xref: /illumos-gate/usr/src/uts/common/io/bge/bge_chip2.c (revision 5bb86dd8f405a48942aaaab3ca1f410ed7e6db4d)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 
22 /*
23  * Copyright 2008 Sun Microsystems, Inc.  All rights reserved.
24  * Use is subject to license terms.
25  */
26 
27 #pragma ident	"%Z%%M%	%I%	%E% SMI"
28 
29 #include "bge_impl.h"
30 
31 #define	PIO_ADDR(bgep, offset)	((void *)((caddr_t)(bgep)->io_regs+(offset)))
32 
33 /*
34  * Future features ... ?
35  */
36 #define	BGE_CFG_IO8	1	/* 8/16-bit cfg space BIS/BIC	*/
37 #define	BGE_IND_IO32	1	/* indirect access code		*/
38 #define	BGE_SEE_IO32	1	/* SEEPROM access code		*/
39 #define	BGE_FLASH_IO32	1	/* FLASH access code		*/
40 
41 /*
42  * BGE MSI tunable:
43  *
44  * By default MSI is enabled on all supported platforms but it is disabled
45  * for some Broadcom chips due to known MSI hardware issues. Currently MSI
46  * is enabled only for 5714C A2 and 5715C A2 broadcom chips.
47  */
48 #if defined(__sparc)
49 boolean_t bge_enable_msi = B_TRUE;
50 #else
51 boolean_t bge_enable_msi = B_FALSE;
52 #endif
53 
54 /*
55  * PCI-X/PCI-E relaxed ordering tunable for OS/Nexus driver
56  */
57 boolean_t bge_relaxed_ordering = B_TRUE;
58 
59 /*
60  * Property names
61  */
62 static char knownids_propname[] = "bge-known-subsystems";
63 
64 /*
65  * Patchable globals:
66  *
67  *	bge_autorecover
68  *		Enables/disables automatic recovery after fault detection
69  *
70  *	bge_mlcr_default
71  *		Value to program into the MLCR; controls the chip's GPIO pins
72  *
73  *	bge_dma_{rd,wr}prio
74  *		Relative priorities of DMA reads & DMA writes respectively.
75  *		These may each be patched to any value 0-3.  Equal values
76  *		will give "fair" (round-robin) arbitration for PCI access.
77  *		Unequal values will give one or the other function priority.
78  *
79  *	bge_dma_rwctrl
80  *		Value to put in the Read/Write DMA control register.  See
81  *	        the Broadcom PRM for things you can fiddle with in this
82  *		register ...
83  *
84  *	bge_{tx,rx}_{count,ticks}_{norm,intr}
85  *		Send/receive interrupt coalescing parameters.  Counts are
86  *		#s of descriptors, ticks are in microseconds.  *norm* values
87  *		apply between status updates/interrupts; the *intr* values
88  *		refer to the 'during-interrupt' versions - see the PRM.
89  *
90  *		NOTE: these values have been determined by measurement. They
91  *		differ significantly from the values recommended in the PRM.
92  */
93 static uint32_t bge_autorecover = 1;
94 static uint32_t bge_mlcr_default = MLCR_DEFAULT;
95 static uint32_t bge_mlcr_default_5714 = MLCR_DEFAULT_5714;
96 
97 static uint32_t bge_dma_rdprio = 1;
98 static uint32_t bge_dma_wrprio = 0;
99 static uint32_t bge_dma_rwctrl = PDRWCR_VAR_DEFAULT;
100 static uint32_t bge_dma_rwctrl_5721 = PDRWCR_VAR_5721;
101 static uint32_t bge_dma_rwctrl_5714 = PDRWCR_VAR_5714;
102 static uint32_t bge_dma_rwctrl_5715 = PDRWCR_VAR_5715;
103 
104 uint32_t bge_rx_ticks_norm = 128;
105 uint32_t bge_tx_ticks_norm = 2048;		/* 8 for FJ2+ !?!?	*/
106 uint32_t bge_rx_count_norm = 8;
107 uint32_t bge_tx_count_norm = 128;
108 
109 static uint32_t bge_rx_ticks_intr = 128;
110 static uint32_t bge_tx_ticks_intr = 0;		/* 8 for FJ2+ !?!?	*/
111 static uint32_t bge_rx_count_intr = 2;
112 static uint32_t bge_tx_count_intr = 0;
113 
114 /*
115  * Memory pool configuration parameters.
116  *
117  * These are generally specific to each member of the chip family, since
118  * each one may have a different memory size/configuration.
119  *
120  * Setting the mbuf pool length for a specific type of chip to 0 inhibits
121  * the driver from programming the various registers; instead they are left
122  * at their hardware defaults.  This is the preferred option for later chips
123  * (5705+), whereas the older chips *required* these registers to be set,
124  * since the h/w default was 0 ;-(
125  */
126 static uint32_t bge_mbuf_pool_base	= MBUF_POOL_BASE_DEFAULT;
127 static uint32_t bge_mbuf_pool_base_5704	= MBUF_POOL_BASE_5704;
128 static uint32_t bge_mbuf_pool_base_5705	= MBUF_POOL_BASE_5705;
129 static uint32_t bge_mbuf_pool_base_5721 = MBUF_POOL_BASE_5721;
130 static uint32_t bge_mbuf_pool_len	= MBUF_POOL_LENGTH_DEFAULT;
131 static uint32_t bge_mbuf_pool_len_5704	= MBUF_POOL_LENGTH_5704;
132 static uint32_t bge_mbuf_pool_len_5705	= 0;	/* use h/w default	*/
133 static uint32_t bge_mbuf_pool_len_5721	= 0;
134 
135 /*
136  * Various high and low water marks, thresholds, etc ...
137  *
138  * Note: these are taken from revision 7 of the PRM, and some are different
139  * from both the values in earlier PRMs *and* those determined experimentally
140  * and used in earlier versions of this driver ...
141  */
142 static uint32_t bge_mbuf_hi_water	= MBUF_HIWAT_DEFAULT;
143 static uint32_t bge_mbuf_lo_water_rmac	= MAC_RX_MBUF_LOWAT_DEFAULT;
144 static uint32_t bge_mbuf_lo_water_rdma	= RDMA_MBUF_LOWAT_DEFAULT;
145 
146 static uint32_t bge_dmad_lo_water	= DMAD_POOL_LOWAT_DEFAULT;
147 static uint32_t bge_dmad_hi_water	= DMAD_POOL_HIWAT_DEFAULT;
148 static uint32_t bge_lowat_recv_frames	= LOWAT_MAX_RECV_FRAMES_DEFAULT;
149 
150 static uint32_t bge_replenish_std	= STD_RCV_BD_REPLENISH_DEFAULT;
151 static uint32_t bge_replenish_mini	= MINI_RCV_BD_REPLENISH_DEFAULT;
152 static uint32_t bge_replenish_jumbo	= JUMBO_RCV_BD_REPLENISH_DEFAULT;
153 
154 static uint32_t	bge_watchdog_count	= 1 << 16;
155 static uint16_t bge_dma_miss_limit	= 20;
156 
157 static uint32_t bge_stop_start_on_sync	= 0;
158 
159 boolean_t bge_jumbo_enable		= B_TRUE;
160 static uint32_t bge_default_jumbo_size	= BGE_JUMBO_BUFF_SIZE;
161 
162 /*
163  * bge_intr_max_loop controls the maximum loop number within bge_intr.
164  * When loading NIC with heavy network traffic, it is useful.
165  * Increasing this value could have positive effect to throughput,
166  * but it might also increase ticks of a bge ISR stick on CPU, which might
167  * lead to bad UI interactive experience. So tune this with caution.
168  */
169 static int bge_intr_max_loop = 1;
170 
171 /*
172  * ========== Low-level chip & ring buffer manipulation ==========
173  */
174 
175 #define	BGE_DBG		BGE_DBG_REGS	/* debug flag for this code	*/
176 
177 
178 /*
179  * Config space read-modify-write routines
180  */
181 
182 #if	BGE_CFG_IO8
183 
184 /*
185  * 8- and 16-bit set/clr operations are not used; all the config registers
186  * that we need to do bit-twiddling on are 32 bits wide.  I'll leave the
187  * code here, though, in case we ever find that we do want it after all ...
188  */
189 
190 static void bge_cfg_set8(bge_t *bgep, bge_regno_t regno, uint8_t bits);
191 #pragma	inline(bge_cfg_set8)
192 
193 static void
194 bge_cfg_set8(bge_t *bgep, bge_regno_t regno, uint8_t bits)
195 {
196 	uint8_t regval;
197 
198 	BGE_TRACE(("bge_cfg_set8($%p, 0x%lx, 0x%x)",
199 	    (void *)bgep, regno, bits));
200 
201 	regval = pci_config_get8(bgep->cfg_handle, regno);
202 
203 	BGE_DEBUG(("bge_cfg_set8($%p, 0x%lx, 0x%x): 0x%x => 0x%x",
204 	    (void *)bgep, regno, bits, regval, regval | bits));
205 
206 	regval |= bits;
207 	pci_config_put8(bgep->cfg_handle, regno, regval);
208 }
209 
210 static void bge_cfg_clr8(bge_t *bgep, bge_regno_t regno, uint8_t bits);
211 #pragma	inline(bge_cfg_clr8)
212 
213 static void
214 bge_cfg_clr8(bge_t *bgep, bge_regno_t regno, uint8_t bits)
215 {
216 	uint8_t regval;
217 
218 	BGE_TRACE(("bge_cfg_clr8($%p, 0x%lx, 0x%x)",
219 	    (void *)bgep, regno, bits));
220 
221 	regval = pci_config_get8(bgep->cfg_handle, regno);
222 
223 	BGE_DEBUG(("bge_cfg_clr8($%p, 0x%lx, 0x%x): 0x%x => 0x%x",
224 	    (void *)bgep, regno, bits, regval, regval & ~bits));
225 
226 	regval &= ~bits;
227 	pci_config_put8(bgep->cfg_handle, regno, regval);
228 }
229 
230 static void bge_cfg_set16(bge_t *bgep, bge_regno_t regno, uint16_t bits);
231 #pragma	inline(bge_cfg_set16)
232 
233 static void
234 bge_cfg_set16(bge_t *bgep, bge_regno_t regno, uint16_t bits)
235 {
236 	uint16_t regval;
237 
238 	BGE_TRACE(("bge_cfg_set16($%p, 0x%lx, 0x%x)",
239 	    (void *)bgep, regno, bits));
240 
241 	regval = pci_config_get16(bgep->cfg_handle, regno);
242 
243 	BGE_DEBUG(("bge_cfg_set16($%p, 0x%lx, 0x%x): 0x%x => 0x%x",
244 	    (void *)bgep, regno, bits, regval, regval | bits));
245 
246 	regval |= bits;
247 	pci_config_put16(bgep->cfg_handle, regno, regval);
248 }
249 
250 static void bge_cfg_clr16(bge_t *bgep, bge_regno_t regno, uint16_t bits);
251 #pragma	inline(bge_cfg_clr16)
252 
253 static void
254 bge_cfg_clr16(bge_t *bgep, bge_regno_t regno, uint16_t bits)
255 {
256 	uint16_t regval;
257 
258 	BGE_TRACE(("bge_cfg_clr16($%p, 0x%lx, 0x%x)",
259 	    (void *)bgep, regno, bits));
260 
261 	regval = pci_config_get16(bgep->cfg_handle, regno);
262 
263 	BGE_DEBUG(("bge_cfg_clr16($%p, 0x%lx, 0x%x): 0x%x => 0x%x",
264 	    (void *)bgep, regno, bits, regval, regval & ~bits));
265 
266 	regval &= ~bits;
267 	pci_config_put16(bgep->cfg_handle, regno, regval);
268 }
269 
270 #endif	/* BGE_CFG_IO8 */
271 
272 static void bge_cfg_set32(bge_t *bgep, bge_regno_t regno, uint32_t bits);
273 #pragma	inline(bge_cfg_set32)
274 
275 static void
276 bge_cfg_set32(bge_t *bgep, bge_regno_t regno, uint32_t bits)
277 {
278 	uint32_t regval;
279 
280 	BGE_TRACE(("bge_cfg_set32($%p, 0x%lx, 0x%x)",
281 	    (void *)bgep, regno, bits));
282 
283 	regval = pci_config_get32(bgep->cfg_handle, regno);
284 
285 	BGE_DEBUG(("bge_cfg_set32($%p, 0x%lx, 0x%x): 0x%x => 0x%x",
286 	    (void *)bgep, regno, bits, regval, regval | bits));
287 
288 	regval |= bits;
289 	pci_config_put32(bgep->cfg_handle, regno, regval);
290 }
291 
292 static void bge_cfg_clr32(bge_t *bgep, bge_regno_t regno, uint32_t bits);
293 #pragma	inline(bge_cfg_clr32)
294 
295 static void
296 bge_cfg_clr32(bge_t *bgep, bge_regno_t regno, uint32_t bits)
297 {
298 	uint32_t regval;
299 
300 	BGE_TRACE(("bge_cfg_clr32($%p, 0x%lx, 0x%x)",
301 	    (void *)bgep, regno, bits));
302 
303 	regval = pci_config_get32(bgep->cfg_handle, regno);
304 
305 	BGE_DEBUG(("bge_cfg_clr32($%p, 0x%lx, 0x%x): 0x%x => 0x%x",
306 	    (void *)bgep, regno, bits, regval, regval & ~bits));
307 
308 	regval &= ~bits;
309 	pci_config_put32(bgep->cfg_handle, regno, regval);
310 }
311 
312 #if	BGE_IND_IO32
313 
314 /*
315  * Indirect access to registers & RISC scratchpads, using config space
316  * accesses only.
317  *
318  * This isn't currently used, but someday we might want to use it for
319  * restoring the Subsystem Device/Vendor registers (which aren't directly
320  * writable in Config Space), or for downloading firmware into the RISCs
321  *
322  * In any case there are endian issues to be resolved before this code is
323  * enabled; the bizarre way that bytes get twisted by this chip AND by
324  * the PCI bridge in SPARC systems mean that we shouldn't enable it until
325  * it's been thoroughly tested for all access sizes on all supported
326  * architectures (SPARC *and* x86!).
327  */
328 uint32_t bge_ind_get32(bge_t *bgep, bge_regno_t regno);
329 #pragma	inline(bge_ind_get32)
330 
331 uint32_t
332 bge_ind_get32(bge_t *bgep, bge_regno_t regno)
333 {
334 	uint32_t val;
335 
336 	BGE_TRACE(("bge_ind_get32($%p, 0x%lx)", (void *)bgep, regno));
337 
338 	pci_config_put32(bgep->cfg_handle, PCI_CONF_BGE_RIAAR, regno);
339 	val = pci_config_get32(bgep->cfg_handle, PCI_CONF_BGE_RIADR);
340 
341 	BGE_DEBUG(("bge_ind_get32($%p, 0x%lx) => 0x%x",
342 	    (void *)bgep, regno, val));
343 
344 	val = LE_32(val);
345 
346 	return (val);
347 }
348 
349 void bge_ind_put32(bge_t *bgep, bge_regno_t regno, uint32_t val);
350 #pragma	inline(bge_ind_put32)
351 
352 void
353 bge_ind_put32(bge_t *bgep, bge_regno_t regno, uint32_t val)
354 {
355 	BGE_TRACE(("bge_ind_put32($%p, 0x%lx, 0x%x)",
356 	    (void *)bgep, regno, val));
357 
358 	val = LE_32(val);
359 	pci_config_put32(bgep->cfg_handle, PCI_CONF_BGE_RIAAR, regno);
360 	pci_config_put32(bgep->cfg_handle, PCI_CONF_BGE_RIADR, val);
361 }
362 
363 #endif	/* BGE_IND_IO32 */
364 
365 #if	BGE_DEBUGGING
366 
367 static void bge_pci_check(bge_t *bgep);
368 #pragma	no_inline(bge_pci_check)
369 
370 static void
371 bge_pci_check(bge_t *bgep)
372 {
373 	uint16_t pcistatus;
374 
375 	pcistatus = pci_config_get16(bgep->cfg_handle, PCI_CONF_STAT);
376 	if ((pcistatus & (PCI_STAT_R_MAST_AB | PCI_STAT_R_TARG_AB)) != 0)
377 		BGE_DEBUG(("bge_pci_check($%p): PCI status 0x%x",
378 		    (void *)bgep, pcistatus));
379 }
380 
381 #endif	/* BGE_DEBUGGING */
382 
383 /*
384  * Perform first-stage chip (re-)initialisation, using only config-space
385  * accesses:
386  *
387  * + Read the vendor/device/revision/subsystem/cache-line-size registers,
388  *   returning the data in the structure pointed to by <idp>.
389  * + Configure the target-mode endianness (swap) options.
390  * + Disable interrupts and enable Memory Space accesses.
391  * + Enable or disable Bus Mastering according to the <enable_dma> flag.
392  *
393  * This sequence is adapted from Broadcom document 570X-PG102-R,
394  * page 102, steps 1-3, 6-8 and 11-13.  The omitted parts of the sequence
395  * are 4 and 5 (Reset Core and wait) which are handled elsewhere.
396  *
397  * This function MUST be called before any non-config-space accesses
398  * are made; on this first call <enable_dma> is B_FALSE, and it
399  * effectively performs steps 3-1(!) of the initialisation sequence
400  * (the rest are not required but should be harmless).
401  *
402  * It MUST also be called after a chip reset, as this disables
403  * Memory Space cycles!  In this case, <enable_dma> is B_TRUE, and
404  * it is effectively performing steps 6-8.
405  */
406 void bge_chip_cfg_init(bge_t *bgep, chip_id_t *cidp, boolean_t enable_dma);
407 #pragma	no_inline(bge_chip_cfg_init)
408 
409 void
410 bge_chip_cfg_init(bge_t *bgep, chip_id_t *cidp, boolean_t enable_dma)
411 {
412 	ddi_acc_handle_t handle;
413 	uint16_t command;
414 	uint32_t mhcr;
415 	uint16_t value16;
416 	int i;
417 
418 	BGE_TRACE(("bge_chip_cfg_init($%p, $%p, %d)",
419 	    (void *)bgep, (void *)cidp, enable_dma));
420 
421 	/*
422 	 * Step 3: save PCI cache line size and subsystem vendor ID
423 	 *
424 	 * Read all the config-space registers that characterise the
425 	 * chip, specifically vendor/device/revision/subsystem vendor
426 	 * and subsystem device id.  We expect (but don't check) that
427 	 * (vendor == VENDOR_ID_BROADCOM) && (device == DEVICE_ID_5704)
428 	 *
429 	 * Also save all bus-transaction related registers (cache-line
430 	 * size, bus-grant/latency parameters, etc).  Some of these are
431 	 * cleared by reset, so we'll have to restore them later.  This
432 	 * comes from the Broadcom document 570X-PG102-R ...
433 	 *
434 	 * Note: Broadcom document 570X-PG102-R seems to be in error
435 	 * here w.r.t. the offsets of the Subsystem Vendor ID and
436 	 * Subsystem (Device) ID registers, which are the opposite way
437 	 * round according to the PCI standard.  For good measure, we
438 	 * save/restore both anyway.
439 	 */
440 	handle = bgep->cfg_handle;
441 
442 	mhcr = pci_config_get32(handle, PCI_CONF_BGE_MHCR);
443 	cidp->asic_rev = mhcr & MHCR_CHIP_REV_MASK;
444 	cidp->businfo = pci_config_get32(handle, PCI_CONF_BGE_PCISTATE);
445 	cidp->command = pci_config_get16(handle, PCI_CONF_COMM);
446 
447 	cidp->vendor = pci_config_get16(handle, PCI_CONF_VENID);
448 	cidp->device = pci_config_get16(handle, PCI_CONF_DEVID);
449 	cidp->subven = pci_config_get16(handle, PCI_CONF_SUBVENID);
450 	cidp->subdev = pci_config_get16(handle, PCI_CONF_SUBSYSID);
451 	cidp->revision = pci_config_get8(handle, PCI_CONF_REVID);
452 	cidp->clsize = pci_config_get8(handle, PCI_CONF_CACHE_LINESZ);
453 	cidp->latency = pci_config_get8(handle, PCI_CONF_LATENCY_TIMER);
454 
455 	BGE_DEBUG(("bge_chip_cfg_init: %s bus is %s and %s; #INTA is %s",
456 	    cidp->businfo & PCISTATE_BUS_IS_PCI ? "PCI" : "PCI-X",
457 	    cidp->businfo & PCISTATE_BUS_IS_FAST ? "fast" : "slow",
458 	    cidp->businfo & PCISTATE_BUS_IS_32_BIT ? "narrow" : "wide",
459 	    cidp->businfo & PCISTATE_INTA_STATE ? "high" : "low"));
460 	BGE_DEBUG(("bge_chip_cfg_init: vendor 0x%x device 0x%x revision 0x%x",
461 	    cidp->vendor, cidp->device, cidp->revision));
462 	BGE_DEBUG(("bge_chip_cfg_init: subven 0x%x subdev 0x%x asic_rev 0x%x",
463 	    cidp->subven, cidp->subdev, cidp->asic_rev));
464 	BGE_DEBUG(("bge_chip_cfg_init: clsize %d latency %d command 0x%x",
465 	    cidp->clsize, cidp->latency, cidp->command));
466 
467 	/*
468 	 * Step 2 (also step 6): disable and clear interrupts.
469 	 * Steps 11-13: configure PIO endianness options, and enable
470 	 * indirect register access.  We'll also select any other
471 	 * options controlled by the MHCR (e.g. tagged status, mask
472 	 * interrupt mode) at this stage ...
473 	 *
474 	 * Note: internally, the chip is 64-bit and BIG-endian, but
475 	 * since it talks to the host over a (LITTLE-endian) PCI bus,
476 	 * it normally swaps bytes around at the PCI interface.
477 	 * However, the PCI host bridge on SPARC systems normally
478 	 * swaps the byte lanes around too, since SPARCs are also
479 	 * BIG-endian.  So it turns out that on SPARC, the right
480 	 * option is to tell the chip to swap (and the host bridge
481 	 * will swap back again), whereas on x86 we ask the chip
482 	 * NOT to swap, so the natural little-endianness of the
483 	 * PCI bus is assumed.  Then the only thing that doesn't
484 	 * automatically work right is access to an 8-byte register
485 	 * by a little-endian host; but we don't want to set the
486 	 * MHCR_ENABLE_REGISTER_WORD_SWAP bit because then 4-byte
487 	 * accesses don't go where expected ;-(  So we live with
488 	 * that, and perform word-swaps in software in the few cases
489 	 * where a chip register is defined as an 8-byte value --
490 	 * see the code below for details ...
491 	 *
492 	 * Note: the meaning of the 'MASK_INTERRUPT_MODE' bit isn't
493 	 * very clear in the register description in the PRM, but
494 	 * Broadcom document 570X-PG104-R page 248 explains a little
495 	 * more (under "Broadcom Mask Mode").  The bit changes the way
496 	 * the MASK_PCI_INT_OUTPUT bit works: with MASK_INTERRUPT_MODE
497 	 * clear, the chip interprets MASK_PCI_INT_OUTPUT in the same
498 	 * way as the 5700 did, which isn't very convenient.  Setting
499 	 * the MASK_INTERRUPT_MODE bit makes the MASK_PCI_INT_OUTPUT
500 	 * bit do just what its name says -- MASK the PCI #INTA output
501 	 * (i.e. deassert the signal at the pin) leaving all internal
502 	 * state unchanged.  This is much more convenient for our
503 	 * interrupt handler, so we set MASK_INTERRUPT_MODE here.
504 	 *
505 	 * Note: the inconvenient semantics of the interrupt mailbox
506 	 * (nonzero disables and acknowledges/clears the interrupt,
507 	 * zero enables AND CLEARS it) would make race conditions
508 	 * likely in the interrupt handler:
509 	 *
510 	 * (1)	acknowledge & disable interrupts
511 	 * (2)	while (more to do)
512 	 * 		process packets
513 	 * (3)	enable interrupts -- also clears pending
514 	 *
515 	 * If the chip received more packets and internally generated
516 	 * an interrupt between the check at (2) and the mbox write
517 	 * at (3), this interrupt would be lost :-(
518 	 *
519 	 * The best way to avoid this is to use TAGGED STATUS mode,
520 	 * where the chip includes a unique tag in each status block
521 	 * update, and the host, when re-enabling interrupts, passes
522 	 * the last tag it saw back to the chip; then the chip can
523 	 * see whether the host is truly up to date, and regenerate
524 	 * its interrupt if not.
525 	 */
526 	mhcr =	MHCR_ENABLE_INDIRECT_ACCESS |
527 	    MHCR_ENABLE_TAGGED_STATUS_MODE |
528 	    MHCR_MASK_INTERRUPT_MODE |
529 	    MHCR_CLEAR_INTERRUPT_INTA;
530 
531 	if (bgep->intr_type == DDI_INTR_TYPE_FIXED)
532 		mhcr |= MHCR_MASK_PCI_INT_OUTPUT;
533 
534 #ifdef	_BIG_ENDIAN
535 	mhcr |= MHCR_ENABLE_ENDIAN_WORD_SWAP | MHCR_ENABLE_ENDIAN_BYTE_SWAP;
536 #endif	/* _BIG_ENDIAN */
537 
538 	pci_config_put32(handle, PCI_CONF_BGE_MHCR, mhcr);
539 
540 #ifdef BGE_IPMI_ASF
541 	bgep->asf_wordswapped = B_FALSE;
542 #endif
543 	/*
544 	 * Step 1 (also step 7): Enable PCI Memory Space accesses
545 	 *			 Disable Memory Write/Invalidate
546 	 *			 Enable or disable Bus Mastering
547 	 *
548 	 * Note that all other bits are taken from the original value saved
549 	 * the first time through here, rather than from the current register
550 	 * value, 'cos that will have been cleared by a soft RESET since.
551 	 * In this way we preserve the OBP/nexus-parent's preferred settings
552 	 * of the parity-error and system-error enable bits across multiple
553 	 * chip RESETs.
554 	 */
555 	command = bgep->chipid.command | PCI_COMM_MAE;
556 	command &= ~(PCI_COMM_ME|PCI_COMM_MEMWR_INVAL);
557 	if (enable_dma)
558 		command |= PCI_COMM_ME;
559 	/*
560 	 * on BCM5714 revision A0, false parity error gets generated
561 	 * due to a logic bug. Provide a workaround by disabling parity
562 	 * error.
563 	 */
564 	if (((cidp->device == DEVICE_ID_5714C) ||
565 	    (cidp->device == DEVICE_ID_5714S)) &&
566 	    (cidp->revision == REVISION_ID_5714_A0)) {
567 		command &= ~PCI_COMM_PARITY_DETECT;
568 	}
569 	pci_config_put16(handle, PCI_CONF_COMM, command);
570 
571 	/*
572 	 * On some PCI-E device, there were instances when
573 	 * the device was still link training.
574 	 */
575 	if (bgep->chipid.pci_type == BGE_PCI_E) {
576 		i = 0;
577 		value16 = pci_config_get16(handle, PCI_CONF_COMM);
578 		while ((value16 != command) && (i < 100)) {
579 			drv_usecwait(200);
580 			value16 = pci_config_get16(handle, PCI_CONF_COMM);
581 			++i;
582 		}
583 	}
584 
585 	/*
586 	 * Clear any remaining error status bits
587 	 */
588 	pci_config_put16(handle, PCI_CONF_STAT, ~0);
589 
590 	/*
591 	 * Do following if and only if the device is NOT BCM5714C OR
592 	 * BCM5715C
593 	 */
594 	if (!((cidp->device == DEVICE_ID_5714C) ||
595 	    (cidp->device == DEVICE_ID_5715C))) {
596 		/*
597 		 * Make sure these indirect-access registers are sane
598 		 * rather than random after power-up or reset
599 		 */
600 		pci_config_put32(handle, PCI_CONF_BGE_RIAAR, 0);
601 		pci_config_put32(handle, PCI_CONF_BGE_MWBAR, 0);
602 	}
603 	/*
604 	 * Step 8: Disable PCI-X/PCI-E Relaxed Ordering
605 	 */
606 	bge_cfg_clr16(bgep, PCIX_CONF_COMM, PCIX_COMM_RELAXED);
607 
608 	if (cidp->pci_type == BGE_PCI_E)
609 		bge_cfg_clr16(bgep, PCI_CONF_DEV_CTRL,
610 		    DEV_CTRL_NO_SNOOP | DEV_CTRL_RELAXED);
611 }
612 
613 #ifdef __amd64
614 /*
615  * Distinguish CPU types
616  *
617  * These use to  distinguish AMD64 or Intel EM64T of CPU running mode.
618  * If CPU runs on Intel EM64T mode,the 64bit operation cannot works fine
619  * for PCI-Express based network interface card. This is the work-around
620  * for those nics.
621  */
622 static boolean_t bge_get_em64t_type(void);
623 #pragma	inline(bge_get_em64t_type)
624 
625 static boolean_t
626 bge_get_em64t_type(void)
627 {
628 
629 	return (x86_vendor == X86_VENDOR_Intel);
630 }
631 #endif
632 
633 /*
634  * Operating register get/set access routines
635  */
636 
637 uint32_t bge_reg_get32(bge_t *bgep, bge_regno_t regno);
638 #pragma	inline(bge_reg_get32)
639 
640 uint32_t
641 bge_reg_get32(bge_t *bgep, bge_regno_t regno)
642 {
643 	BGE_TRACE(("bge_reg_get32($%p, 0x%lx)",
644 	    (void *)bgep, regno));
645 
646 	return (ddi_get32(bgep->io_handle, PIO_ADDR(bgep, regno)));
647 }
648 
649 void bge_reg_put32(bge_t *bgep, bge_regno_t regno, uint32_t data);
650 #pragma	inline(bge_reg_put32)
651 
652 void
653 bge_reg_put32(bge_t *bgep, bge_regno_t regno, uint32_t data)
654 {
655 	BGE_TRACE(("bge_reg_put32($%p, 0x%lx, 0x%x)",
656 	    (void *)bgep, regno, data));
657 
658 	ddi_put32(bgep->io_handle, PIO_ADDR(bgep, regno), data);
659 	BGE_PCICHK(bgep);
660 }
661 
662 void bge_reg_set32(bge_t *bgep, bge_regno_t regno, uint32_t bits);
663 #pragma	inline(bge_reg_set32)
664 
665 void
666 bge_reg_set32(bge_t *bgep, bge_regno_t regno, uint32_t bits)
667 {
668 	uint32_t regval;
669 
670 	BGE_TRACE(("bge_reg_set32($%p, 0x%lx, 0x%x)",
671 	    (void *)bgep, regno, bits));
672 
673 	regval = bge_reg_get32(bgep, regno);
674 	regval |= bits;
675 	bge_reg_put32(bgep, regno, regval);
676 }
677 
678 void bge_reg_clr32(bge_t *bgep, bge_regno_t regno, uint32_t bits);
679 #pragma	inline(bge_reg_clr32)
680 
681 void
682 bge_reg_clr32(bge_t *bgep, bge_regno_t regno, uint32_t bits)
683 {
684 	uint32_t regval;
685 
686 	BGE_TRACE(("bge_reg_clr32($%p, 0x%lx, 0x%x)",
687 	    (void *)bgep, regno, bits));
688 
689 	regval = bge_reg_get32(bgep, regno);
690 	regval &= ~bits;
691 	bge_reg_put32(bgep, regno, regval);
692 }
693 
694 static uint64_t bge_reg_get64(bge_t *bgep, bge_regno_t regno);
695 #pragma	inline(bge_reg_get64)
696 
697 static uint64_t
698 bge_reg_get64(bge_t *bgep, bge_regno_t regno)
699 {
700 	uint64_t regval;
701 
702 #ifdef	__amd64
703 	if (bge_get_em64t_type()) {
704 		regval = ddi_get32(bgep->io_handle, PIO_ADDR(bgep, regno + 4));
705 		regval <<= 32;
706 		regval |= ddi_get32(bgep->io_handle, PIO_ADDR(bgep, regno));
707 	} else {
708 		regval = ddi_get64(bgep->io_handle, PIO_ADDR(bgep, regno));
709 	}
710 #else
711 	regval = ddi_get64(bgep->io_handle, PIO_ADDR(bgep, regno));
712 #endif
713 
714 #ifdef	_LITTLE_ENDIAN
715 	regval = (regval >> 32) | (regval << 32);
716 #endif	/* _LITTLE_ENDIAN */
717 
718 	BGE_TRACE(("bge_reg_get64($%p, 0x%lx) = 0x%016llx",
719 	    (void *)bgep, regno, regval));
720 
721 	return (regval);
722 }
723 
724 static void bge_reg_put64(bge_t *bgep, bge_regno_t regno, uint64_t data);
725 #pragma	inline(bge_reg_put64)
726 
727 static void
728 bge_reg_put64(bge_t *bgep, bge_regno_t regno, uint64_t data)
729 {
730 	BGE_TRACE(("bge_reg_put64($%p, 0x%lx, 0x%016llx)",
731 	    (void *)bgep, regno, data));
732 
733 #ifdef	_LITTLE_ENDIAN
734 	data = ((data >> 32) | (data << 32));
735 #endif	/* _LITTLE_ENDIAN */
736 
737 #ifdef	__amd64
738 	if (bge_get_em64t_type()) {
739 		ddi_put32(bgep->io_handle,
740 		    PIO_ADDR(bgep, regno), (uint32_t)data);
741 		BGE_PCICHK(bgep);
742 		ddi_put32(bgep->io_handle,
743 		    PIO_ADDR(bgep, regno + 4), (uint32_t)(data >> 32));
744 
745 	} else {
746 		ddi_put64(bgep->io_handle, PIO_ADDR(bgep, regno), data);
747 	}
748 #else
749 	ddi_put64(bgep->io_handle, PIO_ADDR(bgep, regno), data);
750 #endif
751 
752 	BGE_PCICHK(bgep);
753 }
754 
755 /*
756  * The DDI doesn't provide get/put functions for 128 bit data
757  * so we put RCBs out as two 64-bit chunks instead.
