xref: /illumos-gate/usr/src/uts/common/io/asy.c (revision 784279176e68a516c9e391eb98dda7bd543fa6dd)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 
22 /*	Copyright (c) 1990, 1991 UNIX System Laboratories, Inc.	*/
23 /*	Copyright (c) 1984, 1986, 1987, 1988, 1989, 1990 AT&T	*/
24 /*	  All Rights Reserved					*/
25 
26 /*
27  * Copyright (c) 1992, 2010, Oracle and/or its affiliates. All rights reserved.
28  * Copyright 2012 Milan Jurik. All rights reserved.
29  * Copyright (c) 2016 by Delphix. All rights reserved.
30  * Copyright 2023 Oxide Computer Company
31  */
32 
33 
34 /*
35  * Serial I/O driver for 8250/16450/16550A/16650/16750 chips.
36  */
37 
38 #include <sys/param.h>
39 #include <sys/types.h>
40 #include <sys/signal.h>
41 #include <sys/stream.h>
42 #include <sys/termio.h>
43 #include <sys/errno.h>
44 #include <sys/file.h>
45 #include <sys/cmn_err.h>
46 #include <sys/stropts.h>
47 #include <sys/strsubr.h>
48 #include <sys/strtty.h>
49 #include <sys/debug.h>
50 #include <sys/kbio.h>
51 #include <sys/cred.h>
52 #include <sys/stat.h>
53 #include <sys/consdev.h>
54 #include <sys/mkdev.h>
55 #include <sys/kmem.h>
56 #include <sys/cred.h>
57 #include <sys/strsun.h>
58 #ifdef DEBUG
59 #include <sys/promif.h>
60 #endif
61 #include <sys/modctl.h>
62 #include <sys/ddi.h>
63 #include <sys/sunddi.h>
64 #include <sys/pci.h>
65 #include <sys/asy.h>
66 #include <sys/policy.h>
67 
68 /*
69  * set the RX FIFO trigger_level to half the RX FIFO size for now
70  * we may want to make this configurable later.
71  */
72 static	int asy_trig_level = FIFO_TRIG_8;
73 
74 int asy_drain_check = 15000000;		/* tunable: exit drain check time */
75 int asy_min_dtr_low = 500000;		/* tunable: minimum DTR down time */
76 int asy_min_utbrk = 100000;		/* tunable: minumum untimed brk time */
77 
78 int asymaxchip = ASY16750;	/* tunable: limit chip support we look for */
79 
80 /*
81  * Just in case someone has a chip with broken loopback mode, we provide a
82  * means to disable the loopback test. By default, we only loopback test
83  * UARTs which look like they have FIFOs bigger than 16 bytes.
84  * Set to 0 to suppress test, or to 2 to enable test on any size FIFO.
85  */
86 int asy_fifo_test = 1;		/* tunable: set to 0, 1, or 2 */
87 
88 /*
89  * Allow ability to switch off testing of the scratch register.
90  * Some UART emulators might not have it. This will also disable the test
91  * for Exar/Startech ST16C650, as that requires use of the SCR register.
92  */
93 int asy_scr_test = 1;		/* tunable: set to 0 to disable SCR reg test */
94 
95 /*
96  * As we don't yet support on-chip flow control, it's a bad idea to put a
97  * large number of characters in the TX FIFO, since if other end tells us
98  * to stop transmitting, we can only stop filling the TX FIFO, but it will
99  * still carry on draining by itself, so remote end still gets what's left
100  * in the FIFO.
101  */
102 int asy_max_tx_fifo = 16;	/* tunable: max fill of TX FIFO */
103 
104 #define	async_stopc	async_ttycommon.t_stopc
105 #define	async_startc	async_ttycommon.t_startc
106 
107 #define	ASY_INIT	1
108 #define	ASY_NOINIT	0
109 
110 /* enum value for sw and hw flow control action */
111 typedef enum {
112 	FLOW_CHECK,
113 	FLOW_STOP,
114 	FLOW_START
115 } async_flowc_action;
116 
117 #ifdef DEBUG
118 #define	ASY_DEBUG_INIT	0x0001	/* Output msgs during driver initialization. */
119 #define	ASY_DEBUG_INPUT	0x0002	/* Report characters received during int. */
120 #define	ASY_DEBUG_EOT	0x0004	/* Output msgs when wait for xmit to finish. */
121 #define	ASY_DEBUG_CLOSE	0x0008	/* Output msgs when driver open/close called */
122 #define	ASY_DEBUG_HFLOW	0x0010	/* Output msgs when H/W flowcontrol is active */
123 #define	ASY_DEBUG_PROCS	0x0020	/* Output each proc name as it is entered. */
124 #define	ASY_DEBUG_STATE	0x0040	/* Output value of Interrupt Service Reg. */
125 #define	ASY_DEBUG_INTR	0x0080	/* Output value of Interrupt Service Reg. */
126 #define	ASY_DEBUG_OUT	0x0100	/* Output msgs about output events. */
127 #define	ASY_DEBUG_BUSY	0x0200	/* Output msgs when xmit is enabled/disabled */
128 #define	ASY_DEBUG_MODEM	0x0400	/* Output msgs about modem status & control. */
129 #define	ASY_DEBUG_MODM2	0x0800	/* Output msgs about modem status & control. */
130 #define	ASY_DEBUG_IOCTL	0x1000	/* Output msgs about ioctl messages. */
131 #define	ASY_DEBUG_CHIP	0x2000	/* Output msgs about chip identification. */
132 #define	ASY_DEBUG_SFLOW	0x4000	/* Output msgs when S/W flowcontrol is active */
133 #define	ASY_DEBUG(x) (debug & (x))
134 static	int debug  = 0;
135 #else
136 #define	ASY_DEBUG(x) B_FALSE
137 #endif
138 
139 /* pnpISA compressed device ids */
140 #define	pnpMTS0219 0xb6930219	/* Multitech MT5634ZTX modem */
141 
142 /*
143  * PPS (Pulse Per Second) support.
144  */
145 void ddi_hardpps(struct timeval *, int);
146 /*
147  * This is protected by the asy_excl_hi of the port on which PPS event
148  * handling is enabled.  Note that only one port should have this enabled at
149  * any one time.  Enabling PPS handling on multiple ports will result in
150  * unpredictable (but benign) results.
151  */
152 static struct ppsclockev asy_ppsev;
153 
154 #ifdef PPSCLOCKLED
155 /* XXX Use these to observe PPS latencies and jitter on a scope */
156 #define	LED_ON
157 #define	LED_OFF
158 #else
159 #define	LED_ON
160 #define	LED_OFF
161 #endif
162 
163 static	int max_asy_instance = -1;
164 
165 static	uint_t	asysoftintr(caddr_t intarg);
166 static	uint_t	asyintr(caddr_t argasy);
167 
168 static boolean_t abort_charseq_recognize(uchar_t ch);
169 
170 /* The async interrupt entry points */
171 static void	async_txint(struct asycom *asy);
172 static void	async_rxint(struct asycom *asy, uchar_t lsr);
173 static void	async_msint(struct asycom *asy);
174 static void	async_softint(struct asycom *asy);
175 
176 static void	async_ioctl(struct asyncline *async, queue_t *q, mblk_t *mp);
177 static void	async_reioctl(void *unit);
178 static void	async_iocdata(queue_t *q, mblk_t *mp);
179 static void	async_restart(void *arg);
180 static void	async_start(struct asyncline *async);
181 static void	async_nstart(struct asyncline *async, int mode);
182 static void	async_resume(struct asyncline *async);
183 static void	asy_program(struct asycom *asy, int mode);
184 static void	asyinit(struct asycom *asy);
185 static void	asy_waiteot(struct asycom *asy);
186 static void	asyputchar(cons_polledio_arg_t, uchar_t c);
187 static int	asygetchar(cons_polledio_arg_t);
188 static boolean_t	asyischar(cons_polledio_arg_t);
189 
190 static int	asymctl(struct asycom *, int, int);
191 static int	asytodm(int, int);
192 static int	dmtoasy(int);
193 /*PRINTFLIKE2*/
194 static void	asyerror(int level, const char *fmt, ...) __KPRINTFLIKE(2);
195 static void	asy_parse_mode(dev_info_t *devi, struct asycom *asy);
196 static void	asy_soft_state_free(struct asycom *);
197 static char	*asy_hw_name(struct asycom *asy);
198 static void	async_hold_utbrk(void *arg);
199 static void	async_resume_utbrk(struct asyncline *async);
200 static void	async_dtr_free(struct asyncline *async);
201 static int	asy_identify_chip(dev_info_t *devi, struct asycom *asy);
202 static void	asy_reset_fifo(struct asycom *asy, uchar_t flags);
203 static int	asy_getproperty(dev_info_t *devi, struct asycom *asy,
204 		    const char *property);
205 static boolean_t	async_flowcontrol_sw_input(struct asycom *asy,
206 			    async_flowc_action onoff, int type);
207 static void	async_flowcontrol_sw_output(struct asycom *asy,
208 		    async_flowc_action onoff);
209 static void	async_flowcontrol_hw_input(struct asycom *asy,
210 		    async_flowc_action onoff, int type);
211 static void	async_flowcontrol_hw_output(struct asycom *asy,
212 		    async_flowc_action onoff);
213 
214 #define	GET_PROP(devi, pname, pflag, pval, plen) \
215 		(ddi_prop_op(DDI_DEV_T_ANY, (devi), PROP_LEN_AND_VAL_BUF, \
216 		(pflag), (pname), (caddr_t)(pval), (plen)))
217 
218 kmutex_t asy_glob_lock; /* lock protecting global data manipulation */
219 void *asy_soft_state;
220 
221 /* Standard COM port I/O addresses */
222 static const int standard_com_ports[] = {
223 	COM1_IOADDR, COM2_IOADDR, COM3_IOADDR, COM4_IOADDR
224 };
225 
226 static int *com_ports;
227 static uint_t num_com_ports;
228 
229 #ifdef	DEBUG
230 /*
231  * Set this to true to make the driver pretend to do a suspend.  Useful
232  * for debugging suspend/resume code with a serial debugger.
233  */
234 boolean_t	asy_nosuspend = B_FALSE;
235 #endif
236 
237 
238 /*
239  * Baud rate table. Indexed by #defines found in sys/termios.h
240  */
241 ushort_t asyspdtab[] = {
242 	0,	/* 0 baud rate */
243 	0x900,	/* 50 baud rate */
244 	0x600,	/* 75 baud rate */
245 	0x417,	/* 110 baud rate (%0.026) */
246 	0x359,	/* 134 baud rate (%0.058) */
247 	0x300,	/* 150 baud rate */
248 	0x240,	/* 200 baud rate */
249 	0x180,	/* 300 baud rate */
250 	0x0c0,	/* 600 baud rate */
251 	0x060,	/* 1200 baud rate */
252 	0x040,	/* 1800 baud rate */
253 	0x030,	/* 2400 baud rate */
254 	0x018,	/* 4800 baud rate */
255 	0x00c,	/* 9600 baud rate */
256 	0x006,	/* 19200 baud rate */
257 	0x003,	/* 38400 baud rate */
258 
259 	0x002,	/* 57600 baud rate */
260 	0x0,	/* 76800 baud rate not supported */
261 	0x001,	/* 115200 baud rate */
262 	0x0,	/* 153600 baud rate not supported */
263 	0x0,	/* 0x8002 (SMC chip) 230400 baud rate not supported */
264 	0x0,	/* 307200 baud rate not supported */
265 	0x0,	/* 0x8001 (SMC chip) 460800 baud rate not supported */
266 	0x0,	/* 921600 baud rate not supported */
267 	0x0,	/* 1000000 baud rate not supported */
268 	0x0,	/* 1152000 baud rate not supported */
269 	0x0,	/* 1500000 baud rate not supported */
270 	0x0,	/* 2000000 baud rate not supported */
271 	0x0,	/* 2500000 baud rate not supported */
272 	0x0,	/* 3000000 baud rate not supported */
273 	0x0,	/* 3500000 baud rate not supported */
274 	0x0,	/* 4000000 baud rate not supported */
275 };
276 
277 static int asyrsrv(queue_t *q);
278 static int asyopen(queue_t *rq, dev_t *dev, int flag, int sflag, cred_t *cr);
279 static int asyclose(queue_t *q, int flag, cred_t *credp);
280 static int asywputdo(queue_t *q, mblk_t *mp, boolean_t);
281 static int asywput(queue_t *q, mblk_t *mp);
282 
283 struct module_info asy_info = {
284 	0,
285 	"asy",
286 	0,
287 	INFPSZ,
288 	4096,
289 	128
290 };
291 
292 static struct qinit asy_rint = {
293 	putq,
294 	asyrsrv,
295 	asyopen,
296 	asyclose,
297 	NULL,
298 	&asy_info,
299 	NULL
300 };
301 
302 static struct qinit asy_wint = {
303 	asywput,
304 	NULL,
305 	NULL,
306 	NULL,
307 	NULL,
308 	&asy_info,
309 	NULL
310 };
311 
312 struct streamtab asy_str_info = {
313 	&asy_rint,
314 	&asy_wint,
315 	NULL,
316 	NULL
317 };
318 
319 static int asyinfo(dev_info_t *dip, ddi_info_cmd_t infocmd, void *arg,
320 		void **result);
321 static int asyprobe(dev_info_t *);
322 static int asyattach(dev_info_t *, ddi_attach_cmd_t);
323 static int asydetach(dev_info_t *, ddi_detach_cmd_t);
324 static int asyquiesce(dev_info_t *);
325 
326 static struct cb_ops cb_asy_ops = {
327 	nodev,			/* cb_open */
328 	nodev,			/* cb_close */
329 	nodev,			/* cb_strategy */
330 	nodev,			/* cb_print */
331 	nodev,			/* cb_dump */
332 	nodev,			/* cb_read */
333 	nodev,			/* cb_write */
334 	nodev,			/* cb_ioctl */
335 	nodev,			/* cb_devmap */
336 	nodev,			/* cb_mmap */
337 	nodev,			/* cb_segmap */
338 	nochpoll,		/* cb_chpoll */
339 	ddi_prop_op,		/* cb_prop_op */
340 	&asy_str_info,		/* cb_stream */
341 	D_MP			/* cb_flag */
342 };
343 
344 struct dev_ops asy_ops = {
345 	DEVO_REV,		/* devo_rev */
346 	0,			/* devo_refcnt */
347 	asyinfo,		/* devo_getinfo */
348 	nulldev,		/* devo_identify */
349 	asyprobe,		/* devo_probe */
350 	asyattach,		/* devo_attach */
351 	asydetach,		/* devo_detach */
352 	nodev,			/* devo_reset */
353 	&cb_asy_ops,		/* devo_cb_ops */
354 	NULL,			/* devo_bus_ops */
355 	NULL,			/* power */
356 	asyquiesce,		/* quiesce */
357 };
358 
359 static struct modldrv modldrv = {
360 	&mod_driverops, /* Type of module.  This one is a driver */
361 	"ASY driver",
362 	&asy_ops,	/* driver ops */
363 };
364 
365 static struct modlinkage modlinkage = {
366 	MODREV_1,
367 	(void *)&modldrv,
368 	NULL
369 };
370 
371 int
372 _init(void)
373 {
374 	int i;
375 
376 	i = ddi_soft_state_init(&asy_soft_state, sizeof (struct asycom), 2);
377 	if (i == 0) {
378 		mutex_init(&asy_glob_lock, NULL, MUTEX_DRIVER, NULL);
379 		if ((i = mod_install(&modlinkage)) != 0) {
380 			mutex_destroy(&asy_glob_lock);
381 			ddi_soft_state_fini(&asy_soft_state);
382 		} else {
383 			DEBUGCONT2(ASY_DEBUG_INIT, "%s, debug = %x\n",
384 			    modldrv.drv_linkinfo, debug);
385 		}
386 	}
387 	return (i);
388 }
389 
390 int
391 _fini(void)
392 {
393 	int i;
394 
395 	if ((i = mod_remove(&modlinkage)) == 0) {
396 		DEBUGCONT1(ASY_DEBUG_INIT, "%s unloading\n",
397 		    modldrv.drv_linkinfo);
398 		ASSERT(max_asy_instance == -1);
399 		mutex_destroy(&asy_glob_lock);
400 		/* free "motherboard-serial-ports" property if allocated */
401 		if (com_ports != NULL && com_ports != (int *)standard_com_ports)
402 			ddi_prop_free(com_ports);
403 		com_ports = NULL;
404 		ddi_soft_state_fini(&asy_soft_state);
405 	}
406 	return (i);
407 }
408 
409 int
410 _info(struct modinfo *modinfop)
411 {
412 	return (mod_info(&modlinkage, modinfop));
413 }
414 
415 void
416 async_put_suspq(struct asycom *asy, mblk_t *mp)
417 {
418 	struct asyncline *async = asy->asy_priv;
419 
420 	ASSERT(mutex_owned(&asy->asy_excl));
421 
422 	if (async->async_suspqf == NULL)
423 		async->async_suspqf = mp;
424 	else
425 		async->async_suspqb->b_next = mp;
426 
427 	async->async_suspqb = mp;
428 }
429 
430 static mblk_t *
431 async_get_suspq(struct asycom *asy)
432 {
433 	struct asyncline *async = asy->asy_priv;
434 	mblk_t *mp;
435 
436 	ASSERT(mutex_owned(&asy->asy_excl));
437 
438 	if ((mp = async->async_suspqf) != NULL) {
439 		async->async_suspqf = mp->b_next;
440 		mp->b_next = NULL;
441 	} else {
442 		async->async_suspqb = NULL;
443 	}
444 	return (mp);
445 }
446 
447 static void
448 async_process_suspq(struct asycom *asy)
449 {
450 	struct asyncline *async = asy->asy_priv;
451 	mblk_t *mp;
452 
453 	ASSERT(mutex_owned(&asy->asy_excl));
454 
455 	while ((mp = async_get_suspq(asy)) != NULL) {
456 		queue_t *q;
457 
458 		q = async->async_ttycommon.t_writeq;
459 		ASSERT(q != NULL);
460 		mutex_exit(&asy->asy_excl);
461 		(void) asywputdo(q, mp, B_FALSE);
462 		mutex_enter(&asy->asy_excl);
463 	}
464 	async->async_flags &= ~ASYNC_DDI_SUSPENDED;
465 	cv_broadcast(&async->async_flags_cv);
466 }
467 
468 static int
469 asy_get_bus_type(dev_info_t *devinfo)
470 {
471 	char	parent_type[16];
472 	int	parentlen;
473 
474 	parentlen = sizeof (parent_type);
475 
476 	if (ddi_prop_op(DDI_DEV_T_ANY, devinfo, PROP_LEN_AND_VAL_BUF, 0,
477 	    "device_type", (caddr_t)parent_type, &parentlen)
478 	    != DDI_PROP_SUCCESS && ddi_prop_op(DDI_DEV_T_ANY, devinfo,
479 	    PROP_LEN_AND_VAL_BUF, 0, "bus-type", (caddr_t)parent_type,
480 	    &parentlen) != DDI_PROP_SUCCESS) {
481 			cmn_err(CE_WARN,
482 			    "asy: can't figure out device type for"
483 			    " parent \"%s\"",
484 			    ddi_get_name(ddi_get_parent(devinfo)));
485 			return (ASY_BUS_UNKNOWN);
486 	}
487 	if (strcmp(parent_type, "isa") == 0)
488 		return (ASY_BUS_ISA);
489 	else if (strcmp(parent_type, "pci") == 0)
490 		return (ASY_BUS_PCI);
491 	else
492 		return (ASY_BUS_UNKNOWN);
493 }
494 
495 static int
496 asy_get_io_regnum_pci(dev_info_t *devi, struct asycom *asy)
497 {
498 	int reglen, nregs;
499 	int regnum, i;
500 	uint64_t size;
501 	struct pci_phys_spec *reglist;
502 
503 	if (ddi_getlongprop(DDI_DEV_T_ANY, devi, DDI_PROP_DONTPASS,
504 	    "reg", (caddr_t)&reglist, &reglen) != DDI_PROP_SUCCESS) {
505 		cmn_err(CE_WARN, "asy_get_io_regnum_pci: reg property"
506 		    " not found in devices property list");
507 		return (-1);
508 	}
509 
510 	/*
511 	 * PCI devices are assumed to not have broken FIFOs;
512 	 * Agere/Lucent Venus PCI modem chipsets are an example
513 	 */
514 	if (asy)
515 		asy->asy_flags2 |= ASY2_NO_LOOPBACK;
516 
517 	regnum = -1;
518 	nregs = reglen / sizeof (*reglist);
519 	for (i = 0; i < nregs; i++) {
520 		switch (reglist[i].pci_phys_hi & PCI_ADDR_MASK) {
521 		case PCI_ADDR_IO:		/* I/O bus reg property */
522 			if (regnum == -1) /* use only the first one */
523 				regnum = i;
524 			break;
525 
526 		default:
527 			break;
528 		}
529 	}
530 
531 	/* check for valid count of registers */
532 	if (regnum >= 0) {
533 		size = ((uint64_t)reglist[regnum].pci_size_low) |
534 		    ((uint64_t)reglist[regnum].pci_size_hi) << 32;
535 		if (size < 8)
536 			regnum = -1;
537 	}
538 	kmem_free(reglist, reglen);
539 	return (regnum);
540 }
541 
542 static int
543 asy_get_io_regnum_isa(dev_info_t *devi, struct asycom *asy)
544 {
545 	int reglen, nregs;
546 	int regnum, i;
547 	struct {
548 		uint_t bustype;
549 		int base;
550 		int size;
551 	} *reglist;
552 
553 	if (ddi_getlongprop(DDI_DEV_T_ANY, devi, DDI_PROP_DONTPASS,
554 	    "reg", (caddr_t)&reglist, &reglen) != DDI_PROP_SUCCESS) {
555 		cmn_err(CE_WARN, "asy_get_io_regnum: reg property not found "
556 		    "in devices property list");
557 		return (-1);
558 	}
559 
560 	regnum = -1;
561 	nregs = reglen / sizeof (*reglist);
562 	for (i = 0; i < nregs; i++) {
563 		switch (reglist[i].bustype) {
564 		case 1:			/* I/O bus reg property */
565 			if (regnum == -1) /* only use the first one */
566 				regnum = i;
567 			break;
568 
569 		case pnpMTS0219:	/* Multitech MT5634ZTX modem */
570 			/* Venus chipset can't do loopback test */
571 			if (asy)
572 				asy->asy_flags2 |= ASY2_NO_LOOPBACK;
573 			break;
574 
575 		default:
576 			break;
577 		}
578 	}
579 
580 	/* check for valid count of registers */
581 	if ((regnum < 0) || (reglist[regnum].size < 8))
582 		regnum = -1;
583 	kmem_free(reglist, reglen);
584 	return (regnum);
585 }
586 
587 static int
588 asy_get_io_regnum(dev_info_t *devinfo, struct asycom *asy)
589 {
590 	switch (asy_get_bus_type(devinfo)) {
591 	case ASY_BUS_ISA:
592 		return (asy_get_io_regnum_isa(devinfo, asy));
593 	case ASY_BUS_PCI:
594 		return (asy_get_io_regnum_pci(devinfo, asy));
595 	default:
596 		return (-1);
597 	}
598 }
599 
600 static int
601 asydetach(dev_info_t *devi, ddi_detach_cmd_t cmd)
602 {
603 	int instance;
604 	struct asycom *asy;
605 	struct asyncline *async;
606 
607 	instance = ddi_get_instance(devi);	/* find out which unit */
608 
609 	asy = ddi_get_soft_state(asy_soft_state, instance);
610 	if (asy == NULL)
611 		return (DDI_FAILURE);
612 	async = asy->asy_priv;
613 
614 	switch (cmd) {
615 	case DDI_DETACH:
616 		DEBUGNOTE2(ASY_DEBUG_INIT, "asy%d: %s shutdown.",
617 		    instance, asy_hw_name(asy));
618 
619 		/* cancel DTR hold timeout */
620 		if (async->async_dtrtid != 0) {
621 			(void) untimeout(async->async_dtrtid);
622 			async->async_dtrtid = 0;
623 		}
624 
625 		/* remove all minor device node(s) for this device */
626 		ddi_remove_minor_node(devi, NULL);
627 
628 		mutex_destroy(&asy->asy_excl);
629 		mutex_destroy(&asy->asy_excl_hi);
630 		cv_destroy(&async->async_flags_cv);
631 		ddi_remove_intr(devi, 0, asy->asy_iblock);
632 		ddi_regs_map_free(&asy->asy_iohandle);
633 		ddi_remove_softintr(asy->asy_softintr_id);
634 		mutex_destroy(&asy->asy_soft_lock);
635 		asy_soft_state_free(asy);
636 		DEBUGNOTE1(ASY_DEBUG_INIT, "asy%d: shutdown complete",
637 		    instance);
638 		break;
639 	case DDI_SUSPEND:
640 		{
641 		unsigned i;
642 		uchar_t lsr;
643 
644 #ifdef	DEBUG
645 		if (asy_nosuspend)
646 			return (DDI_SUCCESS);
647 #endif
648 		mutex_enter(&asy->asy_excl);
649 
650 		ASSERT(async->async_ops >= 0);
651 		while (async->async_ops > 0)
652 			cv_wait(&async->async_ops_cv, &asy->asy_excl);
653 
654 		async->async_flags |= ASYNC_DDI_SUSPENDED;
655 
656 		/* Wait for timed break and delay to complete */
657 		while ((async->async_flags & (ASYNC_BREAK|ASYNC_DELAY))) {
658 			if (cv_wait_sig(&async->async_flags_cv, &asy->asy_excl)
659 			    == 0) {
660 				async_process_suspq(asy);
661 				mutex_exit(&asy->asy_excl);
662 				return (DDI_FAILURE);
663 			}
664 		}
665 
666 		/* Clear untimed break */
667 		if (async->async_flags & ASYNC_OUT_SUSPEND)
668 			async_resume_utbrk(async);
669 
670 		mutex_exit(&asy->asy_excl);
671 
672 		mutex_enter(&asy->asy_soft_sr);
673 		mutex_enter(&asy->asy_excl);
674 		if (async->async_wbufcid != 0) {
675 			bufcall_id_t bcid = async->async_wbufcid;
676 			async->async_wbufcid = 0;
677 			async->async_flags |= ASYNC_RESUME_BUFCALL;
678 			mutex_exit(&asy->asy_excl);
679 			unbufcall(bcid);
680 			mutex_enter(&asy->asy_excl);
681 		}
682 		mutex_enter(&asy->asy_excl_hi);
683 
684 		/* Disable interrupts from chip */
685 		ddi_put8(asy->asy_iohandle, asy->asy_ioaddr + ICR, 0);
686 		asy->asy_flags |= ASY_DDI_SUSPENDED;
687 
688 		/*
689 		 * Hardware interrupts are disabled we can drop our high level
690 		 * lock and proceed.
