xref: /illumos-gate/usr/src/uts/common/io/asy.c (revision 767007dff68ec7382116062a33e8ff5e89ce8664)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 
22 /*	Copyright (c) 1990, 1991 UNIX System Laboratories, Inc.	*/
23 /*	Copyright (c) 1984, 1986, 1987, 1988, 1989, 1990 AT&T	*/
24 /*	  All Rights Reserved					*/
25 
26 /*
27  * Copyright (c) 1992, 2010, Oracle and/or its affiliates. All rights reserved.
28  * Copyright 2012 Milan Jurik. All rights reserved.
29  * Copyright (c) 2016 by Delphix. All rights reserved.
30  * Copyright 2025 Oxide Computer Company
31  * Copyright 2024 Hans Rosenfeld
32  */
33 
34 
35 /*
36  * Serial I/O driver for 8250/16450/16550A/16650/16750/16950 chips.
37  */
38 
39 #include <sys/param.h>
40 #include <sys/types.h>
41 #include <sys/signal.h>
42 #include <sys/stream.h>
43 #include <sys/termio.h>
44 #include <sys/errno.h>
45 #include <sys/file.h>
46 #include <sys/cmn_err.h>
47 #include <sys/stropts.h>
48 #include <sys/strsubr.h>
49 #include <sys/strtty.h>
50 #include <sys/debug.h>
51 #include <sys/kbio.h>
52 #include <sys/cred.h>
53 #include <sys/stat.h>
54 #include <sys/consdev.h>
55 #include <sys/mkdev.h>
56 #include <sys/kmem.h>
57 #include <sys/cred.h>
58 #include <sys/strsun.h>
59 #ifdef DEBUG
60 #include <sys/promif.h>
61 #endif
62 #include <sys/modctl.h>
63 #include <sys/ddi.h>
64 #include <sys/sunddi.h>
65 #include <sys/pci.h>
66 #include <sys/asy.h>
67 #include <sys/policy.h>
68 #include <sys/sysmacros.h>
69 
70 /*
71  * set the RX FIFO trigger_level to half the RX FIFO size for now
72  * we may want to make this configurable later.
73  */
74 static	int asy_trig_level = ASY_FCR_RHR_TRIG_8;
75 
76 int asy_drain_check = 15000000;		/* tunable: exit drain check time */
77 int asy_min_dtr_low = 500000;		/* tunable: minimum DTR down time */
78 int asy_min_utbrk = 100000;		/* tunable: minumum untimed brk time */
79 
80 int asymaxchip = ASY_MAXCHIP;	/* tunable: limit chip support we look for */
81 
82 /*
83  * Just in case someone has a chip with broken loopback mode, we provide a
84  * means to disable the loopback test. By default, we only loopback test
85  * UARTs which look like they have FIFOs bigger than 16 bytes.
86  * Set to 0 to suppress test, or to 2 to enable test on any size FIFO.
87  */
88 int asy_fifo_test = 1;		/* tunable: set to 0, 1, or 2 */
89 
90 /*
91  * Allow ability to switch off testing of the scratch register.
92  * Some UART emulators might not have it. This will also disable the test
93  * for Exar/Startech ST16C650, as that requires use of the SCR register.
94  */
95 int asy_scr_test = 1;		/* tunable: set to 0 to disable SCR reg test */
96 
97 /*
98  * As we don't yet support on-chip flow control, it's a bad idea to put a
99  * large number of characters in the TX FIFO, since if other end tells us
100  * to stop transmitting, we can only stop filling the TX FIFO, but it will
101  * still carry on draining by itself, so remote end still gets what's left
102  * in the FIFO.
103  */
104 int asy_max_tx_fifo = 16;	/* tunable: max fill of TX FIFO */
105 
106 #define	async_stopc	async_ttycommon.t_stopc
107 #define	async_startc	async_ttycommon.t_startc
108 
109 #define	ASY_INIT	1
110 #define	ASY_NOINIT	0
111 
112 /* enum value for sw and hw flow control action */
113 typedef enum {
114 	FLOW_CHECK,
115 	FLOW_STOP,
116 	FLOW_START
117 } async_flowc_action;
118 
119 #ifdef DEBUG
120 #define	ASY_DEBUG_INIT	0x0001	/* Output msgs during driver initialization. */
121 #define	ASY_DEBUG_INPUT	0x0002	/* Report characters received during int. */
122 #define	ASY_DEBUG_EOT	0x0004	/* Output msgs when wait for xmit to finish. */
123 #define	ASY_DEBUG_CLOSE	0x0008	/* Output msgs when driver open/close called */
124 #define	ASY_DEBUG_HFLOW	0x0010	/* Output msgs when H/W flowcontrol is active */
125 #define	ASY_DEBUG_PROCS	0x0020	/* Output each proc name as it is entered. */
126 #define	ASY_DEBUG_STATE	0x0040	/* Output value of Interrupt Service Reg. */
127 #define	ASY_DEBUG_INTR	0x0080	/* Output value of Interrupt Service Reg. */
128 #define	ASY_DEBUG_OUT	0x0100	/* Output msgs about output events. */
129 #define	ASY_DEBUG_BUSY	0x0200	/* Output msgs when xmit is enabled/disabled */
130 #define	ASY_DEBUG_MODEM	0x0400	/* Output msgs about modem status & control. */
131 #define	ASY_DEBUG_MODM2	0x0800	/* Output msgs about modem status & control. */
132 #define	ASY_DEBUG_IOCTL	0x1000	/* Output msgs about ioctl messages. */
133 #define	ASY_DEBUG_CHIP	0x2000	/* Output msgs about chip identification. */
134 #define	ASY_DEBUG_SFLOW	0x4000	/* Output msgs when S/W flowcontrol is active */
135 
136 static	int debug  = 0;
137 
138 #define	ASY_DEBUG(asy, x) (asy->asy_debug & (x))
139 #define	ASY_DPRINTF(asy, fac, format, ...) \
140 	if (ASY_DEBUG(asy, fac)) \
141 		asyerror(asy, CE_CONT, "!%s: " format, __func__, ##__VA_ARGS__)
142 #else
143 #define	ASY_DEBUG(asy, x) B_FALSE
144 #define	ASY_DPRINTF(asy, fac, format, ...)
145 #endif
146 
147 /*
148  * PPS (Pulse Per Second) support.
149  */
150 void ddi_hardpps(struct timeval *, int);
151 /*
152  * This is protected by the asy_excl_hi of the port on which PPS event
153  * handling is enabled.  Note that only one port should have this enabled at
154  * any one time.  Enabling PPS handling on multiple ports will result in
155  * unpredictable (but benign) results.
156  */
157 static struct ppsclockev asy_ppsev;
158 
159 #ifdef PPSCLOCKLED
160 /* XXX Use these to observe PPS latencies and jitter on a scope */
161 #define	LED_ON
162 #define	LED_OFF
163 #else
164 #define	LED_ON
165 #define	LED_OFF
166 #endif
167 
168 static void	asy_put_idx(const struct asycom *, asy_reg_t, uint8_t);
169 static uint8_t	asy_get_idx(const struct asycom *, asy_reg_t);
170 
171 static void	asy_put_add(const struct asycom *, asy_reg_t, uint8_t);
172 static uint8_t	asy_get_add(const struct asycom *, asy_reg_t);
173 
174 static void	asy_put_ext(const struct asycom *, asy_reg_t, uint8_t);
175 static uint8_t	asy_get_ext(const struct asycom *, asy_reg_t);
176 
177 static void	asy_put_reg(const struct asycom *, asy_reg_t, uint8_t);
178 static uint8_t	asy_get_reg(const struct asycom *, asy_reg_t);
179 
180 static void	asy_put(const struct asycom *, asy_reg_t, uint8_t);
181 static uint8_t	asy_get(const struct asycom *, asy_reg_t);
182 
183 static void	asy_set(const struct asycom *, asy_reg_t, uint8_t);
184 static void	asy_clr(const struct asycom *, asy_reg_t, uint8_t);
185 
186 static void	asy_enable_interrupts(const struct asycom *, uint8_t);
187 static void	asy_disable_interrupts(const struct asycom *, uint8_t);
188 static void	asy_set_baudrate(const struct asycom *, int);
189 static void	asy_wait_baudrate(struct asycom *);
190 
191 #define	BAUDINDEX(cflg)	(((cflg) & CBAUDEXT) ? \
192 	    (((cflg) & CBAUD) + CBAUD + 1) : ((cflg) & CBAUD))
193 
194 static void	asysetsoft(struct asycom *);
195 static uint_t	asysoftintr(caddr_t, caddr_t);
196 static uint_t	asyintr(caddr_t, caddr_t);
197 
198 static boolean_t abort_charseq_recognize(uchar_t ch);
199 
200 /* The async interrupt entry points */
201 static void	async_txint(struct asycom *asy);
202 static void	async_rxint(struct asycom *asy, uchar_t lsr);
203 static void	async_msint(struct asycom *asy);
204 static void	async_softint(struct asycom *asy);
205 
206 static void	async_ioctl(struct asyncline *async, queue_t *q, mblk_t *mp);
207 static void	async_reioctl(void *unit);
208 static void	async_iocdata(queue_t *q, mblk_t *mp);
209 static void	async_restart(void *arg);
210 static void	async_start(struct asyncline *async);
211 static void	async_resume(struct asyncline *async);
212 static void	asy_program(struct asycom *asy, int mode);
213 static void	asyinit(struct asycom *asy);
214 static void	asy_waiteot(struct asycom *asy);
215 static void	asyputchar(cons_polledio_arg_t, uchar_t c);
216 static int	asygetchar(cons_polledio_arg_t);
217 static boolean_t	asyischar(cons_polledio_arg_t);
218 
219 static int	asymctl(struct asycom *, int, int);
220 static int	asytodm(int, int);
221 static int	dmtoasy(struct asycom *, int);
222 static void	asyerror(const struct asycom *, int, const char *, ...)
223 	__KPRINTFLIKE(3);
224 static void	asy_parse_mode(dev_info_t *devi, struct asycom *asy);
225 static void	asy_soft_state_free(struct asycom *);
226 static char	*asy_hw_name(struct asycom *asy);
227 static void	async_hold_utbrk(void *arg);
228 static void	async_resume_utbrk(struct asyncline *async);
229 static void	async_dtr_free(struct asyncline *async);
230 static int	asy_identify_chip(dev_info_t *devi, struct asycom *asy);
231 static void	asy_reset_fifo(struct asycom *asy, uchar_t flags);
232 static void	asy_carrier_check(struct asycom *);
233 static int	asy_getproperty(dev_info_t *devi, struct asycom *asy,
234 		    const char *property);
235 static boolean_t	async_flowcontrol_sw_input(struct asycom *asy,
236 			    async_flowc_action onoff, int type);
237 static void	async_flowcontrol_sw_output(struct asycom *asy,
238 		    async_flowc_action onoff);
239 static void	async_flowcontrol_hw_input(struct asycom *asy,
240 		    async_flowc_action onoff, int type);
241 static void	async_flowcontrol_hw_output(struct asycom *asy,
242 		    async_flowc_action onoff);
243 
244 #define	GET_PROP(devi, pname, pflag, pval, plen) \
245 		(ddi_prop_op(DDI_DEV_T_ANY, (devi), PROP_LEN_AND_VAL_BUF, \
246 		(pflag), (pname), (caddr_t)(pval), (plen)))
247 
248 kmutex_t asy_glob_lock; /* lock protecting global data manipulation */
249 void *asy_soft_state;
250 
251 /* Standard COM port I/O addresses */
252 static const int standard_com_ports[] = {
253 	COM1_IOADDR, COM2_IOADDR, COM3_IOADDR, COM4_IOADDR
254 };
255 
256 static int *com_ports;
257 static uint_t num_com_ports;
258 
259 #ifdef	DEBUG
260 /*
261  * Set this to true to make the driver pretend to do a suspend.  Useful
262  * for debugging suspend/resume code with a serial debugger.
263  */
264 boolean_t	asy_nosuspend = B_FALSE;
265 #endif
266 
267 
268 /*
269  * Baud rate table. Indexed by #defines found in sys/termios.h
270  *
271  * The default crystal frequency is 1.8432 MHz. The 8250A used a fixed /16
272  * prescaler and a 16bit divisor, split in two registers (DLH and DLL).
273  *
274  * The 16950 adds TCR and CKS registers. The TCR can be used to set the
275  * prescaler from /4 to /16. The CKS can be used, among other things, to
276  * select a isochronous 1x mode, effectively disabling the prescaler.
277  * This would theoretically allow a baud rate of 1843200 driven directly
278  * by the default crystal frequency, although the highest termios.h-defined
279  * baud rate we can support is half of that, 921600 baud.
280  */
281 #define	UNSUPPORTED	0x00, 0x00, 0x00
282 static struct {
283 	uint8_t asy_dlh;
284 	uint8_t asy_dll;
285 	uint8_t asy_tcr;
286 } asy_baud_tab[] = {
287 	[B0] =		{ UNSUPPORTED },	/* 0 baud */
288 	[B50] =		{ 0x09, 0x00, 0x00 },	/* 50 baud */
289 	[B75] =		{ 0x06, 0x00, 0x00 },	/* 75 baud */
290 	[B110] =	{ 0x04, 0x17, 0x00 },	/* 110 baud (0.026% error) */
291 	[B134] =	{ 0x03, 0x59, 0x00 },	/* 134 baud (0.058% error) */
292 	[B150] =	{ 0x03, 0x00, 0x00 },	/* 150 baud */
293 	[B200] =	{ 0x02, 0x40, 0x00 },	/* 200 baud */
294 	[B300] =	{ 0x01, 0x80, 0x00 },	/* 300 baud */
295 	[B600] =	{ 0x00, 0xc0, 0x00 },	/* 600 baud */
296 	[B1200] =	{ 0x00, 0x60, 0x00 },	/* 1200 baud */
297 	[B1800] =	{ 0x00, 0x40, 0x00 },	/* 1800 baud */
298 	[B2400] =	{ 0x00, 0x30, 0x00 },	/* 2400 baud */
299 	[B4800] =	{ 0x00, 0x18, 0x00 },	/* 4800 baud */
300 	[B9600] =	{ 0x00, 0x0c, 0x00 },	/* 9600 baud */
301 	[B19200] =	{ 0x00, 0x06, 0x00 },	/* 19200 baud */
302 	[B38400] =	{ 0x00, 0x03, 0x00 },	/* 38400 baud */
303 	[B57600] =	{ 0x00, 0x02, 0x00 },	/* 57600 baud */
304 	[B76800] =	{ 0x00, 0x06, 0x04 },	/* 76800 baud (16950) */
305 	[B115200] =	{ 0x00, 0x01, 0x00 },	/* 115200 baud */
306 	[B153600] =	{ 0x00, 0x03, 0x04 },	/* 153600 baud (16950) */
307 	[B230400] =	{ 0x00, 0x02, 0x04 },	/* 230400 baud (16950) */
308 	[B307200] =	{ 0x00, 0x01, 0x06 },	/* 307200 baud (16950) */
309 	[B460800] =	{ 0x00, 0x01, 0x04 },	/* 460800 baud (16950) */
310 	[B921600] =	{ 0x00, 0x02, 0x01 },	/* 921600 baud (16950) */
311 	[B1000000] =	{ UNSUPPORTED },	/* 1000000 baud */
312 	[B1152000] =	{ UNSUPPORTED },	/* 1152000 baud */
313 	[B1500000] =	{ UNSUPPORTED },	/* 1500000 baud */
314 	[B2000000] =	{ UNSUPPORTED },	/* 2000000 baud */
315 	[B2500000] =	{ UNSUPPORTED },	/* 2500000 baud */
316 	[B3000000] =	{ UNSUPPORTED },	/* 3000000 baud */
317 	[B3500000] =	{ UNSUPPORTED },	/* 3500000 baud */
318 	[B4000000] =	{ UNSUPPORTED },	/* 4000000 baud */
319 };
320 
321 /*
322  * Register table. For each logical register, we define the minimum hwtype, the
323  * register offset, and function pointers for reading and writing the register.
324  * A NULL pointer indicates the register cannot be read from or written to,
325  * respectively.
326  */
327 static struct {
328 	int asy_min_hwtype;
329 	int8_t asy_reg_off;
330 	uint8_t (*asy_get_reg)(const struct asycom *, asy_reg_t);
331 	void (*asy_put_reg)(const struct asycom *, asy_reg_t, uint8_t);
332 } asy_reg_table[] = {
333 	[ASY_ILLEGAL] = { 0, -1, NULL, NULL },
334 	/* 8250 / 16450 / 16550 registers */
335 	[ASY_THR] =   { ASY_8250A,  0, NULL,	    asy_put_reg },
336 	[ASY_RHR] =   { ASY_8250A,  0, asy_get_reg, NULL },
337 	[ASY_IER] =   { ASY_8250A,  1, asy_get_reg, asy_put_reg },
338 	[ASY_FCR] =   { ASY_16550,  2, NULL,	    asy_put_reg },
339 	[ASY_ISR] =   { ASY_8250A,  2, asy_get_reg, NULL },
340 	[ASY_LCR] =   { ASY_8250A,  3, asy_get_reg, asy_put_reg },
341 	[ASY_MCR] =   { ASY_8250A,  4, asy_get_reg, asy_put_reg },
342 	[ASY_LSR] =   { ASY_8250A,  5, asy_get_reg, NULL },
343 	[ASY_MSR] =   { ASY_8250A,  6, asy_get_reg, NULL },
344 	[ASY_SPR] =   { ASY_8250A,  7, asy_get_reg, asy_put_reg },
345 	[ASY_DLL] =   { ASY_8250A,  0, asy_get_reg, asy_put_reg },
346 	[ASY_DLH] =   { ASY_8250A,  1, asy_get_reg, asy_put_reg },
347 	/* 16750 extended register */
348 	[ASY_EFR] =   { ASY_16750,  2, asy_get_ext, asy_put_ext },
349 	/* 16650 extended registers */
350 	[ASY_XON1] =  { ASY_16650,  4, asy_get_ext, asy_put_ext },
351 	[ASY_XON2] =  { ASY_16650,  5, asy_get_ext, asy_put_ext },
352 	[ASY_XOFF1] = { ASY_16650,  6, asy_get_ext, asy_put_ext },
353 	[ASY_XOFF2] = { ASY_16650,  7, asy_get_ext, asy_put_ext },
354 	/* 16950 additional registers */
355 	[ASY_ASR] =   { ASY_16950,  1, asy_get_add, asy_put_add },
356 	[ASY_RFL] =   { ASY_16950,  3, asy_get_add, NULL },
357 	[ASY_TFL] =   { ASY_16950,  4, asy_get_add, NULL },
358 	[ASY_ICR] =   { ASY_16950,  5, asy_get_reg, asy_put_reg },
359 	/* 16950 indexed registers */
360 	[ASY_ACR] =   { ASY_16950,  0, asy_get_idx, asy_put_idx },
361 	[ASY_CPR] =   { ASY_16950,  1, asy_get_idx, asy_put_idx },
362 	[ASY_TCR] =   { ASY_16950,  2, asy_get_idx, asy_put_idx },
363 	[ASY_CKS] =   { ASY_16950,  3, asy_get_idx, asy_put_idx },
364 	[ASY_TTL] =   { ASY_16950,  4, asy_get_idx, asy_put_idx },
365 	[ASY_RTL] =   { ASY_16950,  5, asy_get_idx, asy_put_idx },
366 	[ASY_FCL] =   { ASY_16950,  6, asy_get_idx, asy_put_idx },
367 	[ASY_FCH] =   { ASY_16950,  7, asy_get_idx, asy_put_idx },
368 	[ASY_ID1] =   { ASY_16950,  8, asy_get_idx, NULL },
369 	[ASY_ID2] =   { ASY_16950,  9, asy_get_idx, NULL },
370 	[ASY_ID3] =   { ASY_16950, 10, asy_get_idx, NULL },
371 	[ASY_REV] =   { ASY_16950, 11, asy_get_idx, NULL },
372 	[ASY_CSR] =   { ASY_16950, 12, NULL,	    asy_put_idx },
373 	[ASY_NMR] =   { ASY_16950, 13, asy_get_idx, asy_put_idx },
374 };
375 
376 
377 static int asyrsrv(queue_t *q);
378 static int asyopen(queue_t *rq, dev_t *dev, int flag, int sflag, cred_t *cr);
379 static int asyclose(queue_t *q, int flag, cred_t *credp);
380 static int asywputdo(queue_t *q, mblk_t *mp, boolean_t);
381 static int asywput(queue_t *q, mblk_t *mp);
382 
383 struct module_info asy_info = {
384 	0,
385 	"asy",
386 	0,
387 	INFPSZ,
388 	4096,
389 	128
390 };
391 
392 static struct qinit asy_rint = {
393 	putq,
394 	asyrsrv,
395 	asyopen,
396 	asyclose,
397 	NULL,
398 	&asy_info,
399 	NULL
400 };
401 
402 static struct qinit asy_wint = {
403 	asywput,
404 	NULL,
405 	NULL,
406 	NULL,
407 	NULL,
408 	&asy_info,
409 	NULL
410 };
411 
412 struct streamtab asy_str_info = {
413 	&asy_rint,
414 	&asy_wint,
415 	NULL,
416 	NULL
417 };
418 
419 static void asy_intr_free(struct asycom *);
420 static int asy_intr_setup(struct asycom *, int);
421 
422 static void asy_softintr_free(struct asycom *);
423 static int asy_softintr_setup(struct asycom *);
424 
425 static int asy_suspend(struct asycom *);
426 static int asy_resume(dev_info_t *);
427 
428 static int asyinfo(dev_info_t *dip, ddi_info_cmd_t infocmd, void *arg,
429 		void **result);
430 static int asyprobe(dev_info_t *);
431 static int asyattach(dev_info_t *, ddi_attach_cmd_t);
432 static int asydetach(dev_info_t *, ddi_detach_cmd_t);
433 static int asyquiesce(dev_info_t *);
434 
435 static struct cb_ops cb_asy_ops = {
436 	nodev,			/* cb_open */
437 	nodev,			/* cb_close */
438 	nodev,			/* cb_strategy */
439 	nodev,			/* cb_print */
440 	nodev,			/* cb_dump */
441 	nodev,			/* cb_read */
442 	nodev,			/* cb_write */
443 	nodev,			/* cb_ioctl */
444 	nodev,			/* cb_devmap */
445 	nodev,			/* cb_mmap */
446 	nodev,			/* cb_segmap */
447 	nochpoll,		/* cb_chpoll */
448 	ddi_prop_op,		/* cb_prop_op */
449 	&asy_str_info,		/* cb_stream */
450 	D_MP			/* cb_flag */
451 };
452 
453 struct dev_ops asy_ops = {
454 	DEVO_REV,		/* devo_rev */
455 	0,			/* devo_refcnt */
456 	asyinfo,		/* devo_getinfo */
457 	nulldev,		/* devo_identify */
458 	asyprobe,		/* devo_probe */
459 	asyattach,		/* devo_attach */
460 	asydetach,		/* devo_detach */
461 	nodev,			/* devo_reset */
462 	&cb_asy_ops,		/* devo_cb_ops */
463 	NULL,			/* devo_bus_ops */
464 	NULL,			/* power */
465 	asyquiesce,		/* quiesce */
466 };
467 
468 static struct modldrv modldrv = {
469 	&mod_driverops, /* Type of module.  This one is a driver */
470 	"ASY driver",
471 	&asy_ops,	/* driver ops */
472 };
473 
474 static struct modlinkage modlinkage = {
475 	MODREV_1,
476 	(void *)&modldrv,
477 	NULL
478 };
479 
480 int
481 _init(void)
482 {
483 	int i;
484 
485 	i = ddi_soft_state_init(&asy_soft_state, sizeof (struct asycom), 2);
486 	if (i == 0) {
487 		mutex_init(&asy_glob_lock, NULL, MUTEX_DRIVER, NULL);
488 		if ((i = mod_install(&modlinkage)) != 0) {
489 			mutex_destroy(&asy_glob_lock);
490 			ddi_soft_state_fini(&asy_soft_state);
491 #ifdef DEBUG
492 		} else {
493 			if (debug & ASY_DEBUG_INIT)
494 				cmn_err(CE_NOTE, "!%s, debug = %x",
495 				    modldrv.drv_linkinfo, debug);
496 #endif
497 		}
498 	}
499 	return (i);
500 }
501 
502 int
503 _fini(void)
504 {
505 	int i;
506 
507 	if ((i = mod_remove(&modlinkage)) == 0) {
508 #ifdef DEBUG
509 		if (debug & ASY_DEBUG_INIT)
510 			cmn_err(CE_NOTE, "!%s unloading",
511 			    modldrv.drv_linkinfo);
512 #endif
513 		mutex_destroy(&asy_glob_lock);
514 		/* free "motherboard-serial-ports" property if allocated */
515 		if (com_ports != NULL && com_ports != (int *)standard_com_ports)
516 			ddi_prop_free(com_ports);
517 		com_ports = NULL;
518 		ddi_soft_state_fini(&asy_soft_state);
519 	}
520 	return (i);
521 }
522 
523 int
524 _info(struct modinfo *modinfop)
525 {
526 	return (mod_info(&modlinkage, modinfop));
527 }
528 
529 static void
530 asy_put_idx(const struct asycom *asy, asy_reg_t reg, uint8_t val)
531 {
532 	ASSERT(asy->asy_hwtype >= ASY_16950);
533 
534 	ASSERT(reg >= ASY_ACR);
535 	ASSERT(reg <= ASY_NREG);
536 
537 	/*
538 	 * The last value written to LCR must not have been the magic value for
539 	 * EFR access. Every time the driver writes that magic value to access
540 	 * EFR, XON1, XON2, XOFF1, and XOFF2, the driver restores the original
541 	 * value of LCR, so we should be good here.
542 	 *
543 	 * I'd prefer to ASSERT this, but I'm not sure it's worth the hassle.
544 	 */
545 
546 	/* Write indexed register offset to SPR. */
547 	asy_put(asy, ASY_SPR, asy_reg_table[reg].asy_reg_off);
548 
549 	/* Write value to ICR. */
550 	asy_put(asy, ASY_ICR, val);
551 }
552 
553 static uint8_t
554 asy_get_idx(const struct asycom *asy, asy_reg_t reg)
555 {
556 	uint8_t val;
557 
558 	ASSERT(asy->asy_hwtype >= ASY_16950);
559 
560 	ASSERT(reg >= ASY_ACR);
561 	ASSERT(reg <= ASY_NREG);
562 
563 	/* Enable access to ICR in ACR. */
564 	asy_put(asy, ASY_ACR, ASY_ACR_ICR | asy->asy_acr);
565 
566 	/* Write indexed register offset to SPR. */
567 	asy_put(asy, ASY_SPR, asy_reg_table[reg].asy_reg_off);
568 
569 	/* Read value from ICR. */
570 	val = asy_get(asy, ASY_ICR);
571 
572 	/* Restore ACR. */
573 	asy_put(asy, ASY_ACR, asy->asy_acr);
574 
575 	return (val);
576 }
577 
578 static void
579 asy_put_add(const struct asycom *asy, asy_reg_t reg, uint8_t val)
580 {
581 	ASSERT(asy->asy_hwtype >= ASY_16950);
582 
583 	/* Only ASR is writable, RFL and TFL are read-only. */
584 	ASSERT(reg == ASY_ASR);
585 
586 	/*
587 	 * Only ASR[0] (Transmitter Disabled) and ASR[1] (Remote Transmitter
588 	 * Disabled) are writable.
589 	 */
590 	ASSERT((val & ~(ASY_ASR_TD | ASY_ASR_RTD)) == 0);
591 
592 	/* Enable access to ASR in ACR. */
593 	asy_put(asy, ASY_ACR, ASY_ACR_ASR | asy->asy_acr);
594 
595 	/* Write value to ASR. */
596 	asy_put_reg(asy, reg, val);
597 
598 	/* Restore ACR. */
599 	asy_put(asy, ASY_ACR, asy->asy_acr);
600 }
601 
602 static uint8_t
603 asy_get_add(const struct asycom *asy, asy_reg_t reg)
604 {
605 	uint8_t val;
606 
607 	ASSERT(asy->asy_hwtype >= ASY_16950);
608 
609 	ASSERT(reg >= ASY_ASR);
610 	ASSERT(reg <= ASY_TFL);
611 
612 	/*
613 	 * The last value written to LCR must not have been the magic value for
614 	 * EFR access. Every time the driver writes that magic value to access
615 	 * EFR, XON1, XON2, XOFF1, and XOFF2, the driver restores the original
616 	 * value of LCR, so we should be good here.
617 	 *
618 	 * I'd prefer to ASSERT this, but I'm not sure it's worth the hassle.
619 	 */
620 
621 	/* Enable access to ASR in ACR. */
622 	asy_put(asy, ASY_ACR, ASY_ACR_ASR | asy->asy_acr);
623 
624 	/* Read value from register. */
625 	val = asy_get_reg(asy, reg);
626 
627 	/* Restore ACR. */
628 	asy_put(asy, ASY_ACR, 0 | asy->asy_acr);
629 
630 	return (val);
631 }
632 
633 static void
634 asy_put_ext(const struct asycom *asy, asy_reg_t reg, uint8_t val)
635 {
636 	uint8_t lcr;
637 
638 	/*
639 	 * On the 16750, EFR can be accessed when LCR[7]=1 (DLAB).
