xref: /illumos-gate/usr/src/uts/common/io/bge/bge_chip2.c (revision 5279807d7e1818eac6f90ac640b7a89cdb37522d)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 
22 /*
23  * Copyright 2009 Sun Microsystems, Inc.  All rights reserved.
24  * Use is subject to license terms.
25  */
26 
27 #include "bge_impl.h"
28 
29 #define	PIO_ADDR(bgep, offset)	((void *)((caddr_t)(bgep)->io_regs+(offset)))
30 
31 /*
32  * Future features ... ?
33  */
34 #define	BGE_CFG_IO8	1	/* 8/16-bit cfg space BIS/BIC	*/
35 #define	BGE_IND_IO32	1	/* indirect access code		*/
36 #define	BGE_SEE_IO32	1	/* SEEPROM access code		*/
37 #define	BGE_FLASH_IO32	1	/* FLASH access code		*/
38 
39 /*
40  * BGE MSI tunable:
41  *
42  * By default MSI is enabled on all supported platforms but it is disabled
43  * for some Broadcom chips due to known MSI hardware issues. Currently MSI
44  * is enabled only for 5714C A2 and 5715C A2 broadcom chips.
45  */
46 boolean_t bge_enable_msi = B_TRUE;
47 
48 /*
49  * PCI-X/PCI-E relaxed ordering tunable for OS/Nexus driver
50  */
51 boolean_t bge_relaxed_ordering = B_TRUE;
52 
53 /*
54  * Property names
55  */
56 static char knownids_propname[] = "bge-known-subsystems";
57 
58 /*
59  * Patchable globals:
60  *
61  *	bge_autorecover
62  *		Enables/disables automatic recovery after fault detection
63  *
64  *	bge_mlcr_default
65  *		Value to program into the MLCR; controls the chip's GPIO pins
66  *
67  *	bge_dma_{rd,wr}prio
68  *		Relative priorities of DMA reads & DMA writes respectively.
69  *		These may each be patched to any value 0-3.  Equal values
70  *		will give "fair" (round-robin) arbitration for PCI access.
71  *		Unequal values will give one or the other function priority.
72  *
73  *	bge_dma_rwctrl
74  *		Value to put in the Read/Write DMA control register.  See
75  *	        the Broadcom PRM for things you can fiddle with in this
76  *		register ...
77  *
78  *	bge_{tx,rx}_{count,ticks}_{norm,intr}
79  *		Send/receive interrupt coalescing parameters.  Counts are
80  *		#s of descriptors, ticks are in microseconds.  *norm* values
81  *		apply between status updates/interrupts; the *intr* values
82  *		refer to the 'during-interrupt' versions - see the PRM.
83  *
84  *		NOTE: these values have been determined by measurement. They
85  *		differ significantly from the values recommended in the PRM.
86  */
87 static uint32_t bge_autorecover = 1;
88 static uint32_t bge_mlcr_default_5714 = MLCR_DEFAULT_5714;
89 
90 static uint32_t bge_dma_rdprio = 1;
91 static uint32_t bge_dma_wrprio = 0;
92 static uint32_t bge_dma_rwctrl = PDRWCR_VAR_DEFAULT;
93 static uint32_t bge_dma_rwctrl_5721 = PDRWCR_VAR_5721;
94 static uint32_t bge_dma_rwctrl_5714 = PDRWCR_VAR_5714;
95 static uint32_t bge_dma_rwctrl_5715 = PDRWCR_VAR_5715;
96 
97 uint32_t bge_rx_ticks_norm = 128;
98 uint32_t bge_tx_ticks_norm = 2048;		/* 8 for FJ2+ !?!?	*/
99 uint32_t bge_rx_count_norm = 8;
100 uint32_t bge_tx_count_norm = 128;
101 
102 static uint32_t bge_rx_ticks_intr = 128;
103 static uint32_t bge_tx_ticks_intr = 0;		/* 8 for FJ2+ !?!?	*/
104 static uint32_t bge_rx_count_intr = 2;
105 static uint32_t bge_tx_count_intr = 0;
106 
107 /*
108  * Memory pool configuration parameters.
109  *
110  * These are generally specific to each member of the chip family, since
111  * each one may have a different memory size/configuration.
112  *
113  * Setting the mbuf pool length for a specific type of chip to 0 inhibits
114  * the driver from programming the various registers; instead they are left
115  * at their hardware defaults.  This is the preferred option for later chips
116  * (5705+), whereas the older chips *required* these registers to be set,
117  * since the h/w default was 0 ;-(
118  */
119 static uint32_t bge_mbuf_pool_base	= MBUF_POOL_BASE_DEFAULT;
120 static uint32_t bge_mbuf_pool_base_5704	= MBUF_POOL_BASE_5704;
121 static uint32_t bge_mbuf_pool_base_5705	= MBUF_POOL_BASE_5705;
122 static uint32_t bge_mbuf_pool_base_5721 = MBUF_POOL_BASE_5721;
123 static uint32_t bge_mbuf_pool_len	= MBUF_POOL_LENGTH_DEFAULT;
124 static uint32_t bge_mbuf_pool_len_5704	= MBUF_POOL_LENGTH_5704;
125 static uint32_t bge_mbuf_pool_len_5705	= 0;	/* use h/w default	*/
126 static uint32_t bge_mbuf_pool_len_5721	= 0;
127 
128 /*
129  * Various high and low water marks, thresholds, etc ...
130  *
131  * Note: these are taken from revision 7 of the PRM, and some are different
132  * from both the values in earlier PRMs *and* those determined experimentally
133  * and used in earlier versions of this driver ...
134  */
135 static uint32_t bge_mbuf_hi_water	= MBUF_HIWAT_DEFAULT;
136 static uint32_t bge_mbuf_lo_water_rmac	= MAC_RX_MBUF_LOWAT_DEFAULT;
137 static uint32_t bge_mbuf_lo_water_rdma	= RDMA_MBUF_LOWAT_DEFAULT;
138 
139 static uint32_t bge_dmad_lo_water	= DMAD_POOL_LOWAT_DEFAULT;
140 static uint32_t bge_dmad_hi_water	= DMAD_POOL_HIWAT_DEFAULT;
141 static uint32_t bge_lowat_recv_frames	= LOWAT_MAX_RECV_FRAMES_DEFAULT;
142 
143 static uint32_t bge_replenish_std	= STD_RCV_BD_REPLENISH_DEFAULT;
144 static uint32_t bge_replenish_mini	= MINI_RCV_BD_REPLENISH_DEFAULT;
145 static uint32_t bge_replenish_jumbo	= JUMBO_RCV_BD_REPLENISH_DEFAULT;
146 
147 static uint32_t	bge_watchdog_count	= 1 << 16;
148 static uint16_t bge_dma_miss_limit	= 20;
149 
150 static uint32_t bge_stop_start_on_sync	= 0;
151 
152 boolean_t bge_jumbo_enable		= B_TRUE;
153 
154 /*
155  * bge_intr_max_loop controls the maximum loop number within bge_intr.
156  * When loading NIC with heavy network traffic, it is useful.
157  * Increasing this value could have positive effect to throughput,
158  * but it might also increase ticks of a bge ISR stick on CPU, which might
159  * lead to bad UI interactive experience. So tune this with caution.
160  */
161 static int bge_intr_max_loop = 1;
162 
163 /*
164  * ========== Low-level chip & ring buffer manipulation ==========
165  */
166 
167 #define	BGE_DBG		BGE_DBG_REGS	/* debug flag for this code	*/
168 
169 
170 /*
171  * Config space read-modify-write routines
172  */
173 
174 #if	BGE_CFG_IO8
175 
176 static void bge_cfg_clr16(bge_t *bgep, bge_regno_t regno, uint16_t bits);
177 #pragma	inline(bge_cfg_clr16)
178 
179 static void
180 bge_cfg_clr16(bge_t *bgep, bge_regno_t regno, uint16_t bits)
181 {
182 	uint16_t regval;
183 
184 	BGE_TRACE(("bge_cfg_clr16($%p, 0x%lx, 0x%x)",
185 	    (void *)bgep, regno, bits));
186 
187 	regval = pci_config_get16(bgep->cfg_handle, regno);
188 
189 	BGE_DEBUG(("bge_cfg_clr16($%p, 0x%lx, 0x%x): 0x%x => 0x%x",
190 	    (void *)bgep, regno, bits, regval, regval & ~bits));
191 
192 	regval &= ~bits;
193 	pci_config_put16(bgep->cfg_handle, regno, regval);
194 }
195 
196 #endif	/* BGE_CFG_IO8 */
197 
198 static void bge_cfg_clr32(bge_t *bgep, bge_regno_t regno, uint32_t bits);
199 #pragma	inline(bge_cfg_clr32)
200 
201 static void
202 bge_cfg_clr32(bge_t *bgep, bge_regno_t regno, uint32_t bits)
203 {
204 	uint32_t regval;
205 
206 	BGE_TRACE(("bge_cfg_clr32($%p, 0x%lx, 0x%x)",
207 	    (void *)bgep, regno, bits));
208 
209 	regval = pci_config_get32(bgep->cfg_handle, regno);
210 
211 	BGE_DEBUG(("bge_cfg_clr32($%p, 0x%lx, 0x%x): 0x%x => 0x%x",
212 	    (void *)bgep, regno, bits, regval, regval & ~bits));
213 
214 	regval &= ~bits;
215 	pci_config_put32(bgep->cfg_handle, regno, regval);
216 }
217 
218 #if	BGE_IND_IO32
219 
220 /*
221  * Indirect access to registers & RISC scratchpads, using config space
222  * accesses only.
223  *
224  * This isn't currently used, but someday we might want to use it for
225  * restoring the Subsystem Device/Vendor registers (which aren't directly
226  * writable in Config Space), or for downloading firmware into the RISCs
227  *
228  * In any case there are endian issues to be resolved before this code is
229  * enabled; the bizarre way that bytes get twisted by this chip AND by
230  * the PCI bridge in SPARC systems mean that we shouldn't enable it until
231  * it's been thoroughly tested for all access sizes on all supported
232  * architectures (SPARC *and* x86!).
233  */
234 uint32_t bge_ind_get32(bge_t *bgep, bge_regno_t regno);
235 #pragma	inline(bge_ind_get32)
236 
237 uint32_t
238 bge_ind_get32(bge_t *bgep, bge_regno_t regno)
239 {
240 	uint32_t val;
241 
242 	BGE_TRACE(("bge_ind_get32($%p, 0x%lx)", (void *)bgep, regno));
243 
244 	pci_config_put32(bgep->cfg_handle, PCI_CONF_BGE_RIAAR, regno);
245 	val = pci_config_get32(bgep->cfg_handle, PCI_CONF_BGE_RIADR);
246 
247 	BGE_DEBUG(("bge_ind_get32($%p, 0x%lx) => 0x%x",
248 	    (void *)bgep, regno, val));
249 
250 	val = LE_32(val);
251 
252 	return (val);
253 }
254 
255 void bge_ind_put32(bge_t *bgep, bge_regno_t regno, uint32_t val);
256 #pragma	inline(bge_ind_put32)
257 
258 void
259 bge_ind_put32(bge_t *bgep, bge_regno_t regno, uint32_t val)
260 {
261 	BGE_TRACE(("bge_ind_put32($%p, 0x%lx, 0x%x)",
262 	    (void *)bgep, regno, val));
263 
264 	val = LE_32(val);
265 	pci_config_put32(bgep->cfg_handle, PCI_CONF_BGE_RIAAR, regno);
266 	pci_config_put32(bgep->cfg_handle, PCI_CONF_BGE_RIADR, val);
267 }
268 
269 #endif	/* BGE_IND_IO32 */
270 
271 #if	BGE_DEBUGGING
272 
273 static void bge_pci_check(bge_t *bgep);
274 #pragma	no_inline(bge_pci_check)
275 
276 static void
277 bge_pci_check(bge_t *bgep)
278 {
279 	uint16_t pcistatus;
280 
281 	pcistatus = pci_config_get16(bgep->cfg_handle, PCI_CONF_STAT);
282 	if ((pcistatus & (PCI_STAT_R_MAST_AB | PCI_STAT_R_TARG_AB)) != 0)
283 		BGE_DEBUG(("bge_pci_check($%p): PCI status 0x%x",
284 		    (void *)bgep, pcistatus));
285 }
286 
287 #endif	/* BGE_DEBUGGING */
288 
289 /*
290  * Perform first-stage chip (re-)initialisation, using only config-space
291  * accesses:
292  *
293  * + Read the vendor/device/revision/subsystem/cache-line-size registers,
294  *   returning the data in the structure pointed to by <idp>.
295  * + Configure the target-mode endianness (swap) options.
296  * + Disable interrupts and enable Memory Space accesses.
297  * + Enable or disable Bus Mastering according to the <enable_dma> flag.
298  *
299  * This sequence is adapted from Broadcom document 570X-PG102-R,
300  * page 102, steps 1-3, 6-8 and 11-13.  The omitted parts of the sequence
301  * are 4 and 5 (Reset Core and wait) which are handled elsewhere.
302  *
303  * This function MUST be called before any non-config-space accesses
304  * are made; on this first call <enable_dma> is B_FALSE, and it
305  * effectively performs steps 3-1(!) of the initialisation sequence
306  * (the rest are not required but should be harmless).
307  *
308  * It MUST also be called after a chip reset, as this disables
309  * Memory Space cycles!  In this case, <enable_dma> is B_TRUE, and
310  * it is effectively performing steps 6-8.
311  */
312 void bge_chip_cfg_init(bge_t *bgep, chip_id_t *cidp, boolean_t enable_dma);
313 #pragma	no_inline(bge_chip_cfg_init)
314 
315 void
316 bge_chip_cfg_init(bge_t *bgep, chip_id_t *cidp, boolean_t enable_dma)
317 {
318 	ddi_acc_handle_t handle;
319 	uint16_t command;
320 	uint32_t mhcr;
321 	uint16_t value16;
322 	int i;
323 
324 	BGE_TRACE(("bge_chip_cfg_init($%p, $%p, %d)",
325 	    (void *)bgep, (void *)cidp, enable_dma));
326 
327 	/*
328 	 * Step 3: save PCI cache line size and subsystem vendor ID
329 	 *
330 	 * Read all the config-space registers that characterise the
331 	 * chip, specifically vendor/device/revision/subsystem vendor
332 	 * and subsystem device id.  We expect (but don't check) that
333 	 * (vendor == VENDOR_ID_BROADCOM) && (device == DEVICE_ID_5704)
334 	 *
335 	 * Also save all bus-transaction related registers (cache-line
336 	 * size, bus-grant/latency parameters, etc).  Some of these are
337 	 * cleared by reset, so we'll have to restore them later.  This
338 	 * comes from the Broadcom document 570X-PG102-R ...
339 	 *
340 	 * Note: Broadcom document 570X-PG102-R seems to be in error
341 	 * here w.r.t. the offsets of the Subsystem Vendor ID and
342 	 * Subsystem (Device) ID registers, which are the opposite way
343 	 * round according to the PCI standard.  For good measure, we
344 	 * save/restore both anyway.
345 	 */
346 	handle = bgep->cfg_handle;
347 
348 	mhcr = pci_config_get32(handle, PCI_CONF_BGE_MHCR);
349 	cidp->asic_rev = mhcr & MHCR_CHIP_REV_MASK;
350 	cidp->businfo = pci_config_get32(handle, PCI_CONF_BGE_PCISTATE);
351 	cidp->command = pci_config_get16(handle, PCI_CONF_COMM);
352 
353 	cidp->vendor = pci_config_get16(handle, PCI_CONF_VENID);
354 	cidp->device = pci_config_get16(handle, PCI_CONF_DEVID);
355 	cidp->subven = pci_config_get16(handle, PCI_CONF_SUBVENID);
356 	cidp->subdev = pci_config_get16(handle, PCI_CONF_SUBSYSID);
357 	cidp->revision = pci_config_get8(handle, PCI_CONF_REVID);
358 	cidp->clsize = pci_config_get8(handle, PCI_CONF_CACHE_LINESZ);
359 	cidp->latency = pci_config_get8(handle, PCI_CONF_LATENCY_TIMER);
360 
361 	BGE_DEBUG(("bge_chip_cfg_init: %s bus is %s and %s; #INTA is %s",
362 	    cidp->businfo & PCISTATE_BUS_IS_PCI ? "PCI" : "PCI-X",
363 	    cidp->businfo & PCISTATE_BUS_IS_FAST ? "fast" : "slow",
364 	    cidp->businfo & PCISTATE_BUS_IS_32_BIT ? "narrow" : "wide",
365 	    cidp->businfo & PCISTATE_INTA_STATE ? "high" : "low"));
366 	BGE_DEBUG(("bge_chip_cfg_init: vendor 0x%x device 0x%x revision 0x%x",
367 	    cidp->vendor, cidp->device, cidp->revision));
368 	BGE_DEBUG(("bge_chip_cfg_init: subven 0x%x subdev 0x%x asic_rev 0x%x",
369 	    cidp->subven, cidp->subdev, cidp->asic_rev));
370 	BGE_DEBUG(("bge_chip_cfg_init: clsize %d latency %d command 0x%x",
371 	    cidp->clsize, cidp->latency, cidp->command));
372 
373 	/*
374 	 * Step 2 (also step 6): disable and clear interrupts.
375 	 * Steps 11-13: configure PIO endianness options, and enable
376 	 * indirect register access.  We'll also select any other
377 	 * options controlled by the MHCR (e.g. tagged status, mask
378 	 * interrupt mode) at this stage ...
379 	 *
380 	 * Note: internally, the chip is 64-bit and BIG-endian, but
381 	 * since it talks to the host over a (LITTLE-endian) PCI bus,
382 	 * it normally swaps bytes around at the PCI interface.
383 	 * However, the PCI host bridge on SPARC systems normally
384 	 * swaps the byte lanes around too, since SPARCs are also
385 	 * BIG-endian.  So it turns out that on SPARC, the right
386 	 * option is to tell the chip to swap (and the host bridge
387 	 * will swap back again), whereas on x86 we ask the chip
388 	 * NOT to swap, so the natural little-endianness of the
389 	 * PCI bus is assumed.  Then the only thing that doesn't
390 	 * automatically work right is access to an 8-byte register
391 	 * by a little-endian host; but we don't want to set the
392 	 * MHCR_ENABLE_REGISTER_WORD_SWAP bit because then 4-byte
393 	 * accesses don't go where expected ;-(  So we live with
394 	 * that, and perform word-swaps in software in the few cases
395 	 * where a chip register is defined as an 8-byte value --
396 	 * see the code below for details ...
397 	 *
398 	 * Note: the meaning of the 'MASK_INTERRUPT_MODE' bit isn't
399 	 * very clear in the register description in the PRM, but
400 	 * Broadcom document 570X-PG104-R page 248 explains a little
401 	 * more (under "Broadcom Mask Mode").  The bit changes the way
402 	 * the MASK_PCI_INT_OUTPUT bit works: with MASK_INTERRUPT_MODE
403 	 * clear, the chip interprets MASK_PCI_INT_OUTPUT in the same
404 	 * way as the 5700 did, which isn't very convenient.  Setting
405 	 * the MASK_INTERRUPT_MODE bit makes the MASK_PCI_INT_OUTPUT
406 	 * bit do just what its name says -- MASK the PCI #INTA output
407 	 * (i.e. deassert the signal at the pin) leaving all internal
408 	 * state unchanged.  This is much more convenient for our
409 	 * interrupt handler, so we set MASK_INTERRUPT_MODE here.
410 	 *
411 	 * Note: the inconvenient semantics of the interrupt mailbox
412 	 * (nonzero disables and acknowledges/clears the interrupt,
413 	 * zero enables AND CLEARS it) would make race conditions
414 	 * likely in the interrupt handler:
415 	 *
416 	 * (1)	acknowledge & disable interrupts
417 	 * (2)	while (more to do)
418 	 * 		process packets
419 	 * (3)	enable interrupts -- also clears pending
420 	 *
421 	 * If the chip received more packets and internally generated
422 	 * an interrupt between the check at (2) and the mbox write
423 	 * at (3), this interrupt would be lost :-(
424 	 *
425 	 * The best way to avoid this is to use TAGGED STATUS mode,
426 	 * where the chip includes a unique tag in each status block
427 	 * update, and the host, when re-enabling interrupts, passes
428 	 * the last tag it saw back to the chip; then the chip can
429 	 * see whether the host is truly up to date, and regenerate
430 	 * its interrupt if not.
431 	 */
432 	mhcr =	MHCR_ENABLE_INDIRECT_ACCESS |
433 	    MHCR_ENABLE_TAGGED_STATUS_MODE |
434 	    MHCR_MASK_INTERRUPT_MODE |
435 	    MHCR_CLEAR_INTERRUPT_INTA;
436 
437 	if (bgep->intr_type == DDI_INTR_TYPE_FIXED)
438 		mhcr |= MHCR_MASK_PCI_INT_OUTPUT;
439 
440 #ifdef	_BIG_ENDIAN
441 	mhcr |= MHCR_ENABLE_ENDIAN_WORD_SWAP | MHCR_ENABLE_ENDIAN_BYTE_SWAP;
442 #endif	/* _BIG_ENDIAN */
443 
444 	pci_config_put32(handle, PCI_CONF_BGE_MHCR, mhcr);
445 
446 #ifdef BGE_IPMI_ASF
447 	bgep->asf_wordswapped = B_FALSE;
448 #endif
449 	/*
450 	 * Step 1 (also step 7): Enable PCI Memory Space accesses
451 	 *			 Disable Memory Write/Invalidate
452 	 *			 Enable or disable Bus Mastering
453 	 *
454 	 * Note that all other bits are taken from the original value saved
455 	 * the first time through here, rather than from the current register
456 	 * value, 'cos that will have been cleared by a soft RESET since.
457 	 * In this way we preserve the OBP/nexus-parent's preferred settings
458 	 * of the parity-error and system-error enable bits across multiple
459 	 * chip RESETs.
460 	 */
461 	command = bgep->chipid.command | PCI_COMM_MAE;
462 	command &= ~(PCI_COMM_ME|PCI_COMM_MEMWR_INVAL);
463 	if (enable_dma)
464 		command |= PCI_COMM_ME;
465 	/*
466 	 * on BCM5714 revision A0, false parity error gets generated
467 	 * due to a logic bug. Provide a workaround by disabling parity
468 	 * error.
469 	 */
470 	if (((cidp->device == DEVICE_ID_5714C) ||
471 	    (cidp->device == DEVICE_ID_5714S)) &&
472 	    (cidp->revision == REVISION_ID_5714_A0)) {
473 		command &= ~PCI_COMM_PARITY_DETECT;
474 	}
475 	pci_config_put16(handle, PCI_CONF_COMM, command);
476 
477 	/*
478 	 * On some PCI-E device, there were instances when
479 	 * the device was still link training.
480 	 */
481 	if (bgep->chipid.pci_type == BGE_PCI_E) {
482 		i = 0;
483 		value16 = pci_config_get16(handle, PCI_CONF_COMM);
484 		while ((value16 != command) && (i < 100)) {
485 			drv_usecwait(200);
486 			value16 = pci_config_get16(handle, PCI_CONF_COMM);
487 			++i;
488 		}
489 	}
490 
491 	/*
492 	 * Clear any remaining error status bits
493 	 */
494 	pci_config_put16(handle, PCI_CONF_STAT, ~0);
495 
496 	/*
497 	 * Do following if and only if the device is NOT BCM5714C OR
498 	 * BCM5715C
499 	 */
500 	if (!((cidp->device == DEVICE_ID_5714C) ||
501 	    (cidp->device == DEVICE_ID_5715C))) {
502 		/*
503 		 * Make sure these indirect-access registers are sane
504 		 * rather than random after power-up or reset
505 		 */
506 		pci_config_put32(handle, PCI_CONF_BGE_RIAAR, 0);
507 		pci_config_put32(handle, PCI_CONF_BGE_MWBAR, 0);
508 	}
509 	/*
510 	 * Step 8: Disable PCI-X/PCI-E Relaxed Ordering
511 	 */
512 	bge_cfg_clr16(bgep, PCIX_CONF_COMM, PCIX_COMM_RELAXED);
513 
514 	if (cidp->pci_type == BGE_PCI_E) {
515 		if (DEVICE_5723_SERIES_CHIPSETS(bgep)) {
516 			bge_cfg_clr16(bgep, PCI_CONF_DEV_CTRL_5723,
517 			    DEV_CTRL_NO_SNOOP | DEV_CTRL_RELAXED);
518 		} else
519 			bge_cfg_clr16(bgep, PCI_CONF_DEV_CTRL,
520 			    DEV_CTRL_NO_SNOOP | DEV_CTRL_RELAXED);
521 	}
522 }
523 
524 #ifdef __amd64
525 /*
526  * Distinguish CPU types
527  *
528  * These use to  distinguish AMD64 or Intel EM64T of CPU running mode.
529  * If CPU runs on Intel EM64T mode,the 64bit operation cannot works fine
530  * for PCI-Express based network interface card. This is the work-around
531  * for those nics.
532  */
533 static boolean_t bge_get_em64t_type(void);
534 #pragma	inline(bge_get_em64t_type)
535 
536 static boolean_t
537 bge_get_em64t_type(void)
538 {
539 
540 	return (x86_vendor == X86_VENDOR_Intel);
541 }
542 #endif
543 
544 /*
545  * Operating register get/set access routines
546  */
547 
548 uint32_t bge_reg_get32(bge_t *bgep, bge_regno_t regno);
549 #pragma	inline(bge_reg_get32)
550 
551 uint32_t
552 bge_reg_get32(bge_t *bgep, bge_regno_t regno)
553 {
554 	BGE_TRACE(("bge_reg_get32($%p, 0x%lx)",
555 	    (void *)bgep, regno));
556 
557 	return (ddi_get32(bgep->io_handle, PIO_ADDR(bgep, regno)));
558 }
559 
560 void bge_reg_put32(bge_t *bgep, bge_regno_t regno, uint32_t data);
561 #pragma	inline(bge_reg_put32)
562 
563 void
564 bge_reg_put32(bge_t *bgep, bge_regno_t regno, uint32_t data)
565 {
566 	BGE_TRACE(("bge_reg_put32($%p, 0x%lx, 0x%x)",
567 	    (void *)bgep, regno, data));
568 
569 	ddi_put32(bgep->io_handle, PIO_ADDR(bgep, regno), data);
570 	BGE_PCICHK(bgep);
571 }
572 
573 void bge_reg_set32(bge_t *bgep, bge_regno_t regno, uint32_t bits);
574 #pragma	inline(bge_reg_set32)
575 
576 void
577 bge_reg_set32(bge_t *bgep, bge_regno_t regno, uint32_t bits)
578 {
579 	uint32_t regval;
580 
581 	BGE_TRACE(("bge_reg_set32($%p, 0x%lx, 0x%x)",
582 	    (void *)bgep, regno, bits));
583 
584 	regval = bge_reg_get32(bgep, regno);
585 	regval |= bits;
586 	bge_reg_put32(bgep, regno, regval);
587 }
588 
589 void bge_reg_clr32(bge_t *bgep, bge_regno_t regno, uint32_t bits);
590 #pragma	inline(bge_reg_clr32)
591 
592 void
593 bge_reg_clr32(bge_t *bgep, bge_regno_t regno, uint32_t bits)
594 {
595 	uint32_t regval;
596 
597 	BGE_TRACE(("bge_reg_clr32($%p, 0x%lx, 0x%x)",
598 	    (void *)bgep, regno, bits));
599 
600 	regval = bge_reg_get32(bgep, regno);
601 	regval &= ~bits;
602 	bge_reg_put32(bgep, regno, regval);
603 }
604 
605 static uint64_t bge_reg_get64(bge_t *bgep, bge_regno_t regno);
606 #pragma	inline(bge_reg_get64)
607 
608 static uint64_t
609 bge_reg_get64(bge_t *bgep, bge_regno_t regno)
610 {
611 	uint64_t regval;
612 
613 #ifdef	__amd64
614 	if (DEVICE_5723_SERIES_CHIPSETS(bgep) || bge_get_em64t_type()) {
615 		regval = ddi_get32(bgep->io_handle, PIO_ADDR(bgep, regno + 4));
616 		regval <<= 32;
617 		regval |= ddi_get32(bgep->io_handle, PIO_ADDR(bgep, regno));
618 	} else {
619 		regval = ddi_get64(bgep->io_handle, PIO_ADDR(bgep, regno));
620 	}
621 #elif defined(__sparc)
622 	if (DEVICE_5723_SERIES_CHIPSETS(bgep)) {
623 		regval = ddi_get32(bgep->io_handle, PIO_ADDR(bgep, regno));
624 		regval <<= 32;
625 		regval |= ddi_get32(bgep->io_handle, PIO_ADDR(bgep, regno + 4));
626 	} else {
627 		regval = ddi_get64(bgep->io_handle, PIO_ADDR(bgep, regno));
628 	}
629 #else
630 	regval = ddi_get64(bgep->io_handle, PIO_ADDR(bgep, regno));
631 #endif
632 
633 #ifdef	_LITTLE_ENDIAN
634 	regval = (regval >> 32) | (regval << 32);
635 #endif	/* _LITTLE_ENDIAN */
636 
637 	BGE_TRACE(("bge_reg_get64($%p, 0x%lx) = 0x%016llx",
638 	    (void *)bgep, regno, regval));
639 
640 	return (regval);
641 }
642 
643 static void bge_reg_put64(bge_t *bgep, bge_regno_t regno, uint64_t data);
644 #pragma	inline(bge_reg_put64)
645 
646 static void
647 bge_reg_put64(bge_t *bgep, bge_regno_t regno, uint64_t data)
648 {
649 	BGE_TRACE(("bge_reg_put64($%p, 0x%lx, 0x%016llx)",
650 	    (void *)bgep, regno, data));
651 
652 #ifdef	_LITTLE_ENDIAN
653 	data = ((data >> 32) | (data << 32));
654 #endif	/* _LITTLE_ENDIAN */
655 
656 #ifdef	__amd64
657 	if (DEVICE_5723_SERIES_CHIPSETS(bgep) || bge_get_em64t_type()) {
658 		ddi_put32(bgep->io_handle,
659 		    PIO_ADDR(bgep, regno), (uint32_t)data);
660 		BGE_PCICHK(bgep);
661 		ddi_put32(bgep->io_handle,
662 		    PIO_ADDR(bgep, regno + 4), (uint32_t)(data >> 32));
663 
664 	} else {
665 		ddi_put64(bgep->io_handle, PIO_ADDR(bgep, regno), data);
666 	}
667 #elif defined(__sparc)
668 	if (DEVICE_5723_SERIES_CHIPSETS(bgep)) {
669 		ddi_put32(bgep->io_handle,
670 		    PIO_ADDR(bgep, regno + 4), (uint32_t)data);
671 		BGE_PCICHK(bgep);
672 		ddi_put32(bgep->io_handle,
673 		    PIO_ADDR(bgep, regno), (uint32_t)(data >> 32));
674 	} else {
675 		ddi_put64(bgep->io_handle, PIO_ADDR(bgep, regno), data);
676 	}
677 #else
678 	ddi_put64(bgep->io_handle, PIO_ADDR(bgep, regno), data);
679 #endif
680 
681 	BGE_PCICHK(bgep);
682 }
683 
684 /*
685  * The DDI doesn't provide get/put functions for 128 bit data
686  * so we put RCBs out as two 64-bit chunks instead.
687  */
688 static void bge_reg_putrcb(bge_t *bgep, bge_regno_t addr, bge_rcb_t *rcbp);
689 #pragma	inline(bge_reg_putrcb)
690 
691 static void
692 bge_reg_putrcb(bge_t *bgep, bge_regno_t addr, bge_rcb_t *rcbp)
693 {
694 	uint64_t *p;
695 
696 	BGE_TRACE(("bge_reg_putrcb($%p, 0x%lx, 0x%016llx:%04x:%04x:%08x)",
697 	    (void *)bgep, addr, rcbp->host_ring_addr,
698 	    rcbp->max_len, rcbp->flags, rcbp->nic_ring_addr));
699 
700 	ASSERT((addr % sizeof (*rcbp)) == 0);
701 
702 	p = (void *)rcbp;
703 	bge_reg_put64(bgep, addr, *p++);
704 	bge_reg_put64(bgep, addr+8, *p);
705 }
706 
707 void bge_mbx_put(bge_t *bgep, bge_regno_t regno, uint64_t data);
708 #pragma	inline(bge_mbx_put)
709 
710 void
711 bge_mbx_put(bge_t *bgep, bge_regno_t regno, uint64_t data)
712 {
713 	if (DEVICE_5906_SERIES_CHIPSETS(bgep))
714 		regno += INTERRUPT_LP_MBOX_0_REG - INTERRUPT_MBOX_0_REG + 4;
715 
716 	BGE_TRACE(("bge_mbx_put($%p, 0x%lx, 0x%016llx)",
717 	    (void *)bgep, regno, data));
718 
719 	/*
720 	 * Mailbox registers are nominally 64 bits on the 5701, but
721 	 * the MSW isn't used.  On the 5703, they're only 32 bits
722 	 * anyway.  So here we just write the lower(!) 32 bits -
723 	 * remembering that the chip is big-endian, even though the
724 	 * PCI bus is little-endian ...
