1 /*
2 * Copyright 2010 Sun Microsystems, Inc. All rights reserved.
3 * Use is subject to license terms.
4 */
5
6 /*
7 * Copyright (c) 2004 Video54 Technologies, Inc.
8 * Copyright (c) 2004-2008 Atheros Communications, Inc.
9 *
10 * Permission to use, copy, modify, and/or distribute this software for any
11 * purpose with or without fee is hereby granted, provided that the above
12 * copyright notice and this permission notice appear in all copies.
13 *
14 * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
15 * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
16 * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
17 * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
18 * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
19 * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
20 * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
21 */
22 #include <sys/time.h>
23 #include <sys/types.h>
24 #include <sys/ddi.h>
25 #include <sys/net80211_ht.h>
26
27 #include "arn_core.h"
28 #include "arn_hw.h"
29 #include "arn_reg.h"
30
31 static struct ath_rate_table ar5416_11na_ratetable = {
32 42,
33 {0},
34 {
35 { VALID, VALID, WLAN_RC_PHY_OFDM, 6000, /* 6 Mb */
36 5400, 0x0b, 0x00, 12,
37 0, 2, 1, 0, 0, 0, 0, 0 },
38 { VALID, VALID, WLAN_RC_PHY_OFDM, 9000, /* 9 Mb */
39 7800, 0x0f, 0x00, 18,
40 0, 3, 1, 1, 1, 1, 1, 0 },
41 { VALID, VALID, WLAN_RC_PHY_OFDM, 12000, /* 12 Mb */
42 10000, 0x0a, 0x00, 24,
43 2, 4, 2, 2, 2, 2, 2, 0 },
44 { VALID, VALID, WLAN_RC_PHY_OFDM, 18000, /* 18 Mb */
45 13900, 0x0e, 0x00, 36,
46 2, 6, 2, 3, 3, 3, 3, 0 },
47 { VALID, VALID, WLAN_RC_PHY_OFDM, 24000, /* 24 Mb */
48 17300, 0x09, 0x00, 48,
49 4, 10, 3, 4, 4, 4, 4, 0 },
50 { VALID, VALID, WLAN_RC_PHY_OFDM, 36000, /* 36 Mb */
51 23000, 0x0d, 0x00, 72,
52 4, 14, 3, 5, 5, 5, 5, 0 },
53 { VALID, VALID, WLAN_RC_PHY_OFDM, 48000, /* 48 Mb */
54 27400, 0x08, 0x00, 96,
55 4, 20, 3, 6, 6, 6, 6, 0 },
56 { VALID, VALID, WLAN_RC_PHY_OFDM, 54000, /* 54 Mb */
57 29300, 0x0c, 0x00, 108,
58 4, 23, 3, 7, 7, 7, 7, 0 },
59 { VALID_20, VALID_20, WLAN_RC_PHY_HT_20_SS, 6500, /* 6.5 Mb */
60 6400, 0x80, 0x00, 0,
61 0, 2, 3, 8, 24, 8, 24, 3216 },
62 { VALID_20, VALID_20, WLAN_RC_PHY_HT_20_SS, 13000, /* 13 Mb */
63 12700, 0x81, 0x00, 1,
64 2, 4, 3, 9, 25, 9, 25, 6434 },
65 { VALID_20, VALID_20, WLAN_RC_PHY_HT_20_SS, 19500, /* 19.5 Mb */
66 18800, 0x82, 0x00, 2,
67 2, 6, 3, 10, 26, 10, 26, 9650 },
68 { VALID_20, VALID_20, WLAN_RC_PHY_HT_20_SS, 26000, /* 26 Mb */
69 25000, 0x83, 0x00, 3,
70 4, 10, 3, 11, 27, 11, 27, 12868 },
71 { VALID_20, VALID_20, WLAN_RC_PHY_HT_20_SS, 39000, /* 39 Mb */
72 36700, 0x84, 0x00, 4,
73 4, 14, 3, 12, 28, 12, 28, 19304 },
74 { INVALID, VALID_20, WLAN_RC_PHY_HT_20_SS, 52000, /* 52 Mb */
75 48100, 0x85, 0x00, 5,
76 4, 20, 3, 13, 29, 13, 29, 25740 },
77 { INVALID, VALID_20, WLAN_RC_PHY_HT_20_SS, 58500, /* 58.5 Mb */
78 53500, 0x86, 0x00, 6,
79 4, 23, 3, 14, 30, 14, 30, 28956 },
80 { INVALID, VALID_20, WLAN_RC_PHY_HT_20_SS, 65000, /* 65 Mb */
81 59000, 0x87, 0x00, 7,
82 4, 25, 3, 15, 31, 15, 32, 32180 },
83 { INVALID, INVALID, WLAN_RC_PHY_HT_20_DS, 13000, /* 13 Mb */
84 12700, 0x88, 0x00,
85 8, 0, 2, 3, 16, 33, 16, 33, 6430 },
86 { INVALID, INVALID, WLAN_RC_PHY_HT_20_DS, 26000, /* 26 Mb */
87 24800, 0x89, 0x00, 9,
88 2, 4, 3, 17, 34, 17, 34, 12860 },
89 { INVALID, INVALID, WLAN_RC_PHY_HT_20_DS, 39000, /* 39 Mb */
90 36600, 0x8a, 0x00, 10,
91 2, 6, 3, 18, 35, 18, 35, 19300 },
92 { VALID_20, INVALID, WLAN_RC_PHY_HT_20_DS, 52000, /* 52 Mb */
93 48100, 0x8b, 0x00, 11,
94 4, 10, 3, 19, 36, 19, 36, 25736 },
95 { VALID_20, INVALID, WLAN_RC_PHY_HT_20_DS, 78000, /* 78 Mb */
96 69500, 0x8c, 0x00, 12,
97 4, 14, 3, 20, 37, 20, 37, 38600 },
98 { VALID_20, INVALID, WLAN_RC_PHY_HT_20_DS, 104000, /* 104 Mb */
99 89500, 0x8d, 0x00, 13,
100 4, 20, 3, 21, 38, 21, 38, 51472 },
101 { VALID_20, INVALID, WLAN_RC_PHY_HT_20_DS, 117000, /* 117 Mb */
102 98900, 0x8e, 0x00, 14,
103 4, 23, 3, 22, 39, 22, 39, 57890 },
104 { VALID_20, INVALID, WLAN_RC_PHY_HT_20_DS, 130000, /* 130 Mb */
105 108300, 0x8f, 0x00, 15,
106 4, 25, 3, 23, 40, 23, 41, 64320 },
107 { VALID_40, VALID_40, WLAN_RC_PHY_HT_40_SS, 13500, /* 13.5 Mb */
108 13200, 0x80, 0x00, 0,
109 0, 2, 3, 8, 24, 24, 24, 6684 },
110 { VALID_40, VALID_40, WLAN_RC_PHY_HT_40_SS, 27500, /* 27.0 Mb */
111 25900, 0x81, 0x00, 1,
112 2, 4, 3, 9, 25, 25, 25, 13368 },
113 { VALID_40, VALID_40, WLAN_RC_PHY_HT_40_SS, 40500, /* 40.5 Mb */
114 38600, 0x82, 0x00, 2,
115 2, 6, 3, 10, 26, 26, 26, 20052 },
116 { VALID_40, VALID_40, WLAN_RC_PHY_HT_40_SS, 54000, /* 54 Mb */
117 49800, 0x83, 0x00, 3,
118 4, 10, 3, 11, 27, 27, 27, 26738 },
119 { VALID_40, VALID_40, WLAN_RC_PHY_HT_40_SS, 81500, /* 81 Mb */
120 72200, 0x84, 0x00, 4,
121 4, 14, 3, 12, 28, 28, 28, 40104 },
122 { INVALID, VALID_40, WLAN_RC_PHY_HT_40_SS, 108000, /* 108 Mb */
123 92900, 0x85, 0x00, 5,
124 4, 20, 3, 13, 29, 29, 29, 53476 },
125 { INVALID, VALID_40, WLAN_RC_PHY_HT_40_SS, 121500, /* 121.5Mb */
126 102700, 0x86, 0x00, 6,
127 4, 23, 3, 14, 30, 30, 30, 60156 },
128 { INVALID, VALID_40, WLAN_RC_PHY_HT_40_SS, 135000, /* 135 Mb */
129 112000, 0x87, 0x00, 7,
130 4, 25, 3, 15, 31, 32, 32, 66840 },
131 { INVALID, VALID_40, WLAN_RC_PHY_HT_40_SS_HGI,
132 150000, /* 150Mb */
133 122000, 0x87, 0x00, 7,
134 4, 25, 3, 15, 31, 32, 32, 74200 },
135 { INVALID, INVALID, WLAN_RC_PHY_HT_40_DS, 27000, /* 27 Mb */
136 25800, 0x88, 0x00, 8,