758  */
759 static void bge_reg_putrcb(bge_t *bgep, bge_regno_t addr, bge_rcb_t *rcbp);
760 #pragma	inline(bge_reg_putrcb)
761 
762 static void
763 bge_reg_putrcb(bge_t *bgep, bge_regno_t addr, bge_rcb_t *rcbp)
764 {
765 	uint64_t *p;
766 
767 	BGE_TRACE(("bge_reg_putrcb($%p, 0x%lx, 0x%016llx:%04x:%04x:%08x)",
768 	    (void *)bgep, addr, rcbp->host_ring_addr,
769 	    rcbp->max_len, rcbp->flags, rcbp->nic_ring_addr));
770 
771 	ASSERT((addr % sizeof (*rcbp)) == 0);
772 
773 	p = (void *)rcbp;
774 	bge_reg_put64(bgep, addr, *p++);
775 	bge_reg_put64(bgep, addr+8, *p);
776 }
777 
778 void bge_mbx_put(bge_t *bgep, bge_regno_t regno, uint64_t data);
779 #pragma	inline(bge_mbx_put)
780 
781 void
782 bge_mbx_put(bge_t *bgep, bge_regno_t regno, uint64_t data)
783 {
784 	BGE_TRACE(("bge_mbx_put($%p, 0x%lx, 0x%016llx)",
785 	    (void *)bgep, regno, data));
786 
787 	/*
788 	 * Mailbox registers are nominally 64 bits on the 5701, but
789 	 * the MSW isn't used.  On the 5703, they're only 32 bits
790 	 * anyway.  So here we just write the lower(!) 32 bits -
791 	 * remembering that the chip is big-endian, even though the
792 	 * PCI bus is little-endian ...
793 	 */
794 #ifdef	_BIG_ENDIAN
795 	ddi_put32(bgep->io_handle, PIO_ADDR(bgep, regno+4), (uint32_t)data);
796 #else
797 	ddi_put32(bgep->io_handle, PIO_ADDR(bgep, regno), (uint32_t)data);
798 #endif	/* _BIG_ENDIAN */
799 	BGE_PCICHK(bgep);
800 }
801 
802 #if	BGE_DEBUGGING
803 
804 void bge_led_mark(bge_t *bgep);
805 #pragma	no_inline(bge_led_mark)
806 
807 void
808 bge_led_mark(bge_t *bgep)
809 {
810 	uint32_t led_ctrl = LED_CONTROL_OVERRIDE_LINK |
811 	    LED_CONTROL_1000MBPS_LED |
812 	    LED_CONTROL_100MBPS_LED |
813 	    LED_CONTROL_10MBPS_LED;
814 
815 	/*
816 	 * Blink all three LINK LEDs on simultaneously, then all off,
817 	 * then restore to automatic hardware control.  This is used
818 	 * in laboratory testing to trigger a logic analyser or scope.
819 	 */
820 	bge_reg_set32(bgep, ETHERNET_MAC_LED_CONTROL_REG, led_ctrl);
821 	led_ctrl ^= LED_CONTROL_OVERRIDE_LINK;
822 	bge_reg_clr32(bgep, ETHERNET_MAC_LED_CONTROL_REG, led_ctrl);
823 	led_ctrl = LED_CONTROL_OVERRIDE_LINK;
824 	bge_reg_clr32(bgep, ETHERNET_MAC_LED_CONTROL_REG, led_ctrl);
825 }
826 
827 #endif	/* BGE_DEBUGGING */
828 
829 /*
830  * NIC on-chip memory access routines
831  *
832  * Only 32K of NIC memory is visible at a time, controlled by the
833  * Memory Window Base Address Register (in PCI config space).  Once
834  * this is set, the 32K region of NIC-local memory that it refers
835  * to can be directly addressed in the upper 32K of the 64K of PCI
836  * memory space used for the device.
837  */
838 
839 static void bge_nic_setwin(bge_t *bgep, bge_regno_t base);
840 #pragma	inline(bge_nic_setwin)
841 
842 static void
843 bge_nic_setwin(bge_t *bgep, bge_regno_t base)
844 {
845 	chip_id_t *cidp;
846 
847 	BGE_TRACE(("bge_nic_setwin($%p, 0x%lx)",
848 	    (void *)bgep, base));
849 
850 	ASSERT((base & MWBAR_GRANULE_MASK) == 0);
851 
852 	/*
853 	 * Don't do repeated zero data writes,
854 	 * if the device is BCM5714C/15C.
855 	 */
856 	cidp = &bgep->chipid;
857 	if ((cidp->device == DEVICE_ID_5714C) ||
858 	    (cidp->device == DEVICE_ID_5715C)) {
859 		if (bgep->lastWriteZeroData && (base == (bge_regno_t)0))
860 			return;
861 		/* Adjust lastWriteZeroData */
862 		bgep->lastWriteZeroData = ((base == (bge_regno_t)0) ?
863 		    B_TRUE : B_FALSE);
864 	}
865 	pci_config_put32(bgep->cfg_handle, PCI_CONF_BGE_MWBAR, base);
866 }
867 
868 static uint32_t bge_nic_get32(bge_t *bgep, bge_regno_t addr);
869 #pragma	inline(bge_nic_get32)
870 
871 static uint32_t
872 bge_nic_get32(bge_t *bgep, bge_regno_t addr)
873 {
874 	uint32_t data;
875 
876 #if defined(BGE_IPMI_ASF) && !defined(__sparc)
877 	if (bgep->asf_enabled && !bgep->asf_wordswapped) {
878 		/* workaround for word swap error */
879 		if (addr & 4)
880 			addr = addr - 4;
881 		else
882 			addr = addr + 4;
883 	}
884 #endif
885 
886 #ifdef __sparc
887 	data = bge_nic_read32(bgep, addr);
888 #else
889 	bge_nic_setwin(bgep, addr & ~MWBAR_GRANULE_MASK);
890 	addr &= MWBAR_GRANULE_MASK;
891 	addr += NIC_MEM_WINDOW_OFFSET;
892 
893 	data = ddi_get32(bgep->io_handle, PIO_ADDR(bgep, addr));
894 #endif
895 
896 	BGE_TRACE(("bge_nic_get32($%p, 0x%lx) = 0x%08x",
897 	    (void *)bgep, addr, data));
898 
899 	return (data);
900 }
901 
902 void bge_nic_put32(bge_t *bgep, bge_regno_t addr, uint32_t data);
903 #pragma inline(bge_nic_put32)
904 
905 void
906 bge_nic_put32(bge_t *bgep, bge_regno_t addr, uint32_t data)
907 {
908 	BGE_TRACE(("bge_nic_put32($%p, 0x%lx, 0x%08x)",
909 	    (void *)bgep, addr, data));
910 
911 #if defined(BGE_IPMI_ASF) && !defined(__sparc)
912 	if (bgep->asf_enabled && !bgep->asf_wordswapped) {
913 		/* workaround for word swap error */
914 		if (addr & 4)
915 			addr = addr - 4;
916 		else
917 			addr = addr + 4;
918 	}
919 #endif
920 
921 #ifdef __sparc
922 	pci_config_put32(bgep->cfg_handle, PCI_CONF_BGE_MWBAR, addr);
923 	data = LE_32(data);
924 	pci_config_put32(bgep->cfg_handle, PCI_CONF_BGE_MWDAR, data);
925 	pci_config_put32(bgep->cfg_handle, PCI_CONF_BGE_MWBAR, 0);
926 #else
927 	bge_nic_setwin(bgep, addr & ~MWBAR_GRANULE_MASK);
928 	addr &= MWBAR_GRANULE_MASK;
929 	addr += NIC_MEM_WINDOW_OFFSET;
930 	ddi_put32(bgep->io_handle, PIO_ADDR(bgep, addr), data);
931 	BGE_PCICHK(bgep);
932 #endif
933 }
934 
935 static uint64_t bge_nic_get64(bge_t *bgep, bge_regno_t addr);
936 #pragma	inline(bge_nic_get64)
937 
938 static uint64_t
939 bge_nic_get64(bge_t *bgep, bge_regno_t addr)
940 {
941 	uint64_t data;
942 
943 	bge_nic_setwin(bgep, addr & ~MWBAR_GRANULE_MASK);
944 	addr &= MWBAR_GRANULE_MASK;
945 	addr += NIC_MEM_WINDOW_OFFSET;
946 
947 #ifdef	__amd64
948 		if (bge_get_em64t_type()) {
949 			data = ddi_get32(bgep->io_handle, PIO_ADDR(bgep, addr));
950 			data <<= 32;
951 			data |= ddi_get32(bgep->io_handle,
952 			    PIO_ADDR(bgep, addr + 4));
953 		} else {
954 			data = ddi_get64(bgep->io_handle, PIO_ADDR(bgep, addr));
955 		}
956 #else
957 		data = ddi_get64(bgep->io_handle, PIO_ADDR(bgep, addr));
958 #endif
959 
960 	BGE_TRACE(("bge_nic_get64($%p, 0x%lx) = 0x%016llx",
961 	    (void *)bgep, addr, data));
962 
963 	return (data);
964 }
965 
966 static void bge_nic_put64(bge_t *bgep, bge_regno_t addr, uint64_t data);
967 #pragma	inline(bge_nic_put64)
968 
969 static void
970 bge_nic_put64(bge_t *bgep, bge_regno_t addr, uint64_t data)
971 {
972 	BGE_TRACE(("bge_nic_put64($%p, 0x%lx, 0x%016llx)",
973 	    (void *)bgep, addr, data));
974 
975 	bge_nic_setwin(bgep, addr & ~MWBAR_GRANULE_MASK);
976 	addr &= MWBAR_GRANULE_MASK;
977 	addr += NIC_MEM_WINDOW_OFFSET;
978 
979 #ifdef	__amd64
980 	if (bge_get_em64t_type()) {
981 		ddi_put32(bgep->io_handle,
982 		    PIO_ADDR(bgep, addr), (uint32_t)data);
983 		BGE_PCICHK(bgep);
984 		ddi_put32(bgep->io_handle,
985 		    PIO_ADDR(bgep, addr + 4), (uint32_t)(data >> 32));
986 	} else {
987 		ddi_put64(bgep->io_handle, PIO_ADDR(bgep, addr), data);
988 	}
989 #else
990 	ddi_put64(bgep->io_handle, PIO_ADDR(bgep, addr), data);
991 #endif
992 
993 	BGE_PCICHK(bgep);
994 }
995 
996 /*
997  * The DDI doesn't provide get/put functions for 128 bit data
998  * so we put RCBs out as two 64-bit chunks instead.
999  */
1000 static void bge_nic_putrcb(bge_t *bgep, bge_regno_t addr, bge_rcb_t *rcbp);
1001 #pragma	inline(bge_nic_putrcb)
1002 
1003 static void
1004 bge_nic_putrcb(bge_t *bgep, bge_regno_t addr, bge_rcb_t *rcbp)
1005 {
1006 	uint64_t *p;
1007 
1008 	BGE_TRACE(("bge_nic_putrcb($%p, 0x%lx, 0x%016llx:%04x:%04x:%08x)",
1009 	    (void *)bgep, addr, rcbp->host_ring_addr,
1010 	    rcbp->max_len, rcbp->flags, rcbp->nic_ring_addr));
1011 
1012 	ASSERT((addr % sizeof (*rcbp)) == 0);
1013 
1014 	bge_nic_setwin(bgep, addr & ~MWBAR_GRANULE_MASK);
1015 	addr &= MWBAR_GRANULE_MASK;
1016 	addr += NIC_MEM_WINDOW_OFFSET;
1017 
1018 	p = (void *)rcbp;
1019 #ifdef	__amd64
1020 	if (bge_get_em64t_type()) {
1021 		ddi_put32(bgep->io_handle, PIO_ADDR(bgep, addr),
1022 		    (uint32_t)(*p));
1023 		ddi_put32(bgep->io_handle, PIO_ADDR(bgep, addr + 4),
1024 		    (uint32_t)(*p >> 32));
1025 		ddi_put32(bgep->io_handle, PIO_ADDR(bgep, addr + 8),
1026 		    (uint32_t)(*(p + 1)));
1027 		ddi_put32(bgep->io_handle, PIO_ADDR(bgep, addr + 12),
1028 		    (uint32_t)(*p >> 32));
1029 
1030 	} else {
1031 		ddi_put64(bgep->io_handle, PIO_ADDR(bgep, addr), *p++);
1032 		ddi_put64(bgep->io_handle, PIO_ADDR(bgep, addr+8), *p);
1033 	}
1034 #else
1035 	ddi_put64(bgep->io_handle, PIO_ADDR(bgep, addr), *p++);
1036 	ddi_put64(bgep->io_handle, PIO_ADDR(bgep, addr + 8), *p);
1037 #endif
1038 
1039 	BGE_PCICHK(bgep);
1040 }
1041 
1042 static void bge_nic_zero(bge_t *bgep, bge_regno_t addr, uint32_t nbytes);
1043 #pragma	inline(bge_nic_zero)
1044 
1045 static void
1046 bge_nic_zero(bge_t *bgep, bge_regno_t addr, uint32_t nbytes)
1047 {
1048 	BGE_TRACE(("bge_nic_zero($%p, 0x%lx, 0x%x)",
1049 	    (void *)bgep, addr, nbytes));
1050 
1051 	ASSERT((addr & ~MWBAR_GRANULE_MASK) ==
1052 	    ((addr+nbytes) & ~MWBAR_GRANULE_MASK));
1053 
1054 	bge_nic_setwin(bgep, addr & ~MWBAR_GRANULE_MASK);
1055 	addr &= MWBAR_GRANULE_MASK;
1056 	addr += NIC_MEM_WINDOW_OFFSET;
1057 
1058 	(void) ddi_device_zero(bgep->io_handle, PIO_ADDR(bgep, addr),
1059 	    nbytes, 1, DDI_DATA_SZ08_ACC);
1060 	BGE_PCICHK(bgep);
1061 }
1062 
1063 /*
1064  * MII (PHY) register get/set access routines
1065  *
1066  * These use the chip's MII auto-access method, controlled by the
1067  * MII Communication register at 0x044c, so the CPU doesn't have
1068  * to fiddle with the individual bits.
1069  */
1070 
1071 #undef	BGE_DBG
1072 #define	BGE_DBG		BGE_DBG_MII	/* debug flag for this code	*/
1073 
1074 static uint16_t bge_mii_access(bge_t *bgep, bge_regno_t regno,
1075 				uint16_t data, uint32_t cmd);
1076 #pragma	no_inline(bge_mii_access)
1077 
1078 static uint16_t
1079 bge_mii_access(bge_t *bgep, bge_regno_t regno, uint16_t data, uint32_t cmd)
1080 {
1081 	uint32_t timeout;
1082 	uint32_t regval1;
1083 	uint32_t regval2;
1084 
1085 	BGE_TRACE(("bge_mii_access($%p, 0x%lx, 0x%x, 0x%x)",
1086 	    (void *)bgep, regno, data, cmd));
1087 
1088 	ASSERT(mutex_owned(bgep->genlock));
1089 
1090 	/*
1091 	 * Assemble the command ...
1092 	 */
1093 	cmd |= data << MI_COMMS_DATA_SHIFT;
1094 	cmd |= regno << MI_COMMS_REGISTER_SHIFT;
1095 	cmd |= bgep->phy_mii_addr << MI_COMMS_ADDRESS_SHIFT;
1096 	cmd |= MI_COMMS_START;
1097 
1098 	/*
1099 	 * Wait for any command already in progress ...
1100 	 *
1101 	 * Note: this *shouldn't* ever find that there is a command
1102 	 * in progress, because we already hold the <genlock> mutex.
1103 	 * Nonetheless, we have sometimes seen the MI_COMMS_START
1104 	 * bit set here -- it seems that the chip can initiate MII
1105 	 * accesses internally, even with polling OFF.
1106 	 */
1107 	regval1 = regval2 = bge_reg_get32(bgep, MI_COMMS_REG);
1108 	for (timeout = 100; ; ) {
1109 		if ((regval2 & MI_COMMS_START) == 0) {
1110 			bge_reg_put32(bgep, MI_COMMS_REG, cmd);
1111 			break;
1112 		}
1113 		if (--timeout == 0)
1114 			break;
1115 		drv_usecwait(10);
1116 		regval2 = bge_reg_get32(bgep, MI_COMMS_REG);
1117 	}
1118 
1119 	if (timeout == 0)
1120 		return ((uint16_t)~0u);
1121 
1122 	if (timeout != 100)
1123 		BGE_REPORT((bgep, "bge_mii_access: cmd 0x%x -- "
1124 		    "MI_COMMS_START set for %d us; 0x%x->0x%x",
1125 		    cmd, 10*(100-timeout), regval1, regval2));
1126 
1127 	regval1 = bge_reg_get32(bgep, MI_COMMS_REG);
1128 	for (timeout = 1000; ; ) {
1129 		if ((regval1 & MI_COMMS_START) == 0)
1130 			break;
1131 		if (--timeout == 0)
1132 			break;
1133 		drv_usecwait(10);
1134 		regval1 = bge_reg_get32(bgep, MI_COMMS_REG);
1135 	}
1136 
1137 	/*
1138 	 * Drop out early if the READ FAILED bit is set -- this chip
1139 	 * could be a 5703/4S, with a SerDes instead of a PHY!
1140 	 */
1141 	if (regval2 & MI_COMMS_READ_FAILED)
1142 		return ((uint16_t)~0u);
1143 
1144 	if (timeout == 0)
1145 		return ((uint16_t)~0u);
1146 
1147 	/*
1148 	 * The PRM says to wait 5us after seeing the START bit clear
1149 	 * and then re-read the register to get the final value of the
1150 	 * data field, in order to avoid a race condition where the
1151 	 * START bit is clear but the data field isn't yet valid.
1152 	 *
1153 	 * Note: we don't actually seem to be encounter this race;
1154 	 * except when the START bit is seen set again (see below),
1155 	 * the data field doesn't change during this 5us interval.
1156 	 */
1157 	drv_usecwait(5);
1158 	regval2 = bge_reg_get32(bgep, MI_COMMS_REG);
1159 
1160 	/*
1161 	 * Unfortunately, when following the PRMs instructions above,
1162 	 * we have occasionally seen the START bit set again(!) in the
1163 	 * value read after the 5us delay. This seems to be due to the
1164 	 * chip autonomously starting another MII access internally.
1165 	 * In such cases, the command/data/etc fields relate to the
1166 	 * internal command, rather than the one that we thought had
1167 	 * just finished.  So in this case, we fall back to returning
1168 	 * the data from the original read that showed START clear.
1169 	 */
1170 	if (regval2 & MI_COMMS_START) {
1171 		BGE_REPORT((bgep, "bge_mii_access: cmd 0x%x -- "
1172 		    "MI_COMMS_START set after transaction; 0x%x->0x%x",
1173 		    cmd, regval1, regval2));
1174 		regval2 = regval1;
1175 	}
1176 
1177 	if (regval2 & MI_COMMS_START)
1178 		return ((uint16_t)~0u);
1179 
1180 	if (regval2 & MI_COMMS_READ_FAILED)
1181 		return ((uint16_t)~0u);
1182 
1183 	return ((regval2 & MI_COMMS_DATA_MASK) >> MI_COMMS_DATA_SHIFT);
1184 }
1185 
1186 uint16_t bge_mii_get16(bge_t *bgep, bge_regno_t regno);
1187 #pragma	no_inline(bge_mii_get16)
1188 
1189 uint16_t
1190 bge_mii_get16(bge_t *bgep, bge_regno_t regno)
1191 {
1192 	BGE_TRACE(("bge_mii_get16($%p, 0x%lx)",
1193 	    (void *)bgep, regno));
1194 
1195 	ASSERT(mutex_owned(bgep->genlock));
1196 
1197 	return (bge_mii_access(bgep, regno, 0, MI_COMMS_COMMAND_READ));
1198 }
1199 
1200 void bge_mii_put16(bge_t *bgep, bge_regno_t regno, uint16_t data);
1201 #pragma	no_inline(bge_mii_put16)
1202 
1203 void
1204 bge_mii_put16(bge_t *bgep, bge_regno_t regno, uint16_t data)
1205 {
1206 	BGE_TRACE(("bge_mii_put16($%p, 0x%lx, 0x%x)",
1207 	    (void *)bgep, regno, data));
1208 
1209 	ASSERT(mutex_owned(bgep->genlock));
1210 
1211 	(void) bge_mii_access(bgep, regno, data, MI_COMMS_COMMAND_WRITE);
1212 }
1213 
1214 #undef	BGE_DBG
1215 #define	BGE_DBG		BGE_DBG_SEEPROM	/* debug flag for this code	*/
1216 
1217 #if	BGE_SEE_IO32 || BGE_FLASH_IO32
1218 
1219 /*
1220  * Basic SEEPROM get/set access routine
1221  *
1222  * This uses the chip's SEEPROM auto-access method, controlled by the
1223  * Serial EEPROM Address/Data Registers at 0x6838/683c, so the CPU
1224  * doesn't have to fiddle with the individual bits.
1225  *
1226  * The caller should hold <genlock> and *also* have already acquired
1227  * the right to access the SEEPROM, via bge_nvmem_acquire() above.
1228  *
1229  * Return value:
1230  *	0 on success,
1231  *	ENODATA on access timeout (maybe retryable: device may just be busy)
1232  *	EPROTO on other h/w or s/w errors.
1233  *
1234  * <*dp> is an input to a SEEPROM_ACCESS_WRITE operation, or an output
1235  * from a (successful) SEEPROM_ACCESS_READ.
1236  */
1237 static int bge_seeprom_access(bge_t *bgep, uint32_t cmd, bge_regno_t addr,
1238 				uint32_t *dp);
1239 #pragma	no_inline(bge_seeprom_access)
1240 
1241 static int
1242 bge_seeprom_access(bge_t *bgep, uint32_t cmd, bge_regno_t addr, uint32_t *dp)
1243 {
1244 	uint32_t tries;
1245 	uint32_t regval;
1246 
1247 	ASSERT(mutex_owned(bgep->genlock));
1248 
1249 	/*
1250 	 * On the newer chips that support both SEEPROM & Flash, we need
1251 	 * to specifically enable SEEPROM access (Flash is the default).
1252 	 * On older chips, we don't; SEEPROM is the only NVtype supported,
1253 	 * and the NVM control registers don't exist ...
1254 	 */
1255 	switch (bgep->chipid.nvtype) {
1256 	case BGE_NVTYPE_NONE:
1257 	case BGE_NVTYPE_UNKNOWN:
1258 		_NOTE(NOTREACHED)
1259 	case BGE_NVTYPE_SEEPROM:
1260 		break;
1261 
1262 	case BGE_NVTYPE_LEGACY_SEEPROM:
1263 	case BGE_NVTYPE_UNBUFFERED_FLASH:
1264 	case BGE_NVTYPE_BUFFERED_FLASH:
1265 	default:
1266 		bge_reg_set32(bgep, NVM_CONFIG1_REG,
1267 		    NVM_CFG1_LEGACY_SEEPROM_MODE);
1268 		break;
1269 	}
1270 
1271 	/*
1272 	 * Check there's no command in progress.
1273 	 *
1274 	 * Note: this *shouldn't* ever find that there is a command
1275 	 * in progress, because we already hold the <genlock> mutex.
1276 	 * Also, to ensure we don't have a conflict with the chip's
1277 	 * internal firmware or a process accessing the same (shared)
1278 	 * SEEPROM through the other port of a 5704, we've already
1279 	 * been through the "software arbitration" protocol.
1280 	 * So this is just a final consistency check: we shouldn't
1281 	 * see EITHER the START bit (command started but not complete)
1282 	 * OR the COMPLETE bit (command completed but not cleared).
1283 	 */
1284 	regval = bge_reg_get32(bgep, SERIAL_EEPROM_ADDRESS_REG);
1285 	if (regval & SEEPROM_ACCESS_START)
1286 		return (EPROTO);
1287 	if (regval & SEEPROM_ACCESS_COMPLETE)
1288 		return (EPROTO);
1289 
1290 	/*
1291 	 * Assemble the command ...
1292 	 */
1293 	cmd |= addr & SEEPROM_ACCESS_ADDRESS_MASK;
1294 	addr >>= SEEPROM_ACCESS_ADDRESS_SIZE;
1295 	addr <<= SEEPROM_ACCESS_DEVID_SHIFT;
1296 	cmd |= addr & SEEPROM_ACCESS_DEVID_MASK;
1297 	cmd |= SEEPROM_ACCESS_START;
1298 	cmd |= SEEPROM_ACCESS_COMPLETE;
1299 	cmd |= regval & SEEPROM_ACCESS_HALFCLOCK_MASK;
1300 
1301 	bge_reg_put32(bgep, SERIAL_EEPROM_DATA_REG, *dp);
1302 	bge_reg_put32(bgep, SERIAL_EEPROM_ADDRESS_REG, cmd);
1303 
1304 	/*
1305 	 * By observation, a successful access takes ~20us on a 5703/4,
1306 	 * but apparently much longer (up to 1000us) on the obsolescent
1307 	 * BCM5700/BCM5701.  We want to be sure we don't get any false
1308 	 * timeouts here; but OTOH, we don't want a bogus access to lock
1309 	 * out interrupts for longer than necessary. So we'll allow up
1310 	 * to 1000us ...
1311 	 */
1312 	for (tries = 0; tries < 1000; ++tries) {
1313 		regval = bge_reg_get32(bgep, SERIAL_EEPROM_ADDRESS_REG);
1314 		if (regval & SEEPROM_ACCESS_COMPLETE)
1315 			break;
1316 		drv_usecwait(1);
1317 	}
1318 
1319 	if (regval & SEEPROM_ACCESS_COMPLETE) {
1320 		/*
1321 		 * All OK; read the SEEPROM data register, then write back
1322 		 * the value read from the address register in order to
1323 		 * clear the <complete> bit and leave the SEEPROM access
1324 		 * state machine idle, ready for the next access ...
1325 		 */
1326 		BGE_DEBUG(("bge_seeprom_access: complete after %d us", tries));
1327 		*dp = bge_reg_get32(bgep, SERIAL_EEPROM_DATA_REG);
1328 		bge_reg_put32(bgep, SERIAL_EEPROM_ADDRESS_REG, regval);
1329 		return (0);
1330 	}
1331 
1332 	/*
1333 	 * Hmm ... what happened here?
1334 	 *
1335 	 * Most likely, the user addressed a non-existent SEEPROM. Or
1336 	 * maybe the SEEPROM was busy internally (e.g. processing a write)
1337 	 * and didn't respond to being addressed. Either way, it's left
1338 	 * the SEEPROM access state machine wedged. So we'll reset it
1339 	 * before we leave, so it's ready for next time ...
1340 	 */
1341 	BGE_DEBUG(("bge_seeprom_access: timed out after %d us", tries));
1342 	bge_reg_set32(bgep, SERIAL_EEPROM_ADDRESS_REG, SEEPROM_ACCESS_INIT);
1343 	return (ENODATA);
1344 }
1345 
1346 /*
1347  * Basic Flash get/set access routine
1348  *
1349  * These use the chip's Flash auto-access method, controlled by the
1350  * Flash Access Registers at 0x7000-701c, so the CPU doesn't have to
1351  * fiddle with the individual bits.
1352  *
1353  * The caller should hold <genlock> and *also* have already acquired
1354  * the right to access the Flash, via bge_nvmem_acquire() above.
1355  *
1356  * Return value:
1357  *	0 on success,
1358  *	ENODATA on access timeout (maybe retryable: device may just be busy)
1359  *	ENODEV if the NVmem device is missing or otherwise unusable
1360  *
1361  * <*dp> is an input to a NVM_FLASH_CMD_WR operation, or an output
1362  * from a (successful) NVM_FLASH_CMD_RD.
1363  */
1364 static int bge_flash_access(bge_t *bgep, uint32_t cmd, bge_regno_t addr,
1365 				uint32_t *dp);
1366 #pragma	no_inline(bge_flash_access)
1367 
1368 static int
1369 bge_flash_access(bge_t *bgep, uint32_t cmd, bge_regno_t addr, uint32_t *dp)
1370 {
1371 	uint32_t tries;
1372 	uint32_t regval;
1373 
1374 	ASSERT(mutex_owned(bgep->genlock));
1375 
1376 	/*
1377 	 * On the newer chips that support both SEEPROM & Flash, we need
1378 	 * to specifically disable SEEPROM access while accessing Flash.
1379 	 * The older chips don't support Flash, and the NVM registers don't
1380 	 * exist, so we shouldn't be here at all!
1381 	 */
1382 	switch (bgep->chipid.nvtype) {
1383 	case BGE_NVTYPE_NONE:
1384 	case BGE_NVTYPE_UNKNOWN:
1385 		_NOTE(NOTREACHED)
1386 	case BGE_NVTYPE_SEEPROM:
1387 		return (ENODEV);
1388 
1389 	case BGE_NVTYPE_LEGACY_SEEPROM:
1390 	case BGE_NVTYPE_UNBUFFERED_FLASH:
1391 	case BGE_NVTYPE_BUFFERED_FLASH:
1392 	default:
1393 		bge_reg_clr32(bgep, NVM_CONFIG1_REG,
1394 		    NVM_CFG1_LEGACY_SEEPROM_MODE);
1395 		break;
1396 	}
1397 
1398 	/*
1399 	 * Assemble the command ...