725 	 */
726 #ifdef	_BIG_ENDIAN
727 	ddi_put32(bgep->io_handle, PIO_ADDR(bgep, regno+4), (uint32_t)data);
728 #else
729 	ddi_put32(bgep->io_handle, PIO_ADDR(bgep, regno), (uint32_t)data);
730 #endif	/* _BIG_ENDIAN */
731 	BGE_PCICHK(bgep);
732 }
733 
734 uint32_t bge_mbx_get(bge_t *bgep, bge_regno_t regno);
735 #pragma inline(bge_mbx_get)
736 
737 uint32_t
738 bge_mbx_get(bge_t *bgep, bge_regno_t regno)
739 {
740 	uint32_t val32;
741 
742 	if (DEVICE_5906_SERIES_CHIPSETS(bgep))
743 		regno += INTERRUPT_LP_MBOX_0_REG - INTERRUPT_MBOX_0_REG + 4;
744 
745 	BGE_TRACE(("bge_mbx_get($%p, 0x%lx)",
746 	    (void *)bgep, regno));
747 
748 #ifdef	_BIG_ENDIAN
749 	val32 = ddi_get32(bgep->io_handle, PIO_ADDR(bgep, regno+4));
750 #else
751 	val32 = ddi_get32(bgep->io_handle, PIO_ADDR(bgep, regno));
752 #endif	/* _BIG_ENDIAN */
753 	BGE_PCICHK(bgep);
754 
755 	return (val32);
756 }
757 
758 
759 #if	BGE_DEBUGGING
760 
761 void bge_led_mark(bge_t *bgep);
762 #pragma	no_inline(bge_led_mark)
763 
764 void
765 bge_led_mark(bge_t *bgep)
766 {
767 	uint32_t led_ctrl = LED_CONTROL_OVERRIDE_LINK |
768 	    LED_CONTROL_1000MBPS_LED |
769 	    LED_CONTROL_100MBPS_LED |
770 	    LED_CONTROL_10MBPS_LED;
771 
772 	/*
773 	 * Blink all three LINK LEDs on simultaneously, then all off,
774 	 * then restore to automatic hardware control.  This is used
775 	 * in laboratory testing to trigger a logic analyser or scope.
776 	 */
777 	bge_reg_set32(bgep, ETHERNET_MAC_LED_CONTROL_REG, led_ctrl);
778 	led_ctrl ^= LED_CONTROL_OVERRIDE_LINK;
779 	bge_reg_clr32(bgep, ETHERNET_MAC_LED_CONTROL_REG, led_ctrl);
780 	led_ctrl = LED_CONTROL_OVERRIDE_LINK;
781 	bge_reg_clr32(bgep, ETHERNET_MAC_LED_CONTROL_REG, led_ctrl);
782 }
783 
784 #endif	/* BGE_DEBUGGING */
785 
786 /*
787  * NIC on-chip memory access routines
788  *
789  * Only 32K of NIC memory is visible at a time, controlled by the
790  * Memory Window Base Address Register (in PCI config space).  Once
791  * this is set, the 32K region of NIC-local memory that it refers
792  * to can be directly addressed in the upper 32K of the 64K of PCI
793  * memory space used for the device.
794  */
795 
796 static void bge_nic_setwin(bge_t *bgep, bge_regno_t base);
797 #pragma	inline(bge_nic_setwin)
798 
799 static void
800 bge_nic_setwin(bge_t *bgep, bge_regno_t base)
801 {
802 	chip_id_t *cidp;
803 
804 	BGE_TRACE(("bge_nic_setwin($%p, 0x%lx)",
805 	    (void *)bgep, base));
806 
807 	ASSERT((base & MWBAR_GRANULE_MASK) == 0);
808 
809 	/*
810 	 * Don't do repeated zero data writes,
811 	 * if the device is BCM5714C/15C.
812 	 */
813 	cidp = &bgep->chipid;
814 	if ((cidp->device == DEVICE_ID_5714C) ||
815 	    (cidp->device == DEVICE_ID_5715C)) {
816 		if (bgep->lastWriteZeroData && (base == (bge_regno_t)0))
817 			return;
818 		/* Adjust lastWriteZeroData */
819 		bgep->lastWriteZeroData = ((base == (bge_regno_t)0) ?
820 		    B_TRUE : B_FALSE);
821 	}
822 	pci_config_put32(bgep->cfg_handle, PCI_CONF_BGE_MWBAR, base);
823 }
824 
825 static uint32_t bge_nic_get32(bge_t *bgep, bge_regno_t addr);
826 #pragma	inline(bge_nic_get32)
827 
828 static uint32_t
829 bge_nic_get32(bge_t *bgep, bge_regno_t addr)
830 {
831 	uint32_t data;
832 
833 #if defined(BGE_IPMI_ASF) && !defined(__sparc)
834 	if (bgep->asf_enabled && !bgep->asf_wordswapped) {
835 		/* workaround for word swap error */
836 		if (addr & 4)
837 			addr = addr - 4;
838 		else
839 			addr = addr + 4;
840 	}
841 #endif
842 
843 #ifdef __sparc
844 	data = bge_nic_read32(bgep, addr);
845 #else
846 	bge_nic_setwin(bgep, addr & ~MWBAR_GRANULE_MASK);
847 	addr &= MWBAR_GRANULE_MASK;
848 	addr += NIC_MEM_WINDOW_OFFSET;
849 
850 	data = ddi_get32(bgep->io_handle, PIO_ADDR(bgep, addr));
851 #endif
852 
853 	BGE_TRACE(("bge_nic_get32($%p, 0x%lx) = 0x%08x",
854 	    (void *)bgep, addr, data));
855 
856 	return (data);
857 }
858 
859 void bge_nic_put32(bge_t *bgep, bge_regno_t addr, uint32_t data);
860 #pragma inline(bge_nic_put32)
861 
862 void
863 bge_nic_put32(bge_t *bgep, bge_regno_t addr, uint32_t data)
864 {
865 	BGE_TRACE(("bge_nic_put32($%p, 0x%lx, 0x%08x)",
866 	    (void *)bgep, addr, data));
867 
868 #if defined(BGE_IPMI_ASF) && !defined(__sparc)
869 	if (bgep->asf_enabled && !bgep->asf_wordswapped) {
870 		/* workaround for word swap error */
871 		if (addr & 4)
872 			addr = addr - 4;
873 		else
874 			addr = addr + 4;
875 	}
876 #endif
877 
878 #ifdef __sparc
879 	pci_config_put32(bgep->cfg_handle, PCI_CONF_BGE_MWBAR, addr);
880 	data = LE_32(data);
881 	pci_config_put32(bgep->cfg_handle, PCI_CONF_BGE_MWDAR, data);
882 	pci_config_put32(bgep->cfg_handle, PCI_CONF_BGE_MWBAR, 0);
883 #else
884 	bge_nic_setwin(bgep, addr & ~MWBAR_GRANULE_MASK);
885 	addr &= MWBAR_GRANULE_MASK;
886 	addr += NIC_MEM_WINDOW_OFFSET;
887 	ddi_put32(bgep->io_handle, PIO_ADDR(bgep, addr), data);
888 	BGE_PCICHK(bgep);
889 #endif
890 }
891 
892 static uint64_t bge_nic_get64(bge_t *bgep, bge_regno_t addr);
893 #pragma	inline(bge_nic_get64)
894 
895 static uint64_t
896 bge_nic_get64(bge_t *bgep, bge_regno_t addr)
897 {
898 	uint64_t data;
899 
900 	bge_nic_setwin(bgep, addr & ~MWBAR_GRANULE_MASK);
901 	addr &= MWBAR_GRANULE_MASK;
902 	addr += NIC_MEM_WINDOW_OFFSET;
903 
904 #ifdef	__amd64
905 		if (DEVICE_5723_SERIES_CHIPSETS(bgep) || bge_get_em64t_type()) {
906 			data = ddi_get32(bgep->io_handle, PIO_ADDR(bgep, addr));
907 			data <<= 32;
908 			data |= ddi_get32(bgep->io_handle,
909 			    PIO_ADDR(bgep, addr + 4));
910 		} else {
911 			data = ddi_get64(bgep->io_handle, PIO_ADDR(bgep, addr));
912 		}
913 #elif defined(__sparc)
914 		if (DEVICE_5723_SERIES_CHIPSETS(bgep)) {
915 			data = ddi_get32(bgep->io_handle, PIO_ADDR(bgep, addr));
916 			data <<= 32;
917 			data |= ddi_get32(bgep->io_handle,
918 			    PIO_ADDR(bgep, addr + 4));
919 		} else {
920 			data = ddi_get64(bgep->io_handle, PIO_ADDR(bgep, addr));
921 		}
922 #else
923 		data = ddi_get64(bgep->io_handle, PIO_ADDR(bgep, addr));
924 #endif
925 
926 	BGE_TRACE(("bge_nic_get64($%p, 0x%lx) = 0x%016llx",
927 	    (void *)bgep, addr, data));
928 
929 	return (data);
930 }
931 
932 static void bge_nic_put64(bge_t *bgep, bge_regno_t addr, uint64_t data);
933 #pragma	inline(bge_nic_put64)
934 
935 static void
936 bge_nic_put64(bge_t *bgep, bge_regno_t addr, uint64_t data)
937 {
938 	BGE_TRACE(("bge_nic_put64($%p, 0x%lx, 0x%016llx)",
939 	    (void *)bgep, addr, data));
940 
941 	bge_nic_setwin(bgep, addr & ~MWBAR_GRANULE_MASK);
942 	addr &= MWBAR_GRANULE_MASK;
943 	addr += NIC_MEM_WINDOW_OFFSET;
944 
945 #ifdef	__amd64
946 	if (DEVICE_5723_SERIES_CHIPSETS(bgep) || bge_get_em64t_type()) {
947 		ddi_put32(bgep->io_handle,
948 		    PIO_ADDR(bgep, addr), (uint32_t)data);
949 		BGE_PCICHK(bgep);
950 		ddi_put32(bgep->io_handle,
951 		    PIO_ADDR(bgep, addr + 4), (uint32_t)(data >> 32));
952 	} else {
953 		ddi_put64(bgep->io_handle, PIO_ADDR(bgep, addr), data);
954 	}
955 #elif defined(__sparc)
956 	if (DEVICE_5723_SERIES_CHIPSETS(bgep)) {
957 		ddi_put32(bgep->io_handle,
958 		    PIO_ADDR(bgep, addr + 4), (uint32_t)data);
959 		BGE_PCICHK(bgep);
960 		ddi_put32(bgep->io_handle,
961 		    PIO_ADDR(bgep, addr), (uint32_t)(data >> 32));
962 	} else {
963 		ddi_put64(bgep->io_handle, PIO_ADDR(bgep, addr), data);
964 	}
965 #else
966 	ddi_put64(bgep->io_handle, PIO_ADDR(bgep, addr), data);
967 #endif
968 
969 	BGE_PCICHK(bgep);
970 }
971 
972 /*
973  * The DDI doesn't provide get/put functions for 128 bit data
974  * so we put RCBs out as two 64-bit chunks instead.
975  */
976 static void bge_nic_putrcb(bge_t *bgep, bge_regno_t addr, bge_rcb_t *rcbp);
977 #pragma	inline(bge_nic_putrcb)
978 
979 static void
980 bge_nic_putrcb(bge_t *bgep, bge_regno_t addr, bge_rcb_t *rcbp)
981 {
982 	uint64_t *p;
983 
984 	BGE_TRACE(("bge_nic_putrcb($%p, 0x%lx, 0x%016llx:%04x:%04x:%08x)",
985 	    (void *)bgep, addr, rcbp->host_ring_addr,
986 	    rcbp->max_len, rcbp->flags, rcbp->nic_ring_addr));
987 
988 	ASSERT((addr % sizeof (*rcbp)) == 0);
989 
990 	bge_nic_setwin(bgep, addr & ~MWBAR_GRANULE_MASK);
991 	addr &= MWBAR_GRANULE_MASK;
992 	addr += NIC_MEM_WINDOW_OFFSET;
993 
994 	p = (void *)rcbp;
995 #ifdef	__amd64
996 	if (DEVICE_5723_SERIES_CHIPSETS(bgep) || bge_get_em64t_type()) {
997 		ddi_put32(bgep->io_handle, PIO_ADDR(bgep, addr),
998 		    (uint32_t)(*p));
999 		ddi_put32(bgep->io_handle, PIO_ADDR(bgep, addr + 4),
1000 		    (uint32_t)(*p >> 32));
1001 		ddi_put32(bgep->io_handle, PIO_ADDR(bgep, addr + 8),
1002 		    (uint32_t)(*(p + 1)));
1003 		ddi_put32(bgep->io_handle, PIO_ADDR(bgep, addr + 12),
1004 		    (uint32_t)(*p >> 32));
1005 
1006 	} else {
1007 		ddi_put64(bgep->io_handle, PIO_ADDR(bgep, addr), *p++);
1008 		ddi_put64(bgep->io_handle, PIO_ADDR(bgep, addr+8), *p);
1009 	}
1010 #elif defined(__sparc)
1011 	if (DEVICE_5723_SERIES_CHIPSETS(bgep)) {
1012 		ddi_put32(bgep->io_handle, PIO_ADDR(bgep, addr + 4),
1013 		    (uint32_t)(*p));
1014 		ddi_put32(bgep->io_handle, PIO_ADDR(bgep, addr),
1015 		    (uint32_t)(*p >> 32));
1016 		ddi_put32(bgep->io_handle, PIO_ADDR(bgep, addr + 12),
1017 		    (uint32_t)(*(p + 1)));
1018 		ddi_put32(bgep->io_handle, PIO_ADDR(bgep, addr + 8),
1019 		    (uint32_t)(*p >> 32));
1020 	} else {
1021 		ddi_put64(bgep->io_handle, PIO_ADDR(bgep, addr), *p++);
1022 		ddi_put64(bgep->io_handle, PIO_ADDR(bgep, addr + 8), *p);
1023 	}
1024 #else
1025 	ddi_put64(bgep->io_handle, PIO_ADDR(bgep, addr), *p++);
1026 	ddi_put64(bgep->io_handle, PIO_ADDR(bgep, addr + 8), *p);
1027 #endif
1028 
1029 	BGE_PCICHK(bgep);
1030 }
1031 
1032 static void bge_nic_zero(bge_t *bgep, bge_regno_t addr, uint32_t nbytes);
1033 #pragma	inline(bge_nic_zero)
1034 
1035 static void
1036 bge_nic_zero(bge_t *bgep, bge_regno_t addr, uint32_t nbytes)
1037 {
1038 	BGE_TRACE(("bge_nic_zero($%p, 0x%lx, 0x%x)",
1039 	    (void *)bgep, addr, nbytes));
1040 
1041 	ASSERT((addr & ~MWBAR_GRANULE_MASK) ==
1042 	    ((addr+nbytes) & ~MWBAR_GRANULE_MASK));
1043 
1044 	bge_nic_setwin(bgep, addr & ~MWBAR_GRANULE_MASK);
1045 	addr &= MWBAR_GRANULE_MASK;
1046 	addr += NIC_MEM_WINDOW_OFFSET;
1047 
1048 	(void) ddi_device_zero(bgep->io_handle, PIO_ADDR(bgep, addr),
1049 	    nbytes, 1, DDI_DATA_SZ08_ACC);
1050 	BGE_PCICHK(bgep);
1051 }
1052 
1053 /*
1054  * MII (PHY) register get/set access routines
1055  *
1056  * These use the chip's MII auto-access method, controlled by the
1057  * MII Communication register at 0x044c, so the CPU doesn't have
1058  * to fiddle with the individual bits.
1059  */
1060 
1061 #undef	BGE_DBG
1062 #define	BGE_DBG		BGE_DBG_MII	/* debug flag for this code	*/
1063 
1064 static uint16_t bge_mii_access(bge_t *bgep, bge_regno_t regno,
1065 				uint16_t data, uint32_t cmd);
1066 #pragma	no_inline(bge_mii_access)
1067 
1068 static uint16_t
1069 bge_mii_access(bge_t *bgep, bge_regno_t regno, uint16_t data, uint32_t cmd)
1070 {
1071 	uint32_t timeout;
1072 	uint32_t regval1;
1073 	uint32_t regval2;
1074 
1075 	BGE_TRACE(("bge_mii_access($%p, 0x%lx, 0x%x, 0x%x)",
1076 	    (void *)bgep, regno, data, cmd));
1077 
1078 	ASSERT(mutex_owned(bgep->genlock));
1079 
1080 	/*
1081 	 * Assemble the command ...
1082 	 */
1083 	cmd |= data << MI_COMMS_DATA_SHIFT;
1084 	cmd |= regno << MI_COMMS_REGISTER_SHIFT;
1085 	cmd |= bgep->phy_mii_addr << MI_COMMS_ADDRESS_SHIFT;
1086 	cmd |= MI_COMMS_START;
1087 
1088 	/*
1089 	 * Wait for any command already in progress ...
1090 	 *
1091 	 * Note: this *shouldn't* ever find that there is a command
1092 	 * in progress, because we already hold the <genlock> mutex.
1093 	 * Nonetheless, we have sometimes seen the MI_COMMS_START
1094 	 * bit set here -- it seems that the chip can initiate MII
1095 	 * accesses internally, even with polling OFF.
1096 	 */
1097 	regval1 = regval2 = bge_reg_get32(bgep, MI_COMMS_REG);
1098 	for (timeout = 100; ; ) {
1099 		if ((regval2 & MI_COMMS_START) == 0) {
1100 			bge_reg_put32(bgep, MI_COMMS_REG, cmd);
1101 			break;
1102 		}
1103 		if (--timeout == 0)
1104 			break;
1105 		drv_usecwait(10);
1106 		regval2 = bge_reg_get32(bgep, MI_COMMS_REG);
1107 	}
1108 
1109 	if (timeout == 0)
1110 		return ((uint16_t)~0u);
1111 
1112 	if (timeout != 100)
1113 		BGE_REPORT((bgep, "bge_mii_access: cmd 0x%x -- "
1114 		    "MI_COMMS_START set for %d us; 0x%x->0x%x",
1115 		    cmd, 10*(100-timeout), regval1, regval2));
1116 
1117 	regval1 = bge_reg_get32(bgep, MI_COMMS_REG);
1118 	for (timeout = 1000; ; ) {
1119 		if ((regval1 & MI_COMMS_START) == 0)
1120 			break;
1121 		if (--timeout == 0)
1122 			break;
1123 		drv_usecwait(10);
1124 		regval1 = bge_reg_get32(bgep, MI_COMMS_REG);
1125 	}
1126 
1127 	/*
1128 	 * Drop out early if the READ FAILED bit is set -- this chip
1129 	 * could be a 5703/4S, with a SerDes instead of a PHY!
1130 	 */
1131 	if (regval2 & MI_COMMS_READ_FAILED)
1132 		return ((uint16_t)~0u);
1133 
1134 	if (timeout == 0)
1135 		return ((uint16_t)~0u);
1136 
1137 	/*
1138 	 * The PRM says to wait 5us after seeing the START bit clear
1139 	 * and then re-read the register to get the final value of the
1140 	 * data field, in order to avoid a race condition where the
1141 	 * START bit is clear but the data field isn't yet valid.
1142 	 *
1143 	 * Note: we don't actually seem to be encounter this race;
1144 	 * except when the START bit is seen set again (see below),
1145 	 * the data field doesn't change during this 5us interval.
1146 	 */
1147 	drv_usecwait(5);
1148 	regval2 = bge_reg_get32(bgep, MI_COMMS_REG);
1149 
1150 	/*
1151 	 * Unfortunately, when following the PRMs instructions above,
1152 	 * we have occasionally seen the START bit set again(!) in the
1153 	 * value read after the 5us delay. This seems to be due to the
1154 	 * chip autonomously starting another MII access internally.
1155 	 * In such cases, the command/data/etc fields relate to the
1156 	 * internal command, rather than the one that we thought had
1157 	 * just finished.  So in this case, we fall back to returning
1158 	 * the data from the original read that showed START clear.
1159 	 */
1160 	if (regval2 & MI_COMMS_START) {
1161 		BGE_REPORT((bgep, "bge_mii_access: cmd 0x%x -- "
1162 		    "MI_COMMS_START set after transaction; 0x%x->0x%x",
1163 		    cmd, regval1, regval2));
1164 		regval2 = regval1;
1165 	}
1166 
1167 	if (regval2 & MI_COMMS_START)
1168 		return ((uint16_t)~0u);
1169 
1170 	if (regval2 & MI_COMMS_READ_FAILED)
1171 		return ((uint16_t)~0u);
1172 
1173 	return ((regval2 & MI_COMMS_DATA_MASK) >> MI_COMMS_DATA_SHIFT);
1174 }
1175 
1176 uint16_t bge_mii_get16(bge_t *bgep, bge_regno_t regno);
1177 #pragma	no_inline(bge_mii_get16)
1178 
1179 uint16_t
1180 bge_mii_get16(bge_t *bgep, bge_regno_t regno)
1181 {
1182 	BGE_TRACE(("bge_mii_get16($%p, 0x%lx)",
1183 	    (void *)bgep, regno));
1184 
1185 	ASSERT(mutex_owned(bgep->genlock));
1186 
1187 	if (DEVICE_5906_SERIES_CHIPSETS(bgep) && ((regno == MII_AUX_CONTROL) ||
1188 	    (regno == MII_1000BASE_T_CONTROL)))
1189 		return (0);
1190 
1191 	return (bge_mii_access(bgep, regno, 0, MI_COMMS_COMMAND_READ));
1192 }
1193 
1194 void bge_mii_put16(bge_t *bgep, bge_regno_t regno, uint16_t data);
1195 #pragma	no_inline(bge_mii_put16)
1196 
1197 void
1198 bge_mii_put16(bge_t *bgep, bge_regno_t regno, uint16_t data)
1199 {
1200 	BGE_TRACE(("bge_mii_put16($%p, 0x%lx, 0x%x)",
1201 	    (void *)bgep, regno, data));
1202 
1203 	ASSERT(mutex_owned(bgep->genlock));
1204 
1205 	if (DEVICE_5906_SERIES_CHIPSETS(bgep) && ((regno == MII_AUX_CONTROL) ||
1206 	    (regno == MII_1000BASE_T_CONTROL)))
1207 		return;
1208 
1209 	(void) bge_mii_access(bgep, regno, data, MI_COMMS_COMMAND_WRITE);
1210 }
1211 
1212 #undef	BGE_DBG
1213 #define	BGE_DBG		BGE_DBG_SEEPROM	/* debug flag for this code	*/
1214 
1215 #if	BGE_SEE_IO32 || BGE_FLASH_IO32
1216 
1217 /*
1218  * Basic SEEPROM get/set access routine
1219  *
1220  * This uses the chip's SEEPROM auto-access method, controlled by the
1221  * Serial EEPROM Address/Data Registers at 0x6838/683c, so the CPU
1222  * doesn't have to fiddle with the individual bits.
1223  *
1224  * The caller should hold <genlock> and *also* have already acquired
1225  * the right to access the SEEPROM, via bge_nvmem_acquire() above.
1226  *
1227  * Return value:
1228  *	0 on success,
1229  *	ENODATA on access timeout (maybe retryable: device may just be busy)
1230  *	EPROTO on other h/w or s/w errors.
1231  *
1232  * <*dp> is an input to a SEEPROM_ACCESS_WRITE operation, or an output
1233  * from a (successful) SEEPROM_ACCESS_READ.
1234  */
1235 static int bge_seeprom_access(bge_t *bgep, uint32_t cmd, bge_regno_t addr,
1236 				uint32_t *dp);
1237 #pragma	no_inline(bge_seeprom_access)
1238 
1239 static int
1240 bge_seeprom_access(bge_t *bgep, uint32_t cmd, bge_regno_t addr, uint32_t *dp)
1241 {
1242 	uint32_t tries;
1243 	uint32_t regval;
1244 
1245 	ASSERT(mutex_owned(bgep->genlock));
1246 
1247 	/*
1248 	 * On the newer chips that support both SEEPROM & Flash, we need
1249 	 * to specifically enable SEEPROM access (Flash is the default).
1250 	 * On older chips, we don't; SEEPROM is the only NVtype supported,
1251 	 * and the NVM control registers don't exist ...
1252 	 */
1253 	switch (bgep->chipid.nvtype) {
1254 	case BGE_NVTYPE_NONE:
1255 	case BGE_NVTYPE_UNKNOWN:
1256 		_NOTE(NOTREACHED)
1257 	case BGE_NVTYPE_SEEPROM:
1258 		break;
1259 
1260 	case BGE_NVTYPE_LEGACY_SEEPROM:
1261 	case BGE_NVTYPE_UNBUFFERED_FLASH:
1262 	case BGE_NVTYPE_BUFFERED_FLASH:
1263 	default:
1264 		bge_reg_set32(bgep, NVM_CONFIG1_REG,
1265 		    NVM_CFG1_LEGACY_SEEPROM_MODE);
1266 		break;
1267 	}
1268 
1269 	/*
1270 	 * Check there's no command in progress.
1271 	 *
1272 	 * Note: this *shouldn't* ever find that there is a command
1273 	 * in progress, because we already hold the <genlock> mutex.
1274 	 * Also, to ensure we don't have a conflict with the chip's
1275 	 * internal firmware or a process accessing the same (shared)
1276 	 * SEEPROM through the other port of a 5704, we've already
1277 	 * been through the "software arbitration" protocol.
1278 	 * So this is just a final consistency check: we shouldn't
1279 	 * see EITHER the START bit (command started but not complete)
1280 	 * OR the COMPLETE bit (command completed but not cleared).
1281 	 */
1282 	regval = bge_reg_get32(bgep, SERIAL_EEPROM_ADDRESS_REG);
1283 	if (regval & SEEPROM_ACCESS_START)
1284 		return (EPROTO);
1285 	if (regval & SEEPROM_ACCESS_COMPLETE)
1286 		return (EPROTO);
1287 
1288 	/*
1289 	 * Assemble the command ...
1290 	 */
1291 	cmd |= addr & SEEPROM_ACCESS_ADDRESS_MASK;
1292 	addr >>= SEEPROM_ACCESS_ADDRESS_SIZE;
1293 	addr <<= SEEPROM_ACCESS_DEVID_SHIFT;
1294 	cmd |= addr & SEEPROM_ACCESS_DEVID_MASK;
1295 	cmd |= SEEPROM_ACCESS_START;
1296 	cmd |= SEEPROM_ACCESS_COMPLETE;
1297 	cmd |= regval & SEEPROM_ACCESS_HALFCLOCK_MASK;
1298 
1299 	bge_reg_put32(bgep, SERIAL_EEPROM_DATA_REG, *dp);
1300 	bge_reg_put32(bgep, SERIAL_EEPROM_ADDRESS_REG, cmd);
1301 
1302 	/*
1303 	 * By observation, a successful access takes ~20us on a 5703/4,
1304 	 * but apparently much longer (up to 1000us) on the obsolescent
1305 	 * BCM5700/BCM5701.  We want to be sure we don't get any false
1306 	 * timeouts here; but OTOH, we don't want a bogus access to lock
1307 	 * out interrupts for longer than necessary. So we'll allow up
1308 	 * to 1000us ...
1309 	 */
1310 	for (tries = 0; tries < 1000; ++tries) {
1311 		regval = bge_reg_get32(bgep, SERIAL_EEPROM_ADDRESS_REG);
1312 		if (regval & SEEPROM_ACCESS_COMPLETE)
1313 			break;
1314 		drv_usecwait(1);
1315 	}
1316 
1317 	if (regval & SEEPROM_ACCESS_COMPLETE) {
1318 		/*
1319 		 * All OK; read the SEEPROM data register, then write back
1320 		 * the value read from the address register in order to
1321 		 * clear the <complete> bit and leave the SEEPROM access
1322 		 * state machine idle, ready for the next access ...
1323 		 */
1324 		BGE_DEBUG(("bge_seeprom_access: complete after %d us", tries));
1325 		*dp = bge_reg_get32(bgep, SERIAL_EEPROM_DATA_REG);
1326 		bge_reg_put32(bgep, SERIAL_EEPROM_ADDRESS_REG, regval);
1327 		return (0);
1328 	}
1329 
1330 	/*
1331 	 * Hmm ... what happened here?
1332 	 *
1333 	 * Most likely, the user addressed a non-existent SEEPROM. Or
1334 	 * maybe the SEEPROM was busy internally (e.g. processing a write)
1335 	 * and didn't respond to being addressed. Either way, it's left
1336 	 * the SEEPROM access state machine wedged. So we'll reset it
1337 	 * before we leave, so it's ready for next time ...
1338 	 */
1339 	BGE_DEBUG(("bge_seeprom_access: timed out after %d us", tries));
1340 	bge_reg_set32(bgep, SERIAL_EEPROM_ADDRESS_REG, SEEPROM_ACCESS_INIT);
1341 	return (ENODATA);
1342 }
1343 
1344 /*
1345  * Basic Flash get/set access routine
1346  *
1347  * These use the chip's Flash auto-access method, controlled by the
1348  * Flash Access Registers at 0x7000-701c, so the CPU doesn't have to
1349  * fiddle with the individual bits.
1350  *
1351  * The caller should hold <genlock> and *also* have already acquired
1352  * the right to access the Flash, via bge_nvmem_acquire() above.
1353  *
1354  * Return value:
1355  *	0 on success,
1356  *	ENODATA on access timeout (maybe retryable: device may just be busy)
1357  *	ENODEV if the NVmem device is missing or otherwise unusable
1358  *
1359  * <*dp> is an input to a NVM_FLASH_CMD_WR operation, or an output
1360  * from a (successful) NVM_FLASH_CMD_RD.
1361  */
1362 static int bge_flash_access(bge_t *bgep, uint32_t cmd, bge_regno_t addr,
1363 				uint32_t *dp);
1364 #pragma	no_inline(bge_flash_access)
1365 
1366 static int
1367 bge_flash_access(bge_t *bgep, uint32_t cmd, bge_regno_t addr, uint32_t *dp)
1368 {
1369 	uint32_t tries;
1370 	uint32_t regval;
1371 
1372 	ASSERT(mutex_owned(bgep->genlock));
1373 
1374 	/*
1375 	 * On the newer chips that support both SEEPROM & Flash, we need
1376 	 * to specifically disable SEEPROM access while accessing Flash.
1377 	 * The older chips don't support Flash, and the NVM registers don't
1378 	 * exist, so we shouldn't be here at all!
1379 	 */
1380 	switch (bgep->chipid.nvtype) {
1381 	case BGE_NVTYPE_NONE:
1382 	case BGE_NVTYPE_UNKNOWN:
1383 		_NOTE(NOTREACHED)
1384 	case BGE_NVTYPE_SEEPROM:
1385 		return (ENODEV);
1386 
1387 	case BGE_NVTYPE_LEGACY_SEEPROM:
1388 	case BGE_NVTYPE_UNBUFFERED_FLASH:
1389 	case BGE_NVTYPE_BUFFERED_FLASH:
1390 	default:
1391 		bge_reg_clr32(bgep, NVM_CONFIG1_REG,
1392 		    NVM_CFG1_LEGACY_SEEPROM_MODE);
1393 		break;
1394 	}
1395 
1396 	/*
1397 	 * Assemble the command ...
1398 	 */
1399 	addr &= NVM_FLASH_ADDR_MASK;
1400 	cmd |= NVM_FLASH_CMD_DOIT;
1401 	cmd |= NVM_FLASH_CMD_FIRST;
1402 	cmd |= NVM_FLASH_CMD_LAST;
1403 	cmd |= NVM_FLASH_CMD_DONE;
1404 
1405 	bge_reg_put32(bgep, NVM_FLASH_WRITE_REG, *dp);
1406 	bge_reg_put32(bgep, NVM_FLASH_ADDR_REG, addr);
1407 	bge_reg_put32(bgep, NVM_FLASH_CMD_REG, cmd);
1408 
1409 	/*
1410 	 * Allow up to 1000ms ...
1411 	 */
1412 	for (tries = 0; tries < 1000; ++tries) {
1413 		regval = bge_reg_get32(bgep, NVM_FLASH_CMD_REG);
1414 		if (regval & NVM_FLASH_CMD_DONE)
1415 			break;
1416 		drv_usecwait(1);
1417 	}
1418 
1419 	if (regval & NVM_FLASH_CMD_DONE) {
1420 		/*
1421 		 * All OK; read the data from the Flash read register
1422 		 */
1423 		BGE_DEBUG(("bge_flash_access: complete after %d us", tries));
1424 		*dp = bge_reg_get32(bgep, NVM_FLASH_READ_REG);
1425 		return (0);
1426 	}
1427 
1428 	/*
1429 	 * Hmm ... what happened here?
1430 	 *
1431 	 * Most likely, the user addressed a non-existent Flash. Or
1432 	 * maybe the Flash was busy internally (e.g. processing a write)
1433 	 * and didn't respond to being addressed. Either way, there's
1434 	 * nothing we can here ...
1435 	 */
1436 	BGE_DEBUG(("bge_flash_access: timed out after %d us", tries));
1437 	return (ENODATA);
1438 }
1439 
1440 /*
1441  * The next two functions regulate access to the NVram (if fitted).
1442  *
1443  * On a 5704 (dual core) chip, there's only one SEEPROM and one Flash
1444  * (SPI) interface, but they can be accessed through either port. These
1445  * are managed by different instance of this driver and have no software
1446  * state in common.
1447  *
1448  * In addition (and even on a single core chip) the chip's internal
1449  * firmware can access the SEEPROM/Flash, most notably after a RESET
1450  * when it may download code to run internally.
1451  *
1452  * So we need to arbitrate between these various software agents.  For
1453  * this purpose, the chip provides the Software Arbitration Register,
1454  * which implements hardware(!) arbitration.
1455  *
1456  * This functionality didn't exist on older (5700/5701) chips, so there's
1457  * nothing we can do by way of arbitration on those; also, if there's no
1458  * SEEPROM/Flash fitted (or we couldn't determine what type), there's also
1459  * nothing to do.