640 	 * Only two bits are assigned for auto RTS/CTS, which we don't support
641 	 * yet.
642 	 *
643 	 * So insist we have a 16650 or up.
644 	 */
645 	ASSERT(asy->asy_hwtype >= ASY_16650);
646 
647 	ASSERT(reg >= ASY_EFR);
648 	ASSERT(reg <= ASY_XOFF2);
649 
650 	/* Save LCR contents. */
651 	lcr = asy_get(asy, ASY_LCR);
652 
653 	/* Enable extended register access. */
654 	asy_put(asy, ASY_LCR, ASY_LCR_EFRACCESS);
655 
656 	/* Write extended register */
657 	asy_put_reg(asy, reg, val);
658 
659 	/* Restore previous LCR contents, disabling extended register access. */
660 	asy_put(asy, ASY_LCR, lcr);
661 }
662 
663 static uint8_t
664 asy_get_ext(const struct asycom *asy, asy_reg_t reg)
665 {
666 	uint8_t lcr, val;
667 
668 	/*
669 	 * On the 16750, EFR can be accessed when LCR[7]=1 (DLAB).
670 	 * Only two bits are assigned for auto RTS/CTS, which we don't support
671 	 * yet.
672 	 *
673 	 * So insist we have a 16650 or up.
674 	 */
675 	ASSERT(asy->asy_hwtype >= ASY_16650);
676 
677 	ASSERT(reg >= ASY_EFR);
678 	ASSERT(reg <= ASY_XOFF2);
679 
680 	/* Save LCR contents. */
681 	lcr = asy_get(asy, ASY_LCR);
682 
683 	/* Enable extended register access. */
684 	asy_put(asy, ASY_LCR, ASY_LCR_EFRACCESS);
685 
686 	/* Read extended register */
687 	val = asy_get_reg(asy, reg);
688 
689 	/* Restore previous LCR contents, disabling extended register access. */
690 	asy_put(asy, ASY_LCR, lcr);
691 
692 	return (val);
693 }
694 
695 static void
696 asy_put_reg(const struct asycom *asy, asy_reg_t reg, uint8_t val)
697 {
698 	ASSERT(asy->asy_hwtype >= asy_reg_table[reg].asy_min_hwtype);
699 
700 	ddi_put8(asy->asy_iohandle,
701 	    asy->asy_ioaddr + asy_reg_table[reg].asy_reg_off, val);
702 }
703 
704 static uint8_t
705 asy_get_reg(const struct asycom *asy, asy_reg_t reg)
706 {
707 	ASSERT(asy->asy_hwtype >= asy_reg_table[reg].asy_min_hwtype);
708 
709 	return (ddi_get8(asy->asy_iohandle,
710 	    asy->asy_ioaddr + asy_reg_table[reg].asy_reg_off));
711 }
712 
713 static void
714 asy_put(const struct asycom *asy, asy_reg_t reg, uint8_t val)
715 {
716 	ASSERT(mutex_owned(&asy->asy_excl_hi));
717 
718 	ASSERT(reg > ASY_ILLEGAL);
719 	ASSERT(reg < ASY_NREG);
720 
721 	ASSERT(asy->asy_hwtype >= asy_reg_table[reg].asy_min_hwtype);
722 	ASSERT(asy_reg_table[reg].asy_put_reg != NULL);
723 
724 	asy_reg_table[reg].asy_put_reg(asy, reg, val);
725 }
726 
727 static uint8_t
728 asy_get(const struct asycom *asy, asy_reg_t reg)
729 {
730 	uint8_t val;
731 
732 	ASSERT(mutex_owned(&asy->asy_excl_hi));
733 
734 	ASSERT(reg > ASY_ILLEGAL);
735 	ASSERT(reg < ASY_NREG);
736 
737 	ASSERT(asy->asy_hwtype >= asy_reg_table[reg].asy_min_hwtype);
738 	ASSERT(asy_reg_table[reg].asy_get_reg != NULL);
739 
740 	val = asy_reg_table[reg].asy_get_reg(asy, reg);
741 
742 	return (val);
743 }
744 
745 static void
746 asy_set(const struct asycom *asy, asy_reg_t reg, uint8_t bits)
747 {
748 	uint8_t val = asy_get(asy, reg);
749 
750 	asy_put(asy, reg, val | bits);
751 }
752 
753 static void
754 asy_clr(const struct asycom *asy, asy_reg_t reg, uint8_t bits)
755 {
756 	uint8_t val = asy_get(asy, reg);
757 
758 	asy_put(asy, reg, val & ~bits);
759 }
760 
761 static void
762 asy_enable_interrupts(const struct asycom *asy, uint8_t intr)
763 {
764 	/* Don't touch any IER bits we don't support. */
765 	intr &= ASY_IER_ALL;
766 
767 	asy_set(asy, ASY_IER, intr);
768 }
769 
770 static void
771 asy_disable_interrupts(const struct asycom *asy, uint8_t intr)
772 {
773 	/* Don't touch any IER bits we don't support. */
774 	intr &= ASY_IER_ALL;
775 
776 	asy_clr(asy, ASY_IER, intr);
777 }
778 
779 static void
780 asy_set_baudrate(const struct asycom *asy, int baudrate)
781 {
782 	uint8_t tcr;
783 
784 	if (baudrate == 0)
785 		return;
786 
787 	if (baudrate >= ARRAY_SIZE(asy_baud_tab))
788 		return;
789 
790 	tcr = asy_baud_tab[baudrate].asy_tcr;
791 
792 	if (tcr != 0 && asy->asy_hwtype < ASY_16950)
793 		return;
794 
795 	if (asy->asy_hwtype >= ASY_16950) {
796 		if (tcr == 0x01) {
797 			/* Isochronous 1x mode is selected in CKS, not TCR. */
798 			asy_put(asy, ASY_CKS,
799 			    ASY_CKS_RCLK_1X | ASY_CKS_TCLK_1X);
800 			asy_put(asy, ASY_TCR, 0);
801 		} else {
802 			/* Reset CKS in case it was set to 1x mode. */
803 			asy_put(asy, ASY_CKS, 0);
804 
805 			ASSERT(tcr == 0x00 || tcr >= 0x04 || tcr <= 0x0f);
806 			asy_put(asy, ASY_TCR, tcr);
807 		}
808 		ASY_DPRINTF(asy, ASY_DEBUG_IOCTL,
809 		    "setting baudrate %d, CKS 0x%02x, TCR 0x%02x",
810 		    baudrate, asy_get(asy, ASY_CKS), asy_get(asy, ASY_TCR));
811 	}
812 
813 	ASY_DPRINTF(asy, ASY_DEBUG_IOCTL,
814 	    "setting baudrate %d, divisor 0x%02x%02x",
815 	    baudrate, asy_baud_tab[baudrate].asy_dlh,
816 	    asy_baud_tab[baudrate].asy_dll);
817 
818 	asy_set(asy, ASY_LCR, ASY_LCR_DLAB);
819 
820 	asy_put(asy, ASY_DLL, asy_baud_tab[baudrate].asy_dll);
821 	asy_put(asy, ASY_DLH, asy_baud_tab[baudrate].asy_dlh);
822 
823 	asy_clr(asy, ASY_LCR, ASY_LCR_DLAB);
824 }
825 
826 /*
827  * Loop until the TSR is empty.
828  *
829  * The wait period is clock / (baud * 16) * 16 * 2.
830  */
831 static void
832 asy_wait_baudrate(struct asycom *asy)
833 {
834 	struct asyncline *async = asy->asy_priv;
835 	int rate = BAUDINDEX(async->async_ttycommon.t_cflag);
836 	clock_t usec =
837 	    ((((clock_t)asy_baud_tab[rate].asy_dlh) << 8) |
838 	    ((clock_t)asy_baud_tab[rate].asy_dll)) * 16 * 2;
839 
840 	ASSERT(mutex_owned(&asy->asy_excl));
841 	ASSERT(mutex_owned(&asy->asy_excl_hi));
842 
843 	while ((asy_get(asy, ASY_LSR) & ASY_LSR_TEMT) == 0) {
844 		mutex_exit(&asy->asy_excl_hi);
845 		mutex_exit(&asy->asy_excl);
846 		drv_usecwait(usec);
847 		mutex_enter(&asy->asy_excl);
848 		mutex_enter(&asy->asy_excl_hi);
849 	}
850 	asy_set(asy, ASY_LCR, ASY_LCR_SETBRK);
851 }
852 
853 void
854 async_put_suspq(struct asycom *asy, mblk_t *mp)
855 {
856 	struct asyncline *async = asy->asy_priv;
857 
858 	ASSERT(mutex_owned(&asy->asy_excl));
859 
860 	if (async->async_suspqf == NULL)
861 		async->async_suspqf = mp;
862 	else
863 		async->async_suspqb->b_next = mp;
864 
865 	async->async_suspqb = mp;
866 }
867 
868 static mblk_t *
869 async_get_suspq(struct asycom *asy)
870 {
871 	struct asyncline *async = asy->asy_priv;
872 	mblk_t *mp;
873 
874 	ASSERT(mutex_owned(&asy->asy_excl));
875 
876 	if ((mp = async->async_suspqf) != NULL) {
877 		async->async_suspqf = mp->b_next;
878 		mp->b_next = NULL;
879 	} else {
880 		async->async_suspqb = NULL;
881 	}
882 	return (mp);
883 }
884 
885 static void
886 async_process_suspq(struct asycom *asy)
887 {
888 	struct asyncline *async = asy->asy_priv;
889 	mblk_t *mp;
890 
891 	ASSERT(mutex_owned(&asy->asy_excl));
892 
893 	while ((mp = async_get_suspq(asy)) != NULL) {
894 		queue_t *q;
895 
896 		q = async->async_ttycommon.t_writeq;
897 		ASSERT(q != NULL);
898 		mutex_exit(&asy->asy_excl);
899 		(void) asywputdo(q, mp, B_FALSE);
900 		mutex_enter(&asy->asy_excl);
901 	}
902 	async->async_flags &= ~ASYNC_DDI_SUSPENDED;
903 	cv_broadcast(&async->async_flags_cv);
904 }
905 
906 static int
907 asy_get_bus_type(dev_info_t *devinfo)
908 {
909 	char *prop;
910 	int bustype;
911 
912 	if (ddi_prop_lookup_string(DDI_DEV_T_ANY, devinfo, 0, "device_type",
913 	    &prop) != DDI_PROP_SUCCESS &&
914 	    ddi_prop_lookup_string(DDI_DEV_T_ANY, devinfo, 0, "bus-type",
915 	    &prop) != DDI_PROP_SUCCESS) {
916 		dev_err(devinfo, CE_WARN,
917 		    "!%s: can't figure out device type for parent \"%s\"",
918 		    __func__, ddi_get_name(ddi_get_parent(devinfo)));
919 		return (ASY_BUS_UNKNOWN);
920 	}
921 
922 	if (strcmp(prop, "isa") == 0)
923 		bustype = ASY_BUS_ISA;
924 	else if (strcmp(prop, "pci") == 0)
925 		bustype = ASY_BUS_PCI;
926 	else if (strcmp(prop, "pciex") == 0)
927 		return (ASY_BUS_PCI);
928 	else
929 		bustype = ASY_BUS_UNKNOWN;
930 
931 	ddi_prop_free(prop);
932 	return (bustype);
933 }
934 
935 static int
936 asy_get_io_regnum_pci(dev_info_t *devi, struct asycom *asy)
937 {
938 	int reglen, nregs;
939 	int regnum, i;
940 	uint64_t size;
941 	struct pci_phys_spec *reglist;
942 
943 	if (ddi_getlongprop(DDI_DEV_T_ANY, devi, DDI_PROP_DONTPASS,
944 	    "reg", (caddr_t)&reglist, &reglen) != DDI_PROP_SUCCESS) {
945 		dev_err(devi, CE_WARN, "!%s: reg property"
946 		    " not found in devices property list", __func__);
947 		return (-1);
948 	}
949 
950 	regnum = -1;
951 	nregs = reglen / sizeof (*reglist);
952 	for (i = 0; i < nregs; i++) {
953 		switch (reglist[i].pci_phys_hi & PCI_ADDR_MASK) {
954 		case PCI_ADDR_IO:		/* I/O bus reg property */
955 			if (regnum == -1) /* use only the first one */
956 				regnum = i;
957 			break;
958 
959 		default:
960 			break;
961 		}
962 	}
963 
964 	/* check for valid count of registers */
965 	if (regnum >= 0) {
966 		size = ((uint64_t)reglist[regnum].pci_size_low) |
967 		    ((uint64_t)reglist[regnum].pci_size_hi) << 32;
968 		if (size < 8)
969 			regnum = -1;
970 	}
971 	kmem_free(reglist, reglen);
972 	return (regnum);
973 }
974 
975 static int
976 asy_get_io_regnum_isa(dev_info_t *devi, struct asycom *asy)
977 {
978 	int regnum = -1;
979 	int reglen, nregs;
980 	struct {
981 		uint_t bustype;
982 		int base;
983 		int size;
984 	} *reglist;
985 
986 	if (ddi_getlongprop(DDI_DEV_T_ANY, devi, DDI_PROP_DONTPASS,
987 	    "reg", (caddr_t)&reglist, &reglen) != DDI_PROP_SUCCESS) {
988 		dev_err(devi, CE_WARN, "!%s: reg property not found "
989 		    "in devices property list", __func__);
990 		return (-1);
991 	}
992 
993 	nregs = reglen / sizeof (*reglist);
994 
995 	/*
996 	 * Find the first I/O bus in the "reg" property.
997 	 */
998 	for (int i = 0; i < nregs && regnum == -1; i++) {
999 		if (reglist[i].bustype == 1) {
1000 			regnum = i;
1001 			break;
1002 		}
1003 	}
1004 
1005 	/* check for valid count of registers */
1006 	if ((regnum < 0) || (reglist[regnum].size < 8))
1007 		regnum = -1;
1008 
1009 	kmem_free(reglist, reglen);
1010 
1011 	return (regnum);
1012 }
1013 
1014 static int
1015 asy_get_io_regnum(dev_info_t *devinfo, struct asycom *asy)
1016 {
1017 	switch (asy_get_bus_type(devinfo)) {
1018 	case ASY_BUS_ISA:
1019 		return (asy_get_io_regnum_isa(devinfo, asy));
1020 	case ASY_BUS_PCI:
1021 		return (asy_get_io_regnum_pci(devinfo, asy));
1022 	default:
1023 		return (-1);
1024 	}
1025 }
1026 
1027 static void
1028 asy_intr_free(struct asycom *asy)
1029 {
1030 	int i;
1031 
1032 	for (i = 0; i < asy->asy_intr_cnt; i++) {
1033 		if (asy->asy_inth[i] == NULL)
1034 			break;
1035 
1036 		if ((asy->asy_intr_cap & DDI_INTR_FLAG_BLOCK) != 0)
1037 			(void) ddi_intr_block_disable(&asy->asy_inth[i], 1);
1038 		else
1039 			(void) ddi_intr_disable(asy->asy_inth[i]);
1040 
1041 		(void) ddi_intr_remove_handler(asy->asy_inth[i]);
1042 		(void) ddi_intr_free(asy->asy_inth[i]);
1043 	}
1044 
1045 	kmem_free(asy->asy_inth, asy->asy_inth_sz);
1046 	asy->asy_inth = NULL;
1047 	asy->asy_inth_sz = 0;
1048 }
1049 
1050 static int
1051 asy_intr_setup(struct asycom *asy, int intr_type)
1052 {
1053 	int nintrs, navail, count;
1054 	int ret;
1055 	int i;
1056 
1057 	if (asy->asy_intr_types == 0) {
1058 		ret = ddi_intr_get_supported_types(asy->asy_dip,
1059 		    &asy->asy_intr_types);
1060 		if (ret != DDI_SUCCESS) {
1061 			asyerror(asy, CE_WARN,
1062 			    "ddi_intr_get_supported_types failed");
1063 			return (ret);
1064 		}
1065 	}
1066 
1067 	if ((asy->asy_intr_types & intr_type) == 0)
1068 		return (DDI_FAILURE);
1069 
1070 	ret = ddi_intr_get_nintrs(asy->asy_dip, intr_type, &nintrs);
1071 	if (ret != DDI_SUCCESS) {
1072 		asyerror(asy, CE_WARN, "ddi_intr_get_nintrs failed, type %d",
1073 		    intr_type);
1074 		return (ret);
1075 	}
1076 
1077 	if (nintrs < 1) {
1078 		asyerror(asy, CE_WARN, "no interrupts of type %d", intr_type);
1079 		return (DDI_FAILURE);
1080 	}
1081 
1082 	ret = ddi_intr_get_navail(asy->asy_dip, intr_type, &navail);
1083 	if (ret != DDI_SUCCESS) {
1084 		asyerror(asy, CE_WARN, "ddi_intr_get_navail failed, type %d",
1085 		    intr_type);
1086 		return (ret);
1087 	}
1088 
1089 	if (navail < 1) {
1090 		asyerror(asy, CE_WARN, "no available interrupts, type %d",
1091 		    intr_type);
1092 		return (DDI_FAILURE);
1093 	}
1094 
1095 	/*
1096 	 * Some PCI(e) RS232 adapters seem to support more than one interrupt,
1097 	 * but the asy driver really doesn't.
1098 	 */
1099 	asy->asy_inth_sz = sizeof (ddi_intr_handle_t);
1100 	asy->asy_inth = kmem_zalloc(asy->asy_inth_sz, KM_SLEEP);
1101 	ret = ddi_intr_alloc(asy->asy_dip, asy->asy_inth, intr_type, 0, 1,
1102 	    &count, 0);
1103 	if (ret != DDI_SUCCESS) {
1104 		asyerror(asy, CE_WARN, "ddi_intr_alloc failed, count %d, "
1105 		    "type %d", navail, intr_type);
1106 		goto fail;
1107 	}
1108 
1109 	if (count != 1) {
1110 		asyerror(asy, CE_WARN, "ddi_intr_alloc returned not 1 but %d "
1111 		    "interrupts of type %d", count, intr_type);
1112 		goto fail;
1113 	}
1114 
1115 	asy->asy_intr_cnt = count;
1116 
1117 	ret = ddi_intr_get_pri(asy->asy_inth[0], &asy->asy_intr_pri);
1118 	if (ret != DDI_SUCCESS) {
1119 		asyerror(asy, CE_WARN, "ddi_intr_get_pri failed, type %d",
1120 		    intr_type);
1121 		goto fail;
1122 	}
1123 
1124 	for (i = 0; i < count; i++) {
1125 		ret = ddi_intr_add_handler(asy->asy_inth[i], asyintr,
1126 		    (void *)asy, (void *)(uintptr_t)i);
1127 		if (ret != DDI_SUCCESS) {
1128 			asyerror(asy, CE_WARN, "ddi_intr_add_handler failed, "
1129 			    "int %d, type %d", i, intr_type);
1130 			goto fail;
1131 		}
1132 	}
1133 
1134 	(void) ddi_intr_get_cap(asy->asy_inth[0], &asy->asy_intr_cap);
1135 
1136 	for (i = 0; i < count; i++) {
1137 		if (asy->asy_intr_cap & DDI_INTR_FLAG_BLOCK)
1138 			ret = ddi_intr_block_enable(&asy->asy_inth[i], 1);
1139 		else
1140 			ret = ddi_intr_enable(asy->asy_inth[i]);
1141 
1142 		if (ret != DDI_SUCCESS) {
1143 			asyerror(asy, CE_WARN,
1144 			    "enabling interrupt %d failed, type %d",
1145 			    i, intr_type);
1146 			goto fail;
1147 		}
1148 	}
1149 
1150 	asy->asy_intr_type = intr_type;
1151 	return (DDI_SUCCESS);
1152 
1153 fail:
1154 	asy_intr_free(asy);
1155 	return (ret);
1156 }
1157 
1158 static void
1159 asy_softintr_free(struct asycom *asy)
1160 {
1161 	(void) ddi_intr_remove_softint(asy->asy_soft_inth);
1162 }
1163 
1164 static int
1165 asy_softintr_setup(struct asycom *asy)
1166 {
1167 	int ret;
1168 
1169 	ret = ddi_intr_add_softint(asy->asy_dip, &asy->asy_soft_inth,
1170 	    ASY_SOFT_INT_PRI, asysoftintr, asy);
1171 	if (ret != DDI_SUCCESS) {
1172 		asyerror(asy, CE_WARN, "ddi_intr_add_softint failed");
1173 		return (ret);
1174 	}
1175 
1176 	/*
1177 	 * This may seem pointless since we specified ASY_SOFT_INT_PRI above,
1178 	 * but then it's probably a good idea to consider the soft interrupt
1179 	 * priority an opaque value and don't hardcode any assumptions about
1180 	 * its actual value here.
1181 	 */
1182 	ret = ddi_intr_get_softint_pri(asy->asy_soft_inth,
1183 	    &asy->asy_soft_intr_pri);
1184 	if (ret != DDI_SUCCESS) {
1185 		asyerror(asy, CE_WARN, "ddi_intr_get_softint_pri failed");
1186 		return (ret);
1187 	}
1188 
1189 	return (DDI_SUCCESS);
1190 }
1191 
1192 
1193 static int
1194 asy_resume(dev_info_t *devi)
1195 {
1196 	struct asyncline *async;
1197 	struct asycom *asy;
1198 	int instance = ddi_get_instance(devi);	/* find out which unit */
1199 
1200 #ifdef	DEBUG
1201 	if (asy_nosuspend)
1202 		return (DDI_SUCCESS);
1203 #endif
1204 	asy = ddi_get_soft_state(asy_soft_state, instance);
1205 	if (asy == NULL)
1206 		return (DDI_FAILURE);
1207 
1208 	mutex_enter(&asy->asy_soft_sr);
1209 	mutex_enter(&asy->asy_excl);
1210 	mutex_enter(&asy->asy_excl_hi);
1211 
1212 	async = asy->asy_priv;
1213 	asy_disable_interrupts(asy, ASY_IER_ALL);
1214 	if (asy_identify_chip(devi, asy) != DDI_SUCCESS) {
1215 		mutex_exit(&asy->asy_excl_hi);
1216 		mutex_exit(&asy->asy_excl);
1217 		mutex_exit(&asy->asy_soft_sr);
1218 		asyerror(asy, CE_WARN, "Cannot identify UART chip at %p",
1219 		    (void *)asy->asy_ioaddr);
1220 		return (DDI_FAILURE);
1221 	}
1222 	asy->asy_flags &= ~ASY_DDI_SUSPENDED;
1223 	if (async->async_flags & ASYNC_ISOPEN) {
1224 		asy_program(asy, ASY_INIT);
1225 		/* Kick off output */
1226 		if (async->async_ocnt > 0) {
1227 			async_resume(async);
1228 		} else {
1229 			mutex_exit(&asy->asy_excl_hi);
1230 			if (async->async_xmitblk)
1231 				freeb(async->async_xmitblk);
1232 			async->async_xmitblk = NULL;
1233 			async_start(async);
1234 			mutex_enter(&asy->asy_excl_hi);
1235 		}
1236 		asysetsoft(asy);
1237 	}
1238 	mutex_exit(&asy->asy_excl_hi);
1239 	mutex_exit(&asy->asy_excl);
1240 	mutex_exit(&asy->asy_soft_sr);
1241 
1242 	mutex_enter(&asy->asy_excl);
1243 	if (async->async_flags & ASYNC_RESUME_BUFCALL) {
1244 		async->async_wbufcid = bufcall(async->async_wbufcds,
1245 		    BPRI_HI, (void (*)(void *)) async_reioctl,
1246 		    (void *)(intptr_t)async->async_common->asy_unit);
1247 		async->async_flags &= ~ASYNC_RESUME_BUFCALL;
1248 	}
1249 	async_process_suspq(asy);
1250 	mutex_exit(&asy->asy_excl);
1251 	return (DDI_SUCCESS);
1252 }
1253 
1254 static int
1255 asy_suspend(struct asycom *asy)
1256 {
1257 	struct asyncline *async = asy->asy_priv;
1258 	unsigned i;
1259 	uchar_t lsr;
1260 
1261 #ifdef	DEBUG
1262 	if (asy_nosuspend)
1263 		return (DDI_SUCCESS);
1264 #endif
1265 	mutex_enter(&asy->asy_excl);
1266 
1267 	ASSERT(async->async_ops >= 0);
1268 	while (async->async_ops > 0)
1269 		cv_wait(&async->async_ops_cv, &asy->asy_excl);
1270 
1271 	async->async_flags |= ASYNC_DDI_SUSPENDED;
1272 
1273 	/* Wait for timed break and delay to complete */
1274 	while ((async->async_flags & (ASYNC_BREAK|ASYNC_DELAY))) {
1275 		if (cv_wait_sig(&async->async_flags_cv, &asy->asy_excl) == 0) {
1276 			async_process_suspq(asy);
1277 			mutex_exit(&asy->asy_excl);
1278 			return (DDI_FAILURE);
1279 		}
1280 	}
1281 
1282 	/* Clear untimed break */
1283 	if (async->async_flags & ASYNC_OUT_SUSPEND)
1284 		async_resume_utbrk(async);
1285 
1286 	mutex_exit(&asy->asy_excl);
1287 
1288 	mutex_enter(&asy->asy_soft_sr);
1289 	mutex_enter(&asy->asy_excl);
1290 	if (async->async_wbufcid != 0) {
1291 		bufcall_id_t bcid = async->async_wbufcid;
1292 		async->async_wbufcid = 0;
1293 		async->async_flags |= ASYNC_RESUME_BUFCALL;
1294 		mutex_exit(&asy->asy_excl);
1295 		unbufcall(bcid);
1296 		mutex_enter(&asy->asy_excl);
1297 	}
1298 	mutex_enter(&asy->asy_excl_hi);
1299 
1300 	asy_disable_interrupts(asy, ASY_IER_ALL);
1301 	asy->asy_flags |= ASY_DDI_SUSPENDED;
1302 
1303 	/*
1304 	 * Hardware interrupts are disabled we can drop our high level
1305 	 * lock and proceed.
1306 	 */
1307 	mutex_exit(&asy->asy_excl_hi);
1308 
1309 	/* Process remaining RX characters and RX errors, if any */
1310 	lsr = asy_get(asy, ASY_LSR);
1311 	async_rxint(asy, lsr);
1312 
1313 	/* Wait for TX to drain */
1314 	for (i = 1000; i > 0; i--) {
1315 		lsr = asy_get(asy, ASY_LSR);
1316 		if ((lsr & (ASY_LSR_TEMT | ASY_LSR_THRE)) ==
1317 		    (ASY_LSR_TEMT | ASY_LSR_THRE))
1318 			break;
1319 		delay(drv_usectohz(10000));
1320 	}
1321 	if (i == 0)
1322 		asyerror(asy, CE_WARN, "transmitter wasn't drained before "
1323 		    "driver was suspended");
1324 
1325 	mutex_exit(&asy->asy_excl);
1326 	mutex_exit(&asy->asy_soft_sr);
1327 
1328 	return (DDI_SUCCESS);
1329 }
1330 
1331 static int
1332 asydetach(dev_info_t *devi, ddi_detach_cmd_t cmd)
1333 {
1334 	int instance;
1335 	struct asycom *asy;
1336 
1337 	instance = ddi_get_instance(devi);	/* find out which unit */
1338 
1339 	asy = ddi_get_soft_state(asy_soft_state, instance);
1340 	if (asy == NULL)
1341 		return (DDI_FAILURE);
1342 
1343 	switch (cmd) {
1344 	case DDI_DETACH:
1345 		break;
1346 
1347 	case DDI_SUSPEND:
1348 		return (asy_suspend(asy));
1349 
1350 	default:
1351 		return (DDI_FAILURE);
1352 	}
1353 
1354 	ASY_DPRINTF(asy, ASY_DEBUG_INIT, "%s shutdown", asy_hw_name(asy));
1355 
1356 	/*
1357 	 * Ensure that interrupts are disabled prior to destroying data and
1358 	 * mutexes that they depend on.