1400 	 */
1401 	addr &= NVM_FLASH_ADDR_MASK;
1402 	cmd |= NVM_FLASH_CMD_DOIT;
1403 	cmd |= NVM_FLASH_CMD_FIRST;
1404 	cmd |= NVM_FLASH_CMD_LAST;
1405 	cmd |= NVM_FLASH_CMD_DONE;
1406 
1407 	bge_reg_put32(bgep, NVM_FLASH_WRITE_REG, *dp);
1408 	bge_reg_put32(bgep, NVM_FLASH_ADDR_REG, addr);
1409 	bge_reg_put32(bgep, NVM_FLASH_CMD_REG, cmd);
1410 
1411 	/*
1412 	 * Allow up to 1000ms ...
1413 	 */
1414 	for (tries = 0; tries < 1000; ++tries) {
1415 		regval = bge_reg_get32(bgep, NVM_FLASH_CMD_REG);
1416 		if (regval & NVM_FLASH_CMD_DONE)
1417 			break;
1418 		drv_usecwait(1);
1419 	}
1420 
1421 	if (regval & NVM_FLASH_CMD_DONE) {
1422 		/*
1423 		 * All OK; read the data from the Flash read register
1424 		 */
1425 		BGE_DEBUG(("bge_flash_access: complete after %d us", tries));
1426 		*dp = bge_reg_get32(bgep, NVM_FLASH_READ_REG);
1427 		return (0);
1428 	}
1429 
1430 	/*
1431 	 * Hmm ... what happened here?
1432 	 *
1433 	 * Most likely, the user addressed a non-existent Flash. Or
1434 	 * maybe the Flash was busy internally (e.g. processing a write)
1435 	 * and didn't respond to being addressed. Either way, there's
1436 	 * nothing we can here ...
1437 	 */
1438 	BGE_DEBUG(("bge_flash_access: timed out after %d us", tries));
1439 	return (ENODATA);
1440 }
1441 
1442 /*
1443  * The next two functions regulate access to the NVram (if fitted).
1444  *
1445  * On a 5704 (dual core) chip, there's only one SEEPROM and one Flash
1446  * (SPI) interface, but they can be accessed through either port. These
1447  * are managed by different instance of this driver and have no software
1448  * state in common.
1449  *
1450  * In addition (and even on a single core chip) the chip's internal
1451  * firmware can access the SEEPROM/Flash, most notably after a RESET
1452  * when it may download code to run internally.
1453  *
1454  * So we need to arbitrate between these various software agents.  For
1455  * this purpose, the chip provides the Software Arbitration Register,
1456  * which implements hardware(!) arbitration.
1457  *
1458  * This functionality didn't exist on older (5700/5701) chips, so there's
1459  * nothing we can do by way of arbitration on those; also, if there's no
1460  * SEEPROM/Flash fitted (or we couldn't determine what type), there's also
1461  * nothing to do.
1462  *
1463  * The internal firmware appears to use Request 0, which is the highest
1464  * priority.  So we'd like to use Request 2, leaving one higher and one
1465  * lower for any future developments ... but apparently this doesn't
1466  * always work.  So for now, the code uses Request 1 ;-(
1467  */
1468 
1469 #define	NVM_READ_REQ	NVM_READ_REQ1
1470 #define	NVM_RESET_REQ	NVM_RESET_REQ1
1471 #define	NVM_SET_REQ	NVM_SET_REQ1
1472 
1473 static void bge_nvmem_relinquish(bge_t *bgep);
1474 #pragma	no_inline(bge_nvmem_relinquish)
1475 
1476 static void
1477 bge_nvmem_relinquish(bge_t *bgep)
1478 {
1479 	ASSERT(mutex_owned(bgep->genlock));
1480 
1481 	switch (bgep->chipid.nvtype) {
1482 	case BGE_NVTYPE_NONE:
1483 	case BGE_NVTYPE_UNKNOWN:
1484 		_NOTE(NOTREACHED)
1485 		return;
1486 
1487 	case BGE_NVTYPE_SEEPROM:
1488 		/*
1489 		 * No arbitration performed, no release needed
1490 		 */
1491 		return;
1492 
1493 	case BGE_NVTYPE_LEGACY_SEEPROM:
1494 	case BGE_NVTYPE_UNBUFFERED_FLASH:
1495 	case BGE_NVTYPE_BUFFERED_FLASH:
1496 	default:
1497 		break;
1498 	}
1499 
1500 	/*
1501 	 * Our own request should be present (whether or not granted) ...
1502 	 */
1503 	(void) bge_reg_get32(bgep, NVM_SW_ARBITRATION_REG);
1504 
1505 	/*
1506 	 * ... this will make it go away.
1507 	 */
1508 	bge_reg_put32(bgep, NVM_SW_ARBITRATION_REG, NVM_RESET_REQ);
1509 	(void) bge_reg_get32(bgep, NVM_SW_ARBITRATION_REG);
1510 }
1511 
1512 /*
1513  * Arbitrate for access to the NVmem, if necessary
1514  *
1515  * Return value:
1516  *	0 on success
1517  *	EAGAIN if the device is in use (retryable)
1518  *	ENODEV if the NVmem device is missing or otherwise unusable
1519  */
1520 static int bge_nvmem_acquire(bge_t *bgep);
1521 #pragma	no_inline(bge_nvmem_acquire)
1522 
1523 static int
1524 bge_nvmem_acquire(bge_t *bgep)
1525 {
1526 	uint32_t regval;
1527 	uint32_t tries;
1528 
1529 	ASSERT(mutex_owned(bgep->genlock));
1530 
1531 	switch (bgep->chipid.nvtype) {
1532 	case BGE_NVTYPE_NONE:
1533 	case BGE_NVTYPE_UNKNOWN:
1534 		/*
1535 		 * Access denied: no (recognisable) device fitted
1536 		 */
1537 		return (ENODEV);
1538 
1539 	case BGE_NVTYPE_SEEPROM:
1540 		/*
1541 		 * Access granted: no arbitration needed (or possible)
1542 		 */
1543 		return (0);
1544 
1545 	case BGE_NVTYPE_LEGACY_SEEPROM:
1546 	case BGE_NVTYPE_UNBUFFERED_FLASH:
1547 	case BGE_NVTYPE_BUFFERED_FLASH:
1548 	default:
1549 		/*
1550 		 * Access conditional: conduct arbitration protocol
1551 		 */
1552 		break;
1553 	}
1554 
1555 	/*
1556 	 * We're holding the per-port mutex <genlock>, so no-one other
1557 	 * thread can be attempting to access the NVmem through *this*
1558 	 * port. But it could be in use by the *other* port (of a 5704),
1559 	 * or by the chip's internal firmware, so we have to go through
1560 	 * the full (hardware) arbitration protocol ...
1561 	 *
1562 	 * Note that *because* we're holding <genlock>, the interrupt handler
1563 	 * won't be able to progress.  So we're only willing to spin for a
1564 	 * fairly short time.  Specifically:
1565 	 *
1566 	 *	We *must* wait long enough for the hardware to resolve all
1567 	 *	requests and determine the winner.  Fortunately, this is
1568 	 *	"almost instantaneous", even as observed by GHz CPUs.
1569 	 *
1570 	 *	A successful access by another Solaris thread (via either
1571 	 *	port) typically takes ~20us.  So waiting a bit longer than
1572 	 *	that will give a good chance of success, if the other user
1573 	 *	*is* another thread on the other port.
1574 	 *
1575 	 *	However, the internal firmware can hold on to the NVmem
1576 	 *	for *much* longer: at least 10 milliseconds just after a
1577 	 *	RESET, and maybe even longer if the NVmem actually contains
1578 	 *	code to download and run on the internal CPUs.
1579 	 *
1580 	 * So, we'll allow 50us; if that's not enough then it's up to the
1581 	 * caller to retry later (hence the choice of return code EAGAIN).
1582 	 */
1583 	regval = bge_reg_get32(bgep, NVM_SW_ARBITRATION_REG);
1584 	bge_reg_put32(bgep, NVM_SW_ARBITRATION_REG, NVM_SET_REQ);
1585 
1586 	for (tries = 0; tries < 50; ++tries) {
1587 		regval = bge_reg_get32(bgep, NVM_SW_ARBITRATION_REG);
1588 		if (regval & NVM_WON_REQ1)
1589 			break;
1590 		drv_usecwait(1);
1591 	}
1592 
1593 	if (regval & NVM_WON_REQ1) {
1594 		BGE_DEBUG(("bge_nvmem_acquire: won after %d us", tries));
1595 		return (0);
1596 	}
1597 
1598 	/*
1599 	 * Somebody else must be accessing the NVmem, so abandon our
1600 	 * attempt take control of it.  The caller can try again later ...
1601 	 */
1602 	BGE_DEBUG(("bge_nvmem_acquire: lost after %d us", tries));
1603 	bge_nvmem_relinquish(bgep);
1604 	return (EAGAIN);
1605 }
1606 
1607 /*
1608  * This code assumes that the GPIO1 bit has been wired up to the NVmem
1609  * write protect line in such a way that the NVmem is protected when
1610  * GPIO1 is an input, or is an output but driven high.  Thus, to make the
1611  * NVmem writable we have to change GPIO1 to an output AND drive it low.
1612  *
1613  * Note: there's only one set of GPIO pins on a 5704, even though they
1614  * can be accessed through either port.  So the chip has to resolve what
1615  * happens if the two ports program a single pin differently ... the rule
1616  * it uses is that if the ports disagree about the *direction* of a pin,
1617  * "output" wins over "input", but if they disagree about its *value* as
1618  * an output, then the pin is TRISTATED instead!  In such a case, no-one
1619  * wins, and the external signal does whatever the external circuitry
1620  * defines as the default -- which we've assumed is the PROTECTED state.
1621  * So, we always change GPIO1 back to being an *input* whenever we're not
1622  * specifically using it to unprotect the NVmem. This allows either port
1623  * to update the NVmem, although obviously only one at a time!
1624  *
1625  * The caller should hold <genlock> and *also* have already acquired the
1626  * right to access the NVmem, via bge_nvmem_acquire() above.
1627  */
1628 static void bge_nvmem_protect(bge_t *bgep, boolean_t protect);
1629 #pragma	inline(bge_nvmem_protect)
1630 
1631 static void
1632 bge_nvmem_protect(bge_t *bgep, boolean_t protect)
1633 {
1634 	uint32_t regval;
1635 
1636 	ASSERT(mutex_owned(bgep->genlock));
1637 
1638 	regval = bge_reg_get32(bgep, MISC_LOCAL_CONTROL_REG);
1639 	if (protect) {
1640 		regval |= MLCR_MISC_PINS_OUTPUT_1;
1641 		regval &= ~MLCR_MISC_PINS_OUTPUT_ENABLE_1;
1642 	} else {
1643 		regval &= ~MLCR_MISC_PINS_OUTPUT_1;
1644 		regval |= MLCR_MISC_PINS_OUTPUT_ENABLE_1;
1645 	}
1646 	bge_reg_put32(bgep, MISC_LOCAL_CONTROL_REG, regval);
1647 }
1648 
1649 /*
1650  * Now put it all together ...
1651  *
1652  * Try to acquire control of the NVmem; if successful, then:
1653  *	unprotect it (if we want to write to it)
1654  *	perform the requested access
1655  *	reprotect it (after a write)
1656  *	relinquish control
1657  *
1658  * Return value:
1659  *	0 on success,
1660  *	EAGAIN if the device is in use (retryable)
1661  *	ENODATA on access timeout (maybe retryable: device may just be busy)
1662  *	ENODEV if the NVmem device is missing or otherwise unusable
1663  *	EPROTO on other h/w or s/w errors.
1664  */
1665 static int
1666 bge_nvmem_rw32(bge_t *bgep, uint32_t cmd, bge_regno_t addr, uint32_t *dp)
1667 {
1668 	int err;
1669 
1670 	if ((err = bge_nvmem_acquire(bgep)) == 0) {
1671 		switch (cmd) {
1672 		case BGE_SEE_READ:
1673 			err = bge_seeprom_access(bgep,
1674 			    SEEPROM_ACCESS_READ, addr, dp);
1675 			break;
1676 
1677 		case BGE_SEE_WRITE:
1678 			bge_nvmem_protect(bgep, B_FALSE);
1679 			err = bge_seeprom_access(bgep,
1680 			    SEEPROM_ACCESS_WRITE, addr, dp);
1681 			bge_nvmem_protect(bgep, B_TRUE);
1682 			break;
1683 
1684 		case BGE_FLASH_READ:
1685 			if (DEVICE_5721_SERIES_CHIPSETS(bgep) ||
1686 			    DEVICE_5714_SERIES_CHIPSETS(bgep)) {
1687 				bge_reg_set32(bgep, NVM_ACCESS_REG,
1688 				    NVM_ACCESS_ENABLE);
1689 			}
1690 			err = bge_flash_access(bgep,
1691 			    NVM_FLASH_CMD_RD, addr, dp);
1692 			if (DEVICE_5721_SERIES_CHIPSETS(bgep) ||
1693 			    DEVICE_5714_SERIES_CHIPSETS(bgep)) {
1694 				bge_reg_clr32(bgep, NVM_ACCESS_REG,
1695 				    NVM_ACCESS_ENABLE);
1696 			}
1697 			break;
1698 
1699 		case BGE_FLASH_WRITE:
1700 			if (DEVICE_5721_SERIES_CHIPSETS(bgep) ||
1701 			    DEVICE_5714_SERIES_CHIPSETS(bgep)) {
1702 				bge_reg_set32(bgep, NVM_ACCESS_REG,
1703 				    NVM_WRITE_ENABLE|NVM_ACCESS_ENABLE);
1704 			}
1705 			bge_nvmem_protect(bgep, B_FALSE);
1706 			err = bge_flash_access(bgep,
1707 			    NVM_FLASH_CMD_WR, addr, dp);
1708 			bge_nvmem_protect(bgep, B_TRUE);
1709 			if (DEVICE_5721_SERIES_CHIPSETS(bgep) ||
1710 			    DEVICE_5714_SERIES_CHIPSETS(bgep)) {
1711 				bge_reg_clr32(bgep, NVM_ACCESS_REG,
1712 				    NVM_WRITE_ENABLE|NVM_ACCESS_ENABLE);
1713 			}
1714 
1715 			break;
1716 
1717 		default:
1718 			_NOTE(NOTREACHED)
1719 			break;
1720 		}
1721 		bge_nvmem_relinquish(bgep);
1722 	}
1723 
1724 	BGE_DEBUG(("bge_nvmem_rw32: err %d", err));
1725 	return (err);
1726 }
1727 
1728 /*
1729  * Attempt to get a MAC address from the SEEPROM or Flash, if any
1730  */
1731 static uint64_t bge_get_nvmac(bge_t *bgep);
1732 #pragma no_inline(bge_get_nvmac)
1733 
1734 static uint64_t
1735 bge_get_nvmac(bge_t *bgep)
1736 {
1737 	uint32_t mac_high;
1738 	uint32_t mac_low;
1739 	uint32_t addr;
1740 	uint32_t cmd;
1741 	uint64_t mac;
1742 
1743 	BGE_TRACE(("bge_get_nvmac($%p)",
1744 	    (void *)bgep));
1745 
1746 	switch (bgep->chipid.nvtype) {
1747 	case BGE_NVTYPE_NONE:
1748 	case BGE_NVTYPE_UNKNOWN:
1749 	default:
1750 		return (0ULL);
1751 
1752 	case BGE_NVTYPE_SEEPROM:
1753 	case BGE_NVTYPE_LEGACY_SEEPROM:
1754 		cmd = BGE_SEE_READ;
1755 		break;
1756 
1757 	case BGE_NVTYPE_UNBUFFERED_FLASH:
1758 	case BGE_NVTYPE_BUFFERED_FLASH:
1759 		cmd = BGE_FLASH_READ;
1760 		break;
1761 	}
1762 
1763 	addr = NVMEM_DATA_MAC_ADDRESS;
1764 	if (bge_nvmem_rw32(bgep, cmd, addr, &mac_high))
1765 		return (0ULL);
1766 	addr += 4;
1767 	if (bge_nvmem_rw32(bgep, cmd, addr, &mac_low))
1768 		return (0ULL);
1769 
1770 	/*
1771 	 * The Broadcom chip is natively BIG-endian, so that's how the
1772 	 * MAC address is represented in NVmem.  We may need to swap it
1773 	 * around on a little-endian host ...
1774 	 */
1775 #ifdef	_BIG_ENDIAN
1776 	mac = mac_high;
1777 	mac = mac << 32;
1778 	mac |= mac_low;
1779 #else
1780 	mac = BGE_BSWAP_32(mac_high);
1781 	mac = mac << 32;
1782 	mac |= BGE_BSWAP_32(mac_low);
1783 #endif	/* _BIG_ENDIAN */
1784 
1785 	return (mac);
1786 }
1787 
1788 #else	/* BGE_SEE_IO32 || BGE_FLASH_IO32 */
1789 
1790 /*
1791  * Dummy version for when we're not supporting NVmem access
1792  */
1793 static uint64_t bge_get_nvmac(bge_t *bgep);
1794 #pragma inline(bge_get_nvmac)
1795 
1796 static uint64_t
1797 bge_get_nvmac(bge_t *bgep)
1798 {
1799 	_NOTE(ARGUNUSED(bgep))
1800 	return (0ULL);
1801 }
1802 
1803 #endif	/* BGE_SEE_IO32 || BGE_FLASH_IO32 */
1804 
1805 /*
1806  * Determine the type of NVmem that is (or may be) attached to this chip,
1807  */
1808 static enum bge_nvmem_type bge_nvmem_id(bge_t *bgep);
1809 #pragma no_inline(bge_nvmem_id)
1810 
1811 static enum bge_nvmem_type
1812 bge_nvmem_id(bge_t *bgep)
1813 {
1814 	enum bge_nvmem_type nvtype;
1815 	uint32_t config1;
1816 
1817 	BGE_TRACE(("bge_nvmem_id($%p)",
1818 	    (void *)bgep));
1819 
1820 	switch (bgep->chipid.device) {
1821 	default:
1822 		/*
1823 		 * We shouldn't get here; it means we don't recognise
1824 		 * the chip, which means we don't know how to determine
1825 		 * what sort of NVmem (if any) it has.  So we'll say
1826 		 * NONE, to disable the NVmem access code ...
1827 		 */
1828 		nvtype = BGE_NVTYPE_NONE;
1829 		break;
1830 
1831 	case DEVICE_ID_5700:
1832 	case DEVICE_ID_5700x:
1833 	case DEVICE_ID_5701:
1834 		/*
1835 		 * These devices support *only* SEEPROMs
1836 		 */
1837 		nvtype = BGE_NVTYPE_SEEPROM;
1838 		break;
1839 
1840 	case DEVICE_ID_5702:
1841 	case DEVICE_ID_5702fe:
1842 	case DEVICE_ID_5703C:
1843 	case DEVICE_ID_5703S:
1844 	case DEVICE_ID_5704C:
1845 	case DEVICE_ID_5704S:
1846 	case DEVICE_ID_5704:
1847 	case DEVICE_ID_5705M:
1848 	case DEVICE_ID_5705C:
1849 	case DEVICE_ID_5705_2:
1850 	case DEVICE_ID_5706:
1851 	case DEVICE_ID_5782:
1852 	case DEVICE_ID_5788:
1853 	case DEVICE_ID_5789:
1854 	case DEVICE_ID_5751:
1855 	case DEVICE_ID_5751M:
1856 	case DEVICE_ID_5752:
1857 	case DEVICE_ID_5752M:
1858 	case DEVICE_ID_5754:
1859 	case DEVICE_ID_5755:
1860 	case DEVICE_ID_5721:
1861 	case DEVICE_ID_5714C:
1862 	case DEVICE_ID_5714S:
1863 	case DEVICE_ID_5715C:
1864 	case DEVICE_ID_5715S:
1865 		config1 = bge_reg_get32(bgep, NVM_CONFIG1_REG);
1866 		if (config1 & NVM_CFG1_FLASH_MODE)
1867 			if (config1 & NVM_CFG1_BUFFERED_MODE)
1868 				nvtype = BGE_NVTYPE_BUFFERED_FLASH;
1869 			else
1870 				nvtype = BGE_NVTYPE_UNBUFFERED_FLASH;
1871 		else
1872 			nvtype = BGE_NVTYPE_LEGACY_SEEPROM;
1873 		break;
1874 	}
1875 
1876 	return (nvtype);
1877 }
1878 
1879 #undef	BGE_DBG
1880 #define	BGE_DBG		BGE_DBG_CHIP	/* debug flag for this code	*/
1881 
1882 static void
1883 bge_init_recv_rule(bge_t *bgep)
1884 {
1885 	bge_recv_rule_t *rulep;
1886 	uint32_t i;
1887 
1888 	/*
1889 	 * receive rule: direct all TCP traffic to ring RULE_MATCH_TO_RING
1890 	 * 1. to direct UDP traffic, set:
1891 	 * 	rulep->control = RULE_PROTO_CONTROL;
1892 	 * 	rulep->mask_value = RULE_UDP_MASK_VALUE;
1893 	 * 2. to direct ICMP traffic, set:
1894 	 * 	rulep->control = RULE_PROTO_CONTROL;
1895 	 * 	rulep->mask_value = RULE_ICMP_MASK_VALUE;
1896 	 * 3. to direct traffic by source ip, set:
1897 	 * 	rulep->control = RULE_SIP_CONTROL;
1898 	 * 	rulep->mask_value = RULE_SIP_MASK_VALUE;
1899 	 */
1900 	rulep = bgep->recv_rules;
1901 	rulep->control = RULE_PROTO_CONTROL;
1902 	rulep->mask_value = RULE_TCP_MASK_VALUE;
1903 
1904 	/*
1905 	 * set receive rule registers
1906 	 */
1907 	rulep = bgep->recv_rules;
1908 	for (i = 0; i < RECV_RULES_NUM_MAX; i++, rulep++) {
1909 		bge_reg_put32(bgep, RECV_RULE_MASK_REG(i), rulep->mask_value);
1910 		bge_reg_put32(bgep, RECV_RULE_CONTROL_REG(i), rulep->control);
1911 	}
1912 }
1913 
1914 /*
1915  * Using the values captured by bge_chip_cfg_init(), and additional probes
1916  * as required, characterise the chip fully: determine the label by which
1917  * to refer to this chip, the correct settings for various registers, and
1918  * of course whether the device and/or subsystem are supported!
1919  */
1920 int bge_chip_id_init(bge_t *bgep);
1921 #pragma	no_inline(bge_chip_id_init)
1922 
1923 int
1924 bge_chip_id_init(bge_t *bgep)
1925 {
1926 	char buf[MAXPATHLEN];		/* any risk of stack overflow?	*/
1927 	boolean_t sys_ok;
1928 	boolean_t dev_ok;
1929 	chip_id_t *cidp;
1930 	uint32_t subid;
1931 	char *devname;
1932 	char *sysname;
1933 	int *ids;
1934 	int err;
1935 	uint_t i;
1936 
1937 	sys_ok = dev_ok = B_FALSE;
1938 	cidp = &bgep->chipid;
1939 
1940 	/*
1941 	 * Check the PCI device ID to determine the generic chip type and
1942 	 * select parameters that depend on this.
1943 	 *
1944 	 * Note: because the SPARC platforms in general don't fit the
1945 	 * SEEPROM 'behind' the chip, the PCI revision ID register reads
1946 	 * as zero - which is why we use <asic_rev> rather than <revision>
1947 	 * below ...
1948 	 *
1949 	 * Note: in general we can't distinguish between the Copper/SerDes
1950 	 * versions by ID alone, as some Copper devices (e.g. some but not
1951 	 * all 5703Cs) have the same ID as the SerDes equivalents.  So we
1952 	 * treat them the same here, and the MII code works out the media
1953 	 * type later on ...
1954 	 */
1955 	cidp->mbuf_base = bge_mbuf_pool_base;
1956 	cidp->mbuf_length = bge_mbuf_pool_len;
1957 	cidp->recv_slots = BGE_RECV_SLOTS_USED;
1958 	cidp->bge_dma_rwctrl = bge_dma_rwctrl;
1959 	cidp->pci_type = BGE_PCI_X;
1960 	cidp->statistic_type = BGE_STAT_BLK;
1961 	cidp->mbuf_lo_water_rdma = bge_mbuf_lo_water_rdma;
1962 	cidp->mbuf_lo_water_rmac = bge_mbuf_lo_water_rmac;
1963 	cidp->mbuf_hi_water = bge_mbuf_hi_water;
1964 	cidp->rx_ticks_norm = bge_rx_ticks_norm;
1965 	cidp->rx_count_norm = bge_rx_count_norm;
1966 
1967 	if (cidp->rx_rings == 0 || cidp->rx_rings > BGE_RECV_RINGS_MAX)
1968 		cidp->rx_rings = BGE_RECV_RINGS_DEFAULT;
1969 	if (cidp->tx_rings == 0 || cidp->tx_rings > BGE_SEND_RINGS_MAX)
1970 		cidp->tx_rings = BGE_SEND_RINGS_DEFAULT;
1971 
1972 	cidp->msi_enabled = B_FALSE;
1973 
1974 	switch (cidp->device) {
1975 	case DEVICE_ID_5700:
1976 	case DEVICE_ID_5700x:
1977 		cidp->chip_label = 5700;
1978 		cidp->flags |= CHIP_FLAG_PARTIAL_CSUM;
1979 		break;
1980 
1981 	case DEVICE_ID_5701:
1982 		cidp->chip_label = 5701;
1983 		dev_ok = B_TRUE;
1984 		cidp->flags |= CHIP_FLAG_PARTIAL_CSUM;
1985 		break;
1986 
1987 	case DEVICE_ID_5702:
1988 	case DEVICE_ID_5702fe:
1989 		cidp->chip_label = 5702;
1990 		dev_ok = B_TRUE;
1991 		cidp->flags |= CHIP_FLAG_PARTIAL_CSUM;
1992 		cidp->pci_type = BGE_PCI;
1993 		break;
1994 
1995 	case DEVICE_ID_5703C:
1996 	case DEVICE_ID_5703S:
1997 	case DEVICE_ID_5703:
1998 		/*
1999 		 * Revision A0 of the 5703/5793 had various errata
2000 		 * that we can't or don't work around, so it's not
2001 		 * supported, but all later versions are
2002 		 */
2003 		cidp->chip_label = cidp->subven == VENDOR_ID_SUN ? 5793 : 5703;
2004 		if (bgep->chipid.asic_rev != MHCR_CHIP_REV_5703_A0)
2005 			dev_ok = B_TRUE;
2006 		cidp->flags |= CHIP_FLAG_PARTIAL_CSUM;
2007 		break;
2008 
2009 	case DEVICE_ID_5704C:
2010 	case DEVICE_ID_5704S:
2011 	case DEVICE_ID_5704:
2012 		/*
2013 		 * Revision A0 of the 5704/5794 had various errata
2014 		 * but we have workarounds, so it *is* supported.
2015 		 */
2016 		cidp->chip_label = cidp->subven == VENDOR_ID_SUN ? 5794 : 5704;
2017 		cidp->mbuf_base = bge_mbuf_pool_base_5704;
2018 		cidp->mbuf_length = bge_mbuf_pool_len_5704;
2019 		dev_ok = B_TRUE;
2020 		if (cidp->asic_rev <  MHCR_CHIP_REV_5704_B0)
2021 			cidp->flags |= CHIP_FLAG_PARTIAL_CSUM;
2022 		break;
2023 
2024 	case DEVICE_ID_5705C:
2025 	case DEVICE_ID_5705M:
2026 	case DEVICE_ID_5705MA3:
2027 	case DEVICE_ID_5705F:
2028 	case DEVICE_ID_5705_2:
2029 	case DEVICE_ID_5754:
2030 		if (cidp->device == DEVICE_ID_5754) {
2031 			cidp->chip_label = 5754;
2032 			cidp->pci_type = BGE_PCI_E;
2033 		} else {
2034 			cidp->chip_label = 5705;
2035 			cidp->pci_type = BGE_PCI;
2036 		}
2037 		cidp->mbuf_lo_water_rdma = RDMA_MBUF_LOWAT_5705;
2038 		cidp->mbuf_lo_water_rmac = MAC_RX_MBUF_LOWAT_5705;
2039 		cidp->mbuf_hi_water = MBUF_HIWAT_5705;
2040 		cidp->mbuf_base = bge_mbuf_pool_base_5705;
2041 		cidp->mbuf_length = bge_mbuf_pool_len_5705;
2042 		cidp->recv_slots = BGE_RECV_SLOTS_5705;
2043 		cidp->rx_rings = BGE_RECV_RINGS_MAX_5705;
2044 		cidp->tx_rings = BGE_SEND_RINGS_MAX_5705;
2045 		cidp->flags |= CHIP_FLAG_NO_JUMBO;
2046 		cidp->flags |= CHIP_FLAG_PARTIAL_CSUM;
2047 		cidp->statistic_type = BGE_STAT_REG;
2048 		dev_ok = B_TRUE;
2049 		break;
2050 
2051 	case DEVICE_ID_5753:
2052 		cidp->chip_label = 5753;
2053 		cidp->pci_type = BGE_PCI_E;
2054 		cidp->mbuf_lo_water_rdma = RDMA_MBUF_LOWAT_5705;
2055 		cidp->mbuf_lo_water_rmac = MAC_RX_MBUF_LOWAT_5705;
2056 		cidp->mbuf_hi_water = MBUF_HIWAT_5705;
2057 		cidp->mbuf_base = bge_mbuf_pool_base_5705;
2058 		cidp->mbuf_length = bge_mbuf_pool_len_5705;
2059 		cidp->recv_slots = BGE_RECV_SLOTS_5705;
2060 		cidp->bge_mlcr_default |= MLCR_MISC_PINS_OUTPUT_ENABLE_1;
2061 		cidp->rx_rings = BGE_RECV_RINGS_MAX_5705;
2062 		cidp->tx_rings = BGE_SEND_RINGS_MAX_5705;
2063 		cidp->flags |= CHIP_FLAG_NO_JUMBO;
2064 		cidp->statistic_type = BGE_STAT_REG;
2065 		dev_ok = B_TRUE;
2066 		break;
2067 
2068 	case DEVICE_ID_5755:
2069 		cidp->chip_label = 5755;
2070 		cidp->pci_type = BGE_PCI_E;
2071 		cidp->mbuf_lo_water_rdma = RDMA_MBUF_LOWAT_5705;
2072 		cidp->mbuf_lo_water_rmac = MAC_RX_MBUF_LOWAT_5705;
2073 		cidp->mbuf_hi_water = MBUF_HIWAT_5705;
2074 		cidp->mbuf_base = bge_mbuf_pool_base_5705;
2075 		cidp->mbuf_length = bge_mbuf_pool_len_5705;
2076 		cidp->recv_slots = BGE_RECV_SLOTS_5705;
2077 		cidp->bge_mlcr_default |= MLCR_MISC_PINS_OUTPUT_ENABLE_1;
2078 		cidp->rx_rings = BGE_RECV_RINGS_MAX_5705;
2079 		cidp->tx_rings = BGE_SEND_RINGS_MAX_5705;
2080 		cidp->flags |= CHIP_FLAG_NO_JUMBO;
2081 		cidp->flags |= CHIP_FLAG_PARTIAL_CSUM;
2082 		cidp->statistic_type = BGE_STAT_REG;
2083 		dev_ok = B_TRUE;
2084 		break;
2085 
2086 	case DEVICE_ID_5706:
2087 		cidp->chip_label = 5706;
2088 		cidp->flags |= CHIP_FLAG_NO_JUMBO;
2089 		break;
2090 
2091 	case DEVICE_ID_5782:
2092 		/*
2093 		 * Apart from the label, we treat this as a 5705(?)