691 		 */
692 		mutex_exit(&asy->asy_excl_hi);
693 
694 		/* Process remaining RX characters and RX errors, if any */
695 		lsr = ddi_get8(asy->asy_iohandle, asy->asy_ioaddr + LSR);
696 		async_rxint(asy, lsr);
697 
698 		/* Wait for TX to drain */
699 		for (i = 1000; i > 0; i--) {
700 			lsr = ddi_get8(asy->asy_iohandle,
701 			    asy->asy_ioaddr + LSR);
702 			if ((lsr & (XSRE | XHRE)) == (XSRE | XHRE))
703 				break;
704 			delay(drv_usectohz(10000));
705 		}
706 		if (i == 0)
707 			cmn_err(CE_WARN,
708 			    "asy: transmitter wasn't drained before "
709 			    "driver was suspended");
710 
711 		mutex_exit(&asy->asy_excl);
712 		mutex_exit(&asy->asy_soft_sr);
713 		break;
714 	}
715 	default:
716 		return (DDI_FAILURE);
717 	}
718 
719 	return (DDI_SUCCESS);
720 }
721 
722 /*
723  * asyprobe
724  * We don't bother probing for the hardware, as since Solaris 2.6, device
725  * nodes are only created for auto-detected hardware or nodes explicitly
726  * created by the user, e.g. via the DCA. However, we should check the
727  * device node is at least vaguely usable, i.e. we have a block of 8 i/o
728  * ports. This prevents attempting to attach to bogus serial ports which
729  * some BIOSs still partially report when they are disabled in the BIOS.
730  */
731 static int
732 asyprobe(dev_info_t *devi)
733 {
734 	return ((asy_get_io_regnum(devi, NULL) < 0) ?
735 	    DDI_PROBE_FAILURE : DDI_PROBE_DONTCARE);
736 }
737 
738 static int
739 asyattach(dev_info_t *devi, ddi_attach_cmd_t cmd)
740 {
741 	int instance;
742 	int mcr;
743 	int ret;
744 	int regnum = 0;
745 	int i;
746 	struct asycom *asy;
747 	char name[ASY_MINOR_LEN];
748 	int status;
749 	static ddi_device_acc_attr_t ioattr = {
750 		DDI_DEVICE_ATTR_V0,
751 		DDI_NEVERSWAP_ACC,
752 		DDI_STRICTORDER_ACC,
753 	};
754 
755 	instance = ddi_get_instance(devi);	/* find out which unit */
756 
757 	switch (cmd) {
758 	case DDI_ATTACH:
759 		break;
760 	case DDI_RESUME:
761 	{
762 		struct asyncline *async;
763 
764 #ifdef	DEBUG
765 		if (asy_nosuspend)
766 			return (DDI_SUCCESS);
767 #endif
768 		asy = ddi_get_soft_state(asy_soft_state, instance);
769 		if (asy == NULL)
770 			return (DDI_FAILURE);
771 
772 		mutex_enter(&asy->asy_soft_sr);
773 		mutex_enter(&asy->asy_excl);
774 		mutex_enter(&asy->asy_excl_hi);
775 
776 		async = asy->asy_priv;
777 		/* Disable interrupts */
778 		ddi_put8(asy->asy_iohandle, asy->asy_ioaddr + ICR, 0);
779 		if (asy_identify_chip(devi, asy) != DDI_SUCCESS) {
780 			mutex_exit(&asy->asy_excl_hi);
781 			mutex_exit(&asy->asy_excl);
782 			mutex_exit(&asy->asy_soft_sr);
783 			cmn_err(CE_WARN, "!Cannot identify UART chip at %p\n",
784 			    (void *)asy->asy_ioaddr);
785 			return (DDI_FAILURE);
786 		}
787 		asy->asy_flags &= ~ASY_DDI_SUSPENDED;
788 		if (async->async_flags & ASYNC_ISOPEN) {
789 			asy_program(asy, ASY_INIT);
790 			/* Kick off output */
791 			if (async->async_ocnt > 0) {
792 				async_resume(async);
793 			} else {
794 				mutex_exit(&asy->asy_excl_hi);
795 				if (async->async_xmitblk)
796 					freeb(async->async_xmitblk);
797 				async->async_xmitblk = NULL;
798 				async_start(async);
799 				mutex_enter(&asy->asy_excl_hi);
800 			}
801 			ASYSETSOFT(asy);
802 		}
803 		mutex_exit(&asy->asy_excl_hi);
804 		mutex_exit(&asy->asy_excl);
805 		mutex_exit(&asy->asy_soft_sr);
806 
807 		mutex_enter(&asy->asy_excl);
808 		if (async->async_flags & ASYNC_RESUME_BUFCALL) {
809 			async->async_wbufcid = bufcall(async->async_wbufcds,
810 			    BPRI_HI, (void (*)(void *)) async_reioctl,
811 			    (void *)(intptr_t)async->async_common->asy_unit);
812 			async->async_flags &= ~ASYNC_RESUME_BUFCALL;
813 		}
814 		async_process_suspq(asy);
815 		mutex_exit(&asy->asy_excl);
816 		return (DDI_SUCCESS);
817 	}
818 	default:
819 		return (DDI_FAILURE);
820 	}
821 
822 	ret = ddi_soft_state_zalloc(asy_soft_state, instance);
823 	if (ret != DDI_SUCCESS)
824 		return (DDI_FAILURE);
825 	asy = ddi_get_soft_state(asy_soft_state, instance);
826 	ASSERT(asy != NULL);	/* can't fail - we only just allocated it */
827 	asy->asy_unit = instance;
828 	mutex_enter(&asy_glob_lock);
829 	if (instance > max_asy_instance)
830 		max_asy_instance = instance;
831 	mutex_exit(&asy_glob_lock);
832 
833 	regnum = asy_get_io_regnum(devi, asy);
834 
835 	if (regnum < 0 ||
836 	    ddi_regs_map_setup(devi, regnum, (caddr_t *)&asy->asy_ioaddr,
837 	    (offset_t)0, (offset_t)0, &ioattr, &asy->asy_iohandle)
838 	    != DDI_SUCCESS) {
839 		cmn_err(CE_WARN, "asy%d: could not map UART registers @ %p",
840 		    instance, (void *)asy->asy_ioaddr);
841 
842 		asy_soft_state_free(asy);
843 		return (DDI_FAILURE);
844 	}
845 
846 	DEBUGCONT2(ASY_DEBUG_INIT, "asy%dattach: UART @ %p\n",
847 	    instance, (void *)asy->asy_ioaddr);
848 
849 	mutex_enter(&asy_glob_lock);
850 	if (com_ports == NULL) {	/* need to initialize com_ports */
851 		if (ddi_prop_lookup_int_array(DDI_DEV_T_ANY, devi, 0,
852 		    "motherboard-serial-ports", &com_ports, &num_com_ports) !=
853 		    DDI_PROP_SUCCESS) {
854 			/* Use our built-in COM[1234] values */
855 			com_ports = (int *)standard_com_ports;
856 			num_com_ports = sizeof (standard_com_ports) /
857 			    sizeof (standard_com_ports[0]);
858 		}
859 		if (num_com_ports > 10) {
860 			/* We run out of single digits for device properties */
861 			num_com_ports = 10;
862 			cmn_err(CE_WARN,
863 			    "More than %d motherboard-serial-ports",
864 			    num_com_ports);
865 		}
866 	}
867 	mutex_exit(&asy_glob_lock);
868 
869 	/*
870 	 * Lookup the i/o address to see if this is a standard COM port
871 	 * in which case we assign it the correct tty[a-d] to match the
872 	 * COM port number, or some other i/o address in which case it
873 	 * will be assigned /dev/term/[0123...] in some rather arbitrary
874 	 * fashion.
875 	 */
876 
877 	for (i = 0; i < num_com_ports; i++) {
878 		if (asy->asy_ioaddr == (uint8_t *)(uintptr_t)com_ports[i]) {
879 			asy->asy_com_port = i + 1;
880 			break;
881 		}
882 	}
883 
884 	/*
885 	 * It appears that there was async hardware that on reset
886 	 * did not clear ICR.  Hence when we get to
887 	 * ddi_get_iblock_cookie below, this hardware would cause
888 	 * the system to hang if there was input available.
889 	 */
890 
891 	ddi_put8(asy->asy_iohandle, asy->asy_ioaddr + ICR, 0x00);
892 
893 	/* establish default usage */
894 	asy->asy_mcr |= RTS|DTR;		/* do use RTS/DTR after open */
895 	asy->asy_lcr = STOP1|BITS8;		/* default to 1 stop 8 bits */
896 	asy->asy_bidx = B9600;			/* default to 9600  */
897 #ifdef DEBUG
898 	asy->asy_msint_cnt = 0;			/* # of times in async_msint */
899 #endif
900 	mcr = 0;				/* don't enable until open */
901 
902 	if (asy->asy_com_port != 0) {
903 		/*
904 		 * For motherboard ports, emulate tty eeprom properties.
905 		 * Actually, we can't tell if a port is motherboard or not,
906 		 * so for "motherboard ports", read standard DOS COM ports.
907 		 */
908 		switch (asy_getproperty(devi, asy, "ignore-cd")) {
909 		case 0:				/* *-ignore-cd=False */
910 			DEBUGCONT1(ASY_DEBUG_MODEM,
911 			    "asy%dattach: clear ASY_IGNORE_CD\n", instance);
912 			asy->asy_flags &= ~ASY_IGNORE_CD; /* wait for cd */
913 			break;
914 		case 1:				/* *-ignore-cd=True */
915 			/*FALLTHRU*/
916 		default:			/* *-ignore-cd not defined */
917 			/*
918 			 * We set rather silly defaults of soft carrier on
919 			 * and DTR/RTS raised here because it might be that
920 			 * one of the motherboard ports is the system console.
921 			 */
922 			DEBUGCONT1(ASY_DEBUG_MODEM,
923 			    "asy%dattach: set ASY_IGNORE_CD, set RTS & DTR\n",
924 			    instance);
925 			mcr = asy->asy_mcr;		/* rts/dtr on */
926 			asy->asy_flags |= ASY_IGNORE_CD;	/* ignore cd */
927 			break;
928 		}
929 
930 		/* Property for not raising DTR/RTS */
931 		switch (asy_getproperty(devi, asy, "rts-dtr-off")) {
932 		case 0:				/* *-rts-dtr-off=False */
933 			asy->asy_flags |= ASY_RTS_DTR_OFF;	/* OFF */
934 			mcr = asy->asy_mcr;		/* rts/dtr on */
935 			DEBUGCONT1(ASY_DEBUG_MODEM, "asy%dattach: "
936 			    "ASY_RTS_DTR_OFF set and DTR & RTS set\n",
937 			    instance);
938 			break;
939 		case 1:				/* *-rts-dtr-off=True */
940 			/*FALLTHRU*/
941 		default:			/* *-rts-dtr-off undefined */
942 			break;
943 		}
944 
945 		/* Parse property for tty modes */
946 		asy_parse_mode(devi, asy);
947 	} else {
948 		DEBUGCONT1(ASY_DEBUG_MODEM,
949 		    "asy%dattach: clear ASY_IGNORE_CD, clear RTS & DTR\n",
950 		    instance);
951 		asy->asy_flags &= ~ASY_IGNORE_CD;	/* wait for cd */
952 	}
953 
954 	/*
955 	 * Initialize the port with default settings.
956 	 */
957 
958 	asy->asy_fifo_buf = 1;
959 	asy->asy_use_fifo = FIFO_OFF;
960 
961 	/*
962 	 * Get icookie for mutexes initialization
963 	 */
964 	if ((ddi_get_iblock_cookie(devi, 0, &asy->asy_iblock) !=
965 	    DDI_SUCCESS) ||
966 	    (ddi_get_soft_iblock_cookie(devi, DDI_SOFTINT_MED,
967 	    &asy->asy_soft_iblock) != DDI_SUCCESS)) {
968 		ddi_regs_map_free(&asy->asy_iohandle);
969 		cmn_err(CE_CONT,
970 		    "asy%d: could not hook interrupt for UART @ %p\n",
971 		    instance, (void *)asy->asy_ioaddr);
972 		asy_soft_state_free(asy);
973 		return (DDI_FAILURE);
974 	}
975 
976 	/*
977 	 * Initialize mutexes before accessing the hardware
978 	 */
979 	mutex_init(&asy->asy_soft_lock, NULL, MUTEX_DRIVER,
980 	    (void *)asy->asy_soft_iblock);
981 	mutex_init(&asy->asy_excl, NULL, MUTEX_DRIVER, NULL);
982 	mutex_init(&asy->asy_excl_hi, NULL, MUTEX_DRIVER,
983 	    (void *)asy->asy_iblock);
984 	mutex_init(&asy->asy_soft_sr, NULL, MUTEX_DRIVER,
985 	    (void *)asy->asy_soft_iblock);
986 	mutex_enter(&asy->asy_excl);
987 	mutex_enter(&asy->asy_excl_hi);
988 
989 	if (asy_identify_chip(devi, asy) != DDI_SUCCESS) {
990 		mutex_exit(&asy->asy_excl_hi);
991 		mutex_exit(&asy->asy_excl);
992 		mutex_destroy(&asy->asy_soft_lock);
993 		mutex_destroy(&asy->asy_excl);
994 		mutex_destroy(&asy->asy_excl_hi);
995 		mutex_destroy(&asy->asy_soft_sr);
996 		ddi_regs_map_free(&asy->asy_iohandle);
997 		cmn_err(CE_CONT, "!Cannot identify UART chip at %p\n",
998 		    (void *)asy->asy_ioaddr);
999 		asy_soft_state_free(asy);
1000 		return (DDI_FAILURE);
1001 	}
1002 
1003 	/* disable all interrupts */
1004 	ddi_put8(asy->asy_iohandle, asy->asy_ioaddr + ICR, 0);
1005 	/* select baud rate generator */
1006 	ddi_put8(asy->asy_iohandle, asy->asy_ioaddr + LCR, DLAB);
1007 	/* Set the baud rate to 9600 */
1008 	ddi_put8(asy->asy_iohandle, asy->asy_ioaddr + (DAT+DLL),
1009 	    asyspdtab[asy->asy_bidx] & 0xff);
1010 	ddi_put8(asy->asy_iohandle, asy->asy_ioaddr + (DAT+DLH),
1011 	    (asyspdtab[asy->asy_bidx] >> 8) & 0xff);
1012 	ddi_put8(asy->asy_iohandle, asy->asy_ioaddr + LCR, asy->asy_lcr);
1013 	ddi_put8(asy->asy_iohandle, asy->asy_ioaddr + MCR, mcr);
1014 
1015 	mutex_exit(&asy->asy_excl_hi);
1016 	mutex_exit(&asy->asy_excl);
1017 
1018 	/*
1019 	 * Set up the other components of the asycom structure for this port.
1020 	 */
1021 	asy->asy_dip = devi;
1022 
1023 	/*
1024 	 * Install per instance software interrupt handler.
1025 	 */
1026 	if (ddi_add_softintr(devi, DDI_SOFTINT_MED,
1027 	    &(asy->asy_softintr_id), NULL, 0, asysoftintr,
1028 	    (caddr_t)asy) != DDI_SUCCESS) {
1029 		mutex_destroy(&asy->asy_soft_lock);
1030 		mutex_destroy(&asy->asy_excl);
1031 		mutex_destroy(&asy->asy_excl_hi);
1032 		ddi_regs_map_free(&asy->asy_iohandle);
1033 		cmn_err(CE_CONT,
1034 		    "Can not set soft interrupt for ASY driver\n");
1035 		asy_soft_state_free(asy);
1036 		return (DDI_FAILURE);
1037 	}
1038 
1039 	mutex_enter(&asy->asy_excl);
1040 	mutex_enter(&asy->asy_excl_hi);
1041 
1042 	/*
1043 	 * Install interrupt handler for this device.
1044 	 */
1045 	if (ddi_add_intr(devi, 0, NULL, 0, asyintr,
1046 	    (caddr_t)asy) != DDI_SUCCESS) {
1047 		mutex_exit(&asy->asy_excl_hi);
1048 		mutex_exit(&asy->asy_excl);
1049 		ddi_remove_softintr(asy->asy_softintr_id);
1050 		mutex_destroy(&asy->asy_soft_lock);
1051 		mutex_destroy(&asy->asy_excl);
1052 		mutex_destroy(&asy->asy_excl_hi);
1053 		ddi_regs_map_free(&asy->asy_iohandle);
1054 		cmn_err(CE_CONT,
1055 		    "Can not set device interrupt for ASY driver\n");
1056 		asy_soft_state_free(asy);
1057 		return (DDI_FAILURE);
1058 	}
1059 
1060 	mutex_exit(&asy->asy_excl_hi);
1061 	mutex_exit(&asy->asy_excl);
1062 
1063 	asyinit(asy);	/* initialize the asyncline structure */
1064 
1065 	/* create minor device nodes for this device */
1066 	if (asy->asy_com_port != 0) {
1067 		/*
1068 		 * For DOS COM ports, add letter suffix so
1069 		 * devfsadm can create correct link names.
1070 		 */
1071 		name[0] = asy->asy_com_port + 'a' - 1;
1072 		name[1] = '\0';
1073 	} else {
1074 		/*
1075 		 * asy port which isn't a standard DOS COM
1076 		 * port gets a numeric name based on instance
1077 		 */
1078 		(void) snprintf(name, ASY_MINOR_LEN, "%d", instance);
1079 	}
1080 	status = ddi_create_minor_node(devi, name, S_IFCHR, instance,
1081 	    asy->asy_com_port != 0 ? DDI_NT_SERIAL_MB : DDI_NT_SERIAL, 0);
1082 	if (status == DDI_SUCCESS) {
1083 		(void) strcat(name, ",cu");
1084 		status = ddi_create_minor_node(devi, name, S_IFCHR,
1085 		    OUTLINE | instance,
1086 		    asy->asy_com_port != 0 ? DDI_NT_SERIAL_MB_DO :
1087 		    DDI_NT_SERIAL_DO, 0);
1088 	}
1089 
1090 	if (status != DDI_SUCCESS) {
1091 		struct asyncline *async = asy->asy_priv;
1092 
1093 		ddi_remove_minor_node(devi, NULL);
1094 		ddi_remove_intr(devi, 0, asy->asy_iblock);
1095 		ddi_remove_softintr(asy->asy_softintr_id);
1096 		mutex_destroy(&asy->asy_soft_lock);
1097 		mutex_destroy(&asy->asy_excl);
1098 		mutex_destroy(&asy->asy_excl_hi);
1099 		cv_destroy(&async->async_flags_cv);
1100 		ddi_regs_map_free(&asy->asy_iohandle);
1101 		asy_soft_state_free(asy);
1102 		return (DDI_FAILURE);
1103 	}
1104 
1105 	/*
1106 	 * Fill in the polled I/O structure.
1107 	 */
1108 	asy->polledio.cons_polledio_version = CONSPOLLEDIO_V0;
1109 	asy->polledio.cons_polledio_argument = (cons_polledio_arg_t)asy;
1110 	asy->polledio.cons_polledio_putchar = asyputchar;
1111 	asy->polledio.cons_polledio_getchar = asygetchar;
1112 	asy->polledio.cons_polledio_ischar = asyischar;
1113 	asy->polledio.cons_polledio_enter = NULL;
1114 	asy->polledio.cons_polledio_exit = NULL;
1115 
1116 	ddi_report_dev(devi);
1117 	DEBUGCONT1(ASY_DEBUG_INIT, "asy%dattach: done\n", instance);
1118 	return (DDI_SUCCESS);
1119 }
1120 
1121 /*ARGSUSED*/
1122 static int
1123 asyinfo(dev_info_t *dip, ddi_info_cmd_t infocmd, void *arg,
1124     void **result)
1125 {
1126 	dev_t dev = (dev_t)arg;
1127 	int instance, error;
1128 	struct asycom *asy;
1129 
1130 	instance = UNIT(dev);
1131 
1132 	switch (infocmd) {
1133 	case DDI_INFO_DEVT2DEVINFO:
1134 		asy = ddi_get_soft_state(asy_soft_state, instance);
1135 		if ((asy == NULL) || (asy->asy_dip == NULL))
1136 			error = DDI_FAILURE;
1137 		else {
1138 			*result = (void *) asy->asy_dip;
1139 			error = DDI_SUCCESS;
1140 		}
1141 		break;
1142 	case DDI_INFO_DEVT2INSTANCE:
1143 		*result = (void *)(intptr_t)instance;
1144 		error = DDI_SUCCESS;
1145 		break;
1146 	default:
1147 		error = DDI_FAILURE;
1148 	}
1149 	return (error);
1150 }
1151 
1152 /* asy_getproperty -- walk through all name variants until we find a match */
1153 
1154 static int
1155 asy_getproperty(dev_info_t *devi, struct asycom *asy, const char *property)
1156 {
1157 	int len;
1158 	int ret;
1159 	char letter = asy->asy_com_port + 'a' - 1;	/* for ttya */
1160 	char number = asy->asy_com_port + '0';		/* for COM1 */
1161 	char val[40];
1162 	char name[40];
1163 
1164 	/* Property for ignoring DCD */
1165 	(void) sprintf(name, "tty%c-%s", letter, property);
1166 	len = sizeof (val);
1167 	ret = GET_PROP(devi, name, DDI_PROP_CANSLEEP, val, &len);
1168 	if (ret != DDI_PROP_SUCCESS) {
1169 		(void) sprintf(name, "com%c-%s", number, property);
1170 		len = sizeof (val);
1171 		ret = GET_PROP(devi, name, DDI_PROP_CANSLEEP, val, &len);
1172 	}
1173 	if (ret != DDI_PROP_SUCCESS) {
1174 		(void) sprintf(name, "tty0%c-%s", number, property);
1175 		len = sizeof (val);
1176 		ret = GET_PROP(devi, name, DDI_PROP_CANSLEEP, val, &len);
1177 	}
1178 	if (ret != DDI_PROP_SUCCESS) {
1179 		(void) sprintf(name, "port-%c-%s", letter, property);
1180 		len = sizeof (val);
1181 		ret = GET_PROP(devi, name, DDI_PROP_CANSLEEP, val, &len);
1182 	}
1183 	if (ret != DDI_PROP_SUCCESS)
1184 		return (-1);		/* property non-existant */
1185 	if (val[0] == 'f' || val[0] == 'F' || val[0] == '0')
1186 		return (0);		/* property false/0 */
1187 	return (1);			/* property true/!0 */
1188 }
1189 
1190 /* asy_soft_state_free - local wrapper for ddi_soft_state_free(9F) */
1191 
1192 static void
1193 asy_soft_state_free(struct asycom *asy)
1194 {
1195 	mutex_enter(&asy_glob_lock);
1196 	/* If we were the max_asy_instance, work out new value */
1197 	if (asy->asy_unit == max_asy_instance) {
1198 		while (--max_asy_instance >= 0) {
1199 			if (ddi_get_soft_state(asy_soft_state,
1200 			    max_asy_instance) != NULL)
1201 				break;
1202 		}
1203 	}
1204 	mutex_exit(&asy_glob_lock);
1205 
1206 	if (asy->asy_priv != NULL) {
1207 		kmem_free(asy->asy_priv, sizeof (struct asyncline));
1208 		asy->asy_priv = NULL;
1209 	}
1210 	ddi_soft_state_free(asy_soft_state, asy->asy_unit);
1211 }
1212 
1213 static char *
1214 asy_hw_name(struct asycom *asy)
1215 {
1216 	switch (asy->asy_hwtype) {
1217 	case ASY8250A:
1218 		return ("8250A/16450");
1219 	case ASY16550:
1220 		return ("16550");
1221 	case ASY16550A:
1222 		return ("16550A");
1223 	case ASY16650:
1224 		return ("16650");
1225 	case ASY16750:
1226 		return ("16750");
1227 	default:
1228 		DEBUGNOTE2(ASY_DEBUG_INIT,
1229 		    "asy%d: asy_hw_name: unknown asy_hwtype: %d",
1230 		    asy->asy_unit, asy->asy_hwtype);
1231 		return ("?");
1232 	}
1233 }
1234 
1235 static int
1236 asy_identify_chip(dev_info_t *devi, struct asycom *asy)
1237 {
1238 	int ret;
1239 	int mcr;
1240 	dev_t dev;
1241 	uint_t hwtype;
1242 
1243 	if (asy_scr_test) {
1244 		/* Check scratch register works. */
1245 
1246 		/* write to scratch register */
1247 		ddi_put8(asy->asy_iohandle, asy->asy_ioaddr + SCR, SCRTEST);
1248 		/* make sure that pattern doesn't just linger on the bus */
1249 		ddi_put8(asy->asy_iohandle, asy->asy_ioaddr + FIFOR, 0x00);
1250 		/* read data back from scratch register */
1251 		ret = ddi_get8(asy->asy_iohandle, asy->asy_ioaddr + SCR);
1252 		if (ret != SCRTEST) {
1253 			/*
1254 			 * Scratch register not working.