1460  *
1461  * The internal firmware appears to use Request 0, which is the highest
1462  * priority.  So we'd like to use Request 2, leaving one higher and one
1463  * lower for any future developments ... but apparently this doesn't
1464  * always work.  So for now, the code uses Request 1 ;-(
1465  */
1466 
1467 #define	NVM_READ_REQ	NVM_READ_REQ1
1468 #define	NVM_RESET_REQ	NVM_RESET_REQ1
1469 #define	NVM_SET_REQ	NVM_SET_REQ1
1470 
1471 static void bge_nvmem_relinquish(bge_t *bgep);
1472 #pragma	no_inline(bge_nvmem_relinquish)
1473 
1474 static void
1475 bge_nvmem_relinquish(bge_t *bgep)
1476 {
1477 	ASSERT(mutex_owned(bgep->genlock));
1478 
1479 	switch (bgep->chipid.nvtype) {
1480 	case BGE_NVTYPE_NONE:
1481 	case BGE_NVTYPE_UNKNOWN:
1482 		_NOTE(NOTREACHED)
1483 		return;
1484 
1485 	case BGE_NVTYPE_SEEPROM:
1486 		/*
1487 		 * No arbitration performed, no release needed
1488 		 */
1489 		return;
1490 
1491 	case BGE_NVTYPE_LEGACY_SEEPROM:
1492 	case BGE_NVTYPE_UNBUFFERED_FLASH:
1493 	case BGE_NVTYPE_BUFFERED_FLASH:
1494 	default:
1495 		break;
1496 	}
1497 
1498 	/*
1499 	 * Our own request should be present (whether or not granted) ...
1500 	 */
1501 	(void) bge_reg_get32(bgep, NVM_SW_ARBITRATION_REG);
1502 
1503 	/*
1504 	 * ... this will make it go away.
1505 	 */
1506 	bge_reg_put32(bgep, NVM_SW_ARBITRATION_REG, NVM_RESET_REQ);
1507 	(void) bge_reg_get32(bgep, NVM_SW_ARBITRATION_REG);
1508 }
1509 
1510 /*
1511  * Arbitrate for access to the NVmem, if necessary
1512  *
1513  * Return value:
1514  *	0 on success
1515  *	EAGAIN if the device is in use (retryable)
1516  *	ENODEV if the NVmem device is missing or otherwise unusable
1517  */
1518 static int bge_nvmem_acquire(bge_t *bgep);
1519 #pragma	no_inline(bge_nvmem_acquire)
1520 
1521 static int
1522 bge_nvmem_acquire(bge_t *bgep)
1523 {
1524 	uint32_t regval;
1525 	uint32_t tries;
1526 
1527 	ASSERT(mutex_owned(bgep->genlock));
1528 
1529 	switch (bgep->chipid.nvtype) {
1530 	case BGE_NVTYPE_NONE:
1531 	case BGE_NVTYPE_UNKNOWN:
1532 		/*
1533 		 * Access denied: no (recognisable) device fitted
1534 		 */
1535 		return (ENODEV);
1536 
1537 	case BGE_NVTYPE_SEEPROM:
1538 		/*
1539 		 * Access granted: no arbitration needed (or possible)
1540 		 */
1541 		return (0);
1542 
1543 	case BGE_NVTYPE_LEGACY_SEEPROM:
1544 	case BGE_NVTYPE_UNBUFFERED_FLASH:
1545 	case BGE_NVTYPE_BUFFERED_FLASH:
1546 	default:
1547 		/*
1548 		 * Access conditional: conduct arbitration protocol
1549 		 */
1550 		break;
1551 	}
1552 
1553 	/*
1554 	 * We're holding the per-port mutex <genlock>, so no-one other
1555 	 * thread can be attempting to access the NVmem through *this*
1556 	 * port. But it could be in use by the *other* port (of a 5704),
1557 	 * or by the chip's internal firmware, so we have to go through
1558 	 * the full (hardware) arbitration protocol ...
1559 	 *
1560 	 * Note that *because* we're holding <genlock>, the interrupt handler
1561 	 * won't be able to progress.  So we're only willing to spin for a
1562 	 * fairly short time.  Specifically:
1563 	 *
1564 	 *	We *must* wait long enough for the hardware to resolve all
1565 	 *	requests and determine the winner.  Fortunately, this is
1566 	 *	"almost instantaneous", even as observed by GHz CPUs.
1567 	 *
1568 	 *	A successful access by another Solaris thread (via either
1569 	 *	port) typically takes ~20us.  So waiting a bit longer than
1570 	 *	that will give a good chance of success, if the other user
1571 	 *	*is* another thread on the other port.
1572 	 *
1573 	 *	However, the internal firmware can hold on to the NVmem
1574 	 *	for *much* longer: at least 10 milliseconds just after a
1575 	 *	RESET, and maybe even longer if the NVmem actually contains
1576 	 *	code to download and run on the internal CPUs.
1577 	 *
1578 	 * So, we'll allow 50us; if that's not enough then it's up to the
1579 	 * caller to retry later (hence the choice of return code EAGAIN).
1580 	 */
1581 	regval = bge_reg_get32(bgep, NVM_SW_ARBITRATION_REG);
1582 	bge_reg_put32(bgep, NVM_SW_ARBITRATION_REG, NVM_SET_REQ);
1583 
1584 	for (tries = 0; tries < 50; ++tries) {
1585 		regval = bge_reg_get32(bgep, NVM_SW_ARBITRATION_REG);
1586 		if (regval & NVM_WON_REQ1)
1587 			break;
1588 		drv_usecwait(1);
1589 	}
1590 
1591 	if (regval & NVM_WON_REQ1) {
1592 		BGE_DEBUG(("bge_nvmem_acquire: won after %d us", tries));
1593 		return (0);
1594 	}
1595 
1596 	/*
1597 	 * Somebody else must be accessing the NVmem, so abandon our
1598 	 * attempt take control of it.  The caller can try again later ...
1599 	 */
1600 	BGE_DEBUG(("bge_nvmem_acquire: lost after %d us", tries));
1601 	bge_nvmem_relinquish(bgep);
1602 	return (EAGAIN);
1603 }
1604 
1605 /*
1606  * This code assumes that the GPIO1 bit has been wired up to the NVmem
1607  * write protect line in such a way that the NVmem is protected when
1608  * GPIO1 is an input, or is an output but driven high.  Thus, to make the
1609  * NVmem writable we have to change GPIO1 to an output AND drive it low.
1610  *
1611  * Note: there's only one set of GPIO pins on a 5704, even though they
1612  * can be accessed through either port.  So the chip has to resolve what
1613  * happens if the two ports program a single pin differently ... the rule
1614  * it uses is that if the ports disagree about the *direction* of a pin,
1615  * "output" wins over "input", but if they disagree about its *value* as
1616  * an output, then the pin is TRISTATED instead!  In such a case, no-one
1617  * wins, and the external signal does whatever the external circuitry
1618  * defines as the default -- which we've assumed is the PROTECTED state.
1619  * So, we always change GPIO1 back to being an *input* whenever we're not
1620  * specifically using it to unprotect the NVmem. This allows either port
1621  * to update the NVmem, although obviously only one at a time!
1622  *
1623  * The caller should hold <genlock> and *also* have already acquired the
1624  * right to access the NVmem, via bge_nvmem_acquire() above.
1625  */
1626 static void bge_nvmem_protect(bge_t *bgep, boolean_t protect);
1627 #pragma	inline(bge_nvmem_protect)
1628 
1629 static void
1630 bge_nvmem_protect(bge_t *bgep, boolean_t protect)
1631 {
1632 	uint32_t regval;
1633 
1634 	ASSERT(mutex_owned(bgep->genlock));
1635 
1636 	regval = bge_reg_get32(bgep, MISC_LOCAL_CONTROL_REG);
1637 	if (protect) {
1638 		regval |= MLCR_MISC_PINS_OUTPUT_1;
1639 		regval &= ~MLCR_MISC_PINS_OUTPUT_ENABLE_1;
1640 	} else {
1641 		regval &= ~MLCR_MISC_PINS_OUTPUT_1;
1642 		regval |= MLCR_MISC_PINS_OUTPUT_ENABLE_1;
1643 	}
1644 	bge_reg_put32(bgep, MISC_LOCAL_CONTROL_REG, regval);
1645 }
1646 
1647 /*
1648  * Now put it all together ...
1649  *
1650  * Try to acquire control of the NVmem; if successful, then:
1651  *	unprotect it (if we want to write to it)
1652  *	perform the requested access
1653  *	reprotect it (after a write)
1654  *	relinquish control
1655  *
1656  * Return value:
1657  *	0 on success,
1658  *	EAGAIN if the device is in use (retryable)
1659  *	ENODATA on access timeout (maybe retryable: device may just be busy)
1660  *	ENODEV if the NVmem device is missing or otherwise unusable
1661  *	EPROTO on other h/w or s/w errors.
1662  */
1663 static int
1664 bge_nvmem_rw32(bge_t *bgep, uint32_t cmd, bge_regno_t addr, uint32_t *dp)
1665 {
1666 	int err;
1667 
1668 	if ((err = bge_nvmem_acquire(bgep)) == 0) {
1669 		switch (cmd) {
1670 		case BGE_SEE_READ:
1671 			err = bge_seeprom_access(bgep,
1672 			    SEEPROM_ACCESS_READ, addr, dp);
1673 			break;
1674 
1675 		case BGE_SEE_WRITE:
1676 			bge_nvmem_protect(bgep, B_FALSE);
1677 			err = bge_seeprom_access(bgep,
1678 			    SEEPROM_ACCESS_WRITE, addr, dp);
1679 			bge_nvmem_protect(bgep, B_TRUE);
1680 			break;
1681 
1682 		case BGE_FLASH_READ:
1683 			if (DEVICE_5721_SERIES_CHIPSETS(bgep) ||
1684 			    DEVICE_5723_SERIES_CHIPSETS(bgep) ||
1685 			    DEVICE_5714_SERIES_CHIPSETS(bgep)) {
1686 				bge_reg_set32(bgep, NVM_ACCESS_REG,
1687 				    NVM_ACCESS_ENABLE);
1688 			}
1689 			err = bge_flash_access(bgep,
1690 			    NVM_FLASH_CMD_RD, addr, dp);
1691 			if (DEVICE_5721_SERIES_CHIPSETS(bgep) ||
1692 			    DEVICE_5723_SERIES_CHIPSETS(bgep) ||
1693 			    DEVICE_5714_SERIES_CHIPSETS(bgep)) {
1694 				bge_reg_clr32(bgep, NVM_ACCESS_REG,
1695 				    NVM_ACCESS_ENABLE);
1696 			}
1697 			break;
1698 
1699 		case BGE_FLASH_WRITE:
1700 			if (DEVICE_5721_SERIES_CHIPSETS(bgep) ||
1701 			    DEVICE_5723_SERIES_CHIPSETS(bgep) ||
1702 			    DEVICE_5714_SERIES_CHIPSETS(bgep)) {
1703 				bge_reg_set32(bgep, NVM_ACCESS_REG,
1704 				    NVM_WRITE_ENABLE|NVM_ACCESS_ENABLE);
1705 			}
1706 			bge_nvmem_protect(bgep, B_FALSE);
1707 			err = bge_flash_access(bgep,
1708 			    NVM_FLASH_CMD_WR, addr, dp);
1709 			bge_nvmem_protect(bgep, B_TRUE);
1710 			if (DEVICE_5721_SERIES_CHIPSETS(bgep) ||
1711 			    DEVICE_5723_SERIES_CHIPSETS(bgep) ||
1712 			    DEVICE_5714_SERIES_CHIPSETS(bgep)) {
1713 				bge_reg_clr32(bgep, NVM_ACCESS_REG,
1714 				    NVM_WRITE_ENABLE|NVM_ACCESS_ENABLE);
1715 			}
1716 
1717 			break;
1718 
1719 		default:
1720 			_NOTE(NOTREACHED)
1721 			break;
1722 		}
1723 		bge_nvmem_relinquish(bgep);
1724 	}
1725 
1726 	BGE_DEBUG(("bge_nvmem_rw32: err %d", err));
1727 	return (err);
1728 }
1729 
1730 /*
1731  * Attempt to get a MAC address from the SEEPROM or Flash, if any
1732  */
1733 static uint64_t bge_get_nvmac(bge_t *bgep);
1734 #pragma no_inline(bge_get_nvmac)
1735 
1736 static uint64_t
1737 bge_get_nvmac(bge_t *bgep)
1738 {
1739 	uint32_t mac_high;
1740 	uint32_t mac_low;
1741 	uint32_t addr;
1742 	uint32_t cmd;
1743 	uint64_t mac;
1744 
1745 	BGE_TRACE(("bge_get_nvmac($%p)",
1746 	    (void *)bgep));
1747 
1748 	switch (bgep->chipid.nvtype) {
1749 	case BGE_NVTYPE_NONE:
1750 	case BGE_NVTYPE_UNKNOWN:
1751 	default:
1752 		return (0ULL);
1753 
1754 	case BGE_NVTYPE_SEEPROM:
1755 	case BGE_NVTYPE_LEGACY_SEEPROM:
1756 		cmd = BGE_SEE_READ;
1757 		break;
1758 
1759 	case BGE_NVTYPE_UNBUFFERED_FLASH:
1760 	case BGE_NVTYPE_BUFFERED_FLASH:
1761 		cmd = BGE_FLASH_READ;
1762 		break;
1763 	}
1764 
1765 	if (DEVICE_5906_SERIES_CHIPSETS(bgep))
1766 		addr = NVMEM_DATA_MAC_ADDRESS_5906;
1767 	else
1768 		addr = NVMEM_DATA_MAC_ADDRESS;
1769 
1770 	if (bge_nvmem_rw32(bgep, cmd, addr, &mac_high))
1771 		return (0ULL);
1772 	addr += 4;
1773 	if (bge_nvmem_rw32(bgep, cmd, addr, &mac_low))
1774 		return (0ULL);
1775 
1776 	/*
1777 	 * The Broadcom chip is natively BIG-endian, so that's how the
1778 	 * MAC address is represented in NVmem.  We may need to swap it
1779 	 * around on a little-endian host ...
1780 	 */
1781 #ifdef	_BIG_ENDIAN
1782 	mac = mac_high;
1783 	mac = mac << 32;
1784 	mac |= mac_low;
1785 #else
1786 	mac = BGE_BSWAP_32(mac_high);
1787 	mac = mac << 32;
1788 	mac |= BGE_BSWAP_32(mac_low);
1789 #endif	/* _BIG_ENDIAN */
1790 
1791 	return (mac);
1792 }
1793 
1794 #else	/* BGE_SEE_IO32 || BGE_FLASH_IO32 */
1795 
1796 /*
1797  * Dummy version for when we're not supporting NVmem access
1798  */
1799 static uint64_t bge_get_nvmac(bge_t *bgep);
1800 #pragma inline(bge_get_nvmac)
1801 
1802 static uint64_t
1803 bge_get_nvmac(bge_t *bgep)
1804 {
1805 	_NOTE(ARGUNUSED(bgep))
1806 	return (0ULL);
1807 }
1808 
1809 #endif	/* BGE_SEE_IO32 || BGE_FLASH_IO32 */
1810 
1811 /*
1812  * Determine the type of NVmem that is (or may be) attached to this chip,
1813  */
1814 static enum bge_nvmem_type bge_nvmem_id(bge_t *bgep);
1815 #pragma no_inline(bge_nvmem_id)
1816 
1817 static enum bge_nvmem_type
1818 bge_nvmem_id(bge_t *bgep)
1819 {
1820 	enum bge_nvmem_type nvtype;
1821 	uint32_t config1;
1822 
1823 	BGE_TRACE(("bge_nvmem_id($%p)",
1824 	    (void *)bgep));
1825 
1826 	switch (bgep->chipid.device) {
1827 	default:
1828 		/*
1829 		 * We shouldn't get here; it means we don't recognise
1830 		 * the chip, which means we don't know how to determine
1831 		 * what sort of NVmem (if any) it has.  So we'll say
1832 		 * NONE, to disable the NVmem access code ...
1833 		 */
1834 		nvtype = BGE_NVTYPE_NONE;
1835 		break;
1836 
1837 	case DEVICE_ID_5700:
1838 	case DEVICE_ID_5700x:
1839 	case DEVICE_ID_5701:
1840 		/*
1841 		 * These devices support *only* SEEPROMs
1842 		 */
1843 		nvtype = BGE_NVTYPE_SEEPROM;
1844 		break;
1845 
1846 	case DEVICE_ID_5702:
1847 	case DEVICE_ID_5702fe:
1848 	case DEVICE_ID_5703C:
1849 	case DEVICE_ID_5703S:
1850 	case DEVICE_ID_5704C:
1851 	case DEVICE_ID_5704S:
1852 	case DEVICE_ID_5704:
1853 	case DEVICE_ID_5705M:
1854 	case DEVICE_ID_5705C:
1855 	case DEVICE_ID_5705_2:
1856 	case DEVICE_ID_5780:
1857 	case DEVICE_ID_5782:
1858 	case DEVICE_ID_5787:
1859 	case DEVICE_ID_5787M:
1860 	case DEVICE_ID_5788:
1861 	case DEVICE_ID_5789:
1862 	case DEVICE_ID_5751:
1863 	case DEVICE_ID_5751M:
1864 	case DEVICE_ID_5752:
1865 	case DEVICE_ID_5752M:
1866 	case DEVICE_ID_5754:
1867 	case DEVICE_ID_5755:
1868 	case DEVICE_ID_5755M:
1869 	case DEVICE_ID_5756M:
1870 	case DEVICE_ID_5721:
1871 	case DEVICE_ID_5722:
1872 	case DEVICE_ID_5723:
1873 	case DEVICE_ID_5761:
1874 	case DEVICE_ID_5761E:
1875 	case DEVICE_ID_5714C:
1876 	case DEVICE_ID_5714S:
1877 	case DEVICE_ID_5715C:
1878 	case DEVICE_ID_5715S:
1879 		config1 = bge_reg_get32(bgep, NVM_CONFIG1_REG);
1880 		if (config1 & NVM_CFG1_FLASH_MODE)
1881 			if (config1 & NVM_CFG1_BUFFERED_MODE)
1882 				nvtype = BGE_NVTYPE_BUFFERED_FLASH;
1883 			else
1884 				nvtype = BGE_NVTYPE_UNBUFFERED_FLASH;
1885 		else
1886 			nvtype = BGE_NVTYPE_LEGACY_SEEPROM;
1887 		break;
1888 	case DEVICE_ID_5906:
1889 	case DEVICE_ID_5906M:
1890 		nvtype = BGE_NVTYPE_BUFFERED_FLASH;
1891 		break;
1892 	}
1893 
1894 	return (nvtype);
1895 }
1896 
1897 #undef	BGE_DBG
1898 #define	BGE_DBG		BGE_DBG_CHIP	/* debug flag for this code	*/
1899 
1900 static void
1901 bge_init_recv_rule(bge_t *bgep)
1902 {
1903 	bge_recv_rule_t *rulep = bgep->recv_rules;
1904 	uint32_t i;
1905 
1906 	/*
1907 	 * Initialize receive rule registers.
1908 	 * Note that rules may persist across each bge_m_start/stop() call.
1909 	 */
1910 	for (i = 0; i < RECV_RULES_NUM_MAX; i++, rulep++) {
1911 		bge_reg_put32(bgep, RECV_RULE_MASK_REG(i), rulep->mask_value);
1912 		bge_reg_put32(bgep, RECV_RULE_CONTROL_REG(i), rulep->control);
1913 	}
1914 }
1915 
1916 /*
1917  * Using the values captured by bge_chip_cfg_init(), and additional probes
1918  * as required, characterise the chip fully: determine the label by which
1919  * to refer to this chip, the correct settings for various registers, and
1920  * of course whether the device and/or subsystem are supported!
1921  */
1922 int bge_chip_id_init(bge_t *bgep);
1923 #pragma	no_inline(bge_chip_id_init)
1924 
1925 int
1926 bge_chip_id_init(bge_t *bgep)
1927 {
1928 	char buf[MAXPATHLEN];		/* any risk of stack overflow?	*/
1929 	boolean_t sys_ok;
1930 	boolean_t dev_ok;
1931 	chip_id_t *cidp;
1932 	uint32_t subid;
1933 	char *devname;
1934 	char *sysname;
1935 	int *ids;
1936 	int err;
1937 	uint_t i;
1938 
1939 	sys_ok = dev_ok = B_FALSE;
1940 	cidp = &bgep->chipid;
1941 
1942 	/*
1943 	 * Check the PCI device ID to determine the generic chip type and
1944 	 * select parameters that depend on this.
1945 	 *
1946 	 * Note: because the SPARC platforms in general don't fit the
1947 	 * SEEPROM 'behind' the chip, the PCI revision ID register reads
1948 	 * as zero - which is why we use <asic_rev> rather than <revision>
1949 	 * below ...
1950 	 *
1951 	 * Note: in general we can't distinguish between the Copper/SerDes
1952 	 * versions by ID alone, as some Copper devices (e.g. some but not
1953 	 * all 5703Cs) have the same ID as the SerDes equivalents.  So we
1954 	 * treat them the same here, and the MII code works out the media
1955 	 * type later on ...
1956 	 */
1957 	cidp->mbuf_base = bge_mbuf_pool_base;
1958 	cidp->mbuf_length = bge_mbuf_pool_len;
1959 	cidp->recv_slots = BGE_RECV_SLOTS_USED;
1960 	cidp->bge_dma_rwctrl = bge_dma_rwctrl;
1961 	cidp->pci_type = BGE_PCI_X;
1962 	cidp->statistic_type = BGE_STAT_BLK;
1963 	cidp->mbuf_lo_water_rdma = bge_mbuf_lo_water_rdma;
1964 	cidp->mbuf_lo_water_rmac = bge_mbuf_lo_water_rmac;
1965 	cidp->mbuf_hi_water = bge_mbuf_hi_water;
1966 	cidp->rx_ticks_norm = bge_rx_ticks_norm;
1967 	cidp->rx_count_norm = bge_rx_count_norm;
1968 
1969 	if (cidp->rx_rings == 0 || cidp->rx_rings > BGE_RECV_RINGS_MAX)
1970 		cidp->rx_rings = BGE_RECV_RINGS_DEFAULT;
1971 	if (cidp->tx_rings == 0 || cidp->tx_rings > BGE_SEND_RINGS_MAX)
1972 		cidp->tx_rings = BGE_SEND_RINGS_DEFAULT;
1973 
1974 	cidp->msi_enabled = B_FALSE;
1975 
1976 	switch (cidp->device) {
1977 	case DEVICE_ID_5700:
1978 	case DEVICE_ID_5700x:
1979 		cidp->chip_label = 5700;
1980 		cidp->flags |= CHIP_FLAG_PARTIAL_CSUM;
1981 		break;
1982 
1983 	case DEVICE_ID_5701:
1984 		cidp->chip_label = 5701;
1985 		dev_ok = B_TRUE;
1986 		cidp->flags |= CHIP_FLAG_PARTIAL_CSUM;
1987 		break;
1988 
1989 	case DEVICE_ID_5702:
1990 	case DEVICE_ID_5702fe:
1991 		cidp->chip_label = 5702;
1992 		dev_ok = B_TRUE;
1993 		cidp->flags |= CHIP_FLAG_PARTIAL_CSUM;
1994 		cidp->pci_type = BGE_PCI;
1995 		break;
1996 
1997 	case DEVICE_ID_5703C:
1998 	case DEVICE_ID_5703S:
1999 	case DEVICE_ID_5703:
2000 		/*
2001 		 * Revision A0 of the 5703/5793 had various errata
2002 		 * that we can't or don't work around, so it's not
2003 		 * supported, but all later versions are
2004 		 */
2005 		cidp->chip_label = cidp->subven == VENDOR_ID_SUN ? 5793 : 5703;
2006 		if (bgep->chipid.asic_rev != MHCR_CHIP_REV_5703_A0)
2007 			dev_ok = B_TRUE;
2008 		cidp->flags |= CHIP_FLAG_PARTIAL_CSUM;
2009 		break;
2010 
2011 	case DEVICE_ID_5704C:
2012 	case DEVICE_ID_5704S:
2013 	case DEVICE_ID_5704:
2014 		cidp->chip_label = cidp->subven == VENDOR_ID_SUN ? 5794 : 5704;
2015 		cidp->mbuf_base = bge_mbuf_pool_base_5704;
2016 		cidp->mbuf_length = bge_mbuf_pool_len_5704;
2017 		dev_ok = B_TRUE;
2018 		cidp->flags |= CHIP_FLAG_PARTIAL_CSUM;
2019 		break;
2020 
2021 	case DEVICE_ID_5705C:
2022 	case DEVICE_ID_5705M:
2023 	case DEVICE_ID_5705MA3:
2024 	case DEVICE_ID_5705F:
2025 	case DEVICE_ID_5705_2:
2026 	case DEVICE_ID_5754:
2027 		if (cidp->device == DEVICE_ID_5754) {
2028 			cidp->chip_label = 5754;
2029 			cidp->pci_type = BGE_PCI_E;
2030 		} else {
2031 			cidp->chip_label = 5705;
2032 			cidp->pci_type = BGE_PCI;
2033 		}
2034 		cidp->mbuf_lo_water_rdma = RDMA_MBUF_LOWAT_5705;
2035 		cidp->mbuf_lo_water_rmac = MAC_RX_MBUF_LOWAT_5705;
2036 		cidp->mbuf_hi_water = MBUF_HIWAT_5705;
2037 		cidp->mbuf_base = bge_mbuf_pool_base_5705;
2038 		cidp->mbuf_length = bge_mbuf_pool_len_5705;
2039 		cidp->recv_slots = BGE_RECV_SLOTS_5705;
2040 		cidp->rx_rings = BGE_RECV_RINGS_MAX_5705;
2041 		cidp->tx_rings = BGE_SEND_RINGS_MAX_5705;
2042 		cidp->flags |= CHIP_FLAG_NO_JUMBO;
2043 		cidp->flags |= CHIP_FLAG_PARTIAL_CSUM;
2044 		cidp->statistic_type = BGE_STAT_REG;
2045 		dev_ok = B_TRUE;
2046 		break;
2047 
2048 	case DEVICE_ID_5906:
2049 	case DEVICE_ID_5906M:
2050 		cidp->chip_label = 5906;
2051 		cidp->pci_type = BGE_PCI_E;
2052 		cidp->mbuf_lo_water_rdma = RDMA_MBUF_LOWAT_5906;
2053 		cidp->mbuf_lo_water_rmac = MAC_RX_MBUF_LOWAT_5906;
2054 		cidp->mbuf_hi_water = MBUF_HIWAT_5906;
2055 		cidp->mbuf_base = bge_mbuf_pool_base;
2056 		cidp->mbuf_length = bge_mbuf_pool_len;
2057 		cidp->recv_slots = BGE_RECV_SLOTS_5705;
2058 		cidp->rx_rings = BGE_RECV_RINGS_MAX_5705;
2059 		cidp->tx_rings = BGE_SEND_RINGS_MAX_5705;
2060 		cidp->flags |= CHIP_FLAG_NO_JUMBO;
2061 		cidp->statistic_type = BGE_STAT_REG;
2062 		dev_ok = B_TRUE;
2063 		break;
2064 
2065 	case DEVICE_ID_5753:
2066 		cidp->chip_label = 5753;
2067 		cidp->pci_type = BGE_PCI_E;
2068 		cidp->mbuf_lo_water_rdma = RDMA_MBUF_LOWAT_5705;
2069 		cidp->mbuf_lo_water_rmac = MAC_RX_MBUF_LOWAT_5705;
2070 		cidp->mbuf_hi_water = MBUF_HIWAT_5705;
2071 		cidp->mbuf_base = bge_mbuf_pool_base_5705;
2072 		cidp->mbuf_length = bge_mbuf_pool_len_5705;
2073 		cidp->recv_slots = BGE_RECV_SLOTS_5705;
2074 		cidp->bge_mlcr_default |= MLCR_MISC_PINS_OUTPUT_ENABLE_1;
2075 		cidp->rx_rings = BGE_RECV_RINGS_MAX_5705;
2076 		cidp->tx_rings = BGE_SEND_RINGS_MAX_5705;
2077 		cidp->flags |= CHIP_FLAG_NO_JUMBO;
2078 		cidp->statistic_type = BGE_STAT_REG;
2079 		dev_ok = B_TRUE;
2080 		break;
2081 
2082 	case DEVICE_ID_5755:
2083 	case DEVICE_ID_5755M:
2084 		cidp->chip_label = 5755;
2085 		cidp->pci_type = BGE_PCI_E;
2086 		cidp->mbuf_lo_water_rdma = RDMA_MBUF_LOWAT_5705;
2087 		cidp->mbuf_lo_water_rmac = MAC_RX_MBUF_LOWAT_5705;
2088 		cidp->mbuf_hi_water = MBUF_HIWAT_5705;
2089 		cidp->mbuf_base = bge_mbuf_pool_base_5705;
2090 		cidp->mbuf_length = bge_mbuf_pool_len_5705;
2091 		cidp->recv_slots = BGE_RECV_SLOTS_5705;
2092 		cidp->bge_mlcr_default |= MLCR_MISC_PINS_OUTPUT_ENABLE_1;
2093 		cidp->rx_rings = BGE_RECV_RINGS_MAX_5705;
2094 		cidp->tx_rings = BGE_SEND_RINGS_MAX_5705;
2095 		cidp->flags |= CHIP_FLAG_NO_JUMBO;
2096 		cidp->flags |= CHIP_FLAG_PARTIAL_CSUM;
2097 		cidp->statistic_type = BGE_STAT_REG;
2098 		dev_ok = B_TRUE;
2099 		break;
2100 
2101 	case DEVICE_ID_5756M:
2102 		/*
2103 		 * This is nearly identical to the 5755M.
2104 		 * (Actually reports the 5755 chip ID.)
2105 		 */
2106 		cidp->chip_label = 5756;
2107 		cidp->pci_type = BGE_PCI_E;
2108 		cidp->mbuf_lo_water_rdma = RDMA_MBUF_LOWAT_5705;
2109 		cidp->mbuf_lo_water_rmac = MAC_RX_MBUF_LOWAT_5705;
2110 		cidp->mbuf_hi_water = MBUF_HIWAT_5705;
2111 		cidp->mbuf_base = bge_mbuf_pool_base_5705;
2112 		cidp->mbuf_length = bge_mbuf_pool_len_5705;
2113 		cidp->recv_slots = BGE_RECV_SLOTS_5705;
2114 		cidp->bge_mlcr_default |= MLCR_MISC_PINS_OUTPUT_ENABLE_1;
2115 		cidp->rx_rings = BGE_RECV_RINGS_MAX_5705;
2116 		cidp->tx_rings = BGE_SEND_RINGS_MAX_5705;
2117 		cidp->flags |= CHIP_FLAG_NO_JUMBO;
2118 		cidp->statistic_type = BGE_STAT_REG;
2119 		dev_ok = B_TRUE;
2120 		break;
2121 
2122 	case DEVICE_ID_5787:
2123 	case DEVICE_ID_5787M:
2124 		cidp->chip_label = 5787;
2125 		cidp->pci_type = BGE_PCI_E;
2126 		cidp->mbuf_lo_water_rdma = RDMA_MBUF_LOWAT_5705;
2127 		cidp->mbuf_lo_water_rmac = MAC_RX_MBUF_LOWAT_5705;
2128 		cidp->mbuf_hi_water = MBUF_HIWAT_5705;
2129 		cidp->mbuf_base = bge_mbuf_pool_base_5705;
2130 		cidp->mbuf_length = bge_mbuf_pool_len_5705;
2131 		cidp->recv_slots = BGE_RECV_SLOTS_5705;
2132 		cidp->bge_mlcr_default |= MLCR_MISC_PINS_OUTPUT_ENABLE_1;
2133 		cidp->rx_rings = BGE_RECV_RINGS_MAX_5705;
2134 		cidp->tx_rings = BGE_SEND_RINGS_MAX_5705;
2135 		cidp->flags |= CHIP_FLAG_NO_JUMBO;
2136 		cidp->statistic_type = BGE_STAT_REG;
2137 		dev_ok = B_TRUE;
2138 		break;
2139 
2140 	case DEVICE_ID_5723:
2141 	case DEVICE_ID_5761:
2142 	case DEVICE_ID_5761E:
2143 		cidp->chip_label = cidp->device == DEVICE_ID_5723 ? 5723: 5761;
2144 		cidp->bge_dma_rwctrl = bge_dma_rwctrl_5721;
2145 		cidp->msi_enabled = bge_enable_msi;
2146 		cidp->pci_type = BGE_PCI_E;
2147 		cidp->mbuf_lo_water_rdma = RDMA_MBUF_LOWAT_5705;
2148 		cidp->mbuf_lo_water_rmac = MAC_RX_MBUF_LOWAT_5705;
2149 		cidp->mbuf_hi_water = MBUF_HIWAT_5705;
2150 		cidp->mbuf_base = bge_mbuf_pool_base_5705;
2151 		cidp->mbuf_length = bge_mbuf_pool_len_5705;
2152 		cidp->recv_slots = BGE_RECV_SLOTS_5705;
2153 		cidp->bge_mlcr_default |= MLCR_MISC_PINS_OUTPUT_ENABLE_1;
2154 		cidp->rx_rings = BGE_RECV_RINGS_MAX_5705;
2155 		cidp->tx_rings = BGE_SEND_RINGS_MAX_5705;
2156 		cidp->flags |= CHIP_FLAG_NO_JUMBO;
2157 		cidp->statistic_type = BGE_STAT_REG;
2158 		dev_ok = B_TRUE;
2159 		break;
2160 
2161 	/* PCI-X device, identical to 5714 */
2162 	case DEVICE_ID_5780:
2163 		cidp->chip_label = 5780;
2164 		cidp->mbuf_lo_water_rdma = RDMA_MBUF_LOWAT_5705;
2165 		cidp->mbuf_lo_water_rmac = MAC_RX_MBUF_LOWAT_5705;
2166 		cidp->mbuf_hi_water = MBUF_HIWAT_5705;
2167 		cidp->mbuf_base = bge_mbuf_pool_base_5721;
2168 		cidp->mbuf_length = bge_mbuf_pool_len_5721;
2169 		cidp->recv_slots = BGE_RECV_SLOTS_5721;
2170 		cidp->rx_rings = BGE_RECV_RINGS_MAX_5705;
2171 		cidp->tx_rings = BGE_SEND_RINGS_MAX_5705;
2172 		cidp->statistic_type = BGE_STAT_REG;
2173 		dev_ok = B_TRUE;
2174 		break;
2175 
2176 	case DEVICE_ID_5782:
2177 		/*
2178 		 * Apart from the label, we treat this as a 5705(?)