2094 		 */
2095 		cidp->chip_label = 5782;
2096 		cidp->mbuf_lo_water_rdma = RDMA_MBUF_LOWAT_5705;
2097 		cidp->mbuf_lo_water_rmac = MAC_RX_MBUF_LOWAT_5705;
2098 		cidp->mbuf_hi_water = MBUF_HIWAT_5705;
2099 		cidp->mbuf_base = bge_mbuf_pool_base_5705;
2100 		cidp->mbuf_length = bge_mbuf_pool_len_5705;
2101 		cidp->recv_slots = BGE_RECV_SLOTS_5705;
2102 		cidp->rx_rings = BGE_RECV_RINGS_MAX_5705;
2103 		cidp->tx_rings = BGE_SEND_RINGS_MAX_5705;
2104 		cidp->flags |= CHIP_FLAG_NO_JUMBO;
2105 		cidp->flags |= CHIP_FLAG_PARTIAL_CSUM;
2106 		cidp->statistic_type = BGE_STAT_REG;
2107 		dev_ok = B_TRUE;
2108 		break;
2109 
2110 	case DEVICE_ID_5788:
2111 		/*
2112 		 * Apart from the label, we treat this as a 5705(?)
2113 		 */
2114 		cidp->chip_label = 5788;
2115 		cidp->mbuf_lo_water_rdma = RDMA_MBUF_LOWAT_5705;
2116 		cidp->mbuf_lo_water_rmac = MAC_RX_MBUF_LOWAT_5705;
2117 		cidp->mbuf_hi_water = MBUF_HIWAT_5705;
2118 		cidp->mbuf_base = bge_mbuf_pool_base_5705;
2119 		cidp->mbuf_length = bge_mbuf_pool_len_5705;
2120 		cidp->recv_slots = BGE_RECV_SLOTS_5705;
2121 		cidp->rx_rings = BGE_RECV_RINGS_MAX_5705;
2122 		cidp->tx_rings = BGE_SEND_RINGS_MAX_5705;
2123 		cidp->statistic_type = BGE_STAT_REG;
2124 		cidp->flags |= CHIP_FLAG_NO_JUMBO;
2125 		dev_ok = B_TRUE;
2126 		break;
2127 
2128 	case DEVICE_ID_5714C:
2129 		if (cidp->revision >= REVISION_ID_5714_A2)
2130 			cidp->msi_enabled = bge_enable_msi;
2131 		/* FALLTHRU */
2132 	case DEVICE_ID_5714S:
2133 		cidp->chip_label = 5714;
2134 		cidp->mbuf_lo_water_rdma = RDMA_MBUF_LOWAT_5705;
2135 		cidp->mbuf_lo_water_rmac = MAC_RX_MBUF_LOWAT_5705;
2136 		cidp->mbuf_hi_water = MBUF_HIWAT_5705;
2137 		cidp->mbuf_base = bge_mbuf_pool_base_5721;
2138 		cidp->mbuf_length = bge_mbuf_pool_len_5721;
2139 		cidp->recv_slots = BGE_RECV_SLOTS_5721;
2140 		cidp->bge_dma_rwctrl = bge_dma_rwctrl_5714;
2141 		cidp->bge_mlcr_default = bge_mlcr_default_5714;
2142 		cidp->rx_rings = BGE_RECV_RINGS_MAX_5705;
2143 		cidp->tx_rings = BGE_SEND_RINGS_MAX_5705;
2144 		cidp->pci_type = BGE_PCI_E;
2145 		cidp->statistic_type = BGE_STAT_REG;
2146 		dev_ok = B_TRUE;
2147 		break;
2148 
2149 	case DEVICE_ID_5715C:
2150 	case DEVICE_ID_5715S:
2151 		cidp->chip_label = 5715;
2152 		cidp->mbuf_lo_water_rdma = RDMA_MBUF_LOWAT_5705;
2153 		cidp->mbuf_lo_water_rmac = MAC_RX_MBUF_LOWAT_5705;
2154 		cidp->mbuf_hi_water = MBUF_HIWAT_5705;
2155 		cidp->mbuf_base = bge_mbuf_pool_base_5721;
2156 		cidp->mbuf_length = bge_mbuf_pool_len_5721;
2157 		cidp->recv_slots = BGE_RECV_SLOTS_5721;
2158 		cidp->bge_dma_rwctrl = bge_dma_rwctrl_5715;
2159 		cidp->bge_mlcr_default = bge_mlcr_default_5714;
2160 		cidp->rx_rings = BGE_RECV_RINGS_MAX_5705;
2161 		cidp->tx_rings = BGE_SEND_RINGS_MAX_5705;
2162 		cidp->pci_type = BGE_PCI_E;
2163 		cidp->statistic_type = BGE_STAT_REG;
2164 		if (cidp->revision >= REVISION_ID_5715_A2)
2165 			cidp->msi_enabled = bge_enable_msi;
2166 		dev_ok = B_TRUE;
2167 		break;
2168 
2169 	case DEVICE_ID_5721:
2170 		cidp->chip_label = 5721;
2171 		cidp->mbuf_lo_water_rdma = RDMA_MBUF_LOWAT_5705;
2172 		cidp->mbuf_lo_water_rmac = MAC_RX_MBUF_LOWAT_5705;
2173 		cidp->mbuf_hi_water = MBUF_HIWAT_5705;
2174 		cidp->mbuf_base = bge_mbuf_pool_base_5721;
2175 		cidp->mbuf_length = bge_mbuf_pool_len_5721;
2176 		cidp->recv_slots = BGE_RECV_SLOTS_5721;
2177 		cidp->bge_dma_rwctrl = bge_dma_rwctrl_5721;
2178 		cidp->rx_rings = BGE_RECV_RINGS_MAX_5705;
2179 		cidp->tx_rings = BGE_SEND_RINGS_MAX_5705;
2180 		cidp->pci_type = BGE_PCI_E;
2181 		cidp->statistic_type = BGE_STAT_REG;
2182 		cidp->flags |= CHIP_FLAG_NO_JUMBO;
2183 		dev_ok = B_TRUE;
2184 		break;
2185 
2186 	case DEVICE_ID_5751:
2187 	case DEVICE_ID_5751M:
2188 		cidp->chip_label = 5751;
2189 		cidp->mbuf_lo_water_rdma = RDMA_MBUF_LOWAT_5705;
2190 		cidp->mbuf_lo_water_rmac = MAC_RX_MBUF_LOWAT_5705;
2191 		cidp->mbuf_hi_water = MBUF_HIWAT_5705;
2192 		cidp->mbuf_base = bge_mbuf_pool_base_5721;
2193 		cidp->mbuf_length = bge_mbuf_pool_len_5721;
2194 		cidp->recv_slots = BGE_RECV_SLOTS_5721;
2195 		cidp->bge_dma_rwctrl = bge_dma_rwctrl_5721;
2196 		cidp->rx_rings = BGE_RECV_RINGS_MAX_5705;
2197 		cidp->tx_rings = BGE_SEND_RINGS_MAX_5705;
2198 		cidp->pci_type = BGE_PCI_E;
2199 		cidp->statistic_type = BGE_STAT_REG;
2200 		cidp->flags |= CHIP_FLAG_NO_JUMBO;
2201 		dev_ok = B_TRUE;
2202 		break;
2203 
2204 	case DEVICE_ID_5752:
2205 	case DEVICE_ID_5752M:
2206 		cidp->chip_label = 5752;
2207 		cidp->mbuf_lo_water_rdma = RDMA_MBUF_LOWAT_5705;
2208 		cidp->mbuf_lo_water_rmac = MAC_RX_MBUF_LOWAT_5705;
2209 		cidp->mbuf_hi_water = MBUF_HIWAT_5705;
2210 		cidp->mbuf_base = bge_mbuf_pool_base_5721;
2211 		cidp->mbuf_length = bge_mbuf_pool_len_5721;
2212 		cidp->recv_slots = BGE_RECV_SLOTS_5721;
2213 		cidp->bge_dma_rwctrl = bge_dma_rwctrl_5721;
2214 		cidp->rx_rings = BGE_RECV_RINGS_MAX_5705;
2215 		cidp->tx_rings = BGE_SEND_RINGS_MAX_5705;
2216 		cidp->pci_type = BGE_PCI_E;
2217 		cidp->statistic_type = BGE_STAT_REG;
2218 		cidp->flags |= CHIP_FLAG_NO_JUMBO;
2219 		dev_ok = B_TRUE;
2220 		break;
2221 
2222 	case DEVICE_ID_5789:
2223 		cidp->chip_label = 5789;
2224 		cidp->mbuf_base = bge_mbuf_pool_base_5721;
2225 		cidp->mbuf_length = bge_mbuf_pool_len_5721;
2226 		cidp->recv_slots = BGE_RECV_SLOTS_5721;
2227 		cidp->bge_dma_rwctrl = bge_dma_rwctrl_5721;
2228 		cidp->rx_rings = BGE_RECV_RINGS_MAX_5705;
2229 		cidp->tx_rings = BGE_RECV_RINGS_MAX_5705;
2230 		cidp->pci_type = BGE_PCI_E;
2231 		cidp->statistic_type = BGE_STAT_REG;
2232 		cidp->flags |= CHIP_FLAG_PARTIAL_CSUM;
2233 		cidp->flags |= CHIP_FLAG_NO_JUMBO;
2234 		cidp->msi_enabled = B_TRUE;
2235 		dev_ok = B_TRUE;
2236 		break;
2237 
2238 	}
2239 
2240 	/*
2241 	 * Setup the default jumbo parameter.
2242 	 */
2243 	cidp->ethmax_size = ETHERMAX;
2244 	cidp->snd_buff_size = BGE_SEND_BUFF_SIZE_DEFAULT;
2245 	cidp->std_buf_size = BGE_STD_BUFF_SIZE;
2246 
2247 	/*
2248 	 * If jumbo is enabled and this kind of chipset supports jumbo feature,
2249 	 * setup below jumbo specific parameters.
2250 	 *
2251 	 * For BCM5714/5715, there is only one standard receive ring. So the
2252 	 * std buffer size should be set to BGE_JUMBO_BUFF_SIZE when jumbo
2253 	 * feature is enabled.
2254 	 */
2255 	if (bge_jumbo_enable &&
2256 	    !(cidp->flags & CHIP_FLAG_NO_JUMBO) &&
2257 	    (cidp->default_mtu > BGE_DEFAULT_MTU) &&
2258 	    (cidp->default_mtu <= BGE_MAXIMUM_MTU)) {
2259 		if (DEVICE_5714_SERIES_CHIPSETS(bgep)) {
2260 			cidp->mbuf_lo_water_rdma =
2261 			    RDMA_MBUF_LOWAT_5714_JUMBO;
2262 			cidp->mbuf_lo_water_rmac =
2263 			    MAC_RX_MBUF_LOWAT_5714_JUMBO;
2264 			cidp->mbuf_hi_water = MBUF_HIWAT_5714_JUMBO;
2265 			cidp->jumbo_slots = 0;
2266 			cidp->std_buf_size = BGE_JUMBO_BUFF_SIZE;
2267 		} else {
2268 			cidp->mbuf_lo_water_rdma =
2269 			    RDMA_MBUF_LOWAT_JUMBO;
2270 			cidp->mbuf_lo_water_rmac =
2271 			    MAC_RX_MBUF_LOWAT_JUMBO;
2272 			cidp->mbuf_hi_water = MBUF_HIWAT_JUMBO;
2273 			cidp->jumbo_slots = BGE_JUMBO_SLOTS_USED;
2274 		}
2275 		cidp->recv_jumbo_size = BGE_JUMBO_BUFF_SIZE;
2276 		cidp->snd_buff_size = BGE_SEND_BUFF_SIZE_JUMBO;
2277 		cidp->ethmax_size = cidp->default_mtu +
2278 		    sizeof (struct ether_header);
2279 	}
2280 
2281 	/*
2282 	 * Identify the NV memory type: SEEPROM or Flash?
2283 	 */
2284 	cidp->nvtype = bge_nvmem_id(bgep);
2285 
2286 	/*
2287 	 * Now, we want to check whether this device is part of a
2288 	 * supported subsystem (e.g., on the motherboard of a Sun
2289 	 * branded platform).
2290 	 *
2291 	 * Rule 1: If the Subsystem Vendor ID is "Sun", then it's OK ;-)
2292 	 */
2293 	if (cidp->subven == VENDOR_ID_SUN)
2294 		sys_ok = B_TRUE;
2295 
2296 	/*
2297 	 * Rule 2: If it's on the list on known subsystems, then it's OK.
2298 	 * Note: 0x14e41647 should *not* appear in the list, but the code
2299 	 * doesn't enforce that.
2300 	 */
2301 	err = ddi_prop_lookup_int_array(DDI_DEV_T_ANY, bgep->devinfo,
2302 	    DDI_PROP_DONTPASS, knownids_propname, &ids, &i);
2303 	if (err == DDI_PROP_SUCCESS) {
2304 		/*
2305 		 * Got the list; scan for a matching subsystem vendor/device
2306 		 */
2307 		subid = (cidp->subven << 16) | cidp->subdev;
2308 		while (i--)
2309 			if (ids[i] == subid)
2310 				sys_ok = B_TRUE;
2311 		ddi_prop_free(ids);
2312 	}
2313 
2314 	/*
2315 	 * Rule 3: If it's a Taco/ENWS motherboard device, then it's OK
2316 	 *
2317 	 * Unfortunately, early SunBlade 1500s and 2500s didn't reprogram
2318 	 * the Subsystem Vendor ID, so it defaults to Broadcom.  Therefore,
2319 	 * we have to check specially for the exact device paths to the
2320 	 * motherboard devices on those platforms ;-(
2321 	 *
2322 	 * Note: we can't just use the "supported-subsystems" mechanism
2323 	 * above, because the entry would have to be 0x14e41647 -- which
2324 	 * would then accept *any* plugin card that *didn't* contain a
2325 	 * (valid) SEEPROM ;-(
2326 	 */
2327 	sysname = ddi_node_name(ddi_root_node());
2328 	devname = ddi_pathname(bgep->devinfo, buf);
2329 	ASSERT(strlen(devname) > 0);
2330 	if (strcmp(sysname, "SUNW,Sun-Blade-1500") == 0)	/* Taco */
2331 		if (strcmp(devname, "/pci@1f,700000/network@2") == 0)
2332 			sys_ok = B_TRUE;
2333 	if (strcmp(sysname, "SUNW,Sun-Blade-2500") == 0)	/* ENWS */
2334 		if (strcmp(devname, "/pci@1c,600000/network@3") == 0)
2335 			sys_ok = B_TRUE;
2336 
2337 	/*
2338 	 * Now check what we've discovered: is this truly a supported
2339 	 * chip on (the motherboard of) a supported platform?
2340 	 *
2341 	 * Possible problems here:
2342 	 * 1)	it's a completely unheard-of chip (e.g. 5761)
2343 	 * 2)	it's a recognised but unsupported chip (e.g. 5701, 5703C-A0)
2344 	 * 3)	it's a chip we would support if it were on the motherboard
2345 	 *	of a Sun platform, but this one isn't ;-(
2346 	 */
2347 	if (cidp->chip_label == 0)
2348 		bge_problem(bgep,
2349 		    "Device 'pci%04x,%04x' not recognized (%d?)",
2350 		    cidp->vendor, cidp->device, cidp->device);
2351 	else if (!dev_ok)
2352 		bge_problem(bgep,
2353 		    "Device 'pci%04x,%04x' (%d) revision %d not supported",
2354 		    cidp->vendor, cidp->device, cidp->chip_label,
2355 		    cidp->revision);
2356 #if	BGE_DEBUGGING
2357 	else if (!sys_ok)
2358 		bge_problem(bgep,
2359 		    "%d-based subsystem 'pci%04x,%04x' not validated",
2360 		    cidp->chip_label, cidp->subven, cidp->subdev);
2361 #endif
2362 	else
2363 		cidp->flags |= CHIP_FLAG_SUPPORTED;
2364 	if (bge_check_acc_handle(bgep, bgep->io_handle) != DDI_FM_OK)
2365 		return (EIO);
2366 	return (0);
2367 }
2368 
2369 void
2370 bge_chip_msi_trig(bge_t *bgep)
2371 {
2372 	uint32_t	regval;
2373 
2374 	regval = bgep->param_msi_cnt<<4;
2375 	bge_reg_set32(bgep, HOST_COALESCE_MODE_REG, regval);
2376 	BGE_DEBUG(("bge_chip_msi_trig:data = %d", regval));
2377 }
2378 
2379 /*
2380  * Various registers that control the chip's internal engines (state
2381  * machines) have a <reset> and <enable> bits (fortunately, in the
2382  * same place in each such register :-).
2383  *
2384  * To reset the state machine, the <reset> bit must be written with 1;
2385  * it will then read back as 1 while the reset is in progress, but
2386  * self-clear to 0 when the reset completes.
2387  *
2388  * To enable a state machine, one must set the <enable> bit, which
2389  * will continue to read back as 0 until the state machine is running.
2390  *
2391  * To disable a state machine, the <enable> bit must be cleared, but
2392  * it will continue to read back as 1 until the state machine actually
2393  * stops.
2394  *
2395  * This routine implements polling for completion of a reset, enable
2396  * or disable operation, returning B_TRUE on success (bit reached the
2397  * required state) or B_FALSE on timeout (200*100us == 20ms).
2398  */
2399 static boolean_t bge_chip_poll_engine(bge_t *bgep, bge_regno_t regno,
2400 					uint32_t mask, uint32_t val);
2401 #pragma	no_inline(bge_chip_poll_engine)
2402 
2403 static boolean_t
2404 bge_chip_poll_engine(bge_t *bgep, bge_regno_t regno,
2405 	uint32_t mask, uint32_t val)
2406 {
2407 	uint32_t regval;
2408 	uint32_t n;
2409 
2410 	BGE_TRACE(("bge_chip_poll_engine($%p, 0x%lx, 0x%x, 0x%x)",
2411 	    (void *)bgep, regno, mask, val));
2412 
2413 	for (n = 200; n; --n) {
2414 		regval = bge_reg_get32(bgep, regno);
2415 		if ((regval & mask) == val)
2416 			return (B_TRUE);
2417 		drv_usecwait(100);
2418 	}
2419 
2420 	bge_fm_ereport(bgep, DDI_FM_DEVICE_NO_RESPONSE);
2421 	return (B_FALSE);
2422 }
2423 
2424 /*
2425  * Various registers that control the chip's internal engines (state
2426  * machines) have a <reset> bit (fortunately, in the same place in
2427  * each such register :-).  To reset the state machine, this bit must
2428  * be written with 1; it will then read back as 1 while the reset is
2429  * in progress, but self-clear to 0 when the reset completes.
2430  *
2431  * This code sets the bit, then polls for it to read back as zero.
2432  * The return value is B_TRUE on success (reset bit cleared itself),
2433  * or B_FALSE if the state machine didn't recover :(
2434  *
2435  * NOTE: the Core reset is similar to other resets, except that we
2436  * can't poll for completion, since the Core reset disables memory
2437  * access!  So we just have to assume that it will all complete in
2438  * 100us.  See Broadcom document 570X-PG102-R, p102, steps 4-5.
2439  */
2440 static boolean_t bge_chip_reset_engine(bge_t *bgep, bge_regno_t regno);
2441 #pragma	no_inline(bge_chip_reset_engine)
2442 
2443 static boolean_t
2444 bge_chip_reset_engine(bge_t *bgep, bge_regno_t regno)
2445 {
2446 	uint32_t regval;
2447 	uint32_t val32;
2448 
2449 	regval = bge_reg_get32(bgep, regno);
2450 
2451 	BGE_TRACE(("bge_chip_reset_engine($%p, 0x%lx)",
2452 	    (void *)bgep, regno));
2453 	BGE_DEBUG(("bge_chip_reset_engine: 0x%lx before reset = 0x%08x",
2454 	    regno, regval));
2455 
2456 	regval |= STATE_MACHINE_RESET_BIT;
2457 
2458 	switch (regno) {
2459 	case MISC_CONFIG_REG:
2460 		/*
2461 		 * BCM5714/5721/5751 pcie chip special case. In order to avoid
2462 		 * resetting PCIE block and bringing PCIE link down, bit 29
2463 		 * in the register needs to be set first, and then set it again
2464 		 * while the reset bit is written.
2465 		 * See:P500 of 57xx-PG102-RDS.pdf.
2466 		 */
2467 		if (DEVICE_5705_SERIES_CHIPSETS(bgep)||
2468 		    DEVICE_5721_SERIES_CHIPSETS(bgep)||
2469 		    DEVICE_5714_SERIES_CHIPSETS(bgep)) {
2470 			regval |= MISC_CONFIG_GPHY_POWERDOWN_OVERRIDE;
2471 			if (bgep->chipid.pci_type == BGE_PCI_E) {
2472 				if (bgep->chipid.asic_rev ==
2473 				    MHCR_CHIP_REV_5751_A0 ||
2474 				    bgep->chipid.asic_rev ==
2475 				    MHCR_CHIP_REV_5721_A0 ||
2476 				    bgep->chipid.asic_rev ==
2477 				    MHCR_CHIP_REV_5755_A0) {
2478 					val32 = bge_reg_get32(bgep,
2479 					    PHY_TEST_CTRL_REG);
2480 					if (val32 == (PHY_PCIE_SCRAM_MODE |
2481 					    PHY_PCIE_LTASS_MODE))
2482 						bge_reg_put32(bgep,
2483 						    PHY_TEST_CTRL_REG,
2484 						    PHY_PCIE_SCRAM_MODE);
2485 					val32 = pci_config_get32
2486 					    (bgep->cfg_handle,
2487 					    PCI_CONF_BGE_CLKCTL);
2488 					val32 |= CLKCTL_PCIE_A0_FIX;
2489 					pci_config_put32(bgep->cfg_handle,
2490 					    PCI_CONF_BGE_CLKCTL, val32);
2491 				}
2492 				bge_reg_set32(bgep, regno,
2493 				    MISC_CONFIG_GRC_RESET_DISABLE);
2494 				regval |= MISC_CONFIG_GRC_RESET_DISABLE;
2495 			}
2496 		}
2497 
2498 		/*
2499 		 * Special case - causes Core reset
2500 		 *
2501 		 * On SPARC v9 we want to ensure that we don't start
2502 		 * timing until the I/O access has actually reached
2503 		 * the chip, otherwise we might make the next access
2504 		 * too early.  And we can't just force the write out
2505 		 * by following it with a read (even to config space)
2506 		 * because that would cause the fault we're trying
2507 		 * to avoid.  Hence the need for membar_sync() here.
2508 		 */
2509 		ddi_put32(bgep->io_handle, PIO_ADDR(bgep, regno), regval);
2510 #ifdef	__sparcv9
2511 		membar_sync();
2512 #endif	/* __sparcv9 */
2513 		/*
2514 		 * On some platforms,system need about 300us for
2515 		 * link setup.
2516 		 */
2517 		drv_usecwait(300);
2518 
2519 		if (bgep->chipid.pci_type == BGE_PCI_E) {
2520 			/* PCI-E device need more reset time */
2521 			drv_usecwait(120000);
2522 
2523 			/* Set PCIE max payload size and clear error status. */
2524 			if ((bgep->chipid.chip_label == 5721) ||
2525 			    (bgep->chipid.chip_label == 5751) ||
2526 			    (bgep->chipid.chip_label == 5752) ||
2527 			    (bgep->chipid.chip_label == 5789)) {
2528 				pci_config_put16(bgep->cfg_handle,
2529 				    PCI_CONF_DEV_CTRL, READ_REQ_SIZE_MAX);
2530 				pci_config_put16(bgep->cfg_handle,
2531 				    PCI_CONF_DEV_STUS, DEVICE_ERROR_STUS);
2532 			}
2533 		}
2534 
2535 		BGE_PCICHK(bgep);
2536 		return (B_TRUE);
2537 
2538 	default:
2539 		bge_reg_put32(bgep, regno, regval);
2540 		return (bge_chip_poll_engine(bgep, regno,
2541 		    STATE_MACHINE_RESET_BIT, 0));
2542 	}
2543 }
2544 
2545 /*
2546  * Various registers that control the chip's internal engines (state
2547  * machines) have an <enable> bit (fortunately, in the same place in
2548  * each such register :-).  To stop the state machine, this bit must
2549  * be written with 0, then polled to see when the state machine has
2550  * actually stopped.
2551  *
2552  * The return value is B_TRUE on success (enable bit cleared), or
2553  * B_FALSE if the state machine didn't stop :(
2554  */
2555 static boolean_t bge_chip_disable_engine(bge_t *bgep, bge_regno_t regno,
2556 						uint32_t morebits);
2557 #pragma	no_inline(bge_chip_disable_engine)
2558 
2559 static boolean_t
2560 bge_chip_disable_engine(bge_t *bgep, bge_regno_t regno, uint32_t morebits)
2561 {
2562 	uint32_t regval;
2563 
2564 	BGE_TRACE(("bge_chip_disable_engine($%p, 0x%lx, 0x%x)",
2565 	    (void *)bgep, regno, morebits));
2566 
2567 	switch (regno) {
2568 	case FTQ_RESET_REG:
2569 		/*
2570 		 * For Schumacher's bugfix CR6490108
2571 		 */
2572 #ifdef BGE_IPMI_ASF
2573 #ifdef BGE_NETCONSOLE
2574 		if (bgep->asf_enabled)
2575 			return (B_TRUE);
2576 #endif
2577 #endif
2578 		/*
2579 		 * Not quite like the others; it doesn't
2580 		 * have an <enable> bit, but instead we
2581 		 * have to set and then clear all the bits
2582 		 */
2583 		bge_reg_put32(bgep, regno, ~(uint32_t)0);
2584 		drv_usecwait(100);
2585 		bge_reg_put32(bgep, regno, 0);
2586 		return (B_TRUE);
2587 
2588 	default:
2589 		regval = bge_reg_get32(bgep, regno);
2590 		regval &= ~STATE_MACHINE_ENABLE_BIT;
2591 		regval &= ~morebits;
2592 		bge_reg_put32(bgep, regno, regval);
2593 		return (bge_chip_poll_engine(bgep, regno,
2594 		    STATE_MACHINE_ENABLE_BIT, 0));
2595 	}
2596 }
2597 
2598 /*
2599  * Various registers that control the chip's internal engines (state
2600  * machines) have an <enable> bit (fortunately, in the same place in
2601  * each such register :-).  To start the state machine, this bit must
2602  * be written with 1, then polled to see when the state machine has
2603  * actually started.
2604  *
2605  * The return value is B_TRUE on success (enable bit set), or
2606  * B_FALSE if the state machine didn't start :(
2607  */
2608 static boolean_t bge_chip_enable_engine(bge_t *bgep, bge_regno_t regno,
2609 					uint32_t morebits);
2610 #pragma	no_inline(bge_chip_enable_engine)
2611 
2612 static boolean_t
2613 bge_chip_enable_engine(bge_t *bgep, bge_regno_t regno, uint32_t morebits)
2614 {
2615 	uint32_t regval;
2616 
2617 	BGE_TRACE(("bge_chip_enable_engine($%p, 0x%lx, 0x%x)",
2618 	    (void *)bgep, regno, morebits));
2619 
2620 	switch (regno) {
2621 	case FTQ_RESET_REG:
2622 #ifdef BGE_IPMI_ASF
2623 #ifdef BGE_NETCONSOLE
2624 		if (bgep->asf_enabled)
2625 			return (B_TRUE);
2626 #endif
2627 #endif
2628 		/*
2629 		 * Not quite like the others; it doesn't
2630 		 * have an <enable> bit, but instead we
2631 		 * have to set and then clear all the bits
2632 		 */
2633 		bge_reg_put32(bgep, regno, ~(uint32_t)0);
2634 		drv_usecwait(100);
2635 		bge_reg_put32(bgep, regno, 0);
2636 		return (B_TRUE);
2637 
2638 	default:
2639 		regval = bge_reg_get32(bgep, regno);
2640 		regval |= STATE_MACHINE_ENABLE_BIT;
2641 		regval |= morebits;
2642 		bge_reg_put32(bgep, regno, regval);
2643 		return (bge_chip_poll_engine(bgep, regno,
2644 		    STATE_MACHINE_ENABLE_BIT, STATE_MACHINE_ENABLE_BIT));
2645 	}
2646 }
2647 
2648 /*
2649  * Reprogram the Ethernet, Transmit, and Receive MAC
2650  * modes to match the param_* variables
2651  */
2652 void bge_sync_mac_modes(bge_t *bgep);
2653 #pragma	no_inline(bge_sync_mac_modes)
2654 
2655 void
2656 bge_sync_mac_modes(bge_t *bgep)
2657 {
2658 	uint32_t macmode;
2659 	uint32_t regval;
2660 
2661 	ASSERT(mutex_owned(bgep->genlock));
2662 
2663 	/*
2664 	 * Reprogram the Ethernet MAC mode ...
2665 	 */
2666 	macmode = regval = bge_reg_get32(bgep, ETHERNET_MAC_MODE_REG);
2667 	if ((bgep->chipid.flags & CHIP_FLAG_SERDES) &&
2668 	    (bgep->param_loop_mode != BGE_LOOP_INTERNAL_MAC))
2669 		macmode &= ~ETHERNET_MODE_LINK_POLARITY;
2670 	else
2671 		macmode |= ETHERNET_MODE_LINK_POLARITY;
2672 	macmode &= ~ETHERNET_MODE_PORTMODE_MASK;
2673 	if ((bgep->chipid.flags & CHIP_FLAG_SERDES) &&
2674 	    (bgep->param_loop_mode != BGE_LOOP_INTERNAL_MAC))
2675 		macmode |= ETHERNET_MODE_PORTMODE_TBI;
2676 	else if (bgep->param_link_speed == 10 || bgep->param_link_speed == 100)
2677 		macmode |= ETHERNET_MODE_PORTMODE_MII;
2678 	else
2679 		macmode |= ETHERNET_MODE_PORTMODE_GMII;
2680 	if (bgep->param_link_duplex == LINK_DUPLEX_HALF)
2681 		macmode |= ETHERNET_MODE_HALF_DUPLEX;
2682 	else
2683 		macmode &= ~ETHERNET_MODE_HALF_DUPLEX;
2684 	if (bgep->param_loop_mode == BGE_LOOP_INTERNAL_MAC)
2685 		macmode |= ETHERNET_MODE_MAC_LOOPBACK;
2686 	else
2687 		macmode &= ~ETHERNET_MODE_MAC_LOOPBACK;
2688 	bge_reg_put32(bgep, ETHERNET_MAC_MODE_REG, macmode);
2689 	BGE_DEBUG(("bge_sync_mac_modes($%p) Ethernet MAC mode 0x%x => 0x%x",
2690 	    (void *)bgep, regval, macmode));
2691 
2692 	/*
2693 	 * ... the Transmit MAC mode ...
2694 	 */
2695 	macmode = regval = bge_reg_get32(bgep, TRANSMIT_MAC_MODE_REG);
2696 	if (bgep->param_link_tx_pause)
2697 		macmode |= TRANSMIT_MODE_FLOW_CONTROL;
2698 	else
2699 		macmode &= ~TRANSMIT_MODE_FLOW_CONTROL;
2700 	bge_reg_put32(bgep, TRANSMIT_MAC_MODE_REG, macmode);
2701 	BGE_DEBUG(("bge_sync_mac_modes($%p) Transmit MAC mode 0x%x => 0x%x",
2702 	    (void *)bgep, regval, macmode));
2703 
2704 	/*
2705 	 * ... and the Receive MAC mode
2706 	 */
2707 	macmode = regval = bge_reg_get32(bgep, RECEIVE_MAC_MODE_REG);
2708 	if (bgep->param_link_rx_pause)
2709 		macmode |= RECEIVE_MODE_FLOW_CONTROL;
2710 	else
2711 		macmode &= ~RECEIVE_MODE_FLOW_CONTROL;
2712 	bge_reg_put32(bgep, RECEIVE_MAC_MODE_REG, macmode);
2713 	BGE_DEBUG(("bge_sync_mac_modes($%p) Receive MAC mode 0x%x => 0x%x",
2714 	    (void *)bgep, regval, macmode));
2715 }
2716 
2717 /*
2718  * bge_chip_sync() -- program the chip with the unicast MAC address,
2719  * the multicast hash table, the required level of promiscuity, and
2720  * the current loopback mode ...