1255 			 * Probably not an async chip.
1256 			 * 8250 and 8250B don't have scratch registers,
1257 			 * but only worked in ancient PC XT's anyway.
1258 			 */
1259 			cmn_err(CE_CONT, "!asy%d: UART @ %p "
1260 			    "scratch register: expected 0x5a, got 0x%02x\n",
1261 			    asy->asy_unit, (void *)asy->asy_ioaddr, ret);
1262 			return (DDI_FAILURE);
1263 		}
1264 	}
1265 	/*
1266 	 * Use 16550 fifo reset sequence specified in NS application
1267 	 * note. Disable fifos until chip is initialized.
1268 	 */
1269 	ddi_put8(asy->asy_iohandle,
1270 	    asy->asy_ioaddr + FIFOR, 0x00);	/* clear */
1271 	ddi_put8(asy->asy_iohandle,
1272 	    asy->asy_ioaddr + FIFOR, FIFO_ON);	/* enable */
1273 	ddi_put8(asy->asy_iohandle,
1274 	    asy->asy_ioaddr + FIFOR, FIFO_ON | FIFORXFLSH);
1275 						/* reset */
1276 	if (asymaxchip >= ASY16650 && asy_scr_test) {
1277 		/*
1278 		 * Reset 16650 enhanced regs also, in case we have one of these
1279 		 */
1280 		ddi_put8(asy->asy_iohandle, asy->asy_ioaddr + LCR,
1281 		    EFRACCESS);
1282 		ddi_put8(asy->asy_iohandle, asy->asy_ioaddr + EFR,
1283 		    0);
1284 		ddi_put8(asy->asy_iohandle, asy->asy_ioaddr + LCR,
1285 		    STOP1|BITS8);
1286 	}
1287 
1288 	/*
1289 	 * See what sort of FIFO we have.
1290 	 * Try enabling it and see what chip makes of this.
1291 	 */
1292 
1293 	asy->asy_fifor = 0;
1294 	asy->asy_hwtype = asymaxchip; /* just for asy_reset_fifo() */
1295 	if (asymaxchip >= ASY16550A)
1296 		asy->asy_fifor |=
1297 		    FIFO_ON | FIFODMA | (asy_trig_level & 0xff);
1298 	if (asymaxchip >= ASY16650)
1299 		asy->asy_fifor |= FIFOEXTRA1 | FIFOEXTRA2;
1300 
1301 	asy_reset_fifo(asy, FIFOTXFLSH | FIFORXFLSH);
1302 
1303 	mcr = ddi_get8(asy->asy_iohandle, asy->asy_ioaddr + MCR);
1304 	ret = ddi_get8(asy->asy_iohandle, asy->asy_ioaddr + ISR);
1305 	DEBUGCONT4(ASY_DEBUG_CHIP,
1306 	    "asy%d: probe fifo FIFOR=0x%02x ISR=0x%02x MCR=0x%02x\n",
1307 	    asy->asy_unit, asy->asy_fifor | FIFOTXFLSH | FIFORXFLSH,
1308 	    ret, mcr);
1309 	switch (ret & 0xf0) {
1310 	case 0x40:
1311 		hwtype = ASY16550; /* 16550 with broken FIFO */
1312 		asy->asy_fifor = 0;
1313 		break;
1314 	case 0xc0:
1315 		hwtype = ASY16550A;
1316 		asy->asy_fifo_buf = 16;
1317 		asy->asy_use_fifo = FIFO_ON;
1318 		asy->asy_fifor &= ~(FIFOEXTRA1 | FIFOEXTRA2);
1319 		break;
1320 	case 0xe0:
1321 		hwtype = ASY16650;
1322 		asy->asy_fifo_buf = 32;
1323 		asy->asy_use_fifo = FIFO_ON;
1324 		asy->asy_fifor &= ~(FIFOEXTRA1);
1325 		break;
1326 	case 0xf0:
1327 		/*
1328 		 * Note we get 0xff if chip didn't return us anything,
1329 		 * e.g. if there's no chip there.
1330 		 */
1331 		if (ret == 0xff) {
1332 			cmn_err(CE_CONT, "asy%d: UART @ %p "
1333 			    "interrupt register: got 0xff\n",
1334 			    asy->asy_unit, (void *)asy->asy_ioaddr);
1335 			return (DDI_FAILURE);
1336 		}
1337 		/*FALLTHRU*/
1338 	case 0xd0:
1339 		hwtype = ASY16750;
1340 		asy->asy_fifo_buf = 64;
1341 		asy->asy_use_fifo = FIFO_ON;
1342 		break;
1343 	default:
1344 		hwtype = ASY8250A; /* No FIFO */
1345 		asy->asy_fifor = 0;
1346 	}
1347 
1348 	if (hwtype > asymaxchip) {
1349 		cmn_err(CE_CONT, "asy%d: UART @ %p "
1350 		    "unexpected probe result: "
1351 		    "FIFOR=0x%02x ISR=0x%02x MCR=0x%02x\n",
1352 		    asy->asy_unit, (void *)asy->asy_ioaddr,
1353 		    asy->asy_fifor | FIFOTXFLSH | FIFORXFLSH, ret, mcr);
1354 		return (DDI_FAILURE);
1355 	}
1356 
1357 	/*
1358 	 * Now reset the FIFO operation appropriate for the chip type.
1359 	 * Note we must call asy_reset_fifo() before any possible
1360 	 * downgrade of the asy->asy_hwtype, or it may not disable
1361 	 * the more advanced features we specifically want downgraded.
1362 	 */
1363 	asy_reset_fifo(asy, 0);
1364 	asy->asy_hwtype = hwtype;
1365 
1366 	/*
1367 	 * Check for Exar/Startech ST16C650, which will still look like a
1368 	 * 16550A until we enable its enhanced mode.
1369 	 */
1370 	if (asy->asy_hwtype == ASY16550A && asymaxchip >= ASY16650 &&
1371 	    asy_scr_test) {
1372 		/* Enable enhanced mode register access */
1373 		ddi_put8(asy->asy_iohandle, asy->asy_ioaddr + LCR,
1374 		    EFRACCESS);
1375 		/* zero scratch register (not scratch register if enhanced) */
1376 		ddi_put8(asy->asy_iohandle, asy->asy_ioaddr + SCR, 0);
1377 		/* Disable enhanced mode register access */
1378 		ddi_put8(asy->asy_iohandle, asy->asy_ioaddr + LCR,
1379 		    STOP1|BITS8);
1380 		/* read back scratch register */
1381 		ret = ddi_get8(asy->asy_iohandle, asy->asy_ioaddr + SCR);
1382 		if (ret == SCRTEST) {
1383 			/* looks like we have an ST16650 -- enable it */
1384 			ddi_put8(asy->asy_iohandle, asy->asy_ioaddr + LCR,
1385 			    EFRACCESS);
1386 			ddi_put8(asy->asy_iohandle, asy->asy_ioaddr + EFR,
1387 			    ENHENABLE);
1388 			ddi_put8(asy->asy_iohandle, asy->asy_ioaddr + LCR,
1389 			    STOP1|BITS8);
1390 			asy->asy_hwtype = ASY16650;
1391 			asy->asy_fifo_buf = 32;
1392 			asy->asy_fifor |= 0x10; /* 24 byte txfifo trigger */
1393 			asy_reset_fifo(asy, 0);
1394 		}
1395 	}
1396 
1397 	/*
1398 	 * If we think we might have a FIFO larger than 16 characters,
1399 	 * measure FIFO size and check it against expected.
1400 	 */
1401 	if (asy_fifo_test > 0 &&
1402 	    !(asy->asy_flags2 & ASY2_NO_LOOPBACK) &&
1403 	    (asy->asy_fifo_buf > 16 ||
1404 	    (asy_fifo_test > 1 && asy->asy_use_fifo == FIFO_ON) ||
1405 	    ASY_DEBUG(ASY_DEBUG_CHIP))) {
1406 		int i;
1407 
1408 		/* Set baud rate to 57600 (fairly arbitrary choice) */
1409 		ddi_put8(asy->asy_iohandle, asy->asy_ioaddr + LCR,
1410 		    DLAB);
1411 		ddi_put8(asy->asy_iohandle, asy->asy_ioaddr + DAT,
1412 		    asyspdtab[B57600] & 0xff);
1413 		ddi_put8(asy->asy_iohandle, asy->asy_ioaddr + ICR,
1414 		    (asyspdtab[B57600] >> 8) & 0xff);
1415 		/* Set 8 bits, 1 stop bit */
1416 		ddi_put8(asy->asy_iohandle, asy->asy_ioaddr + LCR,
1417 		    STOP1|BITS8);
1418 		/* Set loopback mode */
1419 		ddi_put8(asy->asy_iohandle, asy->asy_ioaddr + MCR,
1420 		    DTR | RTS | ASY_LOOP | OUT1 | OUT2);
1421 
1422 		/* Overfill fifo */
1423 		for (i = 0; i < asy->asy_fifo_buf * 2; i++) {
1424 			ddi_put8(asy->asy_iohandle,
1425 			    asy->asy_ioaddr + DAT, i);
1426 		}
1427 		/*
1428 		 * Now there's an interesting question here about which
1429 		 * FIFO we're testing the size of, RX or TX. We just
1430 		 * filled the TX FIFO much faster than it can empty,
1431 		 * although it is possible one or two characters may
1432 		 * have gone from it to the TX shift register.
1433 		 * We wait for enough time for all the characters to
1434 		 * move into the RX FIFO and any excess characters to
1435 		 * have been lost, and then read all the RX FIFO. So
1436 		 * the answer we finally get will be the size which is
1437 		 * the MIN(RX FIFO,(TX FIFO + 1 or 2)). The critical
1438 		 * one is actually the TX FIFO, because if we overfill
1439 		 * it in normal operation, the excess characters are
1440 		 * lost with no warning.
1441 		 */
1442 		/*
1443 		 * Wait for characters to move into RX FIFO.
1444 		 * In theory, 200 * asy->asy_fifo_buf * 2 should be
1445 		 * enough. However, in practice it isn't always, so we
1446 		 * increase to 400 so some slow 16550A's finish, and we
1447 		 * increase to 3 so we spot more characters coming back
1448 		 * than we sent, in case that should ever happen.
1449 		 */
1450 		delay(drv_usectohz(400 * asy->asy_fifo_buf * 3));
1451 
1452 		/* Now see how many characters we can read back */
1453 		for (i = 0; i < asy->asy_fifo_buf * 3; i++) {
1454 			ret = ddi_get8(asy->asy_iohandle,
1455 			    asy->asy_ioaddr + LSR);
1456 			if (!(ret & RCA))
1457 				break;	/* FIFO emptied */
1458 			(void) ddi_get8(asy->asy_iohandle,
1459 			    asy->asy_ioaddr + DAT); /* lose another */
1460 		}
1461 
1462 		DEBUGCONT3(ASY_DEBUG_CHIP,
1463 		    "asy%d FIFO size: expected=%d, measured=%d\n",
1464 		    asy->asy_unit, asy->asy_fifo_buf, i);
1465 
1466 		hwtype = asy->asy_hwtype;
1467 		if (i < asy->asy_fifo_buf) {
1468 			/*
1469 			 * FIFO is somewhat smaller than we anticipated.
1470 			 * If we have 16 characters usable, then this
1471 			 * UART will probably work well enough in
1472 			 * 16550A mode. If less than 16 characters,
1473 			 * then we'd better not use it at all.
1474 			 * UARTs with busted FIFOs do crop up.
1475 			 */
1476 			if (i >= 16 && asy->asy_fifo_buf >= 16) {
1477 				/* fall back to a 16550A */
1478 				hwtype = ASY16550A;
1479 				asy->asy_fifo_buf = 16;
1480 				asy->asy_fifor &= ~(FIFOEXTRA1 | FIFOEXTRA2);
1481 			} else {
1482 				/* fall back to no FIFO at all */
1483 				hwtype = ASY16550;
1484 				asy->asy_fifo_buf = 1;
1485 				asy->asy_use_fifo = FIFO_OFF;
1486 				asy->asy_fifor &=
1487 				    ~(FIFO_ON | FIFOEXTRA1 | FIFOEXTRA2);
1488 			}
1489 		}
1490 		/*
1491 		 * We will need to reprogram the FIFO if we changed
1492 		 * our mind about how to drive it above, and in any
1493 		 * case, it would be a good idea to flush any garbage
1494 		 * out incase the loopback test left anything behind.
1495 		 * Again as earlier above, we must call asy_reset_fifo()
1496 		 * before any possible downgrade of asy->asy_hwtype.
1497 		 */
1498 		if (asy->asy_hwtype >= ASY16650 && hwtype < ASY16650) {
1499 			/* Disable 16650 enhanced mode */
1500 			ddi_put8(asy->asy_iohandle, asy->asy_ioaddr + LCR,
1501 			    EFRACCESS);
1502 			ddi_put8(asy->asy_iohandle, asy->asy_ioaddr + EFR,
1503 			    0);
1504 			ddi_put8(asy->asy_iohandle, asy->asy_ioaddr + LCR,
1505 			    STOP1|BITS8);
1506 		}
1507 		asy_reset_fifo(asy, FIFOTXFLSH | FIFORXFLSH);
1508 		asy->asy_hwtype = hwtype;
1509 
1510 		/* Clear loopback mode and restore DTR/RTS */
1511 		ddi_put8(asy->asy_iohandle, asy->asy_ioaddr + MCR, mcr);
1512 	}
1513 
1514 	DEBUGNOTE3(ASY_DEBUG_CHIP, "asy%d %s @ %p",
1515 	    asy->asy_unit, asy_hw_name(asy), (void *)asy->asy_ioaddr);
1516 
1517 	/* Make UART type visible in device tree for prtconf, etc */
1518 	dev = makedevice(DDI_MAJOR_T_UNKNOWN, asy->asy_unit);
1519 	(void) ddi_prop_update_string(dev, devi, "uart", asy_hw_name(asy));
1520 
1521 	if (asy->asy_hwtype == ASY16550)	/* for broken 16550's, */
1522 		asy->asy_hwtype = ASY8250A;	/* drive them as 8250A */
1523 
1524 	return (DDI_SUCCESS);
1525 }
1526 
1527 /*
1528  * asyinit() initializes the TTY protocol-private data for this channel
1529  * before enabling the interrupts.
1530  */
1531 static void
1532 asyinit(struct asycom *asy)
1533 {
1534 	struct asyncline *async;
1535 
1536 	asy->asy_priv = kmem_zalloc(sizeof (struct asyncline), KM_SLEEP);
1537 	async = asy->asy_priv;
1538 	mutex_enter(&asy->asy_excl);
1539 	async->async_common = asy;
1540 	cv_init(&async->async_flags_cv, NULL, CV_DRIVER, NULL);
1541 	mutex_exit(&asy->asy_excl);
1542 }
1543 
1544 /*ARGSUSED3*/
1545 static int
1546 asyopen(queue_t *rq, dev_t *dev, int flag, int sflag, cred_t *cr)
1547 {
1548 	struct asycom	*asy;
1549 	struct asyncline *async;
1550 	int		mcr;
1551 	int		unit;
1552 	int		len;
1553 	struct termios	*termiosp;
1554 
1555 	unit = UNIT(*dev);
1556 	DEBUGCONT1(ASY_DEBUG_CLOSE, "asy%dopen\n", unit);
1557 	asy = ddi_get_soft_state(asy_soft_state, unit);
1558 	if (asy == NULL)
1559 		return (ENXIO);		/* unit not configured */
1560 	async = asy->asy_priv;
1561 	mutex_enter(&asy->asy_excl);
1562 
1563 again:
1564 	mutex_enter(&asy->asy_excl_hi);
1565 
1566 	/*
1567 	 * Block waiting for carrier to come up, unless this is a no-delay open.
1568 	 */
1569 	if (!(async->async_flags & ASYNC_ISOPEN)) {
1570 		/*
1571 		 * Set the default termios settings (cflag).
1572 		 * Others are set in ldterm.
1573 		 */
1574 		mutex_exit(&asy->asy_excl_hi);
1575 
1576 		if (ddi_getlongprop(DDI_DEV_T_ANY, ddi_root_node(),
1577 		    0, "ttymodes",
1578 		    (caddr_t)&termiosp, &len) == DDI_PROP_SUCCESS &&
1579 		    len == sizeof (struct termios)) {
1580 			async->async_ttycommon.t_cflag = termiosp->c_cflag;
1581 			kmem_free(termiosp, len);
1582 		} else
1583 			cmn_err(CE_WARN,
1584 			    "asy: couldn't get ttymodes property!");
1585 		mutex_enter(&asy->asy_excl_hi);
1586 
1587 		/* eeprom mode support - respect properties */
1588 		if (asy->asy_cflag)
1589 			async->async_ttycommon.t_cflag = asy->asy_cflag;
1590 
1591 		async->async_ttycommon.t_iflag = 0;
1592 		async->async_ttycommon.t_iocpending = NULL;
1593 		async->async_ttycommon.t_size.ws_row = 0;
1594 		async->async_ttycommon.t_size.ws_col = 0;
1595 		async->async_ttycommon.t_size.ws_xpixel = 0;
1596 		async->async_ttycommon.t_size.ws_ypixel = 0;
1597 		async->async_dev = *dev;
1598 		async->async_wbufcid = 0;
1599 
1600 		async->async_startc = CSTART;
1601 		async->async_stopc = CSTOP;
1602 		asy_program(asy, ASY_INIT);
1603 	} else
1604 		if ((async->async_ttycommon.t_flags & TS_XCLUDE) &&
1605 		    secpolicy_excl_open(cr) != 0) {
1606 		mutex_exit(&asy->asy_excl_hi);
1607 		mutex_exit(&asy->asy_excl);
1608 		return (EBUSY);
1609 	} else if ((*dev & OUTLINE) && !(async->async_flags & ASYNC_OUT)) {
1610 		mutex_exit(&asy->asy_excl_hi);
1611 		mutex_exit(&asy->asy_excl);
1612 		return (EBUSY);
1613 	}
1614 
1615 	if (*dev & OUTLINE)
1616 		async->async_flags |= ASYNC_OUT;
1617 
1618 	/* Raise DTR on every open, but delay if it was just lowered. */
1619 	while (async->async_flags & ASYNC_DTR_DELAY) {
1620 		DEBUGCONT1(ASY_DEBUG_MODEM,
1621 		    "asy%dopen: waiting for the ASYNC_DTR_DELAY to be clear\n",
1622 		    unit);
1623 		mutex_exit(&asy->asy_excl_hi);
1624 		if (cv_wait_sig(&async->async_flags_cv,
1625 		    &asy->asy_excl) == 0) {
1626 			DEBUGCONT1(ASY_DEBUG_MODEM,
1627 			    "asy%dopen: interrupted by signal, exiting\n",
1628 			    unit);
1629 			mutex_exit(&asy->asy_excl);
1630 			return (EINTR);
1631 		}
1632 		mutex_enter(&asy->asy_excl_hi);
1633 	}
1634 
1635 	mcr = ddi_get8(asy->asy_iohandle, asy->asy_ioaddr + MCR);
1636 	ddi_put8(asy->asy_iohandle, asy->asy_ioaddr + MCR,
1637 	    mcr|(asy->asy_mcr&DTR));
1638 
1639 	DEBUGCONT3(ASY_DEBUG_INIT,
1640 	    "asy%dopen: \"Raise DTR on every open\": make mcr = %x, "
1641 	    "make TS_SOFTCAR = %s\n",
1642 	    unit, mcr|(asy->asy_mcr&DTR),
1643 	    (asy->asy_flags & ASY_IGNORE_CD) ? "ON" : "OFF");
1644 
1645 	if (asy->asy_flags & ASY_IGNORE_CD) {
1646 		DEBUGCONT1(ASY_DEBUG_MODEM,
1647 		    "asy%dopen: ASY_IGNORE_CD set, set TS_SOFTCAR\n",
1648 		    unit);
1649 		async->async_ttycommon.t_flags |= TS_SOFTCAR;
1650 	}
1651 	else
1652 		async->async_ttycommon.t_flags &= ~TS_SOFTCAR;
1653 
1654 	/*
1655 	 * Check carrier.
1656 	 */
1657 	asy->asy_msr = ddi_get8(asy->asy_iohandle, asy->asy_ioaddr + MSR);
1658 	DEBUGCONT3(ASY_DEBUG_INIT, "asy%dopen: TS_SOFTCAR is %s, "
1659 	    "MSR & DCD is %s\n",
1660 	    unit,
1661 	    (async->async_ttycommon.t_flags & TS_SOFTCAR) ? "set" : "clear",
1662 	    (asy->asy_msr & DCD) ? "set" : "clear");
1663 
1664 	if (asy->asy_msr & DCD)
1665 		async->async_flags |= ASYNC_CARR_ON;
1666 	else
1667 		async->async_flags &= ~ASYNC_CARR_ON;
1668 	mutex_exit(&asy->asy_excl_hi);
1669 
1670 	/*
1671 	 * If FNDELAY and FNONBLOCK are clear, block until carrier up.
1672 	 * Quit on interrupt.
1673 	 */
1674 	if (!(flag & (FNDELAY|FNONBLOCK)) &&
1675 	    !(async->async_ttycommon.t_cflag & CLOCAL)) {
1676 		if ((!(async->async_flags & (ASYNC_CARR_ON|ASYNC_OUT)) &&
1677 		    !(async->async_ttycommon.t_flags & TS_SOFTCAR)) ||
1678 		    ((async->async_flags & ASYNC_OUT) &&
1679 		    !(*dev & OUTLINE))) {
1680 			async->async_flags |= ASYNC_WOPEN;
1681 			if (cv_wait_sig(&async->async_flags_cv,
1682 			    &asy->asy_excl) == B_FALSE) {
1683 				async->async_flags &= ~ASYNC_WOPEN;
1684 				mutex_exit(&asy->asy_excl);
1685 				return (EINTR);
1686 			}
1687 			async->async_flags &= ~ASYNC_WOPEN;
1688 			goto again;
1689 		}
1690 	} else if ((async->async_flags & ASYNC_OUT) && !(*dev & OUTLINE)) {
1691 		mutex_exit(&asy->asy_excl);
1692 		return (EBUSY);
1693 	}
1694 
1695 	async->async_ttycommon.t_readq = rq;
1696 	async->async_ttycommon.t_writeq = WR(rq);
1697 	rq->q_ptr = WR(rq)->q_ptr = (caddr_t)async;
1698 	mutex_exit(&asy->asy_excl);
1699 	/*
1700 	 * Caution here -- qprocson sets the pointers that are used by canput
1701 	 * called by async_softint.  ASYNC_ISOPEN must *not* be set until those
1702 	 * pointers are valid.
1703 	 */
1704 	qprocson(rq);
1705 	async->async_flags |= ASYNC_ISOPEN;
1706 	async->async_polltid = 0;
1707 	DEBUGCONT1(ASY_DEBUG_INIT, "asy%dopen: done\n", unit);
1708 	return (0);
1709 }
1710 
1711 static void
1712 async_progress_check(void *arg)
1713 {
1714 	struct asyncline *async = arg;
1715 	struct asycom	 *asy = async->async_common;
1716 	mblk_t *bp;
1717 
1718 	/*
1719 	 * We define "progress" as either waiting on a timed break or delay, or
1720 	 * having had at least one transmitter interrupt.  If none of these are
1721 	 * true, then just terminate the output and wake up that close thread.
1722 	 */
1723 	mutex_enter(&asy->asy_excl);
1724 	mutex_enter(&asy->asy_excl_hi);
1725 	if (!(async->async_flags & (ASYNC_BREAK|ASYNC_DELAY|ASYNC_PROGRESS))) {
1726 		async->async_ocnt = 0;
1727 		async->async_flags &= ~ASYNC_BUSY;
1728 		async->async_timer = 0;
1729 		bp = async->async_xmitblk;
1730 		async->async_xmitblk = NULL;
1731 		mutex_exit(&asy->asy_excl_hi);
1732 		if (bp != NULL)
1733 			freeb(bp);
1734 		/*
1735 		 * Since this timer is running, we know that we're in exit(2).
1736 		 * That means that the user can't possibly be waiting on any
1737 		 * valid ioctl(2) completion anymore, and we should just flush
1738 		 * everything.
1739 		 */
1740 		flushq(async->async_ttycommon.t_writeq, FLUSHALL);
1741 		cv_broadcast(&async->async_flags_cv);
1742 	} else {
1743 		async->async_flags &= ~ASYNC_PROGRESS;
1744 		async->async_timer = timeout(async_progress_check, async,
1745 		    drv_usectohz(asy_drain_check));
1746 		mutex_exit(&asy->asy_excl_hi);
1747 	}
1748 	mutex_exit(&asy->asy_excl);
1749 }
1750 
1751 /*
1752  * Release DTR so that asyopen() can raise it.
1753  */
1754 static void
1755 async_dtr_free(struct asyncline *async)
1756 {
1757 	struct asycom *asy = async->async_common;
1758 
1759 	DEBUGCONT0(ASY_DEBUG_MODEM,
1760 	    "async_dtr_free, clearing ASYNC_DTR_DELAY\n");
1761 	mutex_enter(&asy->asy_excl);
1762 	async->async_flags &= ~ASYNC_DTR_DELAY;
1763 	async->async_dtrtid = 0;
1764 	cv_broadcast(&async->async_flags_cv);
1765 	mutex_exit(&asy->asy_excl);
1766 }
1767 
1768 /*
1769  * Close routine.
