, regval, regval | bits));
245 
246 	regval |= bits;
247 	pci_config_put16(bgep->cfg_handle, regno, regval);
248 }
249 
250 static void bge_cfg_clr16(bge_t *bgep, bge_regno_t regno, uint16_t bits);
251 #pragma	inline(bge_cfg_clr16)
252 
253 static void
254 bge_cfg_clr16(bge_t *bgep, bge_regno_t regno, uint16_t bits)
255 {
256 	uint16_t regval;
257 
258 	BGE_TRACE(("bge_cfg_clr16($%p, 0x%lx, 0x%x)",
259 		(void *)bgep, regno, bits));
260 
261 	regval = pci_config_get16(bgep->cfg_handle, regno);
262 
263 	BGE_DEBUG(("bge_cfg_clr16($%p, 0x%lx, 0x%x): 0x%x => 0x%x",
264 		(void *)bgep, regno, bits, regval, regval & ~bits));
265 
266 	regval &= ~bits;
267 	pci_config_put16(bgep->cfg_handle, regno, regval);
268 }
269 
270 #endif	/* BGE_CFG_IO8 */
271 
272 static void bge_cfg_set32(bge_t *bgep, bge_regno_t regno, uint32_t bits);
273 #pragma	inline(bge_cfg_set32)
274 
275 static void
276 bge_cfg_set32(bge_t *bgep, bge_regno_t regno, uint32_t bits)
277 {
278 	uint32_t regval;
279 
280 	BGE_TRACE(("bge_cfg_set32($%p, 0x%lx, 0x%x)",
281 		(void *)bgep, regno, bits));
282 
283 	regval = pci_config_get32(bgep->cfg_handle, regno);
284 
285 	BGE_DEBUG(("bge_cfg_set32($%p, 0x%lx, 0x%x): 0x%x => 0x%x",
286 		(void *)bgep, regno, bits, regval, regval | bits));
287 
288 	regval |= bits;
289 	pci_config_put32(bgep->cfg_handle, regno, regval);
290 }
291 
292 static void bge_cfg_clr32(bge_t *bgep, bge_regno_t regno, uint32_t bits);
293 #pragma	inline(bge_cfg_clr32)
294 
295 static void
296 bge_cfg_clr32(bge_t *bgep, bge_regno_t regno, uint32_t bits)
297 {
298 	uint32_t regval;
299 
300 	BGE_TRACE(("bge_cfg_clr32($%p, 0x%lx, 0x%x)",
301 		(void *)bgep, regno, bits));
302 
303 	regval = pci_config_get32(bgep->cfg_handle, regno);
304 
305 	BGE_DEBUG(("bge_cfg_clr32($%p, 0x%lx, 0x%x): 0x%x => 0x%x",
306 		(void *)bgep, regno, bits, regval, regval & ~bits));
307 
308 	regval &= ~bits;
309 	pci_config_put32(bgep->cfg_handle, regno, regval);
310 }
311 
312 #if	BGE_IND_IO32
313 
314 /*
315  * Indirect access to registers & RISC scratchpads, using config space
316  * accesses only.
317  *
318  * This isn't currently used, but someday we might want to use it for
319  * restoring the Subsystem Device/Vendor registers (which aren't directly
320  * writable in Config Space), or for downloading firmware into the RISCs
321  *
322  * In any case there are endian issues to be resolved before this code is
323  * enabled; the bizarre way that bytes get twisted by this chip AND by
324  * the PCI bridge in SPARC systems mean that we shouldn't enable it until
325  * it's been thoroughly tested for all access sizes on all supported
326  * architectures (SPARC *and* x86!).
327  */
328 uint32_t bge_ind_get32(bge_t *bgep, bge_regno_t regno);
329 #pragma	inline(bge_ind_get32)
330 
331 uint32_t
332 bge_ind_get32(bge_t *bgep, bge_regno_t regno)
333 {
334 	uint32_t val;
335 
336 	BGE_TRACE(("bge_ind_get32($%p, 0x%lx)", (void *)bgep, regno));
337 
338 	pci_config_put32(bgep->cfg_handle, PCI_CONF_BGE_RIAAR, regno);
339 	val = pci_config_get32(bgep->cfg_handle, PCI_CONF_BGE_RIADR);
340 
341 	BGE_DEBUG(("bge_ind_get32($%p, 0x%lx) => 0x%x",
342 		(void *)bgep, regno, val));
343 
344 	val = LE_32(val);
345 
346 	return (val);
347 }
348 
349 void bge_ind_put32(bge_t *bgep, bge_regno_t regno, uint32_t val);
350 #pragma	inline(bge_ind_put32)
351 
352 void
353 bge_ind_put32(bge_t *bgep, bge_regno_t regno, uint32_t val)
354 {
355 	BGE_TRACE(("bge_ind_put32($%p, 0x%lx, 0x%x)",
356 		(void *)bgep, regno, val));
357 
358 	val = LE_32(val);
359 	pci_config_put32(bgep->cfg_handle, PCI_CONF_BGE_RIAAR, regno);
360 	pci_config_put32(bgep->cfg_handle, PCI_CONF_BGE_RIADR, val);
361 }
362 
363 #endif	/* BGE_IND_IO32 */
364 
365 #if	BGE_DEBUGGING
366 
367 static void bge_pci_check(bge_t *bgep);
368 #pragma	no_inline(bge_pci_check)
369 
370 static void
371 bge_pci_check(bge_t *bgep)
372 {
373 	uint16_t pcistatus;
374 
375 	pcistatus = pci_config_get16(bgep->cfg_handle, PCI_CONF_STAT);
376 	if ((pcistatus & (PCI_STAT_R_MAST_AB | PCI_STAT_R_TARG_AB)) != 0)
377 		BGE_DEBUG(("bge_pci_check($%p): PCI status 0x%x",
378 			(void *)bgep, pcistatus));
379 }
380 
381 #endif	/* BGE_DEBUGGING */
382 
383 /*
384  * Perform first-stage chip (re-)initialisation, using only config-space
385  * accesses:
386  *
387  * + Read the vendor/device/revision/subsystem/cache-line-size registers,
388  *   returning the data in the structure pointed to by <idp>.
389  * + Configure the target-mode endianness (swap) options.
390  * + Disable interrupts and enable Memory Space accesses.
391  * + Enable or disable Bus Mastering according to the <enable_dma> flag.
392  *
393  * This sequence is adapted from Broadcom document 570X-PG102-R,
394  * page 102, steps 1-3, 6-8 and 11-13.  The omitted parts of the sequence
395  * are 4 and 5 (Reset Core and wait) which are handled elsewhere.
396  *
397  * This function MUST be called before any non-config-space accesses
398  * are made; on this first call <enable_dma> is B_FALSE, and it
399  * effectively performs steps 3-1(!) of the initialisation sequence
400  * (the rest are not required but should be harmless).
401  *
402  * It MUST also be called after a chip reset, as this disables
403  * Memory Space cycles!  In this case, <enable_dma> is B_TRUE, and
404  * it is effectively performing steps 6-8.
405  */
406 void bge_chip_cfg_init(bge_t *bgep, chip_id_t *cidp, boolean_t enable_dma);
407 #pragma	no_inline(bge_chip_cfg_init)
408 
409 void
410 bge_chip_cfg_init(bge_t *bgep, chip_id_t *cidp, boolean_t enable_dma)
411 {
412 	ddi_acc_handle_t handle;
413 	uint16_t command;
414 	uint32_t mhcr;
415 	uint16_t value16;
416 	int i;
417 
418 	BGE_TRACE(("bge_chip_cfg_init($%p, $%p, %d)",
419 		(void *)bgep, (void *)cidp, enable_dma));
420 
421 	/*
422 	 * Step 3: save PCI cache line size and subsystem vendor ID
423 	 *
424 	 * Read all the config-space registers that characterise the
425 	 * chip, specifically vendor/device/revision/subsystem vendor
426 	 * and subsystem device id.  We expect (but don't check) that
427 	 * (vendor == VENDOR_ID_BROADCOM) && (device == DEVICE_ID_5704)
428 	 *
429 	 * Also save all bus-transaction related registers (cache-line
430 	 * size, bus-grant/latency parameters, etc).  Some of these are
431 	 * cleared by reset, so we'll have to restore them later.  This
432 	 * comes from the Broadcom document 570X-PG102-R ...
433 	 *
434 	 * Note: Broadcom document 570X-PG102-R seems to be in error
435 	 * here w.r.t. the offsets of the Subsystem Vendor ID and
436 	 * Subsystem (Device) ID registers, which are the opposite way
437 	 * round according to the PCI standard.  For good measure, we
438 	 * save/restore both anyway.
439 	 */
440 	handle = bgep->cfg_handle;
441 
442 	mhcr = pci_config_get32(handle, PCI_CONF_BGE_MHCR);
443 	cidp->asic_rev = mhcr & MHCR_CHIP_REV_MASK;
444 	cidp->businfo = pci_config_get32(handle, PCI_CONF_BGE_PCISTATE);
445 	cidp->command = pci_config_get16(handle, PCI_CONF_COMM);
446 
447 	cidp->vendor = pci_config_get16(handle, PCI_CONF_VENID);
448 	cidp->device = pci_config_get16(handle, PCI_CONF_DEVID);
449 	cidp->subven = pci_config_get16(handle, PCI_CONF_SUBVENID);
450 	cidp->subdev = pci_config_get16(handle, PCI_CONF_SUBSYSID);
451 	cidp->revision = pci_config_get8(handle, PCI_CONF_REVID);
452 	cidp->clsize = pci_config_get8(handle, PCI_CONF_CACHE_LINESZ);
453 	cidp->latency = pci_config_get8(handle, PCI_CONF_LATENCY_TIMER);
454 
455 	BGE_DEBUG(("bge_chip_cfg_init: %s bus is %s and %s; #INTA is %s",
456 		cidp->businfo & PCISTATE_BUS_IS_PCI ? "PCI" : "PCI-X",
457 		cidp->businfo & PCISTATE_BUS_IS_FAST ? "fast" : "slow",
458 		cidp->businfo & PCISTATE_BUS_IS_32_BIT ? "narrow" : "wide",
459 		cidp->businfo & PCISTATE_INTA_STATE ? "high" : "low"));
460 	BGE_DEBUG(("bge_chip_cfg_init: vendor 0x%x device 0x%x revision 0x%x",
461 		cidp->vendor, cidp->device, cidp->revision));
462 	BGE_DEBUG(("bge_chip_cfg_init: subven 0x%x subdev 0x%x asic_rev 0x%x",
463 		cidp->subven, cidp->subdev, cidp->asic_rev));
464 	BGE_DEBUG(("bge_chip_cfg_init: clsize %d latency %d command 0x%x",
465 		cidp->clsize, cidp->latency, cidp->command));
466 
467 	/*
468 	 * Step 2 (also step 6): disable and clear interrupts.
469 	 * Steps 11-13: configure PIO endianness options, and enable
470 	 * indirect register access.  We'll also select any other
471 	 * options controlled by the MHCR (e.g. tagged status, mask
472 	 * interrupt mode) at this stage ...
473 	 *
474 	 * Note: internally, the chip is 64-bit and BIG-endian, but
475 	 * since it talks to the host over a (LITTLE-endian) PCI bus,
476 	 * it normally swaps bytes around at the PCI interface.
477 	 * However, the PCI host bridge on SPARC systems normally
478 	 * swaps the byte lanes around too, since SPARCs are also
479 	 * BIG-endian.  So it turns out that on SPARC, the right
480 	 * option is to tell the chip to swap (and the host bridge
481 	 * will swap back again), whereas on x86 we ask the chip
482 	 * NOT to swap, so the natural little-endianness of the
483 	 * PCI bus is assumed.  Then the only thing that doesn't
484 	 * automatically work right is access to an 8-byte register
485 	 * by a little-endian host; but we don't want to set the
486 	 * MHCR_ENABLE_REGISTER_WORD_SWAP bit because then 4-byte
487 	 * accesses don't go where expected ;-(  So we live with
488 	 * that, and perform word-swaps in software in the few cases
489 	 * where a chip register is defined as an 8-byte value --
490 	 * see the code below for details ...
491 	 *
492 	 * Note: the meaning of the 'MASK_INTERRUPT_MODE' bit isn't
493 	 * very clear in the register description in the PRM, but
494 	 * Broadcom document 570X-PG104-R page 248 explains a little
495 	 * more (under "Broadcom Mask Mode").  The bit changes the way
496 	 * the MASK_PCI_INT_OUTPUT bit works: with MASK_INTERRUPT_MODE
497 	 * clear, the chip interprets MASK_PCI_INT_OUTPUT in the same
498 	 * way as the 5700 did, which isn't very convenient.  Setting
499 	 * the MASK_INTERRUPT_MODE bit makes the MASK_PCI_INT_OUTPUT
500 	 * bit do just what its name says -- MASK the PCI #INTA output
501 	 * (i.e. deassert the signal at the pin) leaving all internal
502 	 * state unchanged.  This is much more convenient for our
503 	 * interrupt handler, so we set MASK_INTERRUPT_MODE here.
504 	 *
505 	 * Note: the inconvenient semantics of the interrupt mailbox
506 	 * (nonzero disables and acknowledges/clears the interrupt,
507 	 * zero enables AND CLEARS it) would make race conditions
508 	 * likely in the interrupt handler:
509 	 *
510 	 * (1)	acknowledge & disable interrupts
511 	 * (2)	while (more to do)
512 	 * 		process packets
513 	 * (3)	enable interrupts -- also clears pending
514 	 *
515 	 * If the chip received more packets and internally generated
516 	 * an interrupt between the check at (2) and the mbox write
517 	 * at (3), this interrupt would be lost :-(
518 	 *
519 	 * The best way to avoid this is to use TAGGED STATUS mode,
520 	 * where the chip includes a unique tag in each status block
521 	 * update, and the host, when re-enabling interrupts, passes
522 	 * the last tag it saw back to the chip; then the chip can
523 	 * see whether the host is truly up to date, and regenerate
524 	 * its interrupt if not.
525 	 */
526 	mhcr =	MHCR_ENABLE_INDIRECT_ACCESS |
527 		MHCR_ENABLE_TAGGED_STATUS_MODE |
528 		MHCR_MASK_INTERRUPT_MODE |
529 		MHCR_CLEAR_INTERRUPT_INTA;
530 
531 	if (bgep->intr_type == DDI_INTR_TYPE_FIXED)
532 		mhcr |= MHCR_MASK_PCI_INT_OUTPUT;
533 
534 #ifdef	_BIG_ENDIAN
535 	mhcr |= MHCR_ENABLE_ENDIAN_WORD_SWAP | MHCR_ENABLE_ENDIAN_BYTE_SWAP;
536 #endif	/* _BIG_ENDIAN */
537 
538 	pci_config_put32(handle, PCI_CONF_BGE_MHCR, mhcr);
539 
540 #ifdef BGE_IPMI_ASF
541 	bgep->asf_wordswapped = B_FALSE;
542 #endif
543 	/*
544 	 * Step 1 (also step 7): Enable PCI Memory Space accesses
545 	 *			 Disable Memory Write/Invalidate
546 	 *			 Enable or disable Bus Mastering
547 	 *
548 	 * Note that all other bits are taken from the original value saved
549 	 * the first time through here, rather than from the current register
550 	 * value, 'cos that will have been cleared by a soft RESET since.
551 	 * In this way we preserve the OBP/nexus-parent's preferred settings
552 	 * of the parity-error and system-error enable bits across multiple
553 	 * chip RESETs.
554 	 */
555 	command = bgep->chipid.command | PCI_COMM_MAE;
556 	command &= ~(PCI_COMM_ME|PCI_COMM_MEMWR_INVAL);
557 	if (enable_dma)
558 		command |= PCI_COMM_ME;
559 	/*
560 	 * on BCM5714 revision A0, false parity error gets generated
561 	 * due to a logic bug. Provide a workaround by disabling parity
562 	 * error.
563 	 */
564 	if (((cidp->device == DEVICE_ID_5714C) ||
565 	    (cidp->device == DEVICE_ID_5714S)) &&
566 	    (cidp->revision == REVISION_ID_5714_A0)) {
567 		command &= ~PCI_COMM_PARITY_DETECT;
568 	}
569 	pci_config_put16(handle, PCI_CONF_COMM, command);
570 
571 	/*
572 	 * On some PCI-E device, there were instances when
573 	 * the device was still link training.
574 	 */
575 	if (bgep->chipid.pci_type == BGE_PCI_E) {
576 		i = 0;
577 		value16 = pci_config_get16(handle, PCI_CONF_COMM);
578 		while ((value16 != command) && (i < 100)) {
579 			drv_usecwait(200);
580 			value16 = pci_config_get16(handle, PCI_CONF_COMM);
581 			++i;
582 		}
583 	}
584 
585 	/*
586 	 * Clear any remaining error status bits
587 	 */
588 	pci_config_put16(handle, PCI_CONF_STAT, ~0);
589 
590 	/*
591 	 * Do following if and only if the device is NOT BCM5714C OR
592 	 * BCM5715C
593 	 */
594 	if (!((cidp->device == DEVICE_ID_5714C) ||
595 		(cidp->device == DEVICE_ID_5715C))) {
596 		/*
597 		 * Make sure these indirect-access registers are sane
598 		 * rather than random after power-up or reset
599 		 */
600 		pci_config_put32(handle, PCI_CONF_BGE_RIAAR, 0);
601 		pci_config_put32(handle, PCI_CONF_BGE_MWBAR, 0);
602 	}
603 	/*
604 	 * Step 8: Disable PCI-X/PCI-E Relaxed Ordering
605 	 */
606 	bge_cfg_clr16(bgep, PCIX_CONF_COMM, PCIX_COMM_RELAXED);
607 
608 	if (cidp->pci_type == BGE_PCI_E)
609 		bge_cfg_clr16(bgep, PCI_CONF_DEV_CTRL,
610 				DEV_CTRL_NO_SNOOP | DEV_CTRL_RELAXED);
611 }
612 
613 #ifdef __amd64
614 /*
615  * Distinguish CPU types
616  *
617  * These use to  distinguish AMD64 or Intel EM64T of CPU running mode.
618  * If CPU runs on Intel EM64T mode,the 64bit operation cannot works fine
619  * for PCI-Express based network interface card. This is the work-around
620  * for those nics.
621  */
622 static boolean_t bge_get_em64t_type(void);
623 #pragma	inline(bge_get_em64t_type)
624 
625 static boolean_t
626 bge_get_em64t_type(void)
627 {
628 
629 	return (x86_vendor == X86_VENDOR_Intel);
630 }
631 #endif
632 
633 /*
634  * Operating register get/set access routines
635  */
636 
637 uint32_t bge_reg_get32(bge_t *bgep, bge_regno_t regno);
638 #pragma	inline(bge_reg_get32)
639 
640 uint32_t
641 bge_reg_get32(bge_t *bgep, bge_regno_t regno)
642 {
643 	BGE_TRACE(("bge_reg_get32($%p, 0x%lx)",
644 		(void *)bgep, regno));
645 
646 	return (ddi_get32(bgep->io_handle, PIO_ADDR(bgep, regno)));
647 }
648 
649 void bge_reg_put32(bge_t *bgep, bge_regno_t regno, uint32_t data);
650 #pragma	inline(bge_reg_put32)
651 
652 void
653 bge_reg_put32(bge_t *bgep, bge_regno_t regno, uint32_t data)
654 {
655 	BGE_TRACE(("bge_reg_put32($%p, 0x%lx, 0x%x)",
656 		(void *)bgep, regno, data));
657 
658 	ddi_put32(bgep->io_handle, PIO_ADDR(bgep, regno), data);
659 	BGE_PCICHK(bgep);
660 }
661 
662 void bge_reg_set32(bge_t *bgep, bge_regno_t regno, uint32_t bits);
663 #pragma	inline(bge_reg_set32)
664 
665 void
666 bge_reg_set32(bge_t *bgep, bge_regno_t regno, uint32_t bits)
667 {
668 	uint32_t regval;
669 
670 	BGE_TRACE(("bge_reg_set32($%p, 0x%lx, 0x%x)",
671 		(void *)bgep, regno, bits));
672 
673 	regval = bge_reg_get32(bgep, regno);
674 	regval |= bits;
675 	bge_reg_put32(bgep, regno, regval);
676 }
677 
678 void bge_reg_clr32(bge_t *bgep, bge_regno_t regno, uint32_t bits);
679 #pragma	inline(bge_reg_clr32)
680 
681 void
682 bge_reg_clr32(bge_t *bgep, bge_regno_t regno, uint32_t bits)
683 {
684 	uint32_t regval;
685 
686 	BGE_TRACE(("bge_reg_clr32($%p, 0x%lx, 0x%x)",
687 		(void *)bgep, regno, bits));
688 
689 	regval = bge_reg_get32(bgep, regno);
690 	regval &= ~bits;
691 	bge_reg_put32(bgep, regno, regval);
692 }
693 
694 static uint64_t bge_reg_get64(bge_t *bgep, bge_regno_t regno);
695 #pragma	inline(bge_reg_get64)
696 
697 static uint64_t
698 bge_reg_get64(bge_t *bgep, bge_regno_t regno)
699 {
700 	uint64_t regval;
701 
702 #ifdef	__amd64
703 	if (bge_get_em64t_type()) {
704 		regval = ddi_get32(bgep->io_handle, PIO_ADDR(bgep, regno + 4));
705 		regval <<= 32;
706 		regval |= ddi_get32(bgep->io_handle, PIO_ADDR(bgep, regno));
707 	} else {
708 		regval = ddi_get64(bgep->io_handle, PIO_ADDR(bgep, regno));
709 	}
710 #else
711 	regval = ddi_get64(bgep->io_handle, PIO_ADDR(bgep, regno));
712 #endif
713 
714 #ifdef	_LITTLE_ENDIAN
715 	regval = (regval >> 32) | (regval << 32);
716 #endif	/* _LITTLE_ENDIAN */
717 
718 	BGE_TRACE(("bge_reg_get64($%p, 0x%lx) = 0x%016llx",
719 		(void *)bgep, regno, regval));
720 
721 	return (regval);
722 }
723 
724 static void bge_reg_put64(bge_t *bgep, bge_regno_t regno, uint64_t data);
725 #pragma	inline(bge_reg_put64)
726 
727 static void
728 bge_reg_put64(bge_t *bgep, bge_regno_t regno, uint64_t data)
729 {
730 	BGE_TRACE(("bge_reg_put64($%p, 0x%lx, 0x%016llx)",
731 		(void *)bgep, regno, data));
732 
733 #ifdef	_LITTLE_ENDIAN
734 	data = ((data >> 32) | (data << 32));
735 #endif	/* _LITTLE_ENDIAN */
736 
737 #ifdef	__amd64
738 	if (bge_get_em64t_type()) {
739 		ddi_put32(bgep->io_handle,
740 			PIO_ADDR(bgep, regno), (uint32_t)data);
741 		BGE_PCICHK(bgep);
742 		ddi_put32(bgep->io_handle,
743 			PIO_ADDR(bgep, regno + 4), (uint32_t)(data >> 32));
744 
745 	} else {
746 		ddi_put64(bgep->io_handle, PIO_ADDR(bgep, regno), data);
747 	}
748 #else
749 	ddi_put64(bgep->io_handle, PIO_ADDR(bgep, regno), data);
750 #endif
751 
752 	BGE_PCICHK(bgep);
753 }
754 
755 /*
756  * The DDI doesn't provide get/put functions for 128 bit data
757  * so we put RCBs out as two 64-bit chunks instead.
758  */
759 static void bge_reg_putrcb(bge_t *bgep, bge_regno_t addr, bge_rcb_t *rcbp);
760 #pragma	inline(bge_reg_putrcb)
761 
762 static void
763 bge_reg_putrcb(bge_t *bgep, bge_regno_t addr, bge_rcb_t *rcbp)
764 {
765 	uint64_t *p;
766 
767 	BGE_TRACE(("bge_reg_putrcb($%p, 0x%lx, 0x%016llx:%04x:%04x:%08x)",
768 		(void *)bgep, addr, rcbp->host_ring_addr,
769 		rcbp->max_len, rcbp->flags, rcbp->nic_ring_addr));
770 
771 	ASSERT((addr % sizeof (*rcbp)) == 0);
772 
773 	p = (void *)rcbp;
774 	bge_reg_put64(bgep, addr, *p++);
775 	bge_reg_put64(bgep, addr+8, *p);
776 }
777 
778 void bge_mbx_put(bge_t *bgep, bge_regno_t regno, uint64_t data);
779 #pragma	inline(bge_mbx_put)
780 
781 void
782 bge_mbx_put(bge_t *bgep, bge_regno_t regno, uint64_t data)
783 {
784 	BGE_TRACE(("bge_mbx_put($%p, 0x%lx, 0x%016llx)",
785 		(void *)bgep, regno, data));
786 
787 	/*
788 	 * Mailbox registers are nominally 64 bits on the 5701, but
789 	 * the MSW isn't used.  On the 5703, they're only 32 bits
790 	 * anyway.  So here we just write the lower(!) 32 bits -
791 	 * remembering that the chip is big-endian, even though the
792 	 * PCI bus is little-endian ...
793 	 */
794 #ifdef	_BIG_ENDIAN
795 	ddi_put32(bgep->io_handle, PIO_ADDR(bgep, regno+4), (uint32_t)data);
796 #else
797 	ddi_put32(bgep->io_handle, PIO_ADDR(bgep, regno), (uint32_t)data);
798 #endif	/* _BIG_ENDIAN */
799 	BGE_PCICHK(bgep);
800 }
801 
802 #if	BGE_DEBUGGING
803 
804 void bge_led_mark(bge_t *bgep);
805 #pragma	no_inline(bge_led_mark)
806 
807 void
808 bge_led_mark(bge_t *bgep)
809 {
810 	uint32_t led_ctrl = LED_CONTROL_OVERRIDE_LINK |
811 			    LED_CONTROL_1000MBPS_LED |
812 			    LED_CONTROL_100MBPS_LED |
813 			    LED_CONTROL_10MBPS_LED;
814 
815 	/*
816 	 * Blink all three LINK LEDs on simultaneously, then all off,
817 	 * then restore to automatic hardware control.  This is used
818 	 * in laboratory testing to trigger a logic analyser or scope.
819 	 */
820 	bge_reg_set32(bgep, ETHERNET_MAC_LED_CONTROL_REG, led_ctrl);
821 	led_ctrl ^= LED_CONTROL_OVERRIDE_LINK;
822 	bge_reg_clr32(bgep, ETHERNET_MAC_LED_CONTROL_REG, led_ctrl);
823 	led_ctrl = LED_CONTROL_OVERRIDE_LINK;
824 	bge_reg_clr32(bgep, ETHERNET_MAC_LED_CONTROL_REG, led_ctrl);
825 }
826 
827 #endif	/* BGE_DEBUGGING */
828 
829 /*
830  * NIC on-chip memory access routines
831  *
832  * Only 32K of NIC memory is visible at a time, controlled by the
833  * Memory Window Base Address Register (in PCI config space).  Once
834  * this is set, the 32K region of NIC-local memory that it refers
835  * to can be directly addressed in the upper 32K of the 64K of PCI
836  * memory space used for the device.
837  */
838 
839 static void bge_nic_setwin(bge_t *bgep, bge_regno_t base);
840 #pragma	inline(bge_nic_setwin)
841 
842 static void
843 bge_nic_setwin(bge_t *bgep, bge_regno_t base)
844 {
845 	chip_id_t *cidp;
846 
847 	BGE_TRACE(("bge_nic_setwin($%p, 0x%lx)",
848 		(void *)bgep, base));
849 
850 	ASSERT((base & MWBAR_GRANULE_MASK) == 0);
851 
852 	/*
853 	 * Don't do repeated zero data writes,
854 	 * if the device is BCM5714C/15C.
855 	 */
856 	cidp = &bgep->chipid;
857 	if ((cidp->device == DEVICE_ID_5714C) ||
858 		(cidp->device == DEVICE_ID_5715C)) {
859 		if (bgep->lastWriteZeroData && (base == (bge_regno_t)0))
860 			return;
861 		/* Adjust lastWriteZeroData */
862 		bgep->lastWriteZeroData = ((base == (bge_regno_t)0) ?