2721  */
2722 #ifdef BGE_IPMI_ASF
2723 int bge_chip_sync(bge_t *bgep, boolean_t asf_keeplive);
2724 #else
2725 int bge_chip_sync(bge_t *bgep);
2726 #endif
2727 #pragma	no_inline(bge_chip_sync)
2728 
2729 int
2730 #ifdef BGE_IPMI_ASF
2731 bge_chip_sync(bge_t *bgep, boolean_t asf_keeplive)
2732 #else
2733 bge_chip_sync(bge_t *bgep)
2734 #endif
2735 {
2736 	void (*opfn)(bge_t *bgep, bge_regno_t reg, uint32_t bits);
2737 	boolean_t promisc;
2738 	uint64_t macaddr;
2739 	uint32_t fill;
2740 	int i, j;
2741 	int retval = DDI_SUCCESS;
2742 
2743 	BGE_TRACE(("bge_chip_sync($%p)",
2744 	    (void *)bgep));
2745 
2746 	ASSERT(mutex_owned(bgep->genlock));
2747 
2748 	promisc = B_FALSE;
2749 	fill = ~(uint32_t)0;
2750 
2751 	if (bgep->promisc)
2752 		promisc = B_TRUE;
2753 	else
2754 		fill = (uint32_t)0;
2755 
2756 	/*
2757 	 * If the TX/RX MAC engines are already running, we should stop
2758 	 * them (and reset the RX engine) before changing the parameters.
2759 	 * If they're not running, this will have no effect ...
2760 	 *
2761 	 * NOTE: this is currently disabled by default because stopping
2762 	 * and restarting the Tx engine may cause an outgoing packet in
2763 	 * transit to be truncated.  Also, stopping and restarting the
2764 	 * Rx engine seems to not work correctly on the 5705.  Testing
2765 	 * has not (yet!) revealed any problems with NOT stopping and
2766 	 * restarting these engines (and Broadcom say their drivers don't
2767 	 * do this), but if it is found to cause problems, this variable
2768 	 * can be patched to re-enable the old behaviour ...
2769 	 */
2770 	if (bge_stop_start_on_sync) {
2771 #ifdef BGE_IPMI_ASF
2772 		if (!bgep->asf_enabled) {
2773 			if (!bge_chip_disable_engine(bgep,
2774 			    RECEIVE_MAC_MODE_REG, RECEIVE_MODE_KEEP_VLAN_TAG))
2775 				retval = DDI_FAILURE;
2776 		} else {
2777 			if (!bge_chip_disable_engine(bgep,
2778 			    RECEIVE_MAC_MODE_REG, 0))
2779 				retval = DDI_FAILURE;
2780 		}
2781 #else
2782 		if (!bge_chip_disable_engine(bgep, RECEIVE_MAC_MODE_REG,
2783 		    RECEIVE_MODE_KEEP_VLAN_TAG))
2784 			retval = DDI_FAILURE;
2785 #endif
2786 		if (!bge_chip_disable_engine(bgep, TRANSMIT_MAC_MODE_REG, 0))
2787 			retval = DDI_FAILURE;
2788 		if (!bge_chip_reset_engine(bgep, RECEIVE_MAC_MODE_REG))
2789 			retval = DDI_FAILURE;
2790 	}
2791 
2792 	/*
2793 	 * Reprogram the hashed multicast address table ...
2794 	 */
2795 	for (i = 0; i < BGE_HASH_TABLE_SIZE/32; ++i)
2796 		bge_reg_put32(bgep, MAC_HASH_REG(i),
2797 			bgep->mcast_hash[i] | fill);
2798 
2799 #ifdef BGE_IPMI_ASF
2800 	if (!bgep->asf_enabled || !asf_keeplive) {
2801 #endif
2802 		/*
2803 		 * Transform the MAC address(es) from host to chip format, then
2804 		 * reprogram the transmit random backoff seed and the unicast
2805 		 * MAC address(es) ...
2806 		 */
2807 		for (j = 0; j < MAC_ADDRESS_REGS_MAX; j++) {
2808 			for (i = 0, fill = 0, macaddr = 0ull;
2809 			    i < ETHERADDRL; ++i) {
2810 				macaddr <<= 8;
2811 				macaddr |= bgep->curr_addr[j].addr[i];
2812 				fill += bgep->curr_addr[j].addr[i];
2813 			}
2814 			bge_reg_put32(bgep, MAC_TX_RANDOM_BACKOFF_REG, fill);
2815 			bge_reg_put64(bgep, MAC_ADDRESS_REG(j), macaddr);
2816 		}
2817 
2818 		BGE_DEBUG(("bge_chip_sync($%p) setting MAC address %012llx",
2819 			(void *)bgep, macaddr));
2820 #ifdef BGE_IPMI_ASF
2821 	}
2822 #endif
2823 
2824 	/*
2825 	 * Set or clear the PROMISCUOUS mode bit
2826 	 */
2827 	opfn = promisc ? bge_reg_set32 : bge_reg_clr32;
2828 	(*opfn)(bgep, RECEIVE_MAC_MODE_REG, RECEIVE_MODE_PROMISCUOUS);
2829 
2830 	/*
2831 	 * Sync the rest of the MAC modes too ...
2832 	 */
2833 	bge_sync_mac_modes(bgep);
2834 
2835 	/*
2836 	 * Restart RX/TX MAC engines if required ...
2837 	 */
2838 	if (bgep->bge_chip_state == BGE_CHIP_RUNNING) {
2839 		if (!bge_chip_enable_engine(bgep, TRANSMIT_MAC_MODE_REG, 0))
2840 			retval = DDI_FAILURE;
2841 #ifdef BGE_IPMI_ASF
2842 		if (!bgep->asf_enabled) {
2843 			if (!bge_chip_enable_engine(bgep,
2844 			    RECEIVE_MAC_MODE_REG, RECEIVE_MODE_KEEP_VLAN_TAG))
2845 				retval = DDI_FAILURE;
2846 		} else {
2847 			if (!bge_chip_enable_engine(bgep,
2848 			    RECEIVE_MAC_MODE_REG, 0))
2849 				retval = DDI_FAILURE;
2850 		}
2851 #else
2852 		if (!bge_chip_enable_engine(bgep, RECEIVE_MAC_MODE_REG,
2853 		    RECEIVE_MODE_KEEP_VLAN_TAG))
2854 			retval = DDI_FAILURE;
2855 #endif
2856 	}
2857 	return (retval);
2858 }
2859 
2860 /*
2861  * This array defines the sequence of state machine control registers
2862  * in which the <enable> bit must be cleared to bring the chip to a
2863  * clean stop.  Taken from Broadcom document 570X-PG102-R, p116.
2864  */
2865 static bge_regno_t shutdown_engine_regs[] = {
2866 	RECEIVE_MAC_MODE_REG,
2867 	RCV_BD_INITIATOR_MODE_REG,
2868 	RCV_LIST_PLACEMENT_MODE_REG,
2869 	RCV_LIST_SELECTOR_MODE_REG,		/* BCM5704 series only	*/
2870 	RCV_DATA_BD_INITIATOR_MODE_REG,
2871 	RCV_DATA_COMPLETION_MODE_REG,
2872 	RCV_BD_COMPLETION_MODE_REG,
2873 
2874 	SEND_BD_SELECTOR_MODE_REG,
2875 	SEND_BD_INITIATOR_MODE_REG,
2876 	SEND_DATA_INITIATOR_MODE_REG,
2877 	READ_DMA_MODE_REG,
2878 	SEND_DATA_COMPLETION_MODE_REG,
2879 	DMA_COMPLETION_MODE_REG,		/* BCM5704 series only	*/
2880 	SEND_BD_COMPLETION_MODE_REG,
2881 	TRANSMIT_MAC_MODE_REG,
2882 
2883 	HOST_COALESCE_MODE_REG,
2884 	WRITE_DMA_MODE_REG,
2885 	MBUF_CLUSTER_FREE_MODE_REG,		/* BCM5704 series only	*/
2886 	FTQ_RESET_REG,		/* special - see code	*/
2887 	BUFFER_MANAGER_MODE_REG,		/* BCM5704 series only	*/
2888 	MEMORY_ARBITER_MODE_REG,		/* BCM5704 series only	*/
2889 	BGE_REGNO_NONE		/* terminator		*/
2890 };
2891 
2892 /*
2893  * bge_chip_stop() -- stop all chip processing
2894  *
2895  * If the <fault> parameter is B_TRUE, we're stopping the chip because
2896  * we've detected a problem internally; otherwise, this is a normal
2897  * (clean) stop (at user request i.e. the last STREAM has been closed).
2898  */
2899 void bge_chip_stop(bge_t *bgep, boolean_t fault);
2900 #pragma	no_inline(bge_chip_stop)
2901 
2902 void
2903 bge_chip_stop(bge_t *bgep, boolean_t fault)
2904 {
2905 	bge_regno_t regno;
2906 	bge_regno_t *rbp;
2907 	boolean_t ok;
2908 
2909 	BGE_TRACE(("bge_chip_stop($%p)",
2910 	    (void *)bgep));
2911 
2912 	ASSERT(mutex_owned(bgep->genlock));
2913 
2914 	rbp = shutdown_engine_regs;
2915 	/*
2916 	 * When driver try to shutdown the BCM5705/5788/5721/5751/
2917 	 * 5752/5714 and 5715 chipsets,the buffer manager and the mem
2918 	 * -ory arbiter should not be disabled.
2919 	 */
2920 	for (ok = B_TRUE; (regno = *rbp) != BGE_REGNO_NONE; ++rbp) {
2921 			if (DEVICE_5704_SERIES_CHIPSETS(bgep))
2922 				ok &= bge_chip_disable_engine(bgep, regno, 0);
2923 			else if ((regno != RCV_LIST_SELECTOR_MODE_REG) &&
2924 			    (regno != DMA_COMPLETION_MODE_REG) &&
2925 			    (regno != MBUF_CLUSTER_FREE_MODE_REG)&&
2926 			    (regno != BUFFER_MANAGER_MODE_REG) &&
2927 			    (regno != MEMORY_ARBITER_MODE_REG))
2928 				ok &= bge_chip_disable_engine(bgep,
2929 				    regno, 0);
2930 	}
2931 
2932 	if (!ok && !fault)
2933 		ddi_fm_service_impact(bgep->devinfo, DDI_SERVICE_UNAFFECTED);
2934 
2935 	/*
2936 	 * Finally, disable (all) MAC events & clear the MAC status
2937 	 */
2938 	bge_reg_put32(bgep, ETHERNET_MAC_EVENT_ENABLE_REG, 0);
2939 	bge_reg_put32(bgep, ETHERNET_MAC_STATUS_REG, ~0);
2940 
2941 	/*
2942 	 * if we're stopping the chip because of a detected fault then do
2943 	 * appropriate actions
2944 	 */
2945 	if (fault) {
2946 		if (bgep->bge_chip_state != BGE_CHIP_FAULT) {
2947 			bgep->bge_chip_state = BGE_CHIP_FAULT;
2948 			if (!bgep->manual_reset)
2949 				ddi_fm_service_impact(bgep->devinfo,
2950 				    DDI_SERVICE_LOST);
2951 			if (bgep->bge_dma_error) {
2952 				/*
2953 				 * need to free buffers in case the fault was
2954 				 * due to a memory error in a buffer - got to
2955 				 * do a fair bit of tidying first
2956 				 */
2957 				if (bgep->progress & PROGRESS_KSTATS) {
2958 					bge_fini_kstats(bgep);
2959 					bgep->progress &= ~PROGRESS_KSTATS;
2960 				}
2961 				if (bgep->progress & PROGRESS_INTR) {
2962 					bge_intr_disable(bgep);
2963 					rw_enter(bgep->errlock, RW_WRITER);
2964 					bge_fini_rings(bgep);
2965 					rw_exit(bgep->errlock);
2966 					bgep->progress &= ~PROGRESS_INTR;
2967 				}
2968 				if (bgep->progress & PROGRESS_BUFS) {
2969 					bge_free_bufs(bgep);
2970 					bgep->progress &= ~PROGRESS_BUFS;
2971 				}
2972 				bgep->bge_dma_error = B_FALSE;
2973 			}
2974 		}
2975 	} else
2976 		bgep->bge_chip_state = BGE_CHIP_STOPPED;
2977 }
2978 
2979 /*
2980  * Poll for completion of chip's ROM firmware; also, at least on the
2981  * first time through, find and return the hardware MAC address, if any.
2982  */
2983 static uint64_t bge_poll_firmware(bge_t *bgep);
2984 #pragma	no_inline(bge_poll_firmware)
2985 
2986 static uint64_t
2987 bge_poll_firmware(bge_t *bgep)
2988 {
2989 	uint64_t magic;
2990 	uint64_t mac;
2991 	uint32_t gen;
2992 	uint32_t i;
2993 
2994 	/*
2995 	 * Step 19: poll for firmware completion (GENCOMM port set
2996 	 * to the ones complement of T3_MAGIC_NUMBER).
2997 	 *
2998 	 * While we're at it, we also read the MAC address register;
2999 	 * at some stage the firmware will load this with the
3000 	 * factory-set value.
3001 	 *
3002 	 * When both the magic number and the MAC address are set,
3003 	 * we're done; but we impose a time limit of one second
3004 	 * (1000*1000us) in case the firmware fails in some fashion
3005 	 * or the SEEPROM that provides that MAC address isn't fitted.
3006 	 *
3007 	 * After the first time through (chip state != INITIAL), we
3008 	 * don't need the MAC address to be set (we've already got it
3009 	 * or not, from the first time), so we don't wait for it, but
3010 	 * we still have to wait for the T3_MAGIC_NUMBER.
3011 	 *
3012 	 * Note: the magic number is only a 32-bit quantity, but the NIC
3013 	 * memory is 64-bit (and big-endian) internally.  Addressing the
3014 	 * GENCOMM word as "the upper half of a 64-bit quantity" makes
3015 	 * it work correctly on both big- and little-endian hosts.
3016 	 */
3017 	for (i = 0; i < 1000; ++i) {
3018 		drv_usecwait(1000);
3019 		gen = bge_nic_get64(bgep, NIC_MEM_GENCOMM) >> 32;
3020 		mac = bge_reg_get64(bgep, MAC_ADDRESS_REG(0));
3021 #ifdef BGE_IPMI_ASF
3022 		if (!bgep->asf_enabled) {
3023 #endif
3024 			if (gen != ~T3_MAGIC_NUMBER)
3025 				continue;
3026 #ifdef BGE_IPMI_ASF
3027 		}
3028 #endif
3029 		if (mac != 0ULL)
3030 			break;
3031 		if (bgep->bge_chip_state != BGE_CHIP_INITIAL)
3032 			break;
3033 	}
3034 
3035 	magic = bge_nic_get64(bgep, NIC_MEM_GENCOMM);
3036 	BGE_DEBUG(("bge_poll_firmware($%p): PXE magic 0x%x after %d loops",
3037 	    (void *)bgep, gen, i));
3038 	BGE_DEBUG(("bge_poll_firmware: MAC %016llx, GENCOMM %016llx",
3039 	    mac, magic));
3040 
3041 	return (mac);
3042 }
3043 
3044 /*
3045  * Maximum times of trying to get the NVRAM access lock
3046  * by calling bge_nvmem_acquire()
3047  */
3048 #define	MAX_TRY_NVMEM_ACQUIRE	10000
3049 
3050 #ifdef BGE_IPMI_ASF
3051 int bge_chip_reset(bge_t *bgep, boolean_t enable_dma, uint_t asf_mode);
3052 #else
3053 int bge_chip_reset(bge_t *bgep, boolean_t enable_dma);
3054 #endif
3055 #pragma	no_inline(bge_chip_reset)
3056 
3057 int
3058 #ifdef BGE_IPMI_ASF
3059 bge_chip_reset(bge_t *bgep, boolean_t enable_dma, uint_t asf_mode)
3060 #else
3061 bge_chip_reset(bge_t *bgep, boolean_t enable_dma)
3062 #endif
3063 {
3064 	chip_id_t chipid;
3065 	uint64_t mac;
3066 	uint64_t magic;
3067 	uint32_t modeflags;
3068 	uint32_t mhcr;
3069 	uint32_t sx0;
3070 	uint32_t i, tries;
3071 #ifdef BGE_IPMI_ASF
3072 	uint32_t mailbox;
3073 #endif
3074 	int retval = DDI_SUCCESS;
3075 
3076 	BGE_TRACE(("bge_chip_reset($%p, %d)",
3077 		(void *)bgep, enable_dma));
3078 
3079 	ASSERT(mutex_owned(bgep->genlock));
3080 
3081 	BGE_DEBUG(("bge_chip_reset($%p, %d): current state is %d",
3082 		(void *)bgep, enable_dma, bgep->bge_chip_state));
3083 
3084 	/*
3085 	 * Do we need to stop the chip cleanly before resetting?
3086 	 */
3087 	switch (bgep->bge_chip_state) {
3088 	default:
3089 		_NOTE(NOTREACHED)
3090 		return (DDI_FAILURE);
3091 
3092 	case BGE_CHIP_INITIAL:
3093 	case BGE_CHIP_STOPPED:
3094 	case BGE_CHIP_RESET:
3095 		break;
3096 
3097 	case BGE_CHIP_RUNNING:
3098 	case BGE_CHIP_ERROR:
3099 	case BGE_CHIP_FAULT:
3100 		bge_chip_stop(bgep, B_FALSE);
3101 		break;
3102 	}
3103 
3104 #ifdef BGE_IPMI_ASF
3105 	if (bgep->asf_enabled) {
3106 #ifdef __sparc
3107 		mhcr = MHCR_ENABLE_INDIRECT_ACCESS |
3108 			MHCR_ENABLE_TAGGED_STATUS_MODE |
3109 			MHCR_MASK_INTERRUPT_MODE |
3110 			MHCR_MASK_PCI_INT_OUTPUT |
3111 			MHCR_CLEAR_INTERRUPT_INTA |
3112 			MHCR_ENABLE_ENDIAN_WORD_SWAP |
3113 			MHCR_ENABLE_ENDIAN_BYTE_SWAP;
3114 		pci_config_put32(bgep->cfg_handle, PCI_CONF_BGE_MHCR, mhcr);
3115 		bge_reg_put32(bgep, MEMORY_ARBITER_MODE_REG,
3116 			bge_reg_get32(bgep, MEMORY_ARBITER_MODE_REG) |
3117 			MEMORY_ARBITER_ENABLE);
3118 #endif
3119 		if (asf_mode == ASF_MODE_INIT) {
3120 			bge_asf_pre_reset_operations(bgep, BGE_INIT_RESET);
3121 		} else if (asf_mode == ASF_MODE_SHUTDOWN) {
3122 			bge_asf_pre_reset_operations(bgep, BGE_SHUTDOWN_RESET);
3123 		}
3124 	}
3125 #endif
3126 	/*
3127 	 * Adapted from Broadcom document 570X-PG102-R, pp 102-116.
3128 	 * Updated to reflect Broadcom document 570X-PG104-R, pp 146-159.
3129 	 *
3130 	 * Before reset Core clock,it is
3131 	 * also required to initialize the Memory Arbiter as specified in step9
3132 	 * and Misc Host Control Register as specified in step-13
3133 	 * Step 4-5: reset Core clock & wait for completion
3134 	 * Steps 6-8: are done by bge_chip_cfg_init()
3135 	 * put the T3_MAGIC_NUMBER into the GENCOMM port before reset
3136 	 */
3137 	if (!bge_chip_enable_engine(bgep, MEMORY_ARBITER_MODE_REG, 0))
3138 		retval = DDI_FAILURE;
3139 
3140 	mhcr = MHCR_ENABLE_INDIRECT_ACCESS |
3141 	    MHCR_ENABLE_TAGGED_STATUS_MODE |
3142 	    MHCR_MASK_INTERRUPT_MODE |
3143 	    MHCR_MASK_PCI_INT_OUTPUT |
3144 	    MHCR_CLEAR_INTERRUPT_INTA;
3145 #ifdef  _BIG_ENDIAN
3146 	mhcr |= MHCR_ENABLE_ENDIAN_WORD_SWAP | MHCR_ENABLE_ENDIAN_BYTE_SWAP;
3147 #endif  /* _BIG_ENDIAN */
3148 	pci_config_put32(bgep->cfg_handle, PCI_CONF_BGE_MHCR, mhcr);
3149 #ifdef BGE_IPMI_ASF
3150 	if (bgep->asf_enabled)
3151 		bgep->asf_wordswapped = B_FALSE;
3152 #endif
3153 	/*
3154 	 * NVRAM Corruption Workaround
3155 	 */
3156 	for (tries = 0; tries < MAX_TRY_NVMEM_ACQUIRE; tries++)
3157 		if (bge_nvmem_acquire(bgep) != EAGAIN)
3158 			break;
3159 	if (tries >= MAX_TRY_NVMEM_ACQUIRE)
3160 		BGE_DEBUG(("%s: fail to acquire nvram lock",
3161 			bgep->ifname));
3162 
3163 #ifdef BGE_IPMI_ASF
3164 	if (!bgep->asf_enabled) {
3165 #endif
3166 		magic = (uint64_t)T3_MAGIC_NUMBER << 32;
3167 		bge_nic_put64(bgep, NIC_MEM_GENCOMM, magic);
3168 #ifdef BGE_IPMI_ASF
3169 	}
3170 #endif
3171 
3172 	if (!bge_chip_reset_engine(bgep, MISC_CONFIG_REG))
3173 		retval = DDI_FAILURE;
3174 	bge_chip_cfg_init(bgep, &chipid, enable_dma);
3175 
3176 	/*
3177 	 * Step 8a: This may belong elsewhere, but BCM5721 needs
3178 	 * a bit set to avoid a fifo overflow/underflow bug.
3179 	 */
3180 	if ((bgep->chipid.chip_label == 5721) ||
3181 		(bgep->chipid.chip_label == 5751) ||
3182 		(bgep->chipid.chip_label == 5752) ||
3183 		(bgep->chipid.chip_label == 5755) ||
3184 		(bgep->chipid.chip_label == 5789))
3185 		bge_reg_set32(bgep, TLP_CONTROL_REG, TLP_DATA_FIFO_PROTECT);
3186 
3187 
3188 	/*
3189 	 * Step 9: enable MAC memory arbiter,bit30 and bit31 of 5714/5715 should
3190 	 * not be changed.
3191 	 */
3192 	if (!bge_chip_enable_engine(bgep, MEMORY_ARBITER_MODE_REG, 0))
3193 		retval = DDI_FAILURE;
3194 
3195 	/*
3196 	 * Steps 10-11: configure PIO endianness options and
3197 	 * enable indirect register access -- already done
3198 	 * Steps 12-13: enable writing to the PCI state & clock
3199 	 * control registers -- not required; we aren't going to
3200 	 * use those features.
3201 	 * Steps 14-15: Configure DMA endianness options.  See
3202 	 * the comments on the setting of the MHCR above.
3203 	 */
3204 #ifdef	_BIG_ENDIAN
3205 	modeflags = MODE_WORD_SWAP_FRAME | MODE_BYTE_SWAP_FRAME |
3206 		    MODE_WORD_SWAP_NONFRAME | MODE_BYTE_SWAP_NONFRAME;
3207 #else
3208 	modeflags = MODE_WORD_SWAP_FRAME | MODE_BYTE_SWAP_FRAME;
3209 #endif	/* _BIG_ENDIAN */
3210 #ifdef BGE_IPMI_ASF
3211 	if (bgep->asf_enabled)
3212 		modeflags |= MODE_HOST_STACK_UP;
3213 #endif
3214 	bge_reg_put32(bgep, MODE_CONTROL_REG, modeflags);
3215 
3216 #ifdef BGE_IPMI_ASF
3217 	if (bgep->asf_enabled) {
3218 #ifdef __sparc
3219 		bge_reg_put32(bgep, MEMORY_ARBITER_MODE_REG,
3220 			MEMORY_ARBITER_ENABLE |
3221 			bge_reg_get32(bgep, MEMORY_ARBITER_MODE_REG));
3222 #endif
3223 
3224 #ifdef  BGE_NETCONSOLE
3225 		if (!bgep->asf_newhandshake) {
3226 			if ((asf_mode == ASF_MODE_INIT) ||
3227 			(asf_mode == ASF_MODE_POST_INIT)) {
3228 				bge_asf_post_reset_old_mode(bgep,
3229 					BGE_INIT_RESET);
3230 			} else {
3231 				bge_asf_post_reset_old_mode(bgep,
3232 					BGE_SHUTDOWN_RESET);
3233 			}
3234 		}
3235 #endif
3236 
3237 		/* Wait for NVRAM init */
3238 		i = 0;
3239 		drv_usecwait(5000);
3240 		mailbox = bge_nic_get32(bgep, BGE_FIRMWARE_MAILBOX);
3241 
3242 		while ((mailbox != (uint32_t)
3243 			~BGE_MAGIC_NUM_FIRMWARE_INIT_DONE) &&
3244 			(i < 10000)) {
3245 			drv_usecwait(100);
3246 			mailbox = bge_nic_get32(bgep,
3247 				BGE_FIRMWARE_MAILBOX);
3248 			i++;
3249 		}
3250 
3251 #ifndef BGE_NETCONSOLE
3252 		if (!bgep->asf_newhandshake) {
3253 			if ((asf_mode == ASF_MODE_INIT) ||
3254 				(asf_mode == ASF_MODE_POST_INIT)) {
3255 
3256 				bge_asf_post_reset_old_mode(bgep,
3257 					BGE_INIT_RESET);
3258 			} else {
3259 				bge_asf_post_reset_old_mode(bgep,
3260 					BGE_SHUTDOWN_RESET);
3261 			}
3262 		}
3263 #endif
3264 	}
3265 #endif
3266 	/*
3267 	 * Steps 16-17: poll for firmware completion
3268 	 */
3269 	mac = bge_poll_firmware(bgep);
3270 
3271 	/*
3272 	 * Step 18: enable external memory -- doesn't apply.
3273 	 *
3274 	 * However we take the opportunity to set the MLCR anyway, as
3275 	 * this register also controls the SEEPROM auto-access method
3276 	 * which we may want to use later ...
3277 	 *
3278 	 * The proper value here depends on the way the chip is wired
3279 	 * into the circuit board, as this register *also* controls which
3280 	 * of the "Miscellaneous I/O" pins are driven as outputs and the
3281 	 * values driven onto those pins!
3282 	 *
3283 	 * See also step 74 in the PRM ...
3284 	 */
3285 	bge_reg_put32(bgep, MISC_LOCAL_CONTROL_REG,
3286 	    bgep->chipid.bge_mlcr_default);
3287 	bge_reg_set32(bgep, SERIAL_EEPROM_ADDRESS_REG, SEEPROM_ACCESS_INIT);
3288 
3289 	/*
3290 	 * Step 20: clear the Ethernet MAC mode register
3291 	 */
3292 	bge_reg_put32(bgep, ETHERNET_MAC_MODE_REG, 0);
3293 
3294 	/*
3295 	 * Step 21: restore cache-line-size, latency timer, and
3296 	 * subsystem ID registers to their original values (not
3297 	 * those read into the local structure <chipid>, 'cos
3298 	 * that was after they were cleared by the RESET).
3299 	 *
3300 	 * Note: the Subsystem Vendor/Device ID registers are not
3301 	 * directly writable in config space, so we use the shadow
3302 	 * copy in "Page Zero" of register space to restore them
3303 	 * both in one go ...
3304 	 */
3305 	pci_config_put8(bgep->cfg_handle, PCI_CONF_CACHE_LINESZ,
3306 		bgep->chipid.clsize);
3307 	pci_config_put8(bgep->cfg_handle, PCI_CONF_LATENCY_TIMER,
3308 		bgep->chipid.latency);
3309 	bge_reg_put32(bgep, PCI_CONF_SUBVENID,
3310 		(bgep->chipid.subdev << 16) | bgep->chipid.subven);
3311 
3312 	/*
3313 	 * The SEND INDEX registers should be reset to zero by the
3314 	 * global chip reset; if they're not, there'll be trouble
3315 	 * later on.
3316 	 */
3317 	sx0 = bge_reg_get32(bgep, NIC_DIAG_SEND_INDEX_REG(0));
3318 	if (sx0 != 0) {
3319 		BGE_REPORT((bgep, "SEND INDEX - device didn't RESET"));
3320 		bge_fm_ereport(bgep, DDI_FM_DEVICE_INVAL_STATE);
3321 		retval = DDI_FAILURE;
3322 	}
3323 
3324 	/* Enable MSI code */
3325 	if (bgep->intr_type == DDI_INTR_TYPE_MSI)
3326 		bge_reg_set32(bgep, MSI_MODE_REG,
3327 		    MSI_PRI_HIGHEST|MSI_MSI_ENABLE|MSI_ERROR_ATTENTION);
3328 
3329 	/*
3330 	 * On the first time through, save the factory-set MAC address
3331 	 * (if any).  If bge_poll_firmware() above didn't return one
3332 	 * (from a chip register) consider looking in the attached NV
3333 	 * memory device, if any.  Once we have it, we save it in both
3334 	 * register-image (64-bit) and byte-array forms.  All-zero and
3335 	 * all-one addresses are not valid, and we refuse to stash those.
3336 	 */
3337 	if (bgep->bge_chip_state == BGE_CHIP_INITIAL) {
3338 		if (mac == 0ULL)
3339 			mac = bge_get_nvmac(bgep);
3340 		if (mac != 0ULL && mac != ~0ULL) {
3341 			bgep->chipid.hw_mac_addr = mac;
3342 			for (i = ETHERADDRL; i-- != 0; ) {
3343 				bgep->chipid.vendor_addr.addr[i] = (uchar_t)mac;
3344 				mac >>= 8;
3345 			}
3346 			bgep->chipid.vendor_addr.set = B_TRUE;
3347 		}
3348 	}
3349 
3350 #ifdef BGE_IPMI_ASF
3351 	if (bgep->asf_enabled && bgep->asf_newhandshake) {
3352 		if (asf_mode != ASF_MODE_NONE) {
3353 			if ((asf_mode == ASF_MODE_INIT) ||
3354 				(asf_mode == ASF_MODE_POST_INIT)) {
3355 
3356 				bge_asf_post_reset_new_mode(bgep,
3357 					BGE_INIT_RESET);
3358 			} else {
3359 				bge_asf_post_reset_new_mode(bgep,
3360 					BGE_SHUTDOWN_RESET);
3361 			}
3362 		}
3363 	}
3364 #endif
3365 
3366 	/*
3367 	 * Record the new state
3368 	 */
3369 	bgep->chip_resets += 1;
3370 	bgep->bge_chip_state = BGE_CHIP_RESET;
3371 	return (retval);
3372 }
3373 
3374 /*
3375  * bge_chip_start() -- start the chip transmitting and/or receiving,
3376  * including enabling interrupts
3377  */
3378 int bge_chip_start(bge_t *bgep, boolean_t reset_phys);
3379 #pragma	no_inline(bge_chip_start)
3380 
3381 int
3382 bge_chip_start(bge_t *bgep, boolean_t reset_phys)
3383 {
3384 	uint32_t coalmode;
3385 	uint32_t ledctl;
3386 	uint32_t mtu;
3387 	uint32_t maxring;
3388 	uint32_t stats_mask;
3389 	uint32_t dma_wrprio;
3390 	uint64_t ring;
3391 	int retval = DDI_SUCCESS;
3392 
3393 	BGE_TRACE(("bge_chip_start($%p)",
3394 	    (void *)bgep));
3395 
3396 	ASSERT(mutex_owned(bgep->genlock));
3397 	ASSERT(bgep->bge_chip_state == BGE_CHIP_RESET);
3398 
3399 	/*
3400 	 * Taken from Broadcom document 570X-PG102-R, pp 102-116.