137 0, 2, 3, 16, 33, 33, 33, 13360 },
138 { INVALID, INVALID, WLAN_RC_PHY_HT_40_DS, 54000, /* 54 Mb */
139 49800, 0x89, 0x00, 9,
140 2, 4, 3, 17, 34, 34, 34, 26720 },
141 { INVALID, INVALID, WLAN_RC_PHY_HT_40_DS, 81000, /* 81 Mb */
142 71900, 0x8a, 0x00, 10,
143 2, 6, 3, 18, 35, 35, 35, 40080 },
144 { VALID_40, INVALID, WLAN_RC_PHY_HT_40_DS, 108000, /* 108 Mb */
145 92500, 0x8b, 0x00, 11,
146 4, 10, 3, 19, 36, 36, 36, 53440 },
147 { VALID_40, INVALID, WLAN_RC_PHY_HT_40_DS, 162000, /* 162 Mb */
148 130300, 0x8c, 0x00, 12,
149 4, 14, 3, 20, 37, 37, 37, 80160 },
150 { VALID_40, INVALID, WLAN_RC_PHY_HT_40_DS, 216000, /* 216 Mb */
151 162800, 0x8d, 0x00, 13,
152 4, 20, 3, 21, 38, 38, 38, 106880 },
153 { VALID_40, INVALID, WLAN_RC_PHY_HT_40_DS, 243000, /* 243 Mb */
154 178200, 0x8e, 0x00, 14,
155 4, 23, 3, 22, 39, 39, 39, 120240 },
156 { VALID_40, INVALID, WLAN_RC_PHY_HT_40_DS, 270000, /* 270 Mb */
157 192100, 0x8f, 0x00, 15,
158 4, 25, 3, 23, 40, 41, 41, 133600 },
159 { VALID_40, INVALID, WLAN_RC_PHY_HT_40_DS_HGI,
160 300000, /* 300 Mb */
161 207000, 0x8f, 0x00, 15,
162 4, 25, 3, 23, 40, 41, 41, 148400 },
163 },
164 50, /* probe interval */
165 50, /* rssi reduce interval */
166 WLAN_RC_HT_FLAG, /* Phy rates allowed initially */
167 };
168
169 /*
170 * 4ms frame limit not used for NG mode. The values filled
171 * for HT are the 64K max aggregate limit
172 */
173
174 static struct ath_rate_table ar5416_11ng_ratetable = {
175 46,
176 {0},
177 {
178 { VALID_ALL, VALID_ALL, WLAN_RC_PHY_CCK, 1000, /* 1 Mb */
179 900, 0x1b, 0x00, 2,
180 0, 0, 1, 0, 0, 0, 0, 0 },
181 { VALID_ALL, VALID_ALL, WLAN_RC_PHY_CCK, 2000, /* 2 Mb */
182 1900, 0x1a, 0x04, 4,
183 1, 1, 1, 1, 1, 1, 1, 0 },
184 { VALID_ALL, VALID_ALL, WLAN_RC_PHY_CCK, 5500, /* 5.5 Mb */
185 4900, 0x19, 0x04, 11,
186 2, 2, 2, 2, 2, 2, 2, 0 },
187 { VALID_ALL, VALID_ALL, WLAN_RC_PHY_CCK, 11000, /* 11 Mb */
188 8100, 0x18, 0x04, 22,
189 3, 3, 2, 3, 3, 3, 3, 0 },
190 { INVALID, INVALID, WLAN_RC_PHY_OFDM, 6000, /* 6 Mb */
191 5400, 0x0b, 0x00, 12,
192 4, 2, 1, 4, 4, 4, 4, 0 },
193 { INVALID, INVALID, WLAN_RC_PHY_OFDM, 9000, /* 9 Mb */
194 7800, 0x0f, 0x00, 18,
195 4, 3, 1, 5, 5, 5, 5, 0 },
196 { VALID, VALID, WLAN_RC_PHY_OFDM, 12000, /* 12 Mb */
197 10100, 0x0a, 0x00, 24,
198 6, 4, 1, 6, 6, 6, 6, 0 },
199 { VALID, VALID, WLAN_RC_PHY_OFDM, 18000, /* 18 Mb */
200 14100, 0x0e, 0x00, 36,
201 6, 6, 2, 7, 7, 7, 7, 0 },
202 { VALID, VALID, WLAN_RC_PHY_OFDM, 24000, /* 24 Mb */
203 17700, 0x09, 0x00, 48,
204 8, 10, 3, 8, 8, 8, 8, 0 },
205 { VALID, VALID, WLAN_RC_PHY_OFDM, 36000, /* 36 Mb */
206 23700, 0x0d, 0x00, 72,
207 8, 14, 3, 9, 9, 9, 9, 0 },
208 { VALID, VALID, WLAN_RC_PHY_OFDM, 48000, /* 48 Mb */
209 27400, 0x08, 0x00, 96,
210 8, 20, 3, 10, 10, 10, 10, 0 },
211 { VALID, VALID, WLAN_RC_PHY_OFDM, 54000, /* 54 Mb */
212 30900, 0x0c, 0x00, 108,
213 8, 23, 3, 11, 11, 11, 11, 0 },
214 { INVALID, INVALID, WLAN_RC_PHY_HT_20_SS, 6500, /* 6.5 Mb */
215 6400, 0x80, 0x00, 0,
216 4, 2, 3, 12, 28, 12, 28, 3216 },
217 { VALID_20, VALID_20, WLAN_RC_PHY_HT_20_SS, 13000, /* 13 Mb */
218 12700, 0x81, 0x00, 1,
219 6, 4, 3, 13, 29, 13, 29, 6434 },
220 { VALID_20, VALID_20, WLAN_RC_PHY_HT_20_SS, 19500, /* 19.5 Mb */
221 18800, 0x82, 0x00, 2,
222 6, 6, 3, 14, 30, 14, 30, 9650 },
223 { VALID_20, VALID_20, WLAN_RC_PHY_HT_20_SS, 26000, /* 26 Mb */
224 25000, 0x83, 0x00, 3,
225 8, 10, 3, 15, 31, 15, 31, 12868 },
226 { VALID_20, VALID_20, WLAN_RC_PHY_HT_20_SS, 39000, /* 39 Mb */
227 36700, 0x84, 0x00, 4,
228 8, 14, 3, 16, 32, 16, 32, 19304 },
229 { INVALID, VALID_20, WLAN_RC_PHY_HT_20_SS, 52000, /* 52 Mb */
230 48100, 0x85, 0x00, 5,
231 8, 20, 3, 17, 33, 17, 33, 25740 },
232 { INVALID, VALID_20, WLAN_RC_PHY_HT_20_SS, 58500, /* 58.5 Mb */
233 53500, 0x86, 0x00, 6,
234 8, 23, 3, 18, 34, 18, 34, 28956 },
235 { INVALID, VALID_20, WLAN_RC_PHY_HT_20_SS, 65000, /* 65 Mb */
236 59000, 0x87, 0x00, 7,
237 8, 25, 3, 19, 35, 19, 36, 32180 },
238 { INVALID, INVALID, WLAN_RC_PHY_HT_20_DS, 13000, /* 13 Mb */
239 12700, 0x88, 0x00, 8,
240 4, 2, 3, 20, 37, 20, 37, 6430 },
241 { INVALID, INVALID, WLAN_RC_PHY_HT_20_DS, 26000, /* 26 Mb */
242 24800, 0x89, 0x00, 9,
243 6, 4, 3, 21, 38, 21, 38, 12860 },
244 { INVALID, INVALID, WLAN_RC_PHY_HT_20_DS, 39000, /* 39 Mb */
245 36600, 0x8a, 0x00, 10,
246 6, 6, 3, 22, 39, 22, 39, 19300 },
247 { VALID_20, INVALID, WLAN_RC_PHY_HT_20_DS, 52000, /* 52 Mb */
248 48100, 0x8b, 0x00, 11,
249 8, 10, 3, 23, 40, 23, 40, 25736 },
250 { VALID_20, INVALID, WLAN_RC_PHY_HT_20_DS, 78000, /* 78 Mb */
251 69500, 0x8c, 0x00, 12,
252 8, 14, 3, 24, 41, 24, 41, 38600 },
253 { VALID_20, INVALID, WLAN_RC_PHY_HT_20_DS, 104000, /* 104 Mb */
254 89500, 0x8d, 0x00, 13,
255 8, 20, 3, 25, 42, 25, 42, 51472 },
256 { VALID_20, INVALID, WLAN_RC_PHY_HT_20_DS, 117000, /* 117 Mb */
257 98900, 0x8e, 0x00, 14,
258 8, 23, 3, 26, 43, 26, 44, 57890 },
259 { VALID_20, INVALID, WLAN_RC_PHY_HT_20_DS, 130000, /* 130 Mb */
260 108300, 0x8f, 0x00, 15,
261 8, 25, 3, 27, 44, 27, 45, 64320 },
262 { VALID_40, VALID_40, WLAN_RC_PHY_HT_40_SS, 13500, /* 13.5 Mb */
263 13200, 0x80, 0x00, 0,
264 8, 2, 3, 12, 28, 28, 28, 6684 },
265 { VALID_40, VALID_40, WLAN_RC_PHY_HT_40_SS, 27500, /* 27.0 Mb */
266 25900, 0x81, 0x00, 1,
267 8, 4, 3, 13, 29, 29, 29, 13368 },
268 { VALID_40, VALID_40, WLAN_RC_PHY_HT_40_SS, 40500, /* 40.5 Mb */
269 38600, 0x82, 0x00, 2,
270 8, 6, 3, 14, 30, 30, 30, 20052 },