1770  */
1771 /*ARGSUSED2*/
1772 static int
1773 asyclose(queue_t *q, int flag, cred_t *credp)
1774 {
1775 	struct asyncline *async;
1776 	struct asycom	 *asy;
1777 	int icr, lcr;
1778 #ifdef DEBUG
1779 	int instance;
1780 #endif
1781 
1782 	async = (struct asyncline *)q->q_ptr;
1783 	ASSERT(async != NULL);
1784 #ifdef DEBUG
1785 	instance = UNIT(async->async_dev);
1786 	DEBUGCONT1(ASY_DEBUG_CLOSE, "asy%dclose\n", instance);
1787 #endif
1788 	asy = async->async_common;
1789 
1790 	mutex_enter(&asy->asy_excl);
1791 	async->async_flags |= ASYNC_CLOSING;
1792 
1793 	/*
1794 	 * Turn off PPS handling early to avoid events occuring during
1795 	 * close.  Also reset the DCD edge monitoring bit.
1796 	 */
1797 	mutex_enter(&asy->asy_excl_hi);
1798 	asy->asy_flags &= ~(ASY_PPS | ASY_PPS_EDGE);
1799 	mutex_exit(&asy->asy_excl_hi);
1800 
1801 	/*
1802 	 * There are two flavors of break -- timed (M_BREAK or TCSBRK) and
1803 	 * untimed (TIOCSBRK).  For the timed case, these are enqueued on our
1804 	 * write queue and there's a timer running, so we don't have to worry
1805 	 * about them.  For the untimed case, though, the user obviously made a
1806 	 * mistake, because these are handled immediately.  We'll terminate the
1807 	 * break now and honor their implicit request by discarding the rest of
1808 	 * the data.
1809 	 */
1810 	if (async->async_flags & ASYNC_OUT_SUSPEND) {
1811 		if (async->async_utbrktid != 0) {
1812 			(void) untimeout(async->async_utbrktid);
1813 			async->async_utbrktid = 0;
1814 		}
1815 		mutex_enter(&asy->asy_excl_hi);
1816 		lcr = ddi_get8(asy->asy_iohandle, asy->asy_ioaddr + LCR);
1817 		ddi_put8(asy->asy_iohandle,
1818 		    asy->asy_ioaddr + LCR, (lcr & ~SETBREAK));
1819 		mutex_exit(&asy->asy_excl_hi);
1820 		async->async_flags &= ~ASYNC_OUT_SUSPEND;
1821 		goto nodrain;
1822 	}
1823 
1824 	/*
1825 	 * If the user told us not to delay the close ("non-blocking"), then
1826 	 * don't bother trying to drain.
1827 	 *
1828 	 * If the user did M_STOP (ASYNC_STOPPED), there's no hope of ever
1829 	 * getting an M_START (since these messages aren't enqueued), and the
1830 	 * only other way to clear the stop condition is by loss of DCD, which
1831 	 * would discard the queue data.  Thus, we drop the output data if
1832 	 * ASYNC_STOPPED is set.
1833 	 */
1834 	if ((flag & (FNDELAY|FNONBLOCK)) ||
1835 	    (async->async_flags & ASYNC_STOPPED)) {
1836 		goto nodrain;
1837 	}
1838 
1839 	/*
1840 	 * If there's any pending output, then we have to try to drain it.
1841 	 * There are two main cases to be handled:
1842 	 *	- called by close(2): need to drain until done or until
1843 	 *	  a signal is received.  No timeout.
1844 	 *	- called by exit(2): need to drain while making progress
1845 	 *	  or until a timeout occurs.  No signals.
1846 	 *
1847 	 * If we can't rely on receiving a signal to get us out of a hung
1848 	 * session, then we have to use a timer.  In this case, we set a timer
1849 	 * to check for progress in sending the output data -- all that we ask
1850 	 * (at each interval) is that there's been some progress made.  Since
1851 	 * the interrupt routine grabs buffers from the write queue, we can't
1852 	 * trust changes in async_ocnt.  Instead, we use a progress flag.
1853 	 *
1854 	 * Note that loss of carrier will cause the output queue to be flushed,
1855 	 * and we'll wake up again and finish normally.
1856 	 */
1857 	if (!ddi_can_receive_sig() && asy_drain_check != 0) {
1858 		async->async_flags &= ~ASYNC_PROGRESS;
1859 		async->async_timer = timeout(async_progress_check, async,
1860 		    drv_usectohz(asy_drain_check));
1861 	}
1862 	while (async->async_ocnt > 0 ||
1863 	    async->async_ttycommon.t_writeq->q_first != NULL ||
1864 	    (async->async_flags & (ASYNC_BUSY|ASYNC_BREAK|ASYNC_DELAY))) {
1865 		if (cv_wait_sig(&async->async_flags_cv, &asy->asy_excl) == 0)
1866 			break;
1867 	}
1868 	if (async->async_timer != 0) {
1869 		(void) untimeout(async->async_timer);
1870 		async->async_timer = 0;
1871 	}
1872 
1873 nodrain:
1874 	async->async_ocnt = 0;
1875 	if (async->async_xmitblk != NULL)
1876 		freeb(async->async_xmitblk);
1877 	async->async_xmitblk = NULL;
1878 
1879 	/*
1880 	 * If line has HUPCL set or is incompletely opened fix up the modem
1881 	 * lines.
1882 	 */
1883 	DEBUGCONT1(ASY_DEBUG_MODEM, "asy%dclose: next check HUPCL flag\n",
1884 	    instance);
1885 	mutex_enter(&asy->asy_excl_hi);
1886 	if ((async->async_ttycommon.t_cflag & HUPCL) ||
1887 	    (async->async_flags & ASYNC_WOPEN)) {
1888 		DEBUGCONT3(ASY_DEBUG_MODEM,
1889 		    "asy%dclose: HUPCL flag = %x, ASYNC_WOPEN flag = %x\n",
1890 		    instance,
1891 		    async->async_ttycommon.t_cflag & HUPCL,
1892 		    async->async_ttycommon.t_cflag & ASYNC_WOPEN);
1893 		async->async_flags |= ASYNC_DTR_DELAY;
1894 
1895 		/* turn off DTR, RTS but NOT interrupt to 386 */
1896 		if (asy->asy_flags & (ASY_IGNORE_CD|ASY_RTS_DTR_OFF)) {
1897 			DEBUGCONT3(ASY_DEBUG_MODEM,
1898 			    "asy%dclose: ASY_IGNORE_CD flag = %x, "
1899 			    "ASY_RTS_DTR_OFF flag = %x\n",
1900 			    instance,
1901 			    asy->asy_flags & ASY_IGNORE_CD,
1902 			    asy->asy_flags & ASY_RTS_DTR_OFF);
1903 
1904 			ddi_put8(asy->asy_iohandle, asy->asy_ioaddr + MCR,
1905 			    asy->asy_mcr|OUT2);
1906 		} else {
1907 			DEBUGCONT1(ASY_DEBUG_MODEM,
1908 			    "asy%dclose: Dropping DTR and RTS\n", instance);
1909 			ddi_put8(asy->asy_iohandle, asy->asy_ioaddr + MCR,
1910 			    OUT2);
1911 		}
1912 		async->async_dtrtid =
1913 		    timeout((void (*)())async_dtr_free,
1914 		    (caddr_t)async, drv_usectohz(asy_min_dtr_low));
1915 	}
1916 	/*
1917 	 * If nobody's using it now, turn off receiver interrupts.
1918 	 */
1919 	if ((async->async_flags & (ASYNC_WOPEN|ASYNC_ISOPEN)) == 0) {
1920 		icr = ddi_get8(asy->asy_iohandle, asy->asy_ioaddr + ICR);
1921 		ddi_put8(asy->asy_iohandle, asy->asy_ioaddr + ICR,
1922 		    (icr & ~RIEN));
1923 	}
1924 	mutex_exit(&asy->asy_excl_hi);
1925 out:
1926 	ttycommon_close(&async->async_ttycommon);
1927 
1928 	/*
1929 	 * Cancel outstanding "bufcall" request.
1930 	 */
1931 	if (async->async_wbufcid != 0) {
1932 		unbufcall(async->async_wbufcid);
1933 		async->async_wbufcid = 0;
1934 	}
1935 
1936 	/* Note that qprocsoff can't be done until after interrupts are off */
1937 	qprocsoff(q);
1938 	q->q_ptr = WR(q)->q_ptr = NULL;
1939 	async->async_ttycommon.t_readq = NULL;
1940 	async->async_ttycommon.t_writeq = NULL;
1941 
1942 	/*
1943 	 * Clear out device state, except persistant device property flags.
1944 	 */
1945 	async->async_flags &= (ASYNC_DTR_DELAY|ASY_RTS_DTR_OFF);
1946 	cv_broadcast(&async->async_flags_cv);
1947 	mutex_exit(&asy->asy_excl);
1948 
1949 	DEBUGCONT1(ASY_DEBUG_CLOSE, "asy%dclose: done\n", instance);
1950 	return (0);
1951 }
1952 
1953 static boolean_t
1954 asy_isbusy(struct asycom *asy)
1955 {
1956 	struct asyncline *async;
1957 
1958 	DEBUGCONT0(ASY_DEBUG_EOT, "asy_isbusy\n");
1959 	async = asy->asy_priv;
1960 	ASSERT(mutex_owned(&asy->asy_excl));
1961 	ASSERT(mutex_owned(&asy->asy_excl_hi));
1962 /*
1963  * XXXX this should be recoded
1964  */
1965 	return ((async->async_ocnt > 0) ||
1966 	    ((ddi_get8(asy->asy_iohandle,
1967 	    asy->asy_ioaddr + LSR) & (XSRE|XHRE)) == 0));
1968 }
1969 
1970 static void
1971 asy_waiteot(struct asycom *asy)
1972 {
1973 	/*
1974 	 * Wait for the current transmission block and the
1975 	 * current fifo data to transmit. Once this is done
1976 	 * we may go on.
1977 	 */
1978 	DEBUGCONT0(ASY_DEBUG_EOT, "asy_waiteot\n");
1979 	ASSERT(mutex_owned(&asy->asy_excl));
1980 	ASSERT(mutex_owned(&asy->asy_excl_hi));
1981 	while (asy_isbusy(asy)) {
1982 		mutex_exit(&asy->asy_excl_hi);
1983 		mutex_exit(&asy->asy_excl);
1984 		drv_usecwait(10000);		/* wait .01 */
1985 		mutex_enter(&asy->asy_excl);
1986 		mutex_enter(&asy->asy_excl_hi);
1987 	}
1988 }
1989 
1990 /* asy_reset_fifo -- flush fifos and [re]program fifo control register */
1991 static void
1992 asy_reset_fifo(struct asycom *asy, uchar_t flush)
1993 {
1994 	uchar_t lcr = 0;
1995 
1996 	/* On a 16750, we have to set DLAB in order to set FIFOEXTRA. */
1997 
1998 	if (asy->asy_hwtype >= ASY16750) {
1999 		lcr = ddi_get8(asy->asy_iohandle, asy->asy_ioaddr + LCR);
2000 		ddi_put8(asy->asy_iohandle, asy->asy_ioaddr + LCR,
2001 		    lcr | DLAB);
2002 	}
2003 
2004 	ddi_put8(asy->asy_iohandle, asy->asy_ioaddr + FIFOR,
2005 	    asy->asy_fifor | flush);
2006 
2007 	/* Clear DLAB */
2008 
2009 	if (asy->asy_hwtype >= ASY16750) {
2010 		ddi_put8(asy->asy_iohandle, asy->asy_ioaddr + LCR, lcr);
2011 	}
2012 }
2013 
2014 /*
2015  * Program the ASY port. Most of the async operation is based on the values
2016  * of 'c_iflag' and 'c_cflag'.
2017  */
2018 
2019 #define	BAUDINDEX(cflg)	(((cflg) & CBAUDEXT) ? \
2020 			(((cflg) & CBAUD) + CBAUD + 1) : ((cflg) & CBAUD))
2021 
2022 static void
2023 asy_program(struct asycom *asy, int mode)
2024 {
2025 	struct asyncline *async;
2026 	int baudrate, c_flag;
2027 	int icr, lcr;
2028 	int flush_reg;
2029 	int ocflags;
2030 #ifdef DEBUG
2031 	int instance;
2032 #endif
2033 
2034 	ASSERT(mutex_owned(&asy->asy_excl));
2035 	ASSERT(mutex_owned(&asy->asy_excl_hi));
2036 
2037 	async = asy->asy_priv;
2038 #ifdef DEBUG
2039 	instance = UNIT(async->async_dev);
2040 	DEBUGCONT2(ASY_DEBUG_PROCS,
2041 	    "asy%d_program: mode = 0x%08X, enter\n", instance, mode);
2042 #endif
2043 
2044 	baudrate = BAUDINDEX(async->async_ttycommon.t_cflag);
2045 
2046 	async->async_ttycommon.t_cflag &= ~(CIBAUD);
2047 
2048 	if (baudrate > CBAUD) {
2049 		async->async_ttycommon.t_cflag |= CIBAUDEXT;
2050 		async->async_ttycommon.t_cflag |=
2051 		    (((baudrate - CBAUD - 1) << IBSHIFT) & CIBAUD);
2052 	} else {
2053 		async->async_ttycommon.t_cflag &= ~CIBAUDEXT;
2054 		async->async_ttycommon.t_cflag |=
2055 		    ((baudrate << IBSHIFT) & CIBAUD);
2056 	}
2057 
2058 	c_flag = async->async_ttycommon.t_cflag &
2059 	    (CLOCAL|CREAD|CSTOPB|CSIZE|PARENB|PARODD|CBAUD|CBAUDEXT);
2060 
2061 	/* disable interrupts */
2062 	ddi_put8(asy->asy_iohandle, asy->asy_ioaddr + ICR, 0);
2063 
2064 	ocflags = asy->asy_ocflag;
2065 
2066 	/* flush/reset the status registers */
2067 	(void) ddi_get8(asy->asy_iohandle, asy->asy_ioaddr + ISR);
2068 	(void) ddi_get8(asy->asy_iohandle, asy->asy_ioaddr + LSR);
2069 	asy->asy_msr = flush_reg = ddi_get8(asy->asy_iohandle,
2070 	    asy->asy_ioaddr + MSR);
2071 	/*
2072 	 * The device is programmed in the open sequence, if we
2073 	 * have to hardware handshake, then this is a good time
2074 	 * to check if the device can receive any data.
2075 	 */
2076 
2077 	if ((CRTSCTS & async->async_ttycommon.t_cflag) && !(flush_reg & CTS)) {
2078 		async_flowcontrol_hw_output(asy, FLOW_STOP);
2079 	} else {
2080 		/*
2081 		 * We can not use async_flowcontrol_hw_output(asy, FLOW_START)
2082 		 * here, because if CRTSCTS is clear, we need clear
2083 		 * ASYNC_HW_OUT_FLW bit.
2084 		 */
2085 		async->async_flags &= ~ASYNC_HW_OUT_FLW;
2086 	}
2087 
2088 	/*
2089 	 * If IXON is not set, clear ASYNC_SW_OUT_FLW;
2090 	 * If IXON is set, no matter what IXON flag is before this
2091 	 * function call to asy_program,
2092 	 * we will use the old ASYNC_SW_OUT_FLW status.
2093 	 * Because of handling IXON in the driver, we also should re-calculate
2094 	 * the value of ASYNC_OUT_FLW_RESUME bit, but in fact,
2095 	 * the TCSET* commands which call asy_program
2096 	 * are put into the write queue, so there is no output needed to
2097 	 * be resumed at this point.
2098 	 */
2099 	if (!(IXON & async->async_ttycommon.t_iflag))
2100 		async->async_flags &= ~ASYNC_SW_OUT_FLW;
2101 
2102 	/* manually flush receive buffer or fifo (workaround for buggy fifos) */
2103 	if (mode == ASY_INIT)
2104 		if (asy->asy_use_fifo == FIFO_ON) {
2105 			for (flush_reg = asy->asy_fifo_buf; flush_reg-- > 0; ) {
2106 				(void) ddi_get8(asy->asy_iohandle,
2107 				    asy->asy_ioaddr + DAT);
2108 			}
2109 		} else {
2110 			flush_reg = ddi_get8(asy->asy_iohandle,
2111 			    asy->asy_ioaddr + DAT);
2112 		}
2113 
2114 	if (ocflags != (c_flag & ~CLOCAL) || mode == ASY_INIT) {
2115 		/* Set line control */
2116 		lcr = ddi_get8(asy->asy_iohandle, asy->asy_ioaddr + LCR);
2117 		lcr &= ~(WLS0|WLS1|STB|PEN|EPS);
2118 
2119 		if (c_flag & CSTOPB)
2120 			lcr |= STB;	/* 2 stop bits */
2121 
2122 		if (c_flag & PARENB)
2123 			lcr |= PEN;
2124 
2125 		if ((c_flag & PARODD) == 0)
2126 			lcr |= EPS;
2127 
2128 		switch (c_flag & CSIZE) {
2129 		case CS5:
2130 			lcr |= BITS5;
2131 			break;
2132 		case CS6:
2133 			lcr |= BITS6;
2134 			break;
2135 		case CS7:
2136 			lcr |= BITS7;
2137 			break;
2138 		case CS8:
2139 			lcr |= BITS8;
2140 			break;
2141 		}
2142 
2143 		/* set the baud rate, unless it is "0" */
2144 		ddi_put8(asy->asy_iohandle, asy->asy_ioaddr + LCR, DLAB);
2145 
2146 		if (baudrate != 0) {
2147 			ddi_put8(asy->asy_iohandle, asy->asy_ioaddr + DAT,
2148 			    asyspdtab[baudrate] & 0xff);
2149 			ddi_put8(asy->asy_iohandle, asy->asy_ioaddr + ICR,
2150 			    (asyspdtab[baudrate] >> 8) & 0xff);
2151 		}
2152 		/* set the line control modes */
2153 		ddi_put8(asy->asy_iohandle, asy->asy_ioaddr + LCR, lcr);
2154 
2155 		/*
2156 		 * If we have a FIFO buffer, enable/flush
2157 		 * at intialize time, flush if transitioning from
2158 		 * CREAD off to CREAD on.
2159 		 */
2160 		if ((ocflags & CREAD) == 0 && (c_flag & CREAD) ||
2161 		    mode == ASY_INIT)
2162 			if (asy->asy_use_fifo == FIFO_ON)
2163 				asy_reset_fifo(asy, FIFORXFLSH);
2164 
2165 		/* remember the new cflags */
2166 		asy->asy_ocflag = c_flag & ~CLOCAL;
2167 	}
2168 
2169 	if (baudrate == 0)
2170 		ddi_put8(asy->asy_iohandle, asy->asy_ioaddr + MCR,
2171 		    (asy->asy_mcr & RTS) | OUT2);
2172 	else
2173 		ddi_put8(asy->asy_iohandle, asy->asy_ioaddr + MCR,
2174 		    asy->asy_mcr | OUT2);
2175 
2176 	/*
2177 	 * Call the modem status interrupt handler to check for the carrier
2178 	 * in case CLOCAL was turned off after the carrier came on.
2179 	 * (Note: Modem status interrupt is not enabled if CLOCAL is ON.)
2180 	 */
2181 	async_msint(asy);
2182 
2183 	/* Set interrupt control */
2184 	DEBUGCONT3(ASY_DEBUG_MODM2,
2185 	    "asy%d_program: c_flag & CLOCAL = %x t_cflag & CRTSCTS = %x\n",
2186 	    instance, c_flag & CLOCAL,
2187 	    async->async_ttycommon.t_cflag & CRTSCTS);
2188 
2189 	if ((c_flag & CLOCAL) && !(async->async_ttycommon.t_cflag & CRTSCTS))
2190 		/*
2191 		 * direct-wired line ignores DCD, so we don't enable modem
2192 		 * status interrupts.
2193 		 */
2194 		icr = (TIEN | SIEN);
2195 	else
2196 		icr = (TIEN | SIEN | MIEN);
2197 
2198 	if (c_flag & CREAD)
2199 		icr |= RIEN;
2200 
2201 	ddi_put8(asy->asy_iohandle, asy->asy_ioaddr + ICR, icr);
2202 	DEBUGCONT1(ASY_DEBUG_PROCS, "asy%d_program: done\n", instance);
2203 }
2204 
2205 static boolean_t
2206 asy_baudok(struct asycom *asy)
2207 {
2208 	struct asyncline *async = asy->asy_priv;
2209 	int baudrate;
2210 
2211 
2212 	baudrate = BAUDINDEX(async->async_ttycommon.t_cflag);
2213 
2214 	if (baudrate >= sizeof (asyspdtab)/sizeof (*asyspdtab))
2215 		return (0);
2216 
2217 	return (baudrate == 0 || asyspdtab[baudrate]);
2218 }
2219 
2220 /*
2221  * asyintr() is the High Level Interrupt Handler.
2222  *
2223  * There are four different interrupt types indexed by ISR register values:
2224  *		0: modem
2225  *		1: Tx holding register is empty, ready for next char
2226  *		2: Rx register now holds a char to be picked up
2227  *		3: error or break on line
2228  * This routine checks the Bit 0 (interrupt-not-pending) to determine if
2229  * the interrupt is from this port.
2230  */
2231 uint_t
2232 asyintr(caddr_t argasy)
2233 {
2234 	struct asycom		*asy = (struct asycom *)argasy;
2235 	struct asyncline	*async;
2236 	int			ret_status = DDI_INTR_UNCLAIMED;
2237 	uchar_t			interrupt_id, lsr;
2238 
2239 	interrupt_id = ddi_get8(asy->asy_iohandle,
2240 	    asy->asy_ioaddr + ISR) & 0x0F;
2241 	async = asy->asy_priv;
2242 
2243 	if ((async == NULL) ||
2244 	    !(async->async_flags & (ASYNC_ISOPEN|ASYNC_WOPEN))) {
2245 		if (interrupt_id & NOINTERRUPT)
2246 			return (DDI_INTR_UNCLAIMED);
2247 		else {
2248 			/*
2249 			 * reset the device by:
2250 			 *	reading line status
2251 			 *	reading any data from data status register
2252 			 *	reading modem status
2253 			 */
2254 			(void) ddi_get8(asy->asy_iohandle,
2255 			    asy->asy_ioaddr + LSR);
2256 			(void) ddi_get8(asy->asy_iohandle,
2257 			    asy->asy_ioaddr + DAT);
2258 			asy->asy_msr = ddi_get8(asy->asy_iohandle,
2259 			    asy->asy_ioaddr + MSR);
2260 			return (DDI_INTR_CLAIMED);
2261 		}
2262 	}
2263 
2264 	mutex_enter(&asy->asy_excl_hi);
2265 
2266 	if (asy->asy_flags & ASY_DDI_SUSPENDED) {
2267 		mutex_exit(&asy->asy_excl_hi);
2268 		return (DDI_INTR_CLAIMED);
2269 	}
2270 
2271 	/*
2272 	 * We will loop until the interrupt line is pulled low. asy
2273 	 * interrupt is edge triggered.
2274 	 */
2275 	/* CSTYLED */
2276 	for (;; interrupt_id =
2277 	    (ddi_get8(asy->asy_iohandle, asy->asy_ioaddr + ISR) & 0x0F)) {
2278 
2279 		if (interrupt_id & NOINTERRUPT)
2280 			break;
2281 		ret_status = DDI_INTR_CLAIMED;
2282 
2283 		DEBUGCONT1(ASY_DEBUG_INTR, "asyintr: interrupt_id = 0x%d\n",
2284 		    interrupt_id);
2285 		lsr = ddi_get8(asy->asy_iohandle, asy->asy_ioaddr + LSR);
2286 		switch (interrupt_id) {
2287 		case RxRDY:
2288 		case RSTATUS:
2289 		case FFTMOUT:
2290 			/* receiver interrupt or receiver errors */
2291 			async_rxint(asy, lsr);
2292 			break;
2293 		case TxRDY:
2294 			/* transmit interrupt */
2295 			async_txint(asy);
2296 			continue;
2297 		case MSTATUS:
2298 			/* modem status interrupt */
2299 			async_msint(asy);
2300 			break;
2301 		}
2302 		if ((lsr & XHRE) && (async->async_flags & ASYNC_BUSY) &&
2303 		    (async->async_ocnt > 0))
2304 			async_txint(asy);
2305 	}
2306 	mutex_exit(&asy->asy_excl_hi);
2307 	return (ret_status);
2308 }
2309 
2310 /*
2311  * Transmitter interrupt service routine.
2312  * If there is more data to transmit in the current pseudo-DMA block,
2313  * send the next character if output is not stopped or draining.
2314  * Otherwise, queue up a soft interrupt.
2315  *
2316  * XXX -  Needs review for HW FIFOs.
2317  */
2318 static void
2319 async_txint(struct asycom *asy)
2320 {
2321 	struct asyncline *async = asy->asy_priv;
2322 	int		fifo_len;
2323 
2324 	ASSERT(MUTEX_HELD(&asy->asy_excl_hi));
2325 
2326 	/*
2327 	 * If ASYNC_BREAK or ASYNC_OUT_SUSPEND has been set, return to
2328 	 * asyintr()'s context to claim the interrupt without performing
2329 	 * any action. No character will be loaded into FIFO/THR until
2330 	 * timed or untimed break is removed
2331 	 */
2332 	if (async->async_flags & (ASYNC_BREAK|ASYNC_OUT_SUSPEND))
2333 		return;
2334 
2335 	fifo_len = asy->asy_fifo_buf; /* with FIFO buffers */
2336 	if (fifo_len > asy_max_tx_fifo)
2337 		fifo_len = asy_max_tx_fifo;
2338 
2339 	if (async_flowcontrol_sw_input(asy, FLOW_CHECK, IN_FLOW_NULL))
2340 		fifo_len--;
2341 
2342 	if (async->async_ocnt > 0 && fifo_len > 0 &&
2343 	    !(async->async_flags &
2344 	    (ASYNC_HW_OUT_FLW|ASYNC_SW_OUT_FLW|ASYNC_STOPPED))) {
2345 		while (fifo_len-- > 0 && async->async_ocnt-- > 0) {
2346 			ddi_put8(asy->asy_iohandle,
2347 			    asy->asy_ioaddr + DAT, *async->async_optr++);
2348 		}
2349 		async->async_flags |= ASYNC_PROGRESS;
2350 	}
2351 
2352 	if (fifo_len <= 0)
2353 		return;
2354 
2355 	ASYSETSOFT(asy);
2356 }
2357 
2358 /*
2359  * Interrupt on port: handle PPS event.  This function is only called
2360  * for a port on which PPS event handling has been enabled.