1359 	 */
1360 	if ((asy->asy_progress & ASY_PROGRESS_INT) != 0)
1361 		asy_intr_free(asy);
1362 
1363 	if ((asy->asy_progress & ASY_PROGRESS_SOFTINT) != 0)
1364 		asy_softintr_free(asy);
1365 
1366 	if ((asy->asy_progress & ASY_PROGRESS_ASYNC) != 0) {
1367 		struct asyncline *async = asy->asy_priv;
1368 
1369 		asy->asy_priv = NULL;
1370 		/* cancel DTR hold timeout */
1371 		if (async->async_dtrtid != 0) {
1372 			(void) untimeout(async->async_dtrtid);
1373 			async->async_dtrtid = 0;
1374 		}
1375 		cv_destroy(&async->async_flags_cv);
1376 		kmem_free(async, sizeof (struct asyncline));
1377 	}
1378 
1379 	if ((asy->asy_progress & ASY_PROGRESS_MINOR) != 0)
1380 		ddi_remove_minor_node(devi, NULL);
1381 
1382 	if ((asy->asy_progress & ASY_PROGRESS_MUTEX) != 0) {
1383 		mutex_destroy(&asy->asy_excl);
1384 		mutex_destroy(&asy->asy_excl_hi);
1385 		mutex_destroy(&asy->asy_soft_lock);
1386 	}
1387 
1388 	if ((asy->asy_progress & ASY_PROGRESS_REGS) != 0)
1389 		ddi_regs_map_free(&asy->asy_iohandle);
1390 
1391 	ASY_DPRINTF(asy, ASY_DEBUG_INIT, "shutdown complete");
1392 	asy_soft_state_free(asy);
1393 
1394 	return (DDI_SUCCESS);
1395 }
1396 
1397 /*
1398  * asyprobe
1399  * We don't bother probing for the hardware, as since Solaris 2.6, device
1400  * nodes are only created for auto-detected hardware or nodes explicitly
1401  * created by the user, e.g. via the DCA. However, we should check the
1402  * device node is at least vaguely usable, i.e. we have a block of 8 i/o
1403  * ports. This prevents attempting to attach to bogus serial ports which
1404  * some BIOSs still partially report when they are disabled in the BIOS.
1405  */
1406 static int
1407 asyprobe(dev_info_t *devi)
1408 {
1409 	return ((asy_get_io_regnum(devi, NULL) < 0) ?
1410 	    DDI_PROBE_FAILURE : DDI_PROBE_DONTCARE);
1411 }
1412 
1413 static int
1414 asyattach(dev_info_t *devi, ddi_attach_cmd_t cmd)
1415 {
1416 	int instance;
1417 	int mcr;
1418 	int ret;
1419 	int regnum = 0;
1420 	int i;
1421 	struct asycom *asy;
1422 	char name[ASY_MINOR_LEN];
1423 	int status;
1424 	static ddi_device_acc_attr_t ioattr = {
1425 		.devacc_attr_version = DDI_DEVICE_ATTR_V1,
1426 		.devacc_attr_endian_flags = DDI_NEVERSWAP_ACC,
1427 		.devacc_attr_dataorder = DDI_STRICTORDER_ACC,
1428 		.devacc_attr_access = DDI_DEFAULT_ACC
1429 	};
1430 
1431 	switch (cmd) {
1432 	case DDI_ATTACH:
1433 		break;
1434 
1435 	case DDI_RESUME:
1436 		return (asy_resume(devi));
1437 
1438 	default:
1439 		return (DDI_FAILURE);
1440 	}
1441 
1442 	mutex_enter(&asy_glob_lock);
1443 	if (com_ports == NULL) {	/* need to initialize com_ports */
1444 		if (ddi_prop_lookup_int_array(DDI_DEV_T_ANY, devi, 0,
1445 		    "motherboard-serial-ports", &com_ports, &num_com_ports) !=
1446 		    DDI_PROP_SUCCESS) {
1447 			/* Use our built-in COM[1234] values */
1448 			com_ports = (int *)standard_com_ports;
1449 			num_com_ports = sizeof (standard_com_ports) /
1450 			    sizeof (standard_com_ports[0]);
1451 		}
1452 		if (num_com_ports > 10) {
1453 			/* We run out of single digits for device properties */
1454 			num_com_ports = 10;
1455 			cmn_err(CE_WARN,
1456 			    "%s: more than %d motherboard-serial-ports",
1457 			    asy_info.mi_idname, num_com_ports);
1458 		}
1459 	}
1460 	mutex_exit(&asy_glob_lock);
1461 
1462 	instance = ddi_get_instance(devi);	/* find out which unit */
1463 	ret = ddi_soft_state_zalloc(asy_soft_state, instance);
1464 	if (ret != DDI_SUCCESS)
1465 		return (DDI_FAILURE);
1466 	asy = ddi_get_soft_state(asy_soft_state, instance);
1467 
1468 	asy->asy_dip = devi;
1469 #ifdef DEBUG
1470 	asy->asy_debug = debug;
1471 #endif
1472 	asy->asy_unit = instance;
1473 
1474 	regnum = asy_get_io_regnum(devi, asy);
1475 
1476 	if (regnum < 0 ||
1477 	    ddi_regs_map_setup(devi, regnum, (caddr_t *)&asy->asy_ioaddr,
1478 	    (offset_t)0, (offset_t)0, &ioattr, &asy->asy_iohandle)
1479 	    != DDI_SUCCESS) {
1480 		asyerror(asy, CE_WARN, "could not map UART registers @ %p",
1481 		    (void *)asy->asy_ioaddr);
1482 		goto fail;
1483 	}
1484 
1485 	asy->asy_progress |= ASY_PROGRESS_REGS;
1486 
1487 	ASY_DPRINTF(asy, ASY_DEBUG_INIT, "UART @ %p", (void *)asy->asy_ioaddr);
1488 
1489 	/*
1490 	 * Lookup the i/o address to see if this is a standard COM port
1491 	 * in which case we assign it the correct tty[a-d] to match the
1492 	 * COM port number, or some other i/o address in which case it
1493 	 * will be assigned /dev/term/[0123...] in some rather arbitrary
1494 	 * fashion.
1495 	 */
1496 	for (i = 0; i < num_com_ports; i++) {
1497 		if (asy->asy_ioaddr == (uint8_t *)(uintptr_t)com_ports[i]) {
1498 			asy->asy_com_port = i + 1;
1499 			break;
1500 		}
1501 	}
1502 
1503 	/*
1504 	 * It appears that there was async hardware that on reset did not clear
1505 	 * IER.  Hence when we enable interrupts, this hardware would cause the
1506 	 * system to hang if there was input available.
1507 	 *
1508 	 * Don't use asy_disable_interrupts() as the mutexes haven't been
1509 	 * initialized yet.
1510 	 */
1511 	ddi_put8(asy->asy_iohandle,
1512 	    asy->asy_ioaddr + asy_reg_table[ASY_IER].asy_reg_off, 0);
1513 
1514 	/*
1515 	 * Establish default settings:
1516 	 * - use RTS/DTR after open
1517 	 * - 8N1 data format
1518 	 * - 9600 baud
1519 	 */
1520 	asy->asy_mcr |= ASY_MCR_RTS | ASY_MCR_DTR;
1521 	asy->asy_lcr = ASY_LCR_STOP1 | ASY_LCR_BITS8;
1522 	asy->asy_bidx = B9600;
1523 	asy->asy_fifo_buf = 1;
1524 	asy->asy_use_fifo = ASY_FCR_FIFO_OFF;
1525 
1526 #ifdef DEBUG
1527 	asy->asy_msint_cnt = 0;			/* # of times in async_msint */
1528 #endif
1529 	mcr = 0;				/* don't enable until open */
1530 
1531 	if (asy->asy_com_port != 0) {
1532 		/*
1533 		 * For motherboard ports, emulate tty eeprom properties.
1534 		 * Actually, we can't tell if a port is motherboard or not,
1535 		 * so for "motherboard ports", read standard DOS COM ports.
1536 		 */
1537 		switch (asy_getproperty(devi, asy, "ignore-cd")) {
1538 		case 0:				/* *-ignore-cd=False */
1539 			ASY_DPRINTF(asy, ASY_DEBUG_MODEM,
1540 			    "clear ASY_IGNORE_CD");
1541 			asy->asy_flags &= ~ASY_IGNORE_CD; /* wait for cd */
1542 			break;
1543 		case 1:				/* *-ignore-cd=True */
1544 			/*FALLTHRU*/
1545 		default:			/* *-ignore-cd not defined */
1546 			/*
1547 			 * We set rather silly defaults of soft carrier on
1548 			 * and DTR/RTS raised here because it might be that
1549 			 * one of the motherboard ports is the system console.
1550 			 */
1551 			ASY_DPRINTF(asy, ASY_DEBUG_MODEM,
1552 			    "set ASY_IGNORE_CD, set RTS & DTR");
1553 			mcr = asy->asy_mcr;		/* rts/dtr on */
1554 			asy->asy_flags |= ASY_IGNORE_CD;	/* ignore cd */
1555 			break;
1556 		}
1557 
1558 		/* Property for not raising DTR/RTS */
1559 		switch (asy_getproperty(devi, asy, "rts-dtr-off")) {
1560 		case 0:				/* *-rts-dtr-off=False */
1561 			asy->asy_flags |= ASY_RTS_DTR_OFF;	/* OFF */
1562 			mcr = asy->asy_mcr;		/* rts/dtr on */
1563 			ASY_DPRINTF(asy, ASY_DEBUG_MODEM,
1564 			    "ASY_RTS_DTR_OFF set and DTR & RTS set");
1565 			break;
1566 		case 1:				/* *-rts-dtr-off=True */
1567 			/*FALLTHRU*/
1568 		default:			/* *-rts-dtr-off undefined */
1569 			break;
1570 		}
1571 
1572 		/* Parse property for tty modes */
1573 		asy_parse_mode(devi, asy);
1574 	} else {
1575 		ASY_DPRINTF(asy, ASY_DEBUG_MODEM,
1576 		    "clear ASY_IGNORE_CD, clear RTS & DTR");
1577 		asy->asy_flags &= ~ASY_IGNORE_CD;	/* wait for cd */
1578 	}
1579 
1580 	/*
1581 	 * Install per instance software interrupt handler.
1582 	 */
1583 	if (asy_softintr_setup(asy) != DDI_SUCCESS) {
1584 		asyerror(asy, CE_WARN, "Cannot set soft interrupt");
1585 		goto fail;
1586 	}
1587 
1588 	asy->asy_progress |= ASY_PROGRESS_SOFTINT;
1589 
1590 	/*
1591 	 * Install interrupt handler for this device.
1592 	 */
1593 	if ((asy_intr_setup(asy, DDI_INTR_TYPE_MSIX) != DDI_SUCCESS) &&
1594 	    (asy_intr_setup(asy, DDI_INTR_TYPE_MSI) != DDI_SUCCESS) &&
1595 	    (asy_intr_setup(asy, DDI_INTR_TYPE_FIXED) != DDI_SUCCESS)) {
1596 		asyerror(asy, CE_WARN, "Cannot set device interrupt");
1597 		goto fail;
1598 	}
1599 
1600 	asy->asy_progress |= ASY_PROGRESS_INT;
1601 
1602 	/*
1603 	 * Initialize mutexes before accessing the hardware
1604 	 */
1605 	mutex_init(&asy->asy_soft_lock, NULL, MUTEX_DRIVER,
1606 	    DDI_INTR_PRI(asy->asy_soft_intr_pri));
1607 	mutex_init(&asy->asy_soft_sr, NULL, MUTEX_DRIVER,
1608 	    DDI_INTR_PRI(asy->asy_soft_intr_pri));
1609 
1610 	mutex_init(&asy->asy_excl, NULL, MUTEX_DRIVER, NULL);
1611 	mutex_init(&asy->asy_excl_hi, NULL, MUTEX_DRIVER,
1612 	    DDI_INTR_PRI(asy->asy_intr_pri));
1613 
1614 	asy->asy_progress |= ASY_PROGRESS_MUTEX;
1615 
1616 	mutex_enter(&asy->asy_excl);
1617 	mutex_enter(&asy->asy_excl_hi);
1618 
1619 	if (asy_identify_chip(devi, asy) != DDI_SUCCESS) {
1620 		asyerror(asy, CE_WARN, "Cannot identify UART chip at %p",
1621 		    (void *)asy->asy_ioaddr);
1622 		goto fail;
1623 	}
1624 
1625 	asy_disable_interrupts(asy, ASY_IER_ALL);
1626 	asy_put(asy, ASY_LCR, asy->asy_lcr);
1627 	asy_set_baudrate(asy, asy->asy_bidx);
1628 	asy_put(asy, ASY_MCR, mcr);
1629 
1630 	mutex_exit(&asy->asy_excl_hi);
1631 	mutex_exit(&asy->asy_excl);
1632 
1633 	asyinit(asy);	/* initialize the asyncline structure */
1634 	asy->asy_progress |= ASY_PROGRESS_ASYNC;
1635 
1636 	/* create minor device nodes for this device */
1637 	if (asy->asy_com_port != 0) {
1638 		/*
1639 		 * For DOS COM ports, add letter suffix so
1640 		 * devfsadm can create correct link names.
1641 		 */
1642 		name[0] = asy->asy_com_port + 'a' - 1;
1643 		name[1] = '\0';
1644 	} else {
1645 		/*
1646 		 * asy port which isn't a standard DOS COM
1647 		 * port gets a numeric name based on instance
1648 		 */
1649 		(void) snprintf(name, ASY_MINOR_LEN, "%d", instance);
1650 	}
1651 	status = ddi_create_minor_node(devi, name, S_IFCHR, instance,
1652 	    asy->asy_com_port != 0 ? DDI_NT_SERIAL_MB : DDI_NT_SERIAL, 0);
1653 	if (status == DDI_SUCCESS) {
1654 		(void) strcat(name, ",cu");
1655 		status = ddi_create_minor_node(devi, name, S_IFCHR,
1656 		    OUTLINE | instance,
1657 		    asy->asy_com_port != 0 ? DDI_NT_SERIAL_MB_DO :
1658 		    DDI_NT_SERIAL_DO, 0);
1659 	}
1660 
1661 	if (status != DDI_SUCCESS)
1662 		goto fail;
1663 
1664 	asy->asy_progress |= ASY_PROGRESS_MINOR;
1665 
1666 	/*
1667 	 * Fill in the polled I/O structure.
1668 	 */
1669 	asy->polledio.cons_polledio_version = CONSPOLLEDIO_V0;
1670 	asy->polledio.cons_polledio_argument = (cons_polledio_arg_t)asy;
1671 	asy->polledio.cons_polledio_putchar = asyputchar;
1672 	asy->polledio.cons_polledio_getchar = asygetchar;
1673 	asy->polledio.cons_polledio_ischar = asyischar;
1674 	asy->polledio.cons_polledio_enter = NULL;
1675 	asy->polledio.cons_polledio_exit = NULL;
1676 
1677 	ddi_report_dev(devi);
1678 	ASY_DPRINTF(asy, ASY_DEBUG_INIT, "done");
1679 	return (DDI_SUCCESS);
1680 
1681 fail:
1682 	(void) asydetach(devi, DDI_DETACH);
1683 	return (DDI_FAILURE);
1684 }
1685 
1686 static int
1687 asyinfo(dev_info_t *dip __unused, ddi_info_cmd_t infocmd, void *arg,
1688     void **result)
1689 {
1690 	dev_t dev = (dev_t)arg;
1691 	int instance, error;
1692 	struct asycom *asy;
1693 
1694 	instance = UNIT(dev);
1695 
1696 	switch (infocmd) {
1697 	case DDI_INFO_DEVT2DEVINFO:
1698 		asy = ddi_get_soft_state(asy_soft_state, instance);
1699 		if ((asy == NULL) || (asy->asy_dip == NULL))
1700 			error = DDI_FAILURE;
1701 		else {
1702 			*result = (void *) asy->asy_dip;
1703 			error = DDI_SUCCESS;
1704 		}
1705 		break;
1706 	case DDI_INFO_DEVT2INSTANCE:
1707 		*result = (void *)(intptr_t)instance;
1708 		error = DDI_SUCCESS;
1709 		break;
1710 	default:
1711 		error = DDI_FAILURE;
1712 	}
1713 	return (error);
1714 }
1715 
1716 /* asy_getproperty -- walk through all name variants until we find a match */
1717 
1718 static int
1719 asy_getproperty(dev_info_t *devi, struct asycom *asy, const char *property)
1720 {
1721 	int len;
1722 	int ret;
1723 	char letter = asy->asy_com_port + 'a' - 1;	/* for ttya */
1724 	char number = asy->asy_com_port + '0';		/* for COM1 */
1725 	char val[40];
1726 	char name[40];
1727 
1728 	/* Property for ignoring DCD */
1729 	(void) sprintf(name, "tty%c-%s", letter, property);
1730 	len = sizeof (val);
1731 	ret = GET_PROP(devi, name, DDI_PROP_CANSLEEP, val, &len);
1732 	if (ret != DDI_PROP_SUCCESS) {
1733 		(void) sprintf(name, "com%c-%s", number, property);
1734 		len = sizeof (val);
1735 		ret = GET_PROP(devi, name, DDI_PROP_CANSLEEP, val, &len);
1736 	}
1737 	if (ret != DDI_PROP_SUCCESS) {
1738 		(void) sprintf(name, "tty0%c-%s", number, property);
1739 		len = sizeof (val);
1740 		ret = GET_PROP(devi, name, DDI_PROP_CANSLEEP, val, &len);
1741 	}
1742 	if (ret != DDI_PROP_SUCCESS) {
1743 		(void) sprintf(name, "port-%c-%s", letter, property);
1744 		len = sizeof (val);
1745 		ret = GET_PROP(devi, name, DDI_PROP_CANSLEEP, val, &len);
1746 	}
1747 	if (ret != DDI_PROP_SUCCESS)
1748 		return (-1);		/* property non-existant */
1749 	if (val[0] == 'f' || val[0] == 'F' || val[0] == '0')
1750 		return (0);		/* property false/0 */
1751 	return (1);			/* property true/!0 */
1752 }
1753 
1754 /* asy_soft_state_free - local wrapper for ddi_soft_state_free(9F) */
1755 
1756 static void
1757 asy_soft_state_free(struct asycom *asy)
1758 {
1759 	if (asy->asy_priv != NULL) {
1760 		kmem_free(asy->asy_priv, sizeof (struct asyncline));
1761 		asy->asy_priv = NULL;
1762 	}
1763 	ddi_soft_state_free(asy_soft_state, asy->asy_unit);
1764 }
1765 
1766 static char *
1767 asy_hw_name(struct asycom *asy)
1768 {
1769 	switch (asy->asy_hwtype) {
1770 	case ASY_8250A:
1771 		return ("8250A/16450");
1772 	case ASY_16550:
1773 		return ("16550");
1774 	case ASY_16550A:
1775 		return ("16550A");
1776 	case ASY_16650:
1777 		return ("16650");
1778 	case ASY_16750:
1779 		return ("16750");
1780 	case ASY_16950:
1781 		return ("16950");
1782 	}
1783 
1784 	ASY_DPRINTF(asy, ASY_DEBUG_INIT, "unknown asy_hwtype: %d",
1785 	    asy->asy_hwtype);
1786 	return ("?");
1787 }
1788 
1789 static boolean_t
1790 asy_is_devid(struct asycom *asy, char *venprop, char *devprop,
1791     int venid, int devid)
1792 {
1793 	if (ddi_prop_get_int(DDI_DEV_T_ANY, asy->asy_dip, DDI_PROP_DONTPASS,
1794 	    venprop, 0) != venid) {
1795 		return (B_FALSE);
1796 	}
1797 
1798 	if (ddi_prop_get_int(DDI_DEV_T_ANY, asy->asy_dip, DDI_PROP_DONTPASS,
1799 	    devprop, 0) != devid) {
1800 		return (B_FALSE);
1801 	}
1802 
1803 	return (B_FALSE);
1804 }
1805 
1806 static void
1807 asy_check_loopback(struct asycom *asy)
1808 {
1809 	if (asy_get_bus_type(asy->asy_dip) != ASY_BUS_PCI)
1810 		return;
1811 
1812 	/* Check if this is a Agere/Lucent Venus PCI modem chipset. */
1813 	if (asy_is_devid(asy, "vendor-id", "device-id", 0x11c1, 0x0480) ||
1814 	    asy_is_devid(asy, "subsystem-vendor-id", "subsystem-id", 0x11c1,
1815 	    0x0480))
1816 		asy->asy_flags2 |= ASY2_NO_LOOPBACK;
1817 }
1818 
1819 static int
1820 asy_identify_chip(dev_info_t *devi, struct asycom *asy)
1821 {
1822 	int isr, lsr, mcr, spr;
1823 	dev_t dev;
1824 	uint_t hwtype;
1825 
1826 	/*
1827 	 * Initially, we'll assume we have the highest supported chip model
1828 	 * until we find out what we actually have.
1829 	 */
1830 	asy->asy_hwtype = ASY_MAXCHIP;
1831 
1832 	/*
1833 	 * First, see if we can even do the loopback check, which may not work
1834 	 * on certain hardware.
1835 	 */
1836 	asy_check_loopback(asy);
1837 
1838 	if (asy_scr_test) {
1839 		/* Check that the scratch register works. */
1840 
1841 		/* write to scratch register */
1842 		asy_put(asy, ASY_SPR, ASY_SPR_TEST);
1843 		/* make sure that pattern doesn't just linger on the bus */
1844 		asy_put(asy, ASY_FCR, 0x00);
1845 		/* read data back from scratch register */
1846 		spr = asy_get(asy, ASY_SPR);
1847 		if (spr != ASY_SPR_TEST) {
1848 			/*
1849 			 * Scratch register not working.
1850 			 * Probably not an async chip.
1851 			 * 8250 and 8250B don't have scratch registers,
1852 			 * but only worked in ancient PC XT's anyway.
1853 			 */
1854 			asyerror(asy, CE_WARN, "UART @ %p "
1855 			    "scratch register: expected 0x5a, got 0x%02x",
1856 			    (void *)asy->asy_ioaddr, spr);
1857 			return (DDI_FAILURE);
1858 		}
1859 	}
1860 	/*
1861 	 * Use 16550 fifo reset sequence specified in NS application
1862 	 * note. Disable fifos until chip is initialized.
1863 	 */
1864 	asy_put(asy, ASY_FCR, 0x00);				 /* disable */
1865 	asy_put(asy, ASY_FCR, ASY_FCR_FIFO_EN);			 /* enable */
1866 	asy_put(asy, ASY_FCR, ASY_FCR_FIFO_EN | ASY_FCR_RHR_FL); /* reset */
1867 	if (asymaxchip >= ASY_16650 && asy_scr_test) {
1868 		/*
1869 		 * Reset 16650 enhanced regs also, in case we have one of these
1870 		 */
1871 		asy_put(asy, ASY_EFR, 0);
1872 	}
1873 
1874 	/*
1875 	 * See what sort of FIFO we have.
1876 	 * Try enabling it and see what chip makes of this.
1877 	 */
1878 
1879 	asy->asy_fifor = 0;
1880 	if (asymaxchip >= ASY_16550A)
1881 		asy->asy_fifor |=
1882 		    ASY_FCR_FIFO_EN | ASY_FCR_DMA | (asy_trig_level & 0xff);
1883 
1884 	/*
1885 	 * On the 16750, FCR[5] enables the 64 byte FIFO. FCR[5] can only be set
1886 	 * while LCR[7] = 1 (DLAB), which is taken care of by asy_reset_fifo().
1887 	 */
1888 	if (asymaxchip >= ASY_16750)
1889 		asy->asy_fifor |= ASY_FCR_FIFO64;
1890 
1891 	asy_reset_fifo(asy, ASY_FCR_THR_FL | ASY_FCR_RHR_FL);
1892 
1893 	mcr = asy_get(asy, ASY_MCR);
1894 	isr = asy_get(asy, ASY_ISR);
1895 
1896 	/*
1897 	 * Note we get 0xff if chip didn't return us anything,
1898 	 * e.g. if there's no chip there.
1899 	 */
1900 	if (isr == 0xff) {
1901 		asyerror(asy, CE_WARN, "UART @ %p interrupt register: got 0xff",
1902 		    (void *)asy->asy_ioaddr);
1903 		return (DDI_FAILURE);
1904 	}
1905 
1906 	ASY_DPRINTF(asy, ASY_DEBUG_CHIP,
1907 	    "probe fifo FIFOR=0x%02x ISR=0x%02x MCR=0x%02x",
1908 	    asy->asy_fifor | ASY_FCR_THR_FL | ASY_FCR_RHR_FL, isr, mcr);
1909 
1910 	/*
1911 	 * Detect the chip type by comparing ISR[7,6] and ISR[5].
1912 	 *
1913 	 * When the FIFOs are enabled by setting FCR[0], ISR[7,6] read as 1.
1914 	 * Additionally on a 16750, the 64 byte FIFOs are enabled by setting
1915 	 * FCR[5], and ISR[5] will read as 1, too.
1916 	 *
1917 	 * We will check later whether we have a 16650, which requires EFR[4]=1
1918 	 * to enable its deeper FIFOs and extra features. It does not use FCR[5]
1919 	 * and ISR[5] to enable deeper FIFOs like the 16750 does.
1920 	 */
1921 	switch (isr & (ASY_ISR_FIFOEN | ASY_ISR_FIFO64)) {
1922 	case 0x40:				/* 16550 with broken FIFOs */
1923 		hwtype = ASY_16550;
1924 		asy->asy_fifor = 0;
1925 		break;
1926 
1927 	case ASY_ISR_FIFOEN:			/* 16550A with working FIFOs */
1928 		hwtype = ASY_16550A;
1929 		asy->asy_fifo_buf = 16;
1930 		asy->asy_use_fifo = ASY_FCR_FIFO_EN;
1931 		asy->asy_fifor &= ~ASY_FCR_FIFO64;
1932 		break;
1933 
1934 	case ASY_ISR_FIFOEN | ASY_ISR_FIFO64:	/* 16750 with 64byte FIFOs */
1935 		hwtype = ASY_16750;
1936 		asy->asy_fifo_buf = 64;
1937 		asy->asy_use_fifo = ASY_FCR_FIFO_EN;
1938 		break;
1939 
1940 	default:				/* 8250A/16450 without FIFOs */
1941 		hwtype = ASY_8250A;
1942 		asy->asy_fifor = 0;
1943 	}
1944 
1945 	if (hwtype > asymaxchip) {
1946 		asyerror(asy, CE_WARN, "UART @ %p "
1947 		    "unexpected probe result: "
1948 		    "FCR=0x%02x ISR=0x%02x MCR=0x%02x",
1949 		    (void *)asy->asy_ioaddr,
1950 		    asy->asy_fifor | ASY_FCR_THR_FL | ASY_FCR_RHR_FL, isr, mcr);
1951 		return (DDI_FAILURE);
1952 	}
1953 
1954 	/*
1955 	 * Now reset the FIFO operation appropriate for the chip type.
1956 	 * Note we must call asy_reset_fifo() before any possible
1957 	 * downgrade of the asy->asy_hwtype, or it may not disable
1958 	 * the more advanced features we specifically want downgraded.
1959 	 */
1960 	asy_reset_fifo(asy, 0);
1961 
1962 	/*
1963 	 * Check for Exar/Startech ST16C650 or newer, which will still look like
1964 	 * a 16550A until we enable its enhanced mode.
1965 	 */
1966 	if (hwtype >= ASY_16550A && asymaxchip >= ASY_16650 &&
1967 	    asy_scr_test) {
1968 		/*
1969 		 * Write the XOFF2 register, which shadows SPR on the 16650.
1970 		 * On other chips, SPR will be overwritten.
1971 		 */
1972 		asy_put(asy, ASY_XOFF2, 0);
1973 
1974 		/* read back scratch register */
1975 		spr = asy_get(asy, ASY_SPR);
1976 
1977 		if (spr == ASY_SPR_TEST) {
1978 			/* looks like we have an ST16650 -- enable it */
1979 			hwtype = ASY_16650;
1980 			asy_put(asy, ASY_EFR, ASY_EFR_ENH_EN);
1981 
1982 			/*
1983 			 * Some 16650-compatible chips are also compatible with
1984 			 * the 16750 and have deeper FIFOs, which we may have
1985 			 * detected above. Don't downgrade the FIFO size.
1986 			 */
1987 			if (asy->asy_fifo_buf < 32)
1988 				asy->asy_fifo_buf = 32;
1989 
1990 			/*
1991 			 * Use a 24 byte transmit FIFO trigger only if were
1992 			 * allowed to use >16 transmit FIFO depth by the
1993 			 * global tunable.
1994 			 */
1995 			if (asy_max_tx_fifo >= asy->asy_fifo_buf)
1996 				asy->asy_fifor |= ASY_FCR_THR_TRIG_24;
1997 			asy_reset_fifo(asy, 0);
1998 		}
1999 	}
2000 
2001 	/*
2002 	 * If we think we got a 16650, we may actually have a 16950, so check
2003 	 * for that.
2004 	 */
2005 	if (hwtype >= ASY_16650 && asymaxchip >= ASY_16950) {
2006 		uint8_t ier, asr;
2007 
2008 		/*
2009 		 * First, clear IER and read it back. That should be a no-op as
2010 		 * either asyattach() or asy_resume() disabled all interrupts
2011 		 * before we were called.
2012 		 */
2013 		asy_put(asy, ASY_IER, 0);
2014 		ier = asy_get(asy, ASY_IER);
2015 		if (ier != 0) {
2016 			dev_err(asy->asy_dip, CE_WARN, "!%s: UART @ %p "
2017 			    "interrupt enable register: got 0x%02x", __func__,
2018 			    (void *)asy->asy_ioaddr, ier);
2019 			return (DDI_FAILURE);
2020 		}
2021 
2022 		/*
2023 		 * Next, try to read ASR, which shares the register offset with
2024 		 * IER. ASR can only be read if the ASR enable bit is set in
2025 		 * ACR, which itself is an indexed registers. This is taken care
2026 		 * of by asy_get().