863 			B_TRUE : B_FALSE);
864 	}
865 	pci_config_put32(bgep->cfg_handle, PCI_CONF_BGE_MWBAR, base);
866 }
867 
868 static uint32_t bge_nic_get32(bge_t *bgep, bge_regno_t addr);
869 #pragma	inline(bge_nic_get32)
870 
871 static uint32_t
872 bge_nic_get32(bge_t *bgep, bge_regno_t addr)
873 {
874 	uint32_t data;
875 
876 #if defined(BGE_IPMI_ASF) && !defined(__sparc)
877 	if (bgep->asf_enabled && !bgep->asf_wordswapped) {
878 		/* workaround for word swap error */
879 		if (addr & 4)
880 			addr = addr - 4;
881 		else
882 			addr = addr + 4;
883 	}
884 #endif
885 
886 #ifdef __sparc
887 	data = bge_nic_read32(bgep, addr);
888 #else
889 	bge_nic_setwin(bgep, addr & ~MWBAR_GRANULE_MASK);
890 	addr &= MWBAR_GRANULE_MASK;
891 	addr += NIC_MEM_WINDOW_OFFSET;
892 
893 	data = ddi_get32(bgep->io_handle, PIO_ADDR(bgep, addr));
894 #endif
895 
896 	BGE_TRACE(("bge_nic_get32($%p, 0x%lx) = 0x%08x",
897 		(void *)bgep, addr, data));
898 
899 	return (data);
900 }
901 
902 void bge_nic_put32(bge_t *bgep, bge_regno_t addr, uint32_t data);
903 #pragma inline(bge_nic_put32)
904 
905 void
906 bge_nic_put32(bge_t *bgep, bge_regno_t addr, uint32_t data)
907 {
908 	BGE_TRACE(("bge_nic_put32($%p, 0x%lx, 0x%08x)",
909 		(void *)bgep, addr, data));
910 
911 #if defined(BGE_IPMI_ASF) && !defined(__sparc)
912 	if (bgep->asf_enabled && !bgep->asf_wordswapped) {
913 		/* workaround for word swap error */
914 		if (addr & 4)
915 			addr = addr - 4;
916 		else
917 			addr = addr + 4;
918 	}
919 #endif
920 
921 #ifdef __sparc
922 	pci_config_put32(bgep->cfg_handle, PCI_CONF_BGE_MWBAR, addr);
923 	data = LE_32(data);
924 	pci_config_put32(bgep->cfg_handle, PCI_CONF_BGE_MWDAR, data);
925 	pci_config_put32(bgep->cfg_handle, PCI_CONF_BGE_MWBAR, 0);
926 #else
927 	bge_nic_setwin(bgep, addr & ~MWBAR_GRANULE_MASK);
928 	addr &= MWBAR_GRANULE_MASK;
929 	addr += NIC_MEM_WINDOW_OFFSET;
930 	ddi_put32(bgep->io_handle, PIO_ADDR(bgep, addr), data);
931 	BGE_PCICHK(bgep);
932 #endif
933 }
934 
935 static uint64_t bge_nic_get64(bge_t *bgep, bge_regno_t addr);
936 #pragma	inline(bge_nic_get64)
937 
938 static uint64_t
939 bge_nic_get64(bge_t *bgep, bge_regno_t addr)
940 {
941 	uint64_t data;
942 
943 	bge_nic_setwin(bgep, addr & ~MWBAR_GRANULE_MASK);
944 	addr &= MWBAR_GRANULE_MASK;
945 	addr += NIC_MEM_WINDOW_OFFSET;
946 
947 #ifdef	__amd64
948 		if (bge_get_em64t_type()) {
949 			data = ddi_get32(bgep->io_handle, PIO_ADDR(bgep, addr));
950 			data <<= 32;
951 			data |= ddi_get32(bgep->io_handle,
952 				PIO_ADDR(bgep, addr + 4));
953 		} else {
954 			data = ddi_get64(bgep->io_handle, PIO_ADDR(bgep, addr));
955 		}
956 #else
957 		data = ddi_get64(bgep->io_handle, PIO_ADDR(bgep, addr));
958 #endif
959 
960 	BGE_TRACE(("bge_nic_get64($%p, 0x%lx) = 0x%016llx",
961 		(void *)bgep, addr, data));
962 
963 	return (data);
964 }
965 
966 static void bge_nic_put64(bge_t *bgep, bge_regno_t addr, uint64_t data);
967 #pragma	inline(bge_nic_put64)
968 
969 static void
970 bge_nic_put64(bge_t *bgep, bge_regno_t addr, uint64_t data)
971 {
972 	BGE_TRACE(("bge_nic_put64($%p, 0x%lx, 0x%016llx)",
973 		(void *)bgep, addr, data));
974 
975 	bge_nic_setwin(bgep, addr & ~MWBAR_GRANULE_MASK);
976 	addr &= MWBAR_GRANULE_MASK;
977 	addr += NIC_MEM_WINDOW_OFFSET;
978 
979 #ifdef	__amd64
980 	if (bge_get_em64t_type()) {
981 		ddi_put32(bgep->io_handle,
982 			PIO_ADDR(bgep, addr), (uint32_t)data);
983 		BGE_PCICHK(bgep);
984 		ddi_put32(bgep->io_handle,
985 			PIO_ADDR(bgep, addr + 4), (uint32_t)(data >> 32));
986 	} else {
987 		ddi_put64(bgep->io_handle, PIO_ADDR(bgep, addr), data);
988 	}
989 #else
990 	ddi_put64(bgep->io_handle, PIO_ADDR(bgep, addr), data);
991 #endif
992 
993 	BGE_PCICHK(bgep);
994 }
995 
996 /*
997  * The DDI doesn't provide get/put functions for 128 bit data
998  * so we put RCBs out as two 64-bit chunks instead.
999  */
1000 static void bge_nic_putrcb(bge_t *bgep, bge_regno_t addr, bge_rcb_t *rcbp);
1001 #pragma	inline(bge_nic_putrcb)
1002 
1003 static void
1004 bge_nic_putrcb(bge_t *bgep, bge_regno_t addr, bge_rcb_t *rcbp)
1005 {
1006 	uint64_t *p;
1007 
1008 	BGE_TRACE(("bge_nic_putrcb($%p, 0x%lx, 0x%016llx:%04x:%04x:%08x)",
1009 		(void *)bgep, addr, rcbp->host_ring_addr,
1010 		rcbp->max_len, rcbp->flags, rcbp->nic_ring_addr));
1011 
1012 	ASSERT((addr % sizeof (*rcbp)) == 0);
1013 
1014 	bge_nic_setwin(bgep, addr & ~MWBAR_GRANULE_MASK);
1015 	addr &= MWBAR_GRANULE_MASK;
1016 	addr += NIC_MEM_WINDOW_OFFSET;
1017 
1018 	p = (void *)rcbp;
1019 #ifdef	__amd64
1020 	if (bge_get_em64t_type()) {
1021 		ddi_put32(bgep->io_handle, PIO_ADDR(bgep, addr),
1022 			(uint32_t)(*p));
1023 		ddi_put32(bgep->io_handle, PIO_ADDR(bgep, addr + 4),
1024 			(uint32_t)(*p >> 32));
1025 		ddi_put32(bgep->io_handle, PIO_ADDR(bgep, addr + 8),
1026 			(uint32_t)(*(p + 1)));
1027 		ddi_put32(bgep->io_handle, PIO_ADDR(bgep, addr + 12),
1028 			(uint32_t)(*p >> 32));
1029 
1030 	} else {
1031 		ddi_put64(bgep->io_handle, PIO_ADDR(bgep, addr), *p++);
1032 		ddi_put64(bgep->io_handle, PIO_ADDR(bgep, addr+8), *p);
1033 	}
1034 #else
1035 	ddi_put64(bgep->io_handle, PIO_ADDR(bgep, addr), *p++);
1036 	ddi_put64(bgep->io_handle, PIO_ADDR(bgep, addr + 8), *p);
1037 #endif
1038 
1039 	BGE_PCICHK(bgep);
1040 }
1041 
1042 static void bge_nic_zero(bge_t *bgep, bge_regno_t addr, uint32_t nbytes);
1043 #pragma	inline(bge_nic_zero)
1044 
1045 static void
1046 bge_nic_zero(bge_t *bgep, bge_regno_t addr, uint32_t nbytes)
1047 {
1048 	BGE_TRACE(("bge_nic_zero($%p, 0x%lx, 0x%x)",
1049 		(void *)bgep, addr, nbytes));
1050 
1051 	ASSERT((addr & ~MWBAR_GRANULE_MASK) ==
1052 		((addr+nbytes) & ~MWBAR_GRANULE_MASK));
1053 
1054 	bge_nic_setwin(bgep, addr & ~MWBAR_GRANULE_MASK);
1055 	addr &= MWBAR_GRANULE_MASK;
1056 	addr += NIC_MEM_WINDOW_OFFSET;
1057 
1058 	(void) ddi_device_zero(bgep->io_handle, PIO_ADDR(bgep, addr),
1059 		nbytes, 1, DDI_DATA_SZ08_ACC);
1060 	BGE_PCICHK(bgep);
1061 }
1062 
1063 /*
1064  * MII (PHY) register get/set access routines
1065  *
1066  * These use the chip's MII auto-access method, controlled by the
1067  * MII Communication register at 0x044c, so the CPU doesn't have
1068  * to fiddle with the individual bits.
1069  */
1070 
1071 #undef	BGE_DBG
1072 #define	BGE_DBG		BGE_DBG_MII	/* debug flag for this code	*/
1073 
1074 static uint16_t bge_mii_access(bge_t *bgep, bge_regno_t regno,
1075 				uint16_t data, uint32_t cmd);
1076 #pragma	no_inline(bge_mii_access)
1077 
1078 static uint16_t
1079 bge_mii_access(bge_t *bgep, bge_regno_t regno, uint16_t data, uint32_t cmd)
1080 {
1081 	uint32_t timeout;
1082 	uint32_t regval1;
1083 	uint32_t regval2;
1084 
1085 	BGE_TRACE(("bge_mii_access($%p, 0x%lx, 0x%x, 0x%x)",
1086 		(void *)bgep, regno, data, cmd));
1087 
1088 	ASSERT(mutex_owned(bgep->genlock));
1089 
1090 	/*
1091 	 * Assemble the command ...
1092 	 */
1093 	cmd |= data << MI_COMMS_DATA_SHIFT;
1094 	cmd |= regno << MI_COMMS_REGISTER_SHIFT;
1095 	cmd |= bgep->phy_mii_addr << MI_COMMS_ADDRESS_SHIFT;
1096 	cmd |= MI_COMMS_START;
1097 
1098 	/*
1099 	 * Wait for any command already in progress ...
1100 	 *
1101 	 * Note: this *shouldn't* ever find that there is a command
1102 	 * in progress, because we already hold the <genlock> mutex.
1103 	 * Nonetheless, we have sometimes seen the MI_COMMS_START
1104 	 * bit set here -- it seems that the chip can initiate MII
1105 	 * accesses internally, even with polling OFF.
1106 	 */
1107 	regval1 = regval2 = bge_reg_get32(bgep, MI_COMMS_REG);
1108 	for (timeout = 100; ; ) {
1109 		if ((regval2 & MI_COMMS_START) == 0) {
1110 			bge_reg_put32(bgep, MI_COMMS_REG, cmd);
1111 			break;
1112 		}
1113 		if (--timeout == 0)
1114 			break;
1115 		drv_usecwait(10);
1116 		regval2 = bge_reg_get32(bgep, MI_COMMS_REG);
1117 	}
1118 
1119 	if (timeout == 0)
1120 		return ((uint16_t)~0u);
1121 
1122 	if (timeout != 100)
1123 		BGE_REPORT((bgep, "bge_mii_access: cmd 0x%x -- "
1124 			"MI_COMMS_START set for %d us; 0x%x->0x%x",
1125 			cmd, 10*(100-timeout), regval1, regval2));
1126 
1127 	regval1 = bge_reg_get32(bgep, MI_COMMS_REG);
1128 	for (timeout = 1000; ; ) {
1129 		if ((regval1 & MI_COMMS_START) == 0)
1130 			break;
1131 		if (--timeout == 0)
1132 			break;
1133 		drv_usecwait(10);
1134 		regval1 = bge_reg_get32(bgep, MI_COMMS_REG);
1135 	}
1136 
1137 	/*
1138 	 * Drop out early if the READ FAILED bit is set -- this chip
1139 	 * could be a 5703/4S, with a SerDes instead of a PHY!
1140 	 */
1141 	if (regval2 & MI_COMMS_READ_FAILED)
1142 		return ((uint16_t)~0u);
1143 
1144 	if (timeout == 0)
1145 		return ((uint16_t)~0u);
1146 
1147 	/*
1148 	 * The PRM says to wait 5us after seeing the START bit clear
1149 	 * and then re-read the register to get the final value of the
1150 	 * data field, in order to avoid a race condition where the
1151 	 * START bit is clear but the data field isn't yet valid.
1152 	 *
1153 	 * Note: we don't actually seem to be encounter this race;
1154 	 * except when the START bit is seen set again (see below),
1155 	 * the data field doesn't change during this 5us interval.
1156 	 */
1157 	drv_usecwait(5);
1158 	regval2 = bge_reg_get32(bgep, MI_COMMS_REG);
1159 
1160 	/*
1161 	 * Unfortunately, when following the PRMs instructions above,
1162 	 * we have occasionally seen the START bit set again(!) in the
1163 	 * value read after the 5us delay. This seems to be due to the
1164 	 * chip autonomously starting another MII access internally.
1165 	 * In such cases, the command/data/etc fields relate to the
1166 	 * internal command, rather than the one that we thought had
1167 	 * just finished.  So in this case, we fall back to returning
1168 	 * the data from the original read that showed START clear.
1169 	 */
1170 	if (regval2 & MI_COMMS_START) {
1171 		BGE_REPORT((bgep, "bge_mii_access: cmd 0x%x -- "
1172 			"MI_COMMS_START set after transaction; 0x%x->0x%x",
1173 			cmd, regval1, regval2));
1174 		regval2 = regval1;
1175 	}
1176 
1177 	if (regval2 & MI_COMMS_START)
1178 		return ((uint16_t)~0u);
1179 
1180 	if (regval2 & MI_COMMS_READ_FAILED)
1181 		return ((uint16_t)~0u);
1182 
1183 	return ((regval2 & MI_COMMS_DATA_MASK) >> MI_COMMS_DATA_SHIFT);
1184 }
1185 
1186 uint16_t bge_mii_get16(bge_t *bgep, bge_regno_t regno);
1187 #pragma	no_inline(bge_mii_get16)
1188 
1189 uint16_t
1190 bge_mii_get16(bge_t *bgep, bge_regno_t regno)
1191 {
1192 	BGE_TRACE(("bge_mii_get16($%p, 0x%lx)",
1193 		(void *)bgep, regno));
1194 
1195 	ASSERT(mutex_owned(bgep->genlock));
1196 
1197 	return (bge_mii_access(bgep, regno, 0, MI_COMMS_COMMAND_READ));
1198 }
1199 
1200 void bge_mii_put16(bge_t *bgep, bge_regno_t regno, uint16_t data);
1201 #pragma	no_inline(bge_mii_put16)
1202 
1203 void
1204 bge_mii_put16(bge_t *bgep, bge_regno_t regno, uint16_t data)
1205 {
1206 	BGE_TRACE(("bge_mii_put16($%p, 0x%lx, 0x%x)",
1207 		(void *)bgep, regno, data));
1208 
1209 	ASSERT(mutex_owned(bgep->genlock));
1210 
1211 	(void) bge_mii_access(bgep, regno, data, MI_COMMS_COMMAND_WRITE);
1212 }
1213 
1214 #undef	BGE_DBG
1215 #define	BGE_DBG		BGE_DBG_SEEPROM	/* debug flag for this code	*/
1216 
1217 #if	BGE_SEE_IO32 || BGE_FLASH_IO32
1218 
1219 /*
1220  * Basic SEEPROM get/set access routine
1221  *
1222  * This uses the chip's SEEPROM auto-access method, controlled by the
1223  * Serial EEPROM Address/Data Registers at 0x6838/683c, so the CPU
1224  * doesn't have to fiddle with the individual bits.
1225  *
1226  * The caller should hold <genlock> and *also* have already acquired
1227  * the right to access the SEEPROM, via bge_nvmem_acquire() above.
1228  *
1229  * Return value:
1230  *	0 on success,
1231  *	ENODATA on access timeout (maybe retryable: device may just be busy)
1232  *	EPROTO on other h/w or s/w errors.
1233  *
1234  * <*dp> is an input to a SEEPROM_ACCESS_WRITE operation, or an output
1235  * from a (successful) SEEPROM_ACCESS_READ.
1236  */
1237 static int bge_seeprom_access(bge_t *bgep, uint32_t cmd, bge_regno_t addr,
1238 				uint32_t *dp);
1239 #pragma	no_inline(bge_seeprom_access)
1240 
1241 static int
1242 bge_seeprom_access(bge_t *bgep, uint32_t cmd, bge_regno_t addr, uint32_t *dp)
1243 {
1244 	uint32_t tries;
1245 	uint32_t regval;
1246 
1247 	ASSERT(mutex_owned(bgep->genlock));
1248 
1249 	/*
1250 	 * On the newer chips that support both SEEPROM & Flash, we need
1251 	 * to specifically enable SEEPROM access (Flash is the default).
1252 	 * On older chips, we don't; SEEPROM is the only NVtype supported,
1253 	 * and the NVM control registers don't exist ...
1254 	 */
1255 	switch (bgep->chipid.nvtype) {
1256 	case BGE_NVTYPE_NONE:
1257 	case BGE_NVTYPE_UNKNOWN:
1258 		_NOTE(NOTREACHED)
1259 	case BGE_NVTYPE_SEEPROM:
1260 		break;
1261 
1262 	case BGE_NVTYPE_LEGACY_SEEPROM:
1263 	case BGE_NVTYPE_UNBUFFERED_FLASH:
1264 	case BGE_NVTYPE_BUFFERED_FLASH:
1265 	default:
1266 		bge_reg_set32(bgep, NVM_CONFIG1_REG,
1267 				NVM_CFG1_LEGACY_SEEPROM_MODE);
1268 		break;
1269 	}
1270 
1271 	/*
1272 	 * Check there's no command in progress.
1273 	 *
1274 	 * Note: this *shouldn't* ever find that there is a command
1275 	 * in progress, because we already hold the <genlock> mutex.
1276 	 * Also, to ensure we don't have a conflict with the chip's
1277 	 * internal firmware or a process accessing the same (shared)
1278 	 * SEEPROM through the other port of a 5704, we've already
1279 	 * been through the "software arbitration" protocol.
1280 	 * So this is just a final consistency check: we shouldn't
1281 	 * see EITHER the START bit (command started but not complete)
1282 	 * OR the COMPLETE bit (command completed but not cleared).
1283 	 */
1284 	regval = bge_reg_get32(bgep, SERIAL_EEPROM_ADDRESS_REG);
1285 	if (regval & SEEPROM_ACCESS_START)
1286 		return (EPROTO);
1287 	if (regval & SEEPROM_ACCESS_COMPLETE)
1288 		return (EPROTO);
1289 
1290 	/*
1291 	 * Assemble the command ...
1292 	 */
1293 	cmd |= addr & SEEPROM_ACCESS_ADDRESS_MASK;
1294 	addr >>= SEEPROM_ACCESS_ADDRESS_SIZE;
1295 	addr <<= SEEPROM_ACCESS_DEVID_SHIFT;
1296 	cmd |= addr & SEEPROM_ACCESS_DEVID_MASK;
1297 	cmd |= SEEPROM_ACCESS_START;
1298 	cmd |= SEEPROM_ACCESS_COMPLETE;
1299 	cmd |= regval & SEEPROM_ACCESS_HALFCLOCK_MASK;
1300 
1301 	bge_reg_put32(bgep, SERIAL_EEPROM_DATA_REG, *dp);
1302 	bge_reg_put32(bgep, SERIAL_EEPROM_ADDRESS_REG, cmd);
1303 
1304 	/*
1305 	 * By observation, a successful access takes ~20us on a 5703/4,
1306 	 * but apparently much longer (up to 1000us) on the obsolescent
1307 	 * BCM5700/BCM5701.  We want to be sure we don't get any false
1308 	 * timeouts here; but OTOH, we don't want a bogus access to lock
1309 	 * out interrupts for longer than necessary. So we'll allow up
1310 	 * to 1000us ...
1311 	 */
1312 	for (tries = 0; tries < 1000; ++tries) {
1313 		regval = bge_reg_get32(bgep, SERIAL_EEPROM_ADDRESS_REG);
1314 		if (regval & SEEPROM_ACCESS_COMPLETE)
1315 			break;
1316 		drv_usecwait(1);
1317 	}
1318 
1319 	if (regval & SEEPROM_ACCESS_COMPLETE) {
1320 		/*
1321 		 * All OK; read the SEEPROM data register, then write back
1322 		 * the value read from the address register in order to
1323 		 * clear the <complete> bit and leave the SEEPROM access
1324 		 * state machine idle, ready for the next access ...
1325 		 */
1326 		BGE_DEBUG(("bge_seeprom_access: complete after %d us", tries));
1327 		*dp = bge_reg_get32(bgep, SERIAL_EEPROM_DATA_REG);
1328 		bge_reg_put32(bgep, SERIAL_EEPROM_ADDRESS_REG, regval);
1329 		return (0);
1330 	}
1331 
1332 	/*
1333 	 * Hmm ... what happened here?
1334 	 *
1335 	 * Most likely, the user addressed a non-existent SEEPROM. Or
1336 	 * maybe the SEEPROM was busy internally (e.g. processing a write)
1337 	 * and didn't respond to being addressed. Either way, it's left
1338 	 * the SEEPROM access state machine wedged. So we'll reset it
1339 	 * before we leave, so it's ready for next time ...
1340 	 */
1341 	BGE_DEBUG(("bge_seeprom_access: timed out after %d us", tries));
1342 	bge_reg_set32(bgep, SERIAL_EEPROM_ADDRESS_REG, SEEPROM_ACCESS_INIT);
1343 	return (ENODATA);
1344 }
1345 
1346 /*
1347  * Basic Flash get/set access routine
1348  *
1349  * These use the chip's Flash auto-access method, controlled by the
1350  * Flash Access Registers at 0x7000-701c, so the CPU doesn't have to
1351  * fiddle with the individual bits.
1352  *
1353  * The caller should hold <genlock> and *also* have already acquired
1354  * the right to access the Flash, via bge_nvmem_acquire() above.
1355  *
1356  * Return value:
1357  *	0 on success,
1358  *	ENODATA on access timeout (maybe retryable: device may just be busy)
1359  *	ENODEV if the NVmem device is missing or otherwise unusable
1360  *
1361  * <*dp> is an input to a NVM_FLASH_CMD_WR operation, or an output
1362  * from a (successful) NVM_FLASH_CMD_RD.
1363  */
1364 static int bge_flash_access(bge_t *bgep, uint32_t cmd, bge_regno_t addr,
1365 				uint32_t *dp);
1366 #pragma	no_inline(bge_flash_access)
1367 
1368 static int
1369 bge_flash_access(bge_t *bgep, uint32_t cmd, bge_regno_t addr, uint32_t *dp)
1370 {
1371 	uint32_t tries;
1372 	uint32_t regval;
1373 
1374 	ASSERT(mutex_owned(bgep->genlock));
1375 
1376 	/*
1377 	 * On the newer chips that support both SEEPROM & Flash, we need
1378 	 * to specifically disable SEEPROM access while accessing Flash.
1379 	 * The older chips don't support Flash, and the NVM registers don't
1380 	 * exist, so we shouldn't be here at all!
1381 	 */
1382 	switch (bgep->chipid.nvtype) {
1383 	case BGE_NVTYPE_NONE:
1384 	case BGE_NVTYPE_UNKNOWN:
1385 		_NOTE(NOTREACHED)
1386 	case BGE_NVTYPE_SEEPROM:
1387 		return (ENODEV);
1388 
1389 	case BGE_NVTYPE_LEGACY_SEEPROM:
1390 	case BGE_NVTYPE_UNBUFFERED_FLASH:
1391 	case BGE_NVTYPE_BUFFERED_FLASH:
1392 	default:
1393 		bge_reg_clr32(bgep, NVM_CONFIG1_REG,
1394 				NVM_CFG1_LEGACY_SEEPROM_MODE);
1395 		break;
1396 	}
1397 
1398 	/*
1399 	 * Assemble the command ...
1400 	 */
1401 	addr &= NVM_FLASH_ADDR_MASK;
1402 	cmd |= NVM_FLASH_CMD_DOIT;
1403 	cmd |= NVM_FLASH_CMD_FIRST;
1404 	cmd |= NVM_FLASH_CMD_LAST;
1405 	cmd |= NVM_FLASH_CMD_DONE;
1406 
1407 	bge_reg_put32(bgep, NVM_FLASH_WRITE_REG, *dp);
1408 	bge_reg_put32(bgep, NVM_FLASH_ADDR_REG, addr);
1409 	bge_reg_put32(bgep, NVM_FLASH_CMD_REG, cmd);
1410 
1411 	/*
1412 	 * Allow up to 1000ms ...
1413 	 */
1414 	for (tries = 0; tries < 1000; ++tries) {
1415 		regval = bge_reg_get32(bgep, NVM_FLASH_CMD_REG);
1416 		if (regval & NVM_FLASH_CMD_DONE)
1417 			break;
1418 		drv_usecwait(1);
1419 	}
1420 
1421 	if (regval & NVM_FLASH_CMD_DONE) {
1422 		/*
1423 		 * All OK; read the data from the Flash read register
1424 		 */
1425 		BGE_DEBUG(("bge_flash_access: complete after %d us", tries));
1426 		*dp = bge_reg_get32(bgep, NVM_FLASH_READ_REG);
1427 		return (0);
1428 	}
1429 
1430 	/*
1431 	 * Hmm ... what happened here?
1432 	 *
1433 	 * Most likely, the user addressed a non-existent Flash. Or
1434 	 * maybe the Flash was busy internally (e.g. processing a write)
1435 	 * and didn't respond to being addressed. Either way, there's
1436 	 * nothing we can here ...
1437 	 */
1438 	BGE_DEBUG(("bge_flash_access: timed out after %d us", tries));
1439 	return (ENODATA);
1440 }
1441 
1442 /*
1443  * The next two functions regulate access to the NVram (if fitted).
1444  *
1445  * On a 5704 (dual core) chip, there's only one SEEPROM and one Flash
1446  * (SPI) interface, but they can be accessed through either port. These
1447  * are managed by different instance of this driver and have no software
1448  * state in common.
1449  *
1450  * In addition (and even on a single core chip) the chip's internal
1451  * firmware can access the SEEPROM/Flash, most notably after a RESET
1452  * when it may download code to run internally.
1453  *
1454  * So we need to arbitrate between these various software agents.  For
1455  * this purpose, the chip provides the Software Arbitration Register,
1456  * which implements hardware(!) arbitration.
1457  *
1458  * This functionality didn't exist on older (5700/5701) chips, so there's
1459  * nothing we can do by way of arbitration on those; also, if there's no
1460  * SEEPROM/Flash fitted (or we couldn't determine what type), there's also
1461  * nothing to do.
1462  *
1463  * The internal firmware appears to use Request 0, which is the highest
1464  * priority.  So we'd like to use Request 2, leaving one higher and one
1465  * lower for any future developments ... but apparently this doesn't
1466  * always work.  So for now, the code uses Request 1 ;-(
1467  */
1468 
1469 #define	NVM_READ_REQ	NVM_READ_REQ1
1470 #define	NVM_RESET_REQ	NVM_RESET_REQ1
1471 #define	NVM_SET_REQ	NVM_SET_REQ1
1472 
1473 static void bge_nvmem_relinquish(bge_t *bgep);
1474 #pragma	no_inline(bge_nvmem_relinquish)
1475 
1476 static void
1477 bge_nvmem_relinquish(bge_t *bgep)
1478 {
1479 	ASSERT(mutex_owned(bgep->genlock));
1480 
1481 	switch (bgep->chipid.nvtype) {
1482 	case BGE_NVTYPE_NONE:
1483 	case BGE_NVTYPE_UNKNOWN:
1484 		_NOTE(NOTREACHED)
1485 		return;
1486 
1487 	case BGE_NVTYPE_SEEPROM:
1488 		/*
1489 		 * No arbitration performed, no release needed
1490 		 */
1491 		return;
1492 
1493 	case BGE_NVTYPE_LEGACY_SEEPROM:
1494 	case BGE_NVTYPE_UNBUFFERED_FLASH:
1495 	case BGE_NVTYPE_BUFFERED_FLASH:
1496 	default:
1497 		break;
1498 	}
1499 
1500 	/*
1501 	 * Our own request should be present (whether or not granted) ...
1502 	 */
1503 	(void) bge_reg_get32(bgep, NVM_SW_ARBITRATION_REG);
1504 
1505 	/*
1506 	 * ... this will make it go away.
1507 	 */
1508 	bge_reg_put32(bgep, NVM_SW_ARBITRATION_REG, NVM_RESET_REQ);
1509 	(void) bge_reg_get32(bgep, NVM_SW_ARBITRATION_REG);
1510 }
1511 
1512 /*
1513  * Arbitrate for access to the NVmem, if necessary
1514  *
1515  * Return value:
1516  *	0 on success
1517  *	EAGAIN if the device is in use (retryable)
1518  *	ENODEV if the NVmem device is missing or otherwise unusable
1519  */
1520 static int bge_nvmem_acquire(bge_t *bgep);
1521 #pragma	no_inline(bge_nvmem_acquire)
1522 
1523 static int
1524 bge_nvmem_acquire(bge_t *bgep)
1525 {
1526 	uint32_t regval;
1527 	uint32_t tries;
1528 
1529 	ASSERT(mutex_owned(bgep->genlock));
1530 
1531 	switch (bgep->chipid.nvtype) {
1532 	case BGE_NVTYPE_NONE:
1533 	case BGE_NVTYPE_UNKNOWN:
1534 		/*
1535 		 * Access denied: no (recognisable) device fitted
1536 		 */
1537 		return (ENODEV);
1538 
1539 	case BGE_NVTYPE_SEEPROM:
1540 		/*
1541 		 * Access granted: no arbitration needed (or possible)
1542 		 */
1543 		return (0);
1544 
1545 	case BGE_NVTYPE_LEGACY_SEEPROM:
1546 	case BGE_NVTYPE_UNBUFFERED_FLASH:
1547 	case BGE_NVTYPE_BUFFERED_FLASH:
1548 	default:
1549 		/*
1550 		 * Access conditional: conduct arbitration protocol
1551 		 */
1552 		break;
1553 	}
1554 
1555 	/*
1556 	 * We're holding the per-port mutex <genlock>, so no-one other
1557 	 * thread can be attempting to access the NVmem through *this*
1558 	 * port. But it could be in use by the *other* port (of a 5704),
1559 	 * or by the chip's internal firmware, so we have to go through
1560 	 * the full (hardware) arbitration protocol ...
1561 	 *
1562 	 * Note that *because* we're holding <genlock>, the interrupt handler
1563 	 * won't be able to progress.  So we're only willing to spin for a
1564 	 * fairly short time.  Specifically:
1565 	 *
1566 	 *	We *must* wait long enough for the hardware to resolve all
1567 	 *	requests and determine the winner.  Fortunately, this is
1568 	 *	"almost instantaneous", even as observed by GHz CPUs.
1569 	 *
1570 	 *	A successful access by another Solaris thread (via either
1571 	 *	port) typically takes ~20us.  So waiting a bit longer than
1572 	 *	that will give a good chance of success, if the other user
1573 	 *	*is* another thread on the other port.
1574 	 *
1575 	 *	However, the internal firmware can hold on to the NVmem
1576 	 *	for *much* longer: at least 10 milliseconds just after a
1577 	 *	RESET, and maybe even longer if the NVmem actually contains
1578 	 *	code to download and run on the internal CPUs.
1579 	 *
1580 	 * So, we'll allow 50us; if that's not enough then it's up to the
1581 	 * caller to retry later (hence the choice of return code EAGAIN).