2361  */
2362 static void
2363 asy_ppsevent(struct asycom *asy, int msr)
2364 {
2365 	ASSERT(MUTEX_HELD(&asy->asy_excl_hi));
2366 
2367 	if (asy->asy_flags & ASY_PPS_EDGE) {
2368 		/* Have seen leading edge, now look for and record drop */
2369 		if ((msr & DCD) == 0)
2370 			asy->asy_flags &= ~ASY_PPS_EDGE;
2371 		/*
2372 		 * Waiting for leading edge, look for rise; stamp event and
2373 		 * calibrate kernel clock.
2374 		 */
2375 	} else if (msr & DCD) {
2376 			/*
2377 			 * This code captures a timestamp at the designated
2378 			 * transition of the PPS signal (DCD asserted).  The
2379 			 * code provides a pointer to the timestamp, as well
2380 			 * as the hardware counter value at the capture.
2381 			 *
2382 			 * Note: the kernel has nano based time values while
2383 			 * NTP requires micro based, an in-line fast algorithm
2384 			 * to convert nsec to usec is used here -- see hrt2ts()
2385 			 * in common/os/timers.c for a full description.
2386 			 */
2387 			struct timeval *tvp = &asy_ppsev.tv;
2388 			timestruc_t ts;
2389 			long nsec, usec;
2390 
2391 			asy->asy_flags |= ASY_PPS_EDGE;
2392 			LED_OFF;
2393 			gethrestime(&ts);
2394 			LED_ON;
2395 			nsec = ts.tv_nsec;
2396 			usec = nsec + (nsec >> 2);
2397 			usec = nsec + (usec >> 1);
2398 			usec = nsec + (usec >> 2);
2399 			usec = nsec + (usec >> 4);
2400 			usec = nsec - (usec >> 3);
2401 			usec = nsec + (usec >> 2);
2402 			usec = nsec + (usec >> 3);
2403 			usec = nsec + (usec >> 4);
2404 			usec = nsec + (usec >> 1);
2405 			usec = nsec + (usec >> 6);
2406 			tvp->tv_usec = usec >> 10;
2407 			tvp->tv_sec = ts.tv_sec;
2408 
2409 			++asy_ppsev.serial;
2410 
2411 			/*
2412 			 * Because the kernel keeps a high-resolution time,
2413 			 * pass the current highres timestamp in tvp and zero
2414 			 * in usec.
2415 			 */
2416 			ddi_hardpps(tvp, 0);
2417 	}
2418 }
2419 
2420 /*
2421  * Receiver interrupt: RxRDY interrupt, FIFO timeout interrupt or receive
2422  * error interrupt.
2423  * Try to put the character into the circular buffer for this line; if it
2424  * overflows, indicate a circular buffer overrun. If this port is always
2425  * to be serviced immediately, or the character is a STOP character, or
2426  * more than 15 characters have arrived, queue up a soft interrupt to
2427  * drain the circular buffer.
2428  * XXX - needs review for hw FIFOs support.
2429  */
2430 
2431 static void
2432 async_rxint(struct asycom *asy, uchar_t lsr)
2433 {
2434 	struct asyncline *async = asy->asy_priv;
2435 	uchar_t c;
2436 	uint_t s, needsoft = 0;
2437 	tty_common_t *tp;
2438 	int looplim = asy->asy_fifo_buf * 2;
2439 
2440 	ASSERT(MUTEX_HELD(&asy->asy_excl_hi));
2441 
2442 	tp = &async->async_ttycommon;
2443 	if (!(tp->t_cflag & CREAD)) {
2444 		while (lsr & (RCA|PARERR|FRMERR|BRKDET|OVRRUN)) {
2445 			(void) (ddi_get8(asy->asy_iohandle,
2446 			    asy->asy_ioaddr + DAT) & 0xff);
2447 			lsr = ddi_get8(asy->asy_iohandle,
2448 			    asy->asy_ioaddr + LSR);
2449 			if (looplim-- < 0)		/* limit loop */
2450 				break;
2451 		}
2452 		return; /* line is not open for read? */
2453 	}
2454 
2455 	while (lsr & (RCA|PARERR|FRMERR|BRKDET|OVRRUN)) {
2456 		c = 0;
2457 		s = 0;				/* reset error status */
2458 		if (lsr & RCA) {
2459 			c = ddi_get8(asy->asy_iohandle,
2460 			    asy->asy_ioaddr + DAT) & 0xff;
2461 
2462 			/*
2463 			 * We handle XON/XOFF char if IXON is set,
2464 			 * but if received char is _POSIX_VDISABLE,
2465 			 * we left it to the up level module.
2466 			 */
2467 			if (tp->t_iflag & IXON) {
2468 				if ((c == async->async_stopc) &&
2469 				    (c != _POSIX_VDISABLE)) {
2470 					async_flowcontrol_sw_output(asy,
2471 					    FLOW_STOP);
2472 					goto check_looplim;
2473 				} else if ((c == async->async_startc) &&
2474 				    (c != _POSIX_VDISABLE)) {
2475 					async_flowcontrol_sw_output(asy,
2476 					    FLOW_START);
2477 					needsoft = 1;
2478 					goto check_looplim;
2479 				}
2480 				if ((tp->t_iflag & IXANY) &&
2481 				    (async->async_flags & ASYNC_SW_OUT_FLW)) {
2482 					async_flowcontrol_sw_output(asy,
2483 					    FLOW_START);
2484 					needsoft = 1;
2485 				}
2486 			}
2487 		}
2488 
2489 		/*
2490 		 * Check for character break sequence
2491 		 */
2492 		if ((abort_enable == KIOCABORTALTERNATE) &&
2493 		    (asy->asy_flags & ASY_CONSOLE)) {
2494 			if (abort_charseq_recognize(c))
2495 				abort_sequence_enter((char *)NULL);
2496 		}
2497 
2498 		/* Handle framing errors */
2499 		if (lsr & (PARERR|FRMERR|BRKDET|OVRRUN)) {
2500 			if (lsr & PARERR) {
2501 				if (tp->t_iflag & INPCK) /* parity enabled */
2502 					s |= PERROR;
2503 			}
2504 
2505 			if (lsr & (FRMERR|BRKDET))
2506 				s |= FRERROR;
2507 			if (lsr & OVRRUN) {
2508 				async->async_hw_overrun = 1;
2509 				s |= OVERRUN;
2510 			}
2511 		}
2512 
2513 		if (s == 0)
2514 			if ((tp->t_iflag & PARMRK) &&
2515 			    !(tp->t_iflag & (IGNPAR|ISTRIP)) &&
2516 			    (c == 0377))
2517 				if (RING_POK(async, 2)) {
2518 					RING_PUT(async, 0377);
2519 					RING_PUT(async, c);
2520 				} else
2521 					async->async_sw_overrun = 1;
2522 			else
2523 				if (RING_POK(async, 1))
2524 					RING_PUT(async, c);
2525 				else
2526 					async->async_sw_overrun = 1;
2527 		else
2528 			if (s & FRERROR) /* Handle framing errors */
2529 				if (c == 0)
2530 					if ((asy->asy_flags & ASY_CONSOLE) &&
2531 					    (abort_enable !=
2532 					    KIOCABORTALTERNATE))
2533 						abort_sequence_enter((char *)0);
2534 					else
2535 						async->async_break++;
2536 				else
2537 					if (RING_POK(async, 1))
2538 						RING_MARK(async, c, s);
2539 					else
2540 						async->async_sw_overrun = 1;
2541 			else /* Parity errors are handled by ldterm */
2542 				if (RING_POK(async, 1))
2543 					RING_MARK(async, c, s);
2544 				else
2545 					async->async_sw_overrun = 1;
2546 check_looplim:
2547 		lsr = ddi_get8(asy->asy_iohandle, asy->asy_ioaddr + LSR);
2548 		if (looplim-- < 0)		/* limit loop */
2549 			break;
2550 	}
2551 	if ((RING_CNT(async) > (RINGSIZE * 3)/4) &&
2552 	    !(async->async_inflow_source & IN_FLOW_RINGBUFF)) {
2553 		async_flowcontrol_hw_input(asy, FLOW_STOP, IN_FLOW_RINGBUFF);
2554 		(void) async_flowcontrol_sw_input(asy, FLOW_STOP,
2555 		    IN_FLOW_RINGBUFF);
2556 	}
2557 
2558 	if ((async->async_flags & ASYNC_SERVICEIMM) || needsoft ||
2559 	    (RING_FRAC(async)) || (async->async_polltid == 0)) {
2560 		ASYSETSOFT(asy);	/* need a soft interrupt */
2561 	}
2562 }
2563 
2564 /*
2565  * Modem status interrupt.
2566  *
2567  * (Note: It is assumed that the MSR hasn't been read by asyintr().)
2568  */
2569 
2570 static void
2571 async_msint(struct asycom *asy)
2572 {
2573 	struct asyncline *async = asy->asy_priv;
2574 	int msr, t_cflag = async->async_ttycommon.t_cflag;
2575 #ifdef DEBUG
2576 	int instance = UNIT(async->async_dev);
2577 #endif
2578 
2579 	ASSERT(MUTEX_HELD(&asy->asy_excl_hi));
2580 
2581 async_msint_retry:
2582 	/* this resets the interrupt */
2583 	msr = ddi_get8(asy->asy_iohandle, asy->asy_ioaddr + MSR);
2584 	DEBUGCONT10(ASY_DEBUG_STATE,
2585 	    "async%d_msint call #%d:\n"
2586 	    "   transition: %3s %3s %3s %3s\n"
2587 	    "current state: %3s %3s %3s %3s\n",
2588 	    instance,
2589 	    ++(asy->asy_msint_cnt),
2590 	    (msr & DCTS) ? "DCTS" : "    ",
2591 	    (msr & DDSR) ? "DDSR" : "    ",
2592 	    (msr & DRI)  ? "DRI " : "    ",
2593 	    (msr & DDCD) ? "DDCD" : "    ",
2594 	    (msr & CTS)  ? "CTS " : "    ",
2595 	    (msr & DSR)  ? "DSR " : "    ",
2596 	    (msr & RI)   ? "RI  " : "    ",
2597 	    (msr & DCD)  ? "DCD " : "    ");
2598 
2599 	/* If CTS status is changed, do H/W output flow control */
2600 	if ((t_cflag & CRTSCTS) && (((asy->asy_msr ^ msr) & CTS) != 0))
2601 		async_flowcontrol_hw_output(asy,
2602 		    msr & CTS ? FLOW_START : FLOW_STOP);
2603 	/*
2604 	 * Reading MSR resets the interrupt, we save the
2605 	 * value of msr so that other functions could examine MSR by
2606 	 * looking at asy_msr.
2607 	 */
2608 	asy->asy_msr = (uchar_t)msr;
2609 
2610 	/* Handle PPS event */
2611 	if (asy->asy_flags & ASY_PPS)
2612 		asy_ppsevent(asy, msr);
2613 
2614 	async->async_ext++;
2615 	ASYSETSOFT(asy);
2616 	/*
2617 	 * We will make sure that the modem status presented to us
2618 	 * during the previous read has not changed. If the chip samples
2619 	 * the modem status on the falling edge of the interrupt line,
2620 	 * and uses this state as the base for detecting change of modem
2621 	 * status, we would miss a change of modem status event that occured
2622 	 * after we initiated a read MSR operation.
2623 	 */
2624 	msr = ddi_get8(asy->asy_iohandle, asy->asy_ioaddr + MSR);
2625 	if (STATES(msr) != STATES(asy->asy_msr))
2626 		goto	async_msint_retry;
2627 }
2628 
2629 /*
2630  * Handle a second-stage interrupt.
2631  */
2632 /*ARGSUSED*/
2633 uint_t
2634 asysoftintr(caddr_t intarg)
2635 {
2636 	struct asycom *asy = (struct asycom *)intarg;
2637 	struct asyncline *async;
2638 	int rv;
2639 	uint_t cc;
2640 
2641 	/*
2642 	 * Test and clear soft interrupt.
2643 	 */
2644 	mutex_enter(&asy->asy_soft_lock);
2645 	DEBUGCONT0(ASY_DEBUG_PROCS, "asysoftintr: enter\n");
2646 	rv = asy->asysoftpend;
2647 	if (rv != 0)
2648 		asy->asysoftpend = 0;
2649 	mutex_exit(&asy->asy_soft_lock);
2650 
2651 	if (rv) {
2652 		if (asy->asy_priv == NULL)
2653 			return (rv ? DDI_INTR_CLAIMED : DDI_INTR_UNCLAIMED);
2654 		async = (struct asyncline *)asy->asy_priv;
2655 		mutex_enter(&asy->asy_excl_hi);
2656 		if (asy->asy_flags & ASY_NEEDSOFT) {
2657 			asy->asy_flags &= ~ASY_NEEDSOFT;
2658 			mutex_exit(&asy->asy_excl_hi);
2659 			async_softint(asy);
2660 			mutex_enter(&asy->asy_excl_hi);
2661 		}
2662 
2663 		/*
2664 		 * There are some instances where the softintr is not
2665 		 * scheduled and hence not called. It so happens that
2666 		 * causes the last few characters to be stuck in the
2667 		 * ringbuffer. Hence, call the handler once again so
2668 		 * the last few characters are cleared.
2669 		 */
2670 		cc = RING_CNT(async);
2671 		mutex_exit(&asy->asy_excl_hi);
2672 		if (cc > 0)
2673 			(void) async_softint(asy);
2674 	}
2675 	return (rv ? DDI_INTR_CLAIMED : DDI_INTR_UNCLAIMED);
2676 }
2677 
2678 /*
2679  * Handle a software interrupt.
2680  */
2681 static void
2682 async_softint(struct asycom *asy)
2683 {
2684 	struct asyncline *async = asy->asy_priv;
2685 	uint_t	cc;
2686 	mblk_t	*bp;
2687 	queue_t	*q;
2688 	uchar_t	val;
2689 	uchar_t	c;
2690 	tty_common_t	*tp;
2691 	int nb;
2692 	int instance = UNIT(async->async_dev);
2693 
2694 	DEBUGCONT1(ASY_DEBUG_PROCS, "async%d_softint\n", instance);
2695 	mutex_enter(&asy->asy_excl_hi);
2696 	if (asy->asy_flags & ASY_DOINGSOFT) {
2697 		asy->asy_flags |= ASY_DOINGSOFT_RETRY;
2698 		mutex_exit(&asy->asy_excl_hi);
2699 		return;
2700 	}
2701 	asy->asy_flags |= ASY_DOINGSOFT;
2702 begin:
2703 	asy->asy_flags &= ~ASY_DOINGSOFT_RETRY;
2704 	mutex_exit(&asy->asy_excl_hi);
2705 	mutex_enter(&asy->asy_excl);
2706 	tp = &async->async_ttycommon;
2707 	q = tp->t_readq;
2708 	if (async->async_flags & ASYNC_OUT_FLW_RESUME) {
2709 		if (async->async_ocnt > 0) {
2710 			mutex_enter(&asy->asy_excl_hi);
2711 			async_resume(async);
2712 			mutex_exit(&asy->asy_excl_hi);
2713 		} else {
2714 			if (async->async_xmitblk)
2715 				freeb(async->async_xmitblk);
2716 			async->async_xmitblk = NULL;
2717 			async_start(async);
2718 		}
2719 		async->async_flags &= ~ASYNC_OUT_FLW_RESUME;
2720 	}
2721 	mutex_enter(&asy->asy_excl_hi);
2722 	if (async->async_ext) {
2723 		async->async_ext = 0;
2724 		/* check for carrier up */
2725 		DEBUGCONT3(ASY_DEBUG_MODM2,
2726 		    "async%d_softint: asy_msr & DCD = %x, "
2727 		    "tp->t_flags & TS_SOFTCAR = %x\n",
2728 		    instance, asy->asy_msr & DCD, tp->t_flags & TS_SOFTCAR);
2729 
2730 		if (asy->asy_msr & DCD) {
2731 			/* carrier present */
2732 			if ((async->async_flags & ASYNC_CARR_ON) == 0) {
2733 				DEBUGCONT1(ASY_DEBUG_MODM2,
2734 				    "async%d_softint: set ASYNC_CARR_ON\n",
2735 				    instance);
2736 				async->async_flags |= ASYNC_CARR_ON;
2737 				if (async->async_flags & ASYNC_ISOPEN) {
2738 					mutex_exit(&asy->asy_excl_hi);
2739 					mutex_exit(&asy->asy_excl);
2740 					(void) putctl(q, M_UNHANGUP);
2741 					mutex_enter(&asy->asy_excl);
2742 					mutex_enter(&asy->asy_excl_hi);
2743 				}
2744 				cv_broadcast(&async->async_flags_cv);
2745 			}
2746 		} else {
2747 			if ((async->async_flags & ASYNC_CARR_ON) &&
2748 			    !(tp->t_cflag & CLOCAL) &&
2749 			    !(tp->t_flags & TS_SOFTCAR)) {
2750 				int flushflag;
2751 
2752 				DEBUGCONT1(ASY_DEBUG_MODEM,
2753 				    "async%d_softint: carrier dropped, "
2754 				    "so drop DTR\n",
2755 				    instance);
2756 				/*
2757 				 * Carrier went away.
2758 				 * Drop DTR, abort any output in
2759 				 * progress, indicate that output is
2760 				 * not stopped, and send a hangup
2761 				 * notification upstream.
2762 				 */
2763 				val = ddi_get8(asy->asy_iohandle,
2764 				    asy->asy_ioaddr + MCR);
2765 				ddi_put8(asy->asy_iohandle,
2766 				    asy->asy_ioaddr + MCR, (val & ~DTR));
2767 
2768 				if (async->async_flags & ASYNC_BUSY) {
2769 					DEBUGCONT0(ASY_DEBUG_BUSY,
2770 					    "async_softint: "
2771 					    "Carrier dropped.  "
2772 					    "Clearing async_ocnt\n");
2773 					async->async_ocnt = 0;
2774 				}	/* if */
2775 
2776 				async->async_flags &= ~ASYNC_STOPPED;
2777 				if (async->async_flags & ASYNC_ISOPEN) {
2778 					mutex_exit(&asy->asy_excl_hi);
2779 					mutex_exit(&asy->asy_excl);
2780 					(void) putctl(q, M_HANGUP);
2781 					mutex_enter(&asy->asy_excl);
2782 					DEBUGCONT1(ASY_DEBUG_MODEM,
2783 					    "async%d_softint: "
2784 					    "putctl(q, M_HANGUP)\n",
2785 					    instance);
2786 					/*
2787 					 * Flush FIFO buffers
2788 					 * Any data left in there is invalid now
2789 					 */
2790 					if (asy->asy_use_fifo == FIFO_ON)
2791 						asy_reset_fifo(asy, FIFOTXFLSH);
2792 					/*
2793 					 * Flush our write queue if we have one.
2794 					 * If we're in the midst of close, then
2795 					 * flush everything. Don't leave stale
2796 					 * ioctls lying about.
2797 					 */
2798 					flushflag = (async->async_flags &
2799 					    ASYNC_CLOSING) ? FLUSHALL :
2800 					    FLUSHDATA;
2801 					flushq(tp->t_writeq, flushflag);
2802 
2803 					/* active msg */
2804 					bp = async->async_xmitblk;
2805 					if (bp != NULL) {
2806 						freeb(bp);
2807 						async->async_xmitblk = NULL;
2808 					}
2809 
2810 					mutex_enter(&asy->asy_excl_hi);
2811 					async->async_flags &= ~ASYNC_BUSY;
2812 					/*
2813 					 * This message warns of Carrier loss
2814 					 * with data left to transmit can hang
2815 					 * the system.
2816 					 */
2817 					DEBUGCONT0(ASY_DEBUG_MODEM,
2818 					    "async_softint: Flushing to "
2819 					    "prevent HUPCL hanging\n");
2820 				}	/* if (ASYNC_ISOPEN) */
2821 			}	/* if (ASYNC_CARR_ON && CLOCAL) */
2822 			async->async_flags &= ~ASYNC_CARR_ON;
2823 			cv_broadcast(&async->async_flags_cv);
2824 		}	/* else */
2825 	}	/* if (async->async_ext) */
2826 
2827 	mutex_exit(&asy->asy_excl_hi);
2828 
2829 	/*
2830 	 * If data has been added to the circular buffer, remove
2831 	 * it from the buffer, and send it up the stream if there's
2832 	 * somebody listening. Try to do it 16 bytes at a time. If we
2833 	 * have more than 16 bytes to move, move 16 byte chunks and
2834 	 * leave the rest for next time around (maybe it will grow).
2835 	 */
2836 	mutex_enter(&asy->asy_excl_hi);
2837 	if (!(async->async_flags & ASYNC_ISOPEN)) {
2838 		RING_INIT(async);
2839 		goto rv;
2840 	}
2841 	if ((cc = RING_CNT(async)) == 0)
2842 		goto rv;
2843 	mutex_exit(&asy->asy_excl_hi);
2844 
2845 	if (!canput(q)) {
2846 		mutex_enter(&asy->asy_excl_hi);
2847 		if (!(async->async_inflow_source & IN_FLOW_STREAMS)) {
2848 			async_flowcontrol_hw_input(asy, FLOW_STOP,
2849 			    IN_FLOW_STREAMS);
2850 			(void) async_flowcontrol_sw_input(asy, FLOW_STOP,
2851 			    IN_FLOW_STREAMS);
2852 		}
2853 		goto rv;
2854 	}
2855 	if (async->async_inflow_source & IN_FLOW_STREAMS) {
2856 		mutex_enter(&asy->asy_excl_hi);
2857 		async_flowcontrol_hw_input(asy, FLOW_START,
2858 		    IN_FLOW_STREAMS);
2859 		(void) async_flowcontrol_sw_input(asy, FLOW_START,
2860 		    IN_FLOW_STREAMS);
2861 		mutex_exit(&asy->asy_excl_hi);
2862 	}
2863 
2864 	DEBUGCONT2(ASY_DEBUG_INPUT, "async%d_softint: %d char(s) in queue.\n",
2865 	    instance, cc);
2866 
2867 	if (!(bp = allocb(cc, BPRI_MED))) {
2868 		mutex_exit(&asy->asy_excl);
2869 		ttycommon_qfull(&async->async_ttycommon, q);
2870 		mutex_enter(&asy->asy_excl);
2871 		mutex_enter(&asy->asy_excl_hi);
2872 		goto rv;
2873 	}
2874 	mutex_enter(&asy->asy_excl_hi);
2875 	do {
2876 		if (RING_ERR(async, S_ERRORS)) {
2877 			RING_UNMARK(async);
2878 			c = RING_GET(async);
2879 			break;
2880 		} else
2881 			*bp->b_wptr++ = RING_GET(async);
2882 	} while (--cc);
2883 	mutex_exit(&asy->asy_excl_hi);
2884 	mutex_exit(&asy->asy_excl);
2885 	if (bp->b_wptr > bp->b_rptr) {
2886 			if (!canput(q)) {
2887 				asyerror(CE_NOTE, "asy%d: local queue full",
2888 				    instance);
2889 				freemsg(bp);
2890 			} else
2891 				(void) putq(q, bp);
2892 	} else
2893 		freemsg(bp);
2894 	/*
2895 	 * If we have a parity error, then send
2896 	 * up an M_BREAK with the "bad"
2897 	 * character as an argument. Let ldterm
2898 	 * figure out what to do with the error.
2899 	 */
2900 	if (cc)
2901 		(void) putctl1(q, M_BREAK, c);
2902 	mutex_enter(&asy->asy_excl);
2903 	mutex_enter(&asy->asy_excl_hi);
2904 	if (cc) {
2905 		ASYSETSOFT(asy);	/* finish cc chars */
2906 	}
2907 rv:
2908 	if ((RING_CNT(async) < (RINGSIZE/4)) &&
2909 	    (async->async_inflow_source & IN_FLOW_RINGBUFF)) {
2910 		async_flowcontrol_hw_input(asy, FLOW_START, IN_FLOW_RINGBUFF);
2911 		(void) async_flowcontrol_sw_input(asy, FLOW_START,
2912 		    IN_FLOW_RINGBUFF);
2913 	}
2914 
2915 	/*
2916 	 * If a transmission has finished, indicate that it's finished,
2917 	 * and start that line up again.