3401 	 * The document specifies 95 separate steps to fully
3402 	 * initialise the chip!!!!
3403 	 *
3404 	 * The reset code above has already got us as far as step
3405 	 * 21, so we continue with ...
3406 	 *
3407 	 * Step 22: clear the MAC statistics block
3408 	 * (0x0300-0x0aff in NIC-local memory)
3409 	 */
3410 	if (bgep->chipid.statistic_type == BGE_STAT_BLK)
3411 		bge_nic_zero(bgep, NIC_MEM_STATISTICS,
3412 		    NIC_MEM_STATISTICS_SIZE);
3413 
3414 	/*
3415 	 * Step 23: clear the status block (in host memory)
3416 	 */
3417 	DMA_ZERO(bgep->status_block);
3418 
3419 	/*
3420 	 * Step 24: set DMA read/write control register
3421 	 */
3422 	pci_config_put32(bgep->cfg_handle, PCI_CONF_BGE_PDRWCR,
3423 	    bgep->chipid.bge_dma_rwctrl);
3424 
3425 	/*
3426 	 * Step 25: Configure DMA endianness -- already done (16/17)
3427 	 * Step 26: Configure Host-Based Send Rings
3428 	 * Step 27: Indicate Host Stack Up
3429 	 */
3430 	bge_reg_set32(bgep, MODE_CONTROL_REG,
3431 	    MODE_HOST_SEND_BDS |
3432 	    MODE_HOST_STACK_UP);
3433 
3434 	/*
3435 	 * Step 28: Configure checksum options:
3436 	 *	Solaris supports the hardware default checksum options.
3437 	 *
3438 	 *	Workaround for Incorrect pseudo-header checksum calculation.
3439 	 */
3440 	if (bgep->chipid.flags & CHIP_FLAG_PARTIAL_CSUM)
3441 		bge_reg_set32(bgep, MODE_CONTROL_REG,
3442 		    MODE_SEND_NO_PSEUDO_HDR_CSUM);
3443 
3444 	/*
3445 	 * Step 29: configure Timer Prescaler.  The value is always the
3446 	 * same: the Core Clock frequency in MHz (66), minus 1, shifted
3447 	 * into bits 7-1.  Don't set bit 0, 'cos that's the RESET bit
3448 	 * for the whole chip!
3449 	 */
3450 	bge_reg_put32(bgep, MISC_CONFIG_REG, MISC_CONFIG_DEFAULT);
3451 
3452 	/*
3453 	 * Steps 30-31: Configure MAC local memory pool & DMA pool registers
3454 	 *
3455 	 * If the mbuf_length is specified as 0, we just leave these at
3456 	 * their hardware defaults, rather than explicitly setting them.
3457 	 * As the Broadcom HRM,driver better not change the parameters
3458 	 * when the chipsets is 5705/5788/5721/5751/5714 and 5715.
3459 	 */
3460 	if ((bgep->chipid.mbuf_length != 0) &&
3461 	    (DEVICE_5704_SERIES_CHIPSETS(bgep))) {
3462 			bge_reg_put32(bgep, MBUF_POOL_BASE_REG,
3463 			    bgep->chipid.mbuf_base);
3464 			bge_reg_put32(bgep, MBUF_POOL_LENGTH_REG,
3465 			    bgep->chipid.mbuf_length);
3466 			bge_reg_put32(bgep, DMAD_POOL_BASE_REG,
3467 			    DMAD_POOL_BASE_DEFAULT);
3468 			bge_reg_put32(bgep, DMAD_POOL_LENGTH_REG,
3469 			    DMAD_POOL_LENGTH_DEFAULT);
3470 	}
3471 
3472 	/*
3473 	 * Step 32: configure MAC memory pool watermarks
3474 	 */
3475 	bge_reg_put32(bgep, RDMA_MBUF_LOWAT_REG,
3476 	    bgep->chipid.mbuf_lo_water_rdma);
3477 	bge_reg_put32(bgep, MAC_RX_MBUF_LOWAT_REG,
3478 	    bgep->chipid.mbuf_lo_water_rmac);
3479 	bge_reg_put32(bgep, MBUF_HIWAT_REG,
3480 	    bgep->chipid.mbuf_hi_water);
3481 
3482 	/*
3483 	 * Step 33: configure DMA resource watermarks
3484 	 */
3485 	if (DEVICE_5704_SERIES_CHIPSETS(bgep)) {
3486 		bge_reg_put32(bgep, DMAD_POOL_LOWAT_REG,
3487 		    bge_dmad_lo_water);
3488 		bge_reg_put32(bgep, DMAD_POOL_HIWAT_REG,
3489 		    bge_dmad_hi_water);
3490 	}
3491 	bge_reg_put32(bgep, LOWAT_MAX_RECV_FRAMES_REG, bge_lowat_recv_frames);
3492 
3493 	/*
3494 	 * Steps 34-36: enable buffer manager & internal h/w queues
3495 	 */
3496 	if (!bge_chip_enable_engine(bgep, BUFFER_MANAGER_MODE_REG,
3497 	    STATE_MACHINE_ATTN_ENABLE_BIT))
3498 		retval = DDI_FAILURE;
3499 	if (!bge_chip_enable_engine(bgep, FTQ_RESET_REG, 0))
3500 		retval = DDI_FAILURE;
3501 
3502 	/*
3503 	 * Steps 37-39: initialise Receive Buffer (Producer) RCBs
3504 	 */
3505 	bge_reg_putrcb(bgep, STD_RCV_BD_RING_RCB_REG,
3506 	    &bgep->buff[BGE_STD_BUFF_RING].hw_rcb);
3507 	if (DEVICE_5704_SERIES_CHIPSETS(bgep)) {
3508 		bge_reg_putrcb(bgep, JUMBO_RCV_BD_RING_RCB_REG,
3509 		    &bgep->buff[BGE_JUMBO_BUFF_RING].hw_rcb);
3510 		bge_reg_putrcb(bgep, MINI_RCV_BD_RING_RCB_REG,
3511 		    &bgep->buff[BGE_MINI_BUFF_RING].hw_rcb);
3512 	}
3513 
3514 	/*
3515 	 * Step 40: set Receive Buffer Descriptor Ring replenish thresholds
3516 	 */
3517 	bge_reg_put32(bgep, STD_RCV_BD_REPLENISH_REG, bge_replenish_std);
3518 	if (DEVICE_5704_SERIES_CHIPSETS(bgep)) {
3519 		bge_reg_put32(bgep, JUMBO_RCV_BD_REPLENISH_REG,
3520 		    bge_replenish_jumbo);
3521 		bge_reg_put32(bgep, MINI_RCV_BD_REPLENISH_REG,
3522 		    bge_replenish_mini);
3523 	}
3524 
3525 	/*
3526 	 * Steps 41-43: clear Send Ring Producer Indices and initialise
3527 	 * Send Producer Rings (0x0100-0x01ff in NIC-local memory)
3528 	 */
3529 	if (DEVICE_5704_SERIES_CHIPSETS(bgep))
3530 		maxring = BGE_SEND_RINGS_MAX;
3531 	else
3532 		maxring = BGE_SEND_RINGS_MAX_5705;
3533 	for (ring = 0; ring < maxring; ++ring) {
3534 		bge_mbx_put(bgep, SEND_RING_HOST_INDEX_REG(ring), 0);
3535 		bge_mbx_put(bgep, SEND_RING_NIC_INDEX_REG(ring), 0);
3536 		bge_nic_putrcb(bgep, NIC_MEM_SEND_RING(ring),
3537 		    &bgep->send[ring].hw_rcb);
3538 	}
3539 
3540 	/*
3541 	 * Steps 44-45: initialise Receive Return Rings
3542 	 * (0x0200-0x02ff in NIC-local memory)
3543 	 */
3544 	if (DEVICE_5704_SERIES_CHIPSETS(bgep))
3545 		maxring = BGE_RECV_RINGS_MAX;
3546 	else
3547 		maxring = BGE_RECV_RINGS_MAX_5705;
3548 	for (ring = 0; ring < maxring; ++ring)
3549 		bge_nic_putrcb(bgep, NIC_MEM_RECV_RING(ring),
3550 		    &bgep->recv[ring].hw_rcb);
3551 
3552 	/*
3553 	 * Step 46: initialise Receive Buffer (Producer) Ring indexes
3554 	 */
3555 	bge_mbx_put(bgep, RECV_STD_PROD_INDEX_REG, 0);
3556 	if (DEVICE_5704_SERIES_CHIPSETS(bgep)) {
3557 		bge_mbx_put(bgep, RECV_JUMBO_PROD_INDEX_REG, 0);
3558 		bge_mbx_put(bgep, RECV_MINI_PROD_INDEX_REG, 0);
3559 	}
3560 	/*
3561 	 * Step 47: configure the MAC unicast address
3562 	 * Step 48: configure the random backoff seed
3563 	 * Step 96: set up multicast filters
3564 	 */
3565 #ifdef BGE_IPMI_ASF
3566 	if (bge_chip_sync(bgep, B_FALSE) == DDI_FAILURE)
3567 #else
3568 	if (bge_chip_sync(bgep) == DDI_FAILURE)
3569 #endif
3570 		retval = DDI_FAILURE;
3571 
3572 	/*
3573 	 * Step 49: configure the MTU
3574 	 */
3575 	mtu = bgep->chipid.ethmax_size+ETHERFCSL+VLAN_TAGSZ;
3576 	bge_reg_put32(bgep, MAC_RX_MTU_SIZE_REG, mtu);
3577 
3578 	/*
3579 	 * Step 50: configure the IPG et al
3580 	 */
3581 	bge_reg_put32(bgep, MAC_TX_LENGTHS_REG, MAC_TX_LENGTHS_DEFAULT);
3582 
3583 	/*
3584 	 * Step 51: configure the default Rx Return Ring
3585 	 */
3586 	bge_reg_put32(bgep, RCV_RULES_CONFIG_REG, RCV_RULES_CONFIG_DEFAULT);
3587 
3588 	/*
3589 	 * Steps 52-54: configure Receive List Placement,
3590 	 * and enable Receive List Placement Statistics
3591 	 */
3592 	bge_reg_put32(bgep, RCV_LP_CONFIG_REG,
3593 	    RCV_LP_CONFIG(bgep->chipid.rx_rings));
3594 	switch (MHCR_CHIP_ASIC_REV(bgep->chipid.asic_rev)) {
3595 	case MHCR_CHIP_ASIC_REV_5700:
3596 	case MHCR_CHIP_ASIC_REV_5701:
3597 	case MHCR_CHIP_ASIC_REV_5703:
3598 	case MHCR_CHIP_ASIC_REV_5704:
3599 		bge_reg_put32(bgep, RCV_LP_STATS_ENABLE_MASK_REG, ~0);
3600 		break;
3601 	case MHCR_CHIP_ASIC_REV_5705:
3602 		break;
3603 	default:
3604 		stats_mask = bge_reg_get32(bgep, RCV_LP_STATS_ENABLE_MASK_REG);
3605 		stats_mask &= ~RCV_LP_STATS_DISABLE_MACTQ;
3606 		bge_reg_put32(bgep, RCV_LP_STATS_ENABLE_MASK_REG, stats_mask);
3607 		break;
3608 	}
3609 	bge_reg_set32(bgep, RCV_LP_STATS_CONTROL_REG, RCV_LP_STATS_ENABLE);
3610 
3611 	if (bgep->chipid.rx_rings > 1)
3612 		bge_init_recv_rule(bgep);
3613 
3614 	/*
3615 	 * Steps 55-56: enable Send Data Initiator Statistics
3616 	 */
3617 	bge_reg_put32(bgep, SEND_INIT_STATS_ENABLE_MASK_REG, ~0);
3618 	if (DEVICE_5704_SERIES_CHIPSETS(bgep)) {
3619 		bge_reg_put32(bgep, SEND_INIT_STATS_CONTROL_REG,
3620 		    SEND_INIT_STATS_ENABLE | SEND_INIT_STATS_FASTER);
3621 	} else {
3622 		bge_reg_put32(bgep, SEND_INIT_STATS_CONTROL_REG,
3623 		    SEND_INIT_STATS_ENABLE);
3624 	}
3625 	/*
3626 	 * Steps 57-58: stop (?) the Host Coalescing Engine
3627 	 */
3628 	if (!bge_chip_disable_engine(bgep, HOST_COALESCE_MODE_REG, ~0))
3629 		retval = DDI_FAILURE;
3630 
3631 	/*
3632 	 * Steps 59-62: initialise Host Coalescing parameters
3633 	 */
3634 	bge_reg_put32(bgep, SEND_COALESCE_MAX_BD_REG, bge_tx_count_norm);
3635 	bge_reg_put32(bgep, SEND_COALESCE_TICKS_REG, bge_tx_ticks_norm);
3636 	bge_reg_put32(bgep, RCV_COALESCE_MAX_BD_REG, bge_rx_count_norm);
3637 	bge_reg_put32(bgep, RCV_COALESCE_TICKS_REG, bge_rx_ticks_norm);
3638 	if (DEVICE_5704_SERIES_CHIPSETS(bgep)) {
3639 		bge_reg_put32(bgep, SEND_COALESCE_INT_BD_REG,
3640 		    bge_tx_count_intr);
3641 		bge_reg_put32(bgep, SEND_COALESCE_INT_TICKS_REG,
3642 		    bge_tx_ticks_intr);
3643 		bge_reg_put32(bgep, RCV_COALESCE_INT_BD_REG,
3644 		    bge_rx_count_intr);
3645 		bge_reg_put32(bgep, RCV_COALESCE_INT_TICKS_REG,
3646 		    bge_rx_ticks_intr);
3647 	}
3648 
3649 	/*
3650 	 * Steps 63-64: initialise status block & statistics
3651 	 * host memory addresses
3652 	 * The statistic block does not exist in some chipsets
3653 	 * Step 65: initialise Statistics Coalescing Tick Counter
3654 	 */
3655 	bge_reg_put64(bgep, STATUS_BLOCK_HOST_ADDR_REG,
3656 	    bgep->status_block.cookie.dmac_laddress);
3657 
3658 	/*
3659 	 * Steps 66-67: initialise status block & statistics
3660 	 * NIC-local memory addresses
3661 	 */
3662 	if (DEVICE_5704_SERIES_CHIPSETS(bgep)) {
3663 		bge_reg_put64(bgep, STATISTICS_HOST_ADDR_REG,
3664 		    bgep->statistics.cookie.dmac_laddress);
3665 		bge_reg_put32(bgep, STATISTICS_TICKS_REG,
3666 		    STATISTICS_TICKS_DEFAULT);
3667 		bge_reg_put32(bgep, STATUS_BLOCK_BASE_ADDR_REG,
3668 		    NIC_MEM_STATUS_BLOCK);
3669 		bge_reg_put32(bgep, STATISTICS_BASE_ADDR_REG,
3670 		    NIC_MEM_STATISTICS);
3671 	}
3672 
3673 	/*
3674 	 * Steps 68-71: start the Host Coalescing Engine, the Receive BD
3675 	 * Completion Engine, the Receive List Placement Engine, and the
3676 	 * Receive List selector.Pay attention:0x3400 is not exist in BCM5714
3677 	 * and BCM5715.
3678 	 */
3679 	if (bgep->chipid.tx_rings <= COALESCE_64_BYTE_RINGS &&
3680 	    bgep->chipid.rx_rings <= COALESCE_64_BYTE_RINGS)
3681 		coalmode = COALESCE_64_BYTE_STATUS;
3682 	else
3683 		coalmode = 0;
3684 	if (!bge_chip_enable_engine(bgep, HOST_COALESCE_MODE_REG, coalmode))
3685 		retval = DDI_FAILURE;
3686 	if (!bge_chip_enable_engine(bgep, RCV_BD_COMPLETION_MODE_REG,
3687 	    STATE_MACHINE_ATTN_ENABLE_BIT))
3688 		retval = DDI_FAILURE;
3689 	if (!bge_chip_enable_engine(bgep, RCV_LIST_PLACEMENT_MODE_REG, 0))
3690 		retval = DDI_FAILURE;
3691 
3692 	if (DEVICE_5704_SERIES_CHIPSETS(bgep))
3693 		if (!bge_chip_enable_engine(bgep, RCV_LIST_SELECTOR_MODE_REG,
3694 		    STATE_MACHINE_ATTN_ENABLE_BIT))
3695 			retval = DDI_FAILURE;
3696 
3697 	/*
3698 	 * Step 72: Enable MAC DMA engines
3699 	 * Step 73: Clear & enable MAC statistics
3700 	 */
3701 	bge_reg_set32(bgep, ETHERNET_MAC_MODE_REG,
3702 	    ETHERNET_MODE_ENABLE_FHDE |
3703 	    ETHERNET_MODE_ENABLE_RDE |
3704 	    ETHERNET_MODE_ENABLE_TDE);
3705 	bge_reg_set32(bgep, ETHERNET_MAC_MODE_REG,
3706 	    ETHERNET_MODE_ENABLE_TX_STATS |
3707 	    ETHERNET_MODE_ENABLE_RX_STATS |
3708 	    ETHERNET_MODE_CLEAR_TX_STATS |
3709 	    ETHERNET_MODE_CLEAR_RX_STATS);
3710 
3711 	/*
3712 	 * Step 74: configure the MLCR (Miscellaneous Local Control
3713 	 * Register); not required, as we set up the MLCR in step 10
3714 	 * (part of the reset code) above.
3715 	 *
3716 	 * Step 75: clear Interrupt Mailbox 0
3717 	 */
3718 	bge_mbx_put(bgep, INTERRUPT_MBOX_0_REG, 0);
3719 
3720 	/*
3721 	 * Steps 76-87: Gentlemen, start your engines ...
3722 	 *
3723 	 * Enable the DMA Completion Engine, the Write DMA Engine,
3724 	 * the Read DMA Engine, Receive Data Completion Engine,
3725 	 * the MBuf Cluster Free Engine, the Send Data Completion Engine,
3726 	 * the Send BD Completion Engine, the Receive BD Initiator Engine,
3727 	 * the Receive Data Initiator Engine, the Send Data Initiator Engine,
3728 	 * the Send BD Initiator Engine, and the Send BD Selector Engine.
3729 	 *
3730 	 * Beware exhaust fumes?
3731 	 */
3732 	if (DEVICE_5704_SERIES_CHIPSETS(bgep))
3733 		if (!bge_chip_enable_engine(bgep, DMA_COMPLETION_MODE_REG, 0))
3734 			retval = DDI_FAILURE;
3735 	dma_wrprio = (bge_dma_wrprio << DMA_PRIORITY_SHIFT) |
3736 	    ALL_DMA_ATTN_BITS;
3737 	if (MHCR_CHIP_ASIC_REV(bgep->chipid.asic_rev) ==
3738 	    MHCR_CHIP_ASIC_REV_5755) {
3739 		dma_wrprio |= DMA_STATUS_TAG_FIX_CQ12384;
3740 	}
3741 	if (!bge_chip_enable_engine(bgep, WRITE_DMA_MODE_REG,
3742 	    dma_wrprio))
3743 		retval = DDI_FAILURE;
3744 	if (!bge_chip_enable_engine(bgep, READ_DMA_MODE_REG,
3745 	    (bge_dma_rdprio << DMA_PRIORITY_SHIFT) | ALL_DMA_ATTN_BITS))
3746 		retval = DDI_FAILURE;
3747 	if (!bge_chip_enable_engine(bgep, RCV_DATA_COMPLETION_MODE_REG,
3748 	    STATE_MACHINE_ATTN_ENABLE_BIT))
3749 		retval = DDI_FAILURE;
3750 	if (DEVICE_5704_SERIES_CHIPSETS(bgep))
3751 		if (!bge_chip_enable_engine(bgep,
3752 		    MBUF_CLUSTER_FREE_MODE_REG, 0))
3753 			retval = DDI_FAILURE;
3754 	if (!bge_chip_enable_engine(bgep, SEND_DATA_COMPLETION_MODE_REG, 0))
3755 		retval = DDI_FAILURE;
3756 	if (!bge_chip_enable_engine(bgep, SEND_BD_COMPLETION_MODE_REG,
3757 	    STATE_MACHINE_ATTN_ENABLE_BIT))
3758 		retval = DDI_FAILURE;
3759 	if (!bge_chip_enable_engine(bgep, RCV_BD_INITIATOR_MODE_REG,
3760 	    RCV_BD_DISABLED_RING_ATTN))
3761 		retval = DDI_FAILURE;
3762 	if (!bge_chip_enable_engine(bgep, RCV_DATA_BD_INITIATOR_MODE_REG,
3763 	    RCV_DATA_BD_ILL_RING_ATTN))
3764 		retval = DDI_FAILURE;
3765 	if (!bge_chip_enable_engine(bgep, SEND_DATA_INITIATOR_MODE_REG, 0))
3766 		retval = DDI_FAILURE;
3767 	if (!bge_chip_enable_engine(bgep, SEND_BD_INITIATOR_MODE_REG,
3768 	    STATE_MACHINE_ATTN_ENABLE_BIT))
3769 		retval = DDI_FAILURE;
3770 	if (!bge_chip_enable_engine(bgep, SEND_BD_SELECTOR_MODE_REG,
3771 	    STATE_MACHINE_ATTN_ENABLE_BIT))
3772 		retval = DDI_FAILURE;
3773 
3774 	/*
3775 	 * Step 88: download firmware -- doesn't apply
3776 	 * Steps 89-90: enable Transmit & Receive MAC Engines
3777 	 */
3778 	if (!bge_chip_enable_engine(bgep, TRANSMIT_MAC_MODE_REG, 0))
3779 		retval = DDI_FAILURE;
3780 #ifdef BGE_IPMI_ASF
3781 	if (!bgep->asf_enabled) {
3782 		if (!bge_chip_enable_engine(bgep, RECEIVE_MAC_MODE_REG,
3783 		    RECEIVE_MODE_KEEP_VLAN_TAG))
3784 			retval = DDI_FAILURE;
3785 	} else {
3786 		if (!bge_chip_enable_engine(bgep, RECEIVE_MAC_MODE_REG, 0))
3787 			retval = DDI_FAILURE;
3788 	}
3789 #else
3790 	if (!bge_chip_enable_engine(bgep, RECEIVE_MAC_MODE_REG,
3791 	    RECEIVE_MODE_KEEP_VLAN_TAG))
3792 		retval = DDI_FAILURE;
3793 #endif
3794 
3795 	/*
3796 	 * Step 91: disable auto-polling of PHY status
3797 	 */
3798 	bge_reg_put32(bgep, MI_MODE_REG, MI_MODE_DEFAULT);
3799 
3800 	/*
3801 	 * Step 92: configure D0 power state (not required)
3802 	 * Step 93: initialise LED control register ()
3803 	 */
3804 	ledctl = LED_CONTROL_DEFAULT;
3805 	switch (bgep->chipid.device) {
3806 	case DEVICE_ID_5700:
3807 	case DEVICE_ID_5700x:
3808 	case DEVICE_ID_5701:
3809 		/*
3810 		 * Switch to 5700 (MAC) mode on these older chips
3811 		 */
3812 		ledctl &= ~LED_CONTROL_LED_MODE_MASK;
3813 		ledctl |= LED_CONTROL_LED_MODE_5700;
3814 		break;
3815 
3816 	default:
3817 		break;
3818 	}
3819 	bge_reg_put32(bgep, ETHERNET_MAC_LED_CONTROL_REG, ledctl);
3820 
3821 	/*
3822 	 * Step 94: activate link
3823 	 */
3824 	bge_reg_put32(bgep, MI_STATUS_REG, MI_STATUS_LINK);
3825 
3826 	/*
3827 	 * Step 95: set up physical layer (PHY/SerDes)
3828 	 * restart autoneg (if required)
3829 	 */
3830 	if (reset_phys)
3831 		if (bge_phys_update(bgep) == DDI_FAILURE)
3832 			retval = DDI_FAILURE;
3833 
3834 	/*
3835 	 * Extra step (DSG): hand over all the Receive Buffers to the chip
3836 	 */
3837 	for (ring = 0; ring < BGE_BUFF_RINGS_USED; ++ring)
3838 		bge_mbx_put(bgep, bgep->buff[ring].chip_mbx_reg,
3839 		    bgep->buff[ring].rf_next);
3840 
3841 	/*
3842 	 * MSI bits:The least significant MSI 16-bit word.
3843 	 * ISR will be triggered different.
3844 	 */
3845 	if (bgep->intr_type == DDI_INTR_TYPE_MSI)
3846 		bge_reg_set32(bgep, HOST_COALESCE_MODE_REG, 0x70);
3847 
3848 	/*
3849 	 * Extra step (DSG): select which interrupts are enabled
3850 	 *
3851 	 * Program the Ethernet MAC engine to signal attention on
3852 	 * Link Change events, then enable interrupts on MAC, DMA,
3853 	 * and FLOW attention signals.
3854 	 */
3855 	bge_reg_set32(bgep, ETHERNET_MAC_EVENT_ENABLE_REG,
3856 	    ETHERNET_EVENT_LINK_INT |
3857 	    ETHERNET_STATUS_PCS_ERROR_INT);
3858 #ifdef BGE_IPMI_ASF
3859 	if (bgep->asf_enabled) {
3860 		bge_reg_set32(bgep, MODE_CONTROL_REG,
3861 		    MODE_INT_ON_FLOW_ATTN |
3862 		    MODE_INT_ON_DMA_ATTN |
3863 		    MODE_HOST_STACK_UP|
3864 		    MODE_INT_ON_MAC_ATTN);
3865 	} else {
3866 #endif
3867 		bge_reg_set32(bgep, MODE_CONTROL_REG,
3868 		    MODE_INT_ON_FLOW_ATTN |
3869 		    MODE_INT_ON_DMA_ATTN |
3870 		    MODE_INT_ON_MAC_ATTN);
3871 #ifdef BGE_IPMI_ASF
3872 	}
3873 #endif
3874 
3875 	/*
3876 	 * Step 97: enable PCI interrupts!!!
3877 	 */
3878 	if (bgep->intr_type == DDI_INTR_TYPE_FIXED)
3879 		bge_cfg_clr32(bgep, PCI_CONF_BGE_MHCR,
3880 		    MHCR_MASK_PCI_INT_OUTPUT);
3881 
3882 	/*
3883 	 * All done!
3884 	 */
3885 	bgep->bge_chip_state = BGE_CHIP_RUNNING;
3886 	return (retval);
3887 }
3888 
3889 
3890 /*
3891  * ========== Hardware interrupt handler ==========
3892  */
3893 
3894 #undef	BGE_DBG
3895 #define	BGE_DBG		BGE_DBG_INT	/* debug flag for this code	*/
3896 
3897 /*
3898  * Sync the status block, then atomically clear the specified bits in
3899  * the <flags-and-tag> field of the status block.
3900  * the <flags> word of the status block, returning the value of the
3901  * <tag> and the <flags> before the bits were cleared.
3902  */
3903 static int bge_status_sync(bge_t *bgep, uint64_t bits, uint64_t *flags);
3904 #pragma	inline(bge_status_sync)
3905 
3906 static int
3907 bge_status_sync(bge_t *bgep, uint64_t bits, uint64_t *flags)
3908 {
3909 	bge_status_t *bsp;
3910 	int retval;
3911 
3912 	BGE_TRACE(("bge_status_sync($%p, 0x%llx)",
3913 	    (void *)bgep, bits));
3914 
3915 	ASSERT(bgep->bge_guard == BGE_GUARD);
3916 
3917 	DMA_SYNC(bgep->status_block, DDI_DMA_SYNC_FORKERNEL);
3918 	retval = bge_check_dma_handle(bgep, bgep->status_block.dma_hdl);
3919 	if (retval != DDI_FM_OK)
3920 		return (retval);
3921 
3922 	bsp = DMA_VPTR(bgep->status_block);
3923 	*flags = bge_atomic_clr64(&bsp->flags_n_tag, bits);
3924 
3925 	BGE_DEBUG(("bge_status_sync($%p, 0x%llx) returning 0x%llx",
3926 	    (void *)bgep, bits, *flags));
3927 
3928 	return (retval);
3929 }
3930 
3931 void bge_wake_factotum(bge_t *bgep);
3932 #pragma	inline(bge_wake_factotum)
3933 
3934 void
3935 bge_wake_factotum(bge_t *bgep)
3936 {
3937 	mutex_enter(bgep->softintrlock);
3938 	if (bgep->factotum_flag == 0) {
3939 		bgep->factotum_flag = 1;
3940 		ddi_trigger_softintr(bgep->factotum_id);
3941 	}
3942 	mutex_exit(bgep->softintrlock);
3943 }
3944 
3945 /*
3946  *	bge_intr() -- handle chip interrupts
3947  */
3948 uint_t bge_intr(caddr_t arg1, caddr_t arg2);
3949 #pragma	no_inline(bge_intr)
3950 
3951 uint_t
3952 bge_intr(caddr_t arg1, caddr_t arg2)
3953 {
3954 	bge_t *bgep = (bge_t *)arg1;		/* private device info	*/
3955 	bge_status_t *bsp;
3956 	uint64_t flags;
3957 	uint32_t regval;
3958 	uint_t result;
3959 	int retval, loop_cnt = 0;
3960 
3961 	BGE_TRACE(("bge_intr($%p) ($%p)", arg1, arg2));
3962 
3963 	/*
3964 	 * GLD v2 checks that s/w setup is complete before passing
3965 	 * interrupts to this routine, thus eliminating the old
3966 	 * (and well-known) race condition around ddi_add_intr()
3967 	 */
3968 	ASSERT(bgep->progress & PROGRESS_HWINT);
3969 
3970 	result = DDI_INTR_UNCLAIMED;
3971 	mutex_enter(bgep->genlock);
3972 
3973 	if (bgep->intr_type == DDI_INTR_TYPE_FIXED) {
3974 		/*
3975 		 * Check whether chip's says it's asserting #INTA;
3976 		 * if not, don't process or claim the interrupt.
3977 		 *
3978 		 * Note that the PCI signal is active low, so the
3979 		 * bit is *zero* when the interrupt is asserted.
3980 		 */
3981 		regval = bge_reg_get32(bgep, MISC_LOCAL_CONTROL_REG);
3982 		if (regval & MLCR_INTA_STATE) {
3983 			if (bge_check_acc_handle(bgep, bgep->io_handle)
3984 			    != DDI_FM_OK)
3985 				goto chip_stop;
3986 			mutex_exit(bgep->genlock);
3987 			return (result);
3988 		}
3989 
3990 		/*
3991 		 * Block further PCI interrupts ...
3992 		 */
3993 		bge_reg_set32(bgep, PCI_CONF_BGE_MHCR,
3994 		    MHCR_MASK_PCI_INT_OUTPUT);
3995 
3996 	} else {
3997 		/*
3998 		 * Check MSI status
3999 		 */
4000 		regval = bge_reg_get32(bgep, MSI_STATUS_REG);
4001 		if (regval & MSI_ERROR_ATTENTION) {
4002 			BGE_REPORT((bgep, "msi error attention,"
4003 			    " status=0x%x", regval));
4004 			bge_reg_put32(bgep, MSI_STATUS_REG, regval);
4005 		}
4006 	}
4007 
4008 	result = DDI_INTR_CLAIMED;
4009 
4010 	BGE_DEBUG(("bge_intr($%p) ($%p) regval 0x%08x", arg1, arg2, regval));
4011 
4012 	/*
4013 	 * Sync the status block and grab the flags-n-tag from it.
4014 	 * We count the number of interrupts where there doesn't
4015 	 * seem to have been a DMA update of the status block; if
4016 	 * it *has* been updated, the counter will be cleared in
4017 	 * the while() loop below ...