1582 	 */
1583 	regval = bge_reg_get32(bgep, NVM_SW_ARBITRATION_REG);
1584 	bge_reg_put32(bgep, NVM_SW_ARBITRATION_REG, NVM_SET_REQ);
1585 
1586 	for (tries = 0; tries < 50; ++tries) {
1587 		regval = bge_reg_get32(bgep, NVM_SW_ARBITRATION_REG);
1588 		if (regval & NVM_WON_REQ1)
1589 			break;
1590 		drv_usecwait(1);
1591 	}
1592 
1593 	if (regval & NVM_WON_REQ1) {
1594 		BGE_DEBUG(("bge_nvmem_acquire: won after %d us", tries));
1595 		return (0);
1596 	}
1597 
1598 	/*
1599 	 * Somebody else must be accessing the NVmem, so abandon our
1600 	 * attempt take control of it.  The caller can try again later ...
1601 	 */
1602 	BGE_DEBUG(("bge_nvmem_acquire: lost after %d us", tries));
1603 	bge_nvmem_relinquish(bgep);
1604 	return (EAGAIN);
1605 }
1606 
1607 /*
1608  * This code assumes that the GPIO1 bit has been wired up to the NVmem
1609  * write protect line in such a way that the NVmem is protected when
1610  * GPIO1 is an input, or is an output but driven high.  Thus, to make the
1611  * NVmem writable we have to change GPIO1 to an output AND drive it low.
1612  *
1613  * Note: there's only one set of GPIO pins on a 5704, even though they
1614  * can be accessed through either port.  So the chip has to resolve what
1615  * happens if the two ports program a single pin differently ... the rule
1616  * it uses is that if the ports disagree about the *direction* of a pin,
1617  * "output" wins over "input", but if they disagree about its *value* as
1618  * an output, then the pin is TRISTATED instead!  In such a case, no-one
1619  * wins, and the external signal does whatever the external circuitry
1620  * defines as the default -- which we've assumed is the PROTECTED state.
1621  * So, we always change GPIO1 back to being an *input* whenever we're not
1622  * specifically using it to unprotect the NVmem. This allows either port
1623  * to update the NVmem, although obviously only one at a time!
1624  *
1625  * The caller should hold <genlock> and *also* have already acquired the
1626  * right to access the NVmem, via bge_nvmem_acquire() above.
1627  */
1628 static void bge_nvmem_protect(bge_t *bgep, boolean_t protect);
1629 #pragma	inline(bge_nvmem_protect)
1630 
1631 static void
1632 bge_nvmem_protect(bge_t *bgep, boolean_t protect)
1633 {
1634 	uint32_t regval;
1635 
1636 	ASSERT(mutex_owned(bgep->genlock));
1637 
1638 	regval = bge_reg_get32(bgep, MISC_LOCAL_CONTROL_REG);
1639 	if (protect) {
1640 		regval |= MLCR_MISC_PINS_OUTPUT_1;
1641 		regval &= ~MLCR_MISC_PINS_OUTPUT_ENABLE_1;
1642 	} else {
1643 		regval &= ~MLCR_MISC_PINS_OUTPUT_1;
1644 		regval |= MLCR_MISC_PINS_OUTPUT_ENABLE_1;
1645 	}
1646 	bge_reg_put32(bgep, MISC_LOCAL_CONTROL_REG, regval);
1647 }
1648 
1649 /*
1650  * Now put it all together ...
1651  *
1652  * Try to acquire control of the NVmem; if successful, then:
1653  *	unprotect it (if we want to write to it)
1654  *	perform the requested access
1655  *	reprotect it (after a write)
1656  *	relinquish control
1657  *
1658  * Return value:
1659  *	0 on success,
1660  *	EAGAIN if the device is in use (retryable)
1661  *	ENODATA on access timeout (maybe retryable: device may just be busy)
1662  *	ENODEV if the NVmem device is missing or otherwise unusable
1663  *	EPROTO on other h/w or s/w errors.
1664  */
1665 static int
1666 bge_nvmem_rw32(bge_t *bgep, uint32_t cmd, bge_regno_t addr, uint32_t *dp)
1667 {
1668 	int err;
1669 
1670 	if ((err = bge_nvmem_acquire(bgep)) == 0) {
1671 		switch (cmd) {
1672 		case BGE_SEE_READ:
1673 			err = bge_seeprom_access(bgep,
1674 			    SEEPROM_ACCESS_READ, addr, dp);
1675 			break;
1676 
1677 		case BGE_SEE_WRITE:
1678 			bge_nvmem_protect(bgep, B_FALSE);
1679 			err = bge_seeprom_access(bgep,
1680 			    SEEPROM_ACCESS_WRITE, addr, dp);
1681 			bge_nvmem_protect(bgep, B_TRUE);
1682 			break;
1683 
1684 		case BGE_FLASH_READ:
1685 			if (DEVICE_5721_SERIES_CHIPSETS(bgep) ||
1686 			    DEVICE_5714_SERIES_CHIPSETS(bgep)) {
1687 				bge_reg_set32(bgep, NVM_ACCESS_REG,
1688 				    NVM_ACCESS_ENABLE);
1689 			}
1690 			err = bge_flash_access(bgep,
1691 			    NVM_FLASH_CMD_RD, addr, dp);
1692 			if (DEVICE_5721_SERIES_CHIPSETS(bgep) ||
1693 			    DEVICE_5714_SERIES_CHIPSETS(bgep)) {
1694 				bge_reg_clr32(bgep, NVM_ACCESS_REG,
1695 				    NVM_ACCESS_ENABLE);
1696 			}
1697 			break;
1698 
1699 		case BGE_FLASH_WRITE:
1700 			if (DEVICE_5721_SERIES_CHIPSETS(bgep) ||
1701 			    DEVICE_5714_SERIES_CHIPSETS(bgep)) {
1702 				bge_reg_set32(bgep, NVM_ACCESS_REG,
1703 				    NVM_WRITE_ENABLE|NVM_ACCESS_ENABLE);
1704 			}
1705 			bge_nvmem_protect(bgep, B_FALSE);
1706 			err = bge_flash_access(bgep,
1707 			    NVM_FLASH_CMD_WR, addr, dp);
1708 			bge_nvmem_protect(bgep, B_TRUE);
1709 			if (DEVICE_5721_SERIES_CHIPSETS(bgep) ||
1710 			    DEVICE_5714_SERIES_CHIPSETS(bgep)) {
1711 				bge_reg_clr32(bgep, NVM_ACCESS_REG,
1712 				    NVM_WRITE_ENABLE|NVM_ACCESS_ENABLE);
1713 			}
1714 
1715 			break;
1716 
1717 		default:
1718 			_NOTE(NOTREACHED)
1719 			break;
1720 		}
1721 		bge_nvmem_relinquish(bgep);
1722 	}
1723 
1724 	BGE_DEBUG(("bge_nvmem_rw32: err %d", err));
1725 	return (err);
1726 }
1727 
1728 /*
1729  * Attempt to get a MAC address from the SEEPROM or Flash, if any
1730  */
1731 static uint64_t bge_get_nvmac(bge_t *bgep);
1732 #pragma no_inline(bge_get_nvmac)
1733 
1734 static uint64_t
1735 bge_get_nvmac(bge_t *bgep)
1736 {
1737 	uint32_t mac_high;
1738 	uint32_t mac_low;
1739 	uint32_t addr;
1740 	uint32_t cmd;
1741 	uint64_t mac;
1742 
1743 	BGE_TRACE(("bge_get_nvmac($%p)",
1744 		(void *)bgep));
1745 
1746 	switch (bgep->chipid.nvtype) {
1747 	case BGE_NVTYPE_NONE:
1748 	case BGE_NVTYPE_UNKNOWN:
1749 	default:
1750 		return (0ULL);
1751 
1752 	case BGE_NVTYPE_SEEPROM:
1753 	case BGE_NVTYPE_LEGACY_SEEPROM:
1754 		cmd = BGE_SEE_READ;
1755 		break;
1756 
1757 	case BGE_NVTYPE_UNBUFFERED_FLASH:
1758 	case BGE_NVTYPE_BUFFERED_FLASH:
1759 		cmd = BGE_FLASH_READ;
1760 		break;
1761 	}
1762 
1763 	addr = NVMEM_DATA_MAC_ADDRESS;
1764 	if (bge_nvmem_rw32(bgep, cmd, addr, &mac_high))
1765 		return (0ULL);
1766 	addr += 4;
1767 	if (bge_nvmem_rw32(bgep, cmd, addr, &mac_low))
1768 		return (0ULL);
1769 
1770 	/*
1771 	 * The Broadcom chip is natively BIG-endian, so that's how the
1772 	 * MAC address is represented in NVmem.  We may need to swap it
1773 	 * around on a little-endian host ...
1774 	 */
1775 #ifdef	_BIG_ENDIAN
1776 	mac = mac_high;
1777 	mac = mac << 32;
1778 	mac |= mac_low;
1779 #else
1780 	mac = BGE_BSWAP_32(mac_high);
1781 	mac = mac << 32;
1782 	mac |= BGE_BSWAP_32(mac_low);
1783 #endif	/* _BIG_ENDIAN */
1784 
1785 	return (mac);
1786 }
1787 
1788 #else	/* BGE_SEE_IO32 || BGE_FLASH_IO32 */
1789 
1790 /*
1791  * Dummy version for when we're not supporting NVmem access
1792  */
1793 static uint64_t bge_get_nvmac(bge_t *bgep);
1794 #pragma inline(bge_get_nvmac)
1795 
1796 static uint64_t
1797 bge_get_nvmac(bge_t *bgep)
1798 {
1799 	_NOTE(ARGUNUSED(bgep))
1800 	return (0ULL);
1801 }
1802 
1803 #endif	/* BGE_SEE_IO32 || BGE_FLASH_IO32 */
1804 
1805 /*
1806  * Determine the type of NVmem that is (or may be) attached to this chip,
1807  */
1808 static enum bge_nvmem_type bge_nvmem_id(bge_t *bgep);
1809 #pragma no_inline(bge_nvmem_id)
1810 
1811 static enum bge_nvmem_type
1812 bge_nvmem_id(bge_t *bgep)
1813 {
1814 	enum bge_nvmem_type nvtype;
1815 	uint32_t config1;
1816 
1817 	BGE_TRACE(("bge_nvmem_id($%p)",
1818 		(void *)bgep));
1819 
1820 	switch (bgep->chipid.device) {
1821 	default:
1822 		/*
1823 		 * We shouldn't get here; it means we don't recognise
1824 		 * the chip, which means we don't know how to determine
1825 		 * what sort of NVmem (if any) it has.  So we'll say
1826 		 * NONE, to disable the NVmem access code ...
1827 		 */
1828 		nvtype = BGE_NVTYPE_NONE;
1829 		break;
1830 
1831 	case DEVICE_ID_5700:
1832 	case DEVICE_ID_5700x:
1833 	case DEVICE_ID_5701:
1834 		/*
1835 		 * These devices support *only* SEEPROMs
1836 		 */
1837 		nvtype = BGE_NVTYPE_SEEPROM;
1838 		break;
1839 
1840 	case DEVICE_ID_5702:
1841 	case DEVICE_ID_5702fe:
1842 	case DEVICE_ID_5703C:
1843 	case DEVICE_ID_5703S:
1844 	case DEVICE_ID_5704C:
1845 	case DEVICE_ID_5704S:
1846 	case DEVICE_ID_5704:
1847 	case DEVICE_ID_5705M:
1848 	case DEVICE_ID_5705C:
1849 	case DEVICE_ID_5705_2:
1850 	case DEVICE_ID_5706:
1851 	case DEVICE_ID_5782:
1852 	case DEVICE_ID_5788:
1853 	case DEVICE_ID_5789:
1854 	case DEVICE_ID_5751:
1855 	case DEVICE_ID_5751M:
1856 	case DEVICE_ID_5752:
1857 	case DEVICE_ID_5752M:
1858 	case DEVICE_ID_5754:
1859 	case DEVICE_ID_5755:
1860 	case DEVICE_ID_5721:
1861 	case DEVICE_ID_5714C:
1862 	case DEVICE_ID_5714S:
1863 	case DEVICE_ID_5715C:
1864 	case DEVICE_ID_5715S:
1865 		config1 = bge_reg_get32(bgep, NVM_CONFIG1_REG);
1866 		if (config1 & NVM_CFG1_FLASH_MODE)
1867 			if (config1 & NVM_CFG1_BUFFERED_MODE)
1868 				nvtype = BGE_NVTYPE_BUFFERED_FLASH;
1869 			else
1870 				nvtype = BGE_NVTYPE_UNBUFFERED_FLASH;
1871 		else
1872 			nvtype = BGE_NVTYPE_LEGACY_SEEPROM;
1873 		break;
1874 	}
1875 
1876 	return (nvtype);
1877 }
1878 
1879 #undef	BGE_DBG
1880 #define	BGE_DBG		BGE_DBG_CHIP	/* debug flag for this code	*/
1881 
1882 static void
1883 bge_init_recv_rule(bge_t *bgep)
1884 {
1885 	bge_recv_rule_t *rulep;
1886 	uint32_t i;
1887 
1888 	/*
1889 	 * receive rule: direct all TCP traffic to ring RULE_MATCH_TO_RING
1890 	 * 1. to direct UDP traffic, set:
1891 	 * 	rulep->control = RULE_PROTO_CONTROL;
1892 	 * 	rulep->mask_value = RULE_UDP_MASK_VALUE;
1893 	 * 2. to direct ICMP traffic, set:
1894 	 * 	rulep->control = RULE_PROTO_CONTROL;
1895 	 * 	rulep->mask_value = RULE_ICMP_MASK_VALUE;
1896 	 * 3. to direct traffic by source ip, set:
1897 	 * 	rulep->control = RULE_SIP_CONTROL;
1898 	 * 	rulep->mask_value = RULE_SIP_MASK_VALUE;
1899 	 */
1900 	rulep = bgep->recv_rules;
1901 	rulep->control = RULE_PROTO_CONTROL;
1902 	rulep->mask_value = RULE_TCP_MASK_VALUE;
1903 
1904 	/*
1905 	 * set receive rule registers
1906 	 */
1907 	rulep = bgep->recv_rules;
1908 	for (i = 0; i < RECV_RULES_NUM_MAX; i++, rulep++) {
1909 		bge_reg_put32(bgep, RECV_RULE_MASK_REG(i), rulep->mask_value);
1910 		bge_reg_put32(bgep, RECV_RULE_CONTROL_REG(i), rulep->control);
1911 	}
1912 }
1913 
1914 /*
1915  * Using the values captured by bge_chip_cfg_init(), and additional probes
1916  * as required, characterise the chip fully: determine the label by which
1917  * to refer to this chip, the correct settings for various registers, and
1918  * of course whether the device and/or subsystem are supported!
1919  */
1920 int bge_chip_id_init(bge_t *bgep);
1921 #pragma	no_inline(bge_chip_id_init)
1922 
1923 int
1924 bge_chip_id_init(bge_t *bgep)
1925 {
1926 	char buf[MAXPATHLEN];		/* any risk of stack overflow?	*/
1927 	boolean_t sys_ok;
1928 	boolean_t dev_ok;
1929 	chip_id_t *cidp;
1930 	uint32_t subid;
1931 	char *devname;
1932 	char *sysname;
1933 	int *ids;
1934 	int err;
1935 	uint_t i;
1936 
1937 	ASSERT(bgep->bge_chip_state == BGE_CHIP_INITIAL);
1938 
1939 	sys_ok = dev_ok = B_FALSE;
1940 	cidp = &bgep->chipid;
1941 
1942 	/*
1943 	 * Check the PCI device ID to determine the generic chip type and
1944 	 * select parameters that depend on this.
1945 	 *
1946 	 * Note: because the SPARC platforms in general don't fit the
1947 	 * SEEPROM 'behind' the chip, the PCI revision ID register reads
1948 	 * as zero - which is why we use <asic_rev> rather than <revision>
1949 	 * below ...
1950 	 *
1951 	 * Note: in general we can't distinguish between the Copper/SerDes
1952 	 * versions by ID alone, as some Copper devices (e.g. some but not
1953 	 * all 5703Cs) have the same ID as the SerDes equivalents.  So we
1954 	 * treat them the same here, and the MII code works out the media
1955 	 * type later on ...
1956 	 */
1957 	cidp->mbuf_base = bge_mbuf_pool_base;
1958 	cidp->mbuf_length = bge_mbuf_pool_len;
1959 	cidp->recv_slots = BGE_RECV_SLOTS_USED;
1960 	cidp->bge_dma_rwctrl = bge_dma_rwctrl;
1961 	cidp->pci_type = BGE_PCI_X;
1962 	cidp->statistic_type = BGE_STAT_BLK;
1963 	cidp->mbuf_lo_water_rdma = bge_mbuf_lo_water_rdma;
1964 	cidp->mbuf_lo_water_rmac = bge_mbuf_lo_water_rmac;
1965 	cidp->mbuf_hi_water = bge_mbuf_hi_water;
1966 
1967 	if (cidp->rx_rings == 0 || cidp->rx_rings > BGE_RECV_RINGS_MAX)
1968 		cidp->rx_rings = BGE_RECV_RINGS_DEFAULT;
1969 	if (cidp->tx_rings == 0 || cidp->tx_rings > BGE_SEND_RINGS_MAX)
1970 		cidp->tx_rings = BGE_SEND_RINGS_DEFAULT;
1971 
1972 	cidp->msi_enabled = B_FALSE;
1973 
1974 	switch (cidp->device) {
1975 	case DEVICE_ID_5700:
1976 	case DEVICE_ID_5700x:
1977 		cidp->chip_label = 5700;
1978 		cidp->flags |= CHIP_FLAG_PARTIAL_CSUM;
1979 		break;
1980 
1981 	case DEVICE_ID_5701:
1982 		cidp->chip_label = 5701;
1983 		dev_ok = B_TRUE;
1984 		cidp->flags |= CHIP_FLAG_PARTIAL_CSUM;
1985 		break;
1986 
1987 	case DEVICE_ID_5702:
1988 	case DEVICE_ID_5702fe:
1989 		cidp->chip_label = 5702;
1990 		dev_ok = B_TRUE;
1991 		cidp->flags |= CHIP_FLAG_PARTIAL_CSUM;
1992 		cidp->pci_type = BGE_PCI;
1993 		break;
1994 
1995 	case DEVICE_ID_5703C:
1996 	case DEVICE_ID_5703S:
1997 	case DEVICE_ID_5703:
1998 		/*
1999 		 * Revision A0 of the 5703/5793 had various errata
2000 		 * that we can't or don't work around, so it's not
2001 		 * supported, but all later versions are
2002 		 */
2003 		cidp->chip_label = cidp->subven == VENDOR_ID_SUN ? 5793 : 5703;
2004 		if (bgep->chipid.asic_rev != MHCR_CHIP_REV_5703_A0)
2005 			dev_ok = B_TRUE;
2006 		cidp->flags |= CHIP_FLAG_PARTIAL_CSUM;
2007 		break;
2008 
2009 	case DEVICE_ID_5704C:
2010 	case DEVICE_ID_5704S:
2011 	case DEVICE_ID_5704:
2012 		/*
2013 		 * Revision A0 of the 5704/5794 had various errata
2014 		 * but we have workarounds, so it *is* supported.
2015 		 */
2016 		cidp->chip_label = cidp->subven == VENDOR_ID_SUN ? 5794 : 5704;
2017 		cidp->mbuf_base = bge_mbuf_pool_base_5704;
2018 		cidp->mbuf_length = bge_mbuf_pool_len_5704;
2019 		dev_ok = B_TRUE;
2020 		if (cidp->asic_rev <  MHCR_CHIP_REV_5704_B0)
2021 			cidp->flags |= CHIP_FLAG_PARTIAL_CSUM;
2022 		break;
2023 
2024 	case DEVICE_ID_5705C:
2025 	case DEVICE_ID_5705M:
2026 	case DEVICE_ID_5705MA3:
2027 	case DEVICE_ID_5705F:
2028 	case DEVICE_ID_5705_2:
2029 	case DEVICE_ID_5754:
2030 		if (cidp->device == DEVICE_ID_5754) {
2031 			cidp->chip_label = 5754;
2032 			cidp->pci_type = BGE_PCI_E;
2033 		} else {
2034 			cidp->chip_label = 5705;
2035 			cidp->pci_type = BGE_PCI;
2036 		}
2037 		cidp->mbuf_lo_water_rdma = RDMA_MBUF_LOWAT_5705;
2038 		cidp->mbuf_lo_water_rmac = MAC_RX_MBUF_LOWAT_5705;
2039 		cidp->mbuf_hi_water = MBUF_HIWAT_5705;
2040 		cidp->mbuf_base = bge_mbuf_pool_base_5705;
2041 		cidp->mbuf_length = bge_mbuf_pool_len_5705;
2042 		cidp->recv_slots = BGE_RECV_SLOTS_5705;
2043 		cidp->rx_rings = BGE_RECV_RINGS_MAX_5705;
2044 		cidp->tx_rings = BGE_SEND_RINGS_MAX_5705;
2045 		cidp->flags |= CHIP_FLAG_NO_JUMBO;
2046 		cidp->flags |= CHIP_FLAG_PARTIAL_CSUM;
2047 		cidp->statistic_type = BGE_STAT_REG;
2048 		dev_ok = B_TRUE;
2049 		break;
2050 
2051 	case DEVICE_ID_5755:
2052 		cidp->chip_label = 5755;
2053 		cidp->pci_type = BGE_PCI_E;
2054 		cidp->mbuf_lo_water_rdma = RDMA_MBUF_LOWAT_5705;
2055 		cidp->mbuf_lo_water_rmac = MAC_RX_MBUF_LOWAT_5705;
2056 		cidp->mbuf_hi_water = MBUF_HIWAT_5705;
2057 		cidp->mbuf_base = bge_mbuf_pool_base_5705;
2058 		cidp->mbuf_length = bge_mbuf_pool_len_5705;
2059 		cidp->recv_slots = BGE_RECV_SLOTS_5705;
2060 		cidp->bge_mlcr_default |= MLCR_MISC_PINS_OUTPUT_ENABLE_1;
2061 		cidp->rx_rings = BGE_RECV_RINGS_MAX_5705;
2062 		cidp->tx_rings = BGE_SEND_RINGS_MAX_5705;
2063 		cidp->flags |= CHIP_FLAG_NO_JUMBO;
2064 		cidp->flags |= CHIP_FLAG_PARTIAL_CSUM;
2065 		cidp->statistic_type = BGE_STAT_REG;
2066 		dev_ok = B_TRUE;
2067 		break;
2068 
2069 	case DEVICE_ID_5706:
2070 		cidp->chip_label = 5706;
2071 		cidp->flags |= CHIP_FLAG_NO_JUMBO;
2072 		break;
2073 
2074 	case DEVICE_ID_5782:
2075 		/*
2076 		 * Apart from the label, we treat this as a 5705(?)
2077 		 */
2078 		cidp->chip_label = 5782;
2079 		cidp->mbuf_lo_water_rdma = RDMA_MBUF_LOWAT_5705;
2080 		cidp->mbuf_lo_water_rmac = MAC_RX_MBUF_LOWAT_5705;
2081 		cidp->mbuf_hi_water = MBUF_HIWAT_5705;
2082 		cidp->mbuf_base = bge_mbuf_pool_base_5705;
2083 		cidp->mbuf_length = bge_mbuf_pool_len_5705;
2084 		cidp->recv_slots = BGE_RECV_SLOTS_5705;
2085 		cidp->rx_rings = BGE_RECV_RINGS_MAX_5705;
2086 		cidp->tx_rings = BGE_SEND_RINGS_MAX_5705;
2087 		cidp->flags |= CHIP_FLAG_NO_JUMBO;
2088 		cidp->flags |= CHIP_FLAG_PARTIAL_CSUM;
2089 		cidp->statistic_type = BGE_STAT_REG;
2090 		dev_ok = B_TRUE;
2091 		break;
2092 
2093 	case DEVICE_ID_5788:
2094 		/*
2095 		 * Apart from the label, we treat this as a 5705(?)
2096 		 */
2097 		cidp->chip_label = 5788;
2098 		cidp->mbuf_lo_water_rdma = RDMA_MBUF_LOWAT_5705;
2099 		cidp->mbuf_lo_water_rmac = MAC_RX_MBUF_LOWAT_5705;
2100 		cidp->mbuf_hi_water = MBUF_HIWAT_5705;
2101 		cidp->mbuf_base = bge_mbuf_pool_base_5705;
2102 		cidp->mbuf_length = bge_mbuf_pool_len_5705;
2103 		cidp->recv_slots = BGE_RECV_SLOTS_5705;
2104 		cidp->rx_rings = BGE_RECV_RINGS_MAX_5705;
2105 		cidp->tx_rings = BGE_SEND_RINGS_MAX_5705;
2106 		cidp->statistic_type = BGE_STAT_REG;
2107 		cidp->flags |= CHIP_FLAG_NO_JUMBO;
2108 		dev_ok = B_TRUE;
2109 		break;
2110 
2111 	case DEVICE_ID_5714C:
2112 		if (cidp->revision >= REVISION_ID_5714_A2)
2113 			cidp->msi_enabled = bge_enable_msi;
2114 		/* FALLTHRU */
2115 	case DEVICE_ID_5714S:
2116 		cidp->chip_label = 5714;
2117 		cidp->mbuf_lo_water_rdma = RDMA_MBUF_LOWAT_5705;
2118 		cidp->mbuf_lo_water_rmac = MAC_RX_MBUF_LOWAT_5705;
2119 		cidp->mbuf_hi_water = MBUF_HIWAT_5705;
2120 		cidp->mbuf_base = bge_mbuf_pool_base_5721;
2121 		cidp->mbuf_length = bge_mbuf_pool_len_5721;
2122 		cidp->recv_slots = BGE_RECV_SLOTS_5721;
2123 		cidp->bge_dma_rwctrl = bge_dma_rwctrl_5714;
2124 		cidp->bge_mlcr_default = bge_mlcr_default_5714;
2125 		cidp->rx_rings = BGE_RECV_RINGS_MAX_5705;
2126 		cidp->tx_rings = BGE_SEND_RINGS_MAX_5705;
2127 		cidp->pci_type = BGE_PCI_E;
2128 		cidp->statistic_type = BGE_STAT_REG;
2129 		dev_ok = B_TRUE;
2130 		break;
2131 
2132 	case DEVICE_ID_5715C:
2133 	case DEVICE_ID_5715S:
2134 		cidp->chip_label = 5715;
2135 		cidp->mbuf_lo_water_rdma = RDMA_MBUF_LOWAT_5705;
2136 		cidp->mbuf_lo_water_rmac = MAC_RX_MBUF_LOWAT_5705;
2137 		cidp->mbuf_hi_water = MBUF_HIWAT_5705;
2138 		cidp->mbuf_base = bge_mbuf_pool_base_5721;
2139 		cidp->mbuf_length = bge_mbuf_pool_len_5721;
2140 		cidp->recv_slots = BGE_RECV_SLOTS_5721;
2141 		cidp->bge_dma_rwctrl = bge_dma_rwctrl_5715;
2142 		cidp->bge_mlcr_default = bge_mlcr_default_5714;
2143 		cidp->rx_rings = BGE_RECV_RINGS_MAX_5705;
2144 		cidp->tx_rings = BGE_SEND_RINGS_MAX_5705;
2145 		cidp->pci_type = BGE_PCI_E;
2146 		cidp->statistic_type = BGE_STAT_REG;
2147 		if (cidp->revision >= REVISION_ID_5715_A2)
2148 			cidp->msi_enabled = bge_enable_msi;
2149 		dev_ok = B_TRUE;
2150 		break;
2151 
2152 	case DEVICE_ID_5721:
2153 		cidp->chip_label = 5721;
2154 		cidp->mbuf_lo_water_rdma = RDMA_MBUF_LOWAT_5705;
2155 		cidp->mbuf_lo_water_rmac = MAC_RX_MBUF_LOWAT_5705;
2156 		cidp->mbuf_hi_water = MBUF_HIWAT_5705;
2157 		cidp->mbuf_base = bge_mbuf_pool_base_5721;
2158 		cidp->mbuf_length = bge_mbuf_pool_len_5721;
2159 		cidp->recv_slots = BGE_RECV_SLOTS_5721;
2160 		cidp->bge_dma_rwctrl = bge_dma_rwctrl_5721;
2161 		cidp->rx_rings = BGE_RECV_RINGS_MAX_5705;
2162 		cidp->tx_rings = BGE_SEND_RINGS_MAX_5705;
2163 		cidp->pci_type = BGE_PCI_E;
2164 		cidp->statistic_type = BGE_STAT_REG;
2165 		cidp->flags |= CHIP_FLAG_NO_JUMBO;
2166 		dev_ok = B_TRUE;
2167 		break;
2168 
2169 	case DEVICE_ID_5751:
2170 	case DEVICE_ID_5751M:
2171 		cidp->chip_label = 5751;
2172 		cidp->mbuf_lo_water_rdma = RDMA_MBUF_LOWAT_5705;
2173 		cidp->mbuf_lo_water_rmac = MAC_RX_MBUF_LOWAT_5705;
2174 		cidp->mbuf_hi_water = MBUF_HIWAT_5705;
2175 		cidp->mbuf_base = bge_mbuf_pool_base_5721;
2176 		cidp->mbuf_length = bge_mbuf_pool_len_5721;
2177 		cidp->recv_slots = BGE_RECV_SLOTS_5721;
2178 		cidp->bge_dma_rwctrl = bge_dma_rwctrl_5721;
2179 		cidp->rx_rings = BGE_RECV_RINGS_MAX_5705;
2180 		cidp->tx_rings = BGE_SEND_RINGS_MAX_5705;
2181 		cidp->pci_type = BGE_PCI_E;
2182 		cidp->statistic_type = BGE_STAT_REG;
2183 		cidp->flags |= CHIP_FLAG_NO_JUMBO;
2184 		dev_ok = B_TRUE;
2185 		break;
2186 
2187 	case DEVICE_ID_5752:
2188 	case DEVICE_ID_5752M:
2189 		cidp->chip_label = 5752;
2190 		cidp->mbuf_lo_water_rdma = RDMA_MBUF_LOWAT_5705;
2191 		cidp->mbuf_lo_water_rmac = MAC_RX_MBUF_LOWAT_5705;
2192 		cidp->mbuf_hi_water = MBUF_HIWAT_5705;
2193 		cidp->mbuf_base = bge_mbuf_pool_base_5721;
2194 		cidp->mbuf_length = bge_mbuf_pool_len_5721;
2195 		cidp->recv_slots = BGE_RECV_SLOTS_5721;
2196 		cidp->bge_dma_rwctrl = bge_dma_rwctrl_5721;
2197 		cidp->rx_rings = BGE_RECV_RINGS_MAX_5705;
2198 		cidp->tx_rings = BGE_SEND_RINGS_MAX_5705;
2199 		cidp->pci_type = BGE_PCI_E;
2200 		cidp->statistic_type = BGE_STAT_REG;
2201 		cidp->flags |= CHIP_FLAG_NO_JUMBO;
2202 		dev_ok = B_TRUE;
2203 		break;
2204 
2205 	case DEVICE_ID_5789:
2206 		cidp->chip_label = 5789;
2207 		cidp->mbuf_base = bge_mbuf_pool_base_5721;
2208 		cidp->mbuf_length = bge_mbuf_pool_len_5721;
2209 		cidp->recv_slots = BGE_RECV_SLOTS_5721;
2210 		cidp->bge_dma_rwctrl = bge_dma_rwctrl_5721;
2211 		cidp->rx_rings = BGE_RECV_RINGS_MAX_5705;
2212 		cidp->tx_rings = BGE_RECV_RINGS_MAX_5705;
2213 		cidp->pci_type = BGE_PCI_E;
2214 		cidp->statistic_type = BGE_STAT_REG;
2215 		cidp->flags |= CHIP_FLAG_PARTIAL_CSUM;
2216 		cidp->flags |= CHIP_FLAG_NO_JUMBO;
2217 		cidp->msi_enabled = B_TRUE;
2218 		dev_ok = B_TRUE;
2219 		break;
2220 
2221 	}
2222 
2223 	/*
2224 	 * Setup the default jumbo parameter.