2918 	 */
2919 	if (async->async_break > 0) {
2920 		nb = async->async_break;
2921 		async->async_break = 0;
2922 		if (async->async_flags & ASYNC_ISOPEN) {
2923 			mutex_exit(&asy->asy_excl_hi);
2924 			mutex_exit(&asy->asy_excl);
2925 			for (; nb > 0; nb--)
2926 				(void) putctl(q, M_BREAK);
2927 			mutex_enter(&asy->asy_excl);
2928 			mutex_enter(&asy->asy_excl_hi);
2929 		}
2930 	}
2931 	if (async->async_ocnt <= 0 && (async->async_flags & ASYNC_BUSY)) {
2932 		DEBUGCONT2(ASY_DEBUG_BUSY,
2933 		    "async%d_softint: Clearing ASYNC_BUSY.  async_ocnt=%d\n",
2934 		    instance,
2935 		    async->async_ocnt);
2936 		async->async_flags &= ~ASYNC_BUSY;
2937 		mutex_exit(&asy->asy_excl_hi);
2938 		if (async->async_xmitblk)
2939 			freeb(async->async_xmitblk);
2940 		async->async_xmitblk = NULL;
2941 		async_start(async);
2942 		/*
2943 		 * If the flag isn't set after doing the async_start above, we
2944 		 * may have finished all the queued output.  Signal any thread
2945 		 * stuck in close.
2946 		 */
2947 		if (!(async->async_flags & ASYNC_BUSY))
2948 			cv_broadcast(&async->async_flags_cv);
2949 		mutex_enter(&asy->asy_excl_hi);
2950 	}
2951 	/*
2952 	 * A note about these overrun bits: all they do is *tell* someone
2953 	 * about an error- They do not track multiple errors. In fact,
2954 	 * you could consider them latched register bits if you like.
2955 	 * We are only interested in printing the error message once for
2956 	 * any cluster of overrun errors.
2957 	 */
2958 	if (async->async_hw_overrun) {
2959 		if (async->async_flags & ASYNC_ISOPEN) {
2960 			mutex_exit(&asy->asy_excl_hi);
2961 			mutex_exit(&asy->asy_excl);
2962 			asyerror(CE_NOTE, "asy%d: silo overflow", instance);
2963 			mutex_enter(&asy->asy_excl);
2964 			mutex_enter(&asy->asy_excl_hi);
2965 		}
2966 		async->async_hw_overrun = 0;
2967 	}
2968 	if (async->async_sw_overrun) {
2969 		if (async->async_flags & ASYNC_ISOPEN) {
2970 			mutex_exit(&asy->asy_excl_hi);
2971 			mutex_exit(&asy->asy_excl);
2972 			asyerror(CE_NOTE, "asy%d: ring buffer overflow",
2973 			    instance);
2974 			mutex_enter(&asy->asy_excl);
2975 			mutex_enter(&asy->asy_excl_hi);
2976 		}
2977 		async->async_sw_overrun = 0;
2978 	}
2979 	if (asy->asy_flags & ASY_DOINGSOFT_RETRY) {
2980 		mutex_exit(&asy->asy_excl);
2981 		goto begin;
2982 	}
2983 	asy->asy_flags &= ~ASY_DOINGSOFT;
2984 	mutex_exit(&asy->asy_excl_hi);
2985 	mutex_exit(&asy->asy_excl);
2986 	DEBUGCONT1(ASY_DEBUG_PROCS, "async%d_softint: done\n", instance);
2987 }
2988 
2989 /*
2990  * Restart output on a line after a delay or break timer expired.
2991  */
2992 static void
2993 async_restart(void *arg)
2994 {
2995 	struct asyncline *async = (struct asyncline *)arg;
2996 	struct asycom *asy = async->async_common;
2997 	uchar_t lcr;
2998 
2999 	/*
3000 	 * If break timer expired, turn off the break bit.
3001 	 */
3002 #ifdef DEBUG
3003 	int instance = UNIT(async->async_dev);
3004 
3005 	DEBUGCONT1(ASY_DEBUG_PROCS, "async%d_restart\n", instance);
3006 #endif
3007 	mutex_enter(&asy->asy_excl);
3008 	/*
3009 	 * If ASYNC_OUT_SUSPEND is also set, we don't really
3010 	 * clean the HW break, TIOCCBRK is responsible for this.
3011 	 */
3012 	if ((async->async_flags & ASYNC_BREAK) &&
3013 	    !(async->async_flags & ASYNC_OUT_SUSPEND)) {
3014 		mutex_enter(&asy->asy_excl_hi);
3015 		lcr = ddi_get8(asy->asy_iohandle, asy->asy_ioaddr + LCR);
3016 		ddi_put8(asy->asy_iohandle, asy->asy_ioaddr + LCR,
3017 		    (lcr & ~SETBREAK));
3018 		mutex_exit(&asy->asy_excl_hi);
3019 	}
3020 	async->async_flags &= ~(ASYNC_DELAY|ASYNC_BREAK);
3021 	cv_broadcast(&async->async_flags_cv);
3022 	async_start(async);
3023 
3024 	mutex_exit(&asy->asy_excl);
3025 }
3026 
3027 static void
3028 async_start(struct asyncline *async)
3029 {
3030 	async_nstart(async, 0);
3031 }
3032 
3033 /*
3034  * Start output on a line, unless it's busy, frozen, or otherwise.
3035  */
3036 /*ARGSUSED*/
3037 static void
3038 async_nstart(struct asyncline *async, int mode)
3039 {
3040 	struct asycom *asy = async->async_common;
3041 	int cc;
3042 	queue_t *q;
3043 	mblk_t *bp;
3044 	uchar_t *xmit_addr;
3045 	uchar_t	val;
3046 	int	fifo_len = 1;
3047 	boolean_t didsome;
3048 	mblk_t *nbp;
3049 
3050 #ifdef DEBUG
3051 	int instance = UNIT(async->async_dev);
3052 
3053 	DEBUGCONT1(ASY_DEBUG_PROCS, "async%d_nstart\n", instance);
3054 #endif
3055 	if (asy->asy_use_fifo == FIFO_ON) {
3056 		fifo_len = asy->asy_fifo_buf; /* with FIFO buffers */
3057 		if (fifo_len > asy_max_tx_fifo)
3058 			fifo_len = asy_max_tx_fifo;
3059 	}
3060 
3061 	ASSERT(mutex_owned(&asy->asy_excl));
3062 
3063 	/*
3064 	 * If the chip is busy (i.e., we're waiting for a break timeout
3065 	 * to expire, or for the current transmission to finish, or for
3066 	 * output to finish draining from chip), don't grab anything new.
3067 	 */
3068 	if (async->async_flags & (ASYNC_BREAK|ASYNC_BUSY)) {
3069 		DEBUGCONT2((mode? ASY_DEBUG_OUT : 0),
3070 		    "async%d_nstart: start %s.\n",
3071 		    instance,
3072 		    async->async_flags & ASYNC_BREAK ? "break" : "busy");
3073 		return;
3074 	}
3075 
3076 	/*
3077 	 * Check only pended sw input flow control.
3078 	 */
3079 	mutex_enter(&asy->asy_excl_hi);
3080 	if (async_flowcontrol_sw_input(asy, FLOW_CHECK, IN_FLOW_NULL))
3081 		fifo_len--;
3082 	mutex_exit(&asy->asy_excl_hi);
3083 
3084 	/*
3085 	 * If we're waiting for a delay timeout to expire, don't grab
3086 	 * anything new.
3087 	 */
3088 	if (async->async_flags & ASYNC_DELAY) {
3089 		DEBUGCONT1((mode? ASY_DEBUG_OUT : 0),
3090 		    "async%d_nstart: start ASYNC_DELAY.\n", instance);
3091 		return;
3092 	}
3093 
3094 	if ((q = async->async_ttycommon.t_writeq) == NULL) {
3095 		DEBUGCONT1((mode? ASY_DEBUG_OUT : 0),
3096 		    "async%d_nstart: start writeq is null.\n", instance);
3097 		return;	/* not attached to a stream */
3098 	}
3099 
3100 	for (;;) {
3101 		if ((bp = getq(q)) == NULL)
3102 			return;	/* no data to transmit */
3103 
3104 		/*
3105 		 * We have a message block to work on.
3106 		 * Check whether it's a break, a delay, or an ioctl (the latter
3107 		 * occurs if the ioctl in question was waiting for the output
3108 		 * to drain).  If it's one of those, process it immediately.
3109 		 */
3110 		switch (bp->b_datap->db_type) {
3111 
3112 		case M_BREAK:
3113 			/*
3114 			 * Set the break bit, and arrange for "async_restart"
3115 			 * to be called in 1/4 second; it will turn the
3116 			 * break bit off, and call "async_start" to grab
3117 			 * the next message.
3118 			 */
3119 			mutex_enter(&asy->asy_excl_hi);
3120 			val = ddi_get8(asy->asy_iohandle,
3121 			    asy->asy_ioaddr + LCR);
3122 			ddi_put8(asy->asy_iohandle, asy->asy_ioaddr + LCR,
3123 			    (val | SETBREAK));
3124 			mutex_exit(&asy->asy_excl_hi);
3125 			async->async_flags |= ASYNC_BREAK;
3126 			(void) timeout(async_restart, (caddr_t)async,
3127 			    drv_usectohz(1000000)/4);
3128 			freemsg(bp);
3129 			return;	/* wait for this to finish */
3130 
3131 		case M_DELAY:
3132 			/*
3133 			 * Arrange for "async_restart" to be called when the
3134 			 * delay expires; it will turn ASYNC_DELAY off,
3135 			 * and call "async_start" to grab the next message.
3136 			 */
3137 			(void) timeout(async_restart, (caddr_t)async,
3138 			    (int)(*(unsigned char *)bp->b_rptr + 6));
3139 			async->async_flags |= ASYNC_DELAY;
3140 			freemsg(bp);
3141 			return;	/* wait for this to finish */
3142 
3143 		case M_IOCTL:
3144 			/*
3145 			 * This ioctl was waiting for the output ahead of
3146 			 * it to drain; obviously, it has.  Do it, and
3147 			 * then grab the next message after it.
3148 			 */
3149 			mutex_exit(&asy->asy_excl);
3150 			async_ioctl(async, q, bp);
3151 			mutex_enter(&asy->asy_excl);
3152 			continue;
3153 		}
3154 
3155 		while (bp != NULL && ((cc = MBLKL(bp)) == 0)) {
3156 			nbp = bp->b_cont;
3157 			freeb(bp);
3158 			bp = nbp;
3159 		}
3160 		if (bp != NULL)
3161 			break;
3162 	}
3163 
3164 	/*
3165 	 * We have data to transmit.  If output is stopped, put
3166 	 * it back and try again later.
3167 	 */
3168 	if (async->async_flags & (ASYNC_HW_OUT_FLW | ASYNC_SW_OUT_FLW |
3169 	    ASYNC_STOPPED | ASYNC_OUT_SUSPEND)) {
3170 		(void) putbq(q, bp);
3171 		return;
3172 	}
3173 
3174 	async->async_xmitblk = bp;
3175 	xmit_addr = bp->b_rptr;
3176 	bp = bp->b_cont;
3177 	if (bp != NULL)
3178 		(void) putbq(q, bp);	/* not done with this message yet */
3179 
3180 	/*
3181 	 * In 5-bit mode, the high order bits are used
3182 	 * to indicate character sizes less than five,
3183 	 * so we need to explicitly mask before transmitting
3184 	 */
3185 	if ((async->async_ttycommon.t_cflag & CSIZE) == CS5) {
3186 		unsigned char *p = xmit_addr;
3187 		int cnt = cc;
3188 
3189 		while (cnt--)
3190 			*p++ &= (unsigned char) 0x1f;
3191 	}
3192 
3193 	/*
3194 	 * Set up this block for pseudo-DMA.
3195 	 */
3196 	mutex_enter(&asy->asy_excl_hi);
3197 	/*
3198 	 * If the transmitter is ready, shove the first
3199 	 * character out.
3200 	 */
3201 	didsome = B_FALSE;
3202 	while (--fifo_len >= 0 && cc > 0) {
3203 		if (!(ddi_get8(asy->asy_iohandle, asy->asy_ioaddr + LSR) &
3204 		    XHRE))
3205 			break;
3206 		ddi_put8(asy->asy_iohandle, asy->asy_ioaddr + DAT,
3207 		    *xmit_addr++);
3208 		cc--;
3209 		didsome = B_TRUE;
3210 	}
3211 	async->async_optr = xmit_addr;
3212 	async->async_ocnt = cc;
3213 	if (didsome)
3214 		async->async_flags |= ASYNC_PROGRESS;
3215 	DEBUGCONT2(ASY_DEBUG_BUSY,
3216 	    "async%d_nstart: Set ASYNC_BUSY.  async_ocnt=%d\n",
3217 	    instance, async->async_ocnt);
3218 	async->async_flags |= ASYNC_BUSY;
3219 	mutex_exit(&asy->asy_excl_hi);
3220 }
3221 
3222 /*
3223  * Resume output by poking the transmitter.
3224  */
3225 static void
3226 async_resume(struct asyncline *async)
3227 {
3228 	struct asycom *asy = async->async_common;
3229 #ifdef DEBUG
3230 	int instance;
3231 #endif
3232 
3233 	ASSERT(mutex_owned(&asy->asy_excl_hi));
3234 #ifdef DEBUG
3235 	instance = UNIT(async->async_dev);
3236 	DEBUGCONT1(ASY_DEBUG_PROCS, "async%d_resume\n", instance);
3237 #endif
3238 
3239 	if (ddi_get8(asy->asy_iohandle, asy->asy_ioaddr + LSR) & XHRE) {
3240 		if (async_flowcontrol_sw_input(asy, FLOW_CHECK, IN_FLOW_NULL))
3241 			return;
3242 		if (async->async_ocnt > 0 &&
3243 		    !(async->async_flags &
3244 		    (ASYNC_HW_OUT_FLW|ASYNC_SW_OUT_FLW|ASYNC_OUT_SUSPEND))) {
3245 			ddi_put8(asy->asy_iohandle,
3246 			    asy->asy_ioaddr + DAT, *async->async_optr++);
3247 			async->async_ocnt--;
3248 			async->async_flags |= ASYNC_PROGRESS;
3249 		}
3250 	}
3251 }
3252 
3253 /*
3254  * Hold the untimed break to last the minimum time.
3255  */
3256 static void
3257 async_hold_utbrk(void *arg)
3258 {
3259 	struct asyncline *async = arg;
3260 	struct asycom *asy = async->async_common;
3261 
3262 	mutex_enter(&asy->asy_excl);
3263 	async->async_flags &= ~ASYNC_HOLD_UTBRK;
3264 	cv_broadcast(&async->async_flags_cv);
3265 	async->async_utbrktid = 0;
3266 	mutex_exit(&asy->asy_excl);
3267 }
3268 
3269 /*
3270  * Resume the untimed break.
3271  */
3272 static void
3273 async_resume_utbrk(struct asyncline *async)
3274 {
3275 	uchar_t	val;
3276 	struct asycom *asy = async->async_common;
3277 	ASSERT(mutex_owned(&asy->asy_excl));
3278 
3279 	/*
3280 	 * Because the wait time is very short,
3281 	 * so we use uninterruptably wait.
3282 	 */
3283 	while (async->async_flags & ASYNC_HOLD_UTBRK) {
3284 		cv_wait(&async->async_flags_cv, &asy->asy_excl);
3285 	}
3286 	mutex_enter(&asy->asy_excl_hi);
3287 	/*
3288 	 * Timed break and untimed break can exist simultaneously,
3289 	 * if ASYNC_BREAK is also set at here, we don't
3290 	 * really clean the HW break.
3291 	 */
3292 	if (!(async->async_flags & ASYNC_BREAK)) {
3293 		val = ddi_get8(asy->asy_iohandle, asy->asy_ioaddr + LCR);
3294 		ddi_put8(asy->asy_iohandle, asy->asy_ioaddr + LCR,
3295 		    (val & ~SETBREAK));
3296 	}
3297 	async->async_flags &= ~ASYNC_OUT_SUSPEND;
3298 	cv_broadcast(&async->async_flags_cv);
3299 	if (async->async_ocnt > 0) {
3300 		async_resume(async);
3301 		mutex_exit(&asy->asy_excl_hi);
3302 	} else {
3303 		async->async_flags &= ~ASYNC_BUSY;
3304 		mutex_exit(&asy->asy_excl_hi);
3305 		if (async->async_xmitblk != NULL) {
3306 			freeb(async->async_xmitblk);
3307 			async->async_xmitblk = NULL;
3308 		}
3309 		async_start(async);
3310 	}
3311 }
3312 
3313 /*
3314  * Process an "ioctl" message sent down to us.
3315  * Note that we don't need to get any locks until we are ready to access
3316  * the hardware.  Nothing we access until then is going to be altered
3317  * outside of the STREAMS framework, so we should be safe.
3318  */
3319 int asydelay = 10000;
3320 static void
3321 async_ioctl(struct asyncline *async, queue_t *wq, mblk_t *mp)
3322 {
3323 	struct asycom *asy = async->async_common;
3324 	tty_common_t  *tp = &async->async_ttycommon;
3325 	struct iocblk *iocp;
3326 	unsigned datasize;
3327 	int error = 0;
3328 	uchar_t val;
3329 	mblk_t *datamp;
3330 	unsigned int index;
3331 
3332 #ifdef DEBUG
3333 	int instance = UNIT(async->async_dev);
3334 
3335 	DEBUGCONT1(ASY_DEBUG_PROCS, "async%d_ioctl\n", instance);
3336 #endif
3337 
3338 	if (tp->t_iocpending != NULL) {
3339 		/*
3340 		 * We were holding an "ioctl" response pending the
3341 		 * availability of an "mblk" to hold data to be passed up;
3342 		 * another "ioctl" came through, which means that "ioctl"
3343 		 * must have timed out or been aborted.
3344 		 */
3345 		freemsg(async->async_ttycommon.t_iocpending);
3346 		async->async_ttycommon.t_iocpending = NULL;
3347 	}
3348 
3349 	iocp = (struct iocblk *)mp->b_rptr;
3350 
3351 	/*
3352 	 * For TIOCMGET and the PPS ioctls, do NOT call ttycommon_ioctl()
3353 	 * because this function frees up the message block (mp->b_cont) that
3354 	 * contains the user location where we pass back the results.
3355 	 *
3356 	 * Similarly, CONSOPENPOLLEDIO needs ioc_count, which ttycommon_ioctl
3357 	 * zaps.  We know that ttycommon_ioctl doesn't know any CONS*
3358 	 * ioctls, so keep the others safe too.
3359 	 */
3360 	DEBUGCONT2(ASY_DEBUG_IOCTL, "async%d_ioctl: %s\n",
3361 	    instance,
3362 	    iocp->ioc_cmd == TIOCMGET ? "TIOCMGET" :
3363 	    iocp->ioc_cmd == TIOCMSET ? "TIOCMSET" :
3364 	    iocp->ioc_cmd == TIOCMBIS ? "TIOCMBIS" :
3365 	    iocp->ioc_cmd == TIOCMBIC ? "TIOCMBIC" :
3366 	    "other");
3367 
3368 	switch (iocp->ioc_cmd) {
3369 	case TIOCMGET:
3370 	case TIOCGPPS:
3371 	case TIOCSPPS:
3372 	case TIOCGPPSEV:
3373 	case CONSOPENPOLLEDIO:
3374 	case CONSCLOSEPOLLEDIO:
3375 	case CONSSETABORTENABLE:
3376 	case CONSGETABORTENABLE:
3377 		error = -1; /* Do Nothing */
3378 		break;
3379 	default:
3380 
3381 		/*
3382 		 * The only way in which "ttycommon_ioctl" can fail is if the
3383 		 * "ioctl" requires a response containing data to be returned
3384 		 * to the user, and no mblk could be allocated for the data.
3385 		 * No such "ioctl" alters our state.  Thus, we always go ahead
3386 		 * and do any state-changes the "ioctl" calls for.  If we
3387 		 * couldn't allocate the data, "ttycommon_ioctl" has stashed
3388 		 * the "ioctl" away safely, so we just call "bufcall" to
3389 		 * request that we be called back when we stand a better
3390 		 * chance of allocating the data.
3391 		 */
3392 		if ((datasize = ttycommon_ioctl(tp, wq, mp, &error)) != 0) {
3393 			if (async->async_wbufcid)
3394 				unbufcall(async->async_wbufcid);
3395 			async->async_wbufcid = bufcall(datasize, BPRI_HI,
3396 			    (void (*)(void *)) async_reioctl,
3397 			    (void *)(intptr_t)async->async_common->asy_unit);
3398 			return;
3399 		}
3400 	}
3401 
3402 	mutex_enter(&asy->asy_excl);
3403 
3404 	if (error == 0) {
3405 		/*
3406 		 * "ttycommon_ioctl" did most of the work; we just use the
3407 		 * data it set up.
3408 		 */
3409 		switch (iocp->ioc_cmd) {
3410 
3411 		case TCSETS:
3412 			mutex_enter(&asy->asy_excl_hi);
3413 			if (asy_baudok(asy))
3414 				asy_program(asy, ASY_NOINIT);
3415 			else
3416 				error = EINVAL;
3417 			mutex_exit(&asy->asy_excl_hi);
3418 			break;
3419 		case TCSETSF:
3420 		case TCSETSW:
3421 		case TCSETA:
3422 		case TCSETAW:
3423 		case TCSETAF:
3424 			mutex_enter(&asy->asy_excl_hi);
3425 			if (!asy_baudok(asy))
3426 				error = EINVAL;
3427 			else {
3428 				if (asy_isbusy(asy))
3429 					asy_waiteot(asy);
3430 				asy_program(asy, ASY_NOINIT);
3431 			}
3432 			mutex_exit(&asy->asy_excl_hi);
3433 			break;
3434 		}
3435 	} else if (error < 0) {
3436 		/*
3437 		 * "ttycommon_ioctl" didn't do anything; we process it here.
3438 		 */
3439 		error = 0;
3440 		switch (iocp->ioc_cmd) {
3441 
3442 		case TIOCGPPS:
3443 			/*
3444 			 * Get PPS on/off.
3445 			 */
3446 			if (mp->b_cont != NULL)
3447 				freemsg(mp->b_cont);
3448 
3449 			mp->b_cont = allocb(sizeof (int), BPRI_HI);
3450 			if (mp->b_cont == NULL) {
3451 				error = ENOMEM;
3452 				break;
3453 			}
3454 			if (asy->asy_flags & ASY_PPS)
3455 				*(int *)mp->b_cont->b_wptr = 1;
3456 			else
3457 				*(int *)mp->b_cont->b_wptr = 0;
3458 			mp->b_cont->b_wptr += sizeof (int);
3459 			mp->b_datap->db_type = M_IOCACK;
3460 			iocp->ioc_count = sizeof (int);
3461 			break;
3462 
3463 		case TIOCSPPS:
3464 			/*
3465 			 * Set PPS on/off.
3466 			 */
3467 			error = miocpullup(mp, sizeof (int));
3468 			if (error != 0)
3469 				break;
3470 
3471 			mutex_enter(&asy->asy_excl_hi);
3472 			if (*(int *)mp->b_cont->b_rptr)
3473 				asy->asy_flags |= ASY_PPS;
3474 			else
3475 				asy->asy_flags &= ~ASY_PPS;
3476 			/* Reset edge sense */
3477 			asy->asy_flags &= ~ASY_PPS_EDGE;
3478 			mutex_exit(&asy->asy_excl_hi);
3479 			mp->b_datap->db_type = M_IOCACK;
3480 			break;
3481 
3482 		case TIOCGPPSEV:
3483 		{
3484 			/*
3485 			 * Get PPS event data.
3486 			 */
3487 			mblk_t *bp;
3488 			void *buf;
3489 #ifdef _SYSCALL32_IMPL
3490 			struct ppsclockev32 p32;
3491 #endif
3492 			struct ppsclockev ppsclockev;
3493 
3494 			if (mp->b_cont != NULL) {
3495 				freemsg(mp->b_cont);
3496 				mp->b_cont = NULL;
3497 			}
3498 
3499 			if ((asy->asy_flags & ASY_PPS) == 0) {
3500 				error = ENXIO;
3501 				break;
3502 			}
3503 
3504 			/* Protect from incomplete asy_ppsev */
3505 			mutex_enter(&asy->asy_excl_hi);
3506 			ppsclockev = asy_ppsev;
3507 			mutex_exit(&asy->asy_excl_hi);
3508 
3509 #ifdef _SYSCALL32_IMPL
3510 			if ((iocp->ioc_flag & IOC_MODELS) != IOC_NATIVE) {
3511 				TIMEVAL_TO_TIMEVAL32(&p32.tv, &ppsclockev.tv);
3512 				p32.serial = ppsclockev.serial;
3513 				buf = &p32;
3514 				iocp->ioc_count = sizeof (struct ppsclockev32);
3515 			} else
3516 #endif
3517 			{
3518 				buf = &ppsclockev;
3519 				iocp->ioc_count = sizeof (struct ppsclockev);
3520 			}
3521 
3522 			if ((bp = allocb(iocp->ioc_count, BPRI_HI)) == NULL) {
3523 				error = ENOMEM;
3524 				break;
3525 			}
3526 			mp->b_cont = bp;
3527 
3528 			bcopy(buf, bp->b_wptr, iocp->ioc_count);
3529 			bp->b_wptr += iocp->ioc_count;
3530 			mp->b_datap->db_type = M_IOCACK;
3531 			break;
3532 		}
3533 
3534 		case TCSBRK:
3535 			error = miocpullup(mp, sizeof (int));
3536 			if (error != 0)
3537 				break;
3538 
3539 			if (*(int *)mp->b_cont->b_rptr == 0) {
3540 
3541 				/*
3542 				 * XXX Arrangements to ensure that a break
3543 				 * isn't in progress should be sufficient.
3544 				 * This ugly delay() is the only thing
3545 				 * that seems to work on the NCR Worldmark.
3546 				 * It should be replaced. Note that an
3547 				 * asy_waiteot() also does not work.