2179 		 */
2180 		cidp->chip_label = 5782;
2181 		cidp->mbuf_lo_water_rdma = RDMA_MBUF_LOWAT_5705;
2182 		cidp->mbuf_lo_water_rmac = MAC_RX_MBUF_LOWAT_5705;
2183 		cidp->mbuf_hi_water = MBUF_HIWAT_5705;
2184 		cidp->mbuf_base = bge_mbuf_pool_base_5705;
2185 		cidp->mbuf_length = bge_mbuf_pool_len_5705;
2186 		cidp->recv_slots = BGE_RECV_SLOTS_5705;
2187 		cidp->rx_rings = BGE_RECV_RINGS_MAX_5705;
2188 		cidp->tx_rings = BGE_SEND_RINGS_MAX_5705;
2189 		cidp->flags |= CHIP_FLAG_NO_JUMBO;
2190 		cidp->flags |= CHIP_FLAG_PARTIAL_CSUM;
2191 		cidp->statistic_type = BGE_STAT_REG;
2192 		dev_ok = B_TRUE;
2193 		break;
2194 
2195 	case DEVICE_ID_5788:
2196 		/*
2197 		 * Apart from the label, we treat this as a 5705(?)
2198 		 */
2199 		cidp->chip_label = 5788;
2200 		cidp->mbuf_lo_water_rdma = RDMA_MBUF_LOWAT_5705;
2201 		cidp->mbuf_lo_water_rmac = MAC_RX_MBUF_LOWAT_5705;
2202 		cidp->mbuf_hi_water = MBUF_HIWAT_5705;
2203 		cidp->mbuf_base = bge_mbuf_pool_base_5705;
2204 		cidp->mbuf_length = bge_mbuf_pool_len_5705;
2205 		cidp->recv_slots = BGE_RECV_SLOTS_5705;
2206 		cidp->rx_rings = BGE_RECV_RINGS_MAX_5705;
2207 		cidp->tx_rings = BGE_SEND_RINGS_MAX_5705;
2208 		cidp->statistic_type = BGE_STAT_REG;
2209 		cidp->flags |= CHIP_FLAG_NO_JUMBO;
2210 		dev_ok = B_TRUE;
2211 		break;
2212 
2213 	case DEVICE_ID_5714C:
2214 		if (cidp->revision >= REVISION_ID_5714_A2)
2215 			cidp->msi_enabled = bge_enable_msi;
2216 		/* FALLTHRU */
2217 	case DEVICE_ID_5714S:
2218 		cidp->chip_label = 5714;
2219 		cidp->mbuf_lo_water_rdma = RDMA_MBUF_LOWAT_5705;
2220 		cidp->mbuf_lo_water_rmac = MAC_RX_MBUF_LOWAT_5705;
2221 		cidp->mbuf_hi_water = MBUF_HIWAT_5705;
2222 		cidp->mbuf_base = bge_mbuf_pool_base_5721;
2223 		cidp->mbuf_length = bge_mbuf_pool_len_5721;
2224 		cidp->recv_slots = BGE_RECV_SLOTS_5721;
2225 		cidp->bge_dma_rwctrl = bge_dma_rwctrl_5714;
2226 		cidp->bge_mlcr_default = bge_mlcr_default_5714;
2227 		cidp->rx_rings = BGE_RECV_RINGS_MAX_5705;
2228 		cidp->tx_rings = BGE_SEND_RINGS_MAX_5705;
2229 		cidp->pci_type = BGE_PCI_E;
2230 		cidp->statistic_type = BGE_STAT_REG;
2231 		dev_ok = B_TRUE;
2232 		break;
2233 
2234 	case DEVICE_ID_5715C:
2235 	case DEVICE_ID_5715S:
2236 		cidp->chip_label = 5715;
2237 		cidp->mbuf_lo_water_rdma = RDMA_MBUF_LOWAT_5705;
2238 		cidp->mbuf_lo_water_rmac = MAC_RX_MBUF_LOWAT_5705;
2239 		cidp->mbuf_hi_water = MBUF_HIWAT_5705;
2240 		cidp->mbuf_base = bge_mbuf_pool_base_5721;
2241 		cidp->mbuf_length = bge_mbuf_pool_len_5721;
2242 		cidp->recv_slots = BGE_RECV_SLOTS_5721;
2243 		cidp->bge_dma_rwctrl = bge_dma_rwctrl_5715;
2244 		cidp->bge_mlcr_default = bge_mlcr_default_5714;
2245 		cidp->rx_rings = BGE_RECV_RINGS_MAX_5705;
2246 		cidp->tx_rings = BGE_SEND_RINGS_MAX_5705;
2247 		cidp->pci_type = BGE_PCI_E;
2248 		cidp->statistic_type = BGE_STAT_REG;
2249 		if (cidp->revision >= REVISION_ID_5715_A2)
2250 			cidp->msi_enabled = bge_enable_msi;
2251 		dev_ok = B_TRUE;
2252 		break;
2253 
2254 	case DEVICE_ID_5721:
2255 		cidp->chip_label = 5721;
2256 		cidp->mbuf_lo_water_rdma = RDMA_MBUF_LOWAT_5705;
2257 		cidp->mbuf_lo_water_rmac = MAC_RX_MBUF_LOWAT_5705;
2258 		cidp->mbuf_hi_water = MBUF_HIWAT_5705;
2259 		cidp->mbuf_base = bge_mbuf_pool_base_5721;
2260 		cidp->mbuf_length = bge_mbuf_pool_len_5721;
2261 		cidp->recv_slots = BGE_RECV_SLOTS_5721;
2262 		cidp->bge_dma_rwctrl = bge_dma_rwctrl_5721;
2263 		cidp->rx_rings = BGE_RECV_RINGS_MAX_5705;
2264 		cidp->tx_rings = BGE_SEND_RINGS_MAX_5705;
2265 		cidp->pci_type = BGE_PCI_E;
2266 		cidp->statistic_type = BGE_STAT_REG;
2267 		cidp->flags |= CHIP_FLAG_NO_JUMBO;
2268 		dev_ok = B_TRUE;
2269 		break;
2270 
2271 	case DEVICE_ID_5722:
2272 		cidp->chip_label = 5722;
2273 		cidp->pci_type = BGE_PCI_E;
2274 		cidp->mbuf_lo_water_rdma = RDMA_MBUF_LOWAT_5705;
2275 		cidp->mbuf_lo_water_rmac = MAC_RX_MBUF_LOWAT_5705;
2276 		cidp->mbuf_hi_water = MBUF_HIWAT_5705;
2277 		cidp->mbuf_base = bge_mbuf_pool_base_5705;
2278 		cidp->mbuf_length = bge_mbuf_pool_len_5705;
2279 		cidp->recv_slots = BGE_RECV_SLOTS_5705;
2280 		cidp->bge_mlcr_default |= MLCR_MISC_PINS_OUTPUT_ENABLE_1;
2281 		cidp->rx_rings = BGE_RECV_RINGS_MAX_5705;
2282 		cidp->tx_rings = BGE_SEND_RINGS_MAX_5705;
2283 		cidp->flags |= CHIP_FLAG_NO_JUMBO;
2284 		cidp->statistic_type = BGE_STAT_REG;
2285 		dev_ok = B_TRUE;
2286 		break;
2287 
2288 	case DEVICE_ID_5751:
2289 	case DEVICE_ID_5751M:
2290 		cidp->chip_label = 5751;
2291 		cidp->mbuf_lo_water_rdma = RDMA_MBUF_LOWAT_5705;
2292 		cidp->mbuf_lo_water_rmac = MAC_RX_MBUF_LOWAT_5705;
2293 		cidp->mbuf_hi_water = MBUF_HIWAT_5705;
2294 		cidp->mbuf_base = bge_mbuf_pool_base_5721;
2295 		cidp->mbuf_length = bge_mbuf_pool_len_5721;
2296 		cidp->recv_slots = BGE_RECV_SLOTS_5721;
2297 		cidp->bge_dma_rwctrl = bge_dma_rwctrl_5721;
2298 		cidp->rx_rings = BGE_RECV_RINGS_MAX_5705;
2299 		cidp->tx_rings = BGE_SEND_RINGS_MAX_5705;
2300 		cidp->pci_type = BGE_PCI_E;
2301 		cidp->statistic_type = BGE_STAT_REG;
2302 		cidp->flags |= CHIP_FLAG_NO_JUMBO;
2303 		dev_ok = B_TRUE;
2304 		break;
2305 
2306 	case DEVICE_ID_5752:
2307 	case DEVICE_ID_5752M:
2308 		cidp->chip_label = 5752;
2309 		cidp->mbuf_lo_water_rdma = RDMA_MBUF_LOWAT_5705;
2310 		cidp->mbuf_lo_water_rmac = MAC_RX_MBUF_LOWAT_5705;
2311 		cidp->mbuf_hi_water = MBUF_HIWAT_5705;
2312 		cidp->mbuf_base = bge_mbuf_pool_base_5721;
2313 		cidp->mbuf_length = bge_mbuf_pool_len_5721;
2314 		cidp->recv_slots = BGE_RECV_SLOTS_5721;
2315 		cidp->bge_dma_rwctrl = bge_dma_rwctrl_5721;
2316 		cidp->rx_rings = BGE_RECV_RINGS_MAX_5705;
2317 		cidp->tx_rings = BGE_SEND_RINGS_MAX_5705;
2318 		cidp->pci_type = BGE_PCI_E;
2319 		cidp->statistic_type = BGE_STAT_REG;
2320 		cidp->flags |= CHIP_FLAG_NO_JUMBO;
2321 		dev_ok = B_TRUE;
2322 		break;
2323 
2324 	case DEVICE_ID_5789:
2325 		cidp->chip_label = 5789;
2326 		cidp->mbuf_base = bge_mbuf_pool_base_5721;
2327 		cidp->mbuf_length = bge_mbuf_pool_len_5721;
2328 		cidp->recv_slots = BGE_RECV_SLOTS_5721;
2329 		cidp->bge_dma_rwctrl = bge_dma_rwctrl_5721;
2330 		cidp->rx_rings = BGE_RECV_RINGS_MAX_5705;
2331 		cidp->tx_rings = BGE_RECV_RINGS_MAX_5705;
2332 		cidp->pci_type = BGE_PCI_E;
2333 		cidp->statistic_type = BGE_STAT_REG;
2334 		cidp->flags |= CHIP_FLAG_PARTIAL_CSUM;
2335 		cidp->flags |= CHIP_FLAG_NO_JUMBO;
2336 		cidp->msi_enabled = B_TRUE;
2337 		dev_ok = B_TRUE;
2338 		break;
2339 
2340 	}
2341 
2342 	/*
2343 	 * Setup the default jumbo parameter.
2344 	 */
2345 	cidp->ethmax_size = ETHERMAX;
2346 	cidp->snd_buff_size = BGE_SEND_BUFF_SIZE_DEFAULT;
2347 	cidp->std_buf_size = BGE_STD_BUFF_SIZE;
2348 
2349 	/*
2350 	 * If jumbo is enabled and this kind of chipset supports jumbo feature,
2351 	 * setup below jumbo specific parameters.
2352 	 *
2353 	 * For BCM5714/5715, there is only one standard receive ring. So the
2354 	 * std buffer size should be set to BGE_JUMBO_BUFF_SIZE when jumbo
2355 	 * feature is enabled.
2356 	 */
2357 	if (bge_jumbo_enable &&
2358 	    !(cidp->flags & CHIP_FLAG_NO_JUMBO) &&
2359 	    (cidp->default_mtu > BGE_DEFAULT_MTU) &&
2360 	    (cidp->default_mtu <= BGE_MAXIMUM_MTU)) {
2361 		if (DEVICE_5714_SERIES_CHIPSETS(bgep)) {
2362 			cidp->mbuf_lo_water_rdma =
2363 			    RDMA_MBUF_LOWAT_5714_JUMBO;
2364 			cidp->mbuf_lo_water_rmac =
2365 			    MAC_RX_MBUF_LOWAT_5714_JUMBO;
2366 			cidp->mbuf_hi_water = MBUF_HIWAT_5714_JUMBO;
2367 			cidp->jumbo_slots = 0;
2368 			cidp->std_buf_size = BGE_JUMBO_BUFF_SIZE;
2369 		} else {
2370 			cidp->mbuf_lo_water_rdma =
2371 			    RDMA_MBUF_LOWAT_JUMBO;
2372 			cidp->mbuf_lo_water_rmac =
2373 			    MAC_RX_MBUF_LOWAT_JUMBO;
2374 			cidp->mbuf_hi_water = MBUF_HIWAT_JUMBO;
2375 			cidp->jumbo_slots = BGE_JUMBO_SLOTS_USED;
2376 		}
2377 		cidp->recv_jumbo_size = BGE_JUMBO_BUFF_SIZE;
2378 		cidp->snd_buff_size = BGE_SEND_BUFF_SIZE_JUMBO;
2379 		cidp->ethmax_size = cidp->default_mtu +
2380 		    sizeof (struct ether_header);
2381 	}
2382 
2383 	/*
2384 	 * Identify the NV memory type: SEEPROM or Flash?
2385 	 */
2386 	cidp->nvtype = bge_nvmem_id(bgep);
2387 
2388 	/*
2389 	 * Now, we want to check whether this device is part of a
2390 	 * supported subsystem (e.g., on the motherboard of a Sun
2391 	 * branded platform).
2392 	 *
2393 	 * Rule 1: If the Subsystem Vendor ID is "Sun", then it's OK ;-)
2394 	 */
2395 	if (cidp->subven == VENDOR_ID_SUN)
2396 		sys_ok = B_TRUE;
2397 
2398 	/*
2399 	 * Rule 2: If it's on the list on known subsystems, then it's OK.
2400 	 * Note: 0x14e41647 should *not* appear in the list, but the code
2401 	 * doesn't enforce that.
2402 	 */
2403 	err = ddi_prop_lookup_int_array(DDI_DEV_T_ANY, bgep->devinfo,
2404 	    DDI_PROP_DONTPASS, knownids_propname, &ids, &i);
2405 	if (err == DDI_PROP_SUCCESS) {
2406 		/*
2407 		 * Got the list; scan for a matching subsystem vendor/device
2408 		 */
2409 		subid = (cidp->subven << 16) | cidp->subdev;
2410 		while (i--)
2411 			if (ids[i] == subid)
2412 				sys_ok = B_TRUE;
2413 		ddi_prop_free(ids);
2414 	}
2415 
2416 	/*
2417 	 * Rule 3: If it's a Taco/ENWS motherboard device, then it's OK
2418 	 *
2419 	 * Unfortunately, early SunBlade 1500s and 2500s didn't reprogram
2420 	 * the Subsystem Vendor ID, so it defaults to Broadcom.  Therefore,
2421 	 * we have to check specially for the exact device paths to the
2422 	 * motherboard devices on those platforms ;-(
2423 	 *
2424 	 * Note: we can't just use the "supported-subsystems" mechanism
2425 	 * above, because the entry would have to be 0x14e41647 -- which
2426 	 * would then accept *any* plugin card that *didn't* contain a
2427 	 * (valid) SEEPROM ;-(
2428 	 */
2429 	sysname = ddi_node_name(ddi_root_node());
2430 	devname = ddi_pathname(bgep->devinfo, buf);
2431 	ASSERT(strlen(devname) > 0);
2432 	if (strcmp(sysname, "SUNW,Sun-Blade-1500") == 0)	/* Taco */
2433 		if (strcmp(devname, "/pci@1f,700000/network@2") == 0)
2434 			sys_ok = B_TRUE;
2435 	if (strcmp(sysname, "SUNW,Sun-Blade-2500") == 0)	/* ENWS */
2436 		if (strcmp(devname, "/pci@1c,600000/network@3") == 0)
2437 			sys_ok = B_TRUE;
2438 
2439 	/*
2440 	 * Now check what we've discovered: is this truly a supported
2441 	 * chip on (the motherboard of) a supported platform?
2442 	 *
2443 	 * Possible problems here:
2444 	 * 1)	it's a completely unheard-of chip
2445 	 * 2)	it's a recognised but unsupported chip (e.g. 5701, 5703C-A0)
2446 	 * 3)	it's a chip we would support if it were on the motherboard
2447 	 *	of a Sun platform, but this one isn't ;-(
2448 	 */
2449 	if (cidp->chip_label == 0)
2450 		bge_problem(bgep,
2451 		    "Device 'pci%04x,%04x' not recognized (%d?)",
2452 		    cidp->vendor, cidp->device, cidp->device);
2453 	else if (!dev_ok)
2454 		bge_problem(bgep,
2455 		    "Device 'pci%04x,%04x' (%d) revision %d not supported",
2456 		    cidp->vendor, cidp->device, cidp->chip_label,
2457 		    cidp->revision);
2458 #if	BGE_DEBUGGING
2459 	else if (!sys_ok)
2460 		bge_problem(bgep,
2461 		    "%d-based subsystem 'pci%04x,%04x' not validated",
2462 		    cidp->chip_label, cidp->subven, cidp->subdev);
2463 #endif
2464 	else
2465 		cidp->flags |= CHIP_FLAG_SUPPORTED;
2466 	if (bge_check_acc_handle(bgep, bgep->io_handle) != DDI_FM_OK)
2467 		return (EIO);
2468 	return (0);
2469 }
2470 
2471 void
2472 bge_chip_msi_trig(bge_t *bgep)
2473 {
2474 	uint32_t	regval;
2475 
2476 	regval = bgep->param_msi_cnt<<4;
2477 	bge_reg_set32(bgep, HOST_COALESCE_MODE_REG, regval);
2478 	BGE_DEBUG(("bge_chip_msi_trig:data = %d", regval));
2479 }
2480 
2481 /*
2482  * Various registers that control the chip's internal engines (state
2483  * machines) have a <reset> and <enable> bits (fortunately, in the
2484  * same place in each such register :-).
2485  *
2486  * To reset the state machine, the <reset> bit must be written with 1;
2487  * it will then read back as 1 while the reset is in progress, but
2488  * self-clear to 0 when the reset completes.
2489  *
2490  * To enable a state machine, one must set the <enable> bit, which
2491  * will continue to read back as 0 until the state machine is running.
2492  *
2493  * To disable a state machine, the <enable> bit must be cleared, but
2494  * it will continue to read back as 1 until the state machine actually
2495  * stops.
2496  *
2497  * This routine implements polling for completion of a reset, enable
2498  * or disable operation, returning B_TRUE on success (bit reached the
2499  * required state) or B_FALSE on timeout (200*100us == 20ms).
2500  */
2501 static boolean_t bge_chip_poll_engine(bge_t *bgep, bge_regno_t regno,
2502 					uint32_t mask, uint32_t val);
2503 #pragma	no_inline(bge_chip_poll_engine)
2504 
2505 static boolean_t
2506 bge_chip_poll_engine(bge_t *bgep, bge_regno_t regno,
2507 	uint32_t mask, uint32_t val)
2508 {
2509 	uint32_t regval;
2510 	uint32_t n;
2511 
2512 	BGE_TRACE(("bge_chip_poll_engine($%p, 0x%lx, 0x%x, 0x%x)",
2513 	    (void *)bgep, regno, mask, val));
2514 
2515 	for (n = 200; n; --n) {
2516 		regval = bge_reg_get32(bgep, regno);
2517 		if ((regval & mask) == val)
2518 			return (B_TRUE);
2519 		drv_usecwait(100);
2520 	}
2521 
2522 	bge_fm_ereport(bgep, DDI_FM_DEVICE_NO_RESPONSE);
2523 	return (B_FALSE);
2524 }
2525 
2526 /*
2527  * Various registers that control the chip's internal engines (state
2528  * machines) have a <reset> bit (fortunately, in the same place in
2529  * each such register :-).  To reset the state machine, this bit must
2530  * be written with 1; it will then read back as 1 while the reset is
2531  * in progress, but self-clear to 0 when the reset completes.
2532  *
2533  * This code sets the bit, then polls for it to read back as zero.
2534  * The return value is B_TRUE on success (reset bit cleared itself),
2535  * or B_FALSE if the state machine didn't recover :(
2536  *
2537  * NOTE: the Core reset is similar to other resets, except that we
2538  * can't poll for completion, since the Core reset disables memory
2539  * access!  So we just have to assume that it will all complete in
2540  * 100us.  See Broadcom document 570X-PG102-R, p102, steps 4-5.
2541  */
2542 static boolean_t bge_chip_reset_engine(bge_t *bgep, bge_regno_t regno);
2543 #pragma	no_inline(bge_chip_reset_engine)
2544 
2545 static boolean_t
2546 bge_chip_reset_engine(bge_t *bgep, bge_regno_t regno)
2547 {
2548 	uint32_t regval;
2549 	uint32_t val32;
2550 
2551 	regval = bge_reg_get32(bgep, regno);
2552 
2553 	BGE_TRACE(("bge_chip_reset_engine($%p, 0x%lx)",
2554 	    (void *)bgep, regno));
2555 	BGE_DEBUG(("bge_chip_reset_engine: 0x%lx before reset = 0x%08x",
2556 	    regno, regval));
2557 
2558 	regval |= STATE_MACHINE_RESET_BIT;
2559 
2560 	switch (regno) {
2561 	case MISC_CONFIG_REG:
2562 		/*
2563 		 * BCM5714/5721/5751 pcie chip special case. In order to avoid
2564 		 * resetting PCIE block and bringing PCIE link down, bit 29
2565 		 * in the register needs to be set first, and then set it again
2566 		 * while the reset bit is written.
2567 		 * See:P500 of 57xx-PG102-RDS.pdf.
2568 		 */
2569 		if (DEVICE_5705_SERIES_CHIPSETS(bgep)||
2570 		    DEVICE_5721_SERIES_CHIPSETS(bgep)||
2571 		    DEVICE_5723_SERIES_CHIPSETS(bgep)||
2572 		    DEVICE_5714_SERIES_CHIPSETS(bgep)||
2573 		    DEVICE_5906_SERIES_CHIPSETS(bgep)) {
2574 			regval |= MISC_CONFIG_GPHY_POWERDOWN_OVERRIDE;
2575 			if (bgep->chipid.pci_type == BGE_PCI_E) {
2576 				if (bgep->chipid.asic_rev ==
2577 				    MHCR_CHIP_REV_5751_A0 ||
2578 				    bgep->chipid.asic_rev ==
2579 				    MHCR_CHIP_REV_5721_A0 ||
2580 				    bgep->chipid.asic_rev ==
2581 				    MHCR_CHIP_REV_5755_A0) {
2582 					val32 = bge_reg_get32(bgep,
2583 					    PHY_TEST_CTRL_REG);
2584 					if (val32 == (PHY_PCIE_SCRAM_MODE |
2585 					    PHY_PCIE_LTASS_MODE))
2586 						bge_reg_put32(bgep,
2587 						    PHY_TEST_CTRL_REG,
2588 						    PHY_PCIE_SCRAM_MODE);
2589 					val32 = pci_config_get32
2590 					    (bgep->cfg_handle,
2591 					    PCI_CONF_BGE_CLKCTL);
2592 					val32 |= CLKCTL_PCIE_A0_FIX;
2593 					pci_config_put32(bgep->cfg_handle,
2594 					    PCI_CONF_BGE_CLKCTL, val32);
2595 				}
2596 				bge_reg_set32(bgep, regno,
2597 				    MISC_CONFIG_GRC_RESET_DISABLE);
2598 				regval |= MISC_CONFIG_GRC_RESET_DISABLE;
2599 			}
2600 		}
2601 
2602 		/*
2603 		 * Special case - causes Core reset
2604 		 *
2605 		 * On SPARC v9 we want to ensure that we don't start
2606 		 * timing until the I/O access has actually reached
2607 		 * the chip, otherwise we might make the next access
2608 		 * too early.  And we can't just force the write out
2609 		 * by following it with a read (even to config space)
2610 		 * because that would cause the fault we're trying
2611 		 * to avoid.  Hence the need for membar_sync() here.
2612 		 */
2613 		ddi_put32(bgep->io_handle, PIO_ADDR(bgep, regno), regval);
2614 #ifdef	__sparcv9
2615 		membar_sync();
2616 #endif	/* __sparcv9 */
2617 		/*
2618 		 * On some platforms,system need about 300us for
2619 		 * link setup.
2620 		 */
2621 		drv_usecwait(300);
2622 		if (DEVICE_5906_SERIES_CHIPSETS(bgep)) {
2623 			bge_reg_set32(bgep, VCPU_STATUS_REG, VCPU_DRV_RESET);
2624 			bge_reg_clr32(
2625 			    bgep, VCPU_EXT_CTL, VCPU_EXT_CTL_HALF);
2626 		}
2627 
2628 		if (bgep->chipid.pci_type == BGE_PCI_E) {
2629 			/* PCI-E device need more reset time */
2630 			drv_usecwait(120000);
2631 
2632 			/* Set PCIE max payload size and clear error status. */
2633 			if ((bgep->chipid.chip_label == 5721) ||
2634 			    (bgep->chipid.chip_label == 5751) ||
2635 			    (bgep->chipid.chip_label == 5752) ||
2636 			    (bgep->chipid.chip_label == 5789) ||
2637 			    (bgep->chipid.chip_label == 5906)) {
2638 				pci_config_put16(bgep->cfg_handle,
2639 				    PCI_CONF_DEV_CTRL, READ_REQ_SIZE_MAX);
2640 				pci_config_put16(bgep->cfg_handle,
2641 				    PCI_CONF_DEV_STUS, DEVICE_ERROR_STUS);
2642 			}
2643 
2644 			if ((bgep->chipid.chip_label == 5723) ||
2645 			    (bgep->chipid.chip_label == 5761)) {
2646 				pci_config_put16(bgep->cfg_handle,
2647 				    PCI_CONF_DEV_CTRL_5723, READ_REQ_SIZE_MAX);
2648 				pci_config_put16(bgep->cfg_handle,
2649 				    PCI_CONF_DEV_STUS_5723, DEVICE_ERROR_STUS);
2650 			}
2651 		}
2652 
2653 		BGE_PCICHK(bgep);
2654 		return (B_TRUE);
2655 
2656 	default:
2657 		bge_reg_put32(bgep, regno, regval);
2658 		return (bge_chip_poll_engine(bgep, regno,
2659 		    STATE_MACHINE_RESET_BIT, 0));
2660 	}
2661 }
2662 
2663 /*
2664  * Various registers that control the chip's internal engines (state
2665  * machines) have an <enable> bit (fortunately, in the same place in
2666  * each such register :-).  To stop the state machine, this bit must
2667  * be written with 0, then polled to see when the state machine has
2668  * actually stopped.
2669  *
2670  * The return value is B_TRUE on success (enable bit cleared), or
2671  * B_FALSE if the state machine didn't stop :(
2672  */
2673 static boolean_t bge_chip_disable_engine(bge_t *bgep, bge_regno_t regno,
2674 						uint32_t morebits);
2675 #pragma	no_inline(bge_chip_disable_engine)
2676 
2677 static boolean_t
2678 bge_chip_disable_engine(bge_t *bgep, bge_regno_t regno, uint32_t morebits)
2679 {
2680 	uint32_t regval;
2681 
2682 	BGE_TRACE(("bge_chip_disable_engine($%p, 0x%lx, 0x%x)",
2683 	    (void *)bgep, regno, morebits));
2684 
2685 	switch (regno) {
2686 	case FTQ_RESET_REG:
2687 		/*
2688 		 * For Schumacher's bugfix CR6490108
2689 		 */
2690 #ifdef BGE_IPMI_ASF
2691 #ifdef BGE_NETCONSOLE
2692 		if (bgep->asf_enabled)
2693 			return (B_TRUE);
2694 #endif
2695 #endif
2696 		/*
2697 		 * Not quite like the others; it doesn't
2698 		 * have an <enable> bit, but instead we
2699 		 * have to set and then clear all the bits
2700 		 */
2701 		bge_reg_put32(bgep, regno, ~(uint32_t)0);
2702 		drv_usecwait(100);
2703 		bge_reg_put32(bgep, regno, 0);
2704 		return (B_TRUE);
2705 
2706 	default:
2707 		regval = bge_reg_get32(bgep, regno);
2708 		regval &= ~STATE_MACHINE_ENABLE_BIT;
2709 		regval &= ~morebits;
2710 		bge_reg_put32(bgep, regno, regval);
2711 		return (bge_chip_poll_engine(bgep, regno,
2712 		    STATE_MACHINE_ENABLE_BIT, 0));
2713 	}
2714 }
2715 
2716 /*
2717  * Various registers that control the chip's internal engines (state
2718  * machines) have an <enable> bit (fortunately, in the same place in
2719  * each such register :-).  To start the state machine, this bit must
2720  * be written with 1, then polled to see when the state machine has
2721  * actually started.
2722  *
2723  * The return value is B_TRUE on success (enable bit set), or
2724  * B_FALSE if the state machine didn't start :(
2725  */
2726 static boolean_t bge_chip_enable_engine(bge_t *bgep, bge_regno_t regno,
2727 					uint32_t morebits);
2728 #pragma	no_inline(bge_chip_enable_engine)
2729 
2730 static boolean_t
2731 bge_chip_enable_engine(bge_t *bgep, bge_regno_t regno, uint32_t morebits)
2732 {
2733 	uint32_t regval;
2734 
2735 	BGE_TRACE(("bge_chip_enable_engine($%p, 0x%lx, 0x%x)",
2736 	    (void *)bgep, regno, morebits));
2737 
2738 	switch (regno) {
2739 	case FTQ_RESET_REG:
2740 #ifdef BGE_IPMI_ASF
2741 #ifdef BGE_NETCONSOLE
2742 		if (bgep->asf_enabled)
2743 			return (B_TRUE);
2744 #endif
2745 #endif
2746 		/*
2747 		 * Not quite like the others; it doesn't
2748 		 * have an <enable> bit, but instead we
2749 		 * have to set and then clear all the bits
2750 		 */
2751 		bge_reg_put32(bgep, regno, ~(uint32_t)0);
2752 		drv_usecwait(100);
2753 		bge_reg_put32(bgep, regno, 0);
2754 		return (B_TRUE);
2755 
2756 	default:
2757 		regval = bge_reg_get32(bgep, regno);
2758 		regval |= STATE_MACHINE_ENABLE_BIT;
2759 		regval |= morebits;
2760 		bge_reg_put32(bgep, regno, regval);
2761 		return (bge_chip_poll_engine(bgep, regno,
2762 		    STATE_MACHINE_ENABLE_BIT, STATE_MACHINE_ENABLE_BIT));
2763 	}
2764 }
2765 
2766 /*
2767  * Reprogram the Ethernet, Transmit, and Receive MAC
2768  * modes to match the param_* variables
2769  */
2770 void bge_sync_mac_modes(bge_t *bgep);
2771 #pragma	no_inline(bge_sync_mac_modes)
2772 
2773 void
2774 bge_sync_mac_modes(bge_t *bgep)
2775 {
2776 	uint32_t macmode;
2777 	uint32_t regval;
2778 
2779 	ASSERT(mutex_owned(bgep->genlock));
2780 
2781 	/*
2782 	 * Reprogram the Ethernet MAC mode ...
2783 	 */
2784 	macmode = regval = bge_reg_get32(bgep, ETHERNET_MAC_MODE_REG);
2785 	if ((bgep->chipid.flags & CHIP_FLAG_SERDES) &&
2786 	    (bgep->param_loop_mode != BGE_LOOP_INTERNAL_MAC))
2787 		if (DEVICE_5714_SERIES_CHIPSETS(bgep))
2788 			macmode |= ETHERNET_MODE_LINK_POLARITY;
2789 		else
2790 			macmode &= ~ETHERNET_MODE_LINK_POLARITY;
2791 	else
2792 		macmode |= ETHERNET_MODE_LINK_POLARITY;
2793 	macmode &= ~ETHERNET_MODE_PORTMODE_MASK;
2794 	if ((bgep->chipid.flags & CHIP_FLAG_SERDES) &&
2795 	    (bgep->param_loop_mode != BGE_LOOP_INTERNAL_MAC)) {
2796 		if (DEVICE_5714_SERIES_CHIPSETS(bgep))
2797 			macmode |= ETHERNET_MODE_PORTMODE_GMII;
2798 		else
2799 			macmode |= ETHERNET_MODE_PORTMODE_TBI;
2800 	} else if (bgep->param_link_speed == 10 ||
2801 	    bgep->param_link_speed == 100)
2802 		macmode |= ETHERNET_MODE_PORTMODE_MII;
2803 	else
2804 		macmode |= ETHERNET_MODE_PORTMODE_GMII;
2805 	if (bgep->param_link_duplex == LINK_DUPLEX_HALF)
2806 		macmode |= ETHERNET_MODE_HALF_DUPLEX;
2807 	else
2808 		macmode &= ~ETHERNET_MODE_HALF_DUPLEX;
2809 	if (bgep->param_loop_mode == BGE_LOOP_INTERNAL_MAC)
2810 		macmode |= ETHERNET_MODE_MAC_LOOPBACK;
2811 	else
2812 		macmode &= ~ETHERNET_MODE_MAC_LOOPBACK;
2813 	bge_reg_put32(bgep, ETHERNET_MAC_MODE_REG, macmode);
2814 	BGE_DEBUG(("bge_sync_mac_modes($%p) Ethernet MAC mode 0x%x => 0x%x",
2815 	    (void *)bgep, regval, macmode));
2816 
2817 	/*
2818 	 * ... the Transmit MAC mode ...