2225 	 */
2226 	cidp->ethmax_size = ETHERMAX;
2227 	cidp->snd_buff_size = BGE_SEND_BUFF_SIZE_DEFAULT;
2228 	cidp->std_buf_size = BGE_STD_BUFF_SIZE;
2229 
2230 	/*
2231 	 * If jumbo is enabled and this kind of chipset supports jumbo feature,
2232 	 * setup below jumbo specific parameters.
2233 	 *
2234 	 * For BCM5714/5715, there is only one standard receive ring. So the
2235 	 * std buffer size should be set to BGE_JUMBO_BUFF_SIZE when jumbo
2236 	 * feature is enabled.
2237 	 */
2238 	if (bge_jumbo_enable &&
2239 	    !(cidp->flags & CHIP_FLAG_NO_JUMBO) &&
2240 	    (cidp->default_mtu > BGE_DEFAULT_MTU) &&
2241 	    (cidp->default_mtu <= BGE_MAXIMUM_MTU)) {
2242 	    if (DEVICE_5714_SERIES_CHIPSETS(bgep)) {
2243 			cidp->mbuf_lo_water_rdma =
2244 			    RDMA_MBUF_LOWAT_5714_JUMBO;
2245 			cidp->mbuf_lo_water_rmac =
2246 			    MAC_RX_MBUF_LOWAT_5714_JUMBO;
2247 			cidp->mbuf_hi_water = MBUF_HIWAT_5714_JUMBO;
2248 			cidp->jumbo_slots = 0;
2249 			cidp->std_buf_size = BGE_JUMBO_BUFF_SIZE;
2250 	    } else {
2251 			cidp->mbuf_lo_water_rdma =
2252 			    RDMA_MBUF_LOWAT_JUMBO;
2253 			cidp->mbuf_lo_water_rmac =
2254 			    MAC_RX_MBUF_LOWAT_JUMBO;
2255 			cidp->mbuf_hi_water = MBUF_HIWAT_JUMBO;
2256 			cidp->jumbo_slots = BGE_JUMBO_SLOTS_USED;
2257 		}
2258 		cidp->recv_jumbo_size = BGE_JUMBO_BUFF_SIZE;
2259 		cidp->snd_buff_size = BGE_SEND_BUFF_SIZE_JUMBO;
2260 		cidp->ethmax_size = cidp->default_mtu +
2261 		    sizeof (struct ether_header);
2262 	}
2263 
2264 	/*
2265 	 * Identify the NV memory type: SEEPROM or Flash?
2266 	 */
2267 	cidp->nvtype = bge_nvmem_id(bgep);
2268 
2269 	/*
2270 	 * Now, we want to check whether this device is part of a
2271 	 * supported subsystem (e.g., on the motherboard of a Sun
2272 	 * branded platform).
2273 	 *
2274 	 * Rule 1: If the Subsystem Vendor ID is "Sun", then it's OK ;-)
2275 	 */
2276 	if (cidp->subven == VENDOR_ID_SUN)
2277 		sys_ok = B_TRUE;
2278 
2279 	/*
2280 	 * Rule 2: If it's on the list on known subsystems, then it's OK.
2281 	 * Note: 0x14e41647 should *not* appear in the list, but the code
2282 	 * doesn't enforce that.
2283 	 */
2284 	err = ddi_prop_lookup_int_array(DDI_DEV_T_ANY, bgep->devinfo,
2285 		DDI_PROP_DONTPASS, knownids_propname, &ids, &i);
2286 	if (err == DDI_PROP_SUCCESS) {
2287 		/*
2288 		 * Got the list; scan for a matching subsystem vendor/device
2289 		 */
2290 		subid = (cidp->subven << 16) | cidp->subdev;
2291 		while (i--)
2292 			if (ids[i] == subid)
2293 				sys_ok = B_TRUE;
2294 		ddi_prop_free(ids);
2295 	}
2296 
2297 	/*
2298 	 * Rule 3: If it's a Taco/ENWS motherboard device, then it's OK
2299 	 *
2300 	 * Unfortunately, early SunBlade 1500s and 2500s didn't reprogram
2301 	 * the Subsystem Vendor ID, so it defaults to Broadcom.  Therefore,
2302 	 * we have to check specially for the exact device paths to the
2303 	 * motherboard devices on those platforms ;-(
2304 	 *
2305 	 * Note: we can't just use the "supported-subsystems" mechanism
2306 	 * above, because the entry would have to be 0x14e41647 -- which
2307 	 * would then accept *any* plugin card that *didn't* contain a
2308 	 * (valid) SEEPROM ;-(
2309 	 */
2310 	sysname = ddi_node_name(ddi_root_node());
2311 	devname = ddi_pathname(bgep->devinfo, buf);
2312 	ASSERT(strlen(devname) > 0);
2313 	if (strcmp(sysname, "SUNW,Sun-Blade-1500") == 0)	/* Taco */
2314 		if (strcmp(devname, "/pci@1f,700000/network@2") == 0)
2315 			sys_ok = B_TRUE;
2316 	if (strcmp(sysname, "SUNW,Sun-Blade-2500") == 0)	/* ENWS */
2317 		if (strcmp(devname, "/pci@1c,600000/network@3") == 0)
2318 			sys_ok = B_TRUE;
2319 
2320 	/*
2321 	 * Now check what we've discovered: is this truly a supported
2322 	 * chip on (the motherboard of) a supported platform?
2323 	 *
2324 	 * Possible problems here:
2325 	 * 1)	it's a completely unheard-of chip (e.g. 5761)
2326 	 * 2)	it's a recognised but unsupported chip (e.g. 5701, 5703C-A0)
2327 	 * 3)	it's a chip we would support if it were on the motherboard
2328 	 *	of a Sun platform, but this one isn't ;-(
2329 	 */
2330 	if (cidp->chip_label == 0)
2331 		bge_problem(bgep,
2332 			"Device 'pci%04x,%04x' not recognized (%d?)",
2333 			cidp->vendor, cidp->device, cidp->device);
2334 	else if (!dev_ok)
2335 		bge_problem(bgep,
2336 			"Device 'pci%04x,%04x' (%d) revision %d not supported",
2337 			cidp->vendor, cidp->device, cidp->chip_label,
2338 			cidp->revision);
2339 #if	BGE_DEBUGGING
2340 	else if (!sys_ok)
2341 		bge_problem(bgep,
2342 			"%d-based subsystem 'pci%04x,%04x' not validated",
2343 			cidp->chip_label, cidp->subven, cidp->subdev);
2344 #endif
2345 	else
2346 		cidp->flags |= CHIP_FLAG_SUPPORTED;
2347 	if (bge_check_acc_handle(bgep, bgep->io_handle) != DDI_FM_OK)
2348 		return (EIO);
2349 	return (0);
2350 }
2351 
2352 void
2353 bge_chip_msi_trig(bge_t *bgep)
2354 {
2355 	uint32_t	regval;
2356 
2357 	regval = bgep->param_msi_cnt<<4;
2358 	bge_reg_set32(bgep, HOST_COALESCE_MODE_REG, regval);
2359 	BGE_DEBUG(("bge_chip_msi_trig:data = %d", regval));
2360 }
2361 
2362 /*
2363  * Various registers that control the chip's internal engines (state
2364  * machines) have a <reset> and <enable> bits (fortunately, in the
2365  * same place in each such register :-).
2366  *
2367  * To reset the state machine, the <reset> bit must be written with 1;
2368  * it will then read back as 1 while the reset is in progress, but
2369  * self-clear to 0 when the reset completes.
2370  *
2371  * To enable a state machine, one must set the <enable> bit, which
2372  * will continue to read back as 0 until the state machine is running.
2373  *
2374  * To disable a state machine, the <enable> bit must be cleared, but
2375  * it will continue to read back as 1 until the state machine actually
2376  * stops.
2377  *
2378  * This routine implements polling for completion of a reset, enable
2379  * or disable operation, returning B_TRUE on success (bit reached the
2380  * required state) or B_FALSE on timeout (200*100us == 20ms).
2381  */
2382 static boolean_t bge_chip_poll_engine(bge_t *bgep, bge_regno_t regno,
2383 					uint32_t mask, uint32_t val);
2384 #pragma	no_inline(bge_chip_poll_engine)
2385 
2386 static boolean_t
2387 bge_chip_poll_engine(bge_t *bgep, bge_regno_t regno,
2388 	uint32_t mask, uint32_t val)
2389 {
2390 	uint32_t regval;
2391 	uint32_t n;
2392 
2393 	BGE_TRACE(("bge_chip_poll_engine($%p, 0x%lx, 0x%x, 0x%x)",
2394 		(void *)bgep, regno, mask, val));
2395 
2396 	for (n = 200; n; --n) {
2397 		regval = bge_reg_get32(bgep, regno);
2398 		if ((regval & mask) == val)
2399 			return (B_TRUE);
2400 		drv_usecwait(100);
2401 	}
2402 
2403 	bge_fm_ereport(bgep, DDI_FM_DEVICE_NO_RESPONSE);
2404 	return (B_FALSE);
2405 }
2406 
2407 /*
2408  * Various registers that control the chip's internal engines (state
2409  * machines) have a <reset> bit (fortunately, in the same place in
2410  * each such register :-).  To reset the state machine, this bit must
2411  * be written with 1; it will then read back as 1 while the reset is
2412  * in progress, but self-clear to 0 when the reset completes.
2413  *
2414  * This code sets the bit, then polls for it to read back as zero.
2415  * The return value is B_TRUE on success (reset bit cleared itself),
2416  * or B_FALSE if the state machine didn't recover :(
2417  *
2418  * NOTE: the Core reset is similar to other resets, except that we
2419  * can't poll for completion, since the Core reset disables memory
2420  * access!  So we just have to assume that it will all complete in
2421  * 100us.  See Broadcom document 570X-PG102-R, p102, steps 4-5.
2422  */
2423 static boolean_t bge_chip_reset_engine(bge_t *bgep, bge_regno_t regno);
2424 #pragma	no_inline(bge_chip_reset_engine)
2425 
2426 static boolean_t
2427 bge_chip_reset_engine(bge_t *bgep, bge_regno_t regno)
2428 {
2429 	uint32_t regval;
2430 	uint32_t val32;
2431 
2432 	regval = bge_reg_get32(bgep, regno);
2433 
2434 	BGE_TRACE(("bge_chip_reset_engine($%p, 0x%lx)",
2435 		(void *)bgep, regno));
2436 	BGE_DEBUG(("bge_chip_reset_engine: 0x%lx before reset = 0x%08x",
2437 		regno, regval));
2438 
2439 	regval |= STATE_MACHINE_RESET_BIT;
2440 
2441 	switch (regno) {
2442 	case MISC_CONFIG_REG:
2443 		/*
2444 		 * BCM5714/5721/5751 pcie chip special case. In order to avoid
2445 		 * resetting PCIE block and bringing PCIE link down, bit 29
2446 		 * in the register needs to be set first, and then set it again
2447 		 * while the reset bit is written.
2448 		 * See:P500 of 57xx-PG102-RDS.pdf.
2449 		 */
2450 		if (DEVICE_5705_SERIES_CHIPSETS(bgep)||
2451 		    DEVICE_5721_SERIES_CHIPSETS(bgep)||
2452 		    DEVICE_5714_SERIES_CHIPSETS(bgep)) {
2453 			regval |= MISC_CONFIG_GPHY_POWERDOWN_OVERRIDE;
2454 			if (bgep->chipid.pci_type == BGE_PCI_E) {
2455 				if (bgep->chipid.asic_rev ==
2456 				    MHCR_CHIP_REV_5751_A0 ||
2457 				    bgep->chipid.asic_rev ==
2458 				    MHCR_CHIP_REV_5721_A0 ||
2459 				    bgep->chipid.asic_rev ==
2460 				    MHCR_CHIP_REV_5755_A0) {
2461 					val32 = bge_reg_get32(bgep,
2462 					    PHY_TEST_CTRL_REG);
2463 					if (val32 == (PHY_PCIE_SCRAM_MODE |
2464 					    PHY_PCIE_LTASS_MODE))
2465 						bge_reg_put32(bgep,
2466 						    PHY_TEST_CTRL_REG,
2467 						    PHY_PCIE_SCRAM_MODE);
2468 					val32 = pci_config_get32
2469 					    (bgep->cfg_handle,
2470 					    PCI_CONF_BGE_CLKCTL);
2471 					val32 |= CLKCTL_PCIE_A0_FIX;
2472 					pci_config_put32(bgep->cfg_handle,
2473 					    PCI_CONF_BGE_CLKCTL, val32);
2474 				}
2475 				bge_reg_set32(bgep, regno,
2476 					MISC_CONFIG_GRC_RESET_DISABLE);
2477 				regval |= MISC_CONFIG_GRC_RESET_DISABLE;
2478 			}
2479 		}
2480 
2481 		/*
2482 		 * Special case - causes Core reset
2483 		 *
2484 		 * On SPARC v9 we want to ensure that we don't start
2485 		 * timing until the I/O access has actually reached
2486 		 * the chip, otherwise we might make the next access
2487 		 * too early.  And we can't just force the write out
2488 		 * by following it with a read (even to config space)
2489 		 * because that would cause the fault we're trying
2490 		 * to avoid.  Hence the need for membar_sync() here.
2491 		 */
2492 		ddi_put32(bgep->io_handle, PIO_ADDR(bgep, regno), regval);
2493 #ifdef	__sparcv9
2494 		membar_sync();
2495 #endif	/* __sparcv9 */
2496 		/*
2497 		 * On some platforms,system need about 300us for
2498 		 * link setup.
2499 		 */
2500 		drv_usecwait(300);
2501 
2502 		if (bgep->chipid.pci_type == BGE_PCI_E) {
2503 			/* PCI-E device need more reset time */
2504 			drv_usecwait(120000);
2505 
2506 			/* Set PCIE max payload size and clear error status. */
2507 			if ((bgep->chipid.chip_label == 5721) ||
2508 			    (bgep->chipid.chip_label == 5751) ||
2509 			    (bgep->chipid.chip_label == 5752) ||
2510 			    (bgep->chipid.chip_label == 5789)) {
2511 				pci_config_put16(bgep->cfg_handle,
2512 					PCI_CONF_DEV_CTRL, READ_REQ_SIZE_MAX);
2513 				pci_config_put16(bgep->cfg_handle,
2514 					PCI_CONF_DEV_STUS, DEVICE_ERROR_STUS);
2515 			}
2516 		}
2517 
2518 		BGE_PCICHK(bgep);
2519 		return (B_TRUE);
2520 
2521 	default:
2522 		bge_reg_put32(bgep, regno, regval);
2523 		return (bge_chip_poll_engine(bgep, regno,
2524 		    STATE_MACHINE_RESET_BIT, 0));
2525 	}
2526 }
2527 
2528 /*
2529  * Various registers that control the chip's internal engines (state
2530  * machines) have an <enable> bit (fortunately, in the same place in
2531  * each such register :-).  To stop the state machine, this bit must
2532  * be written with 0, then polled to see when the state machine has
2533  * actually stopped.
2534  *
2535  * The return value is B_TRUE on success (enable bit cleared), or
2536  * B_FALSE if the state machine didn't stop :(
2537  */
2538 static boolean_t bge_chip_disable_engine(bge_t *bgep, bge_regno_t regno,
2539 						uint32_t morebits);
2540 #pragma	no_inline(bge_chip_disable_engine)
2541 
2542 static boolean_t
2543 bge_chip_disable_engine(bge_t *bgep, bge_regno_t regno, uint32_t morebits)
2544 {
2545 	uint32_t regval;
2546 
2547 	BGE_TRACE(("bge_chip_disable_engine($%p, 0x%lx, 0x%x)",
2548 		(void *)bgep, regno, morebits));
2549 
2550 	switch (regno) {
2551 	case FTQ_RESET_REG:
2552 		/*
2553 		 * For Schumacher's bugfix CR6490108
2554 		 */
2555 #ifdef BGE_IPMI_ASF
2556 #ifdef BGE_NETCONSOLE
2557 		if (bgep->asf_enabled)
2558 			return (B_TRUE);
2559 #endif
2560 #endif
2561 		/*
2562 		 * Not quite like the others; it doesn't
2563 		 * have an <enable> bit, but instead we
2564 		 * have to set and then clear all the bits
2565 		 */
2566 		bge_reg_put32(bgep, regno, ~(uint32_t)0);
2567 		drv_usecwait(100);
2568 		bge_reg_put32(bgep, regno, 0);
2569 		return (B_TRUE);
2570 
2571 	default:
2572 		regval = bge_reg_get32(bgep, regno);
2573 		regval &= ~STATE_MACHINE_ENABLE_BIT;
2574 		regval &= ~morebits;
2575 		bge_reg_put32(bgep, regno, regval);
2576 		return (bge_chip_poll_engine(bgep, regno,
2577 		    STATE_MACHINE_ENABLE_BIT, 0));
2578 	}
2579 }
2580 
2581 /*
2582  * Various registers that control the chip's internal engines (state
2583  * machines) have an <enable> bit (fortunately, in the same place in
2584  * each such register :-).  To start the state machine, this bit must
2585  * be written with 1, then polled to see when the state machine has
2586  * actually started.
2587  *
2588  * The return value is B_TRUE on success (enable bit set), or
2589  * B_FALSE if the state machine didn't start :(
2590  */
2591 static boolean_t bge_chip_enable_engine(bge_t *bgep, bge_regno_t regno,
2592 					uint32_t morebits);
2593 #pragma	no_inline(bge_chip_enable_engine)
2594 
2595 static boolean_t
2596 bge_chip_enable_engine(bge_t *bgep, bge_regno_t regno, uint32_t morebits)
2597 {
2598 	uint32_t regval;
2599 
2600 	BGE_TRACE(("bge_chip_enable_engine($%p, 0x%lx, 0x%x)",
2601 		(void *)bgep, regno, morebits));
2602 
2603 	switch (regno) {
2604 	case FTQ_RESET_REG:
2605 #ifdef BGE_IPMI_ASF
2606 #ifdef BGE_NETCONSOLE
2607 		if (bgep->asf_enabled)
2608 			return (B_TRUE);
2609 #endif
2610 #endif
2611 		/*
2612 		 * Not quite like the others; it doesn't
2613 		 * have an <enable> bit, but instead we
2614 		 * have to set and then clear all the bits
2615 		 */
2616 		bge_reg_put32(bgep, regno, ~(uint32_t)0);
2617 		drv_usecwait(100);
2618 		bge_reg_put32(bgep, regno, 0);
2619 		return (B_TRUE);
2620 
2621 	default:
2622 		regval = bge_reg_get32(bgep, regno);
2623 		regval |= STATE_MACHINE_ENABLE_BIT;
2624 		regval |= morebits;
2625 		bge_reg_put32(bgep, regno, regval);
2626 		return (bge_chip_poll_engine(bgep, regno,
2627 		    STATE_MACHINE_ENABLE_BIT, STATE_MACHINE_ENABLE_BIT));
2628 	}
2629 }
2630 
2631 /*
2632  * Reprogram the Ethernet, Transmit, and Receive MAC
2633  * modes to match the param_* variables
2634  */
2635 static void bge_sync_mac_modes(bge_t *bgep);
2636 #pragma	no_inline(bge_sync_mac_modes)
2637 
2638 static void
2639 bge_sync_mac_modes(bge_t *bgep)
2640 {
2641 	uint32_t macmode;
2642 	uint32_t regval;
2643 
2644 	ASSERT(mutex_owned(bgep->genlock));
2645 
2646 	/*
2647 	 * Reprogram the Ethernet MAC mode ...
2648 	 */
2649 	macmode = regval = bge_reg_get32(bgep, ETHERNET_MAC_MODE_REG);
2650 	if ((bgep->chipid.flags & CHIP_FLAG_SERDES) &&
2651 		(bgep->param_loop_mode != BGE_LOOP_INTERNAL_MAC))
2652 		macmode &= ~ETHERNET_MODE_LINK_POLARITY;
2653 	else
2654 		macmode |= ETHERNET_MODE_LINK_POLARITY;
2655 	macmode &= ~ETHERNET_MODE_PORTMODE_MASK;
2656 	if ((bgep->chipid.flags & CHIP_FLAG_SERDES) &&
2657 		(bgep->param_loop_mode != BGE_LOOP_INTERNAL_MAC))
2658 		macmode |= ETHERNET_MODE_PORTMODE_TBI;
2659 	else if (bgep->param_link_speed == 10 || bgep->param_link_speed == 100)
2660 		macmode |= ETHERNET_MODE_PORTMODE_MII;
2661 	else
2662 		macmode |= ETHERNET_MODE_PORTMODE_GMII;
2663 	if (bgep->param_link_duplex == LINK_DUPLEX_HALF)
2664 		macmode |= ETHERNET_MODE_HALF_DUPLEX;
2665 	else
2666 		macmode &= ~ETHERNET_MODE_HALF_DUPLEX;
2667 	if (bgep->param_loop_mode == BGE_LOOP_INTERNAL_MAC)
2668 		macmode |= ETHERNET_MODE_MAC_LOOPBACK;
2669 	else
2670 		macmode &= ~ETHERNET_MODE_MAC_LOOPBACK;
2671 	bge_reg_put32(bgep, ETHERNET_MAC_MODE_REG, macmode);
2672 	BGE_DEBUG(("bge_sync_mac_modes($%p) Ethernet MAC mode 0x%x => 0x%x",
2673 		(void *)bgep, regval, macmode));
2674 
2675 	/*
2676 	 * ... the Transmit MAC mode ...
2677 	 */
2678 	macmode = regval = bge_reg_get32(bgep, TRANSMIT_MAC_MODE_REG);
2679 	if (bgep->param_link_tx_pause)
2680 		macmode |= TRANSMIT_MODE_FLOW_CONTROL;
2681 	else
2682 		macmode &= ~TRANSMIT_MODE_FLOW_CONTROL;
2683 	bge_reg_put32(bgep, TRANSMIT_MAC_MODE_REG, macmode);
2684 	BGE_DEBUG(("bge_sync_mac_modes($%p) Transmit MAC mode 0x%x => 0x%x",
2685 		(void *)bgep, regval, macmode));
2686 
2687 	/*
2688 	 * ... and the Receive MAC mode
2689 	 */
2690 	macmode = regval = bge_reg_get32(bgep, RECEIVE_MAC_MODE_REG);
2691 	if (bgep->param_link_rx_pause)
2692 		macmode |= RECEIVE_MODE_FLOW_CONTROL;
2693 	else
2694 		macmode &= ~RECEIVE_MODE_FLOW_CONTROL;
2695 	bge_reg_put32(bgep, RECEIVE_MAC_MODE_REG, macmode);
2696 	BGE_DEBUG(("bge_sync_mac_modes($%p) Receive MAC mode 0x%x => 0x%x",
2697 		(void *)bgep, regval, macmode));
2698 }
2699 
2700 /*
2701  * bge_chip_sync() -- program the chip with the unicast MAC address,
2702  * the multicast hash table, the required level of promiscuity, and
2703  * the current loopback mode ...
2704  */
2705 #ifdef BGE_IPMI_ASF
2706 int bge_chip_sync(bge_t *bgep, boolean_t asf_keeplive);
2707 #else
2708 int bge_chip_sync(bge_t *bgep);
2709 #endif
2710 #pragma	no_inline(bge_chip_sync)
2711 
2712 int
2713 #ifdef BGE_IPMI_ASF
2714 bge_chip_sync(bge_t *bgep, boolean_t asf_keeplive)
2715 #else
2716 bge_chip_sync(bge_t *bgep)
2717 #endif
2718 {
2719 	void (*opfn)(bge_t *bgep, bge_regno_t reg, uint32_t bits);
2720 	boolean_t promisc;
2721 	uint64_t macaddr;
2722 	uint32_t fill;
2723 	int i, j;
2724 	int retval = DDI_SUCCESS;
2725 
2726 	BGE_TRACE(("bge_chip_sync($%p)",
2727 		(void *)bgep));
2728 
2729 	ASSERT(mutex_owned(bgep->genlock));
2730 
2731 	promisc = B_FALSE;
2732 	fill = ~(uint32_t)0;
2733 
2734 	if (bgep->promisc)
2735 		promisc = B_TRUE;
2736 	else
2737 		fill = (uint32_t)0;
2738 
2739 	/*
2740 	 * If the TX/RX MAC engines are already running, we should stop
2741 	 * them (and reset the RX engine) before changing the parameters.
2742 	 * If they're not running, this will have no effect ...
2743 	 *
2744 	 * NOTE: this is currently disabled by default because stopping
2745 	 * and restarting the Tx engine may cause an outgoing packet in
2746 	 * transit to be truncated.  Also, stopping and restarting the
2747 	 * Rx engine seems to not work correctly on the 5705.  Testing
2748 	 * has not (yet!) revealed any problems with NOT stopping and
2749 	 * restarting these engines (and Broadcom say their drivers don't
2750 	 * do this), but if it is found to cause problems, this variable
2751 	 * can be patched to re-enable the old behaviour ...
2752 	 */
2753 	if (bge_stop_start_on_sync) {
2754 #ifdef BGE_IPMI_ASF
2755 		if (!bgep->asf_enabled) {
2756 			if (!bge_chip_disable_engine(bgep,
2757 			    RECEIVE_MAC_MODE_REG, RECEIVE_MODE_KEEP_VLAN_TAG))
2758 				retval = DDI_FAILURE;
2759 		} else {
2760 			if (!bge_chip_disable_engine(bgep,
2761 			    RECEIVE_MAC_MODE_REG, 0))
2762 				retval = DDI_FAILURE;
2763 		}
2764 #else
2765 		if (!bge_chip_disable_engine(bgep, RECEIVE_MAC_MODE_REG,
2766 		    RECEIVE_MODE_KEEP_VLAN_TAG))
2767 			retval = DDI_FAILURE;
2768 #endif
2769 		if (!bge_chip_disable_engine(bgep, TRANSMIT_MAC_MODE_REG, 0))
2770 			retval = DDI_FAILURE;
2771 		if (!bge_chip_reset_engine(bgep, RECEIVE_MAC_MODE_REG))
2772 			retval = DDI_FAILURE;
2773 	}
2774 
2775 	/*
2776 	 * Reprogram the hashed multicast address table ...
2777 	 */
2778 	for (i = 0; i < BGE_HASH_TABLE_SIZE/32; ++i)
2779 		bge_reg_put32(bgep, MAC_HASH_REG(i),
2780 			bgep->mcast_hash[i] | fill);
2781 
2782 #ifdef BGE_IPMI_ASF
2783 	if (!bgep->asf_enabled || !asf_keeplive) {
2784 #endif
2785 		/*
2786 		 * Transform the MAC address(es) from host to chip format, then
2787 		 * reprogram the transmit random backoff seed and the unicast
2788 		 * MAC address(es) ...
2789 		 */
2790 		for (j = 0; j < MAC_ADDRESS_REGS_MAX; j++) {
2791 			for (i = 0, fill = 0, macaddr = 0ull;
2792 			    i < ETHERADDRL; ++i) {
2793 				macaddr <<= 8;
2794 				macaddr |= bgep->curr_addr[j].addr[i];
2795 				fill += bgep->curr_addr[j].addr[i];
2796 			}
2797 			bge_reg_put32(bgep, MAC_TX_RANDOM_BACKOFF_REG, fill);
2798 			bge_reg_put64(bgep, MAC_ADDRESS_REG(j), macaddr);
2799 		}
2800 
2801 		BGE_DEBUG(("bge_chip_sync($%p) setting MAC address %012llx",
2802 			(void *)bgep, macaddr));
2803 #ifdef BGE_IPMI_ASF
2804 	}
2805 #endif
2806 
2807 	/*
2808 	 * Set or clear the PROMISCUOUS mode bit
2809 	 */
2810 	opfn = promisc ? bge_reg_set32 : bge_reg_clr32;
2811 	(*opfn)(bgep, RECEIVE_MAC_MODE_REG, RECEIVE_MODE_PROMISCUOUS);
2812 
2813 	/*
2814 	 * Sync the rest of the MAC modes too ...
2815 	 */
2816 	bge_sync_mac_modes(bgep);
2817 
2818 	/*
2819 	 * Restart RX/TX MAC engines if required ...