2027 		 *
2028 		 * There are a few bits in ASR which should be 1 at this point,
2029 		 * definitely the TX idle bit (ASR[7]) and also the FIFO size
2030 		 * bit (ASR[6]) since we've done everything we can to enable any
2031 		 * deeper FIFO support.
2032 		 *
2033 		 * Thus if we read back ASR as 0, we failed to read it, and this
2034 		 * isn't the chip we're looking for.
2035 		 */
2036 		asr = asy_get(asy, ASY_ASR);
2037 
2038 		if (asr != ier) {
2039 			hwtype = ASY_16950;
2040 
2041 			if ((asr & ASY_ASR_FIFOSZ) != 0)
2042 				asy->asy_fifo_buf = 128;
2043 			else
2044 				asy->asy_fifo_buf = 16;
2045 
2046 			asy_reset_fifo(asy, 0);
2047 
2048 			/*
2049 			 * Enable 16950 specific trigger level registers. Set
2050 			 * DTR pin to be compatible to 16450, 16550, and 16750.
2051 			 */
2052 			asy->asy_acr = ASY_ACR_TRIG | ASY_ACR_DTR_NORM;
2053 			asy_put(asy, ASY_ACR, asy->asy_acr);
2054 
2055 			/* Set half the FIFO size as receive trigger level. */
2056 			asy_put(asy, ASY_RTL, asy->asy_fifo_buf/2);
2057 
2058 			/*
2059 			 * Set the transmit trigger level to 1.
2060 			 *
2061 			 * While one would expect that any transmit trigger
2062 			 * level would work (the 16550 uses a hardwired level
2063 			 * of 16), in my tests with a 16950 compatible chip
2064 			 * (MosChip 9912) I would never see a TX interrupt
2065 			 * on any transmit trigger level > 1.
2066 			 */
2067 			asy_put(asy, ASY_TTL, 1);
2068 
2069 			ASY_DPRINTF(asy, ASY_DEBUG_CHIP, "ASR 0x%02x", asr);
2070 			ASY_DPRINTF(asy, ASY_DEBUG_CHIP, "RFL 0x%02x",
2071 			    asy_get(asy, ASY_RFL));
2072 			ASY_DPRINTF(asy, ASY_DEBUG_CHIP, "TFL 0x%02x",
2073 			    asy_get(asy, ASY_TFL));
2074 
2075 			ASY_DPRINTF(asy, ASY_DEBUG_CHIP, "ACR 0x%02x",
2076 			    asy_get(asy, ASY_ACR));
2077 			ASY_DPRINTF(asy, ASY_DEBUG_CHIP, "CPR 0x%02x",
2078 			    asy_get(asy, ASY_CPR));
2079 			ASY_DPRINTF(asy, ASY_DEBUG_CHIP, "TCR 0x%02x",
2080 			    asy_get(asy, ASY_TCR));
2081 			ASY_DPRINTF(asy, ASY_DEBUG_CHIP, "CKS 0x%02x",
2082 			    asy_get(asy, ASY_CKS));
2083 			ASY_DPRINTF(asy, ASY_DEBUG_CHIP, "TTL 0x%02x",
2084 			    asy_get(asy, ASY_TTL));
2085 			ASY_DPRINTF(asy, ASY_DEBUG_CHIP, "RTL 0x%02x",
2086 			    asy_get(asy, ASY_RTL));
2087 			ASY_DPRINTF(asy, ASY_DEBUG_CHIP, "FCL 0x%02x",
2088 			    asy_get(asy, ASY_FCL));
2089 			ASY_DPRINTF(asy, ASY_DEBUG_CHIP, "FCH 0x%02x",
2090 			    asy_get(asy, ASY_FCH));
2091 
2092 			ASY_DPRINTF(asy, ASY_DEBUG_CHIP,
2093 			    "Chip ID: %02x%02x%02x,%02x",
2094 			    asy_get(asy, ASY_ID1), asy_get(asy, ASY_ID2),
2095 			    asy_get(asy, ASY_ID3), asy_get(asy, ASY_REV));
2096 
2097 		}
2098 	}
2099 
2100 	asy->asy_hwtype = hwtype;
2101 
2102 	/*
2103 	 * If we think we might have a FIFO larger than 16 characters,
2104 	 * measure FIFO size and check it against expected.
2105 	 */
2106 	if (asy_fifo_test > 0 &&
2107 	    !(asy->asy_flags2 & ASY2_NO_LOOPBACK) &&
2108 	    (asy->asy_fifo_buf > 16 ||
2109 	    (asy_fifo_test > 1 && asy->asy_use_fifo == ASY_FCR_FIFO_EN) ||
2110 	    ASY_DEBUG(asy, ASY_DEBUG_CHIP))) {
2111 		int i;
2112 
2113 		/* Set baud rate to 57600 (fairly arbitrary choice) */
2114 		asy_set_baudrate(asy, B57600);
2115 		/* Set 8 bits, 1 stop bit */
2116 		asy_put(asy, ASY_LCR, ASY_LCR_STOP1 | ASY_LCR_BITS8);
2117 		/* Set loopback mode */
2118 		asy_put(asy, ASY_MCR, ASY_MCR_LOOPBACK);
2119 
2120 		/* Overfill fifo */
2121 		for (i = 0; i < asy->asy_fifo_buf * 2; i++) {
2122 			asy_put(asy, ASY_THR, i);
2123 		}
2124 		/*
2125 		 * Now there's an interesting question here about which
2126 		 * FIFO we're testing the size of, RX or TX. We just
2127 		 * filled the TX FIFO much faster than it can empty,
2128 		 * although it is possible one or two characters may
2129 		 * have gone from it to the TX shift register.
2130 		 * We wait for enough time for all the characters to
2131 		 * move into the RX FIFO and any excess characters to
2132 		 * have been lost, and then read all the RX FIFO. So
2133 		 * the answer we finally get will be the size which is
2134 		 * the MIN(RX FIFO,(TX FIFO + 1 or 2)). The critical
2135 		 * one is actually the TX FIFO, because if we overfill
2136 		 * it in normal operation, the excess characters are
2137 		 * lost with no warning.
2138 		 */
2139 		/*
2140 		 * Wait for characters to move into RX FIFO.
2141 		 * In theory, 200 * asy->asy_fifo_buf * 2 should be
2142 		 * enough. However, in practice it isn't always, so we
2143 		 * increase to 400 so some slow 16550A's finish, and we
2144 		 * increase to 3 so we spot more characters coming back
2145 		 * than we sent, in case that should ever happen.
2146 		 */
2147 		delay(drv_usectohz(400 * asy->asy_fifo_buf * 3));
2148 
2149 		/* Now see how many characters we can read back */
2150 		for (i = 0; i < asy->asy_fifo_buf * 3; i++) {
2151 			lsr = asy_get(asy, ASY_LSR);
2152 			if (!(lsr & ASY_LSR_DR))
2153 				break;	/* FIFO emptied */
2154 			(void) asy_get(asy, ASY_RHR); /* lose another */
2155 		}
2156 
2157 		ASY_DPRINTF(asy, ASY_DEBUG_CHIP,
2158 		    "FIFO size: expected=%d, measured=%d",
2159 		    asy->asy_fifo_buf, i);
2160 
2161 		hwtype = asy->asy_hwtype;
2162 		if (i < asy->asy_fifo_buf) {
2163 			/*
2164 			 * FIFO is somewhat smaller than we anticipated.
2165 			 * If we have 16 characters usable, then this
2166 			 * UART will probably work well enough in
2167 			 * 16550A mode. If less than 16 characters,
2168 			 * then we'd better not use it at all.
2169 			 * UARTs with busted FIFOs do crop up.
2170 			 */
2171 			if (i >= 16 && asy->asy_fifo_buf >= 16) {
2172 				/* fall back to a 16550A */
2173 				hwtype = ASY_16550A;
2174 				asy->asy_fifo_buf = 16;
2175 				asy->asy_fifor &=
2176 				    ~(ASY_FCR_THR_TR0 | ASY_FCR_THR_TR1);
2177 			} else {
2178 				/* fall back to no FIFO at all */
2179 				hwtype = ASY_16550;
2180 				asy->asy_fifo_buf = 1;
2181 				asy->asy_use_fifo = ASY_FCR_FIFO_OFF;
2182 				asy->asy_fifor = 0;
2183 			}
2184 		} else if (i > asy->asy_fifo_buf) {
2185 			/*
2186 			 * The FIFO is larger than expected. Use it if it is
2187 			 * a power of 2.
2188 			 */
2189 			if (ISP2(i))
2190 				asy->asy_fifo_buf = i;
2191 		}
2192 
2193 		/*
2194 		 * We will need to reprogram the FIFO if we changed
2195 		 * our mind about how to drive it above, and in any
2196 		 * case, it would be a good idea to flush any garbage
2197 		 * out incase the loopback test left anything behind.
2198 		 * Again as earlier above, we must call asy_reset_fifo()
2199 		 * before any possible downgrade of asy->asy_hwtype.
2200 		 */
2201 		if (asy->asy_hwtype >= ASY_16650 && hwtype < ASY_16650) {
2202 			/* Disable 16650 enhanced mode */
2203 			asy_put(asy, ASY_EFR, 0);
2204 		}
2205 		asy_reset_fifo(asy, ASY_FCR_THR_FL | ASY_FCR_RHR_FL);
2206 		asy->asy_hwtype = hwtype;
2207 
2208 		/* Clear loopback mode and restore DTR/RTS */
2209 		asy_put(asy, ASY_MCR, mcr);
2210 	}
2211 
2212 	ASY_DPRINTF(asy, ASY_DEBUG_CHIP, "%s @ %p",
2213 	    asy_hw_name(asy), (void *)asy->asy_ioaddr);
2214 
2215 	/* Make UART type visible in device tree for prtconf, etc */
2216 	dev = makedevice(DDI_MAJOR_T_UNKNOWN, asy->asy_unit);
2217 	(void) ddi_prop_update_string(dev, devi, "uart", asy_hw_name(asy));
2218 
2219 	if (asy->asy_hwtype == ASY_16550)	/* for broken 16550's, */
2220 		asy->asy_hwtype = ASY_8250A;	/* drive them as 8250A */
2221 
2222 	return (DDI_SUCCESS);
2223 }
2224 
2225 /*
2226  * asyinit() initializes the TTY protocol-private data for this channel
2227  * before enabling the interrupts.
2228  */
2229 static void
2230 asyinit(struct asycom *asy)
2231 {
2232 	struct asyncline *async;
2233 
2234 	asy->asy_priv = kmem_zalloc(sizeof (struct asyncline), KM_SLEEP);
2235 	async = asy->asy_priv;
2236 	mutex_enter(&asy->asy_excl);
2237 	async->async_common = asy;
2238 	cv_init(&async->async_flags_cv, NULL, CV_DRIVER, NULL);
2239 	mutex_exit(&asy->asy_excl);
2240 }
2241 
2242 static int
2243 asyopen(queue_t *rq, dev_t *dev, int flag, int sflag __unused, cred_t *cr)
2244 {
2245 	struct asycom	*asy;
2246 	struct asyncline *async;
2247 	int		unit;
2248 	int		len;
2249 	struct termios	*termiosp;
2250 
2251 	unit = UNIT(*dev);
2252 	asy = ddi_get_soft_state(asy_soft_state, unit);
2253 	if (asy == NULL)
2254 		return (ENXIO);		/* unit not configured */
2255 	ASY_DPRINTF(asy, ASY_DEBUG_INIT, "enter");
2256 	async = asy->asy_priv;
2257 	mutex_enter(&asy->asy_excl);
2258 
2259 again:
2260 	mutex_enter(&asy->asy_excl_hi);
2261 
2262 	/*
2263 	 * Block waiting for carrier to come up, unless this is a no-delay open.
2264 	 */
2265 	if (!(async->async_flags & ASYNC_ISOPEN)) {
2266 		/*
2267 		 * Set the default termios settings (cflag).
2268 		 * Others are set in ldterm.
2269 		 */
2270 		mutex_exit(&asy->asy_excl_hi);
2271 
2272 		if (ddi_getlongprop(DDI_DEV_T_ANY, ddi_root_node(),
2273 		    0, "ttymodes",
2274 		    (caddr_t)&termiosp, &len) == DDI_PROP_SUCCESS &&
2275 		    len == sizeof (struct termios)) {
2276 			async->async_ttycommon.t_cflag = termiosp->c_cflag;
2277 			kmem_free(termiosp, len);
2278 		} else {
2279 			asyerror(asy, CE_WARN,
2280 			    "couldn't get ttymodes property");
2281 		}
2282 		mutex_enter(&asy->asy_excl_hi);
2283 
2284 		/* eeprom mode support - respect properties */
2285 		if (asy->asy_cflag)
2286 			async->async_ttycommon.t_cflag = asy->asy_cflag;
2287 
2288 		async->async_ttycommon.t_iflag = 0;
2289 		async->async_ttycommon.t_iocpending = NULL;
2290 		async->async_ttycommon.t_size.ws_row = 0;
2291 		async->async_ttycommon.t_size.ws_col = 0;
2292 		async->async_ttycommon.t_size.ws_xpixel = 0;
2293 		async->async_ttycommon.t_size.ws_ypixel = 0;
2294 		async->async_dev = *dev;
2295 		async->async_wbufcid = 0;
2296 
2297 		async->async_startc = CSTART;
2298 		async->async_stopc = CSTOP;
2299 		asy_program(asy, ASY_INIT);
2300 	} else if ((async->async_ttycommon.t_flags & TS_XCLUDE) &&
2301 	    secpolicy_excl_open(cr) != 0) {
2302 		mutex_exit(&asy->asy_excl_hi);
2303 		mutex_exit(&asy->asy_excl);
2304 		return (EBUSY);
2305 	} else if ((*dev & OUTLINE) && !(async->async_flags & ASYNC_OUT)) {
2306 		mutex_exit(&asy->asy_excl_hi);
2307 		mutex_exit(&asy->asy_excl);
2308 		return (EBUSY);
2309 	}
2310 
2311 	if (*dev & OUTLINE)
2312 		async->async_flags |= ASYNC_OUT;
2313 
2314 	/* Raise DTR on every open, but delay if it was just lowered. */
2315 	while (async->async_flags & ASYNC_DTR_DELAY) {
2316 		ASY_DPRINTF(asy, ASY_DEBUG_MODEM,
2317 		    "waiting for the ASYNC_DTR_DELAY to be clear");
2318 		mutex_exit(&asy->asy_excl_hi);
2319 		if (cv_wait_sig(&async->async_flags_cv,
2320 		    &asy->asy_excl) == 0) {
2321 			ASY_DPRINTF(asy, ASY_DEBUG_MODEM,
2322 			    "interrupted by signal, exiting");
2323 			mutex_exit(&asy->asy_excl);
2324 			return (EINTR);
2325 		}
2326 		mutex_enter(&asy->asy_excl_hi);
2327 	}
2328 
2329 	asy_set(asy, ASY_MCR, asy->asy_mcr & ASY_MCR_DTR);
2330 
2331 	ASY_DPRINTF(asy, ASY_DEBUG_INIT, "\"Raise DTR on every open\": "
2332 	    "make mcr = %x, make TS_SOFTCAR = %s", asy_get(asy, ASY_MCR),
2333 	    (asy->asy_flags & ASY_IGNORE_CD) ? "ON" : "OFF");
2334 
2335 	if (asy->asy_flags & ASY_IGNORE_CD) {
2336 		ASY_DPRINTF(asy, ASY_DEBUG_MODEM,
2337 		    "ASY_IGNORE_CD set, set TS_SOFTCAR");
2338 		async->async_ttycommon.t_flags |= TS_SOFTCAR;
2339 	} else {
2340 		async->async_ttycommon.t_flags &= ~TS_SOFTCAR;
2341 	}
2342 
2343 	/*
2344 	 * Check carrier.
2345 	 */
2346 	asy->asy_msr = asy_get(asy, ASY_MSR);
2347 	ASY_DPRINTF(asy, ASY_DEBUG_INIT, "TS_SOFTCAR is %s, MSR & DCD is %s",
2348 	    (async->async_ttycommon.t_flags & TS_SOFTCAR) ? "set" : "clear",
2349 	    (asy->asy_msr & ASY_MSR_DCD) ? "set" : "clear");
2350 
2351 	if (asy->asy_msr & ASY_MSR_DCD)
2352 		async->async_flags |= ASYNC_CARR_ON;
2353 	else
2354 		async->async_flags &= ~ASYNC_CARR_ON;
2355 	mutex_exit(&asy->asy_excl_hi);
2356 
2357 	/*
2358 	 * If FNDELAY and FNONBLOCK are clear, block until carrier up.
2359 	 * Quit on interrupt.
2360 	 */
2361 	if (!(flag & (FNDELAY|FNONBLOCK)) &&
2362 	    !(async->async_ttycommon.t_cflag & CLOCAL)) {
2363 		if ((!(async->async_flags & (ASYNC_CARR_ON|ASYNC_OUT)) &&
2364 		    !(async->async_ttycommon.t_flags & TS_SOFTCAR)) ||
2365 		    ((async->async_flags & ASYNC_OUT) &&
2366 		    !(*dev & OUTLINE))) {
2367 			async->async_flags |= ASYNC_WOPEN;
2368 			if (cv_wait_sig(&async->async_flags_cv,
2369 			    &asy->asy_excl) == B_FALSE) {
2370 				async->async_flags &= ~ASYNC_WOPEN;
2371 				mutex_exit(&asy->asy_excl);
2372 				return (EINTR);
2373 			}
2374 			async->async_flags &= ~ASYNC_WOPEN;
2375 			goto again;
2376 		}
2377 	} else if ((async->async_flags & ASYNC_OUT) && !(*dev & OUTLINE)) {
2378 		mutex_exit(&asy->asy_excl);
2379 		return (EBUSY);
2380 	}
2381 
2382 	async->async_ttycommon.t_readq = rq;
2383 	async->async_ttycommon.t_writeq = WR(rq);
2384 	rq->q_ptr = WR(rq)->q_ptr = (caddr_t)async;
2385 	mutex_exit(&asy->asy_excl);
2386 	/*
2387 	 * Caution here -- qprocson sets the pointers that are used by canput
2388 	 * called by async_softint.  ASYNC_ISOPEN must *not* be set until those
2389 	 * pointers are valid.
2390 	 */
2391 	qprocson(rq);
2392 	async->async_flags |= ASYNC_ISOPEN;
2393 	async->async_polltid = 0;
2394 	ASY_DPRINTF(asy, ASY_DEBUG_INIT, "done");
2395 	return (0);
2396 }
2397 
2398 static void
2399 async_progress_check(void *arg)
2400 {
2401 	struct asyncline *async = arg;
2402 	struct asycom	 *asy = async->async_common;
2403 	mblk_t *bp;
2404 
2405 	/*
2406 	 * We define "progress" as either waiting on a timed break or delay, or
2407 	 * having had at least one transmitter interrupt.  If none of these are
2408 	 * true, then just terminate the output and wake up that close thread.
2409 	 */
2410 	mutex_enter(&asy->asy_excl);
2411 	mutex_enter(&asy->asy_excl_hi);
2412 	if (!(async->async_flags & (ASYNC_BREAK|ASYNC_DELAY|ASYNC_PROGRESS))) {
2413 		async->async_ocnt = 0;
2414 		async->async_flags &= ~ASYNC_BUSY;
2415 		async->async_timer = 0;
2416 		bp = async->async_xmitblk;
2417 		async->async_xmitblk = NULL;
2418 		mutex_exit(&asy->asy_excl_hi);
2419 		if (bp != NULL)
2420 			freeb(bp);
2421 		/*
2422 		 * Since this timer is running, we know that we're in exit(2).
2423 		 * That means that the user can't possibly be waiting on any
2424 		 * valid ioctl(2) completion anymore, and we should just flush
2425 		 * everything.
2426 		 */
2427 		flushq(async->async_ttycommon.t_writeq, FLUSHALL);
2428 		cv_broadcast(&async->async_flags_cv);
2429 	} else {
2430 		async->async_flags &= ~ASYNC_PROGRESS;
2431 		async->async_timer = timeout(async_progress_check, async,
2432 		    drv_usectohz(asy_drain_check));
2433 		mutex_exit(&asy->asy_excl_hi);
2434 	}
2435 	mutex_exit(&asy->asy_excl);
2436 }
2437 
2438 /*
2439  * Release DTR so that asyopen() can raise it.
2440  */
2441 static void
2442 async_dtr_free(struct asyncline *async)
2443 {
2444 	struct asycom *asy = async->async_common;
2445 
2446 	ASY_DPRINTF(asy, ASY_DEBUG_MODEM,
2447 	    "async_dtr_free, clearing ASYNC_DTR_DELAY");
2448 	mutex_enter(&asy->asy_excl);
2449 	async->async_flags &= ~ASYNC_DTR_DELAY;
2450 	async->async_dtrtid = 0;
2451 	cv_broadcast(&async->async_flags_cv);
2452 	mutex_exit(&asy->asy_excl);
2453 }
2454 
2455 /*
2456  * Close routine.
2457  */
2458 static int
2459 asyclose(queue_t *q, int flag, cred_t *credp __unused)
2460 {
2461 	struct asyncline *async;
2462 	struct asycom	 *asy;
2463 
2464 	async = (struct asyncline *)q->q_ptr;
2465 	ASSERT(async != NULL);
2466 
2467 	asy = async->async_common;
2468 
2469 	ASY_DPRINTF(asy, ASY_DEBUG_CLOSE, "enter");
2470 
2471 	mutex_enter(&asy->asy_excl);
2472 	async->async_flags |= ASYNC_CLOSING;
2473 
2474 	/*
2475 	 * Turn off PPS handling early to avoid events occuring during
2476 	 * close.  Also reset the DCD edge monitoring bit.
2477 	 */
2478 	mutex_enter(&asy->asy_excl_hi);
2479 	asy->asy_flags &= ~(ASY_PPS | ASY_PPS_EDGE);
2480 	mutex_exit(&asy->asy_excl_hi);
2481 
2482 	/*
2483 	 * There are two flavors of break -- timed (M_BREAK or TCSBRK) and
2484 	 * untimed (TIOCSBRK).  For the timed case, these are enqueued on our
2485 	 * write queue and there's a timer running, so we don't have to worry
2486 	 * about them.  For the untimed case, though, the user obviously made a
2487 	 * mistake, because these are handled immediately.  We'll terminate the
2488 	 * break now and honor their implicit request by discarding the rest of
2489 	 * the data.
2490 	 */
2491 	if (async->async_flags & ASYNC_OUT_SUSPEND) {
2492 		if (async->async_utbrktid != 0) {
2493 			(void) untimeout(async->async_utbrktid);
2494 			async->async_utbrktid = 0;
2495 		}
2496 		mutex_enter(&asy->asy_excl_hi);
2497 		(void) asy_clr(asy, ASY_LCR, ASY_LCR_SETBRK);
2498 		mutex_exit(&asy->asy_excl_hi);
2499 		async->async_flags &= ~ASYNC_OUT_SUSPEND;
2500 		goto nodrain;
2501 	}
2502 
2503 	/*
2504 	 * If the user told us not to delay the close ("non-blocking"), then
2505 	 * don't bother trying to drain.
2506 	 *
2507 	 * If the user did M_STOP (ASYNC_STOPPED), there's no hope of ever
2508 	 * getting an M_START (since these messages aren't enqueued), and the
2509 	 * only other way to clear the stop condition is by loss of DCD, which
2510 	 * would discard the queue data.  Thus, we drop the output data if
2511 	 * ASYNC_STOPPED is set.
2512 	 */
2513 	if ((flag & (FNDELAY|FNONBLOCK)) ||
2514 	    (async->async_flags & ASYNC_STOPPED)) {
2515 		goto nodrain;
2516 	}
2517 
2518 	/*
2519 	 * If there's any pending output, then we have to try to drain it.
2520 	 * There are two main cases to be handled:
2521 	 *	- called by close(2): need to drain until done or until
2522 	 *	  a signal is received.  No timeout.
2523 	 *	- called by exit(2): need to drain while making progress
2524 	 *	  or until a timeout occurs.  No signals.
2525 	 *
2526 	 * If we can't rely on receiving a signal to get us out of a hung
2527 	 * session, then we have to use a timer.  In this case, we set a timer
2528 	 * to check for progress in sending the output data -- all that we ask
2529 	 * (at each interval) is that there's been some progress made.  Since
2530 	 * the interrupt routine grabs buffers from the write queue, we can't
2531 	 * trust changes in async_ocnt.  Instead, we use a progress flag.
2532 	 *
2533 	 * Note that loss of carrier will cause the output queue to be flushed,
2534 	 * and we'll wake up again and finish normally.
2535 	 */
2536 	if (!ddi_can_receive_sig() && asy_drain_check != 0) {
2537 		async->async_flags &= ~ASYNC_PROGRESS;
2538 		async->async_timer = timeout(async_progress_check, async,
2539 		    drv_usectohz(asy_drain_check));
2540 	}
2541 	while (async->async_ocnt > 0 ||
2542 	    async->async_ttycommon.t_writeq->q_first != NULL ||
2543 	    (async->async_flags & (ASYNC_BUSY|ASYNC_BREAK|ASYNC_DELAY))) {
2544 		if (cv_wait_sig(&async->async_flags_cv, &asy->asy_excl) == 0)
2545 			break;
2546 	}
2547 	if (async->async_timer != 0) {
2548 		(void) untimeout(async->async_timer);
2549 		async->async_timer = 0;
2550 	}
2551 
2552 nodrain:
2553 	async->async_ocnt = 0;
2554 	if (async->async_xmitblk != NULL)
2555 		freeb(async->async_xmitblk);
2556 	async->async_xmitblk = NULL;
2557 
2558 	/*
2559 	 * If line has HUPCL set or is incompletely opened fix up the modem
2560 	 * lines.
2561 	 */
2562 	ASY_DPRINTF(asy, ASY_DEBUG_MODEM, "next check HUPCL flag");
2563 	mutex_enter(&asy->asy_excl_hi);
2564 	if ((async->async_ttycommon.t_cflag & HUPCL) ||
2565 	    (async->async_flags & ASYNC_WOPEN)) {
2566 		ASY_DPRINTF(asy, ASY_DEBUG_MODEM,
2567 		    "HUPCL flag = %x, ASYNC_WOPEN flag = %x",
2568 		    async->async_ttycommon.t_cflag & HUPCL,
2569 		    async->async_ttycommon.t_cflag & ASYNC_WOPEN);
2570 		async->async_flags |= ASYNC_DTR_DELAY;
2571 
2572 		/* turn off DTR, RTS but NOT interrupt to 386 */
2573 		if (asy->asy_flags & (ASY_IGNORE_CD|ASY_RTS_DTR_OFF)) {
2574 			ASY_DPRINTF(asy, ASY_DEBUG_MODEM,
2575 			    "ASY_IGNORE_CD flag = %x, "
2576 			    "ASY_RTS_DTR_OFF flag = %x",
2577 			    asy->asy_flags & ASY_IGNORE_CD,
2578 			    asy->asy_flags & ASY_RTS_DTR_OFF);
2579 
2580 			asy_put(asy, ASY_MCR, asy->asy_mcr | ASY_MCR_OUT2);
2581 		} else {
2582 			ASY_DPRINTF(asy, ASY_DEBUG_MODEM,
2583 			    "Dropping DTR and RTS");
2584 			asy_put(asy, ASY_MCR, ASY_MCR_OUT2);
2585 		}
2586 		async->async_dtrtid =
2587 		    timeout((void (*)())async_dtr_free,
2588 		    (caddr_t)async, drv_usectohz(asy_min_dtr_low));
2589 	}
2590 	/*
2591 	 * If nobody's using it now, turn off receiver interrupts.
2592 	 */
2593 	if ((async->async_flags & (ASYNC_WOPEN|ASYNC_ISOPEN)) == 0)
2594 		asy_disable_interrupts(asy, ASY_IER_RIEN);
2595 
2596 	mutex_exit(&asy->asy_excl_hi);
2597 
2598 	ttycommon_close(&async->async_ttycommon);
2599 
2600 	/*
2601 	 * Cancel outstanding "bufcall" request.
2602 	 */
2603 	if (async->async_wbufcid != 0) {
2604 		unbufcall(async->async_wbufcid);
2605 		async->async_wbufcid = 0;
2606 	}
2607 
2608 	/* Note that qprocsoff can't be done until after interrupts are off */
2609 	qprocsoff(q);
2610 	q->q_ptr = WR(q)->q_ptr = NULL;
2611 	async->async_ttycommon.t_readq = NULL;
2612 	async->async_ttycommon.t_writeq = NULL;
2613 
2614 	/*
2615 	 * Clear out device state, except persistant device property flags.