271 { VALID_40, VALID_40, WLAN_RC_PHY_HT_40_SS, 54000, /* 54 Mb */
272 49800, 0x83, 0x00, 3,
273 8, 10, 3, 15, 31, 31, 31, 26738 },
274 { VALID_40, VALID_40, WLAN_RC_PHY_HT_40_SS, 81500, /* 81 Mb */
275 72200, 0x84, 0x00, 4,
276 8, 14, 3, 16, 32, 32, 32, 40104 },
277 { INVALID, VALID_40, WLAN_RC_PHY_HT_40_SS, 108000, /* 108 Mb */
278 92900, 0x85, 0x00, 5,
279 8, 20, 3, 17, 33, 33, 33, 53476 },
280 { INVALID, VALID_40, WLAN_RC_PHY_HT_40_SS,
281 121500, /* 121.5 Mb */
282 102700, 0x86, 0x00, 6,
283 8, 23, 3, 18, 34, 34, 34, 60156 },
284 { INVALID, VALID_40, WLAN_RC_PHY_HT_40_SS, 135000, /* 135 Mb */
285 112000, 0x87, 0x00, 7,
286 8, 23, 3, 19, 35, 36, 36, 66840 },
287 { INVALID, VALID_40, WLAN_RC_PHY_HT_40_SS_HGI,
288 150000, /* 150 Mb */
289 122000, 0x87, 0x00, 7,
290 8, 25, 3, 19, 35, 36, 36, 74200 },
291 { INVALID, INVALID, WLAN_RC_PHY_HT_40_DS, 27000, /* 27 Mb */
292 25800, 0x88, 0x00, 8,
293 8, 2, 3, 20, 37, 37, 37, 13360 },
294 { INVALID, INVALID, WLAN_RC_PHY_HT_40_DS, 54000, /* 54 Mb */
295 49800, 0x89, 0x00, 9,
296 8, 4, 3, 21, 38, 38, 38, 26720 },
297 { INVALID, INVALID, WLAN_RC_PHY_HT_40_DS, 81000, /* 81 Mb */
298 71900, 0x8a, 0x00, 10,
299 8, 6, 3, 22, 39, 39, 39, 40080 },
300 { VALID_40, INVALID, WLAN_RC_PHY_HT_40_DS, 108000, /* 108 Mb */
301 92500, 0x8b, 0x00, 11,
302 8, 10, 3, 23, 40, 40, 40, 53440 },
303 { VALID_40, INVALID, WLAN_RC_PHY_HT_40_DS, 162000, /* 162 Mb */
304 130300, 0x8c, 0x00, 12,
305 8, 14, 3, 24, 41, 41, 41, 80160 },
306 { VALID_40, INVALID, WLAN_RC_PHY_HT_40_DS, 216000, /* 216 Mb */
307 162800, 0x8d, 0x00, 13,
308 8, 20, 3, 25, 42, 42, 42, 106880 },
309 { VALID_40, INVALID, WLAN_RC_PHY_HT_40_DS, 243000, /* 243 Mb */
310 178200, 0x8e, 0x00, 14,
311 8, 23, 3, 26, 43, 43, 43, 120240 },
312 { VALID_40, INVALID, WLAN_RC_PHY_HT_40_DS, 270000, /* 270 Mb */
313 192100, 0x8f, 0x00, 15,
314 8, 23, 3, 27, 44, 45, 45, 133600 },
315 { VALID_40, INVALID, WLAN_RC_PHY_HT_40_DS_HGI,
316 300000, /* 300 Mb */
317 207000, 0x8f, 0x00, 15,
318 8, 25, 3, 27, 44, 45, 45, 148400 },
319 },
320 50, /* probe interval */
321 50, /* rssi reduce interval */
322 WLAN_RC_HT_FLAG, /* Phy rates allowed initially */
323 };
324
325 static struct ath_rate_table ar5416_11a_ratetable = {
326 8,
327 {0},
328 {
329 { VALID, VALID, WLAN_RC_PHY_OFDM, 6000, /* 6 Mb */
330 5400, 0x0b, 0x00, (0x80|12),
331 0, 2, 1, 0, 0 },
332 { VALID, VALID, WLAN_RC_PHY_OFDM, 9000, /* 9 Mb */
333 7800, 0x0f, 0x00, 18,
334 0, 3, 1, 1, 0 },
335 { VALID, VALID, WLAN_RC_PHY_OFDM, 12000, /* 12 Mb */
336 10000, 0x0a, 0x00, (0x80|24),
337 2, 4, 2, 2, 0 },
338 { VALID, VALID, WLAN_RC_PHY_OFDM, 18000, /* 18 Mb */
339 13900, 0x0e, 0x00, 36,
340 2, 6, 2, 3, 0 },
341 { VALID, VALID, WLAN_RC_PHY_OFDM, 24000, /* 24 Mb */
342 17300, 0x09, 0x00, (0x80|48),
343 4, 10, 3, 4, 0 },
344 { VALID, VALID, WLAN_RC_PHY_OFDM, 36000, /* 36 Mb */
345 23000, 0x0d, 0x00, 72,
346 4, 14, 3, 5, 0 },
347 { VALID, VALID, WLAN_RC_PHY_OFDM, 48000, /* 48 Mb */
348 27400, 0x08, 0x00, 96,
349 4, 19, 3, 6, 0 },
350 { VALID, VALID, WLAN_RC_PHY_OFDM, 54000, /* 54 Mb */
351 29300, 0x0c, 0x00, 108,
352 4, 23, 3, 7, 0 },
353 },
354 50, /* probe interval */
355 50, /* rssi reduce interval */
356 0, /* Phy rates allowed initially */
357 };
358
359 static struct ath_rate_table ar5416_11g_ratetable = {
360 12,
361 {0},
362 {
363 { VALID, VALID, WLAN_RC_PHY_CCK, 1000, /* 1 Mb */
364 900, 0x1b, 0x00, 2,
365 0, 0, 1, 0, 0 },
366 { VALID, VALID, WLAN_RC_PHY_CCK, 2000, /* 2 Mb */
367 1900, 0x1a, 0x04, 4,
368 1, 1, 1, 1, 0 },
369 { VALID, VALID, WLAN_RC_PHY_CCK, 5500, /* 5.5 Mb */
370 4900, 0x19, 0x04, 11,
371 2, 2, 2, 2, 0 },
372 { VALID, VALID, WLAN_RC_PHY_CCK, 11000, /* 11 Mb */
373 8100, 0x18, 0x04, 22,
374 3, 3, 2, 3, 0 },
375 { INVALID, INVALID, WLAN_RC_PHY_OFDM, 6000, /* 6 Mb */
376 5400, 0x0b, 0x00, 12,
377 4, 2, 1, 4, 0 },
378 { INVALID, INVALID, WLAN_RC_PHY_OFDM, 9000, /* 9 Mb */
379 7800, 0x0f, 0x00, 18,
380 4, 3, 1, 5, 0 },
381 { VALID, VALID, WLAN_RC_PHY_OFDM, 12000, /* 12 Mb */
382 10000, 0x0a, 0x00, 24,
383 6, 4, 1, 6, 0 },
384 { VALID, VALID, WLAN_RC_PHY_OFDM, 18000, /* 18 Mb */
385 13900, 0x0e, 0x00, 36,
386 6, 6, 2, 7, 0 },
387 { VALID, VALID, WLAN_RC_PHY_OFDM, 24000, /* 24 Mb */
388 17300, 0x09, 0x00, 48,
389 8, 10, 3, 8, 0 },
390 { VALID, VALID, WLAN_RC_PHY_OFDM, 36000, /* 36 Mb */
391 23000, 0x0d, 0x00, 72,
392 8, 14, 3, 9, 0 },
393 { VALID, VALID, WLAN_RC_PHY_OFDM, 48000, /* 48 Mb */
394 27400, 0x08, 0x00, 96,
395 8, 19, 3, 10, 0 },
396 { VALID, VALID, WLAN_RC_PHY_OFDM, 54000, /* 54 Mb */
397 29300, 0x0c, 0x00, 108,
398 8, 23, 3, 11, 0 },
399 },
400 50, /* probe interval */
401 50, /* rssi reduce interval */
402 0, /* Phy rates allowed initially */
403 };
404
405 static struct ath_rate_table ar5416_11b_ratetable = {
406 4,
407 {0},
408 {
409 { VALID, VALID, WLAN_RC_PHY_CCK, 1000, /* 1 Mb */
410 900, 0x1b, 0x00, (0x80|2),
411 0, 0, 1, 0, 0 },
412 { VALID, VALID, WLAN_RC_PHY_CCK, 2000, /* 2 Mb */
413 1800, 0x1a, 0x04, (0x80|4),
414 1, 1, 1, 1, 0 },
415 { VALID, VALID, WLAN_RC_PHY_CCK, 5500, /* 5.5 Mb */
416 4300, 0x19, 0x04, (0x80|11),
417 1, 2, 2, 2, 0 },
418 { VALID, VALID, WLAN_RC_PHY_CCK, 11000, /* 11 Mb */
419 7100, 0x18, 0x04, (0x80|22),
420 1, 4, 100, 3, 0 },
421 },
422 100, /* probe interval */
423 100, /* rssi reduce interval */
424 0, /* Phy rates allowed initially */
425 };
426
427 static inline int8_t