2820 	 */
2821 	if (bgep->bge_chip_state == BGE_CHIP_RUNNING) {
2822 		if (!bge_chip_enable_engine(bgep, TRANSMIT_MAC_MODE_REG, 0))
2823 			retval = DDI_FAILURE;
2824 #ifdef BGE_IPMI_ASF
2825 		if (!bgep->asf_enabled) {
2826 			if (!bge_chip_enable_engine(bgep,
2827 			    RECEIVE_MAC_MODE_REG, RECEIVE_MODE_KEEP_VLAN_TAG))
2828 				retval = DDI_FAILURE;
2829 		} else {
2830 			if (!bge_chip_enable_engine(bgep,
2831 			    RECEIVE_MAC_MODE_REG, 0))
2832 				retval = DDI_FAILURE;
2833 		}
2834 #else
2835 		if (!bge_chip_enable_engine(bgep, RECEIVE_MAC_MODE_REG,
2836 		    RECEIVE_MODE_KEEP_VLAN_TAG))
2837 			retval = DDI_FAILURE;
2838 #endif
2839 	}
2840 	return (retval);
2841 }
2842 
2843 /*
2844  * This array defines the sequence of state machine control registers
2845  * in which the <enable> bit must be cleared to bring the chip to a
2846  * clean stop.  Taken from Broadcom document 570X-PG102-R, p116.
2847  */
2848 static bge_regno_t shutdown_engine_regs[] = {
2849 	RECEIVE_MAC_MODE_REG,
2850 	RCV_BD_INITIATOR_MODE_REG,
2851 	RCV_LIST_PLACEMENT_MODE_REG,
2852 	RCV_LIST_SELECTOR_MODE_REG,		/* BCM5704 series only	*/
2853 	RCV_DATA_BD_INITIATOR_MODE_REG,
2854 	RCV_DATA_COMPLETION_MODE_REG,
2855 	RCV_BD_COMPLETION_MODE_REG,
2856 
2857 	SEND_BD_SELECTOR_MODE_REG,
2858 	SEND_BD_INITIATOR_MODE_REG,
2859 	SEND_DATA_INITIATOR_MODE_REG,
2860 	READ_DMA_MODE_REG,
2861 	SEND_DATA_COMPLETION_MODE_REG,
2862 	DMA_COMPLETION_MODE_REG,		/* BCM5704 series only	*/
2863 	SEND_BD_COMPLETION_MODE_REG,
2864 	TRANSMIT_MAC_MODE_REG,
2865 
2866 	HOST_COALESCE_MODE_REG,
2867 	WRITE_DMA_MODE_REG,
2868 	MBUF_CLUSTER_FREE_MODE_REG,		/* BCM5704 series only	*/
2869 	FTQ_RESET_REG,		/* special - see code	*/
2870 	BUFFER_MANAGER_MODE_REG,		/* BCM5704 series only	*/
2871 	MEMORY_ARBITER_MODE_REG,		/* BCM5704 series only	*/
2872 	BGE_REGNO_NONE		/* terminator		*/
2873 };
2874 
2875 /*
2876  * bge_chip_stop() -- stop all chip processing
2877  *
2878  * If the <fault> parameter is B_TRUE, we're stopping the chip because
2879  * we've detected a problem internally; otherwise, this is a normal
2880  * (clean) stop (at user request i.e. the last STREAM has been closed).
2881  */
2882 void bge_chip_stop(bge_t *bgep, boolean_t fault);
2883 #pragma	no_inline(bge_chip_stop)
2884 
2885 void
2886 bge_chip_stop(bge_t *bgep, boolean_t fault)
2887 {
2888 	bge_regno_t regno;
2889 	bge_regno_t *rbp;
2890 	boolean_t ok;
2891 
2892 	BGE_TRACE(("bge_chip_stop($%p)",
2893 		(void *)bgep));
2894 
2895 	ASSERT(mutex_owned(bgep->genlock));
2896 
2897 	rbp = shutdown_engine_regs;
2898 	/*
2899 	 * When driver try to shutdown the BCM5705/5788/5721/5751/
2900 	 * 5752/5714 and 5715 chipsets,the buffer manager and the mem
2901 	 * -ory arbiter should not be disabled.
2902 	 */
2903 	for (ok = B_TRUE; (regno = *rbp) != BGE_REGNO_NONE; ++rbp) {
2904 			if (DEVICE_5704_SERIES_CHIPSETS(bgep))
2905 			    ok &= bge_chip_disable_engine(bgep, regno, 0);
2906 			else if ((regno != RCV_LIST_SELECTOR_MODE_REG) &&
2907 				    (regno != DMA_COMPLETION_MODE_REG) &&
2908 				    (regno != MBUF_CLUSTER_FREE_MODE_REG)&&
2909 				    (regno != BUFFER_MANAGER_MODE_REG) &&
2910 				    (regno != MEMORY_ARBITER_MODE_REG))
2911 					ok &= bge_chip_disable_engine(bgep,
2912 					    regno, 0);
2913 	}
2914 
2915 	if (!ok && !fault)
2916 		ddi_fm_service_impact(bgep->devinfo, DDI_SERVICE_UNAFFECTED);
2917 
2918 	/*
2919 	 * Finally, disable (all) MAC events & clear the MAC status
2920 	 */
2921 	bge_reg_put32(bgep, ETHERNET_MAC_EVENT_ENABLE_REG, 0);
2922 	bge_reg_put32(bgep, ETHERNET_MAC_STATUS_REG, ~0);
2923 
2924 	/*
2925 	 * if we're stopping the chip because of a detected fault then do
2926 	 * appropriate actions
2927 	 */
2928 	if (fault) {
2929 		if (bgep->bge_chip_state != BGE_CHIP_FAULT) {
2930 			bgep->bge_chip_state = BGE_CHIP_FAULT;
2931 			ddi_fm_service_impact(bgep->devinfo, DDI_SERVICE_LOST);
2932 			if (bgep->bge_dma_error) {
2933 				/*
2934 				 * need to free buffers in case the fault was
2935 				 * due to a memory error in a buffer - got to
2936 				 * do a fair bit of tidying first
2937 				 */
2938 				if (bgep->progress & PROGRESS_KSTATS) {
2939 					bge_fini_kstats(bgep);
2940 					bgep->progress &= ~PROGRESS_KSTATS;
2941 				}
2942 				if (bgep->progress & PROGRESS_INTR) {
2943 					bge_intr_disable(bgep);
2944 					rw_enter(bgep->errlock, RW_WRITER);
2945 					bge_fini_rings(bgep);
2946 					rw_exit(bgep->errlock);
2947 					bgep->progress &= ~PROGRESS_INTR;
2948 				}
2949 				if (bgep->progress & PROGRESS_BUFS) {
2950 					bge_free_bufs(bgep);
2951 					bgep->progress &= ~PROGRESS_BUFS;
2952 				}
2953 				bgep->bge_dma_error = B_FALSE;
2954 			}
2955 		}
2956 	} else
2957 		bgep->bge_chip_state = BGE_CHIP_STOPPED;
2958 }
2959 
2960 /*
2961  * Poll for completion of chip's ROM firmware; also, at least on the
2962  * first time through, find and return the hardware MAC address, if any.
2963  */
2964 static uint64_t bge_poll_firmware(bge_t *bgep);
2965 #pragma	no_inline(bge_poll_firmware)
2966 
2967 static uint64_t
2968 bge_poll_firmware(bge_t *bgep)
2969 {
2970 	uint64_t magic;
2971 	uint64_t mac;
2972 	uint32_t gen;
2973 	uint32_t i;
2974 
2975 	/*
2976 	 * Step 19: poll for firmware completion (GENCOMM port set
2977 	 * to the ones complement of T3_MAGIC_NUMBER).
2978 	 *
2979 	 * While we're at it, we also read the MAC address register;
2980 	 * at some stage the firmware will load this with the
2981 	 * factory-set value.
2982 	 *
2983 	 * When both the magic number and the MAC address are set,
2984 	 * we're done; but we impose a time limit of one second
2985 	 * (1000*1000us) in case the firmware fails in some fashion
2986 	 * or the SEEPROM that provides that MAC address isn't fitted.
2987 	 *
2988 	 * After the first time through (chip state != INITIAL), we
2989 	 * don't need the MAC address to be set (we've already got it
2990 	 * or not, from the first time), so we don't wait for it, but
2991 	 * we still have to wait for the T3_MAGIC_NUMBER.
2992 	 *
2993 	 * Note: the magic number is only a 32-bit quantity, but the NIC
2994 	 * memory is 64-bit (and big-endian) internally.  Addressing the
2995 	 * GENCOMM word as "the upper half of a 64-bit quantity" makes
2996 	 * it work correctly on both big- and little-endian hosts.
2997 	 */
2998 	for (i = 0; i < 1000; ++i) {
2999 		drv_usecwait(1000);
3000 		gen = bge_nic_get64(bgep, NIC_MEM_GENCOMM) >> 32;
3001 		mac = bge_reg_get64(bgep, MAC_ADDRESS_REG(0));
3002 #ifdef BGE_IPMI_ASF
3003 		if (!bgep->asf_enabled) {
3004 #endif
3005 			if (gen != ~T3_MAGIC_NUMBER)
3006 				continue;
3007 #ifdef BGE_IPMI_ASF
3008 		}
3009 #endif
3010 		if (mac != 0ULL)
3011 			break;
3012 		if (bgep->bge_chip_state != BGE_CHIP_INITIAL)
3013 			break;
3014 	}
3015 
3016 	magic = bge_nic_get64(bgep, NIC_MEM_GENCOMM);
3017 	BGE_DEBUG(("bge_poll_firmware($%p): PXE magic 0x%x after %d loops",
3018 		(void *)bgep, gen, i));
3019 	BGE_DEBUG(("bge_poll_firmware: MAC %016llx, GENCOMM %016llx",
3020 		mac, magic));
3021 
3022 	return (mac);
3023 }
3024 
3025 /*
3026  * Maximum times of trying to get the NVRAM access lock
3027  * by calling bge_nvmem_acquire()
3028  */
3029 #define	MAX_TRY_NVMEM_ACQUIRE	10000
3030 
3031 #ifdef BGE_IPMI_ASF
3032 int bge_chip_reset(bge_t *bgep, boolean_t enable_dma, uint_t asf_mode);
3033 #else
3034 int bge_chip_reset(bge_t *bgep, boolean_t enable_dma);
3035 #endif
3036 #pragma	no_inline(bge_chip_reset)
3037 
3038 int
3039 #ifdef BGE_IPMI_ASF
3040 bge_chip_reset(bge_t *bgep, boolean_t enable_dma, uint_t asf_mode)
3041 #else
3042 bge_chip_reset(bge_t *bgep, boolean_t enable_dma)
3043 #endif
3044 {
3045 	chip_id_t chipid;
3046 	uint64_t mac;
3047 	uint64_t magic;
3048 	uint32_t modeflags;
3049 	uint32_t mhcr;
3050 	uint32_t sx0;
3051 	uint32_t i, tries;
3052 #ifdef BGE_IPMI_ASF
3053 	uint32_t mailbox;
3054 #endif
3055 	int retval = DDI_SUCCESS;
3056 
3057 	BGE_TRACE(("bge_chip_reset($%p, %d)",
3058 		(void *)bgep, enable_dma));
3059 
3060 	ASSERT(mutex_owned(bgep->genlock));
3061 
3062 	BGE_DEBUG(("bge_chip_reset($%p, %d): current state is %d",
3063 		(void *)bgep, enable_dma, bgep->bge_chip_state));
3064 
3065 	/*
3066 	 * Do we need to stop the chip cleanly before resetting?
3067 	 */
3068 	switch (bgep->bge_chip_state) {
3069 	default:
3070 		_NOTE(NOTREACHED)
3071 		return (DDI_FAILURE);
3072 
3073 	case BGE_CHIP_INITIAL:
3074 	case BGE_CHIP_STOPPED:
3075 	case BGE_CHIP_RESET:
3076 		break;
3077 
3078 	case BGE_CHIP_RUNNING:
3079 	case BGE_CHIP_ERROR:
3080 	case BGE_CHIP_FAULT:
3081 		bge_chip_stop(bgep, B_FALSE);
3082 		break;
3083 	}
3084 
3085 #ifdef BGE_IPMI_ASF
3086 	if (bgep->asf_enabled) {
3087 #ifdef __sparc
3088 		mhcr = MHCR_ENABLE_INDIRECT_ACCESS |
3089 			MHCR_ENABLE_TAGGED_STATUS_MODE |
3090 			MHCR_MASK_INTERRUPT_MODE |
3091 			MHCR_MASK_PCI_INT_OUTPUT |
3092 			MHCR_CLEAR_INTERRUPT_INTA |
3093 			MHCR_ENABLE_ENDIAN_WORD_SWAP |
3094 			MHCR_ENABLE_ENDIAN_BYTE_SWAP;
3095 		pci_config_put32(bgep->cfg_handle, PCI_CONF_BGE_MHCR, mhcr);
3096 		bge_reg_put32(bgep, MEMORY_ARBITER_MODE_REG,
3097 			bge_reg_get32(bgep, MEMORY_ARBITER_MODE_REG) |
3098 			MEMORY_ARBITER_ENABLE);
3099 #endif
3100 		if (asf_mode == ASF_MODE_INIT) {
3101 			bge_asf_pre_reset_operations(bgep, BGE_INIT_RESET);
3102 		} else if (asf_mode == ASF_MODE_SHUTDOWN) {
3103 			bge_asf_pre_reset_operations(bgep, BGE_SHUTDOWN_RESET);
3104 		}
3105 	}
3106 #endif
3107 	/*
3108 	 * Adapted from Broadcom document 570X-PG102-R, pp 102-116.
3109 	 * Updated to reflect Broadcom document 570X-PG104-R, pp 146-159.
3110 	 *
3111 	 * Before reset Core clock,it is
3112 	 * also required to initialize the Memory Arbiter as specified in step9
3113 	 * and Misc Host Control Register as specified in step-13
3114 	 * Step 4-5: reset Core clock & wait for completion
3115 	 * Steps 6-8: are done by bge_chip_cfg_init()
3116 	 * put the T3_MAGIC_NUMBER into the GENCOMM port before reset
3117 	 */
3118 	if (!bge_chip_enable_engine(bgep, MEMORY_ARBITER_MODE_REG, 0))
3119 		retval = DDI_FAILURE;
3120 
3121 	mhcr = MHCR_ENABLE_INDIRECT_ACCESS |
3122 	    MHCR_ENABLE_TAGGED_STATUS_MODE |
3123 	    MHCR_MASK_INTERRUPT_MODE |
3124 	    MHCR_MASK_PCI_INT_OUTPUT |
3125 	    MHCR_CLEAR_INTERRUPT_INTA;
3126 #ifdef  _BIG_ENDIAN
3127 	mhcr |= MHCR_ENABLE_ENDIAN_WORD_SWAP | MHCR_ENABLE_ENDIAN_BYTE_SWAP;
3128 #endif  /* _BIG_ENDIAN */
3129 	pci_config_put32(bgep->cfg_handle, PCI_CONF_BGE_MHCR, mhcr);
3130 #ifdef BGE_IPMI_ASF
3131 	if (bgep->asf_enabled)
3132 		bgep->asf_wordswapped = B_FALSE;
3133 #endif
3134 	/*
3135 	 * NVRAM Corruption Workaround
3136 	 */
3137 	for (tries = 0; tries < MAX_TRY_NVMEM_ACQUIRE; tries++)
3138 		if (bge_nvmem_acquire(bgep) != EAGAIN)
3139 			break;
3140 	if (tries >= MAX_TRY_NVMEM_ACQUIRE)
3141 		BGE_DEBUG(("%s: fail to acquire nvram lock",
3142 			bgep->ifname));
3143 
3144 #ifdef BGE_IPMI_ASF
3145 	if (!bgep->asf_enabled) {
3146 #endif
3147 		magic = (uint64_t)T3_MAGIC_NUMBER << 32;
3148 		bge_nic_put64(bgep, NIC_MEM_GENCOMM, magic);
3149 #ifdef BGE_IPMI_ASF
3150 	}
3151 #endif
3152 
3153 	if (!bge_chip_reset_engine(bgep, MISC_CONFIG_REG))
3154 		retval = DDI_FAILURE;
3155 	bge_chip_cfg_init(bgep, &chipid, enable_dma);
3156 
3157 	/*
3158 	 * Step 8a: This may belong elsewhere, but BCM5721 needs
3159 	 * a bit set to avoid a fifo overflow/underflow bug.
3160 	 */
3161 	if ((bgep->chipid.chip_label == 5721) ||
3162 		(bgep->chipid.chip_label == 5751) ||
3163 		(bgep->chipid.chip_label == 5752) ||
3164 		(bgep->chipid.chip_label == 5755) ||
3165 		(bgep->chipid.chip_label == 5789))
3166 		bge_reg_set32(bgep, TLP_CONTROL_REG, TLP_DATA_FIFO_PROTECT);
3167 
3168 
3169 	/*
3170 	 * Step 9: enable MAC memory arbiter,bit30 and bit31 of 5714/5715 should
3171 	 * not be changed.
3172 	 */
3173 	if (!bge_chip_enable_engine(bgep, MEMORY_ARBITER_MODE_REG, 0))
3174 		retval = DDI_FAILURE;
3175 
3176 	/*
3177 	 * Steps 10-11: configure PIO endianness options and
3178 	 * enable indirect register access -- already done
3179 	 * Steps 12-13: enable writing to the PCI state & clock
3180 	 * control registers -- not required; we aren't going to
3181 	 * use those features.
3182 	 * Steps 14-15: Configure DMA endianness options.  See
3183 	 * the comments on the setting of the MHCR above.
3184 	 */
3185 #ifdef	_BIG_ENDIAN
3186 	modeflags = MODE_WORD_SWAP_FRAME | MODE_BYTE_SWAP_FRAME |
3187 		    MODE_WORD_SWAP_NONFRAME | MODE_BYTE_SWAP_NONFRAME;
3188 #else
3189 	modeflags = MODE_WORD_SWAP_FRAME | MODE_BYTE_SWAP_FRAME;
3190 #endif	/* _BIG_ENDIAN */
3191 #ifdef BGE_IPMI_ASF
3192 	if (bgep->asf_enabled)
3193 		modeflags |= MODE_HOST_STACK_UP;
3194 #endif
3195 	bge_reg_put32(bgep, MODE_CONTROL_REG, modeflags);
3196 
3197 #ifdef BGE_IPMI_ASF
3198 	if (bgep->asf_enabled) {
3199 #ifdef __sparc
3200 		bge_reg_put32(bgep, MEMORY_ARBITER_MODE_REG,
3201 			MEMORY_ARBITER_ENABLE |
3202 			bge_reg_get32(bgep, MEMORY_ARBITER_MODE_REG));
3203 #endif
3204 
3205 #ifdef  BGE_NETCONSOLE
3206 		if (!bgep->asf_newhandshake) {
3207 			if ((asf_mode == ASF_MODE_INIT) ||
3208 			(asf_mode == ASF_MODE_POST_INIT)) {
3209 				bge_asf_post_reset_old_mode(bgep,
3210 					BGE_INIT_RESET);
3211 			} else {
3212 				bge_asf_post_reset_old_mode(bgep,
3213 					BGE_SHUTDOWN_RESET);
3214 			}
3215 		}
3216 #endif
3217 
3218 		/* Wait for NVRAM init */
3219 		i = 0;
3220 		drv_usecwait(5000);
3221 		mailbox = bge_nic_get32(bgep, BGE_FIRMWARE_MAILBOX);
3222 
3223 		while ((mailbox != (uint32_t)
3224 			~BGE_MAGIC_NUM_FIRMWARE_INIT_DONE) &&
3225 			(i < 10000)) {
3226 			drv_usecwait(100);
3227 			mailbox = bge_nic_get32(bgep,
3228 				BGE_FIRMWARE_MAILBOX);
3229 			i++;
3230 		}
3231 
3232 #ifndef BGE_NETCONSOLE
3233 		if (!bgep->asf_newhandshake) {
3234 			if ((asf_mode == ASF_MODE_INIT) ||
3235 				(asf_mode == ASF_MODE_POST_INIT)) {
3236 
3237 				bge_asf_post_reset_old_mode(bgep,
3238 					BGE_INIT_RESET);
3239 			} else {
3240 				bge_asf_post_reset_old_mode(bgep,
3241 					BGE_SHUTDOWN_RESET);
3242 			}
3243 		}
3244 #endif
3245 	}
3246 #endif
3247 	/*
3248 	 * Steps 16-17: poll for firmware completion
3249 	 */
3250 	mac = bge_poll_firmware(bgep);
3251 
3252 	/*
3253 	 * Step 18: enable external memory -- doesn't apply.
3254 	 *
3255 	 * However we take the opportunity to set the MLCR anyway, as
3256 	 * this register also controls the SEEPROM auto-access method
3257 	 * which we may want to use later ...
3258 	 *
3259 	 * The proper value here depends on the way the chip is wired
3260 	 * into the circuit board, as this register *also* controls which
3261 	 * of the "Miscellaneous I/O" pins are driven as outputs and the
3262 	 * values driven onto those pins!
3263 	 *
3264 	 * See also step 74 in the PRM ...
3265 	 */
3266 	bge_reg_put32(bgep, MISC_LOCAL_CONTROL_REG,
3267 	    bgep->chipid.bge_mlcr_default);
3268 	bge_reg_set32(bgep, SERIAL_EEPROM_ADDRESS_REG, SEEPROM_ACCESS_INIT);
3269 
3270 	/*
3271 	 * Step 20: clear the Ethernet MAC mode register
3272 	 */
3273 	bge_reg_put32(bgep, ETHERNET_MAC_MODE_REG, 0);
3274 
3275 	/*
3276 	 * Step 21: restore cache-line-size, latency timer, and
3277 	 * subsystem ID registers to their original values (not
3278 	 * those read into the local structure <chipid>, 'cos
3279 	 * that was after they were cleared by the RESET).
3280 	 *
3281 	 * Note: the Subsystem Vendor/Device ID registers are not
3282 	 * directly writable in config space, so we use the shadow
3283 	 * copy in "Page Zero" of register space to restore them
3284 	 * both in one go ...
3285 	 */
3286 	pci_config_put8(bgep->cfg_handle, PCI_CONF_CACHE_LINESZ,
3287 		bgep->chipid.clsize);
3288 	pci_config_put8(bgep->cfg_handle, PCI_CONF_LATENCY_TIMER,
3289 		bgep->chipid.latency);
3290 	bge_reg_put32(bgep, PCI_CONF_SUBVENID,
3291 		(bgep->chipid.subdev << 16) | bgep->chipid.subven);
3292 
3293 	/*
3294 	 * The SEND INDEX registers should be reset to zero by the
3295 	 * global chip reset; if they're not, there'll be trouble
3296 	 * later on.
3297 	 */
3298 	sx0 = bge_reg_get32(bgep, NIC_DIAG_SEND_INDEX_REG(0));
3299 	if (sx0 != 0) {
3300 		BGE_REPORT((bgep, "SEND INDEX - device didn't RESET"));
3301 		bge_fm_ereport(bgep, DDI_FM_DEVICE_INVAL_STATE);
3302 		retval = DDI_FAILURE;
3303 	}
3304 
3305 	/* Enable MSI code */
3306 	if (bgep->intr_type == DDI_INTR_TYPE_MSI)
3307 		bge_reg_set32(bgep, MSI_MODE_REG,
3308 		    MSI_PRI_HIGHEST|MSI_MSI_ENABLE|MSI_ERROR_ATTENTION);
3309 
3310 	/*
3311 	 * On the first time through, save the factory-set MAC address
3312 	 * (if any).  If bge_poll_firmware() above didn't return one
3313 	 * (from a chip register) consider looking in the attached NV
3314 	 * memory device, if any.  Once we have it, we save it in both
3315 	 * register-image (64-bit) and byte-array forms.  All-zero and
3316 	 * all-one addresses are not valid, and we refuse to stash those.
3317 	 */
3318 	if (bgep->bge_chip_state == BGE_CHIP_INITIAL) {
3319 		if (mac == 0ULL)
3320 			mac = bge_get_nvmac(bgep);
3321 		if (mac != 0ULL && mac != ~0ULL) {
3322 			bgep->chipid.hw_mac_addr = mac;
3323 			for (i = ETHERADDRL; i-- != 0; ) {
3324 				bgep->chipid.vendor_addr.addr[i] = (uchar_t)mac;
3325 				mac >>= 8;
3326 			}
3327 			bgep->chipid.vendor_addr.set = B_TRUE;
3328 		}
3329 	}
3330 
3331 #ifdef BGE_IPMI_ASF
3332 	if (bgep->asf_enabled && bgep->asf_newhandshake) {
3333 		if (asf_mode != ASF_MODE_NONE) {
3334 			if ((asf_mode == ASF_MODE_INIT) ||
3335 				(asf_mode == ASF_MODE_POST_INIT)) {
3336 
3337 				bge_asf_post_reset_new_mode(bgep,
3338 					BGE_INIT_RESET);
3339 			} else {
3340 				bge_asf_post_reset_new_mode(bgep,
3341 					BGE_SHUTDOWN_RESET);
3342 			}
3343 		}
3344 	}
3345 #endif
3346 
3347 	/*
3348 	 * Record the new state
3349 	 */
3350 	bgep->chip_resets += 1;
3351 	bgep->bge_chip_state = BGE_CHIP_RESET;
3352 	return (retval);
3353 }
3354 
3355 /*
3356  * bge_chip_start() -- start the chip transmitting and/or receiving,
3357  * including enabling interrupts
3358  */
3359 int bge_chip_start(bge_t *bgep, boolean_t reset_phys);
3360 #pragma	no_inline(bge_chip_start)
3361 
3362 int
3363 bge_chip_start(bge_t *bgep, boolean_t reset_phys)
3364 {
3365 	uint32_t coalmode;
3366 	uint32_t ledctl;
3367 	uint32_t mtu;
3368 	uint32_t maxring;
3369 	uint32_t stats_mask;
3370 	uint32_t dma_wrprio;
3371 	uint64_t ring;
3372 	int retval = DDI_SUCCESS;
3373 
3374 	BGE_TRACE(("bge_chip_start($%p)",
3375 		(void *)bgep));
3376 
3377 	ASSERT(mutex_owned(bgep->genlock));
3378 	ASSERT(bgep->bge_chip_state == BGE_CHIP_RESET);
3379 
3380 	/*
3381 	 * Taken from Broadcom document 570X-PG102-R, pp 102-116.
3382 	 * The document specifies 95 separate steps to fully
3383 	 * initialise the chip!!!!
3384 	 *
3385 	 * The reset code above has already got us as far as step
3386 	 * 21, so we continue with ...
3387 	 *
3388 	 * Step 22: clear the MAC statistics block
3389 	 * (0x0300-0x0aff in NIC-local memory)
3390 	 */
3391 	if (bgep->chipid.statistic_type == BGE_STAT_BLK)
3392 		bge_nic_zero(bgep, NIC_MEM_STATISTICS,
3393 		    NIC_MEM_STATISTICS_SIZE);
3394 
3395 	/*
3396 	 * Step 23: clear the status block (in host memory)
3397 	 */
3398 	DMA_ZERO(bgep->status_block);
3399 
3400 	/*
3401 	 * Step 24: set DMA read/write control register
3402 	 */
3403 	pci_config_put32(bgep->cfg_handle, PCI_CONF_BGE_PDRWCR,
3404 		bgep->chipid.bge_dma_rwctrl);
3405 
3406 	/*
3407 	 * Step 25: Configure DMA endianness -- already done (16/17)
3408 	 * Step 26: Configure Host-Based Send Rings
3409 	 * Step 27: Indicate Host Stack Up
3410 	 */
3411 	bge_reg_set32(bgep, MODE_CONTROL_REG,
3412 		MODE_HOST_SEND_BDS |
3413 		MODE_HOST_STACK_UP);
3414 
3415 	/*
3416 	 * Step 28: Configure checksum options:
3417 	 *	Solaris supports the hardware default checksum options.
3418 	 *
3419 	 *	Workaround for Incorrect pseudo-header checksum calculation.
3420 	 */
3421 	if (bgep->chipid.flags & CHIP_FLAG_PARTIAL_CSUM)
3422 		bge_reg_set32(bgep, MODE_CONTROL_REG,
3423 		    MODE_SEND_NO_PSEUDO_HDR_CSUM);
3424 
3425 	/*
3426 	 * Step 29: configure Timer Prescaler.  The value is always the
3427 	 * same: the Core Clock frequency in MHz (66), minus 1, shifted
3428 	 * into bits 7-1.  Don't set bit 0, 'cos that's the RESET bit
3429 	 * for the whole chip!
3430 	 */
3431 	bge_reg_put32(bgep, MISC_CONFIG_REG, MISC_CONFIG_DEFAULT);
3432 
3433 	/*
3434 	 * Steps 30-31: Configure MAC local memory pool & DMA pool registers
3435 	 *
3436 	 * If the mbuf_length is specified as 0, we just leave these at
3437 	 * their hardware defaults, rather than explicitly setting them.
3438 	 * As the Broadcom HRM,driver better not change the parameters
3439 	 * when the chipsets is 5705/5788/5721/5751/5714 and 5715.