2819 	 */
2820 	macmode = regval = bge_reg_get32(bgep, TRANSMIT_MAC_MODE_REG);
2821 	if (bgep->param_link_tx_pause)
2822 		macmode |= TRANSMIT_MODE_FLOW_CONTROL;
2823 	else
2824 		macmode &= ~TRANSMIT_MODE_FLOW_CONTROL;
2825 	bge_reg_put32(bgep, TRANSMIT_MAC_MODE_REG, macmode);
2826 	BGE_DEBUG(("bge_sync_mac_modes($%p) Transmit MAC mode 0x%x => 0x%x",
2827 	    (void *)bgep, regval, macmode));
2828 
2829 	/*
2830 	 * ... and the Receive MAC mode
2831 	 */
2832 	macmode = regval = bge_reg_get32(bgep, RECEIVE_MAC_MODE_REG);
2833 	if (bgep->param_link_rx_pause)
2834 		macmode |= RECEIVE_MODE_FLOW_CONTROL;
2835 	else
2836 		macmode &= ~RECEIVE_MODE_FLOW_CONTROL;
2837 	bge_reg_put32(bgep, RECEIVE_MAC_MODE_REG, macmode);
2838 	BGE_DEBUG(("bge_sync_mac_modes($%p) Receive MAC mode 0x%x => 0x%x",
2839 	    (void *)bgep, regval, macmode));
2840 }
2841 
2842 /*
2843  * bge_chip_sync() -- program the chip with the unicast MAC address,
2844  * the multicast hash table, the required level of promiscuity, and
2845  * the current loopback mode ...
2846  */
2847 #ifdef BGE_IPMI_ASF
2848 int bge_chip_sync(bge_t *bgep, boolean_t asf_keeplive);
2849 #else
2850 int bge_chip_sync(bge_t *bgep);
2851 #endif
2852 #pragma	no_inline(bge_chip_sync)
2853 
2854 int
2855 #ifdef BGE_IPMI_ASF
2856 bge_chip_sync(bge_t *bgep, boolean_t asf_keeplive)
2857 #else
2858 bge_chip_sync(bge_t *bgep)
2859 #endif
2860 {
2861 	void (*opfn)(bge_t *bgep, bge_regno_t reg, uint32_t bits);
2862 	boolean_t promisc;
2863 	uint64_t macaddr;
2864 	uint32_t fill = 0;
2865 	int i, j;
2866 	int retval = DDI_SUCCESS;
2867 
2868 	BGE_TRACE(("bge_chip_sync($%p)",
2869 	    (void *)bgep));
2870 
2871 	ASSERT(mutex_owned(bgep->genlock));
2872 
2873 	promisc = B_FALSE;
2874 	fill = ~(uint32_t)0;
2875 
2876 	if (bgep->promisc)
2877 		promisc = B_TRUE;
2878 	else
2879 		fill = (uint32_t)0;
2880 
2881 	/*
2882 	 * If the TX/RX MAC engines are already running, we should stop
2883 	 * them (and reset the RX engine) before changing the parameters.
2884 	 * If they're not running, this will have no effect ...
2885 	 *
2886 	 * NOTE: this is currently disabled by default because stopping
2887 	 * and restarting the Tx engine may cause an outgoing packet in
2888 	 * transit to be truncated.  Also, stopping and restarting the
2889 	 * Rx engine seems to not work correctly on the 5705.  Testing
2890 	 * has not (yet!) revealed any problems with NOT stopping and
2891 	 * restarting these engines (and Broadcom say their drivers don't
2892 	 * do this), but if it is found to cause problems, this variable
2893 	 * can be patched to re-enable the old behaviour ...
2894 	 */
2895 	if (bge_stop_start_on_sync) {
2896 #ifdef BGE_IPMI_ASF
2897 		if (!bgep->asf_enabled) {
2898 			if (!bge_chip_disable_engine(bgep,
2899 			    RECEIVE_MAC_MODE_REG, RECEIVE_MODE_KEEP_VLAN_TAG))
2900 				retval = DDI_FAILURE;
2901 		} else {
2902 			if (!bge_chip_disable_engine(bgep,
2903 			    RECEIVE_MAC_MODE_REG, 0))
2904 				retval = DDI_FAILURE;
2905 		}
2906 #else
2907 		if (!bge_chip_disable_engine(bgep, RECEIVE_MAC_MODE_REG,
2908 		    RECEIVE_MODE_KEEP_VLAN_TAG))
2909 			retval = DDI_FAILURE;
2910 #endif
2911 		if (!bge_chip_disable_engine(bgep, TRANSMIT_MAC_MODE_REG, 0))
2912 			retval = DDI_FAILURE;
2913 		if (!bge_chip_reset_engine(bgep, RECEIVE_MAC_MODE_REG))
2914 			retval = DDI_FAILURE;
2915 	}
2916 
2917 	/*
2918 	 * Reprogram the hashed multicast address table ...
2919 	 */
2920 	for (i = 0; i < BGE_HASH_TABLE_SIZE/32; ++i)
2921 		bge_reg_put32(bgep, MAC_HASH_REG(i), 0);
2922 
2923 	for (i = 0; i < BGE_HASH_TABLE_SIZE/32; ++i)
2924 		bge_reg_put32(bgep, MAC_HASH_REG(i),
2925 			bgep->mcast_hash[i] | fill);
2926 
2927 #ifdef BGE_IPMI_ASF
2928 	if (!bgep->asf_enabled || !asf_keeplive) {
2929 #endif
2930 		/*
2931 		 * Transform the MAC address(es) from host to chip format, then
2932 		 * reprogram the transmit random backoff seed and the unicast
2933 		 * MAC address(es) ...
2934 		 */
2935 		for (j = 0; j < MAC_ADDRESS_REGS_MAX; j++) {
2936 			for (i = 0, macaddr = 0ull;
2937 			    i < ETHERADDRL; ++i) {
2938 				macaddr <<= 8;
2939 				macaddr |= bgep->curr_addr[j].addr[i];
2940 			}
2941 			fill += (macaddr >> 16) + (macaddr & 0xffffffff);
2942 			bge_reg_put64(bgep, MAC_ADDRESS_REG(j), macaddr);
2943 
2944 			BGE_DEBUG(("bge_chip_sync($%p) "
2945 			    "setting MAC address %012llx",
2946 			    (void *)bgep, macaddr));
2947 		}
2948 #ifdef BGE_IPMI_ASF
2949 	}
2950 #endif
2951 	/*
2952 	 * Set random seed of backoff interval
2953 	 *   - Writing zero means no backoff interval
2954 	 */
2955 	fill = ((fill >> 20) + (fill >> 10) + fill) & 0x3ff;
2956 	if (fill == 0)
2957 		fill = 1;
2958 	bge_reg_put32(bgep, MAC_TX_RANDOM_BACKOFF_REG, fill);
2959 
2960 	/*
2961 	 * Set or clear the PROMISCUOUS mode bit
2962 	 */
2963 	opfn = promisc ? bge_reg_set32 : bge_reg_clr32;
2964 	(*opfn)(bgep, RECEIVE_MAC_MODE_REG, RECEIVE_MODE_PROMISCUOUS);
2965 
2966 	/*
2967 	 * Sync the rest of the MAC modes too ...
2968 	 */
2969 	bge_sync_mac_modes(bgep);
2970 
2971 	/*
2972 	 * Restart RX/TX MAC engines if required ...
2973 	 */
2974 	if (bgep->bge_chip_state == BGE_CHIP_RUNNING) {
2975 		if (!bge_chip_enable_engine(bgep, TRANSMIT_MAC_MODE_REG, 0))
2976 			retval = DDI_FAILURE;
2977 #ifdef BGE_IPMI_ASF
2978 		if (!bgep->asf_enabled) {
2979 			if (!bge_chip_enable_engine(bgep,
2980 			    RECEIVE_MAC_MODE_REG, RECEIVE_MODE_KEEP_VLAN_TAG))
2981 				retval = DDI_FAILURE;
2982 		} else {
2983 			if (!bge_chip_enable_engine(bgep,
2984 			    RECEIVE_MAC_MODE_REG, 0))
2985 				retval = DDI_FAILURE;
2986 		}
2987 #else
2988 		if (!bge_chip_enable_engine(bgep, RECEIVE_MAC_MODE_REG,
2989 		    RECEIVE_MODE_KEEP_VLAN_TAG))
2990 			retval = DDI_FAILURE;
2991 #endif
2992 	}
2993 	return (retval);
2994 }
2995 
2996 /*
2997  * This array defines the sequence of state machine control registers
2998  * in which the <enable> bit must be cleared to bring the chip to a
2999  * clean stop.  Taken from Broadcom document 570X-PG102-R, p116.
3000  */
3001 static bge_regno_t shutdown_engine_regs[] = {
3002 	RECEIVE_MAC_MODE_REG,
3003 	RCV_BD_INITIATOR_MODE_REG,
3004 	RCV_LIST_PLACEMENT_MODE_REG,
3005 	RCV_LIST_SELECTOR_MODE_REG,		/* BCM5704 series only	*/
3006 	RCV_DATA_BD_INITIATOR_MODE_REG,
3007 	RCV_DATA_COMPLETION_MODE_REG,
3008 	RCV_BD_COMPLETION_MODE_REG,
3009 
3010 	SEND_BD_SELECTOR_MODE_REG,
3011 	SEND_BD_INITIATOR_MODE_REG,
3012 	SEND_DATA_INITIATOR_MODE_REG,
3013 	READ_DMA_MODE_REG,
3014 	SEND_DATA_COMPLETION_MODE_REG,
3015 	DMA_COMPLETION_MODE_REG,		/* BCM5704 series only	*/
3016 	SEND_BD_COMPLETION_MODE_REG,
3017 	TRANSMIT_MAC_MODE_REG,
3018 
3019 	HOST_COALESCE_MODE_REG,
3020 	WRITE_DMA_MODE_REG,
3021 	MBUF_CLUSTER_FREE_MODE_REG,		/* BCM5704 series only	*/
3022 	FTQ_RESET_REG,		/* special - see code	*/
3023 	BUFFER_MANAGER_MODE_REG,		/* BCM5704 series only	*/
3024 	MEMORY_ARBITER_MODE_REG,		/* BCM5704 series only	*/
3025 	BGE_REGNO_NONE		/* terminator		*/
3026 };
3027 
3028 #ifndef __sparc
3029 static bge_regno_t quiesce_regs[] = {
3030 	READ_DMA_MODE_REG,
3031 	DMA_COMPLETION_MODE_REG,
3032 	WRITE_DMA_MODE_REG,
3033 	BGE_REGNO_NONE
3034 };
3035 
3036 void bge_chip_stop_nonblocking(bge_t *bgep);
3037 #pragma no_inline(bge_chip_stop_nonblocking)
3038 
3039 /*
3040  * This function is called by bge_quiesce(). We
3041  * turn off all the DMA engines here.
3042  */
3043 void
3044 bge_chip_stop_nonblocking(bge_t *bgep)
3045 {
3046 	bge_regno_t *rbp;
3047 
3048 	/*
3049 	 * Flag that no more activity may be initiated
3050 	 */
3051 	bgep->progress &= ~PROGRESS_READY;
3052 
3053 	rbp = quiesce_regs;
3054 	while (*rbp != BGE_REGNO_NONE) {
3055 		(void) bge_chip_disable_engine(bgep, *rbp, 0);
3056 		++rbp;
3057 	}
3058 
3059 	bgep->bge_chip_state = BGE_CHIP_STOPPED;
3060 }
3061 
3062 #endif
3063 
3064 /*
3065  * bge_chip_stop() -- stop all chip processing
3066  *
3067  * If the <fault> parameter is B_TRUE, we're stopping the chip because
3068  * we've detected a problem internally; otherwise, this is a normal
3069  * (clean) stop (at user request i.e. the last STREAM has been closed).
3070  */
3071 void bge_chip_stop(bge_t *bgep, boolean_t fault);
3072 #pragma	no_inline(bge_chip_stop)
3073 
3074 void
3075 bge_chip_stop(bge_t *bgep, boolean_t fault)
3076 {
3077 	bge_regno_t regno;
3078 	bge_regno_t *rbp;
3079 	boolean_t ok;
3080 
3081 	BGE_TRACE(("bge_chip_stop($%p)",
3082 	    (void *)bgep));
3083 
3084 	ASSERT(mutex_owned(bgep->genlock));
3085 
3086 	rbp = shutdown_engine_regs;
3087 	/*
3088 	 * When driver try to shutdown the BCM5705/5788/5721/5751/
3089 	 * 5752/5714 and 5715 chipsets,the buffer manager and the mem
3090 	 * -ory arbiter should not be disabled.
3091 	 */
3092 	for (ok = B_TRUE; (regno = *rbp) != BGE_REGNO_NONE; ++rbp) {
3093 			if (DEVICE_5704_SERIES_CHIPSETS(bgep))
3094 				ok &= bge_chip_disable_engine(bgep, regno, 0);
3095 			else if ((regno != RCV_LIST_SELECTOR_MODE_REG) &&
3096 			    (regno != DMA_COMPLETION_MODE_REG) &&
3097 			    (regno != MBUF_CLUSTER_FREE_MODE_REG)&&
3098 			    (regno != BUFFER_MANAGER_MODE_REG) &&
3099 			    (regno != MEMORY_ARBITER_MODE_REG))
3100 				ok &= bge_chip_disable_engine(bgep,
3101 				    regno, 0);
3102 	}
3103 
3104 	if (!ok && !fault)
3105 		ddi_fm_service_impact(bgep->devinfo, DDI_SERVICE_UNAFFECTED);
3106 
3107 	/*
3108 	 * Finally, disable (all) MAC events & clear the MAC status
3109 	 */
3110 	bge_reg_put32(bgep, ETHERNET_MAC_EVENT_ENABLE_REG, 0);
3111 	bge_reg_put32(bgep, ETHERNET_MAC_STATUS_REG, ~0);
3112 
3113 	/*
3114 	 * if we're stopping the chip because of a detected fault then do
3115 	 * appropriate actions
3116 	 */
3117 	if (fault) {
3118 		if (bgep->bge_chip_state != BGE_CHIP_FAULT) {
3119 			bgep->bge_chip_state = BGE_CHIP_FAULT;
3120 			if (!bgep->manual_reset)
3121 				ddi_fm_service_impact(bgep->devinfo,
3122 				    DDI_SERVICE_LOST);
3123 			if (bgep->bge_dma_error) {
3124 				/*
3125 				 * need to free buffers in case the fault was
3126 				 * due to a memory error in a buffer - got to
3127 				 * do a fair bit of tidying first
3128 				 */
3129 				if (bgep->progress & PROGRESS_KSTATS) {
3130 					bge_fini_kstats(bgep);
3131 					bgep->progress &= ~PROGRESS_KSTATS;
3132 				}
3133 				if (bgep->progress & PROGRESS_INTR) {
3134 					bge_intr_disable(bgep);
3135 					rw_enter(bgep->errlock, RW_WRITER);
3136 					bge_fini_rings(bgep);
3137 					rw_exit(bgep->errlock);
3138 					bgep->progress &= ~PROGRESS_INTR;
3139 				}
3140 				if (bgep->progress & PROGRESS_BUFS) {
3141 					bge_free_bufs(bgep);
3142 					bgep->progress &= ~PROGRESS_BUFS;
3143 				}
3144 				bgep->bge_dma_error = B_FALSE;
3145 			}
3146 		}
3147 	} else
3148 		bgep->bge_chip_state = BGE_CHIP_STOPPED;
3149 }
3150 
3151 /*
3152  * Poll for completion of chip's ROM firmware; also, at least on the
3153  * first time through, find and return the hardware MAC address, if any.
3154  */
3155 static uint64_t bge_poll_firmware(bge_t *bgep);
3156 #pragma	no_inline(bge_poll_firmware)
3157 
3158 static uint64_t
3159 bge_poll_firmware(bge_t *bgep)
3160 {
3161 	uint64_t magic;
3162 	uint64_t mac;
3163 	uint32_t gen, val;
3164 	uint32_t i;
3165 
3166 	/*
3167 	 * Step 19: poll for firmware completion (GENCOMM port set
3168 	 * to the ones complement of T3_MAGIC_NUMBER).
3169 	 *
3170 	 * While we're at it, we also read the MAC address register;
3171 	 * at some stage the firmware will load this with the
3172 	 * factory-set value.
3173 	 *
3174 	 * When both the magic number and the MAC address are set,
3175 	 * we're done; but we impose a time limit of one second
3176 	 * (1000*1000us) in case the firmware fails in some fashion
3177 	 * or the SEEPROM that provides that MAC address isn't fitted.
3178 	 *
3179 	 * After the first time through (chip state != INITIAL), we
3180 	 * don't need the MAC address to be set (we've already got it
3181 	 * or not, from the first time), so we don't wait for it, but
3182 	 * we still have to wait for the T3_MAGIC_NUMBER.
3183 	 *
3184 	 * Note: the magic number is only a 32-bit quantity, but the NIC
3185 	 * memory is 64-bit (and big-endian) internally.  Addressing the
3186 	 * GENCOMM word as "the upper half of a 64-bit quantity" makes
3187 	 * it work correctly on both big- and little-endian hosts.
3188 	 */
3189 	if (MHCR_CHIP_ASIC_REV(bgep->chipid.asic_rev) ==
3190 	    MHCR_CHIP_ASIC_REV_5906) {
3191 		for (i = 0; i < 1000; ++i) {
3192 			drv_usecwait(1000);
3193 			val = bge_reg_get32(bgep, VCPU_STATUS_REG);
3194 			if (val & VCPU_INIT_DONE)
3195 				break;
3196 		}
3197 		BGE_DEBUG(("bge_poll_firmware($%p): return after %d loops",
3198 		    (void *)bgep, i));
3199 		mac = bge_reg_get64(bgep, MAC_ADDRESS_REG(0));
3200 	} else {
3201 		for (i = 0; i < 1000; ++i) {
3202 			drv_usecwait(1000);
3203 			gen = bge_nic_get64(bgep, NIC_MEM_GENCOMM) >> 32;
3204 			if (i == 0 && DEVICE_5704_SERIES_CHIPSETS(bgep))
3205 				drv_usecwait(100000);
3206 			mac = bge_reg_get64(bgep, MAC_ADDRESS_REG(0));
3207 #ifdef BGE_IPMI_ASF
3208 			if (!bgep->asf_enabled) {
3209 #endif
3210 				if (gen != ~T3_MAGIC_NUMBER)
3211 					continue;
3212 #ifdef BGE_IPMI_ASF
3213 			}
3214 #endif
3215 			if (mac != 0ULL)
3216 				break;
3217 			if (bgep->bge_chip_state != BGE_CHIP_INITIAL)
3218 				break;
3219 		}
3220 	}
3221 
3222 	magic = bge_nic_get64(bgep, NIC_MEM_GENCOMM);
3223 	BGE_DEBUG(("bge_poll_firmware($%p): PXE magic 0x%x after %d loops",
3224 	    (void *)bgep, gen, i));
3225 	BGE_DEBUG(("bge_poll_firmware: MAC %016llx, GENCOMM %016llx",
3226 	    mac, magic));
3227 
3228 	return (mac);
3229 }
3230 
3231 /*
3232  * Maximum times of trying to get the NVRAM access lock
3233  * by calling bge_nvmem_acquire()
3234  */
3235 #define	MAX_TRY_NVMEM_ACQUIRE	10000
3236 
3237 #ifdef BGE_IPMI_ASF
3238 int bge_chip_reset(bge_t *bgep, boolean_t enable_dma, uint_t asf_mode);
3239 #else
3240 int bge_chip_reset(bge_t *bgep, boolean_t enable_dma);
3241 #endif
3242 #pragma	no_inline(bge_chip_reset)
3243 
3244 int
3245 #ifdef BGE_IPMI_ASF
3246 bge_chip_reset(bge_t *bgep, boolean_t enable_dma, uint_t asf_mode)
3247 #else
3248 bge_chip_reset(bge_t *bgep, boolean_t enable_dma)
3249 #endif
3250 {
3251 	chip_id_t chipid;
3252 	uint64_t mac;
3253 	uint64_t magic;
3254 	uint32_t modeflags;
3255 	uint32_t mhcr;
3256 	uint32_t sx0;
3257 	uint32_t i, tries;
3258 #ifdef BGE_IPMI_ASF
3259 	uint32_t mailbox;
3260 #endif
3261 	int retval = DDI_SUCCESS;
3262 
3263 	BGE_TRACE(("bge_chip_reset($%p, %d)",
3264 		(void *)bgep, enable_dma));
3265 
3266 	ASSERT(mutex_owned(bgep->genlock));
3267 
3268 	BGE_DEBUG(("bge_chip_reset($%p, %d): current state is %d",
3269 		(void *)bgep, enable_dma, bgep->bge_chip_state));
3270 
3271 	/*
3272 	 * Do we need to stop the chip cleanly before resetting?
3273 	 */
3274 	switch (bgep->bge_chip_state) {
3275 	default:
3276 		_NOTE(NOTREACHED)
3277 		return (DDI_FAILURE);
3278 
3279 	case BGE_CHIP_INITIAL:
3280 	case BGE_CHIP_STOPPED:
3281 	case BGE_CHIP_RESET:
3282 		break;
3283 
3284 	case BGE_CHIP_RUNNING:
3285 	case BGE_CHIP_ERROR:
3286 	case BGE_CHIP_FAULT:
3287 		bge_chip_stop(bgep, B_FALSE);
3288 		break;
3289 	}
3290 
3291 #ifdef BGE_IPMI_ASF
3292 	if (bgep->asf_enabled) {
3293 #ifdef __sparc
3294 		mhcr = MHCR_ENABLE_INDIRECT_ACCESS |
3295 			MHCR_ENABLE_TAGGED_STATUS_MODE |
3296 			MHCR_MASK_INTERRUPT_MODE |
3297 			MHCR_MASK_PCI_INT_OUTPUT |
3298 			MHCR_CLEAR_INTERRUPT_INTA |
3299 			MHCR_ENABLE_ENDIAN_WORD_SWAP |
3300 			MHCR_ENABLE_ENDIAN_BYTE_SWAP;
3301 		pci_config_put32(bgep->cfg_handle, PCI_CONF_BGE_MHCR, mhcr);
3302 		bge_reg_put32(bgep, MEMORY_ARBITER_MODE_REG,
3303 			bge_reg_get32(bgep, MEMORY_ARBITER_MODE_REG) |
3304 			MEMORY_ARBITER_ENABLE);
3305 #endif
3306 		if (asf_mode == ASF_MODE_INIT) {
3307 			bge_asf_pre_reset_operations(bgep, BGE_INIT_RESET);
3308 		} else if (asf_mode == ASF_MODE_SHUTDOWN) {
3309 			bge_asf_pre_reset_operations(bgep, BGE_SHUTDOWN_RESET);
3310 		}
3311 	}
3312 #endif
3313 	/*
3314 	 * Adapted from Broadcom document 570X-PG102-R, pp 102-116.
3315 	 * Updated to reflect Broadcom document 570X-PG104-R, pp 146-159.
3316 	 *
3317 	 * Before reset Core clock,it is
3318 	 * also required to initialize the Memory Arbiter as specified in step9
3319 	 * and Misc Host Control Register as specified in step-13
3320 	 * Step 4-5: reset Core clock & wait for completion
3321 	 * Steps 6-8: are done by bge_chip_cfg_init()
3322 	 * put the T3_MAGIC_NUMBER into the GENCOMM port before reset
3323 	 */
3324 	if (!bge_chip_enable_engine(bgep, MEMORY_ARBITER_MODE_REG, 0))
3325 		retval = DDI_FAILURE;
3326 
3327 	mhcr = MHCR_ENABLE_INDIRECT_ACCESS |
3328 	    MHCR_ENABLE_TAGGED_STATUS_MODE |
3329 	    MHCR_MASK_INTERRUPT_MODE |
3330 	    MHCR_MASK_PCI_INT_OUTPUT |
3331 	    MHCR_CLEAR_INTERRUPT_INTA;
3332 #ifdef  _BIG_ENDIAN
3333 	mhcr |= MHCR_ENABLE_ENDIAN_WORD_SWAP | MHCR_ENABLE_ENDIAN_BYTE_SWAP;
3334 #endif  /* _BIG_ENDIAN */
3335 	pci_config_put32(bgep->cfg_handle, PCI_CONF_BGE_MHCR, mhcr);
3336 #ifdef BGE_IPMI_ASF
3337 	if (bgep->asf_enabled)
3338 		bgep->asf_wordswapped = B_FALSE;
3339 #endif
3340 	/*
3341 	 * NVRAM Corruption Workaround
3342 	 */
3343 	for (tries = 0; tries < MAX_TRY_NVMEM_ACQUIRE; tries++)
3344 		if (bge_nvmem_acquire(bgep) != EAGAIN)
3345 			break;
3346 	if (tries >= MAX_TRY_NVMEM_ACQUIRE)
3347 		BGE_DEBUG(("%s: fail to acquire nvram lock",
3348 			bgep->ifname));
3349 
3350 #ifdef BGE_IPMI_ASF
3351 	if (!bgep->asf_enabled) {
3352 #endif
3353 		magic = (uint64_t)T3_MAGIC_NUMBER << 32;
3354 		bge_nic_put64(bgep, NIC_MEM_GENCOMM, magic);
3355 #ifdef BGE_IPMI_ASF
3356 	}
3357 #endif
3358 
3359 	if (!bge_chip_reset_engine(bgep, MISC_CONFIG_REG))
3360 		retval = DDI_FAILURE;
3361 	bge_chip_cfg_init(bgep, &chipid, enable_dma);
3362 
3363 	/*
3364 	 * Step 8a: This may belong elsewhere, but BCM5721 needs
3365 	 * a bit set to avoid a fifo overflow/underflow bug.
3366 	 */
3367 	if ((bgep->chipid.chip_label == 5721) ||
3368 		(bgep->chipid.chip_label == 5751) ||
3369 		(bgep->chipid.chip_label == 5752) ||
3370 		(bgep->chipid.chip_label == 5755) ||
3371 		(bgep->chipid.chip_label == 5756) ||
3372 		(bgep->chipid.chip_label == 5789) ||
3373 		(bgep->chipid.chip_label == 5906))
3374 		bge_reg_set32(bgep, TLP_CONTROL_REG, TLP_DATA_FIFO_PROTECT);
3375 
3376 
3377 	/*
3378 	 * Step 9: enable MAC memory arbiter,bit30 and bit31 of 5714/5715 should
3379 	 * not be changed.
3380 	 */
3381 	if (!bge_chip_enable_engine(bgep, MEMORY_ARBITER_MODE_REG, 0))
3382 		retval = DDI_FAILURE;
3383 
3384 	/*
3385 	 * Steps 10-11: configure PIO endianness options and
3386 	 * enable indirect register access -- already done
3387 	 * Steps 12-13: enable writing to the PCI state & clock
3388 	 * control registers -- not required; we aren't going to
3389 	 * use those features.
3390 	 * Steps 14-15: Configure DMA endianness options.  See
3391 	 * the comments on the setting of the MHCR above.
3392 	 */
3393 #ifdef	_BIG_ENDIAN
3394 	modeflags = MODE_WORD_SWAP_FRAME | MODE_BYTE_SWAP_FRAME |
3395 		    MODE_WORD_SWAP_NONFRAME | MODE_BYTE_SWAP_NONFRAME;
3396 #else
3397 	modeflags = MODE_WORD_SWAP_FRAME | MODE_BYTE_SWAP_FRAME;
3398 #endif	/* _BIG_ENDIAN */
3399 #ifdef BGE_IPMI_ASF
3400 	if (bgep->asf_enabled)
3401 		modeflags |= MODE_HOST_STACK_UP;
3402 #endif
3403 	bge_reg_put32(bgep, MODE_CONTROL_REG, modeflags);
3404 
3405 #ifdef BGE_IPMI_ASF
3406 	if (bgep->asf_enabled) {
3407 #ifdef __sparc
3408 		bge_reg_put32(bgep, MEMORY_ARBITER_MODE_REG,
3409 			MEMORY_ARBITER_ENABLE |
3410 			bge_reg_get32(bgep, MEMORY_ARBITER_MODE_REG));
3411 #endif
3412 
3413 #ifdef  BGE_NETCONSOLE
3414 		if (!bgep->asf_newhandshake) {
3415 			if ((asf_mode == ASF_MODE_INIT) ||
3416 			(asf_mode == ASF_MODE_POST_INIT)) {
3417 				bge_asf_post_reset_old_mode(bgep,
3418 					BGE_INIT_RESET);
3419 			} else {
3420 				bge_asf_post_reset_old_mode(bgep,
3421 					BGE_SHUTDOWN_RESET);
3422 			}
3423 		}
3424 #endif
3425 
3426 		/* Wait for NVRAM init */
3427 		i = 0;
3428 		drv_usecwait(5000);
3429 		mailbox = bge_nic_get32(bgep, BGE_FIRMWARE_MAILBOX);
3430 
3431 		while ((mailbox != (uint32_t)
3432 			~BGE_MAGIC_NUM_FIRMWARE_INIT_DONE) &&
3433 			(i < 10000)) {
3434 			drv_usecwait(100);
3435 			mailbox = bge_nic_get32(bgep,
3436 				BGE_FIRMWARE_MAILBOX);
3437 			i++;
3438 		}
3439 
3440 #ifndef BGE_NETCONSOLE
3441 		if (!bgep->asf_newhandshake) {
3442 			if ((asf_mode == ASF_MODE_INIT) ||
3443 				(asf_mode == ASF_MODE_POST_INIT)) {
3444 
3445 				bge_asf_post_reset_old_mode(bgep,
3446 					BGE_INIT_RESET);
3447 			} else {
3448 				bge_asf_post_reset_old_mode(bgep,
3449 					BGE_SHUTDOWN_RESET);
3450 			}
3451 		}
3452 #endif
3453 	}
3454 #endif
3455 	/*
3456 	 * Steps 16-17: poll for firmware completion
3457 	 */
3458 	mac = bge_poll_firmware(bgep);
3459 
3460 	/*
3461 	 * Step 18: enable external memory -- doesn't apply.
3462 	 *
3463 	 * However we take the opportunity to set the MLCR anyway, as
3464 	 * this register also controls the SEEPROM auto-access method
3465 	 * which we may want to use later ...
3466 	 *
3467 	 * The proper value here depends on the way the chip is wired
3468 	 * into the circuit board, as this register *also* controls which
3469 	 * of the "Miscellaneous I/O" pins are driven as outputs and the
3470 	 * values driven onto those pins!
3471 	 *
3472 	 * See also step 74 in the PRM ...
3473 	 */
3474 	bge_reg_put32(bgep, MISC_LOCAL_CONTROL_REG,
3475 	    bgep->chipid.bge_mlcr_default);
3476 	bge_reg_set32(bgep, SERIAL_EEPROM_ADDRESS_REG, SEEPROM_ACCESS_INIT);
3477 
3478 	/*
3479 	 * Step 20: clear the Ethernet MAC mode register
3480 	 */
3481 	bge_reg_put32(bgep, ETHERNET_MAC_MODE_REG, 0);
3482 
3483 	/*
3484 	 * Step 21: restore cache-line-size, latency timer, and
3485 	 * subsystem ID registers to their original values (not
3486 	 * those read into the local structure <chipid>, 'cos
3487 	 * that was after they were cleared by the RESET).
3488 	 *
3489 	 * Note: the Subsystem Vendor/Device ID registers are not
3490 	 * directly writable in config space, so we use the shadow
3491 	 * copy in "Page Zero" of register space to restore them
3492 	 * both in one go ...
3493 	 */
3494 	pci_config_put8(bgep->cfg_handle, PCI_CONF_CACHE_LINESZ,
3495 		bgep->chipid.clsize);
3496 	pci_config_put8(bgep->cfg_handle, PCI_CONF_LATENCY_TIMER,
3497 		bgep->chipid.latency);
3498 	bge_reg_put32(bgep, PCI_CONF_SUBVENID,
3499 		(bgep->chipid.subdev << 16) | bgep->chipid.subven);
3500 
3501 	/*
3502 	 * The SEND INDEX registers should be reset to zero by the
3503 	 * global chip reset; if they're not, there'll be trouble
3504 	 * later on.