2616 	 */
2617 	async->async_flags &= (ASYNC_DTR_DELAY|ASY_RTS_DTR_OFF);
2618 	cv_broadcast(&async->async_flags_cv);
2619 	mutex_exit(&asy->asy_excl);
2620 
2621 	ASY_DPRINTF(asy, ASY_DEBUG_CLOSE, "done");
2622 	return (0);
2623 }
2624 
2625 static boolean_t
2626 asy_isbusy(struct asycom *asy)
2627 {
2628 	struct asyncline *async;
2629 
2630 	ASY_DPRINTF(asy, ASY_DEBUG_EOT, "enter");
2631 	async = asy->asy_priv;
2632 	ASSERT(mutex_owned(&asy->asy_excl));
2633 	ASSERT(mutex_owned(&asy->asy_excl_hi));
2634 /*
2635  * XXXX this should be recoded
2636  */
2637 	return ((async->async_ocnt > 0) ||
2638 	    ((asy_get(asy, ASY_LSR) & (ASY_LSR_TEMT | ASY_LSR_THRE)) == 0));
2639 }
2640 
2641 static void
2642 asy_waiteot(struct asycom *asy)
2643 {
2644 	/*
2645 	 * Wait for the current transmission block and the
2646 	 * current fifo data to transmit. Once this is done
2647 	 * we may go on.
2648 	 */
2649 	ASY_DPRINTF(asy, ASY_DEBUG_EOT, "enter");
2650 	ASSERT(mutex_owned(&asy->asy_excl));
2651 	ASSERT(mutex_owned(&asy->asy_excl_hi));
2652 	while (asy_isbusy(asy)) {
2653 		mutex_exit(&asy->asy_excl_hi);
2654 		mutex_exit(&asy->asy_excl);
2655 		drv_usecwait(10000);		/* wait .01 */
2656 		mutex_enter(&asy->asy_excl);
2657 		mutex_enter(&asy->asy_excl_hi);
2658 	}
2659 }
2660 
2661 /* asy_reset_fifo -- flush fifos and [re]program fifo control register */
2662 static void
2663 asy_reset_fifo(struct asycom *asy, uchar_t flush)
2664 {
2665 	ASSERT(mutex_owned(&asy->asy_excl_hi));
2666 
2667 	/* On a 16750, we have to set DLAB in order to set ASY_FCR_FIFO64. */
2668 	if (asy->asy_hwtype >= ASY_16750)
2669 		asy_set(asy, ASY_LCR, ASY_LCR_DLAB);
2670 
2671 	asy_put(asy, ASY_FCR, asy->asy_fifor | flush);
2672 
2673 	/* Clear DLAB */
2674 	if (asy->asy_hwtype >= ASY_16750)
2675 		asy_clr(asy, ASY_LCR, ASY_LCR_DLAB);
2676 }
2677 
2678 /*
2679  * Program the ASY port. Most of the async operation is based on the values
2680  * of 'c_iflag' and 'c_cflag'.
2681  */
2682 static void
2683 asy_program(struct asycom *asy, int mode)
2684 {
2685 	struct asyncline *async;
2686 	int baudrate, c_flag;
2687 	uint8_t ier;
2688 	int flush_reg;
2689 	int ocflags;
2690 
2691 	ASSERT(mutex_owned(&asy->asy_excl));
2692 	ASSERT(mutex_owned(&asy->asy_excl_hi));
2693 
2694 	async = asy->asy_priv;
2695 	ASY_DPRINTF(asy, ASY_DEBUG_PROCS, "mode = 0x%08X, enter", mode);
2696 
2697 	baudrate = BAUDINDEX(async->async_ttycommon.t_cflag);
2698 
2699 	async->async_ttycommon.t_cflag &= ~(CIBAUD);
2700 
2701 	if (baudrate > CBAUD) {
2702 		async->async_ttycommon.t_cflag |= CIBAUDEXT;
2703 		async->async_ttycommon.t_cflag |=
2704 		    (((baudrate - CBAUD - 1) << IBSHIFT) & CIBAUD);
2705 	} else {
2706 		async->async_ttycommon.t_cflag &= ~CIBAUDEXT;
2707 		async->async_ttycommon.t_cflag |=
2708 		    ((baudrate << IBSHIFT) & CIBAUD);
2709 	}
2710 
2711 	c_flag = async->async_ttycommon.t_cflag &
2712 	    (CLOCAL|CREAD|CSTOPB|CSIZE|PARENB|PARODD|CBAUD|CBAUDEXT);
2713 
2714 	asy_disable_interrupts(asy, ASY_IER_ALL);
2715 
2716 	ocflags = asy->asy_ocflag;
2717 
2718 	/* flush/reset the status registers */
2719 	(void) asy_get(asy, ASY_ISR);
2720 	(void) asy_get(asy, ASY_LSR);
2721 	asy->asy_msr = flush_reg = asy_get(asy, ASY_MSR);
2722 	/*
2723 	 * The device is programmed in the open sequence, if we
2724 	 * have to hardware handshake, then this is a good time
2725 	 * to check if the device can receive any data.
2726 	 */
2727 
2728 	if ((CRTSCTS & async->async_ttycommon.t_cflag) &&
2729 	    !(flush_reg & ASY_MSR_CTS)) {
2730 		async_flowcontrol_hw_output(asy, FLOW_STOP);
2731 	} else {
2732 		/*
2733 		 * We can not use async_flowcontrol_hw_output(asy, FLOW_START)
2734 		 * here, because if CRTSCTS is clear, we need clear
2735 		 * ASYNC_HW_OUT_FLW bit.
2736 		 */
2737 		async->async_flags &= ~ASYNC_HW_OUT_FLW;
2738 	}
2739 
2740 	/*
2741 	 * If IXON is not set, clear ASYNC_SW_OUT_FLW;
2742 	 * If IXON is set, no matter what IXON flag is before this
2743 	 * function call to asy_program,
2744 	 * we will use the old ASYNC_SW_OUT_FLW status.
2745 	 * Because of handling IXON in the driver, we also should re-calculate
2746 	 * the value of ASYNC_OUT_FLW_RESUME bit, but in fact,
2747 	 * the TCSET* commands which call asy_program
2748 	 * are put into the write queue, so there is no output needed to
2749 	 * be resumed at this point.
2750 	 */
2751 	if (!(IXON & async->async_ttycommon.t_iflag))
2752 		async->async_flags &= ~ASYNC_SW_OUT_FLW;
2753 
2754 	/* manually flush receive buffer or fifo (workaround for buggy fifos) */
2755 	if (mode == ASY_INIT) {
2756 		if (asy->asy_use_fifo == ASY_FCR_FIFO_EN) {
2757 			for (flush_reg = asy->asy_fifo_buf; flush_reg-- > 0; ) {
2758 				(void) asy_get(asy, ASY_RHR);
2759 			}
2760 		} else {
2761 			flush_reg = asy_get(asy, ASY_RHR);
2762 		}
2763 	}
2764 
2765 	if (ocflags != (c_flag & ~CLOCAL) || mode == ASY_INIT) {
2766 		/* Set line control */
2767 		uint8_t lcr = 0;
2768 
2769 		if (c_flag & CSTOPB)
2770 			lcr |= ASY_LCR_STOP2;	/* 2 stop bits */
2771 
2772 		if (c_flag & PARENB)
2773 			lcr |= ASY_LCR_PEN;
2774 
2775 		if ((c_flag & PARODD) == 0)
2776 			lcr |= ASY_LCR_EPS;
2777 
2778 		switch (c_flag & CSIZE) {
2779 		case CS5:
2780 			lcr |= ASY_LCR_BITS5;
2781 			break;
2782 		case CS6:
2783 			lcr |= ASY_LCR_BITS6;
2784 			break;
2785 		case CS7:
2786 			lcr |= ASY_LCR_BITS7;
2787 			break;
2788 		case CS8:
2789 			lcr |= ASY_LCR_BITS8;
2790 			break;
2791 		}
2792 
2793 		asy_clr(asy, ASY_LCR, ASY_LCR_WLS0 | ASY_LCR_WLS1 |
2794 		    ASY_LCR_STB | ASY_LCR_PEN | ASY_LCR_EPS);
2795 		asy_set(asy, ASY_LCR, lcr);
2796 		asy_set_baudrate(asy, baudrate);
2797 
2798 		/*
2799 		 * If we have a FIFO buffer, enable/flush
2800 		 * at intialize time, flush if transitioning from
2801 		 * CREAD off to CREAD on.
2802 		 */
2803 		if (((ocflags & CREAD) == 0 && (c_flag & CREAD)) ||
2804 		    mode == ASY_INIT) {
2805 			if (asy->asy_use_fifo == ASY_FCR_FIFO_EN)
2806 				asy_reset_fifo(asy, ASY_FCR_RHR_FL);
2807 		}
2808 
2809 		/* remember the new cflags */
2810 		asy->asy_ocflag = c_flag & ~CLOCAL;
2811 	}
2812 
2813 	if (baudrate == 0)
2814 		asy_put(asy, ASY_MCR,
2815 		    (asy->asy_mcr & ASY_MCR_RTS) | ASY_MCR_OUT2);
2816 	else
2817 		asy_put(asy, ASY_MCR, asy->asy_mcr | ASY_MCR_OUT2);
2818 
2819 	/*
2820 	 * Call the modem status interrupt handler to check for the carrier
2821 	 * in case CLOCAL was turned off after the carrier came on.
2822 	 * (Note: Modem status interrupt is not enabled if CLOCAL is ON.)
2823 	 */
2824 	async_msint(asy);
2825 
2826 	/* Set interrupt control */
2827 	ASY_DPRINTF(asy, ASY_DEBUG_MODM2,
2828 	    "c_flag & CLOCAL = %x t_cflag & CRTSCTS = %x",
2829 	    c_flag & CLOCAL, async->async_ttycommon.t_cflag & CRTSCTS);
2830 
2831 
2832 	/* Always enable transmit and line status interrupts. */
2833 	ier = ASY_IER_TIEN | ASY_IER_SIEN;
2834 
2835 	/*
2836 	 * Enable Modem status interrupt if hardware flow control is enabled or
2837 	 * this isn't a direct-wired (local) line, which ignores DCD.
2838 	 */
2839 	if (((c_flag & CLOCAL) == 0) ||
2840 	    (async->async_ttycommon.t_cflag & CRTSCTS))
2841 		ier |= ASY_IER_MIEN;
2842 
2843 	if (c_flag & CREAD)
2844 		ier |= ASY_IER_RIEN;
2845 
2846 	asy_enable_interrupts(asy, ier);
2847 	ASY_DPRINTF(asy, ASY_DEBUG_PROCS, "done");
2848 }
2849 
2850 static boolean_t
2851 asy_baudok(struct asycom *asy)
2852 {
2853 	struct asyncline *async = asy->asy_priv;
2854 	int baudrate;
2855 
2856 
2857 	baudrate = BAUDINDEX(async->async_ttycommon.t_cflag);
2858 
2859 	if (baudrate >= ARRAY_SIZE(asy_baud_tab))
2860 		return (0);
2861 
2862 	return (baudrate == 0 ||
2863 	    asy_baud_tab[baudrate].asy_dll != 0 ||
2864 	    asy_baud_tab[baudrate].asy_dlh != 0);
2865 }
2866 
2867 /*
2868  * asyintr() is the High Level Interrupt Handler.
2869  *
2870  * There are four different interrupt types indexed by ISR register values:
2871  *		0: modem
2872  *		1: Tx holding register is empty, ready for next char
2873  *		2: Rx register now holds a char to be picked up
2874  *		3: error or break on line
2875  * This routine checks the Bit 0 (interrupt-not-pending) to determine if
2876  * the interrupt is from this port.
2877  */
2878 uint_t
2879 asyintr(caddr_t argasy, caddr_t argunused __unused)
2880 {
2881 	struct asycom		*asy = (struct asycom *)argasy;
2882 	struct asyncline	*async;
2883 	int			ret_status = DDI_INTR_UNCLAIMED;
2884 
2885 	mutex_enter(&asy->asy_excl_hi);
2886 	async = asy->asy_priv;
2887 	if (async == NULL ||
2888 	    (async->async_flags & (ASYNC_ISOPEN|ASYNC_WOPEN)) == 0) {
2889 		const uint8_t intr_id = asy_get(asy, ASY_ISR);
2890 
2891 		ASY_DPRINTF(asy, ASY_DEBUG_INTR,
2892 		    "not open async=%p flags=0x%x interrupt_id=0x%x",
2893 		    async, async == NULL ? 0 : async->async_flags, intr_id);
2894 
2895 		if ((intr_id & ASY_ISR_NOINTR) == 0) {
2896 			/*
2897 			 * reset the device by:
2898 			 *	reading line status
2899 			 *	reading any data from data status register
2900 			 *	reading modem status
2901 			 */
2902 			(void) asy_get(asy, ASY_LSR);
2903 			(void) asy_get(asy, ASY_RHR);
2904 			asy->asy_msr = asy_get(asy, ASY_MSR);
2905 			ret_status = DDI_INTR_CLAIMED;
2906 		}
2907 		mutex_exit(&asy->asy_excl_hi);
2908 		return (ret_status);
2909 	}
2910 
2911 	/* By this point we're sure this is for us. */
2912 	ret_status = DDI_INTR_CLAIMED;
2913 
2914 	/*
2915 	 * Before this flag was set, interrupts were disabled. We may still get
2916 	 * here if asyintr() waited on the mutex.
2917 	 */
2918 	if (asy->asy_flags & ASY_DDI_SUSPENDED) {
2919 		mutex_exit(&asy->asy_excl_hi);
2920 		return (ret_status);
2921 	}
2922 
2923 	/*
2924 	 * We will loop until the interrupt line is pulled low. asy
2925 	 * interrupt is edge triggered.
2926 	 */
2927 	for (;;) {
2928 		const uint8_t intr_id = asy_get(asy, ASY_ISR);
2929 		/*
2930 		 * Reading LSR will clear any error bits (ASY_LSR_ERRORS) which
2931 		 * are set which is why the value is passed through to
2932 		 * async_rxint() and not re-read there. In the unexpected event
2933 		 * that we've ended up here without a pending interrupt, the
2934 		 * ASY_ISR_NOINTR case, it should do no harm to have cleared
2935 		 * the error bits, and it means we can get some additional
2936 		 * information in the debug message if it's enabled.
2937 		 */
2938 		const uint8_t lsr = asy_get(asy, ASY_LSR);
2939 
2940 		ASY_DPRINTF(asy, ASY_DEBUG_INTR,
2941 		    "interrupt_id=0x%x LSR=0x%x",
2942 		    intr_id, lsr);
2943 
2944 		if (intr_id & ASY_ISR_NOINTR)
2945 			break;
2946 
2947 		switch (intr_id & ASY_ISR_MASK) {
2948 		case ASY_ISR_ID_RLST:
2949 		case ASY_ISR_ID_RDA:
2950 		case ASY_ISR_ID_TMO:
2951 			/* receiver interrupt or receiver errors */
2952 			async_rxint(asy, lsr);
2953 			break;
2954 
2955 		case ASY_ISR_ID_THRE:
2956 			/*
2957 			 * The transmit-ready interrupt implies an empty
2958 			 * transmit-hold register (or FIFO).  Check that it is
2959 			 * present before attempting to transmit more data.
2960 			 */
2961 			if ((lsr & ASY_LSR_THRE) == 0) {
2962 				/*
2963 				 * Taking a THRE interrupt only to find THRE
2964 				 * absent would be a surprise, except for a
2965 				 * racing asyputchar(), which ignores the
2966 				 * excl_hi mutex when writing to the device.
2967 				 */
2968 				continue;
2969 			}
2970 			async_txint(asy);
2971 			/*
2972 			 * Unlike the other interrupts which fall through to
2973 			 * attempting to fill the output register/FIFO, THRE
2974 			 * has no need having just done so.
2975 			 */
2976 			continue;
2977 
2978 		case ASY_ISR_ID_MST:
2979 			/* modem status interrupt */
2980 			async_msint(asy);
2981 			break;
2982 		}
2983 
2984 		/* Refill the output FIFO if it has gone empty */
2985 		if ((lsr & ASY_LSR_THRE) && (async->async_flags & ASYNC_BUSY) &&
2986 		    async->async_ocnt > 0)
2987 			async_txint(asy);
2988 	}
2989 
2990 	mutex_exit(&asy->asy_excl_hi);
2991 	return (ret_status);
2992 }
2993 
2994 /*
2995  * Transmitter interrupt service routine.
2996  * If there is more data to transmit in the current pseudo-DMA block,
2997  * send the next character if output is not stopped or draining.
2998  * Otherwise, queue up a soft interrupt.
2999  *
3000  * XXX -  Needs review for HW FIFOs.
3001  */
3002 static void
3003 async_txint(struct asycom *asy)
3004 {
3005 	struct asyncline *async = asy->asy_priv;
3006 	int		fifo_len;
3007 
3008 	ASSERT(MUTEX_HELD(&asy->asy_excl_hi));
3009 
3010 	/*
3011 	 * If ASYNC_BREAK or ASYNC_OUT_SUSPEND has been set, return to
3012 	 * asyintr()'s context to claim the interrupt without performing
3013 	 * any action. No character will be loaded into FIFO/THR until
3014 	 * timed or untimed break is removed
3015 	 */
3016 	if (async->async_flags & (ASYNC_BREAK|ASYNC_OUT_SUSPEND))
3017 		return;
3018 
3019 	fifo_len = asy->asy_fifo_buf; /* with FIFO buffers */
3020 	if (fifo_len > asy_max_tx_fifo)
3021 		fifo_len = asy_max_tx_fifo;
3022 
3023 	if (async_flowcontrol_sw_input(asy, FLOW_CHECK, IN_FLOW_NULL))
3024 		fifo_len--;
3025 
3026 	if (async->async_ocnt > 0 && fifo_len > 0 &&
3027 	    !(async->async_flags &
3028 	    (ASYNC_HW_OUT_FLW|ASYNC_SW_OUT_FLW|ASYNC_STOPPED))) {
3029 		while (fifo_len-- > 0 && async->async_ocnt-- > 0) {
3030 			asy_put(asy, ASY_THR, *async->async_optr++);
3031 		}
3032 		async->async_flags |= ASYNC_PROGRESS;
3033 	}
3034 
3035 	if (fifo_len <= 0)
3036 		return;
3037 
3038 	asysetsoft(asy);
3039 }
3040 
3041 /*
3042  * Interrupt on port: handle PPS event.  This function is only called
3043  * for a port on which PPS event handling has been enabled.
3044  */
3045 static void
3046 asy_ppsevent(struct asycom *asy, int msr)
3047 {
3048 	ASSERT(MUTEX_HELD(&asy->asy_excl_hi));
3049 
3050 	if (asy->asy_flags & ASY_PPS_EDGE) {
3051 		/* Have seen leading edge, now look for and record drop */
3052 		if ((msr & ASY_MSR_DCD) == 0)
3053 			asy->asy_flags &= ~ASY_PPS_EDGE;
3054 		/*
3055 		 * Waiting for leading edge, look for rise; stamp event and
3056 		 * calibrate kernel clock.
3057 		 */
3058 	} else if (msr & ASY_MSR_DCD) {
3059 			/*
3060 			 * This code captures a timestamp at the designated
3061 			 * transition of the PPS signal (DCD asserted).  The
3062 			 * code provides a pointer to the timestamp, as well
3063 			 * as the hardware counter value at the capture.
3064 			 *
3065 			 * Note: the kernel has nano based time values while
3066 			 * NTP requires micro based, an in-line fast algorithm
3067 			 * to convert nsec to usec is used here -- see hrt2ts()
3068 			 * in common/os/timers.c for a full description.
3069 			 */
3070 			struct timeval *tvp = &asy_ppsev.tv;
3071 			timestruc_t ts;
3072 			long nsec, usec;
3073 
3074 			asy->asy_flags |= ASY_PPS_EDGE;
3075 			LED_OFF;
3076 			gethrestime(&ts);
3077 			LED_ON;
3078 			nsec = ts.tv_nsec;
3079 			usec = nsec + (nsec >> 2);
3080 			usec = nsec + (usec >> 1);
3081 			usec = nsec + (usec >> 2);
3082 			usec = nsec + (usec >> 4);
3083 			usec = nsec - (usec >> 3);
3084 			usec = nsec + (usec >> 2);
3085 			usec = nsec + (usec >> 3);
3086 			usec = nsec + (usec >> 4);
3087 			usec = nsec + (usec >> 1);
3088 			usec = nsec + (usec >> 6);
3089 			tvp->tv_usec = usec >> 10;
3090 			tvp->tv_sec = ts.tv_sec;
3091 
3092 			++asy_ppsev.serial;
3093 
3094 			/*
3095 			 * Because the kernel keeps a high-resolution time,
3096 			 * pass the current highres timestamp in tvp and zero
3097 			 * in usec.
3098 			 */
3099 			ddi_hardpps(tvp, 0);
3100 	}
3101 }
3102 
3103 /*
3104  * Receiver interrupt: RDA interrupt, FIFO timeout interrupt or receive
3105  * error interrupt.
3106  * Try to put the character into the circular buffer for this line; if it
3107  * overflows, indicate a circular buffer overrun. If this port is always
3108  * to be serviced immediately, or the character is a STOP character, or
3109  * more than 15 characters have arrived, queue up a soft interrupt to
3110  * drain the circular buffer.
3111  * XXX - needs review for hw FIFOs support.
3112  */
3113 
3114 static void
3115 async_rxint(struct asycom *asy, uchar_t lsr)
3116 {
3117 	struct asyncline *async = asy->asy_priv;
3118 	uchar_t c;
3119 	uint_t s, needsoft = 0;
3120 	tty_common_t *tp;
3121 	int looplim = asy->asy_fifo_buf * 2;
3122 
3123 	ASSERT(MUTEX_HELD(&asy->asy_excl_hi));
3124 
3125 	tp = &async->async_ttycommon;
3126 	if (!(tp->t_cflag & CREAD)) {
3127 		/* Line is not open for reading. Flush receiver FIFO. */
3128 		while ((lsr & (ASY_LSR_DR | ASY_LSR_ERRORS)) != 0) {
3129 			(void) asy_get(asy, ASY_RHR);
3130 			lsr = asy_get(asy, ASY_LSR);
3131 			if (looplim-- < 0)		/* limit loop */
3132 				break;
3133 		}
3134 		return;
3135 	}
3136 
3137 	while ((lsr & (ASY_LSR_DR | ASY_LSR_ERRORS)) != 0) {
3138 		c = 0;
3139 		s = 0;				/* reset error status */
3140 		if (lsr & ASY_LSR_DR) {
3141 			c = asy_get(asy, ASY_RHR);
3142 
3143 			/*
3144 			 * We handle XON/XOFF char if IXON is set,
3145 			 * but if received char is _POSIX_VDISABLE,
3146 			 * we left it to the up level module.
3147 			 */
3148 			if (tp->t_iflag & IXON) {
3149 				if ((c == async->async_stopc) &&
3150 				    (c != _POSIX_VDISABLE)) {
3151 					async_flowcontrol_sw_output(asy,
3152 					    FLOW_STOP);
3153 					goto check_looplim;
3154 				} else if ((c == async->async_startc) &&
3155 				    (c != _POSIX_VDISABLE)) {
3156 					async_flowcontrol_sw_output(asy,
3157 					    FLOW_START);
3158 					needsoft = 1;
3159 					goto check_looplim;
3160 				}
3161 				if ((tp->t_iflag & IXANY) &&
3162 				    (async->async_flags & ASYNC_SW_OUT_FLW)) {
3163 					async_flowcontrol_sw_output(asy,
3164 					    FLOW_START);
3165 					needsoft = 1;
3166 				}
3167 			}
3168 		}
3169 
3170 		/*
3171 		 * Check for character break sequence
3172 		 */
3173 		if ((abort_enable == KIOCABORTALTERNATE) &&
3174 		    (asy->asy_flags & ASY_CONSOLE)) {
3175 			if (abort_charseq_recognize(c))
3176 				abort_sequence_enter((char *)NULL);
3177 		}
3178 
3179 		/* Handle framing errors */
3180 		if (lsr & ASY_LSR_ERRORS) {
3181 			if (lsr & ASY_LSR_PE) {
3182 				if (tp->t_iflag & INPCK) /* parity enabled */
3183 					s |= PERROR;
3184 			}
3185 
3186 			if (lsr & (ASY_LSR_FE | ASY_LSR_BI))
3187 				s |= FRERROR;
3188 			if (lsr & ASY_LSR_OE) {
3189 				async->async_hw_overrun = 1;
3190 				s |= OVERRUN;
3191 			}
3192 		}
3193 
3194 		if (s == 0)
3195 			if ((tp->t_iflag & PARMRK) &&
3196 			    !(tp->t_iflag & (IGNPAR|ISTRIP)) &&
3197 			    (c == 0377))
3198 				if (RING_POK(async, 2)) {
3199 					RING_PUT(async, 0377);
3200 					RING_PUT(async, c);
3201 				} else
3202 					async->async_sw_overrun = 1;
3203 			else
3204 				if (RING_POK(async, 1))
3205 					RING_PUT(async, c);
3206 				else
3207 					async->async_sw_overrun = 1;
3208 		else
3209 			if (s & FRERROR) /* Handle framing errors */
3210 				if (c == 0)
3211 					if ((asy->asy_flags & ASY_CONSOLE) &&
3212 					    (abort_enable !=
3213 					    KIOCABORTALTERNATE))
3214 						abort_sequence_enter((char *)0);
3215 					else
3216 						async->async_break++;
3217 				else
3218 					if (RING_POK(async, 1))
3219 						RING_MARK(async, c, s);
3220 					else
3221 						async->async_sw_overrun = 1;
3222 			else /* Parity errors are handled by ldterm */
3223 				if (RING_POK(async, 1))
3224 					RING_MARK(async, c, s);
3225 				else
3226 					async->async_sw_overrun = 1;
3227 check_looplim:
3228 		lsr = asy_get(asy, ASY_LSR);
3229 		if (looplim-- < 0)		/* limit loop */
3230 			break;
3231 	}
3232 	if ((RING_CNT(async) > (RINGSIZE * 3)/4) &&
3233 	    !(async->async_inflow_source & IN_FLOW_RINGBUFF)) {
3234 		async_flowcontrol_hw_input(asy, FLOW_STOP, IN_FLOW_RINGBUFF);
3235 		(void) async_flowcontrol_sw_input(asy, FLOW_STOP,
3236 		    IN_FLOW_RINGBUFF);
3237 	}
3238 
3239 	if ((async->async_flags & ASYNC_SERVICEIMM) || needsoft ||
3240 	    (RING_FRAC(async)) || (async->async_polltid == 0)) {
3241 		asysetsoft(asy);	/* need a soft interrupt */
3242 	}
3243 }
3244 
3245 /*
3246  * Modem status interrupt.
3247  *
3248  * (Note: It is assumed that the MSR hasn't been read by asyintr().)
3249  */
3250 
3251 static void
3252 async_msint(struct asycom *asy)
3253 {
3254 	struct asyncline *async = asy->asy_priv;
3255 	int msr, t_cflag = async->async_ttycommon.t_cflag;
3256 
3257 	ASSERT(MUTEX_HELD(&asy->asy_excl_hi));
3258 
3259 async_msint_retry:
3260 	/* this resets the interrupt */
3261 	msr = asy_get(asy, ASY_MSR);
3262 	ASY_DPRINTF(asy, ASY_DEBUG_STATE, "call #%d:",
3263 	    ++(asy->asy_msint_cnt));
3264 	ASY_DPRINTF(asy, ASY_DEBUG_STATE, "   transition: %3s %3s %3s %3s",
3265 	    (msr & ASY_MSR_DCTS) ? "DCTS" : "    ",
3266 	    (msr & ASY_MSR_DDSR) ? "DDSR" : "    ",
3267 	    (msr & ASY_MSR_TERI) ? "TERI" : "    ",
3268 	    (msr & ASY_MSR_DDCD) ? "DDCD" : "    ");
3269 	ASY_DPRINTF(asy, ASY_DEBUG_STATE, "current state: %3s %3s %3s %3s",
3270 	    (msr & ASY_MSR_CTS)  ? "CTS " : "    ",
3271 	    (msr & ASY_MSR_DSR)  ? "DSR " : "    ",
3272 	    (msr & ASY_MSR_RI)   ? "RI  " : "    ",
3273 	    (msr & ASY_MSR_DCD)  ? "DCD " : "    ");
3274 
3275 	/* If CTS status is changed, do H/W output flow control */
3276 	if ((t_cflag & CRTSCTS) && (((asy->asy_msr ^ msr) & ASY_MSR_CTS) != 0))
3277 		async_flowcontrol_hw_output(asy,
3278 		    msr & ASY_MSR_CTS ? FLOW_START : FLOW_STOP);
3279 	/*
3280 	 * Reading MSR resets the interrupt, we save the
3281 	 * value of msr so that other functions could examine MSR by
3282 	 * looking at asy_msr.
3283 	 */
3284 	asy->asy_msr = (uchar_t)msr;
3285 
3286 	/* Handle PPS event */
3287 	if (asy->asy_flags & ASY_PPS)
3288 		asy_ppsevent(asy, msr);
3289 
3290 	async->async_ext++;
3291 	asysetsoft(asy);
3292 	/*
3293 	 * We will make sure that the modem status presented to us
3294 	 * during the previous read has not changed. If the chip samples
3295 	 * the modem status on the falling edge of the interrupt line,
3296 	 * and uses this state as the base for detecting change of modem
3297 	 * status, we would miss a change of modem status event that occured
3298 	 * after we initiated a read MSR operation.