3440 	 */
3441 	if ((bgep->chipid.mbuf_length != 0) &&
3442 		(DEVICE_5704_SERIES_CHIPSETS(bgep))) {
3443 			bge_reg_put32(bgep, MBUF_POOL_BASE_REG,
3444 				bgep->chipid.mbuf_base);
3445 			bge_reg_put32(bgep, MBUF_POOL_LENGTH_REG,
3446 				bgep->chipid.mbuf_length);
3447 			bge_reg_put32(bgep, DMAD_POOL_BASE_REG,
3448 				DMAD_POOL_BASE_DEFAULT);
3449 			bge_reg_put32(bgep, DMAD_POOL_LENGTH_REG,
3450 				DMAD_POOL_LENGTH_DEFAULT);
3451 	}
3452 
3453 	/*
3454 	 * Step 32: configure MAC memory pool watermarks
3455 	 */
3456 	bge_reg_put32(bgep, RDMA_MBUF_LOWAT_REG,
3457 		bgep->chipid.mbuf_lo_water_rdma);
3458 	bge_reg_put32(bgep, MAC_RX_MBUF_LOWAT_REG,
3459 		bgep->chipid.mbuf_lo_water_rmac);
3460 	bge_reg_put32(bgep, MBUF_HIWAT_REG,
3461 		bgep->chipid.mbuf_hi_water);
3462 
3463 	/*
3464 	 * Step 33: configure DMA resource watermarks
3465 	 */
3466 	if (DEVICE_5704_SERIES_CHIPSETS(bgep)) {
3467 		bge_reg_put32(bgep, DMAD_POOL_LOWAT_REG,
3468 		    bge_dmad_lo_water);
3469 		bge_reg_put32(bgep, DMAD_POOL_HIWAT_REG,
3470 		    bge_dmad_hi_water);
3471 	}
3472 	bge_reg_put32(bgep, LOWAT_MAX_RECV_FRAMES_REG, bge_lowat_recv_frames);
3473 
3474 	/*
3475 	 * Steps 34-36: enable buffer manager & internal h/w queues
3476 	 */
3477 	if (!bge_chip_enable_engine(bgep, BUFFER_MANAGER_MODE_REG,
3478 	    STATE_MACHINE_ATTN_ENABLE_BIT))
3479 		retval = DDI_FAILURE;
3480 	if (!bge_chip_enable_engine(bgep, FTQ_RESET_REG, 0))
3481 		retval = DDI_FAILURE;
3482 
3483 	/*
3484 	 * Steps 37-39: initialise Receive Buffer (Producer) RCBs
3485 	 */
3486 	bge_reg_putrcb(bgep, STD_RCV_BD_RING_RCB_REG,
3487 		&bgep->buff[BGE_STD_BUFF_RING].hw_rcb);
3488 	if (DEVICE_5704_SERIES_CHIPSETS(bgep)) {
3489 		bge_reg_putrcb(bgep, JUMBO_RCV_BD_RING_RCB_REG,
3490 			&bgep->buff[BGE_JUMBO_BUFF_RING].hw_rcb);
3491 		bge_reg_putrcb(bgep, MINI_RCV_BD_RING_RCB_REG,
3492 			&bgep->buff[BGE_MINI_BUFF_RING].hw_rcb);
3493 	}
3494 
3495 	/*
3496 	 * Step 40: set Receive Buffer Descriptor Ring replenish thresholds
3497 	 */
3498 	bge_reg_put32(bgep, STD_RCV_BD_REPLENISH_REG, bge_replenish_std);
3499 	if (DEVICE_5704_SERIES_CHIPSETS(bgep)) {
3500 		bge_reg_put32(bgep, JUMBO_RCV_BD_REPLENISH_REG,
3501 		    bge_replenish_jumbo);
3502 		bge_reg_put32(bgep, MINI_RCV_BD_REPLENISH_REG,
3503 		    bge_replenish_mini);
3504 	}
3505 
3506 	/*
3507 	 * Steps 41-43: clear Send Ring Producer Indices and initialise
3508 	 * Send Producer Rings (0x0100-0x01ff in NIC-local memory)
3509 	 */
3510 	if (DEVICE_5704_SERIES_CHIPSETS(bgep))
3511 		maxring = BGE_SEND_RINGS_MAX;
3512 	else
3513 		maxring = BGE_SEND_RINGS_MAX_5705;
3514 	for (ring = 0; ring < maxring; ++ring) {
3515 		bge_mbx_put(bgep, SEND_RING_HOST_INDEX_REG(ring), 0);
3516 		bge_mbx_put(bgep, SEND_RING_NIC_INDEX_REG(ring), 0);
3517 		bge_nic_putrcb(bgep, NIC_MEM_SEND_RING(ring),
3518 			&bgep->send[ring].hw_rcb);
3519 	}
3520 
3521 	/*
3522 	 * Steps 44-45: initialise Receive Return Rings
3523 	 * (0x0200-0x02ff in NIC-local memory)
3524 	 */
3525 	if (DEVICE_5704_SERIES_CHIPSETS(bgep))
3526 		maxring = BGE_RECV_RINGS_MAX;
3527 	else
3528 		maxring = BGE_RECV_RINGS_MAX_5705;
3529 	for (ring = 0; ring < maxring; ++ring)
3530 		bge_nic_putrcb(bgep, NIC_MEM_RECV_RING(ring),
3531 			&bgep->recv[ring].hw_rcb);
3532 
3533 	/*
3534 	 * Step 46: initialise Receive Buffer (Producer) Ring indexes
3535 	 */
3536 	bge_mbx_put(bgep, RECV_STD_PROD_INDEX_REG, 0);
3537 	if (DEVICE_5704_SERIES_CHIPSETS(bgep)) {
3538 		bge_mbx_put(bgep, RECV_JUMBO_PROD_INDEX_REG, 0);
3539 		bge_mbx_put(bgep, RECV_MINI_PROD_INDEX_REG, 0);
3540 	}
3541 	/*
3542 	 * Step 47: configure the MAC unicast address
3543 	 * Step 48: configure the random backoff seed
3544 	 * Step 96: set up multicast filters
3545 	 */
3546 #ifdef BGE_IPMI_ASF
3547 	if (bge_chip_sync(bgep, B_FALSE) == DDI_FAILURE)
3548 #else
3549 	if (bge_chip_sync(bgep) == DDI_FAILURE)
3550 #endif
3551 		retval = DDI_FAILURE;
3552 
3553 	/*
3554 	 * Step 49: configure the MTU
3555 	 */
3556 	mtu = bgep->chipid.ethmax_size+ETHERFCSL+VLAN_TAGSZ;
3557 	bge_reg_put32(bgep, MAC_RX_MTU_SIZE_REG, mtu);
3558 
3559 	/*
3560 	 * Step 50: configure the IPG et al
3561 	 */
3562 	bge_reg_put32(bgep, MAC_TX_LENGTHS_REG, MAC_TX_LENGTHS_DEFAULT);
3563 
3564 	/*
3565 	 * Step 51: configure the default Rx Return Ring
3566 	 */
3567 	bge_reg_put32(bgep, RCV_RULES_CONFIG_REG, RCV_RULES_CONFIG_DEFAULT);
3568 
3569 	/*
3570 	 * Steps 52-54: configure Receive List Placement,
3571 	 * and enable Receive List Placement Statistics
3572 	 */
3573 	bge_reg_put32(bgep, RCV_LP_CONFIG_REG,
3574 		RCV_LP_CONFIG(bgep->chipid.rx_rings));
3575 	switch (MHCR_CHIP_ASIC_REV(bgep->chipid.asic_rev)) {
3576 	case MHCR_CHIP_ASIC_REV_5700:
3577 	case MHCR_CHIP_ASIC_REV_5701:
3578 	case MHCR_CHIP_ASIC_REV_5703:
3579 	case MHCR_CHIP_ASIC_REV_5704:
3580 		bge_reg_put32(bgep, RCV_LP_STATS_ENABLE_MASK_REG, ~0);
3581 		break;
3582 	case MHCR_CHIP_ASIC_REV_5705:
3583 		break;
3584 	default:
3585 		stats_mask = bge_reg_get32(bgep, RCV_LP_STATS_ENABLE_MASK_REG);
3586 		stats_mask &= ~RCV_LP_STATS_DISABLE_MACTQ;
3587 		bge_reg_put32(bgep, RCV_LP_STATS_ENABLE_MASK_REG, stats_mask);
3588 		break;
3589 	}
3590 	bge_reg_set32(bgep, RCV_LP_STATS_CONTROL_REG, RCV_LP_STATS_ENABLE);
3591 
3592 	if (bgep->chipid.rx_rings > 1)
3593 		bge_init_recv_rule(bgep);
3594 
3595 	/*
3596 	 * Steps 55-56: enable Send Data Initiator Statistics
3597 	 */
3598 	bge_reg_put32(bgep, SEND_INIT_STATS_ENABLE_MASK_REG, ~0);
3599 	if (DEVICE_5704_SERIES_CHIPSETS(bgep)) {
3600 		bge_reg_put32(bgep, SEND_INIT_STATS_CONTROL_REG,
3601 		    SEND_INIT_STATS_ENABLE | SEND_INIT_STATS_FASTER);
3602 	} else {
3603 		bge_reg_put32(bgep, SEND_INIT_STATS_CONTROL_REG,
3604 		    SEND_INIT_STATS_ENABLE);
3605 	}
3606 	/*
3607 	 * Steps 57-58: stop (?) the Host Coalescing Engine
3608 	 */
3609 	if (!bge_chip_disable_engine(bgep, HOST_COALESCE_MODE_REG, ~0))
3610 		retval = DDI_FAILURE;
3611 
3612 	/*
3613 	 * Steps 59-62: initialise Host Coalescing parameters
3614 	 */
3615 	bge_reg_put32(bgep, SEND_COALESCE_MAX_BD_REG, bge_tx_count_norm);
3616 	bge_reg_put32(bgep, SEND_COALESCE_TICKS_REG, bge_tx_ticks_norm);
3617 	bge_reg_put32(bgep, RCV_COALESCE_MAX_BD_REG, bge_rx_count_norm);
3618 	bge_reg_put32(bgep, RCV_COALESCE_TICKS_REG, bge_rx_ticks_norm);
3619 	if (DEVICE_5704_SERIES_CHIPSETS(bgep)) {
3620 		bge_reg_put32(bgep, SEND_COALESCE_INT_BD_REG,
3621 		    bge_tx_count_intr);
3622 		bge_reg_put32(bgep, SEND_COALESCE_INT_TICKS_REG,
3623 		    bge_tx_ticks_intr);
3624 		bge_reg_put32(bgep, RCV_COALESCE_INT_BD_REG,
3625 		    bge_rx_count_intr);
3626 		bge_reg_put32(bgep, RCV_COALESCE_INT_TICKS_REG,
3627 		    bge_rx_ticks_intr);
3628 	}
3629 
3630 	/*
3631 	 * Steps 63-64: initialise status block & statistics
3632 	 * host memory addresses
3633 	 * The statistic block does not exist in some chipsets
3634 	 * Step 65: initialise Statistics Coalescing Tick Counter
3635 	 */
3636 	bge_reg_put64(bgep, STATUS_BLOCK_HOST_ADDR_REG,
3637 		bgep->status_block.cookie.dmac_laddress);
3638 
3639 	/*
3640 	 * Steps 66-67: initialise status block & statistics
3641 	 * NIC-local memory addresses
3642 	 */
3643 	if (DEVICE_5704_SERIES_CHIPSETS(bgep)) {
3644 		bge_reg_put64(bgep, STATISTICS_HOST_ADDR_REG,
3645 		    bgep->statistics.cookie.dmac_laddress);
3646 		bge_reg_put32(bgep, STATISTICS_TICKS_REG,
3647 		    STATISTICS_TICKS_DEFAULT);
3648 		bge_reg_put32(bgep, STATUS_BLOCK_BASE_ADDR_REG,
3649 		    NIC_MEM_STATUS_BLOCK);
3650 		bge_reg_put32(bgep, STATISTICS_BASE_ADDR_REG,
3651 		    NIC_MEM_STATISTICS);
3652 	}
3653 
3654 	/*
3655 	 * Steps 68-71: start the Host Coalescing Engine, the Receive BD
3656 	 * Completion Engine, the Receive List Placement Engine, and the
3657 	 * Receive List selector.Pay attention:0x3400 is not exist in BCM5714
3658 	 * and BCM5715.
3659 	 */
3660 	if (bgep->chipid.tx_rings <= COALESCE_64_BYTE_RINGS &&
3661 	    bgep->chipid.rx_rings <= COALESCE_64_BYTE_RINGS)
3662 		coalmode = COALESCE_64_BYTE_STATUS;
3663 	else
3664 		coalmode = 0;
3665 	if (!bge_chip_enable_engine(bgep, HOST_COALESCE_MODE_REG, coalmode))
3666 		retval = DDI_FAILURE;
3667 	if (!bge_chip_enable_engine(bgep, RCV_BD_COMPLETION_MODE_REG,
3668 	    STATE_MACHINE_ATTN_ENABLE_BIT))
3669 		retval = DDI_FAILURE;
3670 	if (!bge_chip_enable_engine(bgep, RCV_LIST_PLACEMENT_MODE_REG, 0))
3671 		retval = DDI_FAILURE;
3672 
3673 	if (DEVICE_5704_SERIES_CHIPSETS(bgep))
3674 		if (!bge_chip_enable_engine(bgep, RCV_LIST_SELECTOR_MODE_REG,
3675 		    STATE_MACHINE_ATTN_ENABLE_BIT))
3676 			retval = DDI_FAILURE;
3677 
3678 	/*
3679 	 * Step 72: Enable MAC DMA engines
3680 	 * Step 73: Clear & enable MAC statistics
3681 	 */
3682 	bge_reg_set32(bgep, ETHERNET_MAC_MODE_REG,
3683 		ETHERNET_MODE_ENABLE_FHDE |
3684 		ETHERNET_MODE_ENABLE_RDE |
3685 		ETHERNET_MODE_ENABLE_TDE);
3686 	bge_reg_set32(bgep, ETHERNET_MAC_MODE_REG,
3687 		ETHERNET_MODE_ENABLE_TX_STATS |
3688 		ETHERNET_MODE_ENABLE_RX_STATS |
3689 		ETHERNET_MODE_CLEAR_TX_STATS |
3690 		ETHERNET_MODE_CLEAR_RX_STATS);
3691 
3692 	/*
3693 	 * Step 74: configure the MLCR (Miscellaneous Local Control
3694 	 * Register); not required, as we set up the MLCR in step 10
3695 	 * (part of the reset code) above.
3696 	 *
3697 	 * Step 75: clear Interrupt Mailbox 0
3698 	 */
3699 	bge_mbx_put(bgep, INTERRUPT_MBOX_0_REG, 0);
3700 
3701 	/*
3702 	 * Steps 76-87: Gentlemen, start your engines ...
3703 	 *
3704 	 * Enable the DMA Completion Engine, the Write DMA Engine,
3705 	 * the Read DMA Engine, Receive Data Completion Engine,
3706 	 * the MBuf Cluster Free Engine, the Send Data Completion Engine,
3707 	 * the Send BD Completion Engine, the Receive BD Initiator Engine,
3708 	 * the Receive Data Initiator Engine, the Send Data Initiator Engine,
3709 	 * the Send BD Initiator Engine, and the Send BD Selector Engine.
3710 	 *
3711 	 * Beware exhaust fumes?
3712 	 */
3713 	if (DEVICE_5704_SERIES_CHIPSETS(bgep))
3714 		if (!bge_chip_enable_engine(bgep, DMA_COMPLETION_MODE_REG, 0))
3715 			retval = DDI_FAILURE;
3716 	dma_wrprio = (bge_dma_wrprio << DMA_PRIORITY_SHIFT) |
3717 				ALL_DMA_ATTN_BITS;
3718 	if (MHCR_CHIP_ASIC_REV(bgep->chipid.asic_rev) ==
3719 		MHCR_CHIP_ASIC_REV_5755) {
3720 		dma_wrprio |= DMA_STATUS_TAG_FIX_CQ12384;
3721 	}
3722 	if (!bge_chip_enable_engine(bgep, WRITE_DMA_MODE_REG,
3723 			dma_wrprio))
3724 		retval = DDI_FAILURE;
3725 	if (!bge_chip_enable_engine(bgep, READ_DMA_MODE_REG,
3726 	    (bge_dma_rdprio << DMA_PRIORITY_SHIFT) | ALL_DMA_ATTN_BITS))
3727 		retval = DDI_FAILURE;
3728 	if (!bge_chip_enable_engine(bgep, RCV_DATA_COMPLETION_MODE_REG,
3729 	    STATE_MACHINE_ATTN_ENABLE_BIT))
3730 		retval = DDI_FAILURE;
3731 	if (DEVICE_5704_SERIES_CHIPSETS(bgep))
3732 		if (!bge_chip_enable_engine(bgep,
3733 		    MBUF_CLUSTER_FREE_MODE_REG, 0))
3734 			retval = DDI_FAILURE;
3735 	if (!bge_chip_enable_engine(bgep, SEND_DATA_COMPLETION_MODE_REG, 0))
3736 		retval = DDI_FAILURE;
3737 	if (!bge_chip_enable_engine(bgep, SEND_BD_COMPLETION_MODE_REG,
3738 	    STATE_MACHINE_ATTN_ENABLE_BIT))
3739 		retval = DDI_FAILURE;
3740 	if (!bge_chip_enable_engine(bgep, RCV_BD_INITIATOR_MODE_REG,
3741 	    RCV_BD_DISABLED_RING_ATTN))
3742 		retval = DDI_FAILURE;
3743 	if (!bge_chip_enable_engine(bgep, RCV_DATA_BD_INITIATOR_MODE_REG,
3744 	    RCV_DATA_BD_ILL_RING_ATTN))
3745 		retval = DDI_FAILURE;
3746 	if (!bge_chip_enable_engine(bgep, SEND_DATA_INITIATOR_MODE_REG, 0))
3747 		retval = DDI_FAILURE;
3748 	if (!bge_chip_enable_engine(bgep, SEND_BD_INITIATOR_MODE_REG,
3749 	    STATE_MACHINE_ATTN_ENABLE_BIT))
3750 		retval = DDI_FAILURE;
3751 	if (!bge_chip_enable_engine(bgep, SEND_BD_SELECTOR_MODE_REG,
3752 	    STATE_MACHINE_ATTN_ENABLE_BIT))
3753 		retval = DDI_FAILURE;
3754 
3755 	/*
3756 	 * Step 88: download firmware -- doesn't apply
3757 	 * Steps 89-90: enable Transmit & Receive MAC Engines
3758 	 */
3759 	if (!bge_chip_enable_engine(bgep, TRANSMIT_MAC_MODE_REG, 0))
3760 		retval = DDI_FAILURE;
3761 #ifdef BGE_IPMI_ASF
3762 	if (!bgep->asf_enabled) {
3763 		if (!bge_chip_enable_engine(bgep, RECEIVE_MAC_MODE_REG,
3764 		    RECEIVE_MODE_KEEP_VLAN_TAG))
3765 			retval = DDI_FAILURE;
3766 	} else {
3767 		if (!bge_chip_enable_engine(bgep, RECEIVE_MAC_MODE_REG, 0))
3768 			retval = DDI_FAILURE;
3769 	}
3770 #else
3771 	if (!bge_chip_enable_engine(bgep, RECEIVE_MAC_MODE_REG,
3772 	    RECEIVE_MODE_KEEP_VLAN_TAG))
3773 		retval = DDI_FAILURE;
3774 #endif
3775 
3776 	/*
3777 	 * Step 91: disable auto-polling of PHY status
3778 	 */
3779 	bge_reg_put32(bgep, MI_MODE_REG, MI_MODE_DEFAULT);
3780 
3781 	/*
3782 	 * Step 92: configure D0 power state (not required)
3783 	 * Step 93: initialise LED control register ()
3784 	 */
3785 	ledctl = LED_CONTROL_DEFAULT;
3786 	switch (bgep->chipid.device) {
3787 	case DEVICE_ID_5700:
3788 	case DEVICE_ID_5700x:
3789 	case DEVICE_ID_5701:
3790 		/*
3791 		 * Switch to 5700 (MAC) mode on these older chips
3792 		 */
3793 		ledctl &= ~LED_CONTROL_LED_MODE_MASK;
3794 		ledctl |= LED_CONTROL_LED_MODE_5700;
3795 		break;
3796 
3797 	default:
3798 		break;
3799 	}
3800 	bge_reg_put32(bgep, ETHERNET_MAC_LED_CONTROL_REG, ledctl);
3801 
3802 	/*
3803 	 * Step 94: activate link
3804 	 */
3805 	bge_reg_put32(bgep, MI_STATUS_REG, MI_STATUS_LINK);
3806 
3807 	/*
3808 	 * Step 95: set up physical layer (PHY/SerDes)
3809 	 * restart autoneg (if required)
3810 	 */
3811 	if (reset_phys)
3812 		if (bge_phys_update(bgep) == DDI_FAILURE)
3813 			retval = DDI_FAILURE;
3814 
3815 	/*
3816 	 * Extra step (DSG): hand over all the Receive Buffers to the chip
3817 	 */
3818 	for (ring = 0; ring < BGE_BUFF_RINGS_USED; ++ring)
3819 		bge_mbx_put(bgep, bgep->buff[ring].chip_mbx_reg,
3820 			bgep->buff[ring].rf_next);
3821 
3822 	/*
3823 	 * MSI bits:The least significant MSI 16-bit word.
3824 	 * ISR will be triggered different.
3825 	 */
3826 	if (bgep->intr_type == DDI_INTR_TYPE_MSI)
3827 		bge_reg_set32(bgep, HOST_COALESCE_MODE_REG, 0x70);
3828 
3829 	/*
3830 	 * Extra step (DSG): select which interrupts are enabled
3831 	 *
3832 	 * Program the Ethernet MAC engine to signal attention on
3833 	 * Link Change events, then enable interrupts on MAC, DMA,
3834 	 * and FLOW attention signals.
3835 	 */
3836 	bge_reg_set32(bgep, ETHERNET_MAC_EVENT_ENABLE_REG,
3837 		ETHERNET_EVENT_LINK_INT |
3838 		ETHERNET_STATUS_PCS_ERROR_INT);
3839 #ifdef BGE_IPMI_ASF
3840 	if (bgep->asf_enabled) {
3841 		bge_reg_set32(bgep, MODE_CONTROL_REG,
3842 			MODE_INT_ON_FLOW_ATTN |
3843 			MODE_INT_ON_DMA_ATTN |
3844 			MODE_HOST_STACK_UP|
3845 			MODE_INT_ON_MAC_ATTN);
3846 	} else {
3847 #endif
3848 		bge_reg_set32(bgep, MODE_CONTROL_REG,
3849 			MODE_INT_ON_FLOW_ATTN |
3850 			MODE_INT_ON_DMA_ATTN |
3851 			MODE_INT_ON_MAC_ATTN);
3852 #ifdef BGE_IPMI_ASF
3853 	}
3854 #endif
3855 
3856 	/*
3857 	 * Step 97: enable PCI interrupts!!!
3858 	 */
3859 	if (bgep->intr_type == DDI_INTR_TYPE_FIXED)
3860 		bge_cfg_clr32(bgep, PCI_CONF_BGE_MHCR,
3861 		    MHCR_MASK_PCI_INT_OUTPUT);
3862 
3863 	/*
3864 	 * All done!
3865 	 */
3866 	bgep->bge_chip_state = BGE_CHIP_RUNNING;
3867 	return (retval);
3868 }
3869 
3870 
3871 /*
3872  * ========== Hardware interrupt handler ==========
3873  */
3874 
3875 #undef	BGE_DBG
3876 #define	BGE_DBG		BGE_DBG_INT	/* debug flag for this code	*/
3877 
3878 /*
3879  * Sync the status block, then atomically clear the specified bits in
3880  * the <flags-and-tag> field of the status block.
3881  * the <flags> word of the status block, returning the value of the
3882  * <tag> and the <flags> before the bits were cleared.
3883  */
3884 static int bge_status_sync(bge_t *bgep, uint64_t bits, uint64_t *flags);
3885 #pragma	inline(bge_status_sync)
3886 
3887 static int
3888 bge_status_sync(bge_t *bgep, uint64_t bits, uint64_t *flags)
3889 {
3890 	bge_status_t *bsp;
3891 	int retval;
3892 
3893 	BGE_TRACE(("bge_status_sync($%p, 0x%llx)",
3894 		(void *)bgep, bits));
3895 
3896 	ASSERT(bgep->bge_guard == BGE_GUARD);
3897 
3898 	DMA_SYNC(bgep->status_block, DDI_DMA_SYNC_FORKERNEL);
3899 	retval = bge_check_dma_handle(bgep, bgep->status_block.dma_hdl);
3900 	if (retval != DDI_FM_OK)
3901 		return (retval);
3902 
3903 	bsp = DMA_VPTR(bgep->status_block);
3904 	*flags = bge_atomic_clr64(&bsp->flags_n_tag, bits);
3905 
3906 	BGE_DEBUG(("bge_status_sync($%p, 0x%llx) returning 0x%llx",
3907 		(void *)bgep, bits, *flags));
3908 
3909 	return (retval);
3910 }
3911 
3912 static void bge_wake_factotum(bge_t *bgep);
3913 #pragma	inline(bge_wake_factotum)
3914 
3915 static void
3916 bge_wake_factotum(bge_t *bgep)
3917 {
3918 	mutex_enter(bgep->softintrlock);
3919 	if (bgep->factotum_flag == 0) {
3920 		bgep->factotum_flag = 1;
3921 		ddi_trigger_softintr(bgep->factotum_id);
3922 	}
3923 	mutex_exit(bgep->softintrlock);
3924 }
3925 
3926 /*
3927  *	bge_intr() -- handle chip interrupts
3928  */
3929 uint_t bge_intr(caddr_t arg1, caddr_t arg2);
3930 #pragma	no_inline(bge_intr)
3931 
3932 uint_t
3933 bge_intr(caddr_t arg1, caddr_t arg2)
3934 {
3935 	bge_t *bgep = (bge_t *)arg1;		/* private device info	*/
3936 	bge_status_t *bsp;
3937 	uint64_t flags;
3938 	uint32_t regval;
3939 	uint_t result;
3940 	int retval, loop_cnt = 0;
3941 
3942 	BGE_TRACE(("bge_intr($%p) ($%p)", arg1, arg2));
3943 
3944 	/*
3945 	 * GLD v2 checks that s/w setup is complete before passing
3946 	 * interrupts to this routine, thus eliminating the old
3947 	 * (and well-known) race condition around ddi_add_intr()
3948 	 */
3949 	ASSERT(bgep->progress & PROGRESS_HWINT);
3950 
3951 	result = DDI_INTR_UNCLAIMED;
3952 	mutex_enter(bgep->genlock);
3953 
3954 	if (bgep->intr_type == DDI_INTR_TYPE_FIXED) {
3955 		/*
3956 		 * Check whether chip's says it's asserting #INTA;
3957 		 * if not, don't process or claim the interrupt.
3958 		 *
3959 		 * Note that the PCI signal is active low, so the
3960 		 * bit is *zero* when the interrupt is asserted.
3961 		 */
3962 		regval = bge_reg_get32(bgep, MISC_LOCAL_CONTROL_REG);
3963 		if (regval & MLCR_INTA_STATE) {
3964 			if (bge_check_acc_handle(bgep, bgep->io_handle)
3965 			    != DDI_FM_OK)
3966 				goto chip_stop;
3967 			mutex_exit(bgep->genlock);
3968 			return (result);
3969 		}
3970 
3971 		/*
3972 		 * Block further PCI interrupts ...
3973 		 */
3974 		bge_reg_set32(bgep, PCI_CONF_BGE_MHCR,
3975 		    MHCR_MASK_PCI_INT_OUTPUT);
3976 
3977 	} else {
3978 		/*
3979 		 * Check MSI status
3980 		 */
3981 		regval = bge_reg_get32(bgep, MSI_STATUS_REG);
3982 		if (regval & MSI_ERROR_ATTENTION) {
3983 			BGE_REPORT((bgep, "msi error attention,"
3984 			    " status=0x%x", regval));
3985 			bge_reg_put32(bgep, MSI_STATUS_REG, regval);
3986 		}
3987 	}
3988 
3989 	result = DDI_INTR_CLAIMED;
3990 
3991 	BGE_DEBUG(("bge_intr($%p) ($%p) regval 0x%08x", arg1, arg2, regval));
3992 
3993 	/*
3994 	 * Sync the status block and grab the flags-n-tag from it.
3995 	 * We count the number of interrupts where there doesn't
3996 	 * seem to have been a DMA update of the status block; if
3997 	 * it *has* been updated, the counter will be cleared in
3998 	 * the while() loop below ...
3999 	 */
4000 	bgep->missed_dmas += 1;
4001 	bsp = DMA_VPTR(bgep->status_block);
4002 	for (loop_cnt = 0; loop_cnt < bge_intr_max_loop; loop_cnt++) {
4003 		if (bgep->bge_chip_state != BGE_CHIP_RUNNING) {
4004 			/*
4005 			 * bge_chip_stop() may have freed dma area etc
4006 			 * while we were in this interrupt handler -
4007 			 * better not call bge_status_sync()
4008 			 */
4009 			(void) bge_check_acc_handle(bgep,
4010 			    bgep->io_handle);
4011 			mutex_exit(bgep->genlock);
4012 			return (DDI_INTR_CLAIMED);
4013 		}
4014 		retval = bge_status_sync(bgep, STATUS_FLAG_UPDATED,
4015 		    &flags);
4016 		if (retval != DDI_FM_OK) {
4017 			bgep->bge_dma_error = B_TRUE;
4018 			goto chip_stop;
4019 		}
4020 
4021 		if (!(flags & STATUS_FLAG_UPDATED))
4022 			break;
4023 
4024 		/*
4025 		 * Tell the chip that we're processing the interrupt
4026 		 */
4027 		bge_mbx_put(bgep, INTERRUPT_MBOX_0_REG,
4028 		    INTERRUPT_MBOX_DISABLE(flags));
4029 		if (bge_check_acc_handle(bgep, bgep->io_handle) !=
4030 		    DDI_FM_OK)
4031 			goto chip_stop;
4032 
4033 		/*
4034 		 * Drop the mutex while we:
4035 		 * 	Receive any newly-arrived packets
4036 		 *	Recycle any newly-finished send buffers
4037 		 */
4038 		bgep->bge_intr_running = B_TRUE;
4039 		mutex_exit(bgep->genlock);
4040 		bge_receive(bgep, bsp);
4041 		bge_recycle(bgep, bsp);
4042 		mutex_enter(bgep->genlock);
4043 		bgep->bge_intr_running = B_FALSE;
4044 
4045 		/*
4046 		 * Tell the chip we've finished processing, and
4047 		 * give it the tag that we got from the status
4048 		 * block earlier, so that it knows just how far
4049 		 * we've gone.  If it's got more for us to do,
4050 		 * it will now update the status block and try
4051 		 * to assert an interrupt (but we've got the
4052 		 * #INTA blocked at present).  If we see the
4053 		 * update, we'll loop around to do some more.
4054 		 * Eventually we'll get out of here ...
4055 		 */
4056 		bge_mbx_put(bgep, INTERRUPT_MBOX_0_REG,
4057 		    INTERRUPT_MBOX_ENABLE(flags));
4058 		bgep->missed_dmas = 0;
4059 	}
4060 
4061 	/*
4062 	 * Check for exceptional conditions that we need to handle
4063 	 *
4064 	 * Link status changed
4065 	 * Status block not updated
4066 	 */
4067 	if (flags & STATUS_FLAG_LINK_CHANGED)
4068 		bge_wake_factotum(bgep);
4069 
4070 	if (bgep->missed_dmas) {
4071 		/*
4072 		 * Probably due to the internal status tag not
4073 		 * being reset.  Force a status block update now;
4074 		 * this should ensure that we get an update and
4075 		 * a new interrupt.  After that, we should be in
4076 		 * sync again ...