median(int8_t a,int8_t b,int8_t c)428 median(int8_t a, int8_t b, int8_t c)
429 {
430 if (a >= b) {
431 if (b >= c)
432 return (b);
433 else if (a > c)
434 return (c);
435 else
436 return (a);
437 } else {
438 if (a >= c)
439 return (a);
440 else if (b >= c)
441 return (c);
442 else
443 return (b);
444 }
445 }
446
447 static void
arn_rc_sort_validrates(struct ath_rate_table * rate_table,struct ath_rate_priv * ath_rc_priv)448 arn_rc_sort_validrates(struct ath_rate_table *rate_table,
449 struct ath_rate_priv *ath_rc_priv)
450 {
451 uint8_t i, j, idx, idx_next;
452
453 for (i = ath_rc_priv->max_valid_rate - 1; i > 0; i--) {
454 for (j = 0; j <= i-1; j++) {
455 idx = ath_rc_priv->valid_rate_index[j];
456 idx_next = ath_rc_priv->valid_rate_index[j+1];
457
458 if (rate_table->info[idx].ratekbps >
459 rate_table->info[idx_next].ratekbps) {
460 ath_rc_priv->valid_rate_index[j] = idx_next;
461 ath_rc_priv->valid_rate_index[j+1] = idx;
462 }
463 }
464 }
465 }
466
467 static void
arn_rc_init_valid_txmask(struct ath_rate_priv * ath_rc_priv)468 arn_rc_init_valid_txmask(struct ath_rate_priv *ath_rc_priv)
469 {
470 uint8_t i;
471
472 for (i = 0; i < ath_rc_priv->rate_table_size; i++)
473 ath_rc_priv->valid_rate_index[i] = 0;
474 }
475
476 static inline void
arn_rc_set_valid_txmask(struct ath_rate_priv * ath_rc_priv,uint8_t index,int valid_tx_rate)477 arn_rc_set_valid_txmask(struct ath_rate_priv *ath_rc_priv,
478 uint8_t index, int valid_tx_rate)
479 {
480 ASSERT(index <= ath_rc_priv->rate_table_size);
481 ath_rc_priv->valid_rate_index[index] = valid_tx_rate ? 1 : 0;
482 }
483
484 static inline int
485 /* LINTED E_STATIC_UNUSED */
arn_rc_isvalid_txmask(struct ath_rate_priv * ath_rc_priv,uint8_t index)486 arn_rc_isvalid_txmask(struct ath_rate_priv *ath_rc_priv, uint8_t index)
487 {
488 ASSERT(index <= ath_rc_priv->rate_table_size);
489 return (ath_rc_priv->valid_rate_index[index]);
490 }
491
492 /* ARGSUSED */
493 static inline int
arn_rc_get_nextvalid_txrate(struct ath_rate_table * rate_table,struct ath_rate_priv * ath_rc_priv,uint8_t cur_valid_txrate,uint8_t * next_idx)494 arn_rc_get_nextvalid_txrate(struct ath_rate_table *rate_table,
495 struct ath_rate_priv *ath_rc_priv,
496 uint8_t cur_valid_txrate,
497 uint8_t *next_idx)
498 {
499 uint8_t i;
500
501 for (i = 0; i < ath_rc_priv->max_valid_rate - 1; i++) {
502 if (ath_rc_priv->valid_rate_index[i] == cur_valid_txrate) {
503 *next_idx = ath_rc_priv->valid_rate_index[i+1];
504 return (1);
505 }
506 }
507
508 /* No more valid rates */
509 *next_idx = 0;
510
511 return (0);
512 }
513
514 /* Return true only for single stream */
515 static int
arn_rc_valid_phyrate(uint32_t phy,uint32_t capflag,int ignore_cw)516 arn_rc_valid_phyrate(uint32_t phy, uint32_t capflag, int ignore_cw)
517 {
518 if (WLAN_RC_PHY_HT(phy) && !(capflag & WLAN_RC_HT_FLAG))
519 return (0);
520 if (WLAN_RC_PHY_DS(phy) && !(capflag & WLAN_RC_DS_FLAG))
521 return (0);
522 if (WLAN_RC_PHY_SGI(phy) && !(capflag & WLAN_RC_SGI_FLAG))
523 return (0);
524 if (!ignore_cw && WLAN_RC_PHY_HT(phy)) {
525 if (WLAN_RC_PHY_40(phy) && !(capflag & WLAN_RC_40_FLAG))
526 return (0);
527 if (!WLAN_RC_PHY_40(phy) && (capflag & WLAN_RC_40_FLAG))
528 return (0);
529 }
530 return (1);
531 }
532
533 /* ARGSUSED */
534 static inline int
arn_rc_get_nextlowervalid_txrate(struct ath_rate_table * rate_table,struct ath_rate_priv * ath_rc_priv,uint8_t cur_valid_txrate,uint8_t * next_idx)535 arn_rc_get_nextlowervalid_txrate(struct ath_rate_table *rate_table,
536 struct ath_rate_priv *ath_rc_priv,
537 uint8_t cur_valid_txrate, uint8_t *next_idx)
538 {
539 int8_t i;
540
541 for (i = 1; i < ath_rc_priv->max_valid_rate; i++) {
542 if (ath_rc_priv->valid_rate_index[i] == cur_valid_txrate) {
543 *next_idx = ath_rc_priv->valid_rate_index[i-1];
544 return (1);
545 }
546 }
547
548 return (0);
549 }
550
551 static uint8_t
arn_rc_init_validrates(struct ath_rate_priv * ath_rc_priv,struct ath_rate_table * rate_table,uint32_t capflag)552 arn_rc_init_validrates(struct ath_rate_priv *ath_rc_priv,
553 struct ath_rate_table *rate_table, uint32_t capflag)
554 {
555 uint8_t i, hi = 0;
556 uint32_t valid;
557
558 for (i = 0; i < rate_table->rate_cnt; i++) {
559 valid = (ath_rc_priv->single_stream ?
560 rate_table->info[i].valid_single_stream :
561 rate_table->info[i].valid);
562 if (valid == 1) {
563 uint32_t phy = rate_table->info[i].phy;
564 uint8_t valid_rate_count = 0;
565
566 if (!arn_rc_valid_phyrate(phy, capflag, 0))
567 continue;
568
569 valid_rate_count = ath_rc_priv->valid_phy_ratecnt[phy];
570
571 ath_rc_priv->
572 valid_phy_rateidx[phy][valid_rate_count] = i;
573 ath_rc_priv->valid_phy_ratecnt[phy] += 1;
574 arn_rc_set_valid_txmask(ath_rc_priv, i, 1);
575 hi = A_MAX(hi, i);
576 }
577 }
578
579 return (hi);
580 }
581
582 static uint8_t
arn_rc_setvalid_rates(struct ath_rate_priv * ath_rc_priv,struct ath_rate_table * rate_table,struct ath_rateset * rateset,uint32_t capflag)583 arn_rc_setvalid_rates(struct ath_rate_priv *ath_rc_priv,
584 struct ath_rate_table *rate_table,
585 struct ath_rateset *rateset,
586 uint32_t capflag)
587 {
588 uint8_t i, j, hi = 0;
589
590 /* Use intersection of working rates and valid rates */
591 for (i = 0; i < rateset->rs_nrates; i++) {
592 for (j = 0; j < rate_table->rate_cnt; j++) {
593 uint32_t phy = rate_table->info[j].phy;
594 uint32_t valid = (ath_rc_priv->single_stream ?