3548 				 */
3549 				if (asydelay)
3550 					delay(drv_usectohz(asydelay));
3551 
3552 				while (async->async_flags & ASYNC_BREAK) {
3553 					cv_wait(&async->async_flags_cv,
3554 					    &asy->asy_excl);
3555 				}
3556 				mutex_enter(&asy->asy_excl_hi);
3557 				/*
3558 				 * We loop until the TSR is empty and then
3559 				 * set the break.  ASYNC_BREAK has been set
3560 				 * to ensure that no characters are
3561 				 * transmitted while the TSR is being
3562 				 * flushed and SOUT is being used for the
3563 				 * break signal.
3564 				 *
3565 				 * The wait period is equal to
3566 				 * clock / (baud * 16) * 16 * 2.
3567 				 */
3568 				index = BAUDINDEX(
3569 				    async->async_ttycommon.t_cflag);
3570 				async->async_flags |= ASYNC_BREAK;
3571 
3572 				while ((ddi_get8(asy->asy_iohandle,
3573 				    asy->asy_ioaddr + LSR) & XSRE) == 0) {
3574 					mutex_exit(&asy->asy_excl_hi);
3575 					mutex_exit(&asy->asy_excl);
3576 					drv_usecwait(
3577 					    32*asyspdtab[index] & 0xfff);
3578 					mutex_enter(&asy->asy_excl);
3579 					mutex_enter(&asy->asy_excl_hi);
3580 				}
3581 				/*
3582 				 * Arrange for "async_restart"
3583 				 * to be called in 1/4 second;
3584 				 * it will turn the break bit off, and call
3585 				 * "async_start" to grab the next message.
3586 				 */
3587 				val = ddi_get8(asy->asy_iohandle,
3588 				    asy->asy_ioaddr + LCR);
3589 				ddi_put8(asy->asy_iohandle,
3590 				    asy->asy_ioaddr + LCR,
3591 				    (val | SETBREAK));
3592 				mutex_exit(&asy->asy_excl_hi);
3593 				(void) timeout(async_restart, (caddr_t)async,
3594 				    drv_usectohz(1000000)/4);
3595 			} else {
3596 				DEBUGCONT1(ASY_DEBUG_OUT,
3597 				    "async%d_ioctl: wait for flush.\n",
3598 				    instance);
3599 				mutex_enter(&asy->asy_excl_hi);
3600 				asy_waiteot(asy);
3601 				mutex_exit(&asy->asy_excl_hi);
3602 				DEBUGCONT1(ASY_DEBUG_OUT,
3603 				    "async%d_ioctl: ldterm satisfied.\n",
3604 				    instance);
3605 			}
3606 			break;
3607 
3608 		case TIOCSBRK:
3609 			if (!(async->async_flags & ASYNC_OUT_SUSPEND)) {
3610 				mutex_enter(&asy->asy_excl_hi);
3611 				async->async_flags |= ASYNC_OUT_SUSPEND;
3612 				async->async_flags |= ASYNC_HOLD_UTBRK;
3613 				index = BAUDINDEX(
3614 				    async->async_ttycommon.t_cflag);
3615 				while ((ddi_get8(asy->asy_iohandle,
3616 				    asy->asy_ioaddr + LSR) & XSRE) == 0) {
3617 					mutex_exit(&asy->asy_excl_hi);
3618 					mutex_exit(&asy->asy_excl);
3619 					drv_usecwait(
3620 					    32*asyspdtab[index] & 0xfff);
3621 					mutex_enter(&asy->asy_excl);
3622 					mutex_enter(&asy->asy_excl_hi);
3623 				}
3624 				val = ddi_get8(asy->asy_iohandle,
3625 				    asy->asy_ioaddr + LCR);
3626 				ddi_put8(asy->asy_iohandle,
3627 				    asy->asy_ioaddr + LCR, (val | SETBREAK));
3628 				mutex_exit(&asy->asy_excl_hi);
3629 				/* wait for 100ms to hold BREAK */
3630 				async->async_utbrktid =
3631 				    timeout((void (*)())async_hold_utbrk,
3632 				    (caddr_t)async,
3633 				    drv_usectohz(asy_min_utbrk));
3634 			}
3635 			mioc2ack(mp, NULL, 0, 0);
3636 			break;
3637 
3638 		case TIOCCBRK:
3639 			if (async->async_flags & ASYNC_OUT_SUSPEND)
3640 				async_resume_utbrk(async);
3641 			mioc2ack(mp, NULL, 0, 0);
3642 			break;
3643 
3644 		case TIOCMSET:
3645 		case TIOCMBIS:
3646 		case TIOCMBIC:
3647 			if (iocp->ioc_count != TRANSPARENT) {
3648 				DEBUGCONT1(ASY_DEBUG_IOCTL, "async%d_ioctl: "
3649 				    "non-transparent\n", instance);
3650 
3651 				error = miocpullup(mp, sizeof (int));
3652 				if (error != 0)
3653 					break;
3654 
3655 				mutex_enter(&asy->asy_excl_hi);
3656 				(void) asymctl(asy,
3657 				    dmtoasy(*(int *)mp->b_cont->b_rptr),
3658 				    iocp->ioc_cmd);
3659 				mutex_exit(&asy->asy_excl_hi);
3660 				iocp->ioc_error = 0;
3661 				mp->b_datap->db_type = M_IOCACK;
3662 			} else {
3663 				DEBUGCONT1(ASY_DEBUG_IOCTL, "async%d_ioctl: "
3664 				    "transparent\n", instance);
3665 				mcopyin(mp, NULL, sizeof (int), NULL);
3666 			}
3667 			break;
3668 
3669 		case TIOCMGET:
3670 			datamp = allocb(sizeof (int), BPRI_MED);
3671 			if (datamp == NULL) {
3672 				error = EAGAIN;
3673 				break;
3674 			}
3675 
3676 			mutex_enter(&asy->asy_excl_hi);
3677 			*(int *)datamp->b_rptr = asymctl(asy, 0, TIOCMGET);
3678 			mutex_exit(&asy->asy_excl_hi);
3679 
3680 			if (iocp->ioc_count == TRANSPARENT) {
3681 				DEBUGCONT1(ASY_DEBUG_IOCTL, "async%d_ioctl: "
3682 				    "transparent\n", instance);
3683 				mcopyout(mp, NULL, sizeof (int), NULL, datamp);
3684 			} else {
3685 				DEBUGCONT1(ASY_DEBUG_IOCTL, "async%d_ioctl: "
3686 				    "non-transparent\n", instance);
3687 				mioc2ack(mp, datamp, sizeof (int), 0);
3688 			}
3689 			break;
3690 
3691 		case CONSOPENPOLLEDIO:
3692 			error = miocpullup(mp, sizeof (struct cons_polledio *));
3693 			if (error != 0)
3694 				break;
3695 
3696 			*(struct cons_polledio **)mp->b_cont->b_rptr =
3697 			    &asy->polledio;
3698 
3699 			mp->b_datap->db_type = M_IOCACK;
3700 			break;
3701 
3702 		case CONSCLOSEPOLLEDIO:
3703 			mp->b_datap->db_type = M_IOCACK;
3704 			iocp->ioc_error = 0;
3705 			iocp->ioc_rval = 0;
3706 			break;
3707 
3708 		case CONSSETABORTENABLE:
3709 			error = secpolicy_console(iocp->ioc_cr);
3710 			if (error != 0)
3711 				break;
3712 
3713 			if (iocp->ioc_count != TRANSPARENT) {
3714 				error = EINVAL;
3715 				break;
3716 			}
3717 
3718 			mutex_enter(&asy->asy_excl_hi);
3719 			if (*(intptr_t *)mp->b_cont->b_rptr)
3720 				asy->asy_flags |= ASY_CONSOLE;
3721 			else
3722 				asy->asy_flags &= ~ASY_CONSOLE;
3723 			mutex_exit(&asy->asy_excl_hi);
3724 
3725 			mp->b_datap->db_type = M_IOCACK;
3726 			iocp->ioc_error = 0;
3727 			iocp->ioc_rval = 0;
3728 			break;
3729 
3730 		case CONSGETABORTENABLE:
3731 			/*CONSTANTCONDITION*/
3732 			ASSERT(sizeof (boolean_t) <= sizeof (boolean_t *));
3733 			/*
3734 			 * Store the return value right in the payload
3735 			 * we were passed.  Crude.
3736 			 */
3737 			mcopyout(mp, NULL, sizeof (boolean_t), NULL, NULL);
3738 			*(boolean_t *)mp->b_cont->b_rptr =
3739 			    (asy->asy_flags & ASY_CONSOLE) != 0;
3740 			break;
3741 
3742 		default:
3743 			/*
3744 			 * If we don't understand it, it's an error.  NAK it.
3745 			 */
3746 			error = EINVAL;
3747 			break;
3748 		}
3749 	}
3750 	if (error != 0) {
3751 		iocp->ioc_error = error;
3752 		mp->b_datap->db_type = M_IOCNAK;
3753 	}
3754 	mutex_exit(&asy->asy_excl);
3755 	qreply(wq, mp);
3756 	DEBUGCONT1(ASY_DEBUG_PROCS, "async%d_ioctl: done\n", instance);
3757 }
3758 
3759 static int
3760 asyrsrv(queue_t *q)
3761 {
3762 	mblk_t *bp;
3763 	struct asyncline *async;
3764 	struct asycom *asy;
3765 
3766 	async = (struct asyncline *)q->q_ptr;
3767 	asy = (struct asycom *)async->async_common;
3768 
3769 	while (canputnext(q) && (bp = getq(q)))
3770 		putnext(q, bp);
3771 	mutex_enter(&asy->asy_excl_hi);
3772 	ASYSETSOFT(asy);
3773 	mutex_exit(&asy->asy_excl_hi);
3774 	async->async_polltid = 0;
3775 	return (0);
3776 }
3777 
3778 /*
3779  * The ASYWPUTDO_NOT_SUSP macro indicates to asywputdo() whether it should
3780  * handle messages as though the driver is operating normally or is
3781  * suspended.  In the suspended case, some or all of the processing may have
3782  * to be delayed until the driver is resumed.
3783  */
3784 #define	ASYWPUTDO_NOT_SUSP(async, wput) \
3785 	!((wput) && ((async)->async_flags & ASYNC_DDI_SUSPENDED))
3786 
3787 /*
3788  * Processing for write queue put procedure.
3789  * Respond to M_STOP, M_START, M_IOCTL, and M_FLUSH messages here;
3790  * set the flow control character for M_STOPI and M_STARTI messages;
3791  * queue up M_BREAK, M_DELAY, and M_DATA messages for processing
3792  * by the start routine, and then call the start routine; discard
3793  * everything else.  Note that this driver does not incorporate any
3794  * mechanism to negotiate to handle the canonicalization process.
3795  * It expects that these functions are handled in upper module(s),
3796  * as we do in ldterm.
3797  */
3798 static int
3799 asywputdo(queue_t *q, mblk_t *mp, boolean_t wput)
3800 {
3801 	struct asyncline *async;
3802 	struct asycom *asy;
3803 #ifdef DEBUG
3804 	int instance;
3805 #endif
3806 	int error;
3807 
3808 	async = (struct asyncline *)q->q_ptr;
3809 
3810 #ifdef DEBUG
3811 	instance = UNIT(async->async_dev);
3812 #endif
3813 	asy = async->async_common;
3814 
3815 	switch (mp->b_datap->db_type) {
3816 
3817 	case M_STOP:
3818 		/*
3819 		 * Since we don't do real DMA, we can just let the
3820 		 * chip coast to a stop after applying the brakes.
3821 		 */
3822 		mutex_enter(&asy->asy_excl);
3823 		async->async_flags |= ASYNC_STOPPED;
3824 		mutex_exit(&asy->asy_excl);
3825 		freemsg(mp);
3826 		break;
3827 
3828 	case M_START:
3829 		mutex_enter(&asy->asy_excl);
3830 		if (async->async_flags & ASYNC_STOPPED) {
3831 			async->async_flags &= ~ASYNC_STOPPED;
3832 			if (ASYWPUTDO_NOT_SUSP(async, wput)) {
3833 				/*
3834 				 * If an output operation is in progress,
3835 				 * resume it.  Otherwise, prod the start
3836 				 * routine.
3837 				 */
3838 				if (async->async_ocnt > 0) {
3839 					mutex_enter(&asy->asy_excl_hi);
3840 					async_resume(async);
3841 					mutex_exit(&asy->asy_excl_hi);
3842 				} else {
3843 					async_start(async);
3844 				}
3845 			}
3846 		}
3847 		mutex_exit(&asy->asy_excl);
3848 		freemsg(mp);
3849 		break;
3850 
3851 	case M_IOCTL:
3852 		switch (((struct iocblk *)mp->b_rptr)->ioc_cmd) {
3853 
3854 		case TCSBRK:
3855 			error = miocpullup(mp, sizeof (int));
3856 			if (error != 0) {
3857 				miocnak(q, mp, 0, error);
3858 				return (0);
3859 			}
3860 
3861 			if (*(int *)mp->b_cont->b_rptr != 0) {
3862 				DEBUGCONT1(ASY_DEBUG_OUT,
3863 				    "async%d_ioctl: flush request.\n",
3864 				    instance);
3865 				(void) putq(q, mp);
3866 
3867 				mutex_enter(&asy->asy_excl);
3868 				if (ASYWPUTDO_NOT_SUSP(async, wput)) {
3869 					/*
3870 					 * If an TIOCSBRK is in progress,
3871 					 * clean it as TIOCCBRK does,
3872 					 * then kick off output.
3873 					 * If TIOCSBRK is not in progress,
3874 					 * just kick off output.
3875 					 */
3876 					async_resume_utbrk(async);
3877 				}
3878 				mutex_exit(&asy->asy_excl);
3879 				break;
3880 			}
3881 			/*FALLTHROUGH*/
3882 		case TCSETSW:
3883 		case TCSETSF:
3884 		case TCSETAW:
3885 		case TCSETAF:
3886 			/*
3887 			 * The changes do not take effect until all
3888 			 * output queued before them is drained.
3889 			 * Put this message on the queue, so that
3890 			 * "async_start" will see it when it's done
3891 			 * with the output before it.  Poke the
3892 			 * start routine, just in case.
3893 			 */
3894 			(void) putq(q, mp);
3895 
3896 			mutex_enter(&asy->asy_excl);
3897 			if (ASYWPUTDO_NOT_SUSP(async, wput)) {
3898 				/*
3899 				 * If an TIOCSBRK is in progress,
3900 				 * clean it as TIOCCBRK does.
3901 				 * then kick off output.
3902 				 * If TIOCSBRK is not in progress,
3903 				 * just kick off output.
3904 				 */
3905 				async_resume_utbrk(async);
3906 			}
3907 			mutex_exit(&asy->asy_excl);
3908 			break;
3909 
3910 		default:
3911 			/*
3912 			 * Do it now.
3913 			 */
3914 			mutex_enter(&asy->asy_excl);
3915 			if (ASYWPUTDO_NOT_SUSP(async, wput)) {
3916 				mutex_exit(&asy->asy_excl);
3917 				async_ioctl(async, q, mp);
3918 				break;
3919 			}
3920 			async_put_suspq(asy, mp);
3921 			mutex_exit(&asy->asy_excl);
3922 			break;
3923 		}
3924 		break;
3925 
3926 	case M_FLUSH:
3927 		if (*mp->b_rptr & FLUSHW) {
3928 			mutex_enter(&asy->asy_excl);
3929 
3930 			/*
3931 			 * Abort any output in progress.
3932 			 */
3933 			mutex_enter(&asy->asy_excl_hi);
3934 			if (async->async_flags & ASYNC_BUSY) {
3935 				DEBUGCONT1(ASY_DEBUG_BUSY, "asy%dwput: "
3936 				    "Clearing async_ocnt, "
3937 				    "leaving ASYNC_BUSY set\n",
3938 				    instance);
3939 				async->async_ocnt = 0;
3940 				async->async_flags &= ~ASYNC_BUSY;
3941 			} /* if */
3942 
3943 			if (ASYWPUTDO_NOT_SUSP(async, wput)) {
3944 				/* Flush FIFO buffers */
3945 				if (asy->asy_use_fifo == FIFO_ON) {
3946 					asy_reset_fifo(asy, FIFOTXFLSH);
3947 				}
3948 			}
3949 			mutex_exit(&asy->asy_excl_hi);
3950 
3951 			/* Flush FIFO buffers */
3952 			if (asy->asy_use_fifo == FIFO_ON) {
3953 				asy_reset_fifo(asy, FIFOTXFLSH);
3954 			}
3955 
3956 			/*
3957 			 * Flush our write queue.
3958 			 */
3959 			flushq(q, FLUSHDATA);	/* XXX doesn't flush M_DELAY */
3960 			if (async->async_xmitblk != NULL) {
3961 				freeb(async->async_xmitblk);
3962 				async->async_xmitblk = NULL;
3963 			}
3964 			mutex_exit(&asy->asy_excl);
3965 			*mp->b_rptr &= ~FLUSHW;	/* it has been flushed */
3966 		}
3967 		if (*mp->b_rptr & FLUSHR) {
3968 			if (ASYWPUTDO_NOT_SUSP(async, wput)) {
3969 				/* Flush FIFO buffers */
3970 				if (asy->asy_use_fifo == FIFO_ON) {
3971 					asy_reset_fifo(asy, FIFORXFLSH);
3972 				}
3973 			}
3974 			flushq(RD(q), FLUSHDATA);
3975 			qreply(q, mp);	/* give the read queues a crack at it */
3976 		} else {
3977 			freemsg(mp);
3978 		}
3979 
3980 		/*
3981 		 * We must make sure we process messages that survive the
3982 		 * write-side flush.
3983 		 */
3984 		if (ASYWPUTDO_NOT_SUSP(async, wput)) {
3985 			mutex_enter(&asy->asy_excl);
3986 			async_start(async);
3987 			mutex_exit(&asy->asy_excl);
3988 		}
3989 		break;
3990 
3991 	case M_BREAK:
3992 	case M_DELAY:
3993 	case M_DATA:
3994 		/*
3995 		 * Queue the message up to be transmitted,
3996 		 * and poke the start routine.
3997 		 */
3998 		(void) putq(q, mp);
3999 		if (ASYWPUTDO_NOT_SUSP(async, wput)) {
4000 			mutex_enter(&asy->asy_excl);
4001 			async_start(async);
4002 			mutex_exit(&asy->asy_excl);
4003 		}
4004 		break;
4005 
4006 	case M_STOPI:
4007 		mutex_enter(&asy->asy_excl);
4008 		if (ASYWPUTDO_NOT_SUSP(async, wput)) {
4009 			mutex_enter(&asy->asy_excl_hi);
4010 			if (!(async->async_inflow_source & IN_FLOW_USER)) {
4011 				async_flowcontrol_hw_input(asy, FLOW_STOP,
4012 				    IN_FLOW_USER);
4013 				(void) async_flowcontrol_sw_input(asy,
4014 				    FLOW_STOP, IN_FLOW_USER);
4015 			}
4016 			mutex_exit(&asy->asy_excl_hi);
4017 			mutex_exit(&asy->asy_excl);
4018 			freemsg(mp);
4019 			break;
4020 		}
4021 		async_put_suspq(asy, mp);
4022 		mutex_exit(&asy->asy_excl);
4023 		break;
4024 
4025 	case M_STARTI:
4026 		mutex_enter(&asy->asy_excl);
4027 		if (ASYWPUTDO_NOT_SUSP(async, wput)) {
4028 			mutex_enter(&asy->asy_excl_hi);
4029 			if (async->async_inflow_source & IN_FLOW_USER) {
4030 				async_flowcontrol_hw_input(asy, FLOW_START,
4031 				    IN_FLOW_USER);
4032 				(void) async_flowcontrol_sw_input(asy,
4033 				    FLOW_START, IN_FLOW_USER);
4034 			}
4035 			mutex_exit(&asy->asy_excl_hi);
4036 			mutex_exit(&asy->asy_excl);
4037 			freemsg(mp);
4038 			break;
4039 		}
4040 		async_put_suspq(asy, mp);
4041 		mutex_exit(&asy->asy_excl);
4042 		break;
4043 
4044 	case M_CTL:
4045 		if (MBLKL(mp) >= sizeof (struct iocblk) &&
4046 		    ((struct iocblk *)mp->b_rptr)->ioc_cmd == MC_POSIXQUERY) {
4047 			mutex_enter(&asy->asy_excl);
4048 			if (ASYWPUTDO_NOT_SUSP(async, wput)) {
4049 				((struct iocblk *)mp->b_rptr)->ioc_cmd =
4050 				    MC_HAS_POSIX;
4051 				mutex_exit(&asy->asy_excl);
4052 				qreply(q, mp);
4053 				break;
4054 			} else {
4055 				async_put_suspq(asy, mp);
4056 			}
4057 		} else {
4058 			/*
4059 			 * These MC_SERVICE type messages are used by upper
4060 			 * modules to tell this driver to send input up
4061 			 * immediately, or that it can wait for normal
4062 			 * processing that may or may not be done.  Sun
4063 			 * requires these for the mouse module.
4064 			 * (XXX - for x86?)
4065 			 */
4066 			mutex_enter(&asy->asy_excl);
4067 			switch (*mp->b_rptr) {
4068 
4069 			case MC_SERVICEIMM:
4070 				async->async_flags |= ASYNC_SERVICEIMM;
4071 				break;
4072 
4073 			case MC_SERVICEDEF:
4074 				async->async_flags &= ~ASYNC_SERVICEIMM;
4075 				break;
4076 			}
4077 			mutex_exit(&asy->asy_excl);
4078 			freemsg(mp);
4079 		}
4080 		break;
4081 
4082 	case M_IOCDATA:
4083 		mutex_enter(&asy->asy_excl);
4084 		if (ASYWPUTDO_NOT_SUSP(async, wput)) {
4085 			mutex_exit(&asy->asy_excl);
4086 			async_iocdata(q, mp);
4087 			break;
4088 		}
4089 		async_put_suspq(asy, mp);
4090 		mutex_exit(&asy->asy_excl);
4091 		break;
4092 
4093 	default:
4094 		freemsg(mp);
4095 		break;
4096 	}
4097 	return (0);
4098 }
4099 
4100 static int
4101 asywput(queue_t *q, mblk_t *mp)
4102 {
4103 	return (asywputdo(q, mp, B_TRUE));
4104 }
4105 
4106 /*
4107  * Retry an "ioctl", now that "bufcall" claims we may be able to allocate
4108  * the buffer we need.
4109  */
4110 static void
4111 async_reioctl(void *unit)
4112 {
4113 	int instance = (uintptr_t)unit;
4114 	struct asyncline *async;
4115 	struct asycom *asy;
4116 	queue_t	*q;
4117 	mblk_t	*mp;
4118 
4119 	asy = ddi_get_soft_state(asy_soft_state, instance);
4120 	ASSERT(asy != NULL);
4121 	async = asy->asy_priv;
4122 
4123 	/*
4124 	 * The bufcall is no longer pending.
4125 	 */
4126 	mutex_enter(&asy->asy_excl);
4127 	async->async_wbufcid = 0;
4128 	if ((q = async->async_ttycommon.t_writeq) == NULL) {
4129 		mutex_exit(&asy->asy_excl);
4130 		return;
4131 	}
4132 	if ((mp = async->async_ttycommon.t_iocpending) != NULL) {
4133 		/* not pending any more */
4134 		async->async_ttycommon.t_iocpending = NULL;
4135 		mutex_exit(&asy->asy_excl);
4136 		async_ioctl(async, q, mp);
4137 	} else
4138 		mutex_exit(&asy->asy_excl);
4139 }
4140 
4141 static void
4142 async_iocdata(queue_t *q, mblk_t *mp)
4143 {
4144 	struct asyncline	*async = (struct asyncline *)q->q_ptr;
4145 	struct asycom		*asy;
4146 	struct iocblk *ip;
4147 	struct copyresp *csp;
4148 #ifdef DEBUG
4149 	int instance = UNIT(async->async_dev);
4150 #endif
4151 
4152 	asy = async->async_common;
4153 	ip = (struct iocblk *)mp->b_rptr;
4154 	csp = (struct copyresp *)mp->b_rptr;
4155 
4156 	if (csp->cp_rval != 0) {
4157 		if (csp->cp_private)
4158 			freemsg(csp->cp_private);
4159 		freemsg(mp);
4160 		return;
4161 	}
4162 
4163 	mutex_enter(&asy->asy_excl);
4164 	DEBUGCONT2(ASY_DEBUG_MODEM, "async%d_iocdata: case %s\n",
4165 	    instance,
4166 	    csp->cp_cmd == TIOCMGET ? "TIOCMGET" :
4167 	    csp->cp_cmd == TIOCMSET ? "TIOCMSET" :
4168 	    csp->cp_cmd == TIOCMBIS ? "TIOCMBIS" :
4169 	    "TIOCMBIC");
4170 	switch (csp->cp_cmd) {
4171 
4172 	case TIOCMGET:
4173 		if (mp->b_cont) {
4174 			freemsg(mp->b_cont);
4175 			mp->b_cont = NULL;
4176 		}
4177 		mp->b_datap->db_type = M_IOCACK;
4178 		ip->ioc_error = 0;
4179 		ip->ioc_count = 0;
4180 		ip->ioc_rval = 0;
4181 		mp->b_wptr = mp->b_rptr + sizeof (struct iocblk);
4182 		break;
4183 
4184 	case TIOCMSET:
4185 	case TIOCMBIS:
4186 	case TIOCMBIC:
4187 		mutex_enter(&asy->asy_excl_hi);
4188 		(void) asymctl(asy, dmtoasy(*(int *)mp->b_cont->b_rptr),
4189 		    csp->cp_cmd);
4190 		mutex_exit(&asy->asy_excl_hi);
4191 		mioc2ack(mp, NULL, 0, 0);
4192 		break;
4193 
4194 	default:
4195 		mp->b_datap->db_type = M_IOCNAK;
4196 		ip->ioc_error = EINVAL;
4197 		break;
4198 	}
4199 	qreply(q, mp);
4200 	mutex_exit(&asy->asy_excl);
4201 }
4202 
4203 /*
4204  * debugger/console support routines.