4077 		 */
4078 		BGE_REPORT((bgep, "interrupt: flags 0x%llx - "
4079 		    "not updated?", flags));
4080 		bgep->missed_updates++;
4081 		bge_reg_set32(bgep, HOST_COALESCE_MODE_REG,
4082 		    COALESCE_NOW);
4083 
4084 		if (bgep->missed_dmas >= bge_dma_miss_limit) {
4085 			/*
4086 			 * If this happens multiple times in a row,
4087 			 * it means DMA is just not working.  Maybe
4088 			 * the chip's failed, or maybe there's a
4089 			 * problem on the PCI bus or in the host-PCI
4090 			 * bridge (Tomatillo).
4091 			 *
4092 			 * At all events, we want to stop further
4093 			 * interrupts and let the recovery code take
4094 			 * over to see whether anything can be done
4095 			 * about it ...
4096 			 */
4097 			bge_fm_ereport(bgep,
4098 			    DDI_FM_DEVICE_BADINT_LIMIT);
4099 			goto chip_stop;
4100 		}
4101 	}
4102 
4103 	/*
4104 	 * Reenable assertion of #INTA, unless there's a DMA fault
4105 	 */
4106 	if (bgep->intr_type == DDI_INTR_TYPE_FIXED) {
4107 		bge_reg_clr32(bgep, PCI_CONF_BGE_MHCR,
4108 		    MHCR_MASK_PCI_INT_OUTPUT);
4109 		if (bge_check_acc_handle(bgep, bgep->cfg_handle) !=
4110 		    DDI_FM_OK)
4111 			goto chip_stop;
4112 	}
4113 
4114 	if (bge_check_acc_handle(bgep, bgep->io_handle) != DDI_FM_OK)
4115 		goto chip_stop;
4116 
4117 	mutex_exit(bgep->genlock);
4118 	return (result);
4119 
4120 chip_stop:
4121 #ifdef BGE_IPMI_ASF
4122 	if (bgep->asf_enabled && bgep->asf_status == ASF_STAT_RUN) {
4123 		/*
4124 		 * We must stop ASF heart beat before
4125 		 * bge_chip_stop(), otherwise some
4126 		 * computers (ex. IBM HS20 blade
4127 		 * server) may crash.
4128 		 */
4129 		bge_asf_update_status(bgep);
4130 		bge_asf_stop_timer(bgep);
4131 		bgep->asf_status = ASF_STAT_STOP;
4132 
4133 		bge_asf_pre_reset_operations(bgep, BGE_INIT_RESET);
4134 		(void) bge_check_acc_handle(bgep, bgep->cfg_handle);
4135 	}
4136 #endif
4137 	bge_chip_stop(bgep, B_TRUE);
4138 	(void) bge_check_acc_handle(bgep, bgep->io_handle);
4139 	mutex_exit(bgep->genlock);
4140 	return (result);
4141 }
4142 
4143 /*
4144  * ========== Factotum, implemented as a softint handler ==========
4145  */
4146 
4147 #undef	BGE_DBG
4148 #define	BGE_DBG		BGE_DBG_FACT	/* debug flag for this code	*/
4149 
4150 static void bge_factotum_error_handler(bge_t *bgep);
4151 #pragma	no_inline(bge_factotum_error_handler)
4152 
4153 static void
4154 bge_factotum_error_handler(bge_t *bgep)
4155 {
4156 	uint32_t flow;
4157 	uint32_t rdma;
4158 	uint32_t wdma;
4159 	uint32_t tmac;
4160 	uint32_t rmac;
4161 	uint32_t rxrs;
4162 	uint32_t txrs = 0;
4163 
4164 	ASSERT(mutex_owned(bgep->genlock));
4165 
4166 	/*
4167 	 * Read all the registers that show the possible
4168 	 * reasons for the ERROR bit to be asserted
4169 	 */
4170 	flow = bge_reg_get32(bgep, FLOW_ATTN_REG);
4171 	rdma = bge_reg_get32(bgep, READ_DMA_STATUS_REG);
4172 	wdma = bge_reg_get32(bgep, WRITE_DMA_STATUS_REG);
4173 	tmac = bge_reg_get32(bgep, TRANSMIT_MAC_STATUS_REG);
4174 	rmac = bge_reg_get32(bgep, RECEIVE_MAC_STATUS_REG);
4175 	rxrs = bge_reg_get32(bgep, RX_RISC_STATE_REG);
4176 	if (DEVICE_5704_SERIES_CHIPSETS(bgep))
4177 		txrs = bge_reg_get32(bgep, TX_RISC_STATE_REG);
4178 
4179 	BGE_DEBUG(("factotum($%p) flow 0x%x rdma 0x%x wdma 0x%x",
4180 		(void *)bgep, flow, rdma, wdma));
4181 	BGE_DEBUG(("factotum($%p) tmac 0x%x rmac 0x%x rxrs 0x%08x txrs 0x%08x",
4182 		(void *)bgep, tmac, rmac, rxrs, txrs));
4183 
4184 	/*
4185 	 * For now, just clear all the errors ...
4186 	 */
4187 	if (DEVICE_5704_SERIES_CHIPSETS(bgep))
4188 		bge_reg_put32(bgep, TX_RISC_STATE_REG, ~0);
4189 	bge_reg_put32(bgep, RX_RISC_STATE_REG, ~0);
4190 	bge_reg_put32(bgep, RECEIVE_MAC_STATUS_REG, ~0);
4191 	bge_reg_put32(bgep, WRITE_DMA_STATUS_REG, ~0);
4192 	bge_reg_put32(bgep, READ_DMA_STATUS_REG, ~0);
4193 	bge_reg_put32(bgep, FLOW_ATTN_REG, ~0);
4194 }
4195 
4196 /*
4197  * Handler for hardware link state change.
4198  *
4199  * When this routine is called, the hardware link state has changed
4200  * and the new state is reflected in the param_* variables.  Here
4201  * we must update the softstate and reprogram the MAC to match.
4202  */
4203 static void bge_factotum_link_handler(bge_t *bgep);
4204 #pragma	no_inline(bge_factotum_link_handler)
4205 
4206 static void
4207 bge_factotum_link_handler(bge_t *bgep)
4208 {
4209 	ASSERT(mutex_owned(bgep->genlock));
4210 
4211 	/*
4212 	 * Update the s/w link_state
4213 	 */
4214 	if (bgep->param_link_up)
4215 		bgep->link_state = LINK_STATE_UP;
4216 	else
4217 		bgep->link_state = LINK_STATE_DOWN;
4218 
4219 	/*
4220 	 * Reprogram the MAC modes to match
4221 	 */
4222 	bge_sync_mac_modes(bgep);
4223 }
4224 
4225 static boolean_t bge_factotum_link_check(bge_t *bgep, int *dma_state);
4226 #pragma	no_inline(bge_factotum_link_check)
4227 
4228 static boolean_t
4229 bge_factotum_link_check(bge_t *bgep, int *dma_state)
4230 {
4231 	boolean_t check;
4232 	uint64_t flags;
4233 	uint32_t tmac_status;
4234 
4235 	ASSERT(mutex_owned(bgep->genlock));
4236 
4237 	/*
4238 	 * Get & clear the writable status bits in the Tx status register
4239 	 * (some bits are write-1-to-clear, others are just readonly).
4240 	 */
4241 	tmac_status = bge_reg_get32(bgep, TRANSMIT_MAC_STATUS_REG);
4242 	bge_reg_put32(bgep, TRANSMIT_MAC_STATUS_REG, tmac_status);
4243 
4244 	/*
4245 	 * Get & clear the ERROR and LINK_CHANGED bits from the status block
4246 	 */
4247 	*dma_state = bge_status_sync(bgep, STATUS_FLAG_ERROR |
4248 	    STATUS_FLAG_LINK_CHANGED, &flags);
4249 	if (*dma_state != DDI_FM_OK)
4250 		return (B_FALSE);
4251 
4252 	/*
4253 	 * Clear any errors flagged in the status block ...
4254 	 */
4255 	if (flags & STATUS_FLAG_ERROR)
4256 		bge_factotum_error_handler(bgep);
4257 
4258 	/*
4259 	 * We need to check the link status if:
4260 	 *	the status block says there's been a link change
4261 	 *	or there's any discrepancy between the various
4262 	 *	flags indicating the link state (link_state,
4263 	 *	param_link_up, and the LINK STATE bit in the
4264 	 *	Transmit MAC status register).
4265 	 */
4266 	check = (flags & STATUS_FLAG_LINK_CHANGED) != 0;
4267 	switch (bgep->link_state) {
4268 	case LINK_STATE_UP:
4269 		check |= (bgep->param_link_up == B_FALSE);
4270 		check |= ((tmac_status & TRANSMIT_STATUS_LINK_UP) == 0);
4271 		break;
4272 
4273 	case LINK_STATE_DOWN:
4274 		check |= (bgep->param_link_up != B_FALSE);
4275 		check |= ((tmac_status & TRANSMIT_STATUS_LINK_UP) != 0);
4276 		break;
4277 
4278 	default:
4279 		check = B_TRUE;
4280 		break;
4281 	}
4282 
4283 	/*
4284 	 * If <check> is false, we're sure the link hasn't changed.
4285 	 * If true, however, it's not yet definitive; we have to call
4286 	 * bge_phys_check() to determine whether the link has settled
4287 	 * into a new state yet ... and if it has, then call the link
4288 	 * state change handler.But when the chip is 5700 in Dell 6650
4289 	 * ,even if check is false, the link may have changed.So we
4290 	 * have to call bge_phys_check() to determine the link state.
4291 	 */
4292 	if (check || bgep->chipid.device == DEVICE_ID_5700) {
4293 		check = bge_phys_check(bgep);
4294 		if (check)
4295 			bge_factotum_link_handler(bgep);
4296 	}
4297 
4298 	return (check);
4299 }
4300 
4301 /*
4302  * Factotum routine to check for Tx stall, using the 'watchdog' counter
4303  */
4304 static boolean_t bge_factotum_stall_check(bge_t *bgep);
4305 #pragma	no_inline(bge_factotum_stall_check)
4306 
4307 static boolean_t
4308 bge_factotum_stall_check(bge_t *bgep)
4309 {
4310 	uint32_t dogval;
4311 
4312 	ASSERT(mutex_owned(bgep->genlock));
4313 
4314 	/*
4315 	 * Specific check for Tx stall ...
4316 	 *
4317 	 * The 'watchdog' counter is incremented whenever a packet
4318 	 * is queued, reset to 1 when some (but not all) buffers
4319 	 * are reclaimed, reset to 0 (disabled) when all buffers
4320 	 * are reclaimed, and shifted left here.  If it exceeds the
4321 	 * threshold value, the chip is assumed to have stalled and
4322 	 * is put into the ERROR state.  The factotum will then reset
4323 	 * it on the next pass.
4324 	 *
4325 	 * All of which should ensure that we don't get into a state
4326 	 * where packets are left pending indefinitely!
4327 	 */
4328 	dogval = bge_atomic_shl32(&bgep->watchdog, 1);
4329 	if (dogval < bge_watchdog_count)
4330 		return (B_FALSE);
4331 
4332 #if !defined(BGE_NETCONSOLE)
4333 	BGE_REPORT((bgep, "Tx stall detected, watchdog code 0x%x", dogval));
4334 #endif
4335 	bge_fm_ereport(bgep, DDI_FM_DEVICE_STALL);
4336 	return (B_TRUE);
4337 }
4338 
4339 /*
4340  * The factotum is woken up when there's something to do that we'd rather
4341  * not do from inside a hardware interrupt handler or high-level cyclic.
4342  * Its two main tasks are:
4343  *	reset & restart the chip after an error
4344  *	check the link status whenever necessary
4345  */
4346 uint_t bge_chip_factotum(caddr_t arg);
4347 #pragma	no_inline(bge_chip_factotum)
4348 
4349 uint_t
4350 bge_chip_factotum(caddr_t arg)
4351 {
4352 	bge_t *bgep;
4353 	uint_t result;
4354 	boolean_t error;
4355 	boolean_t linkchg;
4356 	int dma_state;
4357 
4358 	bgep = (bge_t *)arg;
4359 
4360 	BGE_TRACE(("bge_chip_factotum($%p)", (void *)bgep));
4361 
4362 	mutex_enter(bgep->softintrlock);
4363 	if (bgep->factotum_flag == 0) {
4364 		mutex_exit(bgep->softintrlock);
4365 		return (DDI_INTR_UNCLAIMED);
4366 	}
4367 	bgep->factotum_flag = 0;
4368 	mutex_exit(bgep->softintrlock);
4369 
4370 	result = DDI_INTR_CLAIMED;
4371 	error = B_FALSE;
4372 	linkchg = B_FALSE;
4373 
4374 	mutex_enter(bgep->genlock);
4375 	switch (bgep->bge_chip_state) {
4376 	default:
4377 		break;
4378 
4379 	case BGE_CHIP_RUNNING:
4380 		linkchg = bge_factotum_link_check(bgep, &dma_state);
4381 		error = bge_factotum_stall_check(bgep);
4382 		if (dma_state != DDI_FM_OK) {
4383 			bgep->bge_dma_error = B_TRUE;
4384 			error = B_TRUE;
4385 		}
4386 		if (bge_check_acc_handle(bgep, bgep->io_handle) != DDI_FM_OK)
4387 			error = B_TRUE;
4388 		if (error)
4389 			bgep->bge_chip_state = BGE_CHIP_ERROR;
4390 		break;
4391 
4392 	case BGE_CHIP_ERROR:
4393 		error = B_TRUE;
4394 		break;
4395 
4396 	case BGE_CHIP_FAULT:
4397 		/*
4398 		 * Fault detected, time to reset ...
4399 		 */
4400 		if (bge_autorecover) {
4401 			if (!(bgep->progress & PROGRESS_BUFS)) {
4402 				/*
4403 				 * if we can't allocate the ring buffers,
4404 				 * try later
4405 				 */
4406 				if (bge_alloc_bufs(bgep) != DDI_SUCCESS) {
4407 					mutex_exit(bgep->genlock);
4408 					return (result);
4409 				}
4410 				bgep->progress |= PROGRESS_BUFS;
4411 			}
4412 			if (!(bgep->progress & PROGRESS_INTR)) {
4413 				bge_init_rings(bgep);
4414 				bge_intr_enable(bgep);
4415 				bgep->progress |= PROGRESS_INTR;
4416 			}
4417 			if (!(bgep->progress & PROGRESS_KSTATS)) {
4418 				bge_init_kstats(bgep,
4419 				    ddi_get_instance(bgep->devinfo));
4420 				bgep->progress |= PROGRESS_KSTATS;
4421 			}
4422 
4423 			BGE_REPORT((bgep, "automatic recovery activated"));
4424 
4425 			if (bge_restart(bgep, B_FALSE) != DDI_SUCCESS) {
4426 				bgep->bge_chip_state = BGE_CHIP_ERROR;
4427 				error = B_TRUE;
4428 			}
4429 			if (bge_check_acc_handle(bgep, bgep->cfg_handle) !=
4430 			    DDI_FM_OK) {
4431 				bgep->bge_chip_state = BGE_CHIP_ERROR;
4432 				error = B_TRUE;
4433 			}
4434 			if (bge_check_acc_handle(bgep, bgep->io_handle) !=
4435 			    DDI_FM_OK) {
4436 				bgep->bge_chip_state = BGE_CHIP_ERROR;
4437 				error = B_TRUE;
4438 			}
4439 			if (error == B_FALSE) {
4440 #ifdef BGE_IPMI_ASF
4441 				if (bgep->asf_enabled &&
4442 				    bgep->asf_status != ASF_STAT_RUN) {
4443 					bgep->asf_timeout_id = timeout(
4444 					    bge_asf_heartbeat, (void *)bgep,
4445 					    drv_usectohz(
4446 					    BGE_ASF_HEARTBEAT_INTERVAL));
4447 					bgep->asf_status = ASF_STAT_RUN;
4448 				}
4449 #endif
4450 				ddi_fm_service_impact(bgep->devinfo,
4451 				    DDI_SERVICE_RESTORED);
4452 			}
4453 		}
4454 		break;
4455 	}
4456 
4457 
4458 	/*
4459 	 * If an error is detected, stop the chip now, marking it as
4460 	 * faulty, so that it will be reset next time through ...
4461 	 *
4462 	 * Note that if intr_running is set, then bge_intr() has dropped
4463 	 * genlock to call bge_receive/bge_recycle. Can't stop the chip at
4464 	 * this point so have to wait until the next time the factotum runs.
4465 	 */
4466 	if (error && !bgep->bge_intr_running) {
4467 #ifdef BGE_IPMI_ASF
4468 		if (bgep->asf_enabled && (bgep->asf_status == ASF_STAT_RUN)) {
4469 			/*
4470 			 * We must stop ASF heart beat before bge_chip_stop(),
4471 			 * otherwise some computers (ex. IBM HS20 blade server)
4472 			 * may crash.
4473 			 */
4474 			bge_asf_update_status(bgep);
4475 			bge_asf_stop_timer(bgep);
4476 			bgep->asf_status = ASF_STAT_STOP;
4477 
4478 			bge_asf_pre_reset_operations(bgep, BGE_INIT_RESET);
4479 			(void) bge_check_acc_handle(bgep, bgep->cfg_handle);
4480 		}
4481 #endif
4482 		bge_chip_stop(bgep, B_TRUE);
4483 		(void) bge_check_acc_handle(bgep, bgep->io_handle);
4484 	}
4485 	mutex_exit(bgep->genlock);
4486 
4487 	/*
4488 	 * If the link state changed, tell the world about it.
4489 	 * Note: can't do this while still holding the mutex.
4490 	 */
4491 	if (linkchg)
4492 		mac_link_update(bgep->mh, bgep->link_state);
4493 
4494 	return (result);
4495 }
4496 
4497 /*
4498  * High-level cyclic handler
4499  *
4500  * This routine schedules a (low-level) softint callback to the
4501  * factotum, and prods the chip to update the status block (which
4502  * will cause a hardware interrupt when complete).
4503  */
4504 void bge_chip_cyclic(void *arg);
4505 #pragma	no_inline(bge_chip_cyclic)
4506 
4507 void
4508 bge_chip_cyclic(void *arg)
4509 {
4510 	bge_t *bgep;
4511 
4512 	bgep = arg;
4513 
4514 	switch (bgep->bge_chip_state) {
4515 	default:
4516 		return;
4517 
4518 	case BGE_CHIP_RUNNING:
4519 		bge_reg_set32(bgep, HOST_COALESCE_MODE_REG, COALESCE_NOW);
4520 		if (bge_check_acc_handle(bgep, bgep->io_handle) != DDI_FM_OK)
4521 			ddi_fm_service_impact(bgep->devinfo,
4522 			    DDI_SERVICE_UNAFFECTED);
4523 		break;
4524 
4525 	case BGE_CHIP_FAULT:
4526 	case BGE_CHIP_ERROR:
4527 		break;
4528 	}
4529 
4530 	bge_wake_factotum(bgep);
4531 }
4532 
4533 
4534 /*
4535  * ========== Ioctl subfunctions ==========
4536  */
4537 
4538 #undef	BGE_DBG
4539 #define	BGE_DBG		BGE_DBG_PPIO	/* debug flag for this code	*/
4540 
4541 #if	BGE_DEBUGGING || BGE_DO_PPIO
4542 
4543 static void bge_chip_peek_cfg(bge_t *bgep, bge_peekpoke_t *ppd);
4544 #pragma	no_inline(bge_chip_peek_cfg)
4545 
4546 static void
4547 bge_chip_peek_cfg(bge_t *bgep, bge_peekpoke_t *ppd)
4548 {
4549 	uint64_t regval;
4550 	uint64_t regno;
4551 
4552 	BGE_TRACE(("bge_chip_peek_cfg($%p, $%p)",
4553 		(void *)bgep, (void *)ppd));
4554 
4555 	regno = ppd->pp_acc_offset;
4556 
4557 	switch (ppd->pp_acc_size) {
4558 	case 1:
4559 		regval = pci_config_get8(bgep->cfg_handle, regno);
4560 		break;
4561 
4562 	case 2:
4563 		regval = pci_config_get16(bgep->cfg_handle, regno);
4564 		break;
4565 
4566 	case 4:
4567 		regval = pci_config_get32(bgep->cfg_handle, regno);
4568 		break;
4569 
4570 	case 8:
4571 		regval = pci_config_get64(bgep->cfg_handle, regno);
4572 		break;
4573 	}
4574 
4575 	ppd->pp_acc_data = regval;
4576 }
4577 
4578 static void bge_chip_poke_cfg(bge_t *bgep, bge_peekpoke_t *ppd);
4579 #pragma	no_inline(bge_chip_poke_cfg)
4580 
4581 static void
4582 bge_chip_poke_cfg(bge_t *bgep, bge_peekpoke_t *ppd)
4583 {
4584 	uint64_t regval;
4585 	uint64_t regno;
4586 
4587 	BGE_TRACE(("bge_chip_poke_cfg($%p, $%p)",
4588 		(void *)bgep, (void *)ppd));
4589 
4590 	regno = ppd->pp_acc_offset;
4591 	regval = ppd->pp_acc_data;
4592 
4593 	switch (ppd->pp_acc_size) {
4594 	case 1:
4595 		pci_config_put8(bgep->cfg_handle, regno, regval);
4596 		break;
4597 
4598 	case 2:
4599 		pci_config_put16(bgep->cfg_handle, regno, regval);
4600 		break;
4601 
4602 	case 4:
4603 		pci_config_put32(bgep->cfg_handle, regno, regval);
4604 		break;
4605 
4606 	case 8:
4607 		pci_config_put64(bgep->cfg_handle, regno, regval);
4608 		break;
4609 	}
4610 }
4611 
4612 static void bge_chip_peek_reg(bge_t *bgep, bge_peekpoke_t *ppd);
4613 #pragma	no_inline(bge_chip_peek_reg)
4614 
4615 static void
4616 bge_chip_peek_reg(bge_t *bgep, bge_peekpoke_t *ppd)
4617 {
4618 	uint64_t regval;
4619 	void *regaddr;
4620 
4621 	BGE_TRACE(("bge_chip_peek_reg($%p, $%p)",
4622 		(void *)bgep, (void *)ppd));
4623 
4624 	regaddr = PIO_ADDR(bgep, ppd->pp_acc_offset);
4625 
4626 	switch (ppd->pp_acc_size) {
4627 	case 1:
4628 		regval = ddi_get8(bgep->io_handle, regaddr);
4629 		break;
4630 
4631 	case 2:
4632 		regval = ddi_get16(bgep->io_handle, regaddr);
4633 		break;
4634 
4635 	case 4:
4636 		regval = ddi_get32(bgep->io_handle, regaddr);
4637 		break;
4638 
4639 	case 8:
4640 		regval = ddi_get64(bgep->io_handle, regaddr);
4641 		break;
4642 	}
4643 
4644 	ppd->pp_acc_data = regval;
4645 }
4646 
4647 static void bge_chip_poke_reg(bge_t *bgep, bge_peekpoke_t *ppd);
4648 #pragma	no_inline(bge_chip_peek_reg)
4649 
4650 static void
4651 bge_chip_poke_reg(bge_t *bgep, bge_peekpoke_t *ppd)
4652 {
4653 	uint64_t regval;
4654 	void *regaddr;
4655 
4656 	BGE_TRACE(("bge_chip_poke_reg($%p, $%p)",
4657 		(void *)bgep, (void *)ppd));
4658 
4659 	regaddr = PIO_ADDR(bgep, ppd->pp_acc_offset);
4660 	regval = ppd->pp_acc_data;
4661 
4662 	switch (ppd->pp_acc_size) {
4663 	case 1:
4664 		ddi_put8(bgep->io_handle, regaddr, regval);
4665 		break;
4666 
4667 	case 2:
4668 		ddi_put16(bgep->io_handle, regaddr, regval);
4669 		break;
4670 
4671 	case 4:
4672 		ddi_put32(bgep->io_handle, regaddr, regval);
4673 		break;
4674 
4675 	case 8:
4676 		ddi_put64(bgep->io_handle, regaddr, regval);
4677 		break;
4678 	}
4679 	BGE_PCICHK(bgep);
4680 }
4681 
4682 static void bge_chip_peek_nic(bge_t *bgep, bge_peekpoke_t *ppd);
4683 #pragma	no_inline(bge_chip_peek_nic)
4684 
4685 static void
4686 bge_chip_peek_nic(bge_t *bgep, bge_peekpoke_t *ppd)
4687 {
4688 	uint64_t regoff;
4689 	uint64_t regval;
4690 	void *regaddr;
4691 
4692 	BGE_TRACE(("bge_chip_peek_nic($%p, $%p)",
4693 		(void *)bgep, (void *)ppd));
4694 
4695 	regoff = ppd->pp_acc_offset;
4696 	bge_nic_setwin(bgep, regoff & ~MWBAR_GRANULE_MASK);
4697 	regoff &= MWBAR_GRANULE_MASK;
4698 	regoff += NIC_MEM_WINDOW_OFFSET;
4699 	regaddr = PIO_ADDR(bgep, regoff);
4700 
4701 	switch (ppd->pp_acc_size) {
4702 	case 1:
4703 		regval = ddi_get8(bgep->io_handle, regaddr);
4704 		break;
4705 
4706 	case 2:
4707 		regval = ddi_get16(bgep->io_handle, regaddr);
4708 		break;
4709 
4710 	case 4:
4711 		regval = ddi_get32(bgep->io_handle, regaddr);
4712 		break;
4713 
4714 	case 8:
4715 		regval = ddi_get64(bgep->io_handle, regaddr);
4716 		break;
4717 	}
4718 
4719 	ppd->pp_acc_data = regval;
4720 }
4721 
4722 static void bge_chip_poke_nic(bge_t *bgep, bge_peekpoke_t *ppd);
4723 #pragma	no_inline(bge_chip_poke_nic)
4724 
4725 static void
4726 bge_chip_poke_nic(bge_t *bgep, bge_peekpoke_t *ppd)
4727 {
4728 	uint64_t regoff;
4729 	uint64_t regval;
4730 	void *regaddr;
4731 
4732 	BGE_TRACE(("bge_chip_poke_nic($%p, $%p)",
4733 		(void *)bgep, (void *)ppd));
4734 
4735 	regoff = ppd->pp_acc_offset;
4736 	bge_nic_setwin(bgep, regoff & ~MWBAR_GRANULE_MASK);
4737 	regoff &= MWBAR_GRANULE_MASK;
4738 	regoff += NIC_MEM_WINDOW_OFFSET;
4739 	regaddr = PIO_ADDR(bgep, regoff);
4740 	regval = ppd->pp_acc_data;
4741 
4742 	switch (ppd->pp_acc_size) {
4743 	case 1:
4744 		ddi_put8(bgep->io_handle, regaddr, regval);
4745 		break;
4746 
4747 	case 2:
4748 		ddi_put16(bgep->io_handle, regaddr, regval);
4749 		break;
4750 
4751 	case 4:
4752 		ddi_put32(bgep->io_handle, regaddr, regval);
4753 		break;
4754 
4755 	case 8:
4756 		ddi_put64(bgep->io_handle, regaddr, regval);
4757 		break;
4758 	}
4759 	BGE_PCICHK(bgep);
4760 }
4761 
4762 static void bge_chip_peek_mii(bge_t *bgep, bge_peekpoke_t *ppd);
4763 #pragma	no_inline(bge_chip_peek_mii)
4764 
4765 static void
4766 bge_chip_peek_mii(bge_t *bgep, bge_peekpoke_t *ppd)
4767 {
4768 	BGE_TRACE(("bge_chip_peek_mii($%p, $%p)",
4769 		(void *)bgep, (void *)ppd));
4770 
4771 	ppd->pp_acc_data = bge_mii_get16(bgep, ppd->pp_acc_offset/2);
4772 }
4773 
4774 static void bge_chip_poke_mii(bge_t *bgep, bge_peekpoke_t *ppd);
4775 #pragma	no_inline(bge_chip_poke_mii)
4776 
4777 static void
4778 bge_chip_poke_mii(bge_t *bgep, bge_peekpoke_t *ppd)
4779 {
4780 	BGE_TRACE(("bge_chip_poke_mii($%p, $%p)",
4781 		(void *)bgep, (void *)ppd));
4782 
4783 	bge_mii_put16(bgep, ppd->pp_acc_offset/2, ppd->pp_acc_data);
4784 }
4785 
4786 #if	BGE_SEE_IO32
4787 
4788 static void bge_chip_peek_seeprom(bge_t *bgep, bge_peekpoke_t *ppd);
4789 #pragma	no_inline(bge_chip_peek_seeprom)
4790 
4791 static void
4792 bge_chip_peek_seeprom(bge_t *bgep, bge_peekpoke_t *ppd)
4793 {
4794 	uint32_t data;
4795 	int err;
4796 
4797 	BGE_TRACE(("bge_chip_peek_seeprom($%p, $%p)",
4798 		(void *)bgep, (void *)ppd));
4799 
4800 	err = bge_nvmem_rw32(bgep, BGE_SEE_READ, ppd->pp_acc_offset, &data);
4801 	ppd->pp_acc_data = err ? ~0ull : data;
4802 }
4803 
4804 static void bge_chip_poke_seeprom(bge_t *bgep, bge_peekpoke_t *ppd);
4805 #pragma	no_inline(bge_chip_poke_seeprom)
4806 
4807 static void
4808 bge_chip_poke_seeprom(bge_t *bgep, bge_peekpoke_t *ppd)
4809 {
4810 	uint32_t data;
4811 
4812 	BGE_TRACE(("bge_chip_poke_seeprom($%p, $%p)",
4813 		(void *)bgep, (void *)ppd));
4814 
4815 	data = ppd->pp_acc_data;
4816 	(void) bge_nvmem_rw32(bgep, BGE_SEE_WRITE, ppd->pp_acc_offset, &data);
4817 }
4818 #endif	/* BGE_SEE_IO32 */
4819 
4820 #if	BGE_FLASH_IO32
4821 
4822 static void bge_chip_peek_flash(bge_t *bgep, bge_peekpoke_t *ppd);
4823 #pragma	no_inline(bge_chip_peek_flash)
4824 
4825 static void
4826 bge_chip_peek_flash(bge_t *bgep, bge_peekpoke_t *ppd)
4827 {
4828 	uint32_t data;
4829 	int err;
4830 
4831 	BGE_TRACE(("bge_chip_peek_flash($%p, $%p)",
4832 		(void *)bgep, (void *)ppd));
4833 
4834 	err = bge_nvmem_rw32(bgep, BGE_FLASH_READ, ppd->pp_acc_offset, &data);
4835 	ppd->pp_acc_data = err ? ~0ull : data;
4836 }
4837 
4838 static void bge_chip_poke_flash(bge_t *bgep, bge_peekpoke_t *ppd);
4839 #pragma	no_inline(bge_chip_poke_flash)
4840 
4841 static void
4842 bge_chip_poke_flash(bge_t *bgep, bge_peekpoke_t *ppd)
4843 {
4844 	uint32_t data;
4845 
4846 	BGE_TRACE(("bge_chip_poke_flash($%p, $%p)",
4847 		(void *)bgep, (void *)ppd));
4848 
4849 	data = ppd->pp_acc_data;
4850 	(void) bge_nvmem_rw32(bgep, BGE_FLASH_WRITE,
4851 	    ppd->pp_acc_offset, &data);
4852 }
4853 #endif	/* BGE_FLASH_IO32 */
4854 
4855 static void bge_chip_peek_mem(bge_t *bgep, bge_peekpoke_t *ppd);
4856 #pragma	no_inline(bge_chip_peek_mem)
4857 
4858 static void
4859 bge_chip_peek_mem(bge_t *bgep, bge_peekpoke_t *ppd)
4860 {
4861 	uint64_t regval;
4862 	void *vaddr;
4863 
4864 	BGE_TRACE(("bge_chip_peek_bge($%p, $%p)",
4865 		(void *)bgep, (void *)ppd));
4866 
4867 	vaddr = (void *)(uintptr_t)ppd->pp_acc_offset;
4868 
4869 	switch (ppd->pp_acc_size) {
4870 	case 1:
4871 		regval = *(uint8_t *)vaddr;
4872 		break;
4873 
4874 	case 2:
4875 		regval = *(uint16_t *)vaddr;
4876 		break;
4877 
4878 	case 4:
4879 		regval = *(uint32_t *)vaddr;
4880 		break;
4881 
4882 	case 8:
4883 		regval = *(uint64_t *)vaddr;
4884 		break;
4885 	}
4886 
4887 	BGE_DEBUG(("bge_chip_peek_mem($%p, $%p) peeked 0x%llx from $%p",
4888 		(void *)bgep, (void *)ppd, regval, vaddr));
4889 
4890 	ppd->pp_acc_data = regval;
4891 }
4892 
4893 static void bge_chip_poke_mem(bge_t *bgep, bge_peekpoke_t *ppd);
4894 #pragma	no_inline(bge_chip_poke_mem)
4895 
4896 static void
4897 bge_chip_poke_mem(bge_t *bgep, bge_peekpoke_t *ppd)
4898 {
4899 	uint64_t regval;
4900 	void *vaddr;
4901 
4902 	BGE_TRACE(("bge_chip_poke_mem($%p, $%p)",
4903 		(void *)bgep, (void *)ppd));
4904 
4905 	vaddr = (void *)(uintptr_t)ppd->pp_acc_offset;
4906 	regval = ppd->pp_acc_data;
4907 
4908 	BGE_DEBUG(("bge_chip_poke_mem($%p, $%p) poking 0x%llx at $%p",
4909 		(void *)bgep, (void *)ppd, regval, vaddr));
4910 
4911 	switch (ppd->pp_acc_size) {
4912 	case 1:
4913 		*(uint8_t *)vaddr = (uint8_t)regval;
4914 		break;
4915 
4916 	case 2:
4917 		*(uint16_t *)vaddr = (uint16_t)regval;
4918 		break;
4919 
4920 	case 4:
4921 		*(uint32_t *)vaddr = (uint32_t)regval;
4922 		break;
4923 
4924 	case 8:
4925 		*(uint64_t *)vaddr = (uint64_t)regval;
4926 		break;
4927 	}
4928 }
4929 
4930 static enum ioc_reply bge_pp_ioctl(bge_t *bgep, int cmd, mblk_t *mp,
4931 					struct iocblk *iocp);
4932 #pragma	no_inline(bge_pp_ioctl)
4933 
4934 static enum ioc_reply
4935 bge_pp_ioctl(bge_t *bgep, int cmd, mblk_t *mp, struct iocblk *iocp)
4936 {
4937 	void (*ppfn)(bge_t *bgep, bge_peekpoke_t *ppd);
4938 	bge_peekpoke_t *ppd;
4939 	dma_area_t *areap;
4940 	uint64_t sizemask;
4941 	uint64_t mem_va;
4942 	uint64_t maxoff;
4943 	boolean_t peek;
4944 
4945 	switch (cmd) {
4946 	default:
4947 		/* NOTREACHED */
4948 		bge_error(bgep, "bge_pp_ioctl: invalid cmd 0x%x", cmd);
4949 		return (IOC_INVAL);
4950 
4951 	case BGE_PEEK:
4952 		peek = B_TRUE;
4953 		break;
4954 
4955 	case BGE_POKE:
4956 		peek = B_FALSE;
4957 		break;
4958 	}
4959 
4960 	/*
4961 	 * Validate format of ioctl
4962 	 */
4963 	if (iocp->ioc_count != sizeof (bge_peekpoke_t))
4964 		return (IOC_INVAL);
4965 	if (mp->b_cont == NULL)
4966 		return (IOC_INVAL);
4967 	ppd = (bge_peekpoke_t *)mp->b_cont->b_rptr;
4968 
4969 	/*
4970 	 * Validate request parameters
4971 	 */
4972 	switch (ppd->pp_acc_space) {
4973 	default:
4974 		return (IOC_INVAL);
4975 
4976 	case BGE_PP_SPACE_CFG:
4977 		/*
4978 		 * Config space
4979 		 */
4980 		sizemask = 8|4|2|1;
4981 		mem_va = 0;
4982 		maxoff = PCI_CONF_HDR_SIZE;
4983 		ppfn = peek ? bge_chip_peek_cfg : bge_chip_poke_cfg;
4984 		break;
4985 
4986 	case BGE_PP_SPACE_REG:
4987 		/*
4988 		 * Memory-mapped I/O space
4989 		 */
4990 		sizemask = 8|4|2|1;
4991 		mem_va = 0;
4992 		maxoff = RIAAR_REGISTER_MAX;
4993 		ppfn = peek ? bge_chip_peek_reg : bge_chip_poke_reg;
4994 		break;
4995 
4996 	case BGE_PP_SPACE_NIC:
4997 		/*
4998 		 * NIC on-chip memory
4999 		 */
5000 		sizemask = 8|4|2|1;
5001 		mem_va = 0;
5002 		maxoff = MWBAR_ONCHIP_MAX;
5003 		ppfn = peek ? bge_chip_peek_nic : bge_chip_poke_nic;
5004 		break;
5005 
5006 	case BGE_PP_SPACE_MII:
5007 		/*
5008 		 * PHY's MII registers
5009 		 * NB: all PHY registers are two bytes, but the
5010 		 * addresses increment in ones (word addressing).