595 rate_table->info[j].valid_single_stream :
596 rate_table->info[j].valid);
597 uint8_t rate = rateset->rs_rates[i];
598 uint8_t dot11rate = rate_table->info[j].dot11rate;
599
600 /*
601 * We allow a rate only if its valid and the
602 * capflag matches one of the validity
603 * (VALID/VALID_20/VALID_40) flags
604 */
605 if (((rate & 0x7F) == (dot11rate & 0x7F)) &&
606 ((valid & WLAN_RC_CAP_MODE(capflag)) ==
607 WLAN_RC_CAP_MODE(capflag)) &&
608 !WLAN_RC_PHY_HT(phy)) {
609 uint8_t valid_rate_count = 0;
610
611 if (!arn_rc_valid_phyrate(phy, capflag, 0))
612 continue;
613
614 valid_rate_count =
615 ath_rc_priv->valid_phy_ratecnt[phy];
616
617 ath_rc_priv->valid_phy_rateidx[phy]
618 [valid_rate_count] = j;
619 ath_rc_priv->valid_phy_ratecnt[phy] += 1;
620 arn_rc_set_valid_txmask(ath_rc_priv, j, 1);
621 hi = A_MAX(hi, j);
622 }
623 }
624 }
625
626 return (hi);
627 }
628
629 static uint8_t
arn_rc_setvalid_htrates(struct ath_rate_priv * ath_rc_priv,struct ath_rate_table * rate_table,uint8_t * mcs_set,uint32_t capflag)630 arn_rc_setvalid_htrates(struct ath_rate_priv *ath_rc_priv,
631 struct ath_rate_table *rate_table,
632 uint8_t *mcs_set, uint32_t capflag)
633 {
634 struct ath_rateset *rateset = (struct ath_rateset *)mcs_set;
635
636 uint8_t i, j, hi = 0;
637
638 /* Use intersection of working rates and valid rates */
639 for (i = 0; i < rateset->rs_nrates; i++) {
640 for (j = 0; j < rate_table->rate_cnt; j++) {
641 uint32_t phy = rate_table->info[j].phy;
642 uint32_t valid = (ath_rc_priv->single_stream ?
643 rate_table->info[j].valid_single_stream :
644 rate_table->info[j].valid);
645 uint8_t rate = rateset->rs_rates[i];
646 uint8_t dot11rate = rate_table->info[j].dot11rate;
647
648 if (((rate & 0x7F) != (dot11rate & 0x7F)) ||
649 !WLAN_RC_PHY_HT(phy) ||
650 !WLAN_RC_PHY_HT_VALID(valid, capflag))
651 continue;
652
653 if (!arn_rc_valid_phyrate(phy, capflag, 0))
654 continue;
655
656 ath_rc_priv->valid_phy_rateidx[phy]
657 [ath_rc_priv->valid_phy_ratecnt[phy]] = j;
658 ath_rc_priv->valid_phy_ratecnt[phy] += 1;
659 arn_rc_set_valid_txmask(ath_rc_priv, j, 1);
660 hi = A_MAX(hi, j);
661 }
662 }
663
664 return (hi);
665 }
666
667 /* ARGSUSED */
668 static uint8_t
arn_rc_ratefind_ht(struct arn_softc * sc,struct ath_rate_priv * ath_rc_priv,struct ath_rate_table * rate_table,int probe_allowed,int * is_probing,int is_retry)669 arn_rc_ratefind_ht(struct arn_softc *sc,
670 struct ath_rate_priv *ath_rc_priv,
671 struct ath_rate_table *rate_table,
672 int probe_allowed, int *is_probing,
673 int is_retry)
674 {
675 uint32_t dt, best_thruput, this_thruput, now_msec;
676 uint8_t rate, next_rate, best_rate, maxindex, minindex;
677 int8_t rssi_last, rssi_reduce = 0, index = 0;
678
679 *is_probing = 0;
680
681 rssi_last = median(ath_rc_priv->rssi_last,
682 ath_rc_priv->rssi_last_prev,
683 ath_rc_priv->rssi_last_prev2);
684
685 /*
686 * Age (reduce) last ack rssi based on how old it is.
687 * The bizarre numbers are so the delta is 160msec,
688 * meaning we divide by 16.
689 * 0msec <= dt <= 25msec: don't derate
690 * 25msec <= dt <= 185msec: derate linearly from 0 to 10dB
691 * 185msec <= dt: derate by 10dB
692 */
693
694 /* now_msec = jiffies_to_msecs(jiffies); */
695 now_msec = drv_hztousec(ddi_get_lbolt())/1000; /* mescs ? */
696 dt = now_msec - ath_rc_priv->rssi_time;
697
698 if (dt >= 185)
699 rssi_reduce = 10;
700 else if (dt >= 25)
701 rssi_reduce = (uint8_t)((dt - 25) >> 4);
702
703 /* Now reduce rssi_last by rssi_reduce */
704 if (rssi_last < rssi_reduce)
705 rssi_last = 0;
706 else
707 rssi_last -= rssi_reduce;
708
709 /*
710 * Now look up the rate in the rssi table and return it.
711 * If no rates match then we return 0 (lowest rate)
712 */
713
714 best_thruput = 0;
715 maxindex = ath_rc_priv->max_valid_rate-1;
716
717 minindex = 0;
718 best_rate = minindex;
719
720 /*
721 * Try the higher rate first. It will reduce memory moving time
722 * if we have very good channel characteristics.
723 */
724 for (index = maxindex; index >= minindex; index--) {
725 uint8_t per_thres;
726
727 rate = ath_rc_priv->valid_rate_index[index];
728 if (rate > ath_rc_priv->rate_max_phy)
729 continue;
730
731 /*
732 * For TCP the average collision rate is around 11%,
733 * so we ignore PERs less than this. This is to
734 * prevent the rate we are currently using (whose
735 * PER might be in the 10-15 range because of TCP
736 * collisions) looking worse than the next lower
737 * rate whose PER has decayed close to 0. If we
738 * used to next lower rate, its PER would grow to
739 * 10-15 and we would be worse off then staying
740 * at the current rate.
741 */
742 per_thres = ath_rc_priv->state[rate].per;
743 if (per_thres < 12)
744 per_thres = 12;
745
746 this_thruput = rate_table->info[rate].user_ratekbps *
747 (100 - per_thres);
748
749 if (best_thruput <= this_thruput) {
750 best_thruput = this_thruput;
751 best_rate = rate;
752 }
753 }
754
755 rate = best_rate;
756
757 /*
758 * if we are retrying for more than half the number
759 * of max retries, use the min rate for the next retry
760 */
761 if (is_retry)
762 rate = ath_rc_priv->valid_rate_index[minindex];
763
764 ath_rc_priv->rssi_last_lookup = rssi_last;
765
766 /*
767 * Must check the actual rate (ratekbps) to account for
768 * non-monoticity of 11g's rate table
769 */
770
771 if (rate >= ath_rc_priv->rate_max_phy && probe_allowed) {
772 rate = ath_rc_priv->rate_max_phy;
773
774 /* Probe the next allowed phy state */
775 /* FIXME:XXXX Check to make sure ratMax is checked properly */
776 if (arn_rc_get_nextvalid_txrate(rate_table,
777 ath_rc_priv, rate, &next_rate) &&
778 (now_msec - ath_rc_priv->probe_time >
779 rate_table->probe_interval) &&
780 (ath_rc_priv->hw_maxretry_pktcnt >= 1)) {
781 rate = next_rate;
782 ath_rc_priv->probe_rate = rate;
783 ath_rc_priv->probe_time = now_msec;
784 ath_rc_priv->hw_maxretry_pktcnt = 0;
785 *is_probing = 1;
786 }
787 }
788
789 if (rate > (ath_rc_priv->rate_table_size - 1))
790 rate = ath_rc_priv->rate_table_size - 1;
791
792 ASSERT((rate_table->info[rate].valid && !ath_rc_priv->single_stream) ||
793 (rate_table->info[rate].valid_single_stream &&
794 ath_rc_priv->single_stream));
795
796 return (rate);
797 }
798
799 static void
arn_rc_rate_set_series(struct ath_rate_table * rate_table,struct ath9k_tx_rate * rate,uint8_t tries,uint8_t rix,int rtsctsenable)800 arn_rc_rate_set_series(struct ath_rate_table *rate_table,
801 struct ath9k_tx_rate *rate,
802 uint8_t tries,
803 uint8_t rix,