3299 	 */
3300 	msr = asy_get(asy, ASY_MSR);
3301 	if (ASY_MSR_STATES(msr) != ASY_MSR_STATES(asy->asy_msr))
3302 		goto	async_msint_retry;
3303 }
3304 
3305 /*
3306  * Pend a soft interrupt if one isn't already pending.
3307  */
3308 static void
3309 asysetsoft(struct asycom *asy)
3310 {
3311 	ASSERT(MUTEX_HELD(&asy->asy_excl_hi));
3312 
3313 	if (mutex_tryenter(&asy->asy_soft_lock) == 0)
3314 		return;
3315 
3316 	asy->asy_flags |= ASY_NEEDSOFT;
3317 	if (!asy->asysoftpend) {
3318 		asy->asysoftpend = 1;
3319 		mutex_exit(&asy->asy_soft_lock);
3320 		(void) ddi_intr_trigger_softint(asy->asy_soft_inth, NULL);
3321 	} else {
3322 		mutex_exit(&asy->asy_soft_lock);
3323 	}
3324 }
3325 
3326 /*
3327  * Check the carrier signal DCD and handle carrier coming up or
3328  * going down, cleaning up as needed and signalling waiters.
3329  */
3330 static void
3331 asy_carrier_check(struct asycom *asy)
3332 {
3333 	struct asyncline *async = asy->asy_priv;
3334 	tty_common_t *tp = &async->async_ttycommon;
3335 	queue_t *q = tp->t_readq;
3336 	mblk_t	*bp;
3337 	int flushflag;
3338 
3339 	ASY_DPRINTF(asy, ASY_DEBUG_MODM2,
3340 	    "asy_msr & DCD = %x, tp->t_flags & TS_SOFTCAR = %x",
3341 	    asy->asy_msr & ASY_MSR_DCD, tp->t_flags & TS_SOFTCAR);
3342 
3343 	if (asy->asy_msr & ASY_MSR_DCD) {
3344 		/*
3345 		 * The DCD line is on. If we already had a carrier,
3346 		 * nothing changed and there's nothing to do.
3347 		 */
3348 		if ((async->async_flags & ASYNC_CARR_ON) != 0)
3349 			return;
3350 
3351 		ASY_DPRINTF(asy, ASY_DEBUG_MODM2, "set ASYNC_CARR_ON");
3352 		async->async_flags |= ASYNC_CARR_ON;
3353 		if (async->async_flags & ASYNC_ISOPEN) {
3354 			mutex_exit(&asy->asy_excl_hi);
3355 			mutex_exit(&asy->asy_excl);
3356 			(void) putctl(q, M_UNHANGUP);
3357 			mutex_enter(&asy->asy_excl);
3358 			mutex_enter(&asy->asy_excl_hi);
3359 		}
3360 		cv_broadcast(&async->async_flags_cv);
3361 
3362 		return;
3363 	}
3364 
3365 	/*
3366 	 * The DCD line is off. If we had no carrier, nothing changed
3367 	 * and there's nothing to do.
3368 	 */
3369 	if ((async->async_flags & ASYNC_CARR_ON) == 0)
3370 		return;
3371 
3372 	/*
3373 	 * The DCD line is off, but we had a carrier. If we're on a local line,
3374 	 * where carrier is ignored, or we're using a soft carrier, we're done
3375 	 * here.
3376 	 */
3377 	if ((tp->t_cflag & CLOCAL) != 0 || (tp->t_flags & TS_SOFTCAR) != 0)
3378 		goto out;
3379 
3380 	/*
3381 	 * Else, drop DTR, abort any output in progress, indicate that output
3382 	 * is not stopped.
3383 	 */
3384 	ASY_DPRINTF(asy, ASY_DEBUG_MODEM, "carrier dropped, so drop DTR");
3385 	asy_clr(asy, ASY_MCR, ASY_MCR_DTR);
3386 
3387 	if (async->async_flags & ASYNC_BUSY) {
3388 		ASY_DPRINTF(asy, ASY_DEBUG_BUSY,
3389 		    "Carrier dropped. Clearing async_ocnt");
3390 		async->async_ocnt = 0;
3391 	}
3392 
3393 	async->async_flags &= ~ASYNC_STOPPED;
3394 
3395 	/* If nobody had the device open, we're done here. */
3396 	if ((async->async_flags & ASYNC_ISOPEN) == 0)
3397 		goto out;
3398 
3399 	/* Else, send a hangup notification upstream and clean up. */
3400 	mutex_exit(&asy->asy_excl_hi);
3401 	mutex_exit(&asy->asy_excl);
3402 	(void) putctl(q, M_HANGUP);
3403 	mutex_enter(&asy->asy_excl);
3404 	ASY_DPRINTF(asy, ASY_DEBUG_MODEM, "putctl(q, M_HANGUP)");
3405 
3406 	/*
3407 	 * Flush the transmit FIFO. Any data left in there is invalid now.
3408 	 */
3409 	if (asy->asy_use_fifo == ASY_FCR_FIFO_EN) {
3410 		mutex_enter(&asy->asy_excl_hi);
3411 		asy_reset_fifo(asy, ASY_FCR_THR_FL);
3412 		mutex_exit(&asy->asy_excl_hi);
3413 	}
3414 
3415 	/*
3416 	 * Flush our write queue if we have one. If we're in the midst of close,
3417 	 * then flush everything. Don't leave stale ioctls lying about.
3418 	 */
3419 	ASY_DPRINTF(asy, ASY_DEBUG_MODEM,
3420 	    "Flushing to prevent HUPCL hanging");
3421 	flushflag = (async->async_flags & ASYNC_CLOSING) ? FLUSHALL : FLUSHDATA;
3422 	flushq(tp->t_writeq, flushflag);
3423 
3424 	/* Free the last active msg. */
3425 	bp = async->async_xmitblk;
3426 	if (bp != NULL) {
3427 		freeb(bp);
3428 		async->async_xmitblk = NULL;
3429 	}
3430 
3431 	mutex_enter(&asy->asy_excl_hi);
3432 	async->async_flags &= ~ASYNC_BUSY;
3433 
3434 
3435 out:
3436 	/* Clear our carrier flag and signal anyone waiting. */
3437 	async->async_flags &= ~ASYNC_CARR_ON;
3438 	cv_broadcast(&async->async_flags_cv);
3439 }
3440 
3441 /*
3442  * Handle a second-stage interrupt.
3443  */
3444 uint_t
3445 asysoftintr(caddr_t intarg, caddr_t unusedarg __unused)
3446 {
3447 	struct asycom *asy = (struct asycom *)intarg;
3448 	struct asyncline *async;
3449 	int rv;
3450 	uint_t cc;
3451 
3452 	/*
3453 	 * Test and clear soft interrupt.
3454 	 */
3455 	mutex_enter(&asy->asy_soft_lock);
3456 	ASY_DPRINTF(asy, ASY_DEBUG_PROCS, "enter");
3457 	rv = asy->asysoftpend;
3458 	if (rv != 0)
3459 		asy->asysoftpend = 0;
3460 	mutex_exit(&asy->asy_soft_lock);
3461 
3462 	if (rv) {
3463 		if (asy->asy_priv == NULL)
3464 			return (rv ? DDI_INTR_CLAIMED : DDI_INTR_UNCLAIMED);
3465 		async = (struct asyncline *)asy->asy_priv;
3466 		mutex_enter(&asy->asy_excl_hi);
3467 		if (asy->asy_flags & ASY_NEEDSOFT) {
3468 			asy->asy_flags &= ~ASY_NEEDSOFT;
3469 			mutex_exit(&asy->asy_excl_hi);
3470 			async_softint(asy);
3471 			mutex_enter(&asy->asy_excl_hi);
3472 		}
3473 
3474 		/*
3475 		 * There are some instances where the softintr is not
3476 		 * scheduled and hence not called. It so happens that
3477 		 * causes the last few characters to be stuck in the
3478 		 * ringbuffer. Hence, call the handler once again so
3479 		 * the last few characters are cleared.
3480 		 */
3481 		cc = RING_CNT(async);
3482 		mutex_exit(&asy->asy_excl_hi);
3483 		if (cc > 0)
3484 			(void) async_softint(asy);
3485 	}
3486 	return (rv ? DDI_INTR_CLAIMED : DDI_INTR_UNCLAIMED);
3487 }
3488 
3489 /*
3490  * Handle a software interrupt.
3491  */
3492 static void
3493 async_softint(struct asycom *asy)
3494 {
3495 	struct asyncline *async = asy->asy_priv;
3496 	uint_t	cc;
3497 	mblk_t	*bp;
3498 	queue_t	*q;
3499 	uchar_t	c;
3500 	tty_common_t	*tp;
3501 	int nb;
3502 
3503 	ASY_DPRINTF(asy, ASY_DEBUG_PROCS, "enter");
3504 	mutex_enter(&asy->asy_excl_hi);
3505 	if (asy->asy_flags & ASY_DOINGSOFT) {
3506 		asy->asy_flags |= ASY_DOINGSOFT_RETRY;
3507 		mutex_exit(&asy->asy_excl_hi);
3508 		return;
3509 	}
3510 	asy->asy_flags |= ASY_DOINGSOFT;
3511 begin:
3512 	asy->asy_flags &= ~ASY_DOINGSOFT_RETRY;
3513 	mutex_exit(&asy->asy_excl_hi);
3514 	mutex_enter(&asy->asy_excl);
3515 	tp = &async->async_ttycommon;
3516 	q = tp->t_readq;
3517 
3518 	if (async->async_flags & ASYNC_OUT_FLW_RESUME) {
3519 		if (async->async_ocnt > 0) {
3520 			mutex_enter(&asy->asy_excl_hi);
3521 			async_resume(async);
3522 			mutex_exit(&asy->asy_excl_hi);
3523 		} else {
3524 			if (async->async_xmitblk)
3525 				freeb(async->async_xmitblk);
3526 			async->async_xmitblk = NULL;
3527 			async_start(async);
3528 		}
3529 		async->async_flags &= ~ASYNC_OUT_FLW_RESUME;
3530 	}
3531 
3532 	mutex_enter(&asy->asy_excl_hi);
3533 	if (async->async_ext) {
3534 		async->async_ext = 0;
3535 		asy_carrier_check(asy);
3536 	}
3537 	mutex_exit(&asy->asy_excl_hi);
3538 
3539 	/*
3540 	 * If data has been added to the circular buffer, remove
3541 	 * it from the buffer, and send it up the stream if there's
3542 	 * somebody listening. Try to do it 16 bytes at a time. If we
3543 	 * have more than 16 bytes to move, move 16 byte chunks and
3544 	 * leave the rest for next time around (maybe it will grow).
3545 	 */
3546 	mutex_enter(&asy->asy_excl_hi);
3547 	if (!(async->async_flags & ASYNC_ISOPEN)) {
3548 		RING_INIT(async);
3549 		goto rv;
3550 	}
3551 	if ((cc = RING_CNT(async)) == 0)
3552 		goto rv;
3553 	mutex_exit(&asy->asy_excl_hi);
3554 
3555 	if (!canput(q)) {
3556 		mutex_enter(&asy->asy_excl_hi);
3557 		if (!(async->async_inflow_source & IN_FLOW_STREAMS)) {
3558 			async_flowcontrol_hw_input(asy, FLOW_STOP,
3559 			    IN_FLOW_STREAMS);
3560 			(void) async_flowcontrol_sw_input(asy, FLOW_STOP,
3561 			    IN_FLOW_STREAMS);
3562 		}
3563 		goto rv;
3564 	}
3565 	if (async->async_inflow_source & IN_FLOW_STREAMS) {
3566 		mutex_enter(&asy->asy_excl_hi);
3567 		async_flowcontrol_hw_input(asy, FLOW_START,
3568 		    IN_FLOW_STREAMS);
3569 		(void) async_flowcontrol_sw_input(asy, FLOW_START,
3570 		    IN_FLOW_STREAMS);
3571 		mutex_exit(&asy->asy_excl_hi);
3572 	}
3573 
3574 	ASY_DPRINTF(asy, ASY_DEBUG_INPUT, "%d char(s) in queue", cc);
3575 
3576 	if (!(bp = allocb(cc, BPRI_MED))) {
3577 		mutex_exit(&asy->asy_excl);
3578 		ttycommon_qfull(&async->async_ttycommon, q);
3579 		mutex_enter(&asy->asy_excl);
3580 		mutex_enter(&asy->asy_excl_hi);
3581 		goto rv;
3582 	}
3583 	mutex_enter(&asy->asy_excl_hi);
3584 	do {
3585 		if (RING_ERR(async, S_ERRORS)) {
3586 			RING_UNMARK(async);
3587 			c = RING_GET(async);
3588 			break;
3589 		} else {
3590 			*bp->b_wptr++ = RING_GET(async);
3591 		}
3592 	} while (--cc);
3593 	mutex_exit(&asy->asy_excl_hi);
3594 	mutex_exit(&asy->asy_excl);
3595 	if (bp->b_wptr > bp->b_rptr) {
3596 		if (!canput(q)) {
3597 			asyerror(asy, CE_WARN, "local queue full");
3598 			freemsg(bp);
3599 		} else {
3600 			(void) putq(q, bp);
3601 		}
3602 	} else {
3603 		freemsg(bp);
3604 	}
3605 	/*
3606 	 * If we have a parity error, then send
3607 	 * up an M_BREAK with the "bad"
3608 	 * character as an argument. Let ldterm
3609 	 * figure out what to do with the error.
3610 	 */
3611 	if (cc)
3612 		(void) putctl1(q, M_BREAK, c);
3613 	mutex_enter(&asy->asy_excl);
3614 	mutex_enter(&asy->asy_excl_hi);
3615 	if (cc) {
3616 		asysetsoft(asy);	/* finish cc chars */
3617 	}
3618 rv:
3619 	if ((RING_CNT(async) < (RINGSIZE/4)) &&
3620 	    (async->async_inflow_source & IN_FLOW_RINGBUFF)) {
3621 		async_flowcontrol_hw_input(asy, FLOW_START, IN_FLOW_RINGBUFF);
3622 		(void) async_flowcontrol_sw_input(asy, FLOW_START,
3623 		    IN_FLOW_RINGBUFF);
3624 	}
3625 
3626 	/*
3627 	 * If a transmission has finished, indicate that it's finished,
3628 	 * and start that line up again.
3629 	 */
3630 	if (async->async_break > 0) {
3631 		nb = async->async_break;
3632 		async->async_break = 0;
3633 		if (async->async_flags & ASYNC_ISOPEN) {
3634 			mutex_exit(&asy->asy_excl_hi);
3635 			mutex_exit(&asy->asy_excl);
3636 			for (; nb > 0; nb--)
3637 				(void) putctl(q, M_BREAK);
3638 			mutex_enter(&asy->asy_excl);
3639 			mutex_enter(&asy->asy_excl_hi);
3640 		}
3641 	}
3642 	if (async->async_ocnt <= 0 && (async->async_flags & ASYNC_BUSY)) {
3643 		ASY_DPRINTF(asy, ASY_DEBUG_BUSY,
3644 		    "Clearing ASYNC_BUSY, async_ocnt=%d", async->async_ocnt);
3645 		async->async_flags &= ~ASYNC_BUSY;
3646 		mutex_exit(&asy->asy_excl_hi);
3647 		if (async->async_xmitblk)
3648 			freeb(async->async_xmitblk);
3649 		async->async_xmitblk = NULL;
3650 		async_start(async);
3651 		/*
3652 		 * If the flag isn't set after doing the async_start above, we
3653 		 * may have finished all the queued output.  Signal any thread
3654 		 * stuck in close.
3655 		 */
3656 		if (!(async->async_flags & ASYNC_BUSY))
3657 			cv_broadcast(&async->async_flags_cv);
3658 		mutex_enter(&asy->asy_excl_hi);
3659 	}
3660 	/*
3661 	 * A note about these overrun bits: all they do is *tell* someone
3662 	 * about an error- They do not track multiple errors. In fact,
3663 	 * you could consider them latched register bits if you like.
3664 	 * We are only interested in printing the error message once for
3665 	 * any cluster of overrun errors.
3666 	 */
3667 	if (async->async_hw_overrun) {
3668 		if (async->async_flags & ASYNC_ISOPEN) {
3669 			mutex_exit(&asy->asy_excl_hi);
3670 			mutex_exit(&asy->asy_excl);
3671 			asyerror(asy, CE_WARN, "silo overflow");
3672 			mutex_enter(&asy->asy_excl);
3673 			mutex_enter(&asy->asy_excl_hi);
3674 		}
3675 		async->async_hw_overrun = 0;
3676 	}
3677 	if (async->async_sw_overrun) {
3678 		if (async->async_flags & ASYNC_ISOPEN) {
3679 			mutex_exit(&asy->asy_excl_hi);
3680 			mutex_exit(&asy->asy_excl);
3681 			asyerror(asy, CE_WARN, "ring buffer overflow");
3682 			mutex_enter(&asy->asy_excl);
3683 			mutex_enter(&asy->asy_excl_hi);
3684 		}
3685 		async->async_sw_overrun = 0;
3686 	}
3687 	if (asy->asy_flags & ASY_DOINGSOFT_RETRY) {
3688 		mutex_exit(&asy->asy_excl);
3689 		goto begin;
3690 	}
3691 	asy->asy_flags &= ~ASY_DOINGSOFT;
3692 	mutex_exit(&asy->asy_excl_hi);
3693 	mutex_exit(&asy->asy_excl);
3694 	ASY_DPRINTF(asy, ASY_DEBUG_PROCS, "done");
3695 }
3696 
3697 /*
3698  * Restart output on a line after a delay or break timer expired.
3699  */
3700 static void
3701 async_restart(void *arg)
3702 {
3703 	struct asyncline *async = (struct asyncline *)arg;
3704 	struct asycom *asy = async->async_common;
3705 
3706 	ASY_DPRINTF(asy, ASY_DEBUG_PROCS, "enter");
3707 
3708 	/*
3709 	 * If break timer expired, turn off the break bit.
3710 	 */
3711 
3712 	mutex_enter(&asy->asy_excl);
3713 	/*
3714 	 * If ASYNC_OUT_SUSPEND is also set, we don't really
3715 	 * clean the HW break, TIOCCBRK is responsible for this.
3716 	 */
3717 	if ((async->async_flags & ASYNC_BREAK) &&
3718 	    !(async->async_flags & ASYNC_OUT_SUSPEND)) {
3719 		mutex_enter(&asy->asy_excl_hi);
3720 		asy_clr(asy, ASY_LCR, ASY_LCR_SETBRK);
3721 		mutex_exit(&asy->asy_excl_hi);
3722 	}
3723 	async->async_flags &= ~(ASYNC_DELAY|ASYNC_BREAK);
3724 	cv_broadcast(&async->async_flags_cv);
3725 	async_start(async);
3726 
3727 	mutex_exit(&asy->asy_excl);
3728 }
3729 
3730 /*
3731  * Start output on a line, unless it's busy, frozen, or otherwise.
3732  */
3733 static void
3734 async_start(struct asyncline *async)
3735 {
3736 	struct asycom *asy = async->async_common;
3737 	int cc;
3738 	queue_t *q;
3739 	mblk_t *bp;
3740 	uchar_t *xmit_addr;
3741 	int	fifo_len = 1;
3742 	boolean_t didsome;
3743 	mblk_t *nbp;
3744 
3745 	ASY_DPRINTF(asy, ASY_DEBUG_PROCS, "enter");
3746 
3747 	if (asy->asy_use_fifo == ASY_FCR_FIFO_EN) {
3748 		fifo_len = asy->asy_fifo_buf; /* with FIFO buffers */
3749 		if (fifo_len > asy_max_tx_fifo)
3750 			fifo_len = asy_max_tx_fifo;
3751 	}
3752 
3753 	ASSERT(mutex_owned(&asy->asy_excl));
3754 
3755 	/*
3756 	 * If the chip is busy (i.e., we're waiting for a break timeout
3757 	 * to expire, or for the current transmission to finish, or for
3758 	 * output to finish draining from chip), don't grab anything new.
3759 	 */
3760 	if (async->async_flags & (ASYNC_BREAK|ASYNC_BUSY)) {
3761 		ASY_DPRINTF(asy, ASY_DEBUG_OUT, "%s",
3762 		    async->async_flags & ASYNC_BREAK ? "break" : "busy");
3763 		return;
3764 	}
3765 
3766 	/*
3767 	 * Check only pended sw input flow control.
3768 	 */
3769 	mutex_enter(&asy->asy_excl_hi);
3770 	if (async_flowcontrol_sw_input(asy, FLOW_CHECK, IN_FLOW_NULL))
3771 		fifo_len--;
3772 	mutex_exit(&asy->asy_excl_hi);
3773 
3774 	/*
3775 	 * If we're waiting for a delay timeout to expire, don't grab
3776 	 * anything new.
3777 	 */
3778 	if (async->async_flags & ASYNC_DELAY) {
3779 		ASY_DPRINTF(asy, ASY_DEBUG_OUT, "start ASYNC_DELAY");
3780 		return;
3781 	}
3782 
3783 	if ((q = async->async_ttycommon.t_writeq) == NULL) {
3784 		ASY_DPRINTF(asy, ASY_DEBUG_OUT, "start writeq is null");
3785 		return;	/* not attached to a stream */
3786 	}
3787 
3788 	for (;;) {
3789 		if ((bp = getq(q)) == NULL)
3790 			return;	/* no data to transmit */
3791 
3792 		/*
3793 		 * We have a message block to work on.
3794 		 * Check whether it's a break, a delay, or an ioctl (the latter
3795 		 * occurs if the ioctl in question was waiting for the output
3796 		 * to drain).  If it's one of those, process it immediately.
3797 		 */
3798 		switch (bp->b_datap->db_type) {
3799 
3800 		case M_BREAK:
3801 			/*
3802 			 * Set the break bit, and arrange for "async_restart"
3803 			 * to be called in 1/4 second; it will turn the
3804 			 * break bit off, and call "async_start" to grab
3805 			 * the next message.
3806 			 */
3807 			mutex_enter(&asy->asy_excl_hi);
3808 			asy_set(asy, ASY_LCR, ASY_LCR_SETBRK);
3809 			mutex_exit(&asy->asy_excl_hi);
3810 			async->async_flags |= ASYNC_BREAK;
3811 			(void) timeout(async_restart, (caddr_t)async,
3812 			    drv_usectohz(1000000)/4);
3813 			freemsg(bp);
3814 			return;	/* wait for this to finish */
3815 
3816 		case M_DELAY:
3817 			/*
3818 			 * Arrange for "async_restart" to be called when the
3819 			 * delay expires; it will turn ASYNC_DELAY off,
3820 			 * and call "async_start" to grab the next message.
3821 			 */
3822 			(void) timeout(async_restart, (caddr_t)async,
3823 			    (int)(*(unsigned char *)bp->b_rptr + 6));
3824 			async->async_flags |= ASYNC_DELAY;
3825 			freemsg(bp);
3826 			return;	/* wait for this to finish */
3827 
3828 		case M_IOCTL:
3829 			/*
3830 			 * This ioctl was waiting for the output ahead of
3831 			 * it to drain; obviously, it has.  Do it, and
3832 			 * then grab the next message after it.
3833 			 */
3834 			mutex_exit(&asy->asy_excl);
3835 			async_ioctl(async, q, bp);
3836 			mutex_enter(&asy->asy_excl);
3837 			continue;
3838 		}
3839 
3840 		while (bp != NULL && ((cc = MBLKL(bp)) == 0)) {
3841 			nbp = bp->b_cont;
3842 			freeb(bp);
3843 			bp = nbp;
3844 		}
3845 		if (bp != NULL)
3846 			break;
3847 	}
3848 
3849 	/*
3850 	 * We have data to transmit.  If output is stopped, put
3851 	 * it back and try again later.
3852 	 */
3853 	if (async->async_flags & (ASYNC_HW_OUT_FLW | ASYNC_SW_OUT_FLW |
3854 	    ASYNC_STOPPED | ASYNC_OUT_SUSPEND)) {
3855 		(void) putbq(q, bp);
3856 		return;
3857 	}
3858 
3859 	async->async_xmitblk = bp;
3860 	xmit_addr = bp->b_rptr;
3861 	bp = bp->b_cont;
3862 	if (bp != NULL)
3863 		(void) putbq(q, bp);	/* not done with this message yet */
3864 
3865 	/*
3866 	 * In 5-bit mode, the high order bits are used
3867 	 * to indicate character sizes less than five,
3868 	 * so we need to explicitly mask before transmitting
3869 	 */
3870 	if ((async->async_ttycommon.t_cflag & CSIZE) == CS5) {
3871 		unsigned char *p = xmit_addr;
3872 		int cnt = cc;
3873 
3874 		while (cnt--)
3875 			*p++ &= (unsigned char) 0x1f;
3876 	}
3877 
3878 	/*
3879 	 * Set up this block for pseudo-DMA.
3880 	 */
3881 	mutex_enter(&asy->asy_excl_hi);
3882 	/*
3883 	 * If the transmitter is ready, shove the first
3884 	 * character out.
3885 	 */
3886 	didsome = B_FALSE;
3887 	while (--fifo_len >= 0 && cc > 0) {
3888 		if (!(asy_get(asy, ASY_LSR) & ASY_LSR_THRE))
3889 			break;
3890 		asy_put(asy, ASY_THR, *xmit_addr++);
3891 		cc--;
3892 		didsome = B_TRUE;
3893 	}
3894 	async->async_optr = xmit_addr;
3895 	async->async_ocnt = cc;
3896 	if (didsome)
3897 		async->async_flags |= ASYNC_PROGRESS;
3898 	ASY_DPRINTF(asy, ASY_DEBUG_BUSY, "Set ASYNC_BUSY, async_ocnt=%d",
3899 	    async->async_ocnt);
3900 	async->async_flags |= ASYNC_BUSY;
3901 	mutex_exit(&asy->asy_excl_hi);
3902 }
3903 
3904 /*
3905  * Resume output by poking the transmitter.
3906  */
3907 static void
3908 async_resume(struct asyncline *async)
3909 {
3910 	struct asycom *asy = async->async_common;
3911 
3912 	ASY_DPRINTF(asy, ASY_DEBUG_PROCS, "enter");
3913 	ASSERT(mutex_owned(&asy->asy_excl_hi));
3914 
3915 	if (asy_get(asy, ASY_LSR) & ASY_LSR_THRE) {
3916 		if (async_flowcontrol_sw_input(asy, FLOW_CHECK, IN_FLOW_NULL))
3917 			return;
3918 		if (async->async_ocnt > 0 &&
3919 		    !(async->async_flags &
3920 		    (ASYNC_HW_OUT_FLW|ASYNC_SW_OUT_FLW|ASYNC_OUT_SUSPEND))) {
3921 			asy_put(asy, ASY_THR, *async->async_optr++);
3922 			async->async_ocnt--;
3923 			async->async_flags |= ASYNC_PROGRESS;
3924 		}
3925 	}
3926 }
3927 
3928 /*
3929  * Hold the untimed break to last the minimum time.
3930  */
3931 static void
3932 async_hold_utbrk(void *arg)
3933 {
3934 	struct asyncline *async = arg;
3935 	struct asycom *asy = async->async_common;
3936 
3937 	mutex_enter(&asy->asy_excl);
3938 	async->async_flags &= ~ASYNC_HOLD_UTBRK;
3939 	cv_broadcast(&async->async_flags_cv);
3940 	async->async_utbrktid = 0;
3941 	mutex_exit(&asy->asy_excl);
3942 }
3943 
3944 /*
3945  * Resume the untimed break.
3946  */
3947 static void
3948 async_resume_utbrk(struct asyncline *async)
3949 {
3950 	struct asycom *asy = async->async_common;
3951 	ASSERT(mutex_owned(&asy->asy_excl));
3952 
3953 	/*
3954 	 * Because the wait time is very short,
3955 	 * so we use uninterruptably wait.
3956 	 */
3957 	while (async->async_flags & ASYNC_HOLD_UTBRK) {
3958 		cv_wait(&async->async_flags_cv, &asy->asy_excl);
3959 	}
3960 	mutex_enter(&asy->asy_excl_hi);
3961 	/*
3962 	 * Timed break and untimed break can exist simultaneously,
3963 	 * if ASYNC_BREAK is also set at here, we don't
3964 	 * really clean the HW break.
3965 	 */
3966 	if (!(async->async_flags & ASYNC_BREAK))
3967 		asy_clr(asy, ASY_LCR, ASY_LCR_SETBRK);
3968 
3969 	async->async_flags &= ~ASYNC_OUT_SUSPEND;
3970 	cv_broadcast(&async->async_flags_cv);
3971 	if (async->async_ocnt > 0) {
3972 		async_resume(async);
3973 		mutex_exit(&asy->asy_excl_hi);
3974 	} else {
3975 		async->async_flags &= ~ASYNC_BUSY;
3976 		mutex_exit(&asy->asy_excl_hi);
3977 		if (async->async_xmitblk != NULL) {
3978 			freeb(async->async_xmitblk);
3979 			async->async_xmitblk = NULL;
3980 		}
3981 		async_start(async);
3982 	}
3983 }
3984 
3985 /*
3986  * Process an "ioctl" message sent down to us.