5011 		 * So we scale the address here, then undo the
5012 		 * transformation inside the peek/poke functions.
5013 		 */
5014 		ppd->pp_acc_offset *= 2;
5015 		sizemask = 2;
5016 		mem_va = 0;
5017 		maxoff = (MII_MAXREG+1)*2;
5018 		ppfn = peek ? bge_chip_peek_mii : bge_chip_poke_mii;
5019 		break;
5020 
5021 #if	BGE_SEE_IO32
5022 	case BGE_PP_SPACE_SEEPROM:
5023 		/*
5024 		 * Attached SEEPROM(s), if any.
5025 		 * NB: we use the high-order bits of the 'address' as
5026 		 * a device select to accommodate multiple SEEPROMS,
5027 		 * If each one is the maximum size (64kbytes), this
5028 		 * makes them appear contiguous.  Otherwise, there may
5029 		 * be holes in the mapping.  ENxS doesn't have any
5030 		 * SEEPROMs anyway ...
5031 		 */
5032 		sizemask = 4;
5033 		mem_va = 0;
5034 		maxoff = SEEPROM_DEV_AND_ADDR_MASK;
5035 		ppfn = peek ? bge_chip_peek_seeprom : bge_chip_poke_seeprom;
5036 		break;
5037 #endif	/* BGE_SEE_IO32 */
5038 
5039 #if	BGE_FLASH_IO32
5040 	case BGE_PP_SPACE_FLASH:
5041 		/*
5042 		 * Attached Flash device (if any); a maximum of one device
5043 		 * is currently supported.  But it can be up to 1MB (unlike
5044 		 * the 64k limit on SEEPROMs) so why would you need more ;-)
5045 		 */
5046 		sizemask = 4;
5047 		mem_va = 0;
5048 		maxoff = NVM_FLASH_ADDR_MASK;
5049 		ppfn = peek ? bge_chip_peek_flash : bge_chip_poke_flash;
5050 		break;
5051 #endif	/* BGE_FLASH_IO32 */
5052 
5053 	case BGE_PP_SPACE_BGE:
5054 		/*
5055 		 * BGE data structure!
5056 		 */
5057 		sizemask = 8|4|2|1;
5058 		mem_va = (uintptr_t)bgep;
5059 		maxoff = sizeof (*bgep);
5060 		ppfn = peek ? bge_chip_peek_mem : bge_chip_poke_mem;
5061 		break;
5062 
5063 	case BGE_PP_SPACE_STATUS:
5064 	case BGE_PP_SPACE_STATISTICS:
5065 	case BGE_PP_SPACE_TXDESC:
5066 	case BGE_PP_SPACE_TXBUFF:
5067 	case BGE_PP_SPACE_RXDESC:
5068 	case BGE_PP_SPACE_RXBUFF:
5069 		/*
5070 		 * Various DMA_AREAs
5071 		 */
5072 		switch (ppd->pp_acc_space) {
5073 		case BGE_PP_SPACE_TXDESC:
5074 			areap = &bgep->tx_desc;
5075 			break;
5076 		case BGE_PP_SPACE_TXBUFF:
5077 			areap = &bgep->tx_buff[0];
5078 			break;
5079 		case BGE_PP_SPACE_RXDESC:
5080 			areap = &bgep->rx_desc[0];
5081 			break;
5082 		case BGE_PP_SPACE_RXBUFF:
5083 			areap = &bgep->rx_buff[0];
5084 			break;
5085 		case BGE_PP_SPACE_STATUS:
5086 			areap = &bgep->status_block;
5087 			break;
5088 		case BGE_PP_SPACE_STATISTICS:
5089 			if (bgep->chipid.statistic_type == BGE_STAT_BLK)
5090 				areap = &bgep->statistics;
5091 			break;
5092 		}
5093 
5094 		sizemask = 8|4|2|1;
5095 		mem_va = (uintptr_t)areap->mem_va;
5096 		maxoff = areap->alength;
5097 		ppfn = peek ? bge_chip_peek_mem : bge_chip_poke_mem;
5098 		break;
5099 	}
5100 
5101 	switch (ppd->pp_acc_size) {
5102 	default:
5103 		return (IOC_INVAL);
5104 
5105 	case 8:
5106 	case 4:
5107 	case 2:
5108 	case 1:
5109 		if ((ppd->pp_acc_size & sizemask) == 0)
5110 			return (IOC_INVAL);
5111 		break;
5112 	}
5113 
5114 	if ((ppd->pp_acc_offset % ppd->pp_acc_size) != 0)
5115 		return (IOC_INVAL);
5116 
5117 	if (ppd->pp_acc_offset >= maxoff)
5118 		return (IOC_INVAL);
5119 
5120 	if (ppd->pp_acc_offset+ppd->pp_acc_size > maxoff)
5121 		return (IOC_INVAL);
5122 
5123 	/*
5124 	 * All OK - go do it!
5125 	 */
5126 	ppd->pp_acc_offset += mem_va;
5127 	(*ppfn)(bgep, ppd);
5128 	return (peek ? IOC_REPLY : IOC_ACK);
5129 }
5130 
5131 static enum ioc_reply bge_diag_ioctl(bge_t *bgep, int cmd, mblk_t *mp,
5132 					struct iocblk *iocp);
5133 #pragma	no_inline(bge_diag_ioctl)
5134 
5135 static enum ioc_reply
5136 bge_diag_ioctl(bge_t *bgep, int cmd, mblk_t *mp, struct iocblk *iocp)
5137 {
5138 	ASSERT(mutex_owned(bgep->genlock));
5139 
5140 	switch (cmd) {
5141 	default:
5142 		/* NOTREACHED */
5143 		bge_error(bgep, "bge_diag_ioctl: invalid cmd 0x%x", cmd);
5144 		return (IOC_INVAL);
5145 
5146 	case BGE_DIAG:
5147 		/*
5148 		 * Currently a no-op
5149 		 */
5150 		return (IOC_ACK);
5151 
5152 	case BGE_PEEK:
5153 	case BGE_POKE:
5154 		return (bge_pp_ioctl(bgep, cmd, mp, iocp));
5155 
5156 	case BGE_PHY_RESET:
5157 		return (IOC_RESTART_ACK);
5158 
5159 	case BGE_SOFT_RESET:
5160 	case BGE_HARD_RESET:
5161 		/*
5162 		 * Reset and reinitialise the 570x hardware
5163 		 */
5164 		bgep->bge_chip_state = BGE_CHIP_FAULT;
5165 		ddi_trigger_softintr(bgep->factotum_id);
5166 		(void) bge_restart(bgep, cmd == BGE_HARD_RESET);
5167 		return (IOC_ACK);
5168 	}
5169 
5170 	/* NOTREACHED */
5171 }
5172 
5173 #endif	/* BGE_DEBUGGING || BGE_DO_PPIO */
5174 
5175 static enum ioc_reply bge_mii_ioctl(bge_t *bgep, int cmd, mblk_t *mp,
5176 				    struct iocblk *iocp);
5177 #pragma	no_inline(bge_mii_ioctl)
5178 
5179 static enum ioc_reply
5180 bge_mii_ioctl(bge_t *bgep, int cmd, mblk_t *mp, struct iocblk *iocp)
5181 {
5182 	struct bge_mii_rw *miirwp;
5183 
5184 	/*
5185 	 * Validate format of ioctl
5186 	 */
5187 	if (iocp->ioc_count != sizeof (struct bge_mii_rw))
5188 		return (IOC_INVAL);
5189 	if (mp->b_cont == NULL)
5190 		return (IOC_INVAL);
5191 	miirwp = (struct bge_mii_rw *)mp->b_cont->b_rptr;
5192 
5193 	/*
5194 	 * Validate request parameters ...
5195 	 */
5196 	if (miirwp->mii_reg > MII_MAXREG)
5197 		return (IOC_INVAL);
5198 
5199 	switch (cmd) {
5200 	default:
5201 		/* NOTREACHED */
5202 		bge_error(bgep, "bge_mii_ioctl: invalid cmd 0x%x", cmd);
5203 		return (IOC_INVAL);
5204 
5205 	case BGE_MII_READ:
5206 		miirwp->mii_data = bge_mii_get16(bgep, miirwp->mii_reg);
5207 		return (IOC_REPLY);
5208 
5209 	case BGE_MII_WRITE:
5210 		bge_mii_put16(bgep, miirwp->mii_reg, miirwp->mii_data);
5211 		return (IOC_ACK);
5212 	}
5213 
5214 	/* NOTREACHED */
5215 }
5216 
5217 #if	BGE_SEE_IO32
5218 
5219 static enum ioc_reply bge_see_ioctl(bge_t *bgep, int cmd, mblk_t *mp,
5220 				    struct iocblk *iocp);
5221 #pragma	no_inline(bge_see_ioctl)
5222 
5223 static enum ioc_reply
5224 bge_see_ioctl(bge_t *bgep, int cmd, mblk_t *mp, struct iocblk *iocp)
5225 {
5226 	struct bge_see_rw *seerwp;
5227 
5228 	/*
5229 	 * Validate format of ioctl
5230 	 */
5231 	if (iocp->ioc_count != sizeof (struct bge_see_rw))
5232 		return (IOC_INVAL);
5233 	if (mp->b_cont == NULL)
5234 		return (IOC_INVAL);
5235 	seerwp = (struct bge_see_rw *)mp->b_cont->b_rptr;
5236 
5237 	/*
5238 	 * Validate request parameters ...
5239 	 */
5240 	if (seerwp->see_addr & ~SEEPROM_DEV_AND_ADDR_MASK)
5241 		return (IOC_INVAL);
5242 
5243 	switch (cmd) {
5244 	default:
5245 		/* NOTREACHED */
5246 		bge_error(bgep, "bge_see_ioctl: invalid cmd 0x%x", cmd);
5247 		return (IOC_INVAL);
5248 
5249 	case BGE_SEE_READ:
5250 	case BGE_SEE_WRITE:
5251 		iocp->ioc_error = bge_nvmem_rw32(bgep, cmd,
5252 		    seerwp->see_addr, &seerwp->see_data);
5253 		return (IOC_REPLY);
5254 	}
5255 
5256 	/* NOTREACHED */
5257 }
5258 
5259 #endif	/* BGE_SEE_IO32 */
5260 
5261 #if	BGE_FLASH_IO32
5262 
5263 static enum ioc_reply bge_flash_ioctl(bge_t *bgep, int cmd, mblk_t *mp,
5264 				    struct iocblk *iocp);
5265 #pragma	no_inline(bge_flash_ioctl)
5266 
5267 static enum ioc_reply
5268 bge_flash_ioctl(bge_t *bgep, int cmd, mblk_t *mp, struct iocblk *iocp)
5269 {
5270 	struct bge_flash_rw *flashrwp;
5271 
5272 	/*
5273 	 * Validate format of ioctl
5274 	 */
5275 	if (iocp->ioc_count != sizeof (struct bge_flash_rw))
5276 		return (IOC_INVAL);
5277 	if (mp->b_cont == NULL)
5278 		return (IOC_INVAL);
5279 	flashrwp = (struct bge_flash_rw *)mp->b_cont->b_rptr;
5280 
5281 	/*
5282 	 * Validate request parameters ...
5283 	 */
5284 	if (flashrwp->flash_addr & ~NVM_FLASH_ADDR_MASK)
5285 		return (IOC_INVAL);
5286 
5287 	switch (cmd) {
5288 	default:
5289 		/* NOTREACHED */
5290 		bge_error(bgep, "bge_flash_ioctl: invalid cmd 0x%x", cmd);
5291 		return (IOC_INVAL);
5292 
5293 	case BGE_FLASH_READ:
5294 	case BGE_FLASH_WRITE:
5295 		iocp->ioc_error = bge_nvmem_rw32(bgep, cmd,
5296 		    flashrwp->flash_addr, &flashrwp->flash_data);
5297 		return (IOC_REPLY);
5298 	}
5299 
5300 	/* NOTREACHED */
5301 }
5302 
5303 #endif	/* BGE_FLASH_IO32 */
5304 
5305 enum ioc_reply bge_chip_ioctl(bge_t *bgep, queue_t *wq, mblk_t *mp,
5306 				struct iocblk *iocp);
5307 #pragma	no_inline(bge_chip_ioctl)
5308 
5309 enum ioc_reply
5310 bge_chip_ioctl(bge_t *bgep, queue_t *wq, mblk_t *mp, struct iocblk *iocp)
5311 {
5312 	int cmd;
5313 
5314 	BGE_TRACE(("bge_chip_ioctl($%p, $%p, $%p, $%p)",
5315 		(void *)bgep, (void *)wq, (void *)mp, (void *)iocp));
5316 
5317 	ASSERT(mutex_owned(bgep->genlock));
5318 
5319 	cmd = iocp->ioc_cmd;
5320 	switch (cmd) {
5321 	default:
5322 		/* NOTREACHED */
5323 		bge_error(bgep, "bge_chip_ioctl: invalid cmd 0x%x", cmd);
5324 		return (IOC_INVAL);
5325 
5326 	case BGE_DIAG:
5327 	case BGE_PEEK:
5328 	case BGE_POKE:
5329 	case BGE_PHY_RESET:
5330 	case BGE_SOFT_RESET:
5331 	case BGE_HARD_RESET:
5332 #if	BGE_DEBUGGING || BGE_DO_PPIO
5333 		return (bge_diag_ioctl(bgep, cmd, mp, iocp));
5334 #else
5335 		return (IOC_INVAL);
5336 #endif	/* BGE_DEBUGGING || BGE_DO_PPIO */
5337 
5338 	case BGE_MII_READ:
5339 	case BGE_MII_WRITE:
5340 		return (bge_mii_ioctl(bgep, cmd, mp, iocp));
5341 
5342 #if	BGE_SEE_IO32
5343 	case BGE_SEE_READ:
5344 	case BGE_SEE_WRITE:
5345 		return (bge_see_ioctl(bgep, cmd, mp, iocp));
5346 #endif	/* BGE_SEE_IO32 */
5347 
5348 #if	BGE_FLASH_IO32
5349 	case BGE_FLASH_READ:
5350 	case BGE_FLASH_WRITE:
5351 		return (bge_flash_ioctl(bgep, cmd, mp, iocp));
5352 #endif	/* BGE_FLASH_IO32 */
5353 	}
5354 
5355 	/* NOTREACHED */
5356 }
5357 
5358 void
5359 bge_chip_blank(void *arg, time_t ticks, uint_t count)
5360 {
5361 	bge_t *bgep = arg;
5362 
5363 	mutex_enter(bgep->genlock);
5364 	bge_reg_put32(bgep, RCV_COALESCE_TICKS_REG, ticks);
5365 	bge_reg_put32(bgep, RCV_COALESCE_MAX_BD_REG, count);
5366 	if (bge_check_acc_handle(bgep, bgep->io_handle) != DDI_FM_OK)
5367 		ddi_fm_service_impact(bgep->devinfo, DDI_SERVICE_UNAFFECTED);
5368 	mutex_exit(bgep->genlock);
5369 }
5370 
5371 #ifdef BGE_IPMI_ASF
5372 
5373 uint32_t
5374 bge_nic_read32(bge_t *bgep, bge_regno_t addr)
5375 {
5376 	uint32_t data;
5377 
5378 #ifndef __sparc
5379 	if (!bgep->asf_wordswapped) {
5380 		/* a workaround word swap error */
5381 		if (addr & 4)
5382 			addr = addr - 4;
5383 		else
5384 			addr = addr + 4;
5385 	}
5386 #endif
5387 
5388 	pci_config_put32(bgep->cfg_handle, PCI_CONF_BGE_MWBAR, addr);
5389 	data = pci_config_get32(bgep->cfg_handle, PCI_CONF_BGE_MWDAR);
5390 	pci_config_put32(bgep->cfg_handle, PCI_CONF_BGE_MWBAR, 0);
5391 
5392 	data = LE_32(data);
5393 	return (data);
5394 }
5395 
5396 void
5397 bge_asf_update_status(bge_t *bgep)
5398 {
5399 	uint32_t event;
5400 
5401 	bge_nic_put32(bgep, BGE_CMD_MAILBOX, BGE_CMD_NICDRV_ALIVE);
5402 	bge_nic_put32(bgep, BGE_CMD_LENGTH_MAILBOX, 4);
5403 	bge_nic_put32(bgep, BGE_CMD_DATA_MAILBOX,   3);
5404 
5405 	event = bge_reg_get32(bgep, RX_RISC_EVENT_REG);
5406 	bge_reg_put32(bgep, RX_RISC_EVENT_REG, event | RRER_ASF_EVENT);
5407 }
5408 
5409 
5410 /*
5411  * The driver is supposed to notify ASF that the OS is still running
5412  * every three seconds, otherwise the management server may attempt
5413  * to reboot the machine.  If it hasn't actually failed, this is
5414  * not a desirable result.  However, this isn't running as a real-time
5415  * thread, and even if it were, it might not be able to generate the
5416  * heartbeat in a timely manner due to system load.  As it isn't a
5417  * significant strain on the machine, we will set the interval to half
5418  * of the required value.
5419  */
5420 void
5421 bge_asf_heartbeat(void *arg)
5422 {
5423 	bge_t *bgep = (bge_t *)arg;
5424 
5425 	mutex_enter(bgep->genlock);
5426 	bge_asf_update_status((bge_t *)bgep);
5427 	if (bge_check_acc_handle(bgep, bgep->io_handle) != DDI_FM_OK)
5428 		ddi_fm_service_impact(bgep->devinfo, DDI_SERVICE_DEGRADED);
5429 	if (bge_check_acc_handle(bgep, bgep->cfg_handle) != DDI_FM_OK)
5430 		ddi_fm_service_impact(bgep->devinfo, DDI_SERVICE_DEGRADED);
5431 	mutex_exit(bgep->genlock);
5432 	((bge_t *)bgep)->asf_timeout_id = timeout(bge_asf_heartbeat, bgep,
5433 		drv_usectohz(BGE_ASF_HEARTBEAT_INTERVAL));
5434 }
5435 
5436 
5437 void
5438 bge_asf_stop_timer(bge_t *bgep)
5439 {
5440 	timeout_id_t tmp_id = 0;
5441 
5442 	while ((bgep->asf_timeout_id != 0) &&
5443 		(tmp_id != bgep->asf_timeout_id)) {
5444 		tmp_id = bgep->asf_timeout_id;
5445 		(void) untimeout(tmp_id);
5446 	}
5447 	bgep->asf_timeout_id = 0;
5448 }
5449 
5450 
5451 
5452 /*
5453  * This function should be placed at the earliest position of bge_attach().
5454  */
5455 void
5456 bge_asf_get_config(bge_t *bgep)
5457 {
5458 	uint32_t nicsig;
5459 	uint32_t niccfg;
5460 
5461 	bgep->asf_enabled = B_FALSE;
5462 	nicsig = bge_nic_read32(bgep, BGE_NIC_DATA_SIG_ADDR);
5463 	if (nicsig == BGE_NIC_DATA_SIG) {
5464 		niccfg = bge_nic_read32(bgep, BGE_NIC_DATA_NIC_CFG_ADDR);
5465 		if (niccfg & BGE_NIC_CFG_ENABLE_ASF)
5466 			/*
5467 			 * Here, we don't consider BAXTER, because BGE haven't
5468 			 * supported BAXTER (that is 5752). Also, as I know,
5469 			 * BAXTER doesn't support ASF feature.
5470 			 */
5471 			bgep->asf_enabled = B_TRUE;
5472 		else
5473 			bgep->asf_enabled = B_FALSE;
5474 	} else
5475 		bgep->asf_enabled = B_FALSE;
5476 }
5477 
5478 
5479 void
5480 bge_asf_pre_reset_operations(bge_t *bgep, uint32_t mode)
5481 {
5482 	uint32_t tries;
5483 	uint32_t event;
5484 
5485 	ASSERT(bgep->asf_enabled);
5486 
5487 	/* Issues "pause firmware" command and wait for ACK */
5488 	bge_nic_put32(bgep, BGE_CMD_MAILBOX, BGE_CMD_NICDRV_PAUSE_FW);
5489 	event = bge_reg_get32(bgep, RX_RISC_EVENT_REG);
5490 	bge_reg_put32(bgep, RX_RISC_EVENT_REG, event | RRER_ASF_EVENT);
5491 
5492 	event = bge_reg_get32(bgep, RX_RISC_EVENT_REG);
5493 	tries = 0;
5494 	while ((event & RRER_ASF_EVENT) && (tries < 100)) {
5495 		drv_usecwait(1);
5496 		tries ++;
5497 		event = bge_reg_get32(bgep, RX_RISC_EVENT_REG);
5498 	}
5499 
5500 	bge_nic_put32(bgep, BGE_FIRMWARE_MAILBOX,
5501 		BGE_MAGIC_NUM_FIRMWARE_INIT_DONE);
5502 
5503 	if (bgep->asf_newhandshake) {
5504 		switch (mode) {
5505 		case BGE_INIT_RESET:
5506 			bge_nic_put32(bgep, BGE_DRV_STATE_MAILBOX,
5507 				BGE_DRV_STATE_START);
5508 			break;
5509 		case BGE_SHUTDOWN_RESET:
5510 			bge_nic_put32(bgep, BGE_DRV_STATE_MAILBOX,
5511 				BGE_DRV_STATE_UNLOAD);
5512 			break;
5513 		case BGE_SUSPEND_RESET:
5514 			bge_nic_put32(bgep, BGE_DRV_STATE_MAILBOX,
5515 				BGE_DRV_STATE_SUSPEND);
5516 			break;
5517 		default:
5518 			break;
5519 		}
5520 	}
5521 }
5522 
5523 
5524 void
5525 bge_asf_post_reset_old_mode(bge_t *bgep, uint32_t mode)
5526 {
5527 	switch (mode) {
5528 	case BGE_INIT_RESET:
5529 		bge_nic_put32(bgep, BGE_DRV_STATE_MAILBOX,
5530 			BGE_DRV_STATE_START);
5531 		break;
5532 	case BGE_SHUTDOWN_RESET:
5533 		bge_nic_put32(bgep, BGE_DRV_STATE_MAILBOX,
5534 			BGE_DRV_STATE_UNLOAD);
5535 		break;
5536 	case BGE_SUSPEND_RESET:
5537 		bge_nic_put32(bgep, BGE_DRV_STATE_MAILBOX,
5538 			BGE_DRV_STATE_SUSPEND);
5539 		break;
5540 	default:
5541 		break;
5542 	}
5543 }
5544 
5545 
5546 void
5547 bge_asf_post_reset_new_mode(bge_t *bgep, uint32_t mode)
5548 {
5549 	switch (mode) {
5550 	case BGE_INIT_RESET:
5551 		bge_nic_put32(bgep, BGE_DRV_STATE_MAILBOX,
5552 			BGE_DRV_STATE_START_DONE);
5553 		break;
5554 	case BGE_SHUTDOWN_RESET:
5555 		bge_nic_put32(bgep, BGE_DRV_STATE_MAILBOX,
5556 			BGE_DRV_STATE_UNLOAD_DONE);
5557 		break;
5558 	default:
5559 		break;
5560 	}
5561 }
5562 
5563 #endif /* BGE_IPMI_ASF */
5564