804 int rtsctsenable)
805 {
806 #if 0
807 struct ieee80211_node *in;
808 ieee80211com_t *ic = (ieee80211com_t *)sc;
809 #endif
810 rate->count = tries;
811 rate->idx = rix;
812
813 if (rtsctsenable)
814 rate->flags |= ATH9K_TX_RC_USE_RTS_CTS;
815 #if 0
816 if ((ic->ic_flags & IEEE80211_F_SHPREAMBLE) &&
817 (in->in_capinfo & IEEE80211_CAPINFO_SHORT_PREAMBLE)) {
818 rate->flags |= ATH9K_TX_RC_USE_SHORT_PREAMBLE;
819 }
820 #endif
821 if (WLAN_RC_PHY_40(rate_table->info[rix].phy))
822 rate->flags |= ATH9K_TX_RC_40_MHZ_WIDTH;
823 if (WLAN_RC_PHY_SGI(rate_table->info[rix].phy))
824 rate->flags |= ATH9K_TX_RC_SHORT_GI;
825 if (WLAN_RC_PHY_HT(rate_table->info[rix].phy))
826 rate->flags |= ATH9K_TX_RC_MCS;
827 }
828
829 /* ARGSUSED */
830 static uint8_t
arn_rc_rate_getidx(struct arn_softc * sc,struct ath_rate_priv * ath_rc_priv,struct ath_rate_table * rate_table,uint8_t rix,uint16_t stepdown,uint16_t min_rate)831 arn_rc_rate_getidx(struct arn_softc *sc,
832 struct ath_rate_priv *ath_rc_priv,
833 struct ath_rate_table *rate_table,
834 uint8_t rix, uint16_t stepdown,
835 uint16_t min_rate)
836 {
837 uint32_t j;
838 uint8_t nextindex;
839
840 if (min_rate) {
841 for (j = RATE_TABLE_SIZE; j > 0; j--) {
842 if (arn_rc_get_nextlowervalid_txrate(rate_table,
843 ath_rc_priv, rix, &nextindex))
844 rix = nextindex;
845 else
846 break;
847 }
848 } else {
849 for (j = stepdown; j > 0; j--) {
850 if (arn_rc_get_nextlowervalid_txrate(rate_table,
851 ath_rc_priv, rix, &nextindex))
852 rix = nextindex;
853 else
854 break;
855 }
856 }
857 return (rix);
858 }
859
860 static void
arn_rc_ratefind(struct arn_softc * sc,struct ath_rate_priv * ath_rc_priv,struct ath_buf * bf,int num_tries,int num_rates,int * is_probe,boolean_t is_retry)861 arn_rc_ratefind(struct arn_softc *sc, struct ath_rate_priv *ath_rc_priv,
862 struct ath_buf *bf, int num_tries, int num_rates, int *is_probe,
863 boolean_t is_retry)
864 {
865 uint8_t try_per_rate = 0, i = 0, rix, nrix;
866 struct ath_rate_table *rate_table;
867 struct ath9k_tx_rate *rates = bf->rates;
868 ieee80211com_t *ic = (ieee80211com_t *)sc;
869
870 rate_table = sc->sc_currates;
871 rix = arn_rc_ratefind_ht(sc, ath_rc_priv, rate_table, 1,
872 is_probe, is_retry);
873 nrix = rix;
874
875 if (*is_probe) {
876 /*
877 * set one try for probe rates. For the
878 * probes don't enable rts
879 */
880 arn_rc_rate_set_series(rate_table,
881 &rates[i++], 1, nrix, 0);
882
883 try_per_rate = (num_tries/num_rates);
884 /*
885 * Get the next tried/allowed rate. No RTS for the next series
886 * after the probe rate
887 */
888 nrix = arn_rc_rate_getidx(sc,
889 ath_rc_priv, rate_table, nrix, 1, 0);
890 arn_rc_rate_set_series(rate_table,
891 &rates[i++], try_per_rate, nrix, 0);
892 } else {
893 try_per_rate = (num_tries/num_rates);
894 /* Set the choosen rate. No RTS for first series entry. */
895 arn_rc_rate_set_series(rate_table,
896 &rates[i++], try_per_rate, nrix, 0);
897 }
898
899 /* Fill in the other rates for multirate retry */
900 for (; i < num_rates; i++) {
901 uint8_t try_num;
902 uint8_t min_rate;
903
904 try_num = ((i + 1) == num_rates) ?
905 num_tries - (try_per_rate * i) : try_per_rate;
906 /* LINTED E_FALSE_LOGICAL_EXPR */
907 min_rate = (((i + 1) == num_rates) && 0);
908
909 nrix = arn_rc_rate_getidx(sc, ath_rc_priv,
910 rate_table, nrix, 1, min_rate);
911 /* All other rates in the series have RTS enabled */
912 arn_rc_rate_set_series(rate_table, &rates[i], try_num, nrix, 1);
913 }
914
915 /*
916 * NB:Change rate series to enable aggregation when operating
917 * at lower MCS rates. When first rate in series is MCS2
918 * in HT40 @ 2.4GHz, series should look like:
919 *
920 * {MCS2, MCS1, MCS0, MCS0}.
921 *
922 * When first rate in series is MCS3 in HT20 @ 2.4GHz, series should
923 * look like:
924 *
925 * {MCS3, MCS2, MCS1, MCS1}
926 *
927 * So, set fourth rate in series to be same as third one for
928 * above conditions.
929 */
930
931 if (IEEE80211_IS_CHAN_HTG(ic->ic_curchan)) {
932 uint8_t dot11rate = rate_table->info[rix].dot11rate;
933 uint8_t phy = rate_table->info[rix].phy;
934 if (i == 4 &&
935 ((dot11rate == 2 && phy == WLAN_RC_PHY_HT_40_SS) ||
936 (dot11rate == 3 && phy == WLAN_RC_PHY_HT_20_SS))) {
937 rates[3].idx = rates[2].idx;
938 rates[3].flags = rates[2].flags;
939 }
940 }
941 }
942
943 /* ARGSUSED */
944 static boolean_t
arn_rc_update_per(struct arn_softc * sc,struct ath_rate_table * rate_table,struct ath_rate_priv * ath_rc_priv,struct ath_tx_info_priv * tx_info_priv,int tx_rate,int xretries,int retries,uint32_t now_msec)945 arn_rc_update_per(struct arn_softc *sc,
946 struct ath_rate_table *rate_table,
947 struct ath_rate_priv *ath_rc_priv,
948 struct ath_tx_info_priv *tx_info_priv,
949 int tx_rate, int xretries, int retries,
950 uint32_t now_msec)
951 {
952 boolean_t state_change = B_FALSE;
953 int count;
954 uint8_t last_per;
955 static uint32_t nretry_to_per_lookup[10] = {
956 100 * 0 / 1,
957 100 * 1 / 4,
958 100 * 1 / 2,
959 100 * 3 / 4,
960 100 * 4 / 5,
961 100 * 5 / 6,
962 100 * 6 / 7,
963 100 * 7 / 8,
964 100 * 8 / 9,
965 100 * 9 / 10
966 };
967
968 last_per = ath_rc_priv->state[tx_rate].per;
969
970 if (xretries) {
971 if (xretries == 1) {
972 ath_rc_priv->state[tx_rate].per += 30;
973 if (ath_rc_priv->state[tx_rate].per > 100)
974 ath_rc_priv->state[tx_rate].per = 100;
975 } else {
976 /* xretries == 2 */
977 count = ARRAY_SIZE(nretry_to_per_lookup);
978 if (retries >= count)
979 retries = count - 1;
980
981 /* new_PER = 7/8*old_PER + 1/8*(currentPER) */
982 ath_rc_priv->state[tx_rate].per =
983 (uint8_t)(last_per - (last_per >> 3) + (100 >> 3));
984 }
985
986 /* xretries == 1 or 2 */
987
988 if (ath_rc_priv->probe_rate == tx_rate)
989 ath_rc_priv->probe_rate = 0;
990
991 } else { /* xretries == 0 */
992 count = ARRAY_SIZE(nretry_to_per_lookup);
993 if (retries >= count)
994 retries = count - 1;
995
996 if (tx_info_priv->n_bad_frames) {
997 /*
998 * new_PER = 7/8*old_PER + 1/8*(currentPER)
999 * Assuming that n_frames is not 0. The current PER
1000 * from the retries is 100 * retries / (retries+1),
1001 * since the first retries attempts failed, and the
1002 * next one worked. For the one that worked,
1003 * n_bad_frames subframes out of n_frames wored,
1004 * so the PER for that part is
1005 * 100 * n_bad_frames / n_frames, and it contributes
1006 * 100 * n_bad_frames / (n_frames * (retries+1)) to
1007 * the above PER. The expression below is a
1008 * simplified version of the sum of these two terms.