4205  */
4206 
4207 /*
4208  * put a character out
4209  * Do not use interrupts.  If char is LF, put out CR, LF.
4210  */
4211 static void
4212 asyputchar(cons_polledio_arg_t arg, uchar_t c)
4213 {
4214 	struct asycom *asy = (struct asycom *)arg;
4215 
4216 	if (c == '\n')
4217 		asyputchar(arg, '\r');
4218 
4219 	while ((ddi_get8(asy->asy_iohandle,
4220 	    asy->asy_ioaddr + LSR) & XHRE) == 0) {
4221 		/* wait for xmit to finish */
4222 		drv_usecwait(10);
4223 	}
4224 
4225 	/* put the character out */
4226 	ddi_put8(asy->asy_iohandle, asy->asy_ioaddr + DAT, c);
4227 }
4228 
4229 /*
4230  * See if there's a character available. If no character is
4231  * available, return 0. Run in polled mode, no interrupts.
4232  */
4233 static boolean_t
4234 asyischar(cons_polledio_arg_t arg)
4235 {
4236 	struct asycom *asy = (struct asycom *)arg;
4237 
4238 	return ((ddi_get8(asy->asy_iohandle, asy->asy_ioaddr + LSR) & RCA)
4239 	    != 0);
4240 }
4241 
4242 /*
4243  * Get a character. Run in polled mode, no interrupts.
4244  */
4245 static int
4246 asygetchar(cons_polledio_arg_t arg)
4247 {
4248 	struct asycom *asy = (struct asycom *)arg;
4249 
4250 	while (!asyischar(arg))
4251 		drv_usecwait(10);
4252 	return (ddi_get8(asy->asy_iohandle, asy->asy_ioaddr + DAT));
4253 }
4254 
4255 /*
4256  * Set or get the modem control status.
4257  */
4258 static int
4259 asymctl(struct asycom *asy, int bits, int how)
4260 {
4261 	int mcr_r, msr_r;
4262 	int instance = asy->asy_unit;
4263 
4264 	ASSERT(mutex_owned(&asy->asy_excl_hi));
4265 	ASSERT(mutex_owned(&asy->asy_excl));
4266 
4267 	/* Read Modem Control Registers */
4268 	mcr_r = ddi_get8(asy->asy_iohandle, asy->asy_ioaddr + MCR);
4269 
4270 	switch (how) {
4271 
4272 	case TIOCMSET:
4273 		DEBUGCONT2(ASY_DEBUG_MODEM,
4274 		    "asy%dmctl: TIOCMSET, bits = %x\n", instance, bits);
4275 		mcr_r = bits;		/* Set bits	*/
4276 		break;
4277 
4278 	case TIOCMBIS:
4279 		DEBUGCONT2(ASY_DEBUG_MODEM, "asy%dmctl: TIOCMBIS, bits = %x\n",
4280 		    instance, bits);
4281 		mcr_r |= bits;		/* Mask in bits	*/
4282 		break;
4283 
4284 	case TIOCMBIC:
4285 		DEBUGCONT2(ASY_DEBUG_MODEM, "asy%dmctl: TIOCMBIC, bits = %x\n",
4286 		    instance, bits);
4287 		mcr_r &= ~bits;		/* Mask out bits */
4288 		break;
4289 
4290 	case TIOCMGET:
4291 		/* Read Modem Status Registers */
4292 		/*
4293 		 * If modem interrupts are enabled, we return the
4294 		 * saved value of msr. We read MSR only in async_msint()
4295 		 */
4296 		if (ddi_get8(asy->asy_iohandle,
4297 		    asy->asy_ioaddr + ICR) & MIEN) {
4298 			msr_r = asy->asy_msr;
4299 			DEBUGCONT2(ASY_DEBUG_MODEM,
4300 			    "asy%dmctl: TIOCMGET, read msr_r = %x\n",
4301 			    instance, msr_r);
4302 		} else {
4303 			msr_r = ddi_get8(asy->asy_iohandle,
4304 			    asy->asy_ioaddr + MSR);
4305 			DEBUGCONT2(ASY_DEBUG_MODEM,
4306 			    "asy%dmctl: TIOCMGET, read MSR = %x\n",
4307 			    instance, msr_r);
4308 		}
4309 		DEBUGCONT2(ASY_DEBUG_MODEM, "asy%dtodm: modem_lines = %x\n",
4310 		    instance, asytodm(mcr_r, msr_r));
4311 		return (asytodm(mcr_r, msr_r));
4312 	}
4313 
4314 	ddi_put8(asy->asy_iohandle, asy->asy_ioaddr + MCR, mcr_r);
4315 
4316 	return (mcr_r);
4317 }
4318 
4319 static int
4320 asytodm(int mcr_r, int msr_r)
4321 {
4322 	int b = 0;
4323 
4324 	/* MCR registers */
4325 	if (mcr_r & RTS)
4326 		b |= TIOCM_RTS;
4327 
4328 	if (mcr_r & DTR)
4329 		b |= TIOCM_DTR;
4330 
4331 	/* MSR registers */
4332 	if (msr_r & DCD)
4333 		b |= TIOCM_CAR;
4334 
4335 	if (msr_r & CTS)
4336 		b |= TIOCM_CTS;
4337 
4338 	if (msr_r & DSR)
4339 		b |= TIOCM_DSR;
4340 
4341 	if (msr_r & RI)
4342 		b |= TIOCM_RNG;
4343 	return (b);
4344 }
4345 
4346 static int
4347 dmtoasy(int bits)
4348 {
4349 	int b = 0;
4350 
4351 	DEBUGCONT1(ASY_DEBUG_MODEM, "dmtoasy: bits = %x\n", bits);
4352 #ifdef	CAN_NOT_SET	/* only DTR and RTS can be set */
4353 	if (bits & TIOCM_CAR)
4354 		b |= DCD;
4355 	if (bits & TIOCM_CTS)
4356 		b |= CTS;
4357 	if (bits & TIOCM_DSR)
4358 		b |= DSR;
4359 	if (bits & TIOCM_RNG)
4360 		b |= RI;
4361 #endif
4362 
4363 	if (bits & TIOCM_RTS) {
4364 		DEBUGCONT0(ASY_DEBUG_MODEM, "dmtoasy: set b & RTS\n");
4365 		b |= RTS;
4366 	}
4367 	if (bits & TIOCM_DTR) {
4368 		DEBUGCONT0(ASY_DEBUG_MODEM, "dmtoasy: set b & DTR\n");
4369 		b |= DTR;
4370 	}
4371 
4372 	return (b);
4373 }
4374 
4375 static void
4376 asyerror(int level, const char *fmt, ...)
4377 {
4378 	va_list adx;
4379 	static	time_t	last;
4380 	static	const char *lastfmt;
4381 	time_t	now;
4382 
4383 	/*
4384 	 * Don't print the same error message too often.
4385 	 * Print the message only if we have not printed the
4386 	 * message within the last second.
4387 	 * Note: that fmt cannot be a pointer to a string
4388 	 * stored on the stack. The fmt pointer
4389 	 * must be in the data segment otherwise lastfmt would point
4390 	 * to non-sense.
4391 	 */
4392 	now = gethrestime_sec();
4393 	if (last == now && lastfmt == fmt)
4394 		return;
4395 
4396 	last = now;
4397 	lastfmt = fmt;
4398 
4399 	va_start(adx, fmt);
4400 	vcmn_err(level, fmt, adx);
4401 	va_end(adx);
4402 }
4403 
4404 /*
4405  * asy_parse_mode(dev_info_t *devi, struct asycom *asy)
4406  * The value of this property is in the form of "9600,8,n,1,-"
4407  * 1) speed: 9600, 4800, ...
4408  * 2) data bits
4409  * 3) parity: n(none), e(even), o(odd)
4410  * 4) stop bits
4411  * 5) handshake: -(none), h(hardware: rts/cts), s(software: xon/off)
4412  *
4413  * This parsing came from a SPARCstation eeprom.
4414  */
4415 static void
4416 asy_parse_mode(dev_info_t *devi, struct asycom *asy)
4417 {
4418 	char		name[40];
4419 	char		val[40];
4420 	int		len;
4421 	int		ret;
4422 	char		*p;
4423 	char		*p1;
4424 
4425 	ASSERT(asy->asy_com_port != 0);
4426 
4427 	/*
4428 	 * Parse the ttyx-mode property
4429 	 */
4430 	(void) sprintf(name, "tty%c-mode", asy->asy_com_port + 'a' - 1);
4431 	len = sizeof (val);
4432 	ret = GET_PROP(devi, name, DDI_PROP_CANSLEEP, val, &len);
4433 	if (ret != DDI_PROP_SUCCESS) {
4434 		(void) sprintf(name, "com%c-mode", asy->asy_com_port + '0');
4435 		len = sizeof (val);
4436 		ret = GET_PROP(devi, name, DDI_PROP_CANSLEEP, val, &len);
4437 	}
4438 
4439 	/* no property to parse */
4440 	asy->asy_cflag = 0;
4441 	if (ret != DDI_PROP_SUCCESS)
4442 		return;
4443 
4444 	p = val;
4445 	/* ---- baud rate ---- */
4446 	asy->asy_cflag = CREAD|B9600;		/* initial default */
4447 	if (p && (p1 = strchr(p, ',')) != 0) {
4448 		*p1++ = '\0';
4449 	} else {
4450 		asy->asy_cflag |= BITS8;	/* add default bits */
4451 		return;
4452 	}
4453 
4454 	if (strcmp(p, "110") == 0)
4455 		asy->asy_bidx = B110;
4456 	else if (strcmp(p, "150") == 0)
4457 		asy->asy_bidx = B150;
4458 	else if (strcmp(p, "300") == 0)
4459 		asy->asy_bidx = B300;
4460 	else if (strcmp(p, "600") == 0)
4461 		asy->asy_bidx = B600;
4462 	else if (strcmp(p, "1200") == 0)
4463 		asy->asy_bidx = B1200;
4464 	else if (strcmp(p, "2400") == 0)
4465 		asy->asy_bidx = B2400;
4466 	else if (strcmp(p, "4800") == 0)
4467 		asy->asy_bidx = B4800;
4468 	else if (strcmp(p, "9600") == 0)
4469 		asy->asy_bidx = B9600;
4470 	else if (strcmp(p, "19200") == 0)
4471 		asy->asy_bidx = B19200;
4472 	else if (strcmp(p, "38400") == 0)
4473 		asy->asy_bidx = B38400;
4474 	else if (strcmp(p, "57600") == 0)
4475 		asy->asy_bidx = B57600;
4476 	else if (strcmp(p, "115200") == 0)
4477 		asy->asy_bidx = B115200;
4478 	else
4479 		asy->asy_bidx = B9600;
4480 
4481 	asy->asy_cflag &= ~CBAUD;
4482 	if (asy->asy_bidx > CBAUD) {	/* > 38400 uses the CBAUDEXT bit */
4483 		asy->asy_cflag |= CBAUDEXT;
4484 		asy->asy_cflag |= asy->asy_bidx - CBAUD - 1;
4485 	} else {
4486 		asy->asy_cflag |= asy->asy_bidx;
4487 	}
4488 
4489 	ASSERT(asy->asy_bidx == BAUDINDEX(asy->asy_cflag));
4490 
4491 	/* ---- Next item is data bits ---- */
4492 	p = p1;
4493 	if (p && (p1 = strchr(p, ',')) != 0)  {
4494 		*p1++ = '\0';
4495 	} else {
4496 		asy->asy_cflag |= BITS8;	/* add default bits */
4497 		return;
4498 	}
4499 	switch (*p) {
4500 		default:
4501 		case '8':
4502 			asy->asy_cflag |= CS8;
4503 			asy->asy_lcr = BITS8;
4504 			break;
4505 		case '7':
4506 			asy->asy_cflag |= CS7;
4507 			asy->asy_lcr = BITS7;
4508 			break;
4509 		case '6':
4510 			asy->asy_cflag |= CS6;
4511 			asy->asy_lcr = BITS6;
4512 			break;
4513 		case '5':
4514 			/* LINTED: CS5 is currently zero (but might change) */
4515 			asy->asy_cflag |= CS5;
4516 			asy->asy_lcr = BITS5;
4517 			break;
4518 	}
4519 
4520 	/* ---- Parity info ---- */
4521 	p = p1;
4522 	if (p && (p1 = strchr(p, ',')) != 0)  {
4523 		*p1++ = '\0';
4524 	} else {
4525 		return;
4526 	}
4527 	switch (*p)  {
4528 		default:
4529 		case 'n':
4530 			break;
4531 		case 'e':
4532 			asy->asy_cflag |= PARENB;
4533 			asy->asy_lcr |= PEN; break;
4534 		case 'o':
4535 			asy->asy_cflag |= PARENB|PARODD;
4536 			asy->asy_lcr |= PEN|EPS;
4537 			break;
4538 	}
4539 
4540 	/* ---- Find stop bits ---- */
4541 	p = p1;
4542 	if (p && (p1 = strchr(p, ',')) != 0)  {
4543 		*p1++ = '\0';
4544 	} else {
4545 		return;
4546 	}
4547 	if (*p == '2') {
4548 		asy->asy_cflag |= CSTOPB;
4549 		asy->asy_lcr |= STB;
4550 	}
4551 
4552 	/* ---- handshake is next ---- */
4553 	p = p1;
4554 	if (p) {
4555 		if ((p1 = strchr(p, ',')) != 0)
4556 			*p1++ = '\0';
4557 
4558 		if (*p == 'h')
4559 			asy->asy_cflag |= CRTSCTS;
4560 		else if (*p == 's')
4561 			asy->asy_cflag |= CRTSXOFF;
4562 	}
4563 }
4564 
4565 /*
4566  * Check for abort character sequence
4567  */
4568 static boolean_t
4569 abort_charseq_recognize(uchar_t ch)
4570 {
4571 	static int state = 0;
4572 #define	CNTRL(c) ((c)&037)
4573 	static char sequence[] = { '\r', '~', CNTRL('b') };
4574 
4575 	if (ch == sequence[state]) {
4576 		if (++state >= sizeof (sequence)) {
4577 			state = 0;
4578 			return (B_TRUE);
4579 		}
4580 	} else {
4581 		state = (ch == sequence[0]) ? 1 : 0;
4582 	}
4583 	return (B_FALSE);
4584 }
4585 
4586 /*
4587  * Flow control functions
4588  */
4589 /*
4590  * Software input flow control
4591  * This function can execute software input flow control sucessfully
4592  * at most of situations except that the line is in BREAK status
4593  * (timed and untimed break).
4594  * INPUT VALUE of onoff:
4595  *               FLOW_START means to send out a XON char
4596  *                          and clear SW input flow control flag.
4597  *               FLOW_STOP means to send out a XOFF char
4598  *                          and set SW input flow control flag.
4599  *               FLOW_CHECK means to check whether there is pending XON/XOFF
4600  *                          if it is true, send it out.
4601  * INPUT VALUE of type:
4602  *		 IN_FLOW_RINGBUFF means flow control is due to RING BUFFER
4603  *		 IN_FLOW_STREAMS means flow control is due to STREAMS
4604  *		 IN_FLOW_USER means flow control is due to user's commands
4605  * RETURN VALUE: B_FALSE means no flow control char is sent
4606  *               B_TRUE means one flow control char is sent
4607  */
4608 static boolean_t
4609 async_flowcontrol_sw_input(struct asycom *asy, async_flowc_action onoff,
4610     int type)
4611 {
4612 	struct asyncline *async = asy->asy_priv;
4613 	int instance = UNIT(async->async_dev);
4614 	int rval = B_FALSE;
4615 
4616 	ASSERT(mutex_owned(&asy->asy_excl_hi));
4617 
4618 	if (!(async->async_ttycommon.t_iflag & IXOFF))
4619 		return (rval);
4620 
4621 	/*
4622 	 * If we get this far, then we know IXOFF is set.
4623 	 */
4624 	switch (onoff) {
4625 	case FLOW_STOP:
4626 		async->async_inflow_source |= type;
4627 
4628 		/*
4629 		 * We'll send an XOFF character for each of up to
4630 		 * three different input flow control attempts to stop input.
4631 		 * If we already send out one XOFF, but FLOW_STOP comes again,
4632 		 * it seems that input flow control becomes more serious,
4633 		 * then send XOFF again.
4634 		 */
4635 		if (async->async_inflow_source & (IN_FLOW_RINGBUFF |
4636 		    IN_FLOW_STREAMS | IN_FLOW_USER))
4637 			async->async_flags |= ASYNC_SW_IN_FLOW |
4638 			    ASYNC_SW_IN_NEEDED;
4639 		DEBUGCONT2(ASY_DEBUG_SFLOW, "async%d: input sflow stop, "
4640 		    "type = %x\n", instance, async->async_inflow_source);
4641 		break;
4642 	case FLOW_START:
4643 		async->async_inflow_source &= ~type;
4644 		if (async->async_inflow_source == 0) {
4645 			async->async_flags = (async->async_flags &
4646 			    ~ASYNC_SW_IN_FLOW) | ASYNC_SW_IN_NEEDED;
4647 			DEBUGCONT1(ASY_DEBUG_SFLOW, "async%d: "
4648 			    "input sflow start\n", instance);
4649 		}
4650 		break;
4651 	default:
4652 		break;
4653 	}
4654 
4655 	if (((async->async_flags & (ASYNC_SW_IN_NEEDED | ASYNC_BREAK |
4656 	    ASYNC_OUT_SUSPEND)) == ASYNC_SW_IN_NEEDED) &&
4657 	    (ddi_get8(asy->asy_iohandle, asy->asy_ioaddr + LSR) & XHRE)) {
4658 		/*
4659 		 * If we get this far, then we know we need to send out
4660 		 * XON or XOFF char.
4661 		 */
4662 		async->async_flags = (async->async_flags &
4663 		    ~ASYNC_SW_IN_NEEDED) | ASYNC_BUSY;
4664 		ddi_put8(asy->asy_iohandle, asy->asy_ioaddr + DAT,
4665 		    async->async_flags & ASYNC_SW_IN_FLOW ?
4666 		    async->async_stopc : async->async_startc);
4667 		rval = B_TRUE;
4668 	}
4669 	return (rval);
4670 }
4671 
4672 /*
4673  * Software output flow control
4674  * This function can be executed sucessfully at any situation.
4675  * It does not handle HW, and just change the SW output flow control flag.
4676  * INPUT VALUE of onoff:
4677  *                 FLOW_START means to clear SW output flow control flag,
4678  *			also combine with HW output flow control status to
4679  *			determine if we need to set ASYNC_OUT_FLW_RESUME.
4680  *                 FLOW_STOP means to set SW output flow control flag,
4681  *			also clear ASYNC_OUT_FLW_RESUME.
4682  */
4683 static void
4684 async_flowcontrol_sw_output(struct asycom *asy, async_flowc_action onoff)
4685 {
4686 	struct asyncline *async = asy->asy_priv;
4687 	int instance = UNIT(async->async_dev);
4688 
4689 	ASSERT(mutex_owned(&asy->asy_excl_hi));
4690 
4691 	if (!(async->async_ttycommon.t_iflag & IXON))
4692 		return;
4693 
4694 	switch (onoff) {
4695 	case FLOW_STOP:
4696 		async->async_flags |= ASYNC_SW_OUT_FLW;
4697 		async->async_flags &= ~ASYNC_OUT_FLW_RESUME;
4698 		DEBUGCONT1(ASY_DEBUG_SFLOW, "async%d: output sflow stop\n",
4699 		    instance);
4700 		break;
4701 	case FLOW_START:
4702 		async->async_flags &= ~ASYNC_SW_OUT_FLW;
4703 		if (!(async->async_flags & ASYNC_HW_OUT_FLW))
4704 			async->async_flags |= ASYNC_OUT_FLW_RESUME;
4705 		DEBUGCONT1(ASY_DEBUG_SFLOW, "async%d: output sflow start\n",
4706 		    instance);
4707 		break;
4708 	default:
4709 		break;
4710 	}
4711 }
4712 
4713 /*
4714  * Hardware input flow control
4715  * This function can be executed sucessfully at any situation.
4716  * It directly changes RTS depending on input parameter onoff.
4717  * INPUT VALUE of onoff:
4718  *       FLOW_START means to clear HW input flow control flag,
4719  *                  and pull up RTS if it is low.
4720  *       FLOW_STOP means to set HW input flow control flag,
4721  *                  and low RTS if it is high.
4722  * INPUT VALUE of type:
4723  *		 IN_FLOW_RINGBUFF means flow control is due to RING BUFFER
4724  *		 IN_FLOW_STREAMS means flow control is due to STREAMS
4725  *		 IN_FLOW_USER means flow control is due to user's commands
4726  */
4727 static void
4728 async_flowcontrol_hw_input(struct asycom *asy, async_flowc_action onoff,
4729     int type)
4730 {
4731 	uchar_t	mcr;
4732 	uchar_t	flag;
4733 	struct asyncline *async = asy->asy_priv;
4734 	int instance = UNIT(async->async_dev);
4735 
4736 	ASSERT(mutex_owned(&asy->asy_excl_hi));
4737 
4738 	if (!(async->async_ttycommon.t_cflag & CRTSXOFF))
4739 		return;
4740 
4741 	switch (onoff) {
4742 	case FLOW_STOP:
4743 		async->async_inflow_source |= type;
4744 		if (async->async_inflow_source & (IN_FLOW_RINGBUFF |
4745 		    IN_FLOW_STREAMS | IN_FLOW_USER))
4746 			async->async_flags |= ASYNC_HW_IN_FLOW;
4747 		DEBUGCONT2(ASY_DEBUG_HFLOW, "async%d: input hflow stop, "
4748 		    "type = %x\n", instance, async->async_inflow_source);
4749 		break;
4750 	case FLOW_START:
4751 		async->async_inflow_source &= ~type;
4752 		if (async->async_inflow_source == 0) {
4753 			async->async_flags &= ~ASYNC_HW_IN_FLOW;
4754 			DEBUGCONT1(ASY_DEBUG_HFLOW, "async%d: "
4755 			    "input hflow start\n", instance);
4756 		}
4757 		break;
4758 	default:
4759 		break;
4760 	}
4761 	mcr = ddi_get8(asy->asy_iohandle, asy->asy_ioaddr + MCR);
4762 	flag = (async->async_flags & ASYNC_HW_IN_FLOW) ? 0 : RTS;
4763 
4764 	if (((mcr ^ flag) & RTS) != 0) {
4765 		ddi_put8(asy->asy_iohandle,
4766 		    asy->asy_ioaddr + MCR, (mcr ^ RTS));
4767 	}
4768 }
4769 
4770 /*
4771  * Hardware output flow control
4772  * This function can execute HW output flow control sucessfully
4773  * at any situation.
4774  * It doesn't really change RTS, and just change
4775  * HW output flow control flag depending on CTS status.
4776  * INPUT VALUE of onoff:
4777  *                FLOW_START means to clear HW output flow control flag.
4778  *			also combine with SW output flow control status to
4779  *			determine if we need to set ASYNC_OUT_FLW_RESUME.
4780  *                FLOW_STOP means to set HW output flow control flag.
4781  *			also clear ASYNC_OUT_FLW_RESUME.
4782  */
4783 static void
4784 async_flowcontrol_hw_output(struct asycom *asy, async_flowc_action onoff)
4785 {
4786 	struct asyncline *async = asy->asy_priv;
4787 	int instance = UNIT(async->async_dev);
4788 
4789 	ASSERT(mutex_owned(&asy->asy_excl_hi));
4790 
4791 	if (!(async->async_ttycommon.t_cflag & CRTSCTS))
4792 		return;
4793 
4794 	switch (onoff) {
4795 	case FLOW_STOP:
4796 		async->async_flags |= ASYNC_HW_OUT_FLW;
4797 		async->async_flags &= ~ASYNC_OUT_FLW_RESUME;
4798 		DEBUGCONT1(ASY_DEBUG_HFLOW, "async%d: output hflow stop\n",
4799 		    instance);
4800 		break;
4801 	case FLOW_START:
4802 		async->async_flags &= ~ASYNC_HW_OUT_FLW;
4803 		if (!(async->async_flags & ASYNC_SW_OUT_FLW))
4804 			async->async_flags |= ASYNC_OUT_FLW_RESUME;
4805 		DEBUGCONT1(ASY_DEBUG_HFLOW, "async%d: output hflow start\n",
4806 		    instance);
4807 		break;
4808 	default:
4809 		break;
4810 	}
4811 }
4812 
4813 
4814 /*
4815  * quiesce(9E) entry point.
4816  *
4817  * This function is called when the system is single-threaded at high
4818  * PIL with preemption disabled. Therefore, this function must not be
4819  * blocked.
4820  *
4821  * This function returns DDI_SUCCESS on success, or DDI_FAILURE on failure.
4822  * DDI_FAILURE indicates an error condition and should almost never happen.
4823  */
4824 static int
4825 asyquiesce(dev_info_t *devi)
4826 {
4827 	int instance;
4828 	struct asycom *asy;
4829 
4830 	instance = ddi_get_instance(devi);	/* find out which unit */
4831 
4832 	asy = ddi_get_soft_state(asy_soft_state, instance);
4833 	if (asy == NULL)
4834 		return (DDI_FAILURE);
4835 
4836 	/* disable all interrupts */
4837 	ddi_put8(asy->asy_iohandle, asy->asy_ioaddr + ICR, 0);
4838 
4839 	/* reset the FIFO */
4840 	asy_reset_fifo(asy, FIFOTXFLSH | FIFORXFLSH);
4841 
4842 	return (DDI_SUCCESS);
4843 }
4844