3505 	 */
3506 	sx0 = bge_reg_get32(bgep, NIC_DIAG_SEND_INDEX_REG(0));
3507 	if (sx0 != 0) {
3508 		BGE_REPORT((bgep, "SEND INDEX - device didn't RESET"));
3509 		bge_fm_ereport(bgep, DDI_FM_DEVICE_INVAL_STATE);
3510 		retval = DDI_FAILURE;
3511 	}
3512 
3513 	/* Enable MSI code */
3514 	if (bgep->intr_type == DDI_INTR_TYPE_MSI)
3515 		bge_reg_set32(bgep, MSI_MODE_REG,
3516 		    MSI_PRI_HIGHEST|MSI_MSI_ENABLE|MSI_ERROR_ATTENTION);
3517 
3518 	/*
3519 	 * On the first time through, save the factory-set MAC address
3520 	 * (if any).  If bge_poll_firmware() above didn't return one
3521 	 * (from a chip register) consider looking in the attached NV
3522 	 * memory device, if any.  Once we have it, we save it in both
3523 	 * register-image (64-bit) and byte-array forms.  All-zero and
3524 	 * all-one addresses are not valid, and we refuse to stash those.
3525 	 */
3526 	if (bgep->bge_chip_state == BGE_CHIP_INITIAL) {
3527 		if (mac == 0ULL)
3528 			mac = bge_get_nvmac(bgep);
3529 		if (mac != 0ULL && mac != ~0ULL) {
3530 			bgep->chipid.hw_mac_addr = mac;
3531 			for (i = ETHERADDRL; i-- != 0; ) {
3532 				bgep->chipid.vendor_addr.addr[i] = (uchar_t)mac;
3533 				mac >>= 8;
3534 			}
3535 			bgep->chipid.vendor_addr.set = B_TRUE;
3536 		}
3537 	}
3538 
3539 #ifdef BGE_IPMI_ASF
3540 	if (bgep->asf_enabled && bgep->asf_newhandshake) {
3541 		if (asf_mode != ASF_MODE_NONE) {
3542 			if ((asf_mode == ASF_MODE_INIT) ||
3543 				(asf_mode == ASF_MODE_POST_INIT)) {
3544 
3545 				bge_asf_post_reset_new_mode(bgep,
3546 					BGE_INIT_RESET);
3547 			} else {
3548 				bge_asf_post_reset_new_mode(bgep,
3549 					BGE_SHUTDOWN_RESET);
3550 			}
3551 		}
3552 	}
3553 #endif
3554 
3555 	/*
3556 	 * Record the new state
3557 	 */
3558 	bgep->chip_resets += 1;
3559 	bgep->bge_chip_state = BGE_CHIP_RESET;
3560 	return (retval);
3561 }
3562 
3563 /*
3564  * bge_chip_start() -- start the chip transmitting and/or receiving,
3565  * including enabling interrupts
3566  */
3567 int bge_chip_start(bge_t *bgep, boolean_t reset_phys);
3568 #pragma	no_inline(bge_chip_start)
3569 
3570 int
3571 bge_chip_start(bge_t *bgep, boolean_t reset_phys)
3572 {
3573 	uint32_t coalmode;
3574 	uint32_t ledctl;
3575 	uint32_t mtu;
3576 	uint32_t maxring;
3577 	uint32_t stats_mask;
3578 	uint32_t dma_wrprio;
3579 	uint64_t ring;
3580 	int retval = DDI_SUCCESS;
3581 
3582 	BGE_TRACE(("bge_chip_start($%p)",
3583 	    (void *)bgep));
3584 
3585 	ASSERT(mutex_owned(bgep->genlock));
3586 	ASSERT(bgep->bge_chip_state == BGE_CHIP_RESET);
3587 
3588 	/*
3589 	 * Taken from Broadcom document 570X-PG102-R, pp 102-116.
3590 	 * The document specifies 95 separate steps to fully
3591 	 * initialise the chip!!!!
3592 	 *
3593 	 * The reset code above has already got us as far as step
3594 	 * 21, so we continue with ...
3595 	 *
3596 	 * Step 22: clear the MAC statistics block
3597 	 * (0x0300-0x0aff in NIC-local memory)
3598 	 */
3599 	if (bgep->chipid.statistic_type == BGE_STAT_BLK)
3600 		bge_nic_zero(bgep, NIC_MEM_STATISTICS,
3601 		    NIC_MEM_STATISTICS_SIZE);
3602 
3603 	/*
3604 	 * Step 23: clear the status block (in host memory)
3605 	 */
3606 	DMA_ZERO(bgep->status_block);
3607 
3608 	/*
3609 	 * Step 24: set DMA read/write control register
3610 	 */
3611 	pci_config_put32(bgep->cfg_handle, PCI_CONF_BGE_PDRWCR,
3612 	    bgep->chipid.bge_dma_rwctrl);
3613 
3614 	/*
3615 	 * Step 25: Configure DMA endianness -- already done (16/17)
3616 	 * Step 26: Configure Host-Based Send Rings
3617 	 * Step 27: Indicate Host Stack Up
3618 	 */
3619 	bge_reg_set32(bgep, MODE_CONTROL_REG,
3620 	    MODE_HOST_SEND_BDS |
3621 	    MODE_HOST_STACK_UP);
3622 
3623 	/*
3624 	 * Step 28: Configure checksum options:
3625 	 *	Solaris supports the hardware default checksum options.
3626 	 *
3627 	 *	Workaround for Incorrect pseudo-header checksum calculation.
3628 	 */
3629 	if (bgep->chipid.flags & CHIP_FLAG_PARTIAL_CSUM)
3630 		bge_reg_set32(bgep, MODE_CONTROL_REG,
3631 		    MODE_SEND_NO_PSEUDO_HDR_CSUM);
3632 
3633 	/*
3634 	 * Step 29: configure Timer Prescaler.  The value is always the
3635 	 * same: the Core Clock frequency in MHz (66), minus 1, shifted
3636 	 * into bits 7-1.  Don't set bit 0, 'cos that's the RESET bit
3637 	 * for the whole chip!
3638 	 */
3639 	bge_reg_put32(bgep, MISC_CONFIG_REG, MISC_CONFIG_DEFAULT);
3640 
3641 	if (DEVICE_5906_SERIES_CHIPSETS(bgep)) {
3642 		drv_usecwait(40);
3643 		/* put PHY into ready state */
3644 		bge_reg_clr32(bgep, MISC_CONFIG_REG, MISC_CONFIG_EPHY_IDDQ);
3645 		(void) bge_reg_get32(bgep, MISC_CONFIG_REG); /* flush */
3646 		drv_usecwait(40);
3647 	}
3648 
3649 	/*
3650 	 * Steps 30-31: Configure MAC local memory pool & DMA pool registers
3651 	 *
3652 	 * If the mbuf_length is specified as 0, we just leave these at
3653 	 * their hardware defaults, rather than explicitly setting them.
3654 	 * As the Broadcom HRM,driver better not change the parameters
3655 	 * when the chipsets is 5705/5788/5721/5751/5714 and 5715.
3656 	 */
3657 	if ((bgep->chipid.mbuf_length != 0) &&
3658 	    (DEVICE_5704_SERIES_CHIPSETS(bgep))) {
3659 			bge_reg_put32(bgep, MBUF_POOL_BASE_REG,
3660 			    bgep->chipid.mbuf_base);
3661 			bge_reg_put32(bgep, MBUF_POOL_LENGTH_REG,
3662 			    bgep->chipid.mbuf_length);
3663 			bge_reg_put32(bgep, DMAD_POOL_BASE_REG,
3664 			    DMAD_POOL_BASE_DEFAULT);
3665 			bge_reg_put32(bgep, DMAD_POOL_LENGTH_REG,
3666 			    DMAD_POOL_LENGTH_DEFAULT);
3667 	}
3668 
3669 	/*
3670 	 * Step 32: configure MAC memory pool watermarks
3671 	 */
3672 	bge_reg_put32(bgep, RDMA_MBUF_LOWAT_REG,
3673 	    bgep->chipid.mbuf_lo_water_rdma);
3674 	bge_reg_put32(bgep, MAC_RX_MBUF_LOWAT_REG,
3675 	    bgep->chipid.mbuf_lo_water_rmac);
3676 	bge_reg_put32(bgep, MBUF_HIWAT_REG,
3677 	    bgep->chipid.mbuf_hi_water);
3678 
3679 	/*
3680 	 * Step 33: configure DMA resource watermarks
3681 	 */
3682 	if (DEVICE_5704_SERIES_CHIPSETS(bgep)) {
3683 		bge_reg_put32(bgep, DMAD_POOL_LOWAT_REG,
3684 		    bge_dmad_lo_water);
3685 		bge_reg_put32(bgep, DMAD_POOL_HIWAT_REG,
3686 		    bge_dmad_hi_water);
3687 	}
3688 	bge_reg_put32(bgep, LOWAT_MAX_RECV_FRAMES_REG, bge_lowat_recv_frames);
3689 
3690 	/*
3691 	 * Steps 34-36: enable buffer manager & internal h/w queues
3692 	 */
3693 	if (!bge_chip_enable_engine(bgep, BUFFER_MANAGER_MODE_REG,
3694 	    STATE_MACHINE_ATTN_ENABLE_BIT))
3695 		retval = DDI_FAILURE;
3696 	if (!bge_chip_enable_engine(bgep, FTQ_RESET_REG, 0))
3697 		retval = DDI_FAILURE;
3698 
3699 	/*
3700 	 * Steps 37-39: initialise Receive Buffer (Producer) RCBs
3701 	 */
3702 	bge_reg_putrcb(bgep, STD_RCV_BD_RING_RCB_REG,
3703 	    &bgep->buff[BGE_STD_BUFF_RING].hw_rcb);
3704 	if (DEVICE_5704_SERIES_CHIPSETS(bgep)) {
3705 		bge_reg_putrcb(bgep, JUMBO_RCV_BD_RING_RCB_REG,
3706 		    &bgep->buff[BGE_JUMBO_BUFF_RING].hw_rcb);
3707 		bge_reg_putrcb(bgep, MINI_RCV_BD_RING_RCB_REG,
3708 		    &bgep->buff[BGE_MINI_BUFF_RING].hw_rcb);
3709 	}
3710 
3711 	/*
3712 	 * Step 40: set Receive Buffer Descriptor Ring replenish thresholds
3713 	 */
3714 	bge_reg_put32(bgep, STD_RCV_BD_REPLENISH_REG, bge_replenish_std);
3715 	if (DEVICE_5704_SERIES_CHIPSETS(bgep)) {
3716 		bge_reg_put32(bgep, JUMBO_RCV_BD_REPLENISH_REG,
3717 		    bge_replenish_jumbo);
3718 		bge_reg_put32(bgep, MINI_RCV_BD_REPLENISH_REG,
3719 		    bge_replenish_mini);
3720 	}
3721 
3722 	/*
3723 	 * Steps 41-43: clear Send Ring Producer Indices and initialise
3724 	 * Send Producer Rings (0x0100-0x01ff in NIC-local memory)
3725 	 */
3726 	if (DEVICE_5704_SERIES_CHIPSETS(bgep))
3727 		maxring = BGE_SEND_RINGS_MAX;
3728 	else
3729 		maxring = BGE_SEND_RINGS_MAX_5705;
3730 	for (ring = 0; ring < maxring; ++ring) {
3731 		bge_mbx_put(bgep, SEND_RING_HOST_INDEX_REG(ring), 0);
3732 		bge_mbx_put(bgep, SEND_RING_NIC_INDEX_REG(ring), 0);
3733 		bge_nic_putrcb(bgep, NIC_MEM_SEND_RING(ring),
3734 		    &bgep->send[ring].hw_rcb);
3735 	}
3736 
3737 	/*
3738 	 * Steps 44-45: initialise Receive Return Rings
3739 	 * (0x0200-0x02ff in NIC-local memory)
3740 	 */
3741 	if (DEVICE_5704_SERIES_CHIPSETS(bgep))
3742 		maxring = BGE_RECV_RINGS_MAX;
3743 	else
3744 		maxring = BGE_RECV_RINGS_MAX_5705;
3745 	for (ring = 0; ring < maxring; ++ring)
3746 		bge_nic_putrcb(bgep, NIC_MEM_RECV_RING(ring),
3747 		    &bgep->recv[ring].hw_rcb);
3748 
3749 	/*
3750 	 * Step 46: initialise Receive Buffer (Producer) Ring indexes
3751 	 */
3752 	bge_mbx_put(bgep, RECV_STD_PROD_INDEX_REG, 0);
3753 	if (DEVICE_5704_SERIES_CHIPSETS(bgep)) {
3754 		bge_mbx_put(bgep, RECV_JUMBO_PROD_INDEX_REG, 0);
3755 		bge_mbx_put(bgep, RECV_MINI_PROD_INDEX_REG, 0);
3756 	}
3757 	/*
3758 	 * Step 47: configure the MAC unicast address
3759 	 * Step 48: configure the random backoff seed
3760 	 * Step 96: set up multicast filters
3761 	 */
3762 #ifdef BGE_IPMI_ASF
3763 	if (bge_chip_sync(bgep, B_FALSE) == DDI_FAILURE)
3764 #else
3765 	if (bge_chip_sync(bgep) == DDI_FAILURE)
3766 #endif
3767 		retval = DDI_FAILURE;
3768 
3769 	/*
3770 	 * Step 49: configure the MTU
3771 	 */
3772 	mtu = bgep->chipid.ethmax_size+ETHERFCSL+VLAN_TAGSZ;
3773 	bge_reg_put32(bgep, MAC_RX_MTU_SIZE_REG, mtu);
3774 
3775 	/*
3776 	 * Step 50: configure the IPG et al
3777 	 */
3778 	bge_reg_put32(bgep, MAC_TX_LENGTHS_REG, MAC_TX_LENGTHS_DEFAULT);
3779 
3780 	/*
3781 	 * Step 51: configure the default Rx Return Ring
3782 	 */
3783 	bge_reg_put32(bgep, RCV_RULES_CONFIG_REG, RCV_RULES_CONFIG_DEFAULT);
3784 
3785 	/*
3786 	 * Steps 52-54: configure Receive List Placement,
3787 	 * and enable Receive List Placement Statistics
3788 	 */
3789 	bge_reg_put32(bgep, RCV_LP_CONFIG_REG,
3790 	    RCV_LP_CONFIG(bgep->chipid.rx_rings));
3791 	switch (MHCR_CHIP_ASIC_REV(bgep->chipid.asic_rev)) {
3792 	case MHCR_CHIP_ASIC_REV_5700:
3793 	case MHCR_CHIP_ASIC_REV_5701:
3794 	case MHCR_CHIP_ASIC_REV_5703:
3795 	case MHCR_CHIP_ASIC_REV_5704:
3796 		bge_reg_put32(bgep, RCV_LP_STATS_ENABLE_MASK_REG, ~0);
3797 		break;
3798 	case MHCR_CHIP_ASIC_REV_5705:
3799 		break;
3800 	default:
3801 		stats_mask = bge_reg_get32(bgep, RCV_LP_STATS_ENABLE_MASK_REG);
3802 		stats_mask &= ~RCV_LP_STATS_DISABLE_MACTQ;
3803 		bge_reg_put32(bgep, RCV_LP_STATS_ENABLE_MASK_REG, stats_mask);
3804 		break;
3805 	}
3806 	bge_reg_set32(bgep, RCV_LP_STATS_CONTROL_REG, RCV_LP_STATS_ENABLE);
3807 
3808 	if (bgep->chipid.rx_rings > 1)
3809 		bge_init_recv_rule(bgep);
3810 
3811 	/*
3812 	 * Steps 55-56: enable Send Data Initiator Statistics
3813 	 */
3814 	bge_reg_put32(bgep, SEND_INIT_STATS_ENABLE_MASK_REG, ~0);
3815 	if (DEVICE_5704_SERIES_CHIPSETS(bgep)) {
3816 		bge_reg_put32(bgep, SEND_INIT_STATS_CONTROL_REG,
3817 		    SEND_INIT_STATS_ENABLE | SEND_INIT_STATS_FASTER);
3818 	} else {
3819 		bge_reg_put32(bgep, SEND_INIT_STATS_CONTROL_REG,
3820 		    SEND_INIT_STATS_ENABLE);
3821 	}
3822 	/*
3823 	 * Steps 57-58: stop (?) the Host Coalescing Engine
3824 	 */
3825 	if (!bge_chip_disable_engine(bgep, HOST_COALESCE_MODE_REG, ~0))
3826 		retval = DDI_FAILURE;
3827 
3828 	/*
3829 	 * Steps 59-62: initialise Host Coalescing parameters
3830 	 */
3831 	bge_reg_put32(bgep, SEND_COALESCE_MAX_BD_REG, bge_tx_count_norm);
3832 	bge_reg_put32(bgep, SEND_COALESCE_TICKS_REG, bge_tx_ticks_norm);
3833 	bge_reg_put32(bgep, RCV_COALESCE_MAX_BD_REG, bge_rx_count_norm);
3834 	bge_reg_put32(bgep, RCV_COALESCE_TICKS_REG, bge_rx_ticks_norm);
3835 	if (DEVICE_5704_SERIES_CHIPSETS(bgep)) {
3836 		bge_reg_put32(bgep, SEND_COALESCE_INT_BD_REG,
3837 		    bge_tx_count_intr);
3838 		bge_reg_put32(bgep, SEND_COALESCE_INT_TICKS_REG,
3839 		    bge_tx_ticks_intr);
3840 		bge_reg_put32(bgep, RCV_COALESCE_INT_BD_REG,
3841 		    bge_rx_count_intr);
3842 		bge_reg_put32(bgep, RCV_COALESCE_INT_TICKS_REG,
3843 		    bge_rx_ticks_intr);
3844 	}
3845 
3846 	/*
3847 	 * Steps 63-64: initialise status block & statistics
3848 	 * host memory addresses
3849 	 * The statistic block does not exist in some chipsets
3850 	 * Step 65: initialise Statistics Coalescing Tick Counter
3851 	 */
3852 	bge_reg_put64(bgep, STATUS_BLOCK_HOST_ADDR_REG,
3853 	    bgep->status_block.cookie.dmac_laddress);
3854 
3855 	/*
3856 	 * Steps 66-67: initialise status block & statistics
3857 	 * NIC-local memory addresses
3858 	 */
3859 	if (DEVICE_5704_SERIES_CHIPSETS(bgep)) {
3860 		bge_reg_put64(bgep, STATISTICS_HOST_ADDR_REG,
3861 		    bgep->statistics.cookie.dmac_laddress);
3862 		bge_reg_put32(bgep, STATISTICS_TICKS_REG,
3863 		    STATISTICS_TICKS_DEFAULT);
3864 		bge_reg_put32(bgep, STATUS_BLOCK_BASE_ADDR_REG,
3865 		    NIC_MEM_STATUS_BLOCK);
3866 		bge_reg_put32(bgep, STATISTICS_BASE_ADDR_REG,
3867 		    NIC_MEM_STATISTICS);
3868 	}
3869 
3870 	/*
3871 	 * Steps 68-71: start the Host Coalescing Engine, the Receive BD
3872 	 * Completion Engine, the Receive List Placement Engine, and the
3873 	 * Receive List selector.Pay attention:0x3400 is not exist in BCM5714
3874 	 * and BCM5715.
3875 	 */
3876 	if (bgep->chipid.tx_rings <= COALESCE_64_BYTE_RINGS &&
3877 	    bgep->chipid.rx_rings <= COALESCE_64_BYTE_RINGS)
3878 		coalmode = COALESCE_64_BYTE_STATUS;
3879 	else
3880 		coalmode = 0;
3881 	if (!bge_chip_enable_engine(bgep, HOST_COALESCE_MODE_REG, coalmode))
3882 		retval = DDI_FAILURE;
3883 	if (!bge_chip_enable_engine(bgep, RCV_BD_COMPLETION_MODE_REG,
3884 	    STATE_MACHINE_ATTN_ENABLE_BIT))
3885 		retval = DDI_FAILURE;
3886 	if (!bge_chip_enable_engine(bgep, RCV_LIST_PLACEMENT_MODE_REG, 0))
3887 		retval = DDI_FAILURE;
3888 
3889 	if (DEVICE_5704_SERIES_CHIPSETS(bgep))
3890 		if (!bge_chip_enable_engine(bgep, RCV_LIST_SELECTOR_MODE_REG,
3891 		    STATE_MACHINE_ATTN_ENABLE_BIT))
3892 			retval = DDI_FAILURE;
3893 
3894 	/*
3895 	 * Step 72: Enable MAC DMA engines
3896 	 * Step 73: Clear & enable MAC statistics
3897 	 */
3898 	bge_reg_set32(bgep, ETHERNET_MAC_MODE_REG,
3899 	    ETHERNET_MODE_ENABLE_FHDE |
3900 	    ETHERNET_MODE_ENABLE_RDE |
3901 	    ETHERNET_MODE_ENABLE_TDE);
3902 	bge_reg_set32(bgep, ETHERNET_MAC_MODE_REG,
3903 	    ETHERNET_MODE_ENABLE_TX_STATS |
3904 	    ETHERNET_MODE_ENABLE_RX_STATS |
3905 	    ETHERNET_MODE_CLEAR_TX_STATS |
3906 	    ETHERNET_MODE_CLEAR_RX_STATS);
3907 
3908 	/*
3909 	 * Step 74: configure the MLCR (Miscellaneous Local Control
3910 	 * Register); not required, as we set up the MLCR in step 10
3911 	 * (part of the reset code) above.
3912 	 *
3913 	 * Step 75: clear Interrupt Mailbox 0
3914 	 */
3915 	bge_mbx_put(bgep, INTERRUPT_MBOX_0_REG, 0);
3916 
3917 	/*
3918 	 * Steps 76-87: Gentlemen, start your engines ...
3919 	 *
3920 	 * Enable the DMA Completion Engine, the Write DMA Engine,
3921 	 * the Read DMA Engine, Receive Data Completion Engine,
3922 	 * the MBuf Cluster Free Engine, the Send Data Completion Engine,
3923 	 * the Send BD Completion Engine, the Receive BD Initiator Engine,
3924 	 * the Receive Data Initiator Engine, the Send Data Initiator Engine,
3925 	 * the Send BD Initiator Engine, and the Send BD Selector Engine.
3926 	 *
3927 	 * Beware exhaust fumes?
3928 	 */
3929 	if (DEVICE_5704_SERIES_CHIPSETS(bgep))
3930 		if (!bge_chip_enable_engine(bgep, DMA_COMPLETION_MODE_REG, 0))
3931 			retval = DDI_FAILURE;
3932 	dma_wrprio = (bge_dma_wrprio << DMA_PRIORITY_SHIFT) |
3933 	    ALL_DMA_ATTN_BITS;
3934 	if ((MHCR_CHIP_ASIC_REV(bgep->chipid.asic_rev) ==
3935 	    MHCR_CHIP_ASIC_REV_5755) ||
3936 	    (MHCR_CHIP_ASIC_REV(bgep->chipid.asic_rev) ==
3937 	    MHCR_CHIP_ASIC_REV_5906)) {
3938 		dma_wrprio |= DMA_STATUS_TAG_FIX_CQ12384;
3939 	}
3940 	if (!bge_chip_enable_engine(bgep, WRITE_DMA_MODE_REG,
3941 	    dma_wrprio))
3942 		retval = DDI_FAILURE;
3943 	if (!bge_chip_enable_engine(bgep, READ_DMA_MODE_REG,
3944 	    (bge_dma_rdprio << DMA_PRIORITY_SHIFT) | ALL_DMA_ATTN_BITS))
3945 		retval = DDI_FAILURE;
3946 	if (!bge_chip_enable_engine(bgep, RCV_DATA_COMPLETION_MODE_REG,
3947 	    STATE_MACHINE_ATTN_ENABLE_BIT))
3948 		retval = DDI_FAILURE;
3949 	if (DEVICE_5704_SERIES_CHIPSETS(bgep))
3950 		if (!bge_chip_enable_engine(bgep,
3951 		    MBUF_CLUSTER_FREE_MODE_REG, 0))
3952 			retval = DDI_FAILURE;
3953 	if (!bge_chip_enable_engine(bgep, SEND_DATA_COMPLETION_MODE_REG, 0))
3954 		retval = DDI_FAILURE;
3955 	if (!bge_chip_enable_engine(bgep, SEND_BD_COMPLETION_MODE_REG,
3956 	    STATE_MACHINE_ATTN_ENABLE_BIT))
3957 		retval = DDI_FAILURE;
3958 	if (!bge_chip_enable_engine(bgep, RCV_BD_INITIATOR_MODE_REG,
3959 	    RCV_BD_DISABLED_RING_ATTN))
3960 		retval = DDI_FAILURE;
3961 	if (!bge_chip_enable_engine(bgep, RCV_DATA_BD_INITIATOR_MODE_REG,
3962 	    RCV_DATA_BD_ILL_RING_ATTN))
3963 		retval = DDI_FAILURE;
3964 	if (!bge_chip_enable_engine(bgep, SEND_DATA_INITIATOR_MODE_REG, 0))
3965 		retval = DDI_FAILURE;
3966 	if (!bge_chip_enable_engine(bgep, SEND_BD_INITIATOR_MODE_REG,
3967 	    STATE_MACHINE_ATTN_ENABLE_BIT))
3968 		retval = DDI_FAILURE;
3969 	if (!bge_chip_enable_engine(bgep, SEND_BD_SELECTOR_MODE_REG,
3970 	    STATE_MACHINE_ATTN_ENABLE_BIT))
3971 		retval = DDI_FAILURE;
3972 
3973 	/*
3974 	 * Step 88: download firmware -- doesn't apply
3975 	 * Steps 89-90: enable Transmit & Receive MAC Engines
3976 	 */
3977 	if (!bge_chip_enable_engine(bgep, TRANSMIT_MAC_MODE_REG, 0))
3978 		retval = DDI_FAILURE;
3979 #ifdef BGE_IPMI_ASF
3980 	if (!bgep->asf_enabled) {
3981 		if (!bge_chip_enable_engine(bgep, RECEIVE_MAC_MODE_REG,
3982 		    RECEIVE_MODE_KEEP_VLAN_TAG))
3983 			retval = DDI_FAILURE;
3984 	} else {
3985 		if (!bge_chip_enable_engine(bgep, RECEIVE_MAC_MODE_REG, 0))
3986 			retval = DDI_FAILURE;
3987 	}
3988 #else
3989 	if (!bge_chip_enable_engine(bgep, RECEIVE_MAC_MODE_REG,
3990 	    RECEIVE_MODE_KEEP_VLAN_TAG))
3991 		retval = DDI_FAILURE;
3992 #endif
3993 
3994 	/*
3995 	 * Step 91: disable auto-polling of PHY status
3996 	 */
3997 	bge_reg_put32(bgep, MI_MODE_REG, MI_MODE_DEFAULT);
3998 
3999 	/*
4000 	 * Step 92: configure D0 power state (not required)
4001 	 * Step 93: initialise LED control register ()
4002 	 */
4003 	ledctl = LED_CONTROL_DEFAULT;
4004 	switch (bgep->chipid.device) {
4005 	case DEVICE_ID_5700:
4006 	case DEVICE_ID_5700x:
4007 	case DEVICE_ID_5701:
4008 		/*
4009 		 * Switch to 5700 (MAC) mode on these older chips
4010 		 */
4011 		ledctl &= ~LED_CONTROL_LED_MODE_MASK;
4012 		ledctl |= LED_CONTROL_LED_MODE_5700;
4013 		break;
4014 
4015 	default:
4016 		break;
4017 	}
4018 	bge_reg_put32(bgep, ETHERNET_MAC_LED_CONTROL_REG, ledctl);
4019 
4020 	/*
4021 	 * Step 94: activate link
4022 	 */
4023 	bge_reg_put32(bgep, MI_STATUS_REG, MI_STATUS_LINK);
4024 
4025 	/*
4026 	 * Step 95: set up physical layer (PHY/SerDes)
4027 	 * restart autoneg (if required)
4028 	 */
4029 	if (reset_phys)
4030 		if (bge_phys_update(bgep) == DDI_FAILURE)
4031 			retval = DDI_FAILURE;
4032 
4033 	/*
4034 	 * Extra step (DSG): hand over all the Receive Buffers to the chip
4035 	 */
4036 	for (ring = 0; ring < BGE_BUFF_RINGS_USED; ++ring)
4037 		bge_mbx_put(bgep, bgep->buff[ring].chip_mbx_reg,
4038 		    bgep->buff[ring].rf_next);
4039 
4040 	/*
4041 	 * MSI bits:The least significant MSI 16-bit word.
4042 	 * ISR will be triggered different.
4043 	 */
4044 	if (bgep->intr_type == DDI_INTR_TYPE_MSI)
4045 		bge_reg_set32(bgep, HOST_COALESCE_MODE_REG, 0x70);
4046 
4047 	/*
4048 	 * Extra step (DSG): select which interrupts are enabled
4049 	 *
4050 	 * Program the Ethernet MAC engine to signal attention on
4051 	 * Link Change events, then enable interrupts on MAC, DMA,
4052 	 * and FLOW attention signals.
4053 	 */
4054 	bge_reg_set32(bgep, ETHERNET_MAC_EVENT_ENABLE_REG,
4055 	    ETHERNET_EVENT_LINK_INT |
4056 	    ETHERNET_STATUS_PCS_ERROR_INT);
4057 #ifdef BGE_IPMI_ASF
4058 	if (bgep->asf_enabled) {
4059 		bge_reg_set32(bgep, MODE_CONTROL_REG,
4060 		    MODE_INT_ON_FLOW_ATTN |
4061 		    MODE_INT_ON_DMA_ATTN |
4062 		    MODE_HOST_STACK_UP|
4063 		    MODE_INT_ON_MAC_ATTN);
4064 	} else {
4065 #endif
4066 		bge_reg_set32(bgep, MODE_CONTROL_REG,
4067 		    MODE_INT_ON_FLOW_ATTN |
4068 		    MODE_INT_ON_DMA_ATTN |
4069 		    MODE_INT_ON_MAC_ATTN);
4070 #ifdef BGE_IPMI_ASF
4071 	}
4072 #endif
4073 
4074 	/*
4075 	 * Step 97: enable PCI interrupts!!!
4076 	 */
4077 	if (bgep->intr_type == DDI_INTR_TYPE_FIXED)
4078 		bge_cfg_clr32(bgep, PCI_CONF_BGE_MHCR,
4079 		    MHCR_MASK_PCI_INT_OUTPUT);
4080 
4081 	/*
4082 	 * All done!
4083 	 */
4084 	bgep->bge_chip_state = BGE_CHIP_RUNNING;
4085 	return (retval);
4086 }
4087 
4088 
4089 /*
4090  * ========== Hardware interrupt handler ==========
4091  */
4092 
4093 #undef	BGE_DBG
4094 #define	BGE_DBG		BGE_DBG_INT	/* debug flag for this code	*/
4095 
4096 /*
4097  * Sync the status block, then atomically clear the specified bits in
4098  * the <flags-and-tag> field of the status block.
4099  * the <flags> word of the status block, returning the value of the
4100  * <tag> and the <flags> before the bits were cleared.
4101  */
4102 static int bge_status_sync(bge_t *bgep, uint64_t bits, uint64_t *flags);
4103 #pragma	inline(bge_status_sync)
4104 
4105 static int
4106 bge_status_sync(bge_t *bgep, uint64_t bits, uint64_t *flags)
4107 {
4108 	bge_status_t *bsp;
4109 	int retval;
4110 
4111 	BGE_TRACE(("bge_status_sync($%p, 0x%llx)",
4112 	    (void *)bgep, bits));
4113 
4114 	ASSERT(bgep->bge_guard == BGE_GUARD);
4115 
4116 	DMA_SYNC(bgep->status_block, DDI_DMA_SYNC_FORKERNEL);
4117 	retval = bge_check_dma_handle(bgep, bgep->status_block.dma_hdl);
4118 	if (retval != DDI_FM_OK)
4119 		return (retval);
4120 
4121 	bsp = DMA_VPTR(bgep->status_block);
4122 	*flags = bge_atomic_clr64(&bsp->flags_n_tag, bits);
4123 
4124 	BGE_DEBUG(("bge_status_sync($%p, 0x%llx) returning 0x%llx",
4125 	    (void *)bgep, bits, *flags));
4126 
4127 	return (retval);
4128 }
4129 
4130 void bge_wake_factotum(bge_t *bgep);
4131 #pragma	inline(bge_wake_factotum)
4132 
4133 void
4134 bge_wake_factotum(bge_t *bgep)
4135 {
4136 	mutex_enter(bgep->softintrlock);
4137 	if (bgep->factotum_flag == 0) {
4138 		bgep->factotum_flag = 1;
4139 		ddi_trigger_softintr(bgep->factotum_id);
4140 	}
4141 	mutex_exit(bgep->softintrlock);
4142 }
4143 
4144 /*
4145  *	bge_intr() -- handle chip interrupts
4146  */
4147 uint_t bge_intr(caddr_t arg1, caddr_t arg2);
4148 #pragma	no_inline(bge_intr)
4149 
4150 uint_t
4151 bge_intr(caddr_t arg1, caddr_t arg2)
4152 {
4153 	bge_t *bgep = (void *)arg1;		/* private device info	*/
4154 	bge_status_t *bsp;
4155 	uint64_t flags;
4156 	uint32_t regval;
4157 	uint_t result;
4158 	int retval, loop_cnt = 0;
4159 
4160 	BGE_TRACE(("bge_intr($%p) ($%p)", arg1, arg2));
4161 
4162 	/*
4163 	 * GLD v2 checks that s/w setup is complete before passing
4164 	 * interrupts to this routine, thus eliminating the old
4165 	 * (and well-known) race condition around ddi_add_intr()
4166 	 */
4167 	ASSERT(bgep->progress & PROGRESS_HWINT);
4168 
4169 	result = DDI_INTR_UNCLAIMED;
4170 	mutex_enter(bgep->genlock);
4171 
4172 	if (bgep->intr_type == DDI_INTR_TYPE_FIXED) {
4173 		/*
4174 		 * Check whether chip's says it's asserting #INTA;
4175 		 * if not, don't process or claim the interrupt.