1009 */
1010 if (tx_info_priv->n_frames > 0) {
1011 int n_frames, n_bad_frames;
1012 uint8_t cur_per, new_per;
1013
1014 n_bad_frames = retries *
1015 tx_info_priv->n_frames +
1016 tx_info_priv->n_bad_frames;
1017 n_frames =
1018 tx_info_priv->n_frames * (retries + 1);
1019 cur_per =
1020 (100 * n_bad_frames / n_frames) >> 3;
1021 new_per = (uint8_t)
1022 (last_per - (last_per >> 3) + cur_per);
1023 ath_rc_priv->state[tx_rate].per = new_per;
1024 }
1025 } else {
1026 ath_rc_priv->state[tx_rate].per =
1027 (uint8_t)(last_per - (last_per >> 3) +
1028 (nretry_to_per_lookup[retries] >> 3));
1029 }
1030
1031 ath_rc_priv->rssi_last_prev2 = ath_rc_priv->rssi_last_prev;
1032 ath_rc_priv->rssi_last_prev = ath_rc_priv->rssi_last;
1033 ath_rc_priv->rssi_last = tx_info_priv->tx.ts_rssi;
1034 ath_rc_priv->rssi_time = now_msec;
1035
1036 /*
1037 * If we got at most one retry then increase the max rate if
1038 * this was a probe. Otherwise, ignore the probe.
1039 */
1040 if (ath_rc_priv->probe_rate &&
1041 ath_rc_priv->probe_rate == tx_rate) {
1042 if (retries > 0 || 2 * tx_info_priv->n_bad_frames >
1043 tx_info_priv->n_frames) {
1044 /*
1045 * Since we probed with just a single attempt,
1046 * any retries means the probe failed. Also,
1047 * if the attempt worked, but more than half
1048 * the subframes were bad then also consider
1049 * the probe a failure.
1050 */
1051 ath_rc_priv->probe_rate = 0;
1052 } else {
1053 uint8_t probe_rate = 0;
1054
1055 ath_rc_priv->rate_max_phy =
1056 ath_rc_priv->probe_rate;
1057 probe_rate = ath_rc_priv->probe_rate;
1058
1059 if (ath_rc_priv->state[probe_rate].per > 30)
1060 ath_rc_priv->state[probe_rate].per = 20;
1061
1062 ath_rc_priv->probe_rate = 0;
1063
1064 /*
1065 * Since this probe succeeded, we allow the next
1066 * probe twice as soon. This allows the maxRate
1067 * to move up faster if the probes are
1068 * succesful.
1069 */
1070 ath_rc_priv->probe_time =
1071 now_msec - rate_table->probe_interval / 2;
1072 }
1073 }
1074
1075 if (retries > 0) {
1076 /*
1077 * Don't update anything. We don't know if
1078 * this was because of collisions or poor signal.
1079 *
1080 * Later: if rssi_ack is close to
1081 * ath_rc_priv->state[txRate].rssi_thres and we see lots
1082 * of retries, then we could increase
1083 * ath_rc_priv->state[txRate].rssi_thres.
1084 */
1085 ath_rc_priv->hw_maxretry_pktcnt = 0;
1086 } else {
1087 int32_t rssi_ackAvg;
1088 int8_t rssi_thres;
1089 int8_t rssi_ack_vmin;
1090
1091 /*
1092 * It worked with no retries. First ignore bogus (small)
1093 * rssi_ack values.
1094 */
1095 if (tx_rate == ath_rc_priv->rate_max_phy &&
1096 ath_rc_priv->hw_maxretry_pktcnt < 255) {
1097 ath_rc_priv->hw_maxretry_pktcnt++;
1098 }
1099
1100 if (tx_info_priv->tx.ts_rssi <
1101 rate_table->info[tx_rate].rssi_ack_validmin)
1102 goto exit;
1103
1104 /* Average the rssi */
1105 if (tx_rate != ath_rc_priv->rssi_sum_rate) {
1106 ath_rc_priv->rssi_sum_rate = tx_rate;
1107 ath_rc_priv->rssi_sum =
1108 ath_rc_priv->rssi_sum_cnt = 0;
1109 }
1110
1111 ath_rc_priv->rssi_sum += tx_info_priv->tx.ts_rssi;
1112 ath_rc_priv->rssi_sum_cnt++;
1113
1114 if (ath_rc_priv->rssi_sum_cnt < 4)
1115 goto exit;
1116
1117 rssi_ackAvg =
1118 (ath_rc_priv->rssi_sum + 2) / 4;
1119 rssi_thres =
1120 ath_rc_priv->state[tx_rate].rssi_thres;
1121 rssi_ack_vmin =
1122 rate_table->info[tx_rate].rssi_ack_validmin;
1123
1124 ath_rc_priv->rssi_sum =
1125 ath_rc_priv->rssi_sum_cnt = 0;
1126
1127 /* Now reduce the current rssi threshold */
1128 if ((rssi_ackAvg < rssi_thres + 2) &&
1129 (rssi_thres > rssi_ack_vmin)) {
1130 ath_rc_priv->state[tx_rate].rssi_thres--;
1131 }
1132
1133 state_change = B_TRUE;
1134 }
1135 }
1136 exit:
1137 return (state_change);
1138 }
1139
1140 /*
1141 * Update PER, RSSI and whatever else that the code thinks
1142 * it is doing. If you can make sense of all this, you really
1143 * need to go out more.
1144 */
1145 static void
arn_rc_update_ht(struct arn_softc * sc,struct ath_rate_priv * ath_rc_priv,struct ath_tx_info_priv * tx_info_priv,int tx_rate,int xretries,int retries)1146 arn_rc_update_ht(struct arn_softc *sc,
1147 struct ath_rate_priv *ath_rc_priv,
1148 struct ath_tx_info_priv *tx_info_priv,
1149 int tx_rate, int xretries, int retries)
1150 {
1151 #define CHK_RSSI(rate) \
1152 ((ath_rc_priv->state[(rate)].rssi_thres + \
1153 rate_table->info[(rate)].rssi_ack_deltamin) > \
1154 ath_rc_priv->state[(rate)+1].rssi_thres)
1155
1156 /* u32 now_msec = jiffies_to_msecs(jiffies); */
1157 uint32_t now_msec = drv_hztousec(ddi_get_lbolt())/1000; /* mescs ? */
1158 int rate;
1159 uint8_t last_per;
1160 boolean_t state_change = B_FALSE;
1161 struct ath_rate_table *rate_table = sc->sc_currates;
1162 int size = ath_rc_priv->rate_table_size;
1163
1164 if ((tx_rate < 0) || (tx_rate > rate_table->rate_cnt))
1165 return;
1166
1167 /* To compensate for some imbalance between ctrl and ext. channel */
1168
1169 if (WLAN_RC_PHY_40(rate_table->info[tx_rate].phy))
1170 tx_info_priv->tx.ts_rssi =
1171 tx_info_priv->tx.ts_rssi < 3 ? 0 :
1172 tx_info_priv->tx.ts_rssi - 3;
1173
1174 last_per = ath_rc_priv->state[tx_rate].per;
1175
1176 /* Update PER first */
1177 state_change = arn_rc_update_per(sc, rate_table, ath_rc_priv,
1178 tx_info_priv, tx_rate, xretries,
1179 retries, now_msec);
1180
1181 /*
1182 * If this rate looks bad (high PER) then stop using it for
1183 * a while (except if we are probing).
1184 */
1185 if (ath_rc_priv->state[tx_rate].per >= 55 && tx_rate > 0 &&
1186 rate_table->info[tx_rate].ratekbps <=
1187 rate_table->info[ath_rc_priv->rate_max_phy].ratekbps) {
1188 (void) arn_rc_get_nextlowervalid_txrate(rate_table,
1189 ath_rc_priv,
1190 (uint8_t)tx_rate,
1191 &ath_rc_priv->rate_max_phy);
1192
1193 /* Don't probe for a little while. */
1194 ath_rc_priv->probe_time = now_msec;
1195 }
1196
1197 if (state_change) {
1198 /*
1199 * Make sure the rates above this have higher rssi thresholds.
1200 * (Note: Monotonicity is kept within the OFDM rates and
1201 * within the CCK rates. However, no adjustment is
1202 * made to keep the rssi thresholds monotonically
1203 * increasing between the CCK and OFDM rates.)
1204 */
1205 for (rate = tx_rate; rate < size - 1; rate++) {
1206 if (rate_table->info[rate+1].phy !=
1207 rate_table->info[tx_rate].phy)
1208 break;
1209
1210 if (CHK_RSSI(rate)) {
1211 ath_rc_priv->state[rate+1].rssi_thres =
1212 ath_rc_priv->state[rate].rssi_thres +
1213 rate_table->info[rate].rssi_ack_deltamin;
1214 }
1215 }
1216
1217 /* Make sure the rates below this have lower rssi thresholds. */
1218 for (rate = tx_rate - 1; rate >= 0; rate--) {
1219 if (rate_table->info[rate].phy !=
1220 rate_table->info[tx_rate].phy)
1221 break;
1222
1223 if (CHK_RSSI(rate)) {
1224 if (ath_rc_priv->state[rate+1].rssi_thres <
1225 rate_table->info[rate].rssi_ack_deltamin)
1226 ath_rc_priv->state[rate].rssi_thres = 0;
1227 else {
1228 ath_rc_priv->state[rate].rssi_thres =
1229 ath_rc_priv->state[rate+1].