4018 	 */
4019 	bgep->missed_dmas += 1;
4020 	bsp = DMA_VPTR(bgep->status_block);
4021 	for (loop_cnt = 0; loop_cnt < bge_intr_max_loop; loop_cnt++) {
4022 		if (bgep->bge_chip_state != BGE_CHIP_RUNNING) {
4023 			/*
4024 			 * bge_chip_stop() may have freed dma area etc
4025 			 * while we were in this interrupt handler -
4026 			 * better not call bge_status_sync()
4027 			 */
4028 			(void) bge_check_acc_handle(bgep,
4029 			    bgep->io_handle);
4030 			mutex_exit(bgep->genlock);
4031 			return (DDI_INTR_CLAIMED);
4032 		}
4033 		retval = bge_status_sync(bgep, STATUS_FLAG_UPDATED,
4034 		    &flags);
4035 		if (retval != DDI_FM_OK) {
4036 			bgep->bge_dma_error = B_TRUE;
4037 			goto chip_stop;
4038 		}
4039 
4040 		if (!(flags & STATUS_FLAG_UPDATED))
4041 			break;
4042 
4043 		/*
4044 		 * Tell the chip that we're processing the interrupt
4045 		 */
4046 		bge_mbx_put(bgep, INTERRUPT_MBOX_0_REG,
4047 		    INTERRUPT_MBOX_DISABLE(flags));
4048 		if (bge_check_acc_handle(bgep, bgep->io_handle) !=
4049 		    DDI_FM_OK)
4050 			goto chip_stop;
4051 
4052 		/*
4053 		 * Drop the mutex while we:
4054 		 * 	Receive any newly-arrived packets
4055 		 *	Recycle any newly-finished send buffers
4056 		 */
4057 		bgep->bge_intr_running = B_TRUE;
4058 		mutex_exit(bgep->genlock);
4059 		bge_receive(bgep, bsp);
4060 		bge_recycle(bgep, bsp);
4061 		mutex_enter(bgep->genlock);
4062 		bgep->bge_intr_running = B_FALSE;
4063 
4064 		/*
4065 		 * Tell the chip we've finished processing, and
4066 		 * give it the tag that we got from the status
4067 		 * block earlier, so that it knows just how far
4068 		 * we've gone.  If it's got more for us to do,
4069 		 * it will now update the status block and try
4070 		 * to assert an interrupt (but we've got the
4071 		 * #INTA blocked at present).  If we see the
4072 		 * update, we'll loop around to do some more.
4073 		 * Eventually we'll get out of here ...
4074 		 */
4075 		bge_mbx_put(bgep, INTERRUPT_MBOX_0_REG,
4076 		    INTERRUPT_MBOX_ENABLE(flags));
4077 		bgep->missed_dmas = 0;
4078 	}
4079 
4080 	/*
4081 	 * Check for exceptional conditions that we need to handle
4082 	 *
4083 	 * Link status changed
4084 	 * Status block not updated
4085 	 */
4086 	if (flags & STATUS_FLAG_LINK_CHANGED)
4087 		bge_wake_factotum(bgep);
4088 
4089 	if (bgep->missed_dmas) {
4090 		/*
4091 		 * Probably due to the internal status tag not
4092 		 * being reset.  Force a status block update now;
4093 		 * this should ensure that we get an update and
4094 		 * a new interrupt.  After that, we should be in
4095 		 * sync again ...
4096 		 */
4097 		BGE_REPORT((bgep, "interrupt: flags 0x%llx - "
4098 		    "not updated?", flags));
4099 		bgep->missed_updates++;
4100 		bge_reg_set32(bgep, HOST_COALESCE_MODE_REG,
4101 		    COALESCE_NOW);
4102 
4103 		if (bgep->missed_dmas >= bge_dma_miss_limit) {
4104 			/*
4105 			 * If this happens multiple times in a row,
4106 			 * it means DMA is just not working.  Maybe
4107 			 * the chip's failed, or maybe there's a
4108 			 * problem on the PCI bus or in the host-PCI
4109 			 * bridge (Tomatillo).
4110 			 *
4111 			 * At all events, we want to stop further
4112 			 * interrupts and let the recovery code take
4113 			 * over to see whether anything can be done
4114 			 * about it ...
4115 			 */
4116 			bge_fm_ereport(bgep,
4117 			    DDI_FM_DEVICE_BADINT_LIMIT);
4118 			goto chip_stop;
4119 		}
4120 	}
4121 
4122 	/*
4123 	 * Reenable assertion of #INTA, unless there's a DMA fault
4124 	 */
4125 	if (bgep->intr_type == DDI_INTR_TYPE_FIXED) {
4126 		bge_reg_clr32(bgep, PCI_CONF_BGE_MHCR,
4127 		    MHCR_MASK_PCI_INT_OUTPUT);
4128 		if (bge_check_acc_handle(bgep, bgep->cfg_handle) !=
4129 		    DDI_FM_OK)
4130 			goto chip_stop;
4131 	}
4132 
4133 	if (bge_check_acc_handle(bgep, bgep->io_handle) != DDI_FM_OK)
4134 		goto chip_stop;
4135 
4136 	mutex_exit(bgep->genlock);
4137 	return (result);
4138 
4139 chip_stop:
4140 #ifdef BGE_IPMI_ASF
4141 	if (bgep->asf_enabled && bgep->asf_status == ASF_STAT_RUN) {
4142 		/*
4143 		 * We must stop ASF heart beat before
4144 		 * bge_chip_stop(), otherwise some
4145 		 * computers (ex. IBM HS20 blade
4146 		 * server) may crash.
4147 		 */
4148 		bge_asf_update_status(bgep);
4149 		bge_asf_stop_timer(bgep);
4150 		bgep->asf_status = ASF_STAT_STOP;
4151 
4152 		bge_asf_pre_reset_operations(bgep, BGE_INIT_RESET);
4153 		(void) bge_check_acc_handle(bgep, bgep->cfg_handle);
4154 	}
4155 #endif
4156 	bge_chip_stop(bgep, B_TRUE);
4157 	(void) bge_check_acc_handle(bgep, bgep->io_handle);
4158 	mutex_exit(bgep->genlock);
4159 	return (result);
4160 }
4161 
4162 /*
4163  * ========== Factotum, implemented as a softint handler ==========
4164  */
4165 
4166 #undef	BGE_DBG
4167 #define	BGE_DBG		BGE_DBG_FACT	/* debug flag for this code	*/
4168 
4169 static void bge_factotum_error_handler(bge_t *bgep);
4170 #pragma	no_inline(bge_factotum_error_handler)
4171 
4172 static void
4173 bge_factotum_error_handler(bge_t *bgep)
4174 {
4175 	uint32_t flow;
4176 	uint32_t rdma;
4177 	uint32_t wdma;
4178 	uint32_t tmac;
4179 	uint32_t rmac;
4180 	uint32_t rxrs;
4181 	uint32_t txrs = 0;
4182 
4183 	ASSERT(mutex_owned(bgep->genlock));
4184 
4185 	/*
4186 	 * Read all the registers that show the possible
4187 	 * reasons for the ERROR bit to be asserted
4188 	 */
4189 	flow = bge_reg_get32(bgep, FLOW_ATTN_REG);
4190 	rdma = bge_reg_get32(bgep, READ_DMA_STATUS_REG);
4191 	wdma = bge_reg_get32(bgep, WRITE_DMA_STATUS_REG);
4192 	tmac = bge_reg_get32(bgep, TRANSMIT_MAC_STATUS_REG);
4193 	rmac = bge_reg_get32(bgep, RECEIVE_MAC_STATUS_REG);
4194 	rxrs = bge_reg_get32(bgep, RX_RISC_STATE_REG);
4195 	if (DEVICE_5704_SERIES_CHIPSETS(bgep))
4196 		txrs = bge_reg_get32(bgep, TX_RISC_STATE_REG);
4197 
4198 	BGE_DEBUG(("factotum($%p) flow 0x%x rdma 0x%x wdma 0x%x",
4199 	    (void *)bgep, flow, rdma, wdma));
4200 	BGE_DEBUG(("factotum($%p) tmac 0x%x rmac 0x%x rxrs 0x%08x txrs 0x%08x",
4201 	    (void *)bgep, tmac, rmac, rxrs, txrs));
4202 
4203 	/*
4204 	 * For now, just clear all the errors ...
4205 	 */
4206 	if (DEVICE_5704_SERIES_CHIPSETS(bgep))
4207 		bge_reg_put32(bgep, TX_RISC_STATE_REG, ~0);
4208 	bge_reg_put32(bgep, RX_RISC_STATE_REG, ~0);
4209 	bge_reg_put32(bgep, RECEIVE_MAC_STATUS_REG, ~0);
4210 	bge_reg_put32(bgep, WRITE_DMA_STATUS_REG, ~0);
4211 	bge_reg_put32(bgep, READ_DMA_STATUS_REG, ~0);
4212 	bge_reg_put32(bgep, FLOW_ATTN_REG, ~0);
4213 }
4214 
4215 /*
4216  * Handler for hardware link state change.
4217  *
4218  * When this routine is called, the hardware link state has changed
4219  * and the new state is reflected in the param_* variables.  Here
4220  * we must update the softstate and reprogram the MAC to match.
4221  */
4222 static void bge_factotum_link_handler(bge_t *bgep);
4223 #pragma	no_inline(bge_factotum_link_handler)
4224 
4225 static void
4226 bge_factotum_link_handler(bge_t *bgep)
4227 {
4228 	ASSERT(mutex_owned(bgep->genlock));
4229 
4230 	/*
4231 	 * Update the s/w link_state
4232 	 */
4233 	if (bgep->param_link_up)
4234 		bgep->link_state = LINK_STATE_UP;
4235 	else
4236 		bgep->link_state = LINK_STATE_DOWN;
4237 
4238 	/*
4239 	 * Reprogram the MAC modes to match
4240 	 */
4241 	bge_sync_mac_modes(bgep);
4242 }
4243 
4244 static boolean_t bge_factotum_link_check(bge_t *bgep, int *dma_state);
4245 #pragma	no_inline(bge_factotum_link_check)
4246 
4247 static boolean_t
4248 bge_factotum_link_check(bge_t *bgep, int *dma_state)
4249 {
4250 	boolean_t check;
4251 	uint64_t flags;
4252 	uint32_t tmac_status;
4253 
4254 	ASSERT(mutex_owned(bgep->genlock));
4255 
4256 	/*
4257 	 * Get & clear the writable status bits in the Tx status register
4258 	 * (some bits are write-1-to-clear, others are just readonly).
4259 	 */
4260 	tmac_status = bge_reg_get32(bgep, TRANSMIT_MAC_STATUS_REG);
4261 	bge_reg_put32(bgep, TRANSMIT_MAC_STATUS_REG, tmac_status);
4262 
4263 	/*
4264 	 * Get & clear the ERROR and LINK_CHANGED bits from the status block
4265 	 */
4266 	*dma_state = bge_status_sync(bgep, STATUS_FLAG_ERROR |
4267 	    STATUS_FLAG_LINK_CHANGED, &flags);
4268 	if (*dma_state != DDI_FM_OK)
4269 		return (B_FALSE);
4270 
4271 	/*
4272 	 * Clear any errors flagged in the status block ...
4273 	 */
4274 	if (flags & STATUS_FLAG_ERROR)
4275 		bge_factotum_error_handler(bgep);
4276 
4277 	/*
4278 	 * We need to check the link status if:
4279 	 *	the status block says there's been a link change
4280 	 *	or there's any discrepancy between the various
4281 	 *	flags indicating the link state (link_state,
4282 	 *	param_link_up, and the LINK STATE bit in the
4283 	 *	Transmit MAC status register).
4284 	 */
4285 	check = (flags & STATUS_FLAG_LINK_CHANGED) != 0;
4286 	switch (bgep->link_state) {
4287 	case LINK_STATE_UP:
4288 		check |= (bgep->param_link_up == B_FALSE);
4289 		check |= ((tmac_status & TRANSMIT_STATUS_LINK_UP) == 0);
4290 		break;
4291 
4292 	case LINK_STATE_DOWN:
4293 		check |= (bgep->param_link_up != B_FALSE);
4294 		check |= ((tmac_status & TRANSMIT_STATUS_LINK_UP) != 0);
4295 		break;
4296 
4297 	default:
4298 		check = B_TRUE;
4299 		break;
4300 	}
4301 
4302 	/*
4303 	 * If <check> is false, we're sure the link hasn't changed.
4304 	 * If true, however, it's not yet definitive; we have to call
4305 	 * bge_phys_check() to determine whether the link has settled
4306 	 * into a new state yet ... and if it has, then call the link
4307 	 * state change handler.But when the chip is 5700 in Dell 6650
4308 	 * ,even if check is false, the link may have changed.So we
4309 	 * have to call bge_phys_check() to determine the link state.
4310 	 */
4311 	if (check || bgep->chipid.device == DEVICE_ID_5700) {
4312 		check = bge_phys_check(bgep);
4313 		if (check)
4314 			bge_factotum_link_handler(bgep);
4315 	}
4316 
4317 	return (check);
4318 }
4319 
4320 /*
4321  * Factotum routine to check for Tx stall, using the 'watchdog' counter
4322  */
4323 static boolean_t bge_factotum_stall_check(bge_t *bgep);
4324 #pragma	no_inline(bge_factotum_stall_check)
4325 
4326 static boolean_t
4327 bge_factotum_stall_check(bge_t *bgep)
4328 {
4329 	uint32_t dogval;
4330 
4331 	ASSERT(mutex_owned(bgep->genlock));
4332 
4333 	/*
4334 	 * Specific check for Tx stall ...
4335 	 *
4336 	 * The 'watchdog' counter is incremented whenever a packet
4337 	 * is queued, reset to 1 when some (but not all) buffers
4338 	 * are reclaimed, reset to 0 (disabled) when all buffers
4339 	 * are reclaimed, and shifted left here.  If it exceeds the
4340 	 * threshold value, the chip is assumed to have stalled and
4341 	 * is put into the ERROR state.  The factotum will then reset
4342 	 * it on the next pass.
4343 	 *
4344 	 * All of which should ensure that we don't get into a state
4345 	 * where packets are left pending indefinitely!
4346 	 */
4347 	dogval = bge_atomic_shl32(&bgep->watchdog, 1);
4348 	if (dogval < bge_watchdog_count)
4349 		return (B_FALSE);
4350 
4351 #if !defined(BGE_NETCONSOLE)
4352 	BGE_REPORT((bgep, "Tx stall detected, watchdog code 0x%x", dogval));
4353 #endif
4354 	bge_fm_ereport(bgep, DDI_FM_DEVICE_STALL);
4355 	return (B_TRUE);
4356 }
4357 
4358 /*
4359  * The factotum is woken up when there's something to do that we'd rather
4360  * not do from inside a hardware interrupt handler or high-level cyclic.
4361  * Its two main tasks are:
4362  *	reset & restart the chip after an error
4363  *	check the link status whenever necessary
4364  */
4365 uint_t bge_chip_factotum(caddr_t arg);
4366 #pragma	no_inline(bge_chip_factotum)
4367 
4368 uint_t
4369 bge_chip_factotum(caddr_t arg)
4370 {
4371 	bge_t *bgep;
4372 	uint_t result;
4373 	boolean_t error;
4374 	boolean_t linkchg;
4375 	int dma_state;
4376 
4377 	bgep = (bge_t *)arg;
4378 
4379 	BGE_TRACE(("bge_chip_factotum($%p)", (void *)bgep));
4380 
4381 	mutex_enter(bgep->softintrlock);
4382 	if (bgep->factotum_flag == 0) {
4383 		mutex_exit(bgep->softintrlock);
4384 		return (DDI_INTR_UNCLAIMED);
4385 	}
4386 	bgep->factotum_flag = 0;
4387 	mutex_exit(bgep->softintrlock);
4388 
4389 	result = DDI_INTR_CLAIMED;
4390 	error = B_FALSE;
4391 	linkchg = B_FALSE;
4392 
4393 	mutex_enter(bgep->genlock);
4394 	switch (bgep->bge_chip_state) {
4395 	default:
4396 		break;
4397 
4398 	case BGE_CHIP_RUNNING:
4399 		linkchg = bge_factotum_link_check(bgep, &dma_state);
4400 		error = bge_factotum_stall_check(bgep);
4401 		if (dma_state != DDI_FM_OK) {
4402 			bgep->bge_dma_error = B_TRUE;
4403 			error = B_TRUE;
4404 		}
4405 		if (bge_check_acc_handle(bgep, bgep->io_handle) != DDI_FM_OK)
4406 			error = B_TRUE;
4407 		if (error)
4408 			bgep->bge_chip_state = BGE_CHIP_ERROR;
4409 		break;
4410 
4411 	case BGE_CHIP_ERROR:
4412 		error = B_TRUE;
4413 		break;
4414 
4415 	case BGE_CHIP_FAULT:
4416 		/*
4417 		 * Fault detected, time to reset ...
4418 		 */
4419 		if (bge_autorecover) {
4420 			if (!(bgep->progress & PROGRESS_BUFS)) {
4421 				/*
4422 				 * if we can't allocate the ring buffers,
4423 				 * try later
4424 				 */
4425 				if (bge_alloc_bufs(bgep) != DDI_SUCCESS) {
4426 					mutex_exit(bgep->genlock);
4427 					return (result);
4428 				}
4429 				bgep->progress |= PROGRESS_BUFS;
4430 			}
4431 			if (!(bgep->progress & PROGRESS_INTR)) {
4432 				bge_init_rings(bgep);
4433 				bge_intr_enable(bgep);
4434 				bgep->progress |= PROGRESS_INTR;
4435 			}
4436 			if (!(bgep->progress & PROGRESS_KSTATS)) {
4437 				bge_init_kstats(bgep,
4438 				    ddi_get_instance(bgep->devinfo));
4439 				bgep->progress |= PROGRESS_KSTATS;
4440 			}
4441 
4442 			BGE_REPORT((bgep, "automatic recovery activated"));
4443 
4444 			if (bge_restart(bgep, B_FALSE) != DDI_SUCCESS) {
4445 				bgep->bge_chip_state = BGE_CHIP_ERROR;
4446 				error = B_TRUE;
4447 			}
4448 			if (bge_check_acc_handle(bgep, bgep->cfg_handle) !=
4449 			    DDI_FM_OK) {
4450 				bgep->bge_chip_state = BGE_CHIP_ERROR;
4451 				error = B_TRUE;
4452 			}
4453 			if (bge_check_acc_handle(bgep, bgep->io_handle) !=
4454 			    DDI_FM_OK) {
4455 				bgep->bge_chip_state = BGE_CHIP_ERROR;
4456 				error = B_TRUE;
4457 			}
4458 			if (error == B_FALSE) {
4459 #ifdef BGE_IPMI_ASF
4460 				if (bgep->asf_enabled &&
4461 				    bgep->asf_status != ASF_STAT_RUN) {
4462 					bgep->asf_timeout_id = timeout(
4463 					    bge_asf_heartbeat, (void *)bgep,
4464 					    drv_usectohz(
4465 					    BGE_ASF_HEARTBEAT_INTERVAL));
4466 					bgep->asf_status = ASF_STAT_RUN;
4467 				}
4468 #endif
4469 				if (!bgep->manual_reset) {
4470 					ddi_fm_service_impact(bgep->devinfo,
4471 					    DDI_SERVICE_RESTORED);
4472 				}
4473 			}
4474 		}
4475 		break;
4476 	}
4477 
4478 
4479 	/*
4480 	 * If an error is detected, stop the chip now, marking it as
4481 	 * faulty, so that it will be reset next time through ...
4482 	 *
4483 	 * Note that if intr_running is set, then bge_intr() has dropped
4484 	 * genlock to call bge_receive/bge_recycle. Can't stop the chip at
4485 	 * this point so have to wait until the next time the factotum runs.
4486 	 */
4487 	if (error && !bgep->bge_intr_running) {
4488 #ifdef BGE_IPMI_ASF
4489 		if (bgep->asf_enabled && (bgep->asf_status == ASF_STAT_RUN)) {
4490 			/*
4491 			 * We must stop ASF heart beat before bge_chip_stop(),
4492 			 * otherwise some computers (ex. IBM HS20 blade server)
4493 			 * may crash.
4494 			 */
4495 			bge_asf_update_status(bgep);
4496 			bge_asf_stop_timer(bgep);
4497 			bgep->asf_status = ASF_STAT_STOP;
4498 
4499 			bge_asf_pre_reset_operations(bgep, BGE_INIT_RESET);
4500 			(void) bge_check_acc_handle(bgep, bgep->cfg_handle);
4501 		}
4502 #endif
4503 		bge_chip_stop(bgep, B_TRUE);
4504 		(void) bge_check_acc_handle(bgep, bgep->io_handle);
4505 	}
4506 	mutex_exit(bgep->genlock);
4507 
4508 	/*
4509 	 * If the link state changed, tell the world about it.
4510 	 * Note: can't do this while still holding the mutex.
4511 	 */
4512 	if (linkchg)
4513 		mac_link_update(bgep->mh, bgep->link_state);
4514 	if (bgep->manual_reset) {
4515 		bgep->manual_reset = B_FALSE;
4516 	}
4517 
4518 	return (result);
4519 }
4520 
4521 /*
4522  * High-level cyclic handler
4523  *
4524  * This routine schedules a (low-level) softint callback to the
4525  * factotum, and prods the chip to update the status block (which
4526  * will cause a hardware interrupt when complete).
4527  */
4528 void bge_chip_cyclic(void *arg);
4529 #pragma	no_inline(bge_chip_cyclic)
4530 
4531 void
4532 bge_chip_cyclic(void *arg)
4533 {
4534 	bge_t *bgep;
4535 
4536 	bgep = arg;
4537 
4538 	switch (bgep->bge_chip_state) {
4539 	default:
4540 		return;
4541 
4542 	case BGE_CHIP_RUNNING:
4543 		bge_reg_set32(bgep, HOST_COALESCE_MODE_REG, COALESCE_NOW);
4544 		if (bge_check_acc_handle(bgep, bgep->io_handle) != DDI_FM_OK)
4545 			ddi_fm_service_impact(bgep->devinfo,
4546 			    DDI_SERVICE_UNAFFECTED);
4547 		break;
4548 
4549 	case BGE_CHIP_FAULT:
4550 	case BGE_CHIP_ERROR:
4551 		break;
4552 	}
4553 
4554 	bge_wake_factotum(bgep);
4555 }
4556 
4557 
4558 /*
4559  * ========== Ioctl subfunctions ==========
4560  */
4561 
4562 #undef	BGE_DBG
4563 #define	BGE_DBG		BGE_DBG_PPIO	/* debug flag for this code	*/
4564 
4565 #if	BGE_DEBUGGING || BGE_DO_PPIO
4566 
4567 static void bge_chip_peek_cfg(bge_t *bgep, bge_peekpoke_t *ppd);
4568 #pragma	no_inline(bge_chip_peek_cfg)
4569 
4570 static void
4571 bge_chip_peek_cfg(bge_t *bgep, bge_peekpoke_t *ppd)
4572 {
4573 	uint64_t regval;
4574 	uint64_t regno;
4575 
4576 	BGE_TRACE(("bge_chip_peek_cfg($%p, $%p)",
4577 	    (void *)bgep, (void *)ppd));
4578 
4579 	regno = ppd->pp_acc_offset;
4580 
4581 	switch (ppd->pp_acc_size) {
4582 	case 1:
4583 		regval = pci_config_get8(bgep->cfg_handle, regno);
4584 		break;
4585 
4586 	case 2:
4587 		regval = pci_config_get16(bgep->cfg_handle, regno);
4588 		break;
4589 
4590 	case 4:
4591 		regval = pci_config_get32(bgep->cfg_handle, regno);
4592 		break;
4593 
4594 	case 8:
4595 		regval = pci_config_get64(bgep->cfg_handle, regno);
4596 		break;
4597 	}
4598 
4599 	ppd->pp_acc_data = regval;
4600 }
4601 
4602 static void bge_chip_poke_cfg(bge_t *bgep, bge_peekpoke_t *ppd);
4603 #pragma	no_inline(bge_chip_poke_cfg)
4604 
4605 static void
4606 bge_chip_poke_cfg(bge_t *bgep, bge_peekpoke_t *ppd)
4607 {
4608 	uint64_t regval;
4609 	uint64_t regno;
4610 
4611 	BGE_TRACE(("bge_chip_poke_cfg($%p, $%p)",
4612 	    (void *)bgep, (void *)ppd));
4613 
4614 	regno = ppd->pp_acc_offset;
4615 	regval = ppd->pp_acc_data;
4616 
4617 	switch (ppd->pp_acc_size) {
4618 	case 1:
4619 		pci_config_put8(bgep->cfg_handle, regno, regval);
4620 		break;
4621 
4622 	case 2:
4623 		pci_config_put16(bgep->cfg_handle, regno, regval);
4624 		break;
4625 
4626 	case 4:
4627 		pci_config_put32(bgep->cfg_handle, regno, regval);
4628 		break;
4629 
4630 	case 8:
4631 		pci_config_put64(bgep->cfg_handle, regno, regval);
4632 		break;
4633 	}
4634 }
4635 
4636 static void bge_chip_peek_reg(bge_t *bgep, bge_peekpoke_t *ppd);
4637 #pragma	no_inline(bge_chip_peek_reg)
4638 
4639 static void
4640 bge_chip_peek_reg(bge_t *bgep, bge_peekpoke_t *ppd)
4641 {
4642 	uint64_t regval;
4643 	void *regaddr;
4644 
4645 	BGE_TRACE(("bge_chip_peek_reg($%p, $%p)",
4646 	    (void *)bgep, (void *)ppd));
4647 
4648 	regaddr = PIO_ADDR(bgep, ppd->pp_acc_offset);
4649 
4650 	switch (ppd->pp_acc_size) {
4651 	case 1:
4652 		regval = ddi_get8(bgep->io_handle, regaddr);
4653 		break;
4654 
4655 	case 2:
4656 		regval = ddi_get16(bgep->io_handle, regaddr);
4657 		break;
4658 
4659 	case 4:
4660 		regval = ddi_get32(bgep->io_handle, regaddr);
4661 		break;
4662 
4663 	case 8:
4664 		regval = ddi_get64(bgep->io_handle, regaddr);
4665 		break;
4666 	}
4667 
4668 	ppd->pp_acc_data = regval;
4669 }
4670 
4671 static void bge_chip_poke_reg(bge_t *bgep, bge_peekpoke_t *ppd);
4672 #pragma	no_inline(bge_chip_peek_reg)
4673 
4674 static void
4675 bge_chip_poke_reg(bge_t *bgep, bge_peekpoke_t *ppd)
4676 {
4677 	uint64_t regval;
4678 	void *regaddr;
4679 
4680 	BGE_TRACE(("bge_chip_poke_reg($%p, $%p)",
4681 	    (void *)bgep, (void *)ppd));
4682 
4683 	regaddr = PIO_ADDR(bgep, ppd->pp_acc_offset);
4684 	regval = ppd->pp_acc_data;
4685 
4686 	switch (ppd->pp_acc_size) {
4687 	case 1:
4688 		ddi_put8(bgep->io_handle, regaddr, regval);
4689 		break;
4690 
4691 	case 2:
4692 		ddi_put16(bgep->io_handle, regaddr, regval);
4693 		break;
4694 
4695 	case 4:
4696 		ddi_put32(bgep->io_handle, regaddr, regval);
4697 		break;
4698 
4699 	case 8:
4700 		ddi_put64(bgep->io_handle, regaddr, regval);
4701 		break;
4702 	}
4703 	BGE_PCICHK(bgep);
4704 }
4705 
4706 static void bge_chip_peek_nic(bge_t *bgep, bge_peekpoke_t *ppd);
4707 #pragma	no_inline(bge_chip_peek_nic)
4708 
4709 static void
4710 bge_chip_peek_nic(bge_t *bgep, bge_peekpoke_t *ppd)
4711 {
4712 	uint64_t regoff;
4713 	uint64_t regval;
4714 	void *regaddr;
4715 
4716 	BGE_TRACE(("bge_chip_peek_nic($%p, $%p)",
4717 	    (void *)bgep, (void *)ppd));
4718 
4719 	regoff = ppd->pp_acc_offset;
4720 	bge_nic_setwin(bgep, regoff & ~MWBAR_GRANULE_MASK);
4721 	regoff &= MWBAR_GRANULE_MASK;
4722 	regoff += NIC_MEM_WINDOW_OFFSET;
4723 	regaddr = PIO_ADDR(bgep, regoff);
4724 
4725 	switch (ppd->pp_acc_size) {
4726 	case 1:
4727 		regval = ddi_get8(bgep->io_handle, regaddr);
4728 		break;
4729 
4730 	case 2:
4731 		regval = ddi_get16(bgep->io_handle, regaddr);
4732 		break;
4733 
4734 	case 4:
4735 		regval = ddi_get32(bgep->io_handle, regaddr);
4736 		break;
4737 
4738 	case 8:
4739 		regval = ddi_get64(bgep->io_handle, regaddr);
4740 		break;
4741 	}
4742 
4743 	ppd->pp_acc_data = regval;
4744 }
4745 
4746 static void bge_chip_poke_nic(bge_t *bgep, bge_peekpoke_t *ppd);
4747 #pragma	no_inline(bge_chip_poke_nic)
4748 
4749 static void
4750 bge_chip_poke_nic(bge_t *bgep, bge_peekpoke_t *ppd)
4751 {
4752 	uint64_t regoff;
4753 	uint64_t regval;
4754 	void *regaddr;
4755 
4756 	BGE_TRACE(("bge_chip_poke_nic($%p, $%p)",
4757 	    (void *)bgep, (void *)ppd));
4758 
4759 	regoff = ppd->pp_acc_offset;
4760 	bge_nic_setwin(bgep, regoff & ~MWBAR_GRANULE_MASK);
4761 	regoff &= MWBAR_GRANULE_MASK;
4762 	regoff += NIC_MEM_WINDOW_OFFSET;
4763 	regaddr = PIO_ADDR(bgep, regoff);
4764 	regval = ppd->pp_acc_data;
4765 
4766 	switch (ppd->pp_acc_size) {
4767 	case 1:
4768 		ddi_put8(bgep->io_handle, regaddr, regval);
4769 		break;
4770 
4771 	case 2:
4772 		ddi_put16(bgep->io_handle, regaddr, regval);
4773 		break;
4774 
4775 	case 4:
4776 		ddi_put32(bgep->io_handle, regaddr, regval);
4777 		break;
4778 
4779 	case 8:
4780 		ddi_put64(bgep->io_handle, regaddr, regval);
4781 		break;
4782 	}
4783 	BGE_PCICHK(bgep);
4784 }
4785 
4786 static void bge_chip_peek_mii(bge_t *bgep, bge_peekpoke_t *ppd);
4787 #pragma	no_inline(bge_chip_peek_mii)
4788 
4789 static void
4790 bge_chip_peek_mii(bge_t *bgep, bge_peekpoke_t *ppd)
4791 {
4792 	BGE_TRACE(("bge_chip_peek_mii($%p, $%p)",
4793 	    (void *)bgep, (void *)ppd));
4794 
4795 	ppd->pp_acc_data = bge_mii_get16(bgep, ppd->pp_acc_offset/2);
4796 }
4797 
4798 static void bge_chip_poke_mii(bge_t *bgep, bge_peekpoke_t *ppd);
4799 #pragma	no_inline(bge_chip_poke_mii)
4800 
4801 static void
4802 bge_chip_poke_mii(bge_t *bgep, bge_peekpoke_t *ppd)
4803 {
4804 	BGE_TRACE(("bge_chip_poke_mii($%p, $%p)",
4805 	    (void *)bgep, (void *)ppd));
4806 
4807 	bge_mii_put16(bgep, ppd->pp_acc_offset/2, ppd->pp_acc_data);
4808 }
4809 
4810 #if	BGE_SEE_IO32
4811 
4812 static void bge_chip_peek_seeprom(bge_t *bgep, bge_peekpoke_t *ppd);
4813 #pragma	no_inline(bge_chip_peek_seeprom)
4814 
4815 static void
4816 bge_chip_peek_seeprom(bge_t *bgep, bge_peekpoke_t *ppd)
4817 {
4818 	uint32_t data;
4819 	int err;
4820 
4821 	BGE_TRACE(("bge_chip_peek_seeprom($%p, $%p)",
4822 	    (void *)bgep, (void *)ppd));
4823 
4824 	err = bge_nvmem_rw32(bgep, BGE_SEE_READ, ppd->pp_acc_offset, &data);
4825 	ppd->pp_acc_data = err ? ~0ull : data;
4826 }
4827 
4828 static void bge_chip_poke_seeprom(bge_t *bgep, bge_peekpoke_t *ppd);
4829 #pragma	no_inline(bge_chip_poke_seeprom)
4830 
4831 static void
4832 bge_chip_poke_seeprom(bge_t *bgep, bge_peekpoke_t *ppd)
4833 {
4834 	uint32_t data;
4835 
4836 	BGE_TRACE(("bge_chip_poke_seeprom($%p, $%p)",
4837 	    (void *)bgep, (void *)ppd));
4838 
4839 	data = ppd->pp_acc_data;
4840 	(void) bge_nvmem_rw32(bgep, BGE_SEE_WRITE, ppd->pp_acc_offset, &data);
4841 }
4842 #endif	/* BGE_SEE_IO32 */
4843 
4844 #if	BGE_FLASH_IO32
4845 
4846 static void bge_chip_peek_flash(bge_t *bgep, bge_peekpoke_t *ppd);
4847 #pragma	no_inline(bge_chip_peek_flash)
4848 
4849 static void
4850 bge_chip_peek_flash(bge_t *bgep, bge_peekpoke_t *ppd)
4851 {
4852 	uint32_t data;
4853 	int err;
4854 
4855 	BGE_TRACE(("bge_chip_peek_flash($%p, $%p)",
4856 	    (void *)bgep, (void *)ppd));
4857 
4858 	err = bge_nvmem_rw32(bgep, BGE_FLASH_READ, ppd->pp_acc_offset, &data);
4859 	ppd->pp_acc_data = err ? ~0ull : data;
4860 }
4861 
4862 static void bge_chip_poke_flash(bge_t *bgep, bge_peekpoke_t *ppd);
4863 #pragma	no_inline(bge_chip_poke_flash)
4864 
4865 static void
4866 bge_chip_poke_flash(bge_t *bgep, bge_peekpoke_t *ppd)
4867 {
4868 	uint32_t data;
4869 
4870 	BGE_TRACE(("bge_chip_poke_flash($%p, $%p)",
4871 	    (void *)bgep, (void *)ppd));
4872 
4873 	data = ppd->pp_acc_data;
4874 	(void) bge_nvmem_rw32(bgep, BGE_FLASH_WRITE,
4875 	    ppd->pp_acc_offset, &data);
4876 }
4877 #endif	/* BGE_FLASH_IO32 */
4878 
4879 static void bge_chip_peek_mem(bge_t *bgep, bge_peekpoke_t *ppd);
4880 #pragma	no_inline(bge_chip_peek_mem)
4881 
4882 static void
4883 bge_chip_peek_mem(bge_t *bgep, bge_peekpoke_t *ppd)
4884 {
4885 	uint64_t regval;
4886 	void *vaddr;
4887 
4888 	BGE_TRACE(("bge_chip_peek_bge($%p, $%p)",
4889 	    (void *)bgep, (void *)ppd));
4890 
4891 	vaddr = (void *)(uintptr_t)ppd->pp_acc_offset;
4892 
4893 	switch (ppd->pp_acc_size) {
4894 	case 1:
4895 		regval = *(uint8_t *)vaddr;
4896 		break;
4897 
4898 	case 2:
4899 		regval = *(uint16_t *)vaddr;
4900 		break;
4901 
4902 	case 4:
4903 		regval = *(uint32_t *)vaddr;
4904 		break;
4905 
4906 	case 8:
4907 		regval = *(uint64_t *)vaddr;
4908 		break;
4909 	}
4910 
4911 	BGE_DEBUG(("bge_chip_peek_mem($%p, $%p) peeked 0x%llx from $%p",
4912 	    (void *)bgep, (void *)ppd, regval, vaddr));
4913 
4914 	ppd->pp_acc_data = regval;
4915 }
4916 
4917 static void bge_chip_poke_mem(bge_t *bgep, bge_peekpoke_t *ppd);
4918 #pragma	no_inline(bge_chip_poke_mem)
4919 
4920 static void
4921 bge_chip_poke_mem(bge_t *bgep, bge_peekpoke_t *ppd)
4922 {
4923 	uint64_t regval;
4924 	void *vaddr;
4925 
4926 	BGE_TRACE(("bge_chip_poke_mem($%p, $%p)",
4927 	    (void *)bgep, (void *)ppd));
4928 
4929 	vaddr = (void *)(uintptr_t)ppd->pp_acc_offset;
4930 	regval = ppd->pp_acc_data;
4931 
4932 	BGE_DEBUG(("bge_chip_poke_mem($%p, $%p) poking 0x%llx at $%p",
4933 	    (void *)bgep, (void *)ppd, regval, vaddr));
4934 
4935 	switch (ppd->pp_acc_size) {
4936 	case 1:
4937 		*(uint8_t *)vaddr = (uint8_t)regval;
4938 		break;
4939 
4940 	case 2:
4941 		*(uint16_t *)vaddr = (uint16_t)regval;
4942 		break;
4943 
4944 	case 4:
4945 		*(uint32_t *)vaddr = (uint32_t)regval;
4946 		break;
4947 
4948 	case 8:
4949 		*(uint64_t *)vaddr = (uint64_t)regval;
4950 		break;
4951 	}
4952 }
4953 
4954 static enum ioc_reply bge_pp_ioctl(bge_t *bgep, int cmd, mblk_t *mp,
4955 					struct iocblk *iocp);
4956 #pragma	no_inline(bge_pp_ioctl)
4957 
4958 static enum ioc_reply
4959 bge_pp_ioctl(bge_t *bgep, int cmd, mblk_t *mp, struct iocblk *iocp)
4960 {
4961 	void (*ppfn)(bge_t *bgep, bge_peekpoke_t *ppd);
4962 	bge_peekpoke_t *ppd;
4963 	dma_area_t *areap;
4964 	uint64_t sizemask;
4965 	uint64_t mem_va;
4966 	uint64_t maxoff;
4967 	boolean_t peek;
4968 
4969 	switch (cmd) {
4970 	default:
4971 		/* NOTREACHED */
4972 		bge_error(bgep, "bge_pp_ioctl: invalid cmd 0x%x", cmd);
4973 		return (IOC_INVAL);
4974 
4975 	case BGE_PEEK:
4976 		peek = B_TRUE;
4977 		break;
4978 
4979 	case BGE_POKE:
4980 		peek = B_FALSE;
4981 		break;
4982 	}
4983 
4984 	/*
4985 	 * Validate format of ioctl
4986 	 */
4987 	if (iocp->ioc_count != sizeof (bge_peekpoke_t))
4988 		return (IOC_INVAL);
4989 	if (mp->b_cont == NULL)
4990 		return (IOC_INVAL);
4991 	ppd = (bge_peekpoke_t *)mp->b_cont->b_rptr;
4992 
4993 	/*
4994 	 * Validate request parameters
4995 	 */
4996 	switch (ppd->pp_acc_space) {
4997 	default:
4998 		return (IOC_INVAL);
4999 
5000 	case BGE_PP_SPACE_CFG:
5001 		/*
5002 		 * Config space
5003 		 */
5004 		sizemask = 8|4|2|1;
5005 		mem_va = 0;
5006 		maxoff = PCI_CONF_HDR_SIZE;
5007 		ppfn = peek ? bge_chip_peek_cfg : bge_chip_poke_cfg;
5008 		break;
5009 
5010 	case BGE_PP_SPACE_REG:
5011 		/*
5012 		 * Memory-mapped I/O space
5013 		 */
5014 		sizemask = 8|4|2|1;
5015 		mem_va = 0;
5016 		maxoff = RIAAR_REGISTER_MAX;
5017 		ppfn = peek ? bge_chip_peek_reg : bge_chip_poke_reg;
5018 		break;
5019 
5020 	case BGE_PP_SPACE_NIC:
5021 		/*
5022 		 * NIC on-chip memory
5023 		 */
5024 		sizemask = 8|4|2|1;
5025 		mem_va = 0;
5026 		maxoff = MWBAR_ONCHIP_MAX;
5027 		ppfn = peek ? bge_chip_peek_nic : bge_chip_poke_nic;
5028 		break;
5029 
5030 	case BGE_PP_SPACE_MII:
5031 		/*
5032 		 * PHY's MII registers
5033 		 * NB: all PHY registers are two bytes, but the
5034 		 * addresses increment in ones (word addressing).