3987  * Note that we don't need to get any locks until we are ready to access
3988  * the hardware.  Nothing we access until then is going to be altered
3989  * outside of the STREAMS framework, so we should be safe.
3990  */
3991 int asydelay = 10000;
3992 static void
3993 async_ioctl(struct asyncline *async, queue_t *wq, mblk_t *mp)
3994 {
3995 	struct asycom *asy = async->async_common;
3996 	tty_common_t  *tp = &async->async_ttycommon;
3997 	struct iocblk *iocp;
3998 	unsigned datasize;
3999 	int error = 0;
4000 	mblk_t *datamp;
4001 
4002 	ASY_DPRINTF(asy, ASY_DEBUG_PROCS, "enter");
4003 
4004 	if (tp->t_iocpending != NULL) {
4005 		/*
4006 		 * We were holding an "ioctl" response pending the
4007 		 * availability of an "mblk" to hold data to be passed up;
4008 		 * another "ioctl" came through, which means that "ioctl"
4009 		 * must have timed out or been aborted.
4010 		 */
4011 		freemsg(async->async_ttycommon.t_iocpending);
4012 		async->async_ttycommon.t_iocpending = NULL;
4013 	}
4014 
4015 	iocp = (struct iocblk *)mp->b_rptr;
4016 
4017 	/*
4018 	 * For TIOCMGET and the PPS ioctls, do NOT call ttycommon_ioctl()
4019 	 * because this function frees up the message block (mp->b_cont) that
4020 	 * contains the user location where we pass back the results.
4021 	 *
4022 	 * Similarly, CONSOPENPOLLEDIO needs ioc_count, which ttycommon_ioctl
4023 	 * zaps.  We know that ttycommon_ioctl doesn't know any CONS*
4024 	 * ioctls, so keep the others safe too.
4025 	 */
4026 	ASY_DPRINTF(asy, ASY_DEBUG_IOCTL, "%s",
4027 	    iocp->ioc_cmd == TIOCMGET ? "TIOCMGET" :
4028 	    iocp->ioc_cmd == TIOCMSET ? "TIOCMSET" :
4029 	    iocp->ioc_cmd == TIOCMBIS ? "TIOCMBIS" :
4030 	    iocp->ioc_cmd == TIOCMBIC ? "TIOCMBIC" :
4031 	    "other");
4032 
4033 	switch (iocp->ioc_cmd) {
4034 	case TIOCMGET:
4035 	case TIOCGPPS:
4036 	case TIOCSPPS:
4037 	case TIOCGPPSEV:
4038 	case CONSOPENPOLLEDIO:
4039 	case CONSCLOSEPOLLEDIO:
4040 	case CONSSETABORTENABLE:
4041 	case CONSGETABORTENABLE:
4042 		error = -1; /* Do Nothing */
4043 		break;
4044 	default:
4045 
4046 		/*
4047 		 * The only way in which "ttycommon_ioctl" can fail is if the
4048 		 * "ioctl" requires a response containing data to be returned
4049 		 * to the user, and no mblk could be allocated for the data.
4050 		 * No such "ioctl" alters our state.  Thus, we always go ahead
4051 		 * and do any state-changes the "ioctl" calls for.  If we
4052 		 * couldn't allocate the data, "ttycommon_ioctl" has stashed
4053 		 * the "ioctl" away safely, so we just call "bufcall" to
4054 		 * request that we be called back when we stand a better
4055 		 * chance of allocating the data.
4056 		 */
4057 		if ((datasize = ttycommon_ioctl(tp, wq, mp, &error)) != 0) {
4058 			if (async->async_wbufcid)
4059 				unbufcall(async->async_wbufcid);
4060 			async->async_wbufcid = bufcall(datasize, BPRI_HI,
4061 			    (void (*)(void *)) async_reioctl,
4062 			    (void *)(intptr_t)async->async_common->asy_unit);
4063 			return;
4064 		}
4065 	}
4066 
4067 	mutex_enter(&asy->asy_excl);
4068 
4069 	if (error == 0) {
4070 		/*
4071 		 * "ttycommon_ioctl" did most of the work; we just use the
4072 		 * data it set up.
4073 		 */
4074 		switch (iocp->ioc_cmd) {
4075 
4076 		case TCSETS:
4077 			mutex_enter(&asy->asy_excl_hi);
4078 			if (asy_baudok(asy))
4079 				asy_program(asy, ASY_NOINIT);
4080 			else
4081 				error = EINVAL;
4082 			mutex_exit(&asy->asy_excl_hi);
4083 			break;
4084 		case TCSETSF:
4085 		case TCSETSW:
4086 		case TCSETA:
4087 		case TCSETAW:
4088 		case TCSETAF:
4089 			mutex_enter(&asy->asy_excl_hi);
4090 			if (!asy_baudok(asy))
4091 				error = EINVAL;
4092 			else {
4093 				if (asy_isbusy(asy))
4094 					asy_waiteot(asy);
4095 				asy_program(asy, ASY_NOINIT);
4096 			}
4097 			mutex_exit(&asy->asy_excl_hi);
4098 			break;
4099 		}
4100 	} else if (error < 0) {
4101 		/*
4102 		 * "ttycommon_ioctl" didn't do anything; we process it here.
4103 		 */
4104 		error = 0;
4105 		switch (iocp->ioc_cmd) {
4106 
4107 		case TIOCGPPS:
4108 			/*
4109 			 * Get PPS on/off.
4110 			 */
4111 			if (mp->b_cont != NULL)
4112 				freemsg(mp->b_cont);
4113 
4114 			mp->b_cont = allocb(sizeof (int), BPRI_HI);
4115 			if (mp->b_cont == NULL) {
4116 				error = ENOMEM;
4117 				break;
4118 			}
4119 			if (asy->asy_flags & ASY_PPS)
4120 				*(int *)mp->b_cont->b_wptr = 1;
4121 			else
4122 				*(int *)mp->b_cont->b_wptr = 0;
4123 			mp->b_cont->b_wptr += sizeof (int);
4124 			mp->b_datap->db_type = M_IOCACK;
4125 			iocp->ioc_count = sizeof (int);
4126 			break;
4127 
4128 		case TIOCSPPS:
4129 			/*
4130 			 * Set PPS on/off.
4131 			 */
4132 			error = miocpullup(mp, sizeof (int));
4133 			if (error != 0)
4134 				break;
4135 
4136 			mutex_enter(&asy->asy_excl_hi);
4137 			if (*(int *)mp->b_cont->b_rptr)
4138 				asy->asy_flags |= ASY_PPS;
4139 			else
4140 				asy->asy_flags &= ~ASY_PPS;
4141 			/* Reset edge sense */
4142 			asy->asy_flags &= ~ASY_PPS_EDGE;
4143 			mutex_exit(&asy->asy_excl_hi);
4144 			mp->b_datap->db_type = M_IOCACK;
4145 			break;
4146 
4147 		case TIOCGPPSEV:
4148 		{
4149 			/*
4150 			 * Get PPS event data.
4151 			 */
4152 			mblk_t *bp;
4153 			void *buf;
4154 #ifdef _SYSCALL32_IMPL
4155 			struct ppsclockev32 p32;
4156 #endif
4157 			struct ppsclockev ppsclockev;
4158 
4159 			if (mp->b_cont != NULL) {
4160 				freemsg(mp->b_cont);
4161 				mp->b_cont = NULL;
4162 			}
4163 
4164 			if ((asy->asy_flags & ASY_PPS) == 0) {
4165 				error = ENXIO;
4166 				break;
4167 			}
4168 
4169 			/* Protect from incomplete asy_ppsev */
4170 			mutex_enter(&asy->asy_excl_hi);
4171 			ppsclockev = asy_ppsev;
4172 			mutex_exit(&asy->asy_excl_hi);
4173 
4174 #ifdef _SYSCALL32_IMPL
4175 			if ((iocp->ioc_flag & IOC_MODELS) != IOC_NATIVE) {
4176 				TIMEVAL_TO_TIMEVAL32(&p32.tv, &ppsclockev.tv);
4177 				p32.serial = ppsclockev.serial;
4178 				buf = &p32;
4179 				iocp->ioc_count = sizeof (struct ppsclockev32);
4180 			} else
4181 #endif
4182 			{
4183 				buf = &ppsclockev;
4184 				iocp->ioc_count = sizeof (struct ppsclockev);
4185 			}
4186 
4187 			if ((bp = allocb(iocp->ioc_count, BPRI_HI)) == NULL) {
4188 				error = ENOMEM;
4189 				break;
4190 			}
4191 			mp->b_cont = bp;
4192 
4193 			bcopy(buf, bp->b_wptr, iocp->ioc_count);
4194 			bp->b_wptr += iocp->ioc_count;
4195 			mp->b_datap->db_type = M_IOCACK;
4196 			break;
4197 		}
4198 
4199 		case TCSBRK:
4200 			error = miocpullup(mp, sizeof (int));
4201 			if (error != 0)
4202 				break;
4203 
4204 			if (*(int *)mp->b_cont->b_rptr == 0) {
4205 
4206 				/*
4207 				 * XXX Arrangements to ensure that a break
4208 				 * isn't in progress should be sufficient.
4209 				 * This ugly delay() is the only thing
4210 				 * that seems to work on the NCR Worldmark.
4211 				 * It should be replaced. Note that an
4212 				 * asy_waiteot() also does not work.
4213 				 */
4214 				if (asydelay)
4215 					delay(drv_usectohz(asydelay));
4216 
4217 				while (async->async_flags & ASYNC_BREAK) {
4218 					cv_wait(&async->async_flags_cv,
4219 					    &asy->asy_excl);
4220 				}
4221 				mutex_enter(&asy->asy_excl_hi);
4222 				/*
4223 				 * Wait until TSR is empty and then set the
4224 				 * break. ASYNC_BREAK has been set to ensure
4225 				 * that no characters are transmitted while the
4226 				 * TSR is being flushed and SOUT is being used
4227 				 * for the break signal.
4228 				 */
4229 				async->async_flags |= ASYNC_BREAK;
4230 				asy_wait_baudrate(asy);
4231 				/*
4232 				 * Arrange for "async_restart"
4233 				 * to be called in 1/4 second;
4234 				 * it will turn the break bit off, and call
4235 				 * "async_start" to grab the next message.
4236 				 */
4237 				asy_set(asy, ASY_LCR, ASY_LCR_SETBRK);
4238 				mutex_exit(&asy->asy_excl_hi);
4239 				(void) timeout(async_restart, (caddr_t)async,
4240 				    drv_usectohz(1000000)/4);
4241 			} else {
4242 				ASY_DPRINTF(asy, ASY_DEBUG_OUT,
4243 				    "wait for flush");
4244 				mutex_enter(&asy->asy_excl_hi);
4245 				asy_waiteot(asy);
4246 				mutex_exit(&asy->asy_excl_hi);
4247 				ASY_DPRINTF(asy, ASY_DEBUG_OUT,
4248 				    "ldterm satisfied");
4249 			}
4250 			break;
4251 
4252 		case TIOCSBRK:
4253 			if (!(async->async_flags & ASYNC_OUT_SUSPEND)) {
4254 				mutex_enter(&asy->asy_excl_hi);
4255 				async->async_flags |= ASYNC_OUT_SUSPEND;
4256 				async->async_flags |= ASYNC_HOLD_UTBRK;
4257 				asy_wait_baudrate(asy);
4258 				mutex_exit(&asy->asy_excl_hi);
4259 				/* wait for 100ms to hold BREAK */
4260 				async->async_utbrktid =
4261 				    timeout((void (*)())async_hold_utbrk,
4262 				    (caddr_t)async,
4263 				    drv_usectohz(asy_min_utbrk));
4264 			}
4265 			mioc2ack(mp, NULL, 0, 0);
4266 			break;
4267 
4268 		case TIOCCBRK:
4269 			if (async->async_flags & ASYNC_OUT_SUSPEND)
4270 				async_resume_utbrk(async);
4271 			mioc2ack(mp, NULL, 0, 0);
4272 			break;
4273 
4274 		case TIOCMSET:
4275 		case TIOCMBIS:
4276 		case TIOCMBIC:
4277 			if (iocp->ioc_count != TRANSPARENT) {
4278 				ASY_DPRINTF(asy, ASY_DEBUG_IOCTL,
4279 				    "non-transparent");
4280 
4281 				error = miocpullup(mp, sizeof (int));
4282 				if (error != 0)
4283 					break;
4284 
4285 				mutex_enter(&asy->asy_excl_hi);
4286 				(void) asymctl(asy,
4287 				    dmtoasy(asy, *(int *)mp->b_cont->b_rptr),
4288 				    iocp->ioc_cmd);
4289 				mutex_exit(&asy->asy_excl_hi);
4290 				iocp->ioc_error = 0;
4291 				mp->b_datap->db_type = M_IOCACK;
4292 			} else {
4293 				ASY_DPRINTF(asy, ASY_DEBUG_IOCTL,
4294 				    "transparent");
4295 				mcopyin(mp, NULL, sizeof (int), NULL);
4296 			}
4297 			break;
4298 
4299 		case TIOCMGET:
4300 			datamp = allocb(sizeof (int), BPRI_MED);
4301 			if (datamp == NULL) {
4302 				error = EAGAIN;
4303 				break;
4304 			}
4305 
4306 			mutex_enter(&asy->asy_excl_hi);
4307 			*(int *)datamp->b_rptr = asymctl(asy, 0, TIOCMGET);
4308 			mutex_exit(&asy->asy_excl_hi);
4309 
4310 			if (iocp->ioc_count == TRANSPARENT) {
4311 				ASY_DPRINTF(asy, ASY_DEBUG_IOCTL,
4312 				    "transparent");
4313 				mcopyout(mp, NULL, sizeof (int), NULL, datamp);
4314 			} else {
4315 				ASY_DPRINTF(asy, ASY_DEBUG_IOCTL,
4316 				    "non-transparent");
4317 				mioc2ack(mp, datamp, sizeof (int), 0);
4318 			}
4319 			break;
4320 
4321 		case CONSOPENPOLLEDIO:
4322 			error = miocpullup(mp, sizeof (struct cons_polledio *));
4323 			if (error != 0)
4324 				break;
4325 
4326 			*(struct cons_polledio **)mp->b_cont->b_rptr =
4327 			    &asy->polledio;
4328 
4329 			mp->b_datap->db_type = M_IOCACK;
4330 			break;
4331 
4332 		case CONSCLOSEPOLLEDIO:
4333 			mp->b_datap->db_type = M_IOCACK;
4334 			iocp->ioc_error = 0;
4335 			iocp->ioc_rval = 0;
4336 			break;
4337 
4338 		case CONSSETABORTENABLE:
4339 			error = secpolicy_console(iocp->ioc_cr);
4340 			if (error != 0)
4341 				break;
4342 
4343 			if (iocp->ioc_count != TRANSPARENT) {
4344 				error = EINVAL;
4345 				break;
4346 			}
4347 
4348 			mutex_enter(&asy->asy_excl_hi);
4349 			if (*(intptr_t *)mp->b_cont->b_rptr)
4350 				asy->asy_flags |= ASY_CONSOLE;
4351 			else
4352 				asy->asy_flags &= ~ASY_CONSOLE;
4353 			mutex_exit(&asy->asy_excl_hi);
4354 
4355 			mp->b_datap->db_type = M_IOCACK;
4356 			iocp->ioc_error = 0;
4357 			iocp->ioc_rval = 0;
4358 			break;
4359 
4360 		case CONSGETABORTENABLE:
4361 			/*CONSTANTCONDITION*/
4362 			ASSERT(sizeof (boolean_t) <= sizeof (boolean_t *));
4363 			/*
4364 			 * Store the return value right in the payload
4365 			 * we were passed.  Crude.
4366 			 */
4367 			mcopyout(mp, NULL, sizeof (boolean_t), NULL, NULL);
4368 			*(boolean_t *)mp->b_cont->b_rptr =
4369 			    (asy->asy_flags & ASY_CONSOLE) != 0;
4370 			break;
4371 
4372 		default:
4373 			/*
4374 			 * If we don't understand it, it's an error.  NAK it.
4375 			 */
4376 			error = EINVAL;
4377 			break;
4378 		}
4379 	}
4380 	if (error != 0) {
4381 		iocp->ioc_error = error;
4382 		mp->b_datap->db_type = M_IOCNAK;
4383 	}
4384 	mutex_exit(&asy->asy_excl);
4385 	qreply(wq, mp);
4386 	ASY_DPRINTF(asy, ASY_DEBUG_PROCS, "done");
4387 }
4388 
4389 static int
4390 asyrsrv(queue_t *q)
4391 {
4392 	mblk_t *bp;
4393 	struct asyncline *async;
4394 	struct asycom *asy;
4395 
4396 	async = (struct asyncline *)q->q_ptr;
4397 	asy = (struct asycom *)async->async_common;
4398 
4399 	while (canputnext(q) && (bp = getq(q)))
4400 		putnext(q, bp);
4401 	mutex_enter(&asy->asy_excl_hi);
4402 	asysetsoft(asy);
4403 	mutex_exit(&asy->asy_excl_hi);
4404 	async->async_polltid = 0;
4405 	return (0);
4406 }
4407 
4408 /*
4409  * The ASYWPUTDO_NOT_SUSP macro indicates to asywputdo() whether it should
4410  * handle messages as though the driver is operating normally or is
4411  * suspended.  In the suspended case, some or all of the processing may have
4412  * to be delayed until the driver is resumed.
4413  */
4414 #define	ASYWPUTDO_NOT_SUSP(async, wput) \
4415 	!((wput) && ((async)->async_flags & ASYNC_DDI_SUSPENDED))
4416 
4417 /*
4418  * Processing for write queue put procedure.
4419  * Respond to M_STOP, M_START, M_IOCTL, and M_FLUSH messages here;
4420  * set the flow control character for M_STOPI and M_STARTI messages;
4421  * queue up M_BREAK, M_DELAY, and M_DATA messages for processing
4422  * by the start routine, and then call the start routine; discard
4423  * everything else.  Note that this driver does not incorporate any
4424  * mechanism to negotiate to handle the canonicalization process.
4425  * It expects that these functions are handled in upper module(s),
4426  * as we do in ldterm.
4427  */
4428 static int
4429 asywputdo(queue_t *q, mblk_t *mp, boolean_t wput)
4430 {
4431 	struct asyncline *async;
4432 	struct asycom *asy;
4433 	int error;
4434 
4435 	async = (struct asyncline *)q->q_ptr;
4436 	asy = async->async_common;
4437 
4438 	switch (mp->b_datap->db_type) {
4439 
4440 	case M_STOP:
4441 		/*
4442 		 * Since we don't do real DMA, we can just let the
4443 		 * chip coast to a stop after applying the brakes.
4444 		 */
4445 		mutex_enter(&asy->asy_excl);
4446 		async->async_flags |= ASYNC_STOPPED;
4447 		mutex_exit(&asy->asy_excl);
4448 		freemsg(mp);
4449 		break;
4450 
4451 	case M_START:
4452 		mutex_enter(&asy->asy_excl);
4453 		if (async->async_flags & ASYNC_STOPPED) {
4454 			async->async_flags &= ~ASYNC_STOPPED;
4455 			if (ASYWPUTDO_NOT_SUSP(async, wput)) {
4456 				/*
4457 				 * If an output operation is in progress,
4458 				 * resume it.  Otherwise, prod the start
4459 				 * routine.
4460 				 */
4461 				if (async->async_ocnt > 0) {
4462 					mutex_enter(&asy->asy_excl_hi);
4463 					async_resume(async);
4464 					mutex_exit(&asy->asy_excl_hi);
4465 				} else {
4466 					async_start(async);
4467 				}
4468 			}
4469 		}
4470 		mutex_exit(&asy->asy_excl);
4471 		freemsg(mp);
4472 		break;
4473 
4474 	case M_IOCTL:
4475 		switch (((struct iocblk *)mp->b_rptr)->ioc_cmd) {
4476 
4477 		case TCSBRK:
4478 			error = miocpullup(mp, sizeof (int));
4479 			if (error != 0) {
4480 				miocnak(q, mp, 0, error);
4481 				return (0);
4482 			}
4483 
4484 			if (*(int *)mp->b_cont->b_rptr != 0) {
4485 				ASY_DPRINTF(asy, ASY_DEBUG_OUT,
4486 				    "flush request");
4487 				(void) putq(q, mp);
4488 
4489 				mutex_enter(&asy->asy_excl);
4490 				if (ASYWPUTDO_NOT_SUSP(async, wput)) {
4491 					/*
4492 					 * If an TIOCSBRK is in progress,
4493 					 * clean it as TIOCCBRK does,
4494 					 * then kick off output.
4495 					 * If TIOCSBRK is not in progress,
4496 					 * just kick off output.
4497 					 */
4498 					async_resume_utbrk(async);
4499 				}
4500 				mutex_exit(&asy->asy_excl);
4501 				break;
4502 			}
4503 			/*FALLTHROUGH*/
4504 		case TCSETSW:
4505 		case TCSETSF:
4506 		case TCSETAW:
4507 		case TCSETAF:
4508 			/*
4509 			 * The changes do not take effect until all
4510 			 * output queued before them is drained.
4511 			 * Put this message on the queue, so that
4512 			 * "async_start" will see it when it's done
4513 			 * with the output before it.  Poke the
4514 			 * start routine, just in case.
4515 			 */
4516 			(void) putq(q, mp);
4517 
4518 			mutex_enter(&asy->asy_excl);
4519 			if (ASYWPUTDO_NOT_SUSP(async, wput)) {
4520 				/*
4521 				 * If an TIOCSBRK is in progress,
4522 				 * clean it as TIOCCBRK does.
4523 				 * then kick off output.
4524 				 * If TIOCSBRK is not in progress,
4525 				 * just kick off output.
4526 				 */
4527 				async_resume_utbrk(async);
4528 			}
4529 			mutex_exit(&asy->asy_excl);
4530 			break;
4531 
4532 		default:
4533 			/*
4534 			 * Do it now.
4535 			 */
4536 			mutex_enter(&asy->asy_excl);
4537 			if (ASYWPUTDO_NOT_SUSP(async, wput)) {
4538 				mutex_exit(&asy->asy_excl);
4539 				async_ioctl(async, q, mp);
4540 				break;
4541 			}
4542 			async_put_suspq(asy, mp);
4543 			mutex_exit(&asy->asy_excl);
4544 			break;
4545 		}
4546 		break;
4547 
4548 	case M_FLUSH:
4549 		if (*mp->b_rptr & FLUSHW) {
4550 			mutex_enter(&asy->asy_excl);
4551 
4552 			/*
4553 			 * Abort any output in progress.
4554 			 */
4555 			mutex_enter(&asy->asy_excl_hi);
4556 			if (async->async_flags & ASYNC_BUSY) {
4557 				ASY_DPRINTF(asy, ASY_DEBUG_BUSY,
4558 				    "Clearing async_ocnt, "
4559 				    "leaving ASYNC_BUSY set");
4560 				async->async_ocnt = 0;
4561 				async->async_flags &= ~ASYNC_BUSY;
4562 			} /* if */
4563 
4564 			if (ASYWPUTDO_NOT_SUSP(async, wput)) {
4565 				/* Flush FIFO buffers */
4566 				if (asy->asy_use_fifo == ASY_FCR_FIFO_EN) {
4567 					asy_reset_fifo(asy, ASY_FCR_THR_FL);
4568 				}
4569 			}
4570 			mutex_exit(&asy->asy_excl_hi);
4571 
4572 			/*
4573 			 * Flush our write queue.
4574 			 */
4575 			flushq(q, FLUSHDATA);	/* XXX doesn't flush M_DELAY */
4576 			if (async->async_xmitblk != NULL) {
4577 				freeb(async->async_xmitblk);
4578 				async->async_xmitblk = NULL;
4579 			}
4580 			mutex_exit(&asy->asy_excl);
4581 			*mp->b_rptr &= ~FLUSHW;	/* it has been flushed */
4582 		}
4583 		if (*mp->b_rptr & FLUSHR) {
4584 			if (ASYWPUTDO_NOT_SUSP(async, wput)) {
4585 				mutex_enter(&asy->asy_excl);
4586 				mutex_enter(&asy->asy_excl_hi);
4587 				/* Flush FIFO buffers */
4588 				if (asy->asy_use_fifo == ASY_FCR_FIFO_EN) {
4589 					asy_reset_fifo(asy, ASY_FCR_RHR_FL);
4590 				}
4591 				mutex_exit(&asy->asy_excl_hi);
4592 				mutex_exit(&asy->asy_excl);
4593 			}
4594 			flushq(RD(q), FLUSHDATA);
4595 			qreply(q, mp);	/* give the read queues a crack at it */
4596 		} else {
4597 			freemsg(mp);
4598 		}
4599 
4600 		/*
4601 		 * We must make sure we process messages that survive the
4602 		 * write-side flush.
4603 		 */
4604 		if (ASYWPUTDO_NOT_SUSP(async, wput)) {
4605 			mutex_enter(&asy->asy_excl);
4606 			async_start(async);
4607 			mutex_exit(&asy->asy_excl);
4608 		}
4609 		break;
4610 
4611 	case M_BREAK:
4612 	case M_DELAY:
4613 	case M_DATA:
4614 		/*
4615 		 * Queue the message up to be transmitted,
4616 		 * and poke the start routine.
4617 		 */
4618 		(void) putq(q, mp);
4619 		if (ASYWPUTDO_NOT_SUSP(async, wput)) {
4620 			mutex_enter(&asy->asy_excl);
4621 			async_start(async);
4622 			mutex_exit(&asy->asy_excl);
4623 		}
4624 		break;
4625 
4626 	case M_STOPI:
4627 		mutex_enter(&asy->asy_excl);
4628 		if (ASYWPUTDO_NOT_SUSP(async, wput)) {
4629 			mutex_enter(&asy->asy_excl_hi);
4630 			if (!(async->async_inflow_source & IN_FLOW_USER)) {
4631 				async_flowcontrol_hw_input(asy, FLOW_STOP,
4632 				    IN_FLOW_USER);
4633 				(void) async_flowcontrol_sw_input(asy,
4634 				    FLOW_STOP, IN_FLOW_USER);
4635 			}
4636 			mutex_exit(&asy->asy_excl_hi);
4637 			mutex_exit(&asy->asy_excl);
4638 			freemsg(mp);
4639 			break;
4640 		}
4641 		async_put_suspq(asy, mp);
4642 		mutex_exit(&asy->asy_excl);
4643 		break;
4644 
4645 	case M_STARTI:
4646 		mutex_enter(&asy->asy_excl);
4647 		if (ASYWPUTDO_NOT_SUSP(async, wput)) {
4648 			mutex_enter(&asy->asy_excl_hi);
4649 			if (async->async_inflow_source & IN_FLOW_USER) {
4650 				async_flowcontrol_hw_input(asy, FLOW_START,
4651 				    IN_FLOW_USER);
4652 				(void) async_flowcontrol_sw_input(asy,
4653 				    FLOW_START, IN_FLOW_USER);
4654 			}
4655 			mutex_exit(&asy->asy_excl_hi);
4656 			mutex_exit(&asy->asy_excl);
4657 			freemsg(mp);
4658 			break;
4659 		}
4660 		async_put_suspq(asy, mp);
4661 		mutex_exit(&asy->asy_excl);
4662 		break;
4663 
4664 	case M_CTL:
4665 		if (MBLKL(mp) >= sizeof (struct iocblk) &&
4666 		    ((struct iocblk *)mp->b_rptr)->ioc_cmd == MC_POSIXQUERY) {
4667 			mutex_enter(&asy->asy_excl);
4668 			if (ASYWPUTDO_NOT_SUSP(async, wput)) {
4669 				((struct iocblk *)mp->b_rptr)->ioc_cmd =
4670 				    MC_HAS_POSIX;
4671 				mutex_exit(&asy->asy_excl);
4672 				qreply(q, mp);
4673 				break;
4674 			} else {
4675 				async_put_suspq(asy, mp);
4676 			}
4677 		} else {
4678 			/*
4679 			 * These MC_SERVICE type messages are used by upper
4680 			 * modules to tell this driver to send input up
4681 			 * immediately, or that it can wait for normal
4682 			 * processing that may or may not be done.  Sun
4683 			 * requires these for the mouse module.
4684 			 * (XXX - for x86?)