4176 		 *
4177 		 * Note that the PCI signal is active low, so the
4178 		 * bit is *zero* when the interrupt is asserted.
4179 		 */
4180 		regval = bge_reg_get32(bgep, MISC_LOCAL_CONTROL_REG);
4181 		if (regval & MLCR_INTA_STATE) {
4182 			if (bge_check_acc_handle(bgep, bgep->io_handle)
4183 			    != DDI_FM_OK)
4184 				goto chip_stop;
4185 			mutex_exit(bgep->genlock);
4186 			return (result);
4187 		}
4188 
4189 		/*
4190 		 * Block further PCI interrupts ...
4191 		 */
4192 		bge_reg_set32(bgep, PCI_CONF_BGE_MHCR,
4193 		    MHCR_MASK_PCI_INT_OUTPUT);
4194 
4195 	} else {
4196 		/*
4197 		 * Check MSI status
4198 		 */
4199 		regval = bge_reg_get32(bgep, MSI_STATUS_REG);
4200 		if (regval & MSI_ERROR_ATTENTION) {
4201 			BGE_REPORT((bgep, "msi error attention,"
4202 			    " status=0x%x", regval));
4203 			bge_reg_put32(bgep, MSI_STATUS_REG, regval);
4204 		}
4205 	}
4206 
4207 	result = DDI_INTR_CLAIMED;
4208 
4209 	BGE_DEBUG(("bge_intr($%p) ($%p) regval 0x%08x", arg1, arg2, regval));
4210 
4211 	/*
4212 	 * Sync the status block and grab the flags-n-tag from it.
4213 	 * We count the number of interrupts where there doesn't
4214 	 * seem to have been a DMA update of the status block; if
4215 	 * it *has* been updated, the counter will be cleared in
4216 	 * the while() loop below ...
4217 	 */
4218 	bgep->missed_dmas += 1;
4219 	bsp = DMA_VPTR(bgep->status_block);
4220 	for (loop_cnt = 0; loop_cnt < bge_intr_max_loop; loop_cnt++) {
4221 		if (bgep->bge_chip_state != BGE_CHIP_RUNNING) {
4222 			/*
4223 			 * bge_chip_stop() may have freed dma area etc
4224 			 * while we were in this interrupt handler -
4225 			 * better not call bge_status_sync()
4226 			 */
4227 			(void) bge_check_acc_handle(bgep,
4228 			    bgep->io_handle);
4229 			mutex_exit(bgep->genlock);
4230 			return (DDI_INTR_CLAIMED);
4231 		}
4232 		retval = bge_status_sync(bgep, STATUS_FLAG_UPDATED,
4233 		    &flags);
4234 		if (retval != DDI_FM_OK) {
4235 			bgep->bge_dma_error = B_TRUE;
4236 			goto chip_stop;
4237 		}
4238 
4239 		if (!(flags & STATUS_FLAG_UPDATED))
4240 			break;
4241 
4242 		/*
4243 		 * Tell the chip that we're processing the interrupt
4244 		 */
4245 		bge_mbx_put(bgep, INTERRUPT_MBOX_0_REG,
4246 		    INTERRUPT_MBOX_DISABLE(flags));
4247 		if (bge_check_acc_handle(bgep, bgep->io_handle) !=
4248 		    DDI_FM_OK)
4249 			goto chip_stop;
4250 
4251 		/*
4252 		 * Drop the mutex while we:
4253 		 * 	Receive any newly-arrived packets
4254 		 *	Recycle any newly-finished send buffers
4255 		 */
4256 		bgep->bge_intr_running = B_TRUE;
4257 		mutex_exit(bgep->genlock);
4258 		bge_receive(bgep, bsp);
4259 		bge_recycle(bgep, bsp);
4260 		mutex_enter(bgep->genlock);
4261 		bgep->bge_intr_running = B_FALSE;
4262 
4263 		/*
4264 		 * Tell the chip we've finished processing, and
4265 		 * give it the tag that we got from the status
4266 		 * block earlier, so that it knows just how far
4267 		 * we've gone.  If it's got more for us to do,
4268 		 * it will now update the status block and try
4269 		 * to assert an interrupt (but we've got the
4270 		 * #INTA blocked at present).  If we see the
4271 		 * update, we'll loop around to do some more.
4272 		 * Eventually we'll get out of here ...
4273 		 */
4274 		bge_mbx_put(bgep, INTERRUPT_MBOX_0_REG,
4275 		    INTERRUPT_MBOX_ENABLE(flags));
4276 		if (bgep->chipid.pci_type == BGE_PCI_E)
4277 			(void) bge_mbx_get(bgep, INTERRUPT_MBOX_0_REG);
4278 		bgep->missed_dmas = 0;
4279 	}
4280 
4281 	/*
4282 	 * Check for exceptional conditions that we need to handle
4283 	 *
4284 	 * Link status changed
4285 	 * Status block not updated
4286 	 */
4287 	if (flags & STATUS_FLAG_LINK_CHANGED)
4288 		bge_wake_factotum(bgep);
4289 
4290 	if (bgep->missed_dmas) {
4291 		/*
4292 		 * Probably due to the internal status tag not
4293 		 * being reset.  Force a status block update now;
4294 		 * this should ensure that we get an update and
4295 		 * a new interrupt.  After that, we should be in
4296 		 * sync again ...
4297 		 */
4298 		BGE_REPORT((bgep, "interrupt: flags 0x%llx - "
4299 		    "not updated?", flags));
4300 		bgep->missed_updates++;
4301 		bge_reg_set32(bgep, HOST_COALESCE_MODE_REG,
4302 		    COALESCE_NOW);
4303 
4304 		if (bgep->missed_dmas >= bge_dma_miss_limit) {
4305 			/*
4306 			 * If this happens multiple times in a row,
4307 			 * it means DMA is just not working.  Maybe
4308 			 * the chip's failed, or maybe there's a
4309 			 * problem on the PCI bus or in the host-PCI
4310 			 * bridge (Tomatillo).
4311 			 *
4312 			 * At all events, we want to stop further
4313 			 * interrupts and let the recovery code take
4314 			 * over to see whether anything can be done
4315 			 * about it ...
4316 			 */
4317 			bge_fm_ereport(bgep,
4318 			    DDI_FM_DEVICE_BADINT_LIMIT);
4319 			goto chip_stop;
4320 		}
4321 	}
4322 
4323 	/*
4324 	 * Reenable assertion of #INTA, unless there's a DMA fault
4325 	 */
4326 	if (bgep->intr_type == DDI_INTR_TYPE_FIXED) {
4327 		bge_reg_clr32(bgep, PCI_CONF_BGE_MHCR,
4328 		    MHCR_MASK_PCI_INT_OUTPUT);
4329 		if (bge_check_acc_handle(bgep, bgep->cfg_handle) !=
4330 		    DDI_FM_OK)
4331 			goto chip_stop;
4332 	}
4333 
4334 	if (bge_check_acc_handle(bgep, bgep->io_handle) != DDI_FM_OK)
4335 		goto chip_stop;
4336 
4337 	mutex_exit(bgep->genlock);
4338 	return (result);
4339 
4340 chip_stop:
4341 #ifdef BGE_IPMI_ASF
4342 	if (bgep->asf_enabled && bgep->asf_status == ASF_STAT_RUN) {
4343 		/*
4344 		 * We must stop ASF heart beat before
4345 		 * bge_chip_stop(), otherwise some
4346 		 * computers (ex. IBM HS20 blade
4347 		 * server) may crash.
4348 		 */
4349 		bge_asf_update_status(bgep);
4350 		bge_asf_stop_timer(bgep);
4351 		bgep->asf_status = ASF_STAT_STOP;
4352 
4353 		bge_asf_pre_reset_operations(bgep, BGE_INIT_RESET);
4354 		(void) bge_check_acc_handle(bgep, bgep->cfg_handle);
4355 	}
4356 #endif
4357 	bge_chip_stop(bgep, B_TRUE);
4358 	(void) bge_check_acc_handle(bgep, bgep->io_handle);
4359 	mutex_exit(bgep->genlock);
4360 	return (result);
4361 }
4362 
4363 /*
4364  * ========== Factotum, implemented as a softint handler ==========
4365  */
4366 
4367 #undef	BGE_DBG
4368 #define	BGE_DBG		BGE_DBG_FACT	/* debug flag for this code	*/
4369 
4370 static void bge_factotum_error_handler(bge_t *bgep);
4371 #pragma	no_inline(bge_factotum_error_handler)
4372 
4373 static void
4374 bge_factotum_error_handler(bge_t *bgep)
4375 {
4376 	uint32_t flow;
4377 	uint32_t rdma;
4378 	uint32_t wdma;
4379 	uint32_t tmac;
4380 	uint32_t rmac;
4381 	uint32_t rxrs;
4382 	uint32_t txrs = 0;
4383 
4384 	ASSERT(mutex_owned(bgep->genlock));
4385 
4386 	/*
4387 	 * Read all the registers that show the possible
4388 	 * reasons for the ERROR bit to be asserted
4389 	 */
4390 	flow = bge_reg_get32(bgep, FLOW_ATTN_REG);
4391 	rdma = bge_reg_get32(bgep, READ_DMA_STATUS_REG);
4392 	wdma = bge_reg_get32(bgep, WRITE_DMA_STATUS_REG);
4393 	tmac = bge_reg_get32(bgep, TRANSMIT_MAC_STATUS_REG);
4394 	rmac = bge_reg_get32(bgep, RECEIVE_MAC_STATUS_REG);
4395 	rxrs = bge_reg_get32(bgep, RX_RISC_STATE_REG);
4396 	if (DEVICE_5704_SERIES_CHIPSETS(bgep))
4397 		txrs = bge_reg_get32(bgep, TX_RISC_STATE_REG);
4398 
4399 	BGE_DEBUG(("factotum($%p) flow 0x%x rdma 0x%x wdma 0x%x",
4400 	    (void *)bgep, flow, rdma, wdma));
4401 	BGE_DEBUG(("factotum($%p) tmac 0x%x rmac 0x%x rxrs 0x%08x txrs 0x%08x",
4402 	    (void *)bgep, tmac, rmac, rxrs, txrs));
4403 
4404 	/*
4405 	 * For now, just clear all the errors ...
4406 	 */
4407 	if (DEVICE_5704_SERIES_CHIPSETS(bgep))
4408 		bge_reg_put32(bgep, TX_RISC_STATE_REG, ~0);
4409 	bge_reg_put32(bgep, RX_RISC_STATE_REG, ~0);
4410 	bge_reg_put32(bgep, RECEIVE_MAC_STATUS_REG, ~0);
4411 	bge_reg_put32(bgep, WRITE_DMA_STATUS_REG, ~0);
4412 	bge_reg_put32(bgep, READ_DMA_STATUS_REG, ~0);
4413 	bge_reg_put32(bgep, FLOW_ATTN_REG, ~0);
4414 }
4415 
4416 /*
4417  * Handler for hardware link state change.
4418  *
4419  * When this routine is called, the hardware link state has changed
4420  * and the new state is reflected in the param_* variables.  Here
4421  * we must update the softstate and reprogram the MAC to match.
4422  */
4423 static void bge_factotum_link_handler(bge_t *bgep);
4424 #pragma	no_inline(bge_factotum_link_handler)
4425 
4426 static void
4427 bge_factotum_link_handler(bge_t *bgep)
4428 {
4429 	ASSERT(mutex_owned(bgep->genlock));
4430 
4431 	/*
4432 	 * Update the s/w link_state
4433 	 */
4434 	if (bgep->param_link_up)
4435 		bgep->link_state = LINK_STATE_UP;
4436 	else
4437 		bgep->link_state = LINK_STATE_DOWN;
4438 
4439 	/*
4440 	 * Reprogram the MAC modes to match
4441 	 */
4442 	bge_sync_mac_modes(bgep);
4443 }
4444 
4445 static boolean_t bge_factotum_link_check(bge_t *bgep, int *dma_state);
4446 #pragma	no_inline(bge_factotum_link_check)
4447 
4448 static boolean_t
4449 bge_factotum_link_check(bge_t *bgep, int *dma_state)
4450 {
4451 	boolean_t check;
4452 	uint64_t flags;
4453 	uint32_t tmac_status;
4454 
4455 	ASSERT(mutex_owned(bgep->genlock));
4456 
4457 	/*
4458 	 * Get & clear the writable status bits in the Tx status register
4459 	 * (some bits are write-1-to-clear, others are just readonly).
4460 	 */
4461 	tmac_status = bge_reg_get32(bgep, TRANSMIT_MAC_STATUS_REG);
4462 	bge_reg_put32(bgep, TRANSMIT_MAC_STATUS_REG, tmac_status);
4463 
4464 	/*
4465 	 * Get & clear the ERROR and LINK_CHANGED bits from the status block
4466 	 */
4467 	*dma_state = bge_status_sync(bgep, STATUS_FLAG_ERROR |
4468 	    STATUS_FLAG_LINK_CHANGED, &flags);
4469 	if (*dma_state != DDI_FM_OK)
4470 		return (B_FALSE);
4471 
4472 	/*
4473 	 * Clear any errors flagged in the status block ...
4474 	 */
4475 	if (flags & STATUS_FLAG_ERROR)
4476 		bge_factotum_error_handler(bgep);
4477 
4478 	/*
4479 	 * We need to check the link status if:
4480 	 *	the status block says there's been a link change
4481 	 *	or there's any discrepancy between the various
4482 	 *	flags indicating the link state (link_state,
4483 	 *	param_link_up, and the LINK STATE bit in the
4484 	 *	Transmit MAC status register).
4485 	 */
4486 	check = (flags & STATUS_FLAG_LINK_CHANGED) != 0;
4487 	switch (bgep->link_state) {
4488 	case LINK_STATE_UP:
4489 		check |= (bgep->param_link_up == B_FALSE);
4490 		check |= ((tmac_status & TRANSMIT_STATUS_LINK_UP) == 0);
4491 		break;
4492 
4493 	case LINK_STATE_DOWN:
4494 		check |= (bgep->param_link_up != B_FALSE);
4495 		check |= ((tmac_status & TRANSMIT_STATUS_LINK_UP) != 0);
4496 		break;
4497 
4498 	default:
4499 		check = B_TRUE;
4500 		break;
4501 	}
4502 
4503 	/*
4504 	 * If <check> is false, we're sure the link hasn't changed.
4505 	 * If true, however, it's not yet definitive; we have to call
4506 	 * bge_phys_check() to determine whether the link has settled
4507 	 * into a new state yet ... and if it has, then call the link
4508 	 * state change handler.But when the chip is 5700 in Dell 6650
4509 	 * ,even if check is false, the link may have changed.So we
4510 	 * have to call bge_phys_check() to determine the link state.
4511 	 */
4512 	if (check || bgep->chipid.device == DEVICE_ID_5700) {
4513 		check = bge_phys_check(bgep);
4514 		if (check)
4515 			bge_factotum_link_handler(bgep);
4516 	}
4517 
4518 	return (check);
4519 }
4520 
4521 /*
4522  * Factotum routine to check for Tx stall, using the 'watchdog' counter
4523  */
4524 static boolean_t bge_factotum_stall_check(bge_t *bgep);
4525 #pragma	no_inline(bge_factotum_stall_check)
4526 
4527 static boolean_t
4528 bge_factotum_stall_check(bge_t *bgep)
4529 {
4530 	uint32_t dogval;
4531 
4532 	ASSERT(mutex_owned(bgep->genlock));
4533 
4534 	/*
4535 	 * Specific check for Tx stall ...
4536 	 *
4537 	 * The 'watchdog' counter is incremented whenever a packet
4538 	 * is queued, reset to 1 when some (but not all) buffers
4539 	 * are reclaimed, reset to 0 (disabled) when all buffers
4540 	 * are reclaimed, and shifted left here.  If it exceeds the
4541 	 * threshold value, the chip is assumed to have stalled and
4542 	 * is put into the ERROR state.  The factotum will then reset
4543 	 * it on the next pass.
4544 	 *
4545 	 * All of which should ensure that we don't get into a state
4546 	 * where packets are left pending indefinitely!
4547 	 */
4548 	dogval = bge_atomic_shl32(&bgep->watchdog, 1);
4549 	if (dogval < bge_watchdog_count)
4550 		return (B_FALSE);
4551 
4552 #if !defined(BGE_NETCONSOLE)
4553 	BGE_REPORT((bgep, "Tx stall detected, watchdog code 0x%x", dogval));
4554 #endif
4555 	bge_fm_ereport(bgep, DDI_FM_DEVICE_STALL);
4556 	return (B_TRUE);
4557 }
4558 
4559 /*
4560  * The factotum is woken up when there's something to do that we'd rather
4561  * not do from inside a hardware interrupt handler or high-level cyclic.
4562  * Its two main tasks are:
4563  *	reset & restart the chip after an error
4564  *	check the link status whenever necessary
4565  */
4566 uint_t bge_chip_factotum(caddr_t arg);
4567 #pragma	no_inline(bge_chip_factotum)
4568 
4569 uint_t
4570 bge_chip_factotum(caddr_t arg)
4571 {
4572 	bge_t *bgep;
4573 	uint_t result;
4574 	boolean_t error;
4575 	boolean_t linkchg;
4576 	int dma_state;
4577 
4578 	bgep = (void *)arg;
4579 
4580 	BGE_TRACE(("bge_chip_factotum($%p)", (void *)bgep));
4581 
4582 	mutex_enter(bgep->softintrlock);
4583 	if (bgep->factotum_flag == 0) {
4584 		mutex_exit(bgep->softintrlock);
4585 		return (DDI_INTR_UNCLAIMED);
4586 	}
4587 	bgep->factotum_flag = 0;
4588 	mutex_exit(bgep->softintrlock);
4589 
4590 	result = DDI_INTR_CLAIMED;
4591 	error = B_FALSE;
4592 	linkchg = B_FALSE;
4593 
4594 	mutex_enter(bgep->genlock);
4595 	switch (bgep->bge_chip_state) {
4596 	default:
4597 		break;
4598 
4599 	case BGE_CHIP_RUNNING:
4600 		linkchg = bge_factotum_link_check(bgep, &dma_state);
4601 		error = bge_factotum_stall_check(bgep);
4602 		if (dma_state != DDI_FM_OK) {
4603 			bgep->bge_dma_error = B_TRUE;
4604 			error = B_TRUE;
4605 		}
4606 		if (bge_check_acc_handle(bgep, bgep->io_handle) != DDI_FM_OK)
4607 			error = B_TRUE;
4608 		if (error)
4609 			bgep->bge_chip_state = BGE_CHIP_ERROR;
4610 		break;
4611 
4612 	case BGE_CHIP_ERROR:
4613 		error = B_TRUE;
4614 		break;
4615 
4616 	case BGE_CHIP_FAULT:
4617 		/*
4618 		 * Fault detected, time to reset ...
4619 		 */
4620 		if (bge_autorecover) {
4621 			if (!(bgep->progress & PROGRESS_BUFS)) {
4622 				/*
4623 				 * if we can't allocate the ring buffers,
4624 				 * try later
4625 				 */
4626 				if (bge_alloc_bufs(bgep) != DDI_SUCCESS) {
4627 					mutex_exit(bgep->genlock);
4628 					return (result);
4629 				}
4630 				bgep->progress |= PROGRESS_BUFS;
4631 			}
4632 			if (!(bgep->progress & PROGRESS_INTR)) {
4633 				bge_init_rings(bgep);
4634 				bge_intr_enable(bgep);
4635 				bgep->progress |= PROGRESS_INTR;
4636 			}
4637 			if (!(bgep->progress & PROGRESS_KSTATS)) {
4638 				bge_init_kstats(bgep,
4639 				    ddi_get_instance(bgep->devinfo));
4640 				bgep->progress |= PROGRESS_KSTATS;
4641 			}
4642 
4643 			BGE_REPORT((bgep, "automatic recovery activated"));
4644 
4645 			if (bge_restart(bgep, B_FALSE) != DDI_SUCCESS) {
4646 				bgep->bge_chip_state = BGE_CHIP_ERROR;
4647 				error = B_TRUE;
4648 			}
4649 			if (bge_check_acc_handle(bgep, bgep->cfg_handle) !=
4650 			    DDI_FM_OK) {
4651 				bgep->bge_chip_state = BGE_CHIP_ERROR;
4652 				error = B_TRUE;
4653 			}
4654 			if (bge_check_acc_handle(bgep, bgep->io_handle) !=
4655 			    DDI_FM_OK) {
4656 				bgep->bge_chip_state = BGE_CHIP_ERROR;
4657 				error = B_TRUE;
4658 			}
4659 			if (error == B_FALSE) {
4660 #ifdef BGE_IPMI_ASF
4661 				if (bgep->asf_enabled &&
4662 				    bgep->asf_status != ASF_STAT_RUN) {
4663 					bgep->asf_timeout_id = timeout(
4664 					    bge_asf_heartbeat, (void *)bgep,
4665 					    drv_usectohz(
4666 					    BGE_ASF_HEARTBEAT_INTERVAL));
4667 					bgep->asf_status = ASF_STAT_RUN;
4668 				}
4669 #endif
4670 				if (!bgep->manual_reset) {
4671 					ddi_fm_service_impact(bgep->devinfo,
4672 					    DDI_SERVICE_RESTORED);
4673 				}
4674 			}
4675 		}
4676 		break;
4677 	}
4678 
4679 
4680 	/*
4681 	 * If an error is detected, stop the chip now, marking it as
4682 	 * faulty, so that it will be reset next time through ...
4683 	 *
4684 	 * Note that if intr_running is set, then bge_intr() has dropped
4685 	 * genlock to call bge_receive/bge_recycle. Can't stop the chip at
4686 	 * this point so have to wait until the next time the factotum runs.
4687 	 */
4688 	if (error && !bgep->bge_intr_running) {
4689 #ifdef BGE_IPMI_ASF
4690 		if (bgep->asf_enabled && (bgep->asf_status == ASF_STAT_RUN)) {
4691 			/*
4692 			 * We must stop ASF heart beat before bge_chip_stop(),
4693 			 * otherwise some computers (ex. IBM HS20 blade server)
4694 			 * may crash.
4695 			 */
4696 			bge_asf_update_status(bgep);
4697 			bge_asf_stop_timer(bgep);
4698 			bgep->asf_status = ASF_STAT_STOP;
4699 
4700 			bge_asf_pre_reset_operations(bgep, BGE_INIT_RESET);
4701 			(void) bge_check_acc_handle(bgep, bgep->cfg_handle);
4702 		}
4703 #endif
4704 		bge_chip_stop(bgep, B_TRUE);
4705 		(void) bge_check_acc_handle(bgep, bgep->io_handle);
4706 	}
4707 	mutex_exit(bgep->genlock);
4708 
4709 	/*
4710 	 * If the link state changed, tell the world about it.
4711 	 * Note: can't do this while still holding the mutex.
4712 	 */
4713 	if (bgep->link_update_timer == BGE_LINK_UPDATE_TIMEOUT &&
4714 	    bgep->link_state != LINK_STATE_UNKNOWN)
4715 		linkchg = B_TRUE;
4716 	else if (bgep->link_update_timer < BGE_LINK_UPDATE_TIMEOUT &&
4717 	    bgep->link_state == LINK_STATE_DOWN)
4718 		linkchg = B_FALSE;
4719 
4720 	if (linkchg) {
4721 		mac_link_update(bgep->mh, bgep->link_state);
4722 		bgep->link_update_timer = BGE_LINK_UPDATE_DONE;
4723 	}
4724 	if (bgep->manual_reset) {
4725 		bgep->manual_reset = B_FALSE;
4726 	}
4727 
4728 	return (result);
4729 }
4730 
4731 /*
4732  * High-level cyclic handler
4733  *
4734  * This routine schedules a (low-level) softint callback to the
4735  * factotum, and prods the chip to update the status block (which
4736  * will cause a hardware interrupt when complete).