5035 		 * So we scale the address here, then undo the
5036 		 * transformation inside the peek/poke functions.
5037 		 */
5038 		ppd->pp_acc_offset *= 2;
5039 		sizemask = 2;
5040 		mem_va = 0;
5041 		maxoff = (MII_MAXREG+1)*2;
5042 		ppfn = peek ? bge_chip_peek_mii : bge_chip_poke_mii;
5043 		break;
5044 
5045 #if	BGE_SEE_IO32
5046 	case BGE_PP_SPACE_SEEPROM:
5047 		/*
5048 		 * Attached SEEPROM(s), if any.
5049 		 * NB: we use the high-order bits of the 'address' as
5050 		 * a device select to accommodate multiple SEEPROMS,
5051 		 * If each one is the maximum size (64kbytes), this
5052 		 * makes them appear contiguous.  Otherwise, there may
5053 		 * be holes in the mapping.  ENxS doesn't have any
5054 		 * SEEPROMs anyway ...
5055 		 */
5056 		sizemask = 4;
5057 		mem_va = 0;
5058 		maxoff = SEEPROM_DEV_AND_ADDR_MASK;
5059 		ppfn = peek ? bge_chip_peek_seeprom : bge_chip_poke_seeprom;
5060 		break;
5061 #endif	/* BGE_SEE_IO32 */
5062 
5063 #if	BGE_FLASH_IO32
5064 	case BGE_PP_SPACE_FLASH:
5065 		/*
5066 		 * Attached Flash device (if any); a maximum of one device
5067 		 * is currently supported.  But it can be up to 1MB (unlike
5068 		 * the 64k limit on SEEPROMs) so why would you need more ;-)
5069 		 */
5070 		sizemask = 4;
5071 		mem_va = 0;
5072 		maxoff = NVM_FLASH_ADDR_MASK;
5073 		ppfn = peek ? bge_chip_peek_flash : bge_chip_poke_flash;
5074 		break;
5075 #endif	/* BGE_FLASH_IO32 */
5076 
5077 	case BGE_PP_SPACE_BGE:
5078 		/*
5079 		 * BGE data structure!
5080 		 */
5081 		sizemask = 8|4|2|1;
5082 		mem_va = (uintptr_t)bgep;
5083 		maxoff = sizeof (*bgep);
5084 		ppfn = peek ? bge_chip_peek_mem : bge_chip_poke_mem;
5085 		break;
5086 
5087 	case BGE_PP_SPACE_STATUS:
5088 	case BGE_PP_SPACE_STATISTICS:
5089 	case BGE_PP_SPACE_TXDESC:
5090 	case BGE_PP_SPACE_TXBUFF:
5091 	case BGE_PP_SPACE_RXDESC:
5092 	case BGE_PP_SPACE_RXBUFF:
5093 		/*
5094 		 * Various DMA_AREAs
5095 		 */
5096 		switch (ppd->pp_acc_space) {
5097 		case BGE_PP_SPACE_TXDESC:
5098 			areap = &bgep->tx_desc;
5099 			break;
5100 		case BGE_PP_SPACE_TXBUFF:
5101 			areap = &bgep->tx_buff[0];
5102 			break;
5103 		case BGE_PP_SPACE_RXDESC:
5104 			areap = &bgep->rx_desc[0];
5105 			break;
5106 		case BGE_PP_SPACE_RXBUFF:
5107 			areap = &bgep->rx_buff[0];
5108 			break;
5109 		case BGE_PP_SPACE_STATUS:
5110 			areap = &bgep->status_block;
5111 			break;
5112 		case BGE_PP_SPACE_STATISTICS:
5113 			if (bgep->chipid.statistic_type == BGE_STAT_BLK)
5114 				areap = &bgep->statistics;
5115 			break;
5116 		}
5117 
5118 		sizemask = 8|4|2|1;
5119 		mem_va = (uintptr_t)areap->mem_va;
5120 		maxoff = areap->alength;
5121 		ppfn = peek ? bge_chip_peek_mem : bge_chip_poke_mem;
5122 		break;
5123 	}
5124 
5125 	switch (ppd->pp_acc_size) {
5126 	default:
5127 		return (IOC_INVAL);
5128 
5129 	case 8:
5130 	case 4:
5131 	case 2:
5132 	case 1:
5133 		if ((ppd->pp_acc_size & sizemask) == 0)
5134 			return (IOC_INVAL);
5135 		break;
5136 	}
5137 
5138 	if ((ppd->pp_acc_offset % ppd->pp_acc_size) != 0)
5139 		return (IOC_INVAL);
5140 
5141 	if (ppd->pp_acc_offset >= maxoff)
5142 		return (IOC_INVAL);
5143 
5144 	if (ppd->pp_acc_offset+ppd->pp_acc_size > maxoff)
5145 		return (IOC_INVAL);
5146 
5147 	/*
5148 	 * All OK - go do it!
5149 	 */
5150 	ppd->pp_acc_offset += mem_va;
5151 	(*ppfn)(bgep, ppd);
5152 	return (peek ? IOC_REPLY : IOC_ACK);
5153 }
5154 
5155 static enum ioc_reply bge_diag_ioctl(bge_t *bgep, int cmd, mblk_t *mp,
5156 					struct iocblk *iocp);
5157 #pragma	no_inline(bge_diag_ioctl)
5158 
5159 static enum ioc_reply
5160 bge_diag_ioctl(bge_t *bgep, int cmd, mblk_t *mp, struct iocblk *iocp)
5161 {
5162 	ASSERT(mutex_owned(bgep->genlock));
5163 
5164 	switch (cmd) {
5165 	default:
5166 		/* NOTREACHED */
5167 		bge_error(bgep, "bge_diag_ioctl: invalid cmd 0x%x", cmd);
5168 		return (IOC_INVAL);
5169 
5170 	case BGE_DIAG:
5171 		/*
5172 		 * Currently a no-op
5173 		 */
5174 		return (IOC_ACK);
5175 
5176 	case BGE_PEEK:
5177 	case BGE_POKE:
5178 		return (bge_pp_ioctl(bgep, cmd, mp, iocp));
5179 
5180 	case BGE_PHY_RESET:
5181 		return (IOC_RESTART_ACK);
5182 
5183 	case BGE_SOFT_RESET:
5184 	case BGE_HARD_RESET:
5185 		/*
5186 		 * Reset and reinitialise the 570x hardware
5187 		 */
5188 		bgep->bge_chip_state = BGE_CHIP_FAULT;
5189 		ddi_trigger_softintr(bgep->factotum_id);
5190 		(void) bge_restart(bgep, cmd == BGE_HARD_RESET);
5191 		return (IOC_ACK);
5192 	}
5193 
5194 	/* NOTREACHED */
5195 }
5196 
5197 #endif	/* BGE_DEBUGGING || BGE_DO_PPIO */
5198 
5199 static enum ioc_reply bge_mii_ioctl(bge_t *bgep, int cmd, mblk_t *mp,
5200 				    struct iocblk *iocp);
5201 #pragma	no_inline(bge_mii_ioctl)
5202 
5203 static enum ioc_reply
5204 bge_mii_ioctl(bge_t *bgep, int cmd, mblk_t *mp, struct iocblk *iocp)
5205 {
5206 	struct bge_mii_rw *miirwp;
5207 
5208 	/*
5209 	 * Validate format of ioctl
5210 	 */
5211 	if (iocp->ioc_count != sizeof (struct bge_mii_rw))
5212 		return (IOC_INVAL);
5213 	if (mp->b_cont == NULL)
5214 		return (IOC_INVAL);
5215 	miirwp = (struct bge_mii_rw *)mp->b_cont->b_rptr;
5216 
5217 	/*
5218 	 * Validate request parameters ...
5219 	 */
5220 	if (miirwp->mii_reg > MII_MAXREG)
5221 		return (IOC_INVAL);
5222 
5223 	switch (cmd) {
5224 	default:
5225 		/* NOTREACHED */
5226 		bge_error(bgep, "bge_mii_ioctl: invalid cmd 0x%x", cmd);
5227 		return (IOC_INVAL);
5228 
5229 	case BGE_MII_READ:
5230 		miirwp->mii_data = bge_mii_get16(bgep, miirwp->mii_reg);
5231 		return (IOC_REPLY);
5232 
5233 	case BGE_MII_WRITE:
5234 		bge_mii_put16(bgep, miirwp->mii_reg, miirwp->mii_data);
5235 		return (IOC_ACK);
5236 	}
5237 
5238 	/* NOTREACHED */
5239 }
5240 
5241 #if	BGE_SEE_IO32
5242 
5243 static enum ioc_reply bge_see_ioctl(bge_t *bgep, int cmd, mblk_t *mp,
5244 				    struct iocblk *iocp);
5245 #pragma	no_inline(bge_see_ioctl)
5246 
5247 static enum ioc_reply
5248 bge_see_ioctl(bge_t *bgep, int cmd, mblk_t *mp, struct iocblk *iocp)
5249 {
5250 	struct bge_see_rw *seerwp;
5251 
5252 	/*
5253 	 * Validate format of ioctl
5254 	 */
5255 	if (iocp->ioc_count != sizeof (struct bge_see_rw))
5256 		return (IOC_INVAL);
5257 	if (mp->b_cont == NULL)
5258 		return (IOC_INVAL);
5259 	seerwp = (struct bge_see_rw *)mp->b_cont->b_rptr;
5260 
5261 	/*
5262 	 * Validate request parameters ...
5263 	 */
5264 	if (seerwp->see_addr & ~SEEPROM_DEV_AND_ADDR_MASK)
5265 		return (IOC_INVAL);
5266 
5267 	switch (cmd) {
5268 	default:
5269 		/* NOTREACHED */
5270 		bge_error(bgep, "bge_see_ioctl: invalid cmd 0x%x", cmd);
5271 		return (IOC_INVAL);
5272 
5273 	case BGE_SEE_READ:
5274 	case BGE_SEE_WRITE:
5275 		iocp->ioc_error = bge_nvmem_rw32(bgep, cmd,
5276 		    seerwp->see_addr, &seerwp->see_data);
5277 		return (IOC_REPLY);
5278 	}
5279 
5280 	/* NOTREACHED */
5281 }
5282 
5283 #endif	/* BGE_SEE_IO32 */
5284 
5285 #if	BGE_FLASH_IO32
5286 
5287 static enum ioc_reply bge_flash_ioctl(bge_t *bgep, int cmd, mblk_t *mp,
5288 				    struct iocblk *iocp);
5289 #pragma	no_inline(bge_flash_ioctl)
5290 
5291 static enum ioc_reply
5292 bge_flash_ioctl(bge_t *bgep, int cmd, mblk_t *mp, struct iocblk *iocp)
5293 {
5294 	struct bge_flash_rw *flashrwp;
5295 
5296 	/*
5297 	 * Validate format of ioctl
5298 	 */
5299 	if (iocp->ioc_count != sizeof (struct bge_flash_rw))
5300 		return (IOC_INVAL);
5301 	if (mp->b_cont == NULL)
5302 		return (IOC_INVAL);
5303 	flashrwp = (struct bge_flash_rw *)mp->b_cont->b_rptr;
5304 
5305 	/*
5306 	 * Validate request parameters ...
5307 	 */
5308 	if (flashrwp->flash_addr & ~NVM_FLASH_ADDR_MASK)
5309 		return (IOC_INVAL);
5310 
5311 	switch (cmd) {
5312 	default:
5313 		/* NOTREACHED */
5314 		bge_error(bgep, "bge_flash_ioctl: invalid cmd 0x%x", cmd);
5315 		return (IOC_INVAL);
5316 
5317 	case BGE_FLASH_READ:
5318 	case BGE_FLASH_WRITE:
5319 		iocp->ioc_error = bge_nvmem_rw32(bgep, cmd,
5320 		    flashrwp->flash_addr, &flashrwp->flash_data);
5321 		return (IOC_REPLY);
5322 	}
5323 
5324 	/* NOTREACHED */
5325 }
5326 
5327 #endif	/* BGE_FLASH_IO32 */
5328 
5329 enum ioc_reply bge_chip_ioctl(bge_t *bgep, queue_t *wq, mblk_t *mp,
5330 				struct iocblk *iocp);
5331 #pragma	no_inline(bge_chip_ioctl)
5332 
5333 enum ioc_reply
5334 bge_chip_ioctl(bge_t *bgep, queue_t *wq, mblk_t *mp, struct iocblk *iocp)
5335 {
5336 	int cmd;
5337 
5338 	BGE_TRACE(("bge_chip_ioctl($%p, $%p, $%p, $%p)",
5339 	    (void *)bgep, (void *)wq, (void *)mp, (void *)iocp));
5340 
5341 	ASSERT(mutex_owned(bgep->genlock));
5342 
5343 	cmd = iocp->ioc_cmd;
5344 	switch (cmd) {
5345 	default:
5346 		/* NOTREACHED */
5347 		bge_error(bgep, "bge_chip_ioctl: invalid cmd 0x%x", cmd);
5348 		return (IOC_INVAL);
5349 
5350 	case BGE_DIAG:
5351 	case BGE_PEEK:
5352 	case BGE_POKE:
5353 	case BGE_PHY_RESET:
5354 	case BGE_SOFT_RESET:
5355 	case BGE_HARD_RESET:
5356 #if	BGE_DEBUGGING || BGE_DO_PPIO
5357 		return (bge_diag_ioctl(bgep, cmd, mp, iocp));
5358 #else
5359 		return (IOC_INVAL);
5360 #endif	/* BGE_DEBUGGING || BGE_DO_PPIO */
5361 
5362 	case BGE_MII_READ:
5363 	case BGE_MII_WRITE:
5364 		return (bge_mii_ioctl(bgep, cmd, mp, iocp));
5365 
5366 #if	BGE_SEE_IO32
5367 	case BGE_SEE_READ:
5368 	case BGE_SEE_WRITE:
5369 		return (bge_see_ioctl(bgep, cmd, mp, iocp));
5370 #endif	/* BGE_SEE_IO32 */
5371 
5372 #if	BGE_FLASH_IO32
5373 	case BGE_FLASH_READ:
5374 	case BGE_FLASH_WRITE:
5375 		return (bge_flash_ioctl(bgep, cmd, mp, iocp));
5376 #endif	/* BGE_FLASH_IO32 */
5377 	}
5378 
5379 	/* NOTREACHED */
5380 }
5381 
5382 void
5383 bge_chip_blank(void *arg, time_t ticks, uint_t count)
5384 {
5385 	bge_t *bgep = arg;
5386 
5387 	mutex_enter(bgep->genlock);
5388 	bge_reg_put32(bgep, RCV_COALESCE_TICKS_REG, ticks);
5389 	bge_reg_put32(bgep, RCV_COALESCE_MAX_BD_REG, count);
5390 	if (bge_check_acc_handle(bgep, bgep->io_handle) != DDI_FM_OK)
5391 		ddi_fm_service_impact(bgep->devinfo, DDI_SERVICE_UNAFFECTED);
5392 	mutex_exit(bgep->genlock);
5393 }
5394 
5395 #ifdef BGE_IPMI_ASF
5396 
5397 uint32_t
5398 bge_nic_read32(bge_t *bgep, bge_regno_t addr)
5399 {
5400 	uint32_t data;
5401 
5402 #ifndef __sparc
5403 	if (!bgep->asf_wordswapped) {
5404 		/* a workaround word swap error */
5405 		if (addr & 4)
5406 			addr = addr - 4;
5407 		else
5408 			addr = addr + 4;
5409 	}
5410 #endif
5411 
5412 	pci_config_put32(bgep->cfg_handle, PCI_CONF_BGE_MWBAR, addr);
5413 	data = pci_config_get32(bgep->cfg_handle, PCI_CONF_BGE_MWDAR);
5414 	pci_config_put32(bgep->cfg_handle, PCI_CONF_BGE_MWBAR, 0);
5415 
5416 	data = LE_32(data);
5417 	return (data);
5418 }
5419 
5420 void
5421 bge_asf_update_status(bge_t *bgep)
5422 {
5423 	uint32_t event;
5424 
5425 	bge_nic_put32(bgep, BGE_CMD_MAILBOX, BGE_CMD_NICDRV_ALIVE);
5426 	bge_nic_put32(bgep, BGE_CMD_LENGTH_MAILBOX, 4);
5427 	bge_nic_put32(bgep, BGE_CMD_DATA_MAILBOX,   3);
5428 
5429 	event = bge_reg_get32(bgep, RX_RISC_EVENT_REG);
5430 	bge_reg_put32(bgep, RX_RISC_EVENT_REG, event | RRER_ASF_EVENT);
5431 }
5432 
5433 
5434 /*
5435  * The driver is supposed to notify ASF that the OS is still running
5436  * every three seconds, otherwise the management server may attempt
5437  * to reboot the machine.  If it hasn't actually failed, this is
5438  * not a desirable result.  However, this isn't running as a real-time
5439  * thread, and even if it were, it might not be able to generate the
5440  * heartbeat in a timely manner due to system load.  As it isn't a
5441  * significant strain on the machine, we will set the interval to half
5442  * of the required value.
5443  */
5444 void
5445 bge_asf_heartbeat(void *arg)
5446 {
5447 	bge_t *bgep = (bge_t *)arg;
5448 
5449 	mutex_enter(bgep->genlock);
5450 	bge_asf_update_status((bge_t *)bgep);
5451 	if (bge_check_acc_handle(bgep, bgep->io_handle) != DDI_FM_OK)
5452 		ddi_fm_service_impact(bgep->devinfo, DDI_SERVICE_DEGRADED);
5453 	if (bge_check_acc_handle(bgep, bgep->cfg_handle) != DDI_FM_OK)
5454 		ddi_fm_service_impact(bgep->devinfo, DDI_SERVICE_DEGRADED);
5455 	mutex_exit(bgep->genlock);
5456 	((bge_t *)bgep)->asf_timeout_id = timeout(bge_asf_heartbeat, bgep,
5457 	    drv_usectohz(BGE_ASF_HEARTBEAT_INTERVAL));
5458 }
5459 
5460 
5461 void
5462 bge_asf_stop_timer(bge_t *bgep)
5463 {
5464 	timeout_id_t tmp_id = 0;
5465 
5466 	while ((bgep->asf_timeout_id != 0) &&
5467 	    (tmp_id != bgep->asf_timeout_id)) {
5468 		tmp_id = bgep->asf_timeout_id;
5469 		(void) untimeout(tmp_id);
5470 	}
5471 	bgep->asf_timeout_id = 0;
5472 }
5473 
5474 
5475 
5476 /*
5477  * This function should be placed at the earliest position of bge_attach().
5478  */
5479 void
5480 bge_asf_get_config(bge_t *bgep)
5481 {
5482 	uint32_t nicsig;
5483 	uint32_t niccfg;
5484 
5485 	bgep->asf_enabled = B_FALSE;
5486 	nicsig = bge_nic_read32(bgep, BGE_NIC_DATA_SIG_ADDR);
5487 	if (nicsig == BGE_NIC_DATA_SIG) {
5488 		niccfg = bge_nic_read32(bgep, BGE_NIC_DATA_NIC_CFG_ADDR);
5489 		if (niccfg & BGE_NIC_CFG_ENABLE_ASF)
5490 			/*
5491 			 * Here, we don't consider BAXTER, because BGE haven't
5492 			 * supported BAXTER (that is 5752). Also, as I know,
5493 			 * BAXTER doesn't support ASF feature.
5494 			 */
5495 			bgep->asf_enabled = B_TRUE;
5496 		else
5497 			bgep->asf_enabled = B_FALSE;
5498 	} else
5499 		bgep->asf_enabled = B_FALSE;
5500 }
5501 
5502 
5503 void
5504 bge_asf_pre_reset_operations(bge_t *bgep, uint32_t mode)
5505 {
5506 	uint32_t tries;
5507 	uint32_t event;
5508 
5509 	ASSERT(bgep->asf_enabled);
5510 
5511 	/* Issues "pause firmware" command and wait for ACK */
5512 	bge_nic_put32(bgep, BGE_CMD_MAILBOX, BGE_CMD_NICDRV_PAUSE_FW);
5513 	event = bge_reg_get32(bgep, RX_RISC_EVENT_REG);
5514 	bge_reg_put32(bgep, RX_RISC_EVENT_REG, event | RRER_ASF_EVENT);
5515 
5516 	event = bge_reg_get32(bgep, RX_RISC_EVENT_REG);
5517 	tries = 0;
5518 	while ((event & RRER_ASF_EVENT) && (tries < 100)) {
5519 		drv_usecwait(1);
5520 		tries ++;
5521 		event = bge_reg_get32(bgep, RX_RISC_EVENT_REG);
5522 	}
5523 
5524 	bge_nic_put32(bgep, BGE_FIRMWARE_MAILBOX,
5525 	    BGE_MAGIC_NUM_FIRMWARE_INIT_DONE);
5526 
5527 	if (bgep->asf_newhandshake) {
5528 		switch (mode) {
5529 		case BGE_INIT_RESET:
5530 			bge_nic_put32(bgep, BGE_DRV_STATE_MAILBOX,
5531 			    BGE_DRV_STATE_START);
5532 			break;
5533 		case BGE_SHUTDOWN_RESET:
5534 			bge_nic_put32(bgep, BGE_DRV_STATE_MAILBOX,
5535 			    BGE_DRV_STATE_UNLOAD);
5536 			break;
5537 		case BGE_SUSPEND_RESET:
5538 			bge_nic_put32(bgep, BGE_DRV_STATE_MAILBOX,
5539 			    BGE_DRV_STATE_SUSPEND);
5540 			break;
5541 		default:
5542 			break;
5543 		}
5544 	}
5545 }
5546 
5547 
5548 void
5549 bge_asf_post_reset_old_mode(bge_t *bgep, uint32_t mode)
5550 {
5551 	switch (mode) {
5552 	case BGE_INIT_RESET:
5553 		bge_nic_put32(bgep, BGE_DRV_STATE_MAILBOX,
5554 		    BGE_DRV_STATE_START);
5555 		break;
5556 	case BGE_SHUTDOWN_RESET:
5557 		bge_nic_put32(bgep, BGE_DRV_STATE_MAILBOX,
5558 		    BGE_DRV_STATE_UNLOAD);
5559 		break;
5560 	case BGE_SUSPEND_RESET:
5561 		bge_nic_put32(bgep, BGE_DRV_STATE_MAILBOX,
5562 		    BGE_DRV_STATE_SUSPEND);
5563 		break;
5564 	default:
5565 		break;
5566 	}
5567 }
5568 
5569 
5570 void
5571 bge_asf_post_reset_new_mode(bge_t *bgep, uint32_t mode)
5572 {
5573 	switch (mode) {
5574 	case BGE_INIT_RESET:
5575 		bge_nic_put32(bgep, BGE_DRV_STATE_MAILBOX,
5576 		    BGE_DRV_STATE_START_DONE);
5577 		break;
5578 	case BGE_SHUTDOWN_RESET:
5579 		bge_nic_put32(bgep, BGE_DRV_STATE_MAILBOX,
5580 		    BGE_DRV_STATE_UNLOAD_DONE);
5581 		break;
5582 	default:
5583 		break;
5584 	}
5585 }
5586 
5587 #endif /* BGE_IPMI_ASF */
5588