4685 			 */
4686 			mutex_enter(&asy->asy_excl);
4687 			switch (*mp->b_rptr) {
4688 
4689 			case MC_SERVICEIMM:
4690 				async->async_flags |= ASYNC_SERVICEIMM;
4691 				break;
4692 
4693 			case MC_SERVICEDEF:
4694 				async->async_flags &= ~ASYNC_SERVICEIMM;
4695 				break;
4696 			}
4697 			mutex_exit(&asy->asy_excl);
4698 			freemsg(mp);
4699 		}
4700 		break;
4701 
4702 	case M_IOCDATA:
4703 		mutex_enter(&asy->asy_excl);
4704 		if (ASYWPUTDO_NOT_SUSP(async, wput)) {
4705 			mutex_exit(&asy->asy_excl);
4706 			async_iocdata(q, mp);
4707 			break;
4708 		}
4709 		async_put_suspq(asy, mp);
4710 		mutex_exit(&asy->asy_excl);
4711 		break;
4712 
4713 	default:
4714 		freemsg(mp);
4715 		break;
4716 	}
4717 	return (0);
4718 }
4719 
4720 static int
4721 asywput(queue_t *q, mblk_t *mp)
4722 {
4723 	return (asywputdo(q, mp, B_TRUE));
4724 }
4725 
4726 /*
4727  * Retry an "ioctl", now that "bufcall" claims we may be able to allocate
4728  * the buffer we need.
4729  */
4730 static void
4731 async_reioctl(void *unit)
4732 {
4733 	int instance = (uintptr_t)unit;
4734 	struct asyncline *async;
4735 	struct asycom *asy;
4736 	queue_t	*q;
4737 	mblk_t	*mp;
4738 
4739 	asy = ddi_get_soft_state(asy_soft_state, instance);
4740 	ASSERT(asy != NULL);
4741 	async = asy->asy_priv;
4742 
4743 	/*
4744 	 * The bufcall is no longer pending.
4745 	 */
4746 	mutex_enter(&asy->asy_excl);
4747 	async->async_wbufcid = 0;
4748 	if ((q = async->async_ttycommon.t_writeq) == NULL) {
4749 		mutex_exit(&asy->asy_excl);
4750 		return;
4751 	}
4752 	if ((mp = async->async_ttycommon.t_iocpending) != NULL) {
4753 		/* not pending any more */
4754 		async->async_ttycommon.t_iocpending = NULL;
4755 		mutex_exit(&asy->asy_excl);
4756 		async_ioctl(async, q, mp);
4757 	} else
4758 		mutex_exit(&asy->asy_excl);
4759 }
4760 
4761 static void
4762 async_iocdata(queue_t *q, mblk_t *mp)
4763 {
4764 	struct asyncline	*async = (struct asyncline *)q->q_ptr;
4765 	struct asycom		*asy;
4766 	struct iocblk *ip;
4767 	struct copyresp *csp;
4768 
4769 	asy = async->async_common;
4770 	ip = (struct iocblk *)mp->b_rptr;
4771 	csp = (struct copyresp *)mp->b_rptr;
4772 
4773 	if (csp->cp_rval != 0) {
4774 		if (csp->cp_private)
4775 			freemsg(csp->cp_private);
4776 		freemsg(mp);
4777 		return;
4778 	}
4779 
4780 	mutex_enter(&asy->asy_excl);
4781 	ASY_DPRINTF(asy, ASY_DEBUG_MODEM, "case %s",
4782 	    csp->cp_cmd == TIOCMGET ? "TIOCMGET" :
4783 	    csp->cp_cmd == TIOCMSET ? "TIOCMSET" :
4784 	    csp->cp_cmd == TIOCMBIS ? "TIOCMBIS" :
4785 	    "TIOCMBIC");
4786 	switch (csp->cp_cmd) {
4787 
4788 	case TIOCMGET:
4789 		if (mp->b_cont) {
4790 			freemsg(mp->b_cont);
4791 			mp->b_cont = NULL;
4792 		}
4793 		mp->b_datap->db_type = M_IOCACK;
4794 		ip->ioc_error = 0;
4795 		ip->ioc_count = 0;
4796 		ip->ioc_rval = 0;
4797 		mp->b_wptr = mp->b_rptr + sizeof (struct iocblk);
4798 		break;
4799 
4800 	case TIOCMSET:
4801 	case TIOCMBIS:
4802 	case TIOCMBIC:
4803 		mutex_enter(&asy->asy_excl_hi);
4804 		(void) asymctl(asy, dmtoasy(asy, *(int *)mp->b_cont->b_rptr),
4805 		    csp->cp_cmd);
4806 		mutex_exit(&asy->asy_excl_hi);
4807 		mioc2ack(mp, NULL, 0, 0);
4808 		break;
4809 
4810 	default:
4811 		mp->b_datap->db_type = M_IOCNAK;
4812 		ip->ioc_error = EINVAL;
4813 		break;
4814 	}
4815 	qreply(q, mp);
4816 	mutex_exit(&asy->asy_excl);
4817 }
4818 
4819 /*
4820  * debugger/console support routines.
4821  */
4822 
4823 /*
4824  * put a character out
4825  * Do not use interrupts.  If char is LF, put out CR, LF.
4826  */
4827 static void
4828 asyputchar(cons_polledio_arg_t arg, uchar_t c)
4829 {
4830 	struct asycom *asy = (struct asycom *)arg;
4831 
4832 	if (c == '\n')
4833 		asyputchar(arg, '\r');
4834 
4835 	while ((asy_get_reg(asy, ASY_LSR) & ASY_LSR_THRE) == 0) {
4836 		/* wait for xmit to finish */
4837 		drv_usecwait(10);
4838 	}
4839 
4840 	/* put the character out */
4841 	asy_put_reg(asy, ASY_THR, c);
4842 }
4843 
4844 /*
4845  * See if there's a character available. If no character is
4846  * available, return 0. Run in polled mode, no interrupts.
4847  */
4848 static boolean_t
4849 asyischar(cons_polledio_arg_t arg)
4850 {
4851 	struct asycom *asy = (struct asycom *)arg;
4852 
4853 	return ((asy_get_reg(asy, ASY_LSR) & ASY_LSR_DR) != 0);
4854 }
4855 
4856 /*
4857  * Get a character. Run in polled mode, no interrupts.
4858  */
4859 static int
4860 asygetchar(cons_polledio_arg_t arg)
4861 {
4862 	struct asycom *asy = (struct asycom *)arg;
4863 
4864 	while (!asyischar(arg))
4865 		drv_usecwait(10);
4866 	return (asy_get_reg(asy, ASY_RHR));
4867 }
4868 
4869 /*
4870  * Set or get the modem control status.
4871  */
4872 static int
4873 asymctl(struct asycom *asy, int bits, int how)
4874 {
4875 	int mcr_r, msr_r;
4876 
4877 	ASSERT(mutex_owned(&asy->asy_excl_hi));
4878 	ASSERT(mutex_owned(&asy->asy_excl));
4879 
4880 	/* Read Modem Control Registers */
4881 	mcr_r = asy_get(asy, ASY_MCR);
4882 
4883 	switch (how) {
4884 
4885 	case TIOCMSET:
4886 		ASY_DPRINTF(asy, ASY_DEBUG_MODEM, "TIOCMSET, bits = %x", bits);
4887 		mcr_r = bits;		/* Set bits	*/
4888 		break;
4889 
4890 	case TIOCMBIS:
4891 		ASY_DPRINTF(asy, ASY_DEBUG_MODEM, "TIOCMBIS, bits = %x", bits);
4892 		mcr_r |= bits;		/* Mask in bits	*/
4893 		break;
4894 
4895 	case TIOCMBIC:
4896 		ASY_DPRINTF(asy, ASY_DEBUG_MODEM, "TIOCMBIC, bits = %x", bits);
4897 		mcr_r &= ~bits;		/* Mask out bits */
4898 		break;
4899 
4900 	case TIOCMGET:
4901 		/* Read Modem Status Registers */
4902 		/*
4903 		 * If modem interrupts are enabled, we return the
4904 		 * saved value of msr. We read MSR only in async_msint()
4905 		 */
4906 		if (asy_get(asy, ASY_IER) & ASY_IER_MIEN) {
4907 			msr_r = asy->asy_msr;
4908 			ASY_DPRINTF(asy, ASY_DEBUG_MODEM,
4909 			    "TIOCMGET, read msr_r = %x", msr_r);
4910 		} else {
4911 			msr_r = asy_get(asy, ASY_MSR);
4912 			ASY_DPRINTF(asy, ASY_DEBUG_MODEM,
4913 			    "TIOCMGET, read MSR = %x", msr_r);
4914 		}
4915 		ASY_DPRINTF(asy, ASY_DEBUG_MODEM, "modem_lines = %x",
4916 		    asytodm(mcr_r, msr_r));
4917 		return (asytodm(mcr_r, msr_r));
4918 	}
4919 
4920 	asy_put(asy, ASY_MCR, mcr_r);
4921 
4922 	return (mcr_r);
4923 }
4924 
4925 static int
4926 asytodm(int mcr_r, int msr_r)
4927 {
4928 	int b = 0;
4929 
4930 	/* MCR registers */
4931 	if (mcr_r & ASY_MCR_RTS)
4932 		b |= TIOCM_RTS;
4933 
4934 	if (mcr_r & ASY_MCR_DTR)
4935 		b |= TIOCM_DTR;
4936 
4937 	/* MSR registers */
4938 	if (msr_r & ASY_MSR_DCD)
4939 		b |= TIOCM_CAR;
4940 
4941 	if (msr_r & ASY_MSR_CTS)
4942 		b |= TIOCM_CTS;
4943 
4944 	if (msr_r & ASY_MSR_DSR)
4945 		b |= TIOCM_DSR;
4946 
4947 	if (msr_r & ASY_MSR_RI)
4948 		b |= TIOCM_RNG;
4949 	return (b);
4950 }
4951 
4952 static int
4953 dmtoasy(struct asycom *asy, int bits)
4954 {
4955 	int b = 0;
4956 
4957 	ASY_DPRINTF(asy, ASY_DEBUG_MODEM, "bits = %x", bits);
4958 #ifdef	CAN_NOT_SET	/* only DTR and RTS can be set */
4959 	if (bits & TIOCM_CAR)
4960 		b |= ASY_MSR_DCD;
4961 	if (bits & TIOCM_CTS)
4962 		b |= ASY_MSR_CTS;
4963 	if (bits & TIOCM_DSR)
4964 		b |= ASY_MSR_DSR;
4965 	if (bits & TIOCM_RNG)
4966 		b |= ASY_MSR_RI;
4967 #endif
4968 
4969 	if (bits & TIOCM_RTS) {
4970 		ASY_DPRINTF(asy, ASY_DEBUG_MODEM, "set b & RTS");
4971 		b |= ASY_MCR_RTS;
4972 	}
4973 	if (bits & TIOCM_DTR) {
4974 		ASY_DPRINTF(asy, ASY_DEBUG_MODEM, "set b & DTR");
4975 		b |= ASY_MCR_DTR;
4976 	}
4977 
4978 	return (b);
4979 }
4980 
4981 static void
4982 asyerror(const struct asycom *asy, int level, const char *fmt, ...)
4983 {
4984 	va_list adx;
4985 	static	time_t	last;
4986 	static	const char *lastfmt;
4987 	time_t	now;
4988 
4989 	/*
4990 	 * Don't print the same error message too often.
4991 	 * Print the message only if we have not printed the
4992 	 * message within the last second.
4993 	 * Note: that fmt cannot be a pointer to a string
4994 	 * stored on the stack. The fmt pointer
4995 	 * must be in the data segment otherwise lastfmt would point
4996 	 * to non-sense.
4997 	 */
4998 	now = gethrestime_sec();
4999 	if (last == now && lastfmt == fmt)
5000 		return;
5001 
5002 	last = now;
5003 	lastfmt = fmt;
5004 
5005 	va_start(adx, fmt);
5006 	vdev_err(asy->asy_dip, level, fmt, adx);
5007 	va_end(adx);
5008 }
5009 
5010 /*
5011  * asy_parse_mode(dev_info_t *devi, struct asycom *asy)
5012  * The value of this property is in the form of "9600,8,n,1,-"
5013  * 1) speed: 9600, 4800, ...
5014  * 2) data bits
5015  * 3) parity: n(none), e(even), o(odd)
5016  * 4) stop bits
5017  * 5) handshake: -(none), h(hardware: rts/cts), s(software: xon/off)
5018  *
5019  * This parsing came from a SPARCstation eeprom.
5020  */
5021 static void
5022 asy_parse_mode(dev_info_t *devi, struct asycom *asy)
5023 {
5024 	char		name[40];
5025 	char		val[40];
5026 	int		len;
5027 	int		ret;
5028 	char		*p;
5029 	char		*p1;
5030 
5031 	ASSERT(asy->asy_com_port != 0);
5032 
5033 	/*
5034 	 * Parse the ttyx-mode property
5035 	 */
5036 	(void) sprintf(name, "tty%c-mode", asy->asy_com_port + 'a' - 1);
5037 	len = sizeof (val);
5038 	ret = GET_PROP(devi, name, DDI_PROP_CANSLEEP, val, &len);
5039 	if (ret != DDI_PROP_SUCCESS) {
5040 		(void) sprintf(name, "com%c-mode", asy->asy_com_port + '0');
5041 		len = sizeof (val);
5042 		ret = GET_PROP(devi, name, DDI_PROP_CANSLEEP, val, &len);
5043 	}
5044 
5045 	/* no property to parse */
5046 	asy->asy_cflag = 0;
5047 	if (ret != DDI_PROP_SUCCESS)
5048 		return;
5049 
5050 	p = val;
5051 	/* ---- baud rate ---- */
5052 	asy->asy_cflag = CREAD|B9600;		/* initial default */
5053 	if (p && (p1 = strchr(p, ',')) != 0) {
5054 		*p1++ = '\0';
5055 	} else {
5056 		asy->asy_cflag |= ASY_LCR_BITS8;	/* add default bits */
5057 		return;
5058 	}
5059 
5060 	if (strcmp(p, "110") == 0)
5061 		asy->asy_bidx = B110;
5062 	else if (strcmp(p, "150") == 0)
5063 		asy->asy_bidx = B150;
5064 	else if (strcmp(p, "300") == 0)
5065 		asy->asy_bidx = B300;
5066 	else if (strcmp(p, "600") == 0)
5067 		asy->asy_bidx = B600;
5068 	else if (strcmp(p, "1200") == 0)
5069 		asy->asy_bidx = B1200;
5070 	else if (strcmp(p, "2400") == 0)
5071 		asy->asy_bidx = B2400;
5072 	else if (strcmp(p, "4800") == 0)
5073 		asy->asy_bidx = B4800;
5074 	else if (strcmp(p, "9600") == 0)
5075 		asy->asy_bidx = B9600;
5076 	else if (strcmp(p, "19200") == 0)
5077 		asy->asy_bidx = B19200;
5078 	else if (strcmp(p, "38400") == 0)
5079 		asy->asy_bidx = B38400;
5080 	else if (strcmp(p, "57600") == 0)
5081 		asy->asy_bidx = B57600;
5082 	else if (strcmp(p, "115200") == 0)
5083 		asy->asy_bidx = B115200;
5084 	else
5085 		asy->asy_bidx = B9600;
5086 
5087 	asy->asy_cflag &= ~CBAUD;
5088 	if (asy->asy_bidx > CBAUD) {	/* > 38400 uses the CBAUDEXT bit */
5089 		asy->asy_cflag |= CBAUDEXT;
5090 		asy->asy_cflag |= asy->asy_bidx - CBAUD - 1;
5091 	} else {
5092 		asy->asy_cflag |= asy->asy_bidx;
5093 	}
5094 
5095 	ASSERT(asy->asy_bidx == BAUDINDEX(asy->asy_cflag));
5096 
5097 	/* ---- Next item is data bits ---- */
5098 	p = p1;
5099 	if (p && (p1 = strchr(p, ',')) != 0)  {
5100 		*p1++ = '\0';
5101 	} else {
5102 		asy->asy_cflag |= ASY_LCR_BITS8;	/* add default bits */
5103 		return;
5104 	}
5105 	switch (*p) {
5106 		default:
5107 		case '8':
5108 			asy->asy_cflag |= CS8;
5109 			asy->asy_lcr = ASY_LCR_BITS8;
5110 			break;
5111 		case '7':
5112 			asy->asy_cflag |= CS7;
5113 			asy->asy_lcr = ASY_LCR_BITS7;
5114 			break;
5115 		case '6':
5116 			asy->asy_cflag |= CS6;
5117 			asy->asy_lcr = ASY_LCR_BITS6;
5118 			break;
5119 		case '5':
5120 			/* LINTED: CS5 is currently zero (but might change) */
5121 			asy->asy_cflag |= CS5;
5122 			asy->asy_lcr = ASY_LCR_BITS5;
5123 			break;
5124 	}
5125 
5126 	/* ---- Parity info ---- */
5127 	p = p1;
5128 	if (p && (p1 = strchr(p, ',')) != 0)  {
5129 		*p1++ = '\0';
5130 	} else {
5131 		return;
5132 	}
5133 	switch (*p)  {
5134 		default:
5135 		case 'n':
5136 			break;
5137 		case 'e':
5138 			asy->asy_cflag |= PARENB;
5139 			asy->asy_lcr |= ASY_LCR_PEN;
5140 			break;
5141 		case 'o':
5142 			asy->asy_cflag |= PARENB|PARODD;
5143 			asy->asy_lcr |= ASY_LCR_PEN | ASY_LCR_EPS;
5144 			break;
5145 	}
5146 
5147 	/* ---- Find stop bits ---- */
5148 	p = p1;
5149 	if (p && (p1 = strchr(p, ',')) != 0)  {
5150 		*p1++ = '\0';
5151 	} else {
5152 		return;
5153 	}
5154 	if (*p == '2') {
5155 		asy->asy_cflag |= CSTOPB;
5156 		asy->asy_lcr |= ASY_LCR_STB;
5157 	}
5158 
5159 	/* ---- handshake is next ---- */
5160 	p = p1;
5161 	if (p) {
5162 		if ((p1 = strchr(p, ',')) != 0)
5163 			*p1++ = '\0';
5164 
5165 		if (*p == 'h')
5166 			asy->asy_cflag |= CRTSCTS;
5167 		else if (*p == 's')
5168 			asy->asy_cflag |= CRTSXOFF;
5169 	}
5170 }
5171 
5172 /*
5173  * Check for abort character sequence
5174  */
5175 static boolean_t
5176 abort_charseq_recognize(uchar_t ch)
5177 {
5178 	static int state = 0;
5179 #define	CNTRL(c) ((c)&037)
5180 	static char sequence[] = { '\r', '~', CNTRL('b') };
5181 
5182 	if (ch == sequence[state]) {
5183 		if (++state >= sizeof (sequence)) {
5184 			state = 0;
5185 			return (B_TRUE);
5186 		}
5187 	} else {
5188 		state = (ch == sequence[0]) ? 1 : 0;
5189 	}
5190 	return (B_FALSE);
5191 }
5192 
5193 /*
5194  * Flow control functions
5195  */
5196 /*
5197  * Software input flow control
5198  * This function can execute software input flow control sucessfully
5199  * at most of situations except that the line is in BREAK status
5200  * (timed and untimed break).
5201  * INPUT VALUE of onoff:
5202  *               FLOW_START means to send out a XON char
5203  *                          and clear SW input flow control flag.
5204  *               FLOW_STOP means to send out a XOFF char
5205  *                          and set SW input flow control flag.
5206  *               FLOW_CHECK means to check whether there is pending XON/XOFF
5207  *                          if it is true, send it out.
5208  * INPUT VALUE of type:
5209  *		 IN_FLOW_RINGBUFF means flow control is due to RING BUFFER
5210  *		 IN_FLOW_STREAMS means flow control is due to STREAMS
5211  *		 IN_FLOW_USER means flow control is due to user's commands
5212  * RETURN VALUE: B_FALSE means no flow control char is sent
5213  *               B_TRUE means one flow control char is sent
5214  */
5215 static boolean_t
5216 async_flowcontrol_sw_input(struct asycom *asy, async_flowc_action onoff,
5217     int type)
5218 {
5219 	struct asyncline *async = asy->asy_priv;
5220 	int rval = B_FALSE;
5221 
5222 	ASSERT(mutex_owned(&asy->asy_excl_hi));
5223 
5224 	if (!(async->async_ttycommon.t_iflag & IXOFF))
5225 		return (rval);
5226 
5227 	/*
5228 	 * If we get this far, then we know IXOFF is set.
5229 	 */
5230 	switch (onoff) {
5231 	case FLOW_STOP:
5232 		async->async_inflow_source |= type;
5233 
5234 		/*
5235 		 * We'll send an XOFF character for each of up to
5236 		 * three different input flow control attempts to stop input.
5237 		 * If we already send out one XOFF, but FLOW_STOP comes again,
5238 		 * it seems that input flow control becomes more serious,
5239 		 * then send XOFF again.
5240 		 */
5241 		if (async->async_inflow_source & (IN_FLOW_RINGBUFF |
5242 		    IN_FLOW_STREAMS | IN_FLOW_USER))
5243 			async->async_flags |= ASYNC_SW_IN_FLOW |
5244 			    ASYNC_SW_IN_NEEDED;
5245 		ASY_DPRINTF(asy, ASY_DEBUG_SFLOW, "input sflow stop, type = %x",
5246 		    async->async_inflow_source);
5247 		break;
5248 	case FLOW_START:
5249 		async->async_inflow_source &= ~type;
5250 		if (async->async_inflow_source == 0) {
5251 			async->async_flags = (async->async_flags &
5252 			    ~ASYNC_SW_IN_FLOW) | ASYNC_SW_IN_NEEDED;
5253 			ASY_DPRINTF(asy, ASY_DEBUG_SFLOW, "input sflow start");
5254 		}
5255 		break;
5256 	default:
5257 		break;
5258 	}
5259 
5260 	if (((async->async_flags & (ASYNC_SW_IN_NEEDED | ASYNC_BREAK |
5261 	    ASYNC_OUT_SUSPEND)) == ASYNC_SW_IN_NEEDED) &&
5262 	    (asy_get(asy, ASY_LSR) & ASY_LSR_THRE)) {
5263 		/*
5264 		 * If we get this far, then we know we need to send out
5265 		 * XON or XOFF char.
5266 		 */
5267 		async->async_flags = (async->async_flags &
5268 		    ~ASYNC_SW_IN_NEEDED) | ASYNC_BUSY;
5269 		asy_put(asy, ASY_THR,
5270 		    async->async_flags & ASYNC_SW_IN_FLOW ?
5271 		    async->async_stopc : async->async_startc);
5272 		rval = B_TRUE;
5273 	}
5274 	return (rval);
5275 }
5276 
5277 /*
5278  * Software output flow control
5279  * This function can be executed sucessfully at any situation.
5280  * It does not handle HW, and just change the SW output flow control flag.
5281  * INPUT VALUE of onoff:
5282  *                 FLOW_START means to clear SW output flow control flag,
5283  *			also combine with HW output flow control status to
5284  *			determine if we need to set ASYNC_OUT_FLW_RESUME.
5285  *                 FLOW_STOP means to set SW output flow control flag,
5286  *			also clear ASYNC_OUT_FLW_RESUME.
5287  */
5288 static void
5289 async_flowcontrol_sw_output(struct asycom *asy, async_flowc_action onoff)
5290 {
5291 	struct asyncline *async = asy->asy_priv;
5292 
5293 	ASSERT(mutex_owned(&asy->asy_excl_hi));
5294 
5295 	if (!(async->async_ttycommon.t_iflag & IXON))
5296 		return;
5297 
5298 	switch (onoff) {
5299 	case FLOW_STOP:
5300 		async->async_flags |= ASYNC_SW_OUT_FLW;
5301 		async->async_flags &= ~ASYNC_OUT_FLW_RESUME;
5302 		ASY_DPRINTF(asy, ASY_DEBUG_SFLOW, "output sflow stop");
5303 		break;
5304 	case FLOW_START:
5305 		async->async_flags &= ~ASYNC_SW_OUT_FLW;
5306 		if (!(async->async_flags & ASYNC_HW_OUT_FLW))
5307 			async->async_flags |= ASYNC_OUT_FLW_RESUME;
5308 		ASY_DPRINTF(asy, ASY_DEBUG_SFLOW, "output sflow start");
5309 		break;
5310 	default:
5311 		break;
5312 	}
5313 }
5314 
5315 /*
5316  * Hardware input flow control
5317  * This function can be executed sucessfully at any situation.
5318  * It directly changes RTS depending on input parameter onoff.
5319  * INPUT VALUE of onoff:
5320  *       FLOW_START means to clear HW input flow control flag,
5321  *                  and pull up RTS if it is low.
5322  *       FLOW_STOP means to set HW input flow control flag,
5323  *                  and low RTS if it is high.
5324  * INPUT VALUE of type:
5325  *		 IN_FLOW_RINGBUFF means flow control is due to RING BUFFER
5326  *		 IN_FLOW_STREAMS means flow control is due to STREAMS
5327  *		 IN_FLOW_USER means flow control is due to user's commands
5328  */
5329 static void
5330 async_flowcontrol_hw_input(struct asycom *asy, async_flowc_action onoff,
5331     int type)
5332 {
5333 	uchar_t	mcr;
5334 	uchar_t	flag;
5335 	struct asyncline *async = asy->asy_priv;
5336 
5337 	ASSERT(mutex_owned(&asy->asy_excl_hi));
5338 
5339 	if (!(async->async_ttycommon.t_cflag & CRTSXOFF))
5340 		return;
5341 
5342 	switch (onoff) {
5343 	case FLOW_STOP:
5344 		async->async_inflow_source |= type;
5345 		if (async->async_inflow_source & (IN_FLOW_RINGBUFF |
5346 		    IN_FLOW_STREAMS | IN_FLOW_USER))
5347 			async->async_flags |= ASYNC_HW_IN_FLOW;
5348 		ASY_DPRINTF(asy, ASY_DEBUG_HFLOW, "input hflow stop, type = %x",
5349 		    async->async_inflow_source);
5350 		break;
5351 	case FLOW_START:
5352 		async->async_inflow_source &= ~type;
5353 		if (async->async_inflow_source == 0) {
5354 			async->async_flags &= ~ASYNC_HW_IN_FLOW;
5355 			ASY_DPRINTF(asy, ASY_DEBUG_HFLOW, "input hflow start");
5356 		}
5357 		break;
5358 	default:
5359 		break;
5360 	}
5361 	mcr = asy_get(asy, ASY_MCR);
5362 	flag = (async->async_flags & ASYNC_HW_IN_FLOW) ? 0 : ASY_MCR_RTS;
5363 
5364 	if (((mcr ^ flag) & ASY_MCR_RTS) != 0) {
5365 		asy_put(asy, ASY_MCR, (mcr ^ ASY_MCR_RTS));
5366 	}
5367 }
5368 
5369 /*
5370  * Hardware output flow control
5371  * This function can execute HW output flow control sucessfully
5372  * at any situation.
5373  * It doesn't really change RTS, and just change
5374  * HW output flow control flag depending on CTS status.
5375  * INPUT VALUE of onoff:
5376  *                FLOW_START means to clear HW output flow control flag.
5377  *			also combine with SW output flow control status to
5378  *			determine if we need to set ASYNC_OUT_FLW_RESUME.
5379  *                FLOW_STOP means to set HW output flow control flag.
5380  *			also clear ASYNC_OUT_FLW_RESUME.
5381  */
5382 static void
5383 async_flowcontrol_hw_output(struct asycom *asy, async_flowc_action onoff)
5384 {
5385 	struct asyncline *async = asy->asy_priv;
5386 
5387 	ASSERT(mutex_owned(&asy->asy_excl_hi));
5388 
5389 	if (!(async->async_ttycommon.t_cflag & CRTSCTS))
5390 		return;
5391 
5392 	switch (onoff) {
5393 	case FLOW_STOP:
5394 		async->async_flags |= ASYNC_HW_OUT_FLW;
5395 		async->async_flags &= ~ASYNC_OUT_FLW_RESUME;
5396 		ASY_DPRINTF(asy, ASY_DEBUG_HFLOW, "output hflow stop");
5397 		break;
5398 	case FLOW_START:
5399 		async->async_flags &= ~ASYNC_HW_OUT_FLW;
5400 		if (!(async->async_flags & ASYNC_SW_OUT_FLW))
5401 			async->async_flags |= ASYNC_OUT_FLW_RESUME;
5402 		ASY_DPRINTF(asy, ASY_DEBUG_HFLOW, "output hflow start");
5403 		break;
5404 	default:
5405 		break;
5406 	}
5407 }
5408 
5409 /*
5410  * quiesce(9E) entry point.
5411  *
5412  * This function is called when the system is single-threaded at high
5413  * PIL with preemption disabled. Therefore, this function must not be
5414  * blocked.
5415  *
5416  * This function returns DDI_SUCCESS on success, or DDI_FAILURE on failure.
5417  * DDI_FAILURE indicates an error condition and should almost never happen.
5418  */
5419 static int
5420 asyquiesce(dev_info_t *devi)
5421 {
5422 	int instance;
5423 	struct asycom *asy;
5424 
5425 	instance = ddi_get_instance(devi);	/* find out which unit */
5426 
5427 	asy = ddi_get_soft_state(asy_soft_state, instance);
5428 	if (asy == NULL)
5429 		return (DDI_FAILURE);
5430 
5431 	asy_disable_interrupts(asy, ASY_IER_ALL);
5432 
5433 	/* Flush the FIFOs */
5434 	asy_reset_fifo(asy, ASY_FCR_THR_FL | ASY_FCR_RHR_FL);
5435 
5436 	return (DDI_SUCCESS);
5437 }
5438