4737  */
4738 void bge_chip_cyclic(void *arg);
4739 #pragma	no_inline(bge_chip_cyclic)
4740 
4741 void
4742 bge_chip_cyclic(void *arg)
4743 {
4744 	bge_t *bgep;
4745 
4746 	bgep = arg;
4747 
4748 	switch (bgep->bge_chip_state) {
4749 	default:
4750 		return;
4751 
4752 	case BGE_CHIP_RUNNING:
4753 		bge_reg_set32(bgep, HOST_COALESCE_MODE_REG, COALESCE_NOW);
4754 		if (bge_check_acc_handle(bgep, bgep->io_handle) != DDI_FM_OK)
4755 			ddi_fm_service_impact(bgep->devinfo,
4756 			    DDI_SERVICE_UNAFFECTED);
4757 
4758 		if (bgep->link_update_timer < BGE_LINK_UPDATE_TIMEOUT)
4759 			bgep->link_update_timer++;
4760 
4761 		break;
4762 
4763 	case BGE_CHIP_FAULT:
4764 	case BGE_CHIP_ERROR:
4765 		break;
4766 	}
4767 
4768 	bge_wake_factotum(bgep);
4769 }
4770 
4771 
4772 /*
4773  * ========== Ioctl subfunctions ==========
4774  */
4775 
4776 #undef	BGE_DBG
4777 #define	BGE_DBG		BGE_DBG_PPIO	/* debug flag for this code	*/
4778 
4779 #if	BGE_DEBUGGING || BGE_DO_PPIO
4780 
4781 static void bge_chip_peek_cfg(bge_t *bgep, bge_peekpoke_t *ppd);
4782 #pragma	no_inline(bge_chip_peek_cfg)
4783 
4784 static void
4785 bge_chip_peek_cfg(bge_t *bgep, bge_peekpoke_t *ppd)
4786 {
4787 	uint64_t regval;
4788 	uint64_t regno;
4789 
4790 	BGE_TRACE(("bge_chip_peek_cfg($%p, $%p)",
4791 	    (void *)bgep, (void *)ppd));
4792 
4793 	regno = ppd->pp_acc_offset;
4794 
4795 	switch (ppd->pp_acc_size) {
4796 	case 1:
4797 		regval = pci_config_get8(bgep->cfg_handle, regno);
4798 		break;
4799 
4800 	case 2:
4801 		regval = pci_config_get16(bgep->cfg_handle, regno);
4802 		break;
4803 
4804 	case 4:
4805 		regval = pci_config_get32(bgep->cfg_handle, regno);
4806 		break;
4807 
4808 	case 8:
4809 		regval = pci_config_get64(bgep->cfg_handle, regno);
4810 		break;
4811 	}
4812 
4813 	ppd->pp_acc_data = regval;
4814 }
4815 
4816 static void bge_chip_poke_cfg(bge_t *bgep, bge_peekpoke_t *ppd);
4817 #pragma	no_inline(bge_chip_poke_cfg)
4818 
4819 static void
4820 bge_chip_poke_cfg(bge_t *bgep, bge_peekpoke_t *ppd)
4821 {
4822 	uint64_t regval;
4823 	uint64_t regno;
4824 
4825 	BGE_TRACE(("bge_chip_poke_cfg($%p, $%p)",
4826 	    (void *)bgep, (void *)ppd));
4827 
4828 	regno = ppd->pp_acc_offset;
4829 	regval = ppd->pp_acc_data;
4830 
4831 	switch (ppd->pp_acc_size) {
4832 	case 1:
4833 		pci_config_put8(bgep->cfg_handle, regno, regval);
4834 		break;
4835 
4836 	case 2:
4837 		pci_config_put16(bgep->cfg_handle, regno, regval);
4838 		break;
4839 
4840 	case 4:
4841 		pci_config_put32(bgep->cfg_handle, regno, regval);
4842 		break;
4843 
4844 	case 8:
4845 		pci_config_put64(bgep->cfg_handle, regno, regval);
4846 		break;
4847 	}
4848 }
4849 
4850 static void bge_chip_peek_reg(bge_t *bgep, bge_peekpoke_t *ppd);
4851 #pragma	no_inline(bge_chip_peek_reg)
4852 
4853 static void
4854 bge_chip_peek_reg(bge_t *bgep, bge_peekpoke_t *ppd)
4855 {
4856 	uint64_t regval;
4857 	void *regaddr;
4858 
4859 	BGE_TRACE(("bge_chip_peek_reg($%p, $%p)",
4860 	    (void *)bgep, (void *)ppd));
4861 
4862 	regaddr = PIO_ADDR(bgep, ppd->pp_acc_offset);
4863 
4864 	switch (ppd->pp_acc_size) {
4865 	case 1:
4866 		regval = ddi_get8(bgep->io_handle, regaddr);
4867 		break;
4868 
4869 	case 2:
4870 		regval = ddi_get16(bgep->io_handle, regaddr);
4871 		break;
4872 
4873 	case 4:
4874 		regval = ddi_get32(bgep->io_handle, regaddr);
4875 		break;
4876 
4877 	case 8:
4878 		regval = ddi_get64(bgep->io_handle, regaddr);
4879 		break;
4880 	}
4881 
4882 	ppd->pp_acc_data = regval;
4883 }
4884 
4885 static void bge_chip_poke_reg(bge_t *bgep, bge_peekpoke_t *ppd);
4886 #pragma	no_inline(bge_chip_peek_reg)
4887 
4888 static void
4889 bge_chip_poke_reg(bge_t *bgep, bge_peekpoke_t *ppd)
4890 {
4891 	uint64_t regval;
4892 	void *regaddr;
4893 
4894 	BGE_TRACE(("bge_chip_poke_reg($%p, $%p)",
4895 	    (void *)bgep, (void *)ppd));
4896 
4897 	regaddr = PIO_ADDR(bgep, ppd->pp_acc_offset);
4898 	regval = ppd->pp_acc_data;
4899 
4900 	switch (ppd->pp_acc_size) {
4901 	case 1:
4902 		ddi_put8(bgep->io_handle, regaddr, regval);
4903 		break;
4904 
4905 	case 2:
4906 		ddi_put16(bgep->io_handle, regaddr, regval);
4907 		break;
4908 
4909 	case 4:
4910 		ddi_put32(bgep->io_handle, regaddr, regval);
4911 		break;
4912 
4913 	case 8:
4914 		ddi_put64(bgep->io_handle, regaddr, regval);
4915 		break;
4916 	}
4917 	BGE_PCICHK(bgep);
4918 }
4919 
4920 static void bge_chip_peek_nic(bge_t *bgep, bge_peekpoke_t *ppd);
4921 #pragma	no_inline(bge_chip_peek_nic)
4922 
4923 static void
4924 bge_chip_peek_nic(bge_t *bgep, bge_peekpoke_t *ppd)
4925 {
4926 	uint64_t regoff;
4927 	uint64_t regval;
4928 	void *regaddr;
4929 
4930 	BGE_TRACE(("bge_chip_peek_nic($%p, $%p)",
4931 	    (void *)bgep, (void *)ppd));
4932 
4933 	regoff = ppd->pp_acc_offset;
4934 	bge_nic_setwin(bgep, regoff & ~MWBAR_GRANULE_MASK);
4935 	regoff &= MWBAR_GRANULE_MASK;
4936 	regoff += NIC_MEM_WINDOW_OFFSET;
4937 	regaddr = PIO_ADDR(bgep, regoff);
4938 
4939 	switch (ppd->pp_acc_size) {
4940 	case 1:
4941 		regval = ddi_get8(bgep->io_handle, regaddr);
4942 		break;
4943 
4944 	case 2:
4945 		regval = ddi_get16(bgep->io_handle, regaddr);
4946 		break;
4947 
4948 	case 4:
4949 		regval = ddi_get32(bgep->io_handle, regaddr);
4950 		break;
4951 
4952 	case 8:
4953 		regval = ddi_get64(bgep->io_handle, regaddr);
4954 		break;
4955 	}
4956 
4957 	ppd->pp_acc_data = regval;
4958 }
4959 
4960 static void bge_chip_poke_nic(bge_t *bgep, bge_peekpoke_t *ppd);
4961 #pragma	no_inline(bge_chip_poke_nic)
4962 
4963 static void
4964 bge_chip_poke_nic(bge_t *bgep, bge_peekpoke_t *ppd)
4965 {
4966 	uint64_t regoff;
4967 	uint64_t regval;
4968 	void *regaddr;
4969 
4970 	BGE_TRACE(("bge_chip_poke_nic($%p, $%p)",
4971 	    (void *)bgep, (void *)ppd));
4972 
4973 	regoff = ppd->pp_acc_offset;
4974 	bge_nic_setwin(bgep, regoff & ~MWBAR_GRANULE_MASK);
4975 	regoff &= MWBAR_GRANULE_MASK;
4976 	regoff += NIC_MEM_WINDOW_OFFSET;
4977 	regaddr = PIO_ADDR(bgep, regoff);
4978 	regval = ppd->pp_acc_data;
4979 
4980 	switch (ppd->pp_acc_size) {
4981 	case 1:
4982 		ddi_put8(bgep->io_handle, regaddr, regval);
4983 		break;
4984 
4985 	case 2:
4986 		ddi_put16(bgep->io_handle, regaddr, regval);
4987 		break;
4988 
4989 	case 4:
4990 		ddi_put32(bgep->io_handle, regaddr, regval);
4991 		break;
4992 
4993 	case 8:
4994 		ddi_put64(bgep->io_handle, regaddr, regval);
4995 		break;
4996 	}
4997 	BGE_PCICHK(bgep);
4998 }
4999 
5000 static void bge_chip_peek_mii(bge_t *bgep, bge_peekpoke_t *ppd);
5001 #pragma	no_inline(bge_chip_peek_mii)
5002 
5003 static void
5004 bge_chip_peek_mii(bge_t *bgep, bge_peekpoke_t *ppd)
5005 {
5006 	BGE_TRACE(("bge_chip_peek_mii($%p, $%p)",
5007 	    (void *)bgep, (void *)ppd));
5008 
5009 	ppd->pp_acc_data = bge_mii_get16(bgep, ppd->pp_acc_offset/2);
5010 }
5011 
5012 static void bge_chip_poke_mii(bge_t *bgep, bge_peekpoke_t *ppd);
5013 #pragma	no_inline(bge_chip_poke_mii)
5014 
5015 static void
5016 bge_chip_poke_mii(bge_t *bgep, bge_peekpoke_t *ppd)
5017 {
5018 	BGE_TRACE(("bge_chip_poke_mii($%p, $%p)",
5019 	    (void *)bgep, (void *)ppd));
5020 
5021 	bge_mii_put16(bgep, ppd->pp_acc_offset/2, ppd->pp_acc_data);
5022 }
5023 
5024 #if	BGE_SEE_IO32
5025 
5026 static void bge_chip_peek_seeprom(bge_t *bgep, bge_peekpoke_t *ppd);
5027 #pragma	no_inline(bge_chip_peek_seeprom)
5028 
5029 static void
5030 bge_chip_peek_seeprom(bge_t *bgep, bge_peekpoke_t *ppd)
5031 {
5032 	uint32_t data;
5033 	int err;
5034 
5035 	BGE_TRACE(("bge_chip_peek_seeprom($%p, $%p)",
5036 	    (void *)bgep, (void *)ppd));
5037 
5038 	err = bge_nvmem_rw32(bgep, BGE_SEE_READ, ppd->pp_acc_offset, &data);
5039 	ppd->pp_acc_data = err ? ~0ull : data;
5040 }
5041 
5042 static void bge_chip_poke_seeprom(bge_t *bgep, bge_peekpoke_t *ppd);
5043 #pragma	no_inline(bge_chip_poke_seeprom)
5044 
5045 static void
5046 bge_chip_poke_seeprom(bge_t *bgep, bge_peekpoke_t *ppd)
5047 {
5048 	uint32_t data;
5049 
5050 	BGE_TRACE(("bge_chip_poke_seeprom($%p, $%p)",
5051 	    (void *)bgep, (void *)ppd));
5052 
5053 	data = ppd->pp_acc_data;
5054 	(void) bge_nvmem_rw32(bgep, BGE_SEE_WRITE, ppd->pp_acc_offset, &data);
5055 }
5056 #endif	/* BGE_SEE_IO32 */
5057 
5058 #if	BGE_FLASH_IO32
5059 
5060 static void bge_chip_peek_flash(bge_t *bgep, bge_peekpoke_t *ppd);
5061 #pragma	no_inline(bge_chip_peek_flash)
5062 
5063 static void
5064 bge_chip_peek_flash(bge_t *bgep, bge_peekpoke_t *ppd)
5065 {
5066 	uint32_t data;
5067 	int err;
5068 
5069 	BGE_TRACE(("bge_chip_peek_flash($%p, $%p)",
5070 	    (void *)bgep, (void *)ppd));
5071 
5072 	err = bge_nvmem_rw32(bgep, BGE_FLASH_READ, ppd->pp_acc_offset, &data);
5073 	ppd->pp_acc_data = err ? ~0ull : data;
5074 }
5075 
5076 static void bge_chip_poke_flash(bge_t *bgep, bge_peekpoke_t *ppd);
5077 #pragma	no_inline(bge_chip_poke_flash)
5078 
5079 static void
5080 bge_chip_poke_flash(bge_t *bgep, bge_peekpoke_t *ppd)
5081 {
5082 	uint32_t data;
5083 
5084 	BGE_TRACE(("bge_chip_poke_flash($%p, $%p)",
5085 	    (void *)bgep, (void *)ppd));
5086 
5087 	data = ppd->pp_acc_data;
5088 	(void) bge_nvmem_rw32(bgep, BGE_FLASH_WRITE,
5089 	    ppd->pp_acc_offset, &data);
5090 }
5091 #endif	/* BGE_FLASH_IO32 */
5092 
5093 static void bge_chip_peek_mem(bge_t *bgep, bge_peekpoke_t *ppd);
5094 #pragma	no_inline(bge_chip_peek_mem)
5095 
5096 static void
5097 bge_chip_peek_mem(bge_t *bgep, bge_peekpoke_t *ppd)
5098 {
5099 	uint64_t regval;
5100 	void *vaddr;
5101 
5102 	BGE_TRACE(("bge_chip_peek_bge($%p, $%p)",
5103 	    (void *)bgep, (void *)ppd));
5104 
5105 	vaddr = (void *)(uintptr_t)ppd->pp_acc_offset;
5106 
5107 	switch (ppd->pp_acc_size) {
5108 	case 1:
5109 		regval = *(uint8_t *)vaddr;
5110 		break;
5111 
5112 	case 2:
5113 		regval = *(uint16_t *)vaddr;
5114 		break;
5115 
5116 	case 4:
5117 		regval = *(uint32_t *)vaddr;
5118 		break;
5119 
5120 	case 8:
5121 		regval = *(uint64_t *)vaddr;
5122 		break;
5123 	}
5124 
5125 	BGE_DEBUG(("bge_chip_peek_mem($%p, $%p) peeked 0x%llx from $%p",
5126 	    (void *)bgep, (void *)ppd, regval, vaddr));
5127 
5128 	ppd->pp_acc_data = regval;
5129 }
5130 
5131 static void bge_chip_poke_mem(bge_t *bgep, bge_peekpoke_t *ppd);
5132 #pragma	no_inline(bge_chip_poke_mem)
5133 
5134 static void
5135 bge_chip_poke_mem(bge_t *bgep, bge_peekpoke_t *ppd)
5136 {
5137 	uint64_t regval;
5138 	void *vaddr;
5139 
5140 	BGE_TRACE(("bge_chip_poke_mem($%p, $%p)",
5141 	    (void *)bgep, (void *)ppd));
5142 
5143 	vaddr = (void *)(uintptr_t)ppd->pp_acc_offset;
5144 	regval = ppd->pp_acc_data;
5145 
5146 	BGE_DEBUG(("bge_chip_poke_mem($%p, $%p) poking 0x%llx at $%p",
5147 	    (void *)bgep, (void *)ppd, regval, vaddr));
5148 
5149 	switch (ppd->pp_acc_size) {
5150 	case 1:
5151 		*(uint8_t *)vaddr = (uint8_t)regval;
5152 		break;
5153 
5154 	case 2:
5155 		*(uint16_t *)vaddr = (uint16_t)regval;
5156 		break;
5157 
5158 	case 4:
5159 		*(uint32_t *)vaddr = (uint32_t)regval;
5160 		break;
5161 
5162 	case 8:
5163 		*(uint64_t *)vaddr = (uint64_t)regval;
5164 		break;
5165 	}
5166 }
5167 
5168 static enum ioc_reply bge_pp_ioctl(bge_t *bgep, int cmd, mblk_t *mp,
5169 					struct iocblk *iocp);
5170 #pragma	no_inline(bge_pp_ioctl)
5171 
5172 static enum ioc_reply
5173 bge_pp_ioctl(bge_t *bgep, int cmd, mblk_t *mp, struct iocblk *iocp)
5174 {
5175 	void (*ppfn)(bge_t *bgep, bge_peekpoke_t *ppd);
5176 	bge_peekpoke_t *ppd;
5177 	dma_area_t *areap;
5178 	uint64_t sizemask;
5179 	uint64_t mem_va;
5180 	uint64_t maxoff;
5181 	boolean_t peek;
5182 
5183 	switch (cmd) {
5184 	default:
5185 		/* NOTREACHED */
5186 		bge_error(bgep, "bge_pp_ioctl: invalid cmd 0x%x", cmd);
5187 		return (IOC_INVAL);
5188 
5189 	case BGE_PEEK:
5190 		peek = B_TRUE;
5191 		break;
5192 
5193 	case BGE_POKE:
5194 		peek = B_FALSE;
5195 		break;
5196 	}
5197 
5198 	/*
5199 	 * Validate format of ioctl
5200 	 */
5201 	if (iocp->ioc_count != sizeof (bge_peekpoke_t))
5202 		return (IOC_INVAL);
5203 	if (mp->b_cont == NULL)
5204 		return (IOC_INVAL);
5205 	ppd = (void *)mp->b_cont->b_rptr;
5206 
5207 	/*
5208 	 * Validate request parameters
5209 	 */
5210 	switch (ppd->pp_acc_space) {
5211 	default:
5212 		return (IOC_INVAL);
5213 
5214 	case BGE_PP_SPACE_CFG:
5215 		/*
5216 		 * Config space
5217 		 */
5218 		sizemask = 8|4|2|1;
5219 		mem_va = 0;
5220 		maxoff = PCI_CONF_HDR_SIZE;
5221 		ppfn = peek ? bge_chip_peek_cfg : bge_chip_poke_cfg;
5222 		break;
5223 
5224 	case BGE_PP_SPACE_REG:
5225 		/*
5226 		 * Memory-mapped I/O space
5227 		 */
5228 		sizemask = 8|4|2|1;
5229 		mem_va = 0;
5230 		maxoff = RIAAR_REGISTER_MAX;
5231 		ppfn = peek ? bge_chip_peek_reg : bge_chip_poke_reg;
5232 		break;
5233 
5234 	case BGE_PP_SPACE_NIC:
5235 		/*
5236 		 * NIC on-chip memory
5237 		 */
5238 		sizemask = 8|4|2|1;
5239 		mem_va = 0;
5240 		maxoff = MWBAR_ONCHIP_MAX;
5241 		ppfn = peek ? bge_chip_peek_nic : bge_chip_poke_nic;
5242 		break;
5243 
5244 	case BGE_PP_SPACE_MII:
5245 		/*
5246 		 * PHY's MII registers
5247 		 * NB: all PHY registers are two bytes, but the
5248 		 * addresses increment in ones (word addressing).
5249 		 * So we scale the address here, then undo the
5250 		 * transformation inside the peek/poke functions.
5251 		 */
5252 		ppd->pp_acc_offset *= 2;
5253 		sizemask = 2;
5254 		mem_va = 0;
5255 		maxoff = (MII_MAXREG+1)*2;
5256 		ppfn = peek ? bge_chip_peek_mii : bge_chip_poke_mii;
5257 		break;
5258 
5259 #if	BGE_SEE_IO32
5260 	case BGE_PP_SPACE_SEEPROM:
5261 		/*
5262 		 * Attached SEEPROM(s), if any.
5263 		 * NB: we use the high-order bits of the 'address' as
5264 		 * a device select to accommodate multiple SEEPROMS,
5265 		 * If each one is the maximum size (64kbytes), this
5266 		 * makes them appear contiguous.  Otherwise, there may
5267 		 * be holes in the mapping.  ENxS doesn't have any
5268 		 * SEEPROMs anyway ...
5269 		 */
5270 		sizemask = 4;
5271 		mem_va = 0;
5272 		maxoff = SEEPROM_DEV_AND_ADDR_MASK;
5273 		ppfn = peek ? bge_chip_peek_seeprom : bge_chip_poke_seeprom;
5274 		break;
5275 #endif	/* BGE_SEE_IO32 */
5276 
5277 #if	BGE_FLASH_IO32
5278 	case BGE_PP_SPACE_FLASH:
5279 		/*
5280 		 * Attached Flash device (if any); a maximum of one device
5281 		 * is currently supported.  But it can be up to 1MB (unlike
5282 		 * the 64k limit on SEEPROMs) so why would you need more ;-)
5283 		 */
5284 		sizemask = 4;
5285 		mem_va = 0;
5286 		maxoff = NVM_FLASH_ADDR_MASK;
5287 		ppfn = peek ? bge_chip_peek_flash : bge_chip_poke_flash;
5288 		break;
5289 #endif	/* BGE_FLASH_IO32 */
5290 
5291 	case BGE_PP_SPACE_BGE:
5292 		/*
5293 		 * BGE data structure!
5294 		 */
5295 		sizemask = 8|4|2|1;
5296 		mem_va = (uintptr_t)bgep;
5297 		maxoff = sizeof (*bgep);
5298 		ppfn = peek ? bge_chip_peek_mem : bge_chip_poke_mem;
5299 		break;
5300 
5301 	case BGE_PP_SPACE_STATUS:
5302 	case BGE_PP_SPACE_STATISTICS:
5303 	case BGE_PP_SPACE_TXDESC:
5304 	case BGE_PP_SPACE_TXBUFF:
5305 	case BGE_PP_SPACE_RXDESC:
5306 	case BGE_PP_SPACE_RXBUFF:
5307 		/*
5308 		 * Various DMA_AREAs
5309 		 */
5310 		switch (ppd->pp_acc_space) {
5311 		case BGE_PP_SPACE_TXDESC:
5312 			areap = &bgep->tx_desc;
5313 			break;
5314 		case BGE_PP_SPACE_TXBUFF:
5315 			areap = &bgep->tx_buff[0];
5316 			break;
5317 		case BGE_PP_SPACE_RXDESC:
5318 			areap = &bgep->rx_desc[0];
5319 			break;
5320 		case BGE_PP_SPACE_RXBUFF:
5321 			areap = &bgep->rx_buff[0];
5322 			break;
5323 		case BGE_PP_SPACE_STATUS:
5324 			areap = &bgep->status_block;
5325 			break;
5326 		case BGE_PP_SPACE_STATISTICS:
5327 			if (bgep->chipid.statistic_type == BGE_STAT_BLK)
5328 				areap = &bgep->statistics;
5329 			break;
5330 		}
5331 
5332 		sizemask = 8|4|2|1;
5333 		mem_va = (uintptr_t)areap->mem_va;
5334 		maxoff = areap->alength;
5335 		ppfn = peek ? bge_chip_peek_mem : bge_chip_poke_mem;
5336 		break;
5337 	}
5338 
5339 	switch (ppd->pp_acc_size) {
5340 	default:
5341 		return (IOC_INVAL);
5342 
5343 	case 8:
5344 	case 4:
5345 	case 2:
5346 	case 1:
5347 		if ((ppd->pp_acc_size & sizemask) == 0)
5348 			return (IOC_INVAL);
5349 		break;
5350 	}
5351 
5352 	if ((ppd->pp_acc_offset % ppd->pp_acc_size) != 0)
5353 		return (IOC_INVAL);
5354 
5355 	if (ppd->pp_acc_offset >= maxoff)
5356 		return (IOC_INVAL);
5357 
5358 	if (ppd->pp_acc_offset+ppd->pp_acc_size > maxoff)
5359 		return (IOC_INVAL);
5360 
5361 	/*
5362 	 * All OK - go do it!
5363 	 */
5364 	ppd->pp_acc_offset += mem_va;
5365 	(*ppfn)(bgep, ppd);
5366 	return (peek ? IOC_REPLY : IOC_ACK);
5367 }
5368 
5369 static enum ioc_reply bge_diag_ioctl(bge_t *bgep, int cmd, mblk_t *mp,
5370 					struct iocblk *iocp);
5371 #pragma	no_inline(bge_diag_ioctl)
5372 
5373 static enum ioc_reply
5374 bge_diag_ioctl(bge_t *bgep, int cmd, mblk_t *mp, struct iocblk *iocp)
5375 {
5376 	ASSERT(mutex_owned(bgep->genlock));
5377 
5378 	switch (cmd) {
5379 	default:
5380 		/* NOTREACHED */
5381 		bge_error(bgep, "bge_diag_ioctl: invalid cmd 0x%x", cmd);
5382 		return (IOC_INVAL);
5383 
5384 	case BGE_DIAG:
5385 		/*
5386 		 * Currently a no-op
5387 		 */
5388 		return (IOC_ACK);
5389 
5390 	case BGE_PEEK:
5391 	case BGE_POKE:
5392 		return (bge_pp_ioctl(bgep, cmd, mp, iocp));
5393 
5394 	case BGE_PHY_RESET:
5395 		return (IOC_RESTART_ACK);
5396 
5397 	case BGE_SOFT_RESET:
5398 	case BGE_HARD_RESET:
5399 		/*
5400 		 * Reset and reinitialise the 570x hardware
5401 		 */
5402 		bgep->bge_chip_state = BGE_CHIP_FAULT;
5403 		ddi_trigger_softintr(bgep->factotum_id);
5404 		(void) bge_restart(bgep, cmd == BGE_HARD_RESET);
5405 		return (IOC_ACK);
5406 	}
5407 
5408 	/* NOTREACHED */
5409 }
5410 
5411 #endif	/* BGE_DEBUGGING || BGE_DO_PPIO */
5412 
5413 static enum ioc_reply bge_mii_ioctl(bge_t *bgep, int cmd, mblk_t *mp,
5414 				    struct iocblk *iocp);
5415 #pragma	no_inline(bge_mii_ioctl)
5416 
5417 static enum ioc_reply
5418 bge_mii_ioctl(bge_t *bgep, int cmd, mblk_t *mp, struct iocblk *iocp)
5419 {
5420 	struct bge_mii_rw *miirwp;
5421 
5422 	/*
5423 	 * Validate format of ioctl
5424 	 */
5425 	if (iocp->ioc_count != sizeof (struct bge_mii_rw))
5426 		return (IOC_INVAL);
5427 	if (mp->b_cont == NULL)
5428 		return (IOC_INVAL);
5429 	miirwp = (void *)mp->b_cont->b_rptr;
5430 
5431 	/*
5432 	 * Validate request parameters ...
5433 	 */
5434 	if (miirwp->mii_reg > MII_MAXREG)
5435 		return (IOC_INVAL);
5436 
5437 	switch (cmd) {
5438 	default:
5439 		/* NOTREACHED */
5440 		bge_error(bgep, "bge_mii_ioctl: invalid cmd 0x%x", cmd);
5441 		return (IOC_INVAL);
5442 
5443 	case BGE_MII_READ:
5444 		miirwp->mii_data = bge_mii_get16(bgep, miirwp->mii_reg);
5445 		return (IOC_REPLY);
5446 
5447 	case BGE_MII_WRITE:
5448 		bge_mii_put16(bgep, miirwp->mii_reg, miirwp->mii_data);
5449 		return (IOC_ACK);
5450 	}
5451 
5452 	/* NOTREACHED */
5453 }
5454 
5455 #if	BGE_SEE_IO32
5456 
5457 static enum ioc_reply bge_see_ioctl(bge_t *bgep, int cmd, mblk_t *mp,
5458 				    struct iocblk *iocp);
5459 #pragma	no_inline(bge_see_ioctl)
5460 
5461 static enum ioc_reply
5462 bge_see_ioctl(bge_t *bgep, int cmd, mblk_t *mp, struct iocblk *iocp)
5463 {
5464 	struct bge_see_rw *seerwp;
5465 
5466 	/*
5467 	 * Validate format of ioctl
5468 	 */
5469 	if (iocp->ioc_count != sizeof (struct bge_see_rw))
5470 		return (IOC_INVAL);
5471 	if (mp->b_cont == NULL)
5472 		return (IOC_INVAL);
5473 	seerwp = (void *)mp->b_cont->b_rptr;
5474 
5475 	/*
5476 	 * Validate request parameters ...
5477 	 */
5478 	if (seerwp->see_addr & ~SEEPROM_DEV_AND_ADDR_MASK)
5479 		return (IOC_INVAL);
5480 
5481 	switch (cmd) {
5482 	default:
5483 		/* NOTREACHED */
5484 		bge_error(bgep, "bge_see_ioctl: invalid cmd 0x%x", cmd);
5485 		return (IOC_INVAL);
5486 
5487 	case BGE_SEE_READ:
5488 	case BGE_SEE_WRITE:
5489 		iocp->ioc_error = bge_nvmem_rw32(bgep, cmd,
5490 		    seerwp->see_addr, &seerwp->see_data);
5491 		return (IOC_REPLY);
5492 	}
5493 
5494 	/* NOTREACHED */
5495 }
5496 
5497 #endif	/* BGE_SEE_IO32 */
5498 
5499 #if	BGE_FLASH_IO32
5500 
5501 static enum ioc_reply bge_flash_ioctl(bge_t *bgep, int cmd, mblk_t *mp,
5502 				    struct iocblk *iocp);
5503 #pragma	no_inline(bge_flash_ioctl)
5504 
5505 static enum ioc_reply
5506 bge_flash_ioctl(bge_t *bgep, int cmd, mblk_t *mp, struct iocblk *iocp)
5507 {
5508 	struct bge_flash_rw *flashrwp;
5509 
5510 	/*
5511 	 * Validate format of ioctl
5512 	 */
5513 	if (iocp->ioc_count != sizeof (struct bge_flash_rw))
5514 		return (IOC_INVAL);
5515 	if (mp->b_cont == NULL)
5516 		return (IOC_INVAL);
5517 	flashrwp = (void *)mp->b_cont->b_rptr;
5518 
5519 	/*
5520 	 * Validate request parameters ...
5521 	 */
5522 	if (flashrwp->flash_addr & ~NVM_FLASH_ADDR_MASK)
5523 		return (IOC_INVAL);
5524 
5525 	switch (cmd) {
5526 	default:
5527 		/* NOTREACHED */
5528 		bge_error(bgep, "bge_flash_ioctl: invalid cmd 0x%x", cmd);
5529 		return (IOC_INVAL);
5530 
5531 	case BGE_FLASH_READ:
5532 	case BGE_FLASH_WRITE:
5533 		iocp->ioc_error = bge_nvmem_rw32(bgep, cmd,
5534 		    flashrwp->flash_addr, &flashrwp->flash_data);
5535 		return (IOC_REPLY);
5536 	}
5537 
5538 	/* NOTREACHED */
5539 }
5540 
5541 #endif	/* BGE_FLASH_IO32 */
5542 
5543 enum ioc_reply bge_chip_ioctl(bge_t *bgep, queue_t *wq, mblk_t *mp,
5544 				struct iocblk *iocp);
5545 #pragma	no_inline(bge_chip_ioctl)
5546 
5547 enum ioc_reply
5548 bge_chip_ioctl(bge_t *bgep, queue_t *wq, mblk_t *mp, struct iocblk *iocp)
5549 {
5550 	int cmd;
5551 
5552 	BGE_TRACE(("bge_chip_ioctl($%p, $%p, $%p, $%p)",
5553 	    (void *)bgep, (void *)wq, (void *)mp, (void *)iocp));
5554 
5555 	ASSERT(mutex_owned(bgep->genlock));
5556 
5557 	cmd = iocp->ioc_cmd;
5558 	switch (cmd) {
5559 	default:
5560 		/* NOTREACHED */
5561 		bge_error(bgep, "bge_chip_ioctl: invalid cmd 0x%x", cmd);
5562 		return (IOC_INVAL);
5563 
5564 	case BGE_DIAG:
5565 	case BGE_PEEK:
5566 	case BGE_POKE:
5567 	case BGE_PHY_RESET:
5568 	case BGE_SOFT_RESET:
5569 	case BGE_HARD_RESET:
5570 #if	BGE_DEBUGGING || BGE_DO_PPIO
5571 		return (bge_diag_ioctl(bgep, cmd, mp, iocp));
5572 #else
5573 		return (IOC_INVAL);
5574 #endif	/* BGE_DEBUGGING || BGE_DO_PPIO */
5575 
5576 	case BGE_MII_READ:
5577 	case BGE_MII_WRITE:
5578 		return (bge_mii_ioctl(bgep, cmd, mp, iocp));
5579 
5580 #if	BGE_SEE_IO32
5581 	case BGE_SEE_READ:
5582 	case BGE_SEE_WRITE:
5583 		return (bge_see_ioctl(bgep, cmd, mp, iocp));
5584 #endif	/* BGE_SEE_IO32 */
5585 
5586 #if	BGE_FLASH_IO32
5587 	case BGE_FLASH_READ:
5588 	case BGE_FLASH_WRITE:
5589 		return (bge_flash_ioctl(bgep, cmd, mp, iocp));
5590 #endif	/* BGE_FLASH_IO32 */
5591 	}
5592 
5593 	/* NOTREACHED */
5594 }
5595 
5596 /* ARGSUSED */
5597 void
5598 bge_chip_blank(void *arg, time_t ticks, uint_t count, int flag)
5599 {
5600 	recv_ring_t *rrp = arg;
5601 	bge_t *bgep = rrp->bgep;
5602 
5603 	mutex_enter(bgep->genlock);
5604 	rrp->poll_flag = flag;
5605 #ifdef NOT_YET
5606 	/*
5607 	 * XXX-Sunay: Since most broadcom cards support only one
5608 	 * interrupt but multiple rx rings, we can't disable the
5609 	 * physical interrupt. This need to be done via capability
5610 	 * negotiation depending on the NIC.
5611 	 */
5612 	bge_reg_put32(bgep, RCV_COALESCE_TICKS_REG, ticks);
5613 	bge_reg_put32(bgep, RCV_COALESCE_MAX_BD_REG, count);
5614 #endif
5615 	if (bge_check_acc_handle(bgep, bgep->io_handle) != DDI_FM_OK)
5616 		ddi_fm_service_impact(bgep->devinfo, DDI_SERVICE_UNAFFECTED);
5617 	mutex_exit(bgep->genlock);
5618 }
5619 
5620 #ifdef BGE_IPMI_ASF
5621 
5622 uint32_t
5623 bge_nic_read32(bge_t *bgep, bge_regno_t addr)
5624 {
5625 	uint32_t data;
5626 
5627 #ifndef __sparc
5628 	if (!bgep->asf_wordswapped) {
5629 		/* a workaround word swap error */
5630 		if (addr & 4)
5631 			addr = addr - 4;
5632 		else
5633 			addr = addr + 4;
5634 	}
5635 #endif
5636 
5637 	pci_config_put32(bgep->cfg_handle, PCI_CONF_BGE_MWBAR, addr);
5638 	data = pci_config_get32(bgep->cfg_handle, PCI_CONF_BGE_MWDAR);
5639 	pci_config_put32(bgep->cfg_handle, PCI_CONF_BGE_MWBAR, 0);
5640 
5641 	data = LE_32(data);
5642 	return (data);
5643 }
5644 
5645 void
5646 bge_asf_update_status(bge_t *bgep)
5647 {
5648 	uint32_t event;
5649 
5650 	bge_nic_put32(bgep, BGE_CMD_MAILBOX, BGE_CMD_NICDRV_ALIVE);
5651 	bge_nic_put32(bgep, BGE_CMD_LENGTH_MAILBOX, 4);
5652 	bge_nic_put32(bgep, BGE_CMD_DATA_MAILBOX,   3);
5653 
5654 	event = bge_reg_get32(bgep, RX_RISC_EVENT_REG);
5655 	bge_reg_put32(bgep, RX_RISC_EVENT_REG, event | RRER_ASF_EVENT);
5656 }
5657 
5658 
5659 /*
5660  * The driver is supposed to notify ASF that the OS is still running
5661  * every three seconds, otherwise the management server may attempt
5662  * to reboot the machine.  If it hasn't actually failed, this is
5663  * not a desirable result.  However, this isn't running as a real-time
5664  * thread, and even if it were, it might not be able to generate the
5665  * heartbeat in a timely manner due to system load.  As it isn't a
5666  * significant strain on the machine, we will set the interval to half
5667  * of the required value.
5668  */
5669 void
5670 bge_asf_heartbeat(void *arg)
5671 {
5672 	bge_t *bgep = (bge_t *)arg;
5673 
5674 	mutex_enter(bgep->genlock);
5675 	bge_asf_update_status((bge_t *)bgep);
5676 	if (bge_check_acc_handle(bgep, bgep->io_handle) != DDI_FM_OK)
5677 		ddi_fm_service_impact(bgep->devinfo, DDI_SERVICE_DEGRADED);
5678 	if (bge_check_acc_handle(bgep, bgep->cfg_handle) != DDI_FM_OK)
5679 		ddi_fm_service_impact(bgep->devinfo, DDI_SERVICE_DEGRADED);
5680 	mutex_exit(bgep->genlock);
5681 	((bge_t *)bgep)->asf_timeout_id = timeout(bge_asf_heartbeat, bgep,
5682 	    drv_usectohz(BGE_ASF_HEARTBEAT_INTERVAL));
5683 }
5684 
5685 
5686 void
5687 bge_asf_stop_timer(bge_t *bgep)
5688 {
5689 	timeout_id_t tmp_id = 0;
5690 
5691 	while ((bgep->asf_timeout_id != 0) &&
5692 	    (tmp_id != bgep->asf_timeout_id)) {
5693 		tmp_id = bgep->asf_timeout_id;
5694 		(void) untimeout(tmp_id);
5695 	}
5696 	bgep->asf_timeout_id = 0;
5697 }
5698 
5699 
5700 
5701 /*
5702  * This function should be placed at the earliest position of bge_attach().
5703  */
5704 void
5705 bge_asf_get_config(bge_t *bgep)
5706 {
5707 	uint32_t nicsig;
5708 	uint32_t niccfg;
5709 
5710 	bgep->asf_enabled = B_FALSE;
5711 	nicsig = bge_nic_read32(bgep, BGE_NIC_DATA_SIG_ADDR);
5712 	if (nicsig == BGE_NIC_DATA_SIG) {
5713 		niccfg = bge_nic_read32(bgep, BGE_NIC_DATA_NIC_CFG_ADDR);
5714 		if (niccfg & BGE_NIC_CFG_ENABLE_ASF)
5715 			/*
5716 			 * Here, we don't consider BAXTER, because BGE haven't
5717 			 * supported BAXTER (that is 5752). Also, as I know,
5718 			 * BAXTER doesn't support ASF feature.
5719 			 */
5720 			bgep->asf_enabled = B_TRUE;
5721 		else
5722 			bgep->asf_enabled = B_FALSE;
5723 	} else
5724 		bgep->asf_enabled = B_FALSE;
5725 }
5726 
5727 
5728 void
5729 bge_asf_pre_reset_operations(bge_t *bgep, uint32_t mode)
5730 {
5731 	uint32_t tries;
5732 	uint32_t event;
5733 
5734 	ASSERT(bgep->asf_enabled);
5735 
5736 	/* Issues "pause firmware" command and wait for ACK */
5737 	bge_nic_put32(bgep, BGE_CMD_MAILBOX, BGE_CMD_NICDRV_PAUSE_FW);
5738 	event = bge_reg_get32(bgep, RX_RISC_EVENT_REG);
5739 	bge_reg_put32(bgep, RX_RISC_EVENT_REG, event | RRER_ASF_EVENT);
5740 
5741 	event = bge_reg_get32(bgep, RX_RISC_EVENT_REG);
5742 	tries = 0;
5743 	while ((event & RRER_ASF_EVENT) && (tries < 100)) {
5744 		drv_usecwait(1);
5745 		tries ++;
5746 		event = bge_reg_get32(bgep, RX_RISC_EVENT_REG);
5747 	}
5748 
5749 	bge_nic_put32(bgep, BGE_FIRMWARE_MAILBOX,
5750 	    BGE_MAGIC_NUM_FIRMWARE_INIT_DONE);
5751 
5752 	if (bgep->asf_newhandshake) {
5753 		switch (mode) {
5754 		case BGE_INIT_RESET:
5755 			bge_nic_put32(bgep, BGE_DRV_STATE_MAILBOX,
5756 			    BGE_DRV_STATE_START);
5757 			break;
5758 		case BGE_SHUTDOWN_RESET:
5759 			bge_nic_put32(bgep, BGE_DRV_STATE_MAILBOX,
5760 			    BGE_DRV_STATE_UNLOAD);
5761 			break;
5762 		case BGE_SUSPEND_RESET:
5763 			bge_nic_put32(bgep, BGE_DRV_STATE_MAILBOX,
5764 			    BGE_DRV_STATE_SUSPEND);
5765 			break;
5766 		default:
5767 			break;
5768 		}
5769 	}
5770 }
5771 
5772 
5773 void
5774 bge_asf_post_reset_old_mode(bge_t *bgep, uint32_t mode)
5775 {
5776 	switch (mode) {
5777 	case BGE_INIT_RESET:
5778 		bge_nic_put32(bgep, BGE_DRV_STATE_MAILBOX,
5779 		    BGE_DRV_STATE_START);
5780 		break;
5781 	case BGE_SHUTDOWN_RESET:
5782 		bge_nic_put32(bgep, BGE_DRV_STATE_MAILBOX,
5783 		    BGE_DRV_STATE_UNLOAD);
5784 		break;
5785 	case BGE_SUSPEND_RESET:
5786 		bge_nic_put32(bgep, BGE_DRV_STATE_MAILBOX,
5787 		    BGE_DRV_STATE_SUSPEND);
5788 		break;
5789 	default:
5790 		break;
5791 	}
5792 }
5793 
5794 
5795 void
5796 bge_asf_post_reset_new_mode(bge_t *bgep, uint32_t mode)
5797 {
5798 	switch (mode) {
5799 	case BGE_INIT_RESET:
5800 		bge_nic_put32(bgep, BGE_DRV_STATE_MAILBOX,
5801 		    BGE_DRV_STATE_START_DONE);
5802 		break;
5803 	case BGE_SHUTDOWN_RESET:
5804 		bge_nic_put32(bgep, BGE_DRV_STATE_MAILBOX,
5805 		    BGE_DRV_STATE_UNLOAD_DONE);
5806 		break;
5807 	default:
5808 		break;
5809 	}
5810 }
5811 
5812 #endif /* BGE_IPMI_ASF */
5813