1230 rssi_thres -
1231 rate_table->info[rate].
1232 rssi_ack_deltamin;
1233 }
1234
1235 if (ath_rc_priv->state[rate].rssi_thres <
1236 rate_table->info[rate].rssi_ack_validmin) {
1237 ath_rc_priv->state[rate].rssi_thres =
1238 rate_table->info[rate].
1239 rssi_ack_validmin;
1240 }
1241 }
1242 }
1243 }
1244
1245 /* Make sure the rates below this have lower PER */
1246 /* Monotonicity is kept only for rates below the current rate. */
1247 if (ath_rc_priv->state[tx_rate].per < last_per) {
1248 for (rate = tx_rate - 1; rate >= 0; rate--) {
1249 if (rate_table->info[rate].phy !=
1250 rate_table->info[tx_rate].phy)
1251 break;
1252
1253 if (ath_rc_priv->state[rate].per >
1254 ath_rc_priv->state[rate+1].per) {
1255 ath_rc_priv->state[rate].per =
1256 ath_rc_priv->state[rate+1].per;
1257 }
1258 }
1259 }
1260
1261 /* Maintain monotonicity for rates above the current rate */
1262 for (rate = tx_rate; rate < size - 1; rate++) {
1263 if (ath_rc_priv->state[rate+1].per <
1264 ath_rc_priv->state[rate].per)
1265 ath_rc_priv->state[rate+1].per =
1266 ath_rc_priv->state[rate].per;
1267 }
1268
1269 /*
1270 * Every so often, we reduce the thresholds and
1271 * PER (different for CCK and OFDM).
1272 */
1273 if (now_msec - ath_rc_priv->rssi_down_time >=
1274 rate_table->rssi_reduce_interval) {
1275
1276 for (rate = 0; rate < size; rate++) {
1277 if (ath_rc_priv->state[rate].rssi_thres >
1278 rate_table->info[rate].rssi_ack_validmin)
1279 ath_rc_priv->state[rate].rssi_thres -= 1;
1280 }
1281 ath_rc_priv->rssi_down_time = now_msec;
1282 }
1283
1284 /*
1285 * Every so often, we reduce the thresholds
1286 * and PER (different for CCK and OFDM).
1287 */
1288 if (now_msec - ath_rc_priv->per_down_time >=
1289 rate_table->rssi_reduce_interval) {
1290 for (rate = 0; rate < size; rate++) {
1291 ath_rc_priv->state[rate].per =
1292 7 * ath_rc_priv->state[rate].per / 8;
1293 }
1294
1295 ath_rc_priv->per_down_time = now_msec;
1296 }
1297
1298 #undef CHK_RSSI
1299 }
1300
1301 static int
ath_rc_get_rateindex(struct ath_rate_table * rate_table,struct ath9k_tx_rate * rate)1302 ath_rc_get_rateindex(struct ath_rate_table *rate_table,
1303 struct ath9k_tx_rate *rate)
1304 {
1305 int rix;
1306
1307 if ((rate->flags & ATH9K_TX_RC_40_MHZ_WIDTH) &&
1308 (rate->flags & ATH9K_TX_RC_SHORT_GI))
1309 rix = rate_table->info[rate->idx].ht_index;
1310 else if (rate->flags & ATH9K_TX_RC_SHORT_GI)
1311 rix = rate_table->info[rate->idx].sgi_index;
1312 else if (rate->flags & ATH9K_TX_RC_40_MHZ_WIDTH)
1313 rix = rate_table->info[rate->idx].cw40index;
1314 else
1315 rix = rate_table->info[rate->idx].base_index;
1316
1317 return (rix);
1318 }
1319
1320 static void
ath_rc_tx_status(struct arn_softc * sc,struct ath_rate_priv * ath_rc_priv,struct ath_buf * bf,int final_ts_idx,int xretries,int long_retry)1321 ath_rc_tx_status(struct arn_softc *sc, struct ath_rate_priv *ath_rc_priv,
1322 struct ath_buf *bf, int final_ts_idx, int xretries, int long_retry)
1323 {
1324 struct ath_tx_info_priv *tx_info_priv =
1325 (struct ath_tx_info_priv *)&bf->tx_info_priv;
1326 struct ath9k_tx_rate *rates = bf->rates;
1327 struct ath_rate_table *rate_table;
1328 uint32_t i = 0, rix;
1329 uint8_t flags;
1330
1331 rate_table = sc->sc_currates;
1332
1333 /*
1334 * If the first rate is not the final index, there
1335 * are intermediate rate failures to be processed.
1336 */
1337 if (final_ts_idx != 0) {
1338 /* Process intermediate rates that failed. */
1339 for (i = 0; i < final_ts_idx; i++) {
1340 if (rates[i].count != 0 && (rates[i].idx >= 0)) {
1341 flags = rates[i].flags;
1342
1343 /*
1344 * If HT40 and we have switched mode from
1345 * 40 to 20 => don't update
1346 */
1347
1348 if ((flags & ATH9K_TX_RC_40_MHZ_WIDTH) &&
1349 (ath_rc_priv->rc_phy_mode !=
1350 WLAN_RC_40_FLAG))
1351 return;
1352
1353 rix =
1354 ath_rc_get_rateindex(rate_table, &rates[i]);
1355 arn_rc_update_ht(sc, ath_rc_priv,
1356 tx_info_priv, rix,
1357 xretries ? 1 : 2,
1358 rates[i].count);
1359 }
1360 }
1361 } else {
1362 /*
1363 * Handle the special case of MIMO PS burst, where the second
1364 * aggregate is sent out with only one rate and one try.
1365 * Treating it as an excessive retry penalizes the rate
1366 * inordinately.
1367 */
1368 if (rates[0].count == 1 && xretries == 1)
1369 xretries = 2;
1370 }
1371
1372 flags = rates[i].flags;
1373
1374 /* If HT40 and we have switched mode from 40 to 20 => don't update */
1375 if ((flags & ATH9K_TX_RC_40_MHZ_WIDTH) &&
1376 (ath_rc_priv->rc_phy_mode != WLAN_RC_40_FLAG)) {
1377 return;
1378 }
1379
1380 rix = ath_rc_get_rateindex(rate_table, &rates[i]);
1381 arn_rc_update_ht(sc, ath_rc_priv, tx_info_priv, rix,
1382 xretries, long_retry);
1383 }
1384
1385 static struct ath_rate_table *
arn_choose_rate_table(struct arn_softc * sc,uint32_t cur_mode,boolean_t is_ht,boolean_t is_cw_40)1386 arn_choose_rate_table(struct arn_softc *sc, uint32_t cur_mode,
1387 boolean_t is_ht, boolean_t is_cw_40)
1388 {
1389 int ath9k_mode;
1390 switch (cur_mode) {
1391 case IEEE80211_MODE_11A:
1392 case IEEE80211_MODE_11NA:
1393 ath9k_mode = ATH9K_MODE_11A;
1394 if (is_ht)
1395 ath9k_mode = ATH9K_MODE_11NA_HT20;
1396 if (is_cw_40)
1397 ath9k_mode = ATH9K_MODE_11NA_HT40PLUS;
1398 break;
1399 case IEEE80211_MODE_11B:
1400 ath9k_mode = ATH9K_MODE_11B;
1401 break;
1402 case IEEE80211_MODE_11G:
1403 case IEEE80211_MODE_11NG:
1404 ath9k_mode = ATH9K_MODE_11G;
1405 if (is_ht)
1406 ath9k_mode = ATH9K_MODE_11NG_HT20;
1407 if (is_cw_40)
1408 ath9k_mode = ATH9K_MODE_11NG_HT40PLUS;
1409 break;
1410 default:
1411 ARN_DBG((ARN_DBG_RATE, "Invalid band\n"));
1412 return (NULL);
1413 }
1414
1415 switch (ath9k_mode) {
1416 case ATH9K_MODE_11A:
1417 ARN_DBG((ARN_DBG_RATE, "choose rate table:ATH9K_MODE_11A\n"));
1418 break;
1419 case ATH9K_MODE_11B:
1420 ARN_DBG((ARN_DBG_RATE, "choose rate table:ATH9K_MODE_11B\n"));
1421 break;
1422 case ATH9K_MODE_11G:
1423 ARN_DBG((ARN_DBG_RATE, "choose rate table:ATH9K_MODE_11G\n"));
1424 break;
1425 case ATH9K_MODE_11NA_HT20:
1426 ARN_DBG((ARN_DBG_RATE,
1427 "choose rate table:ATH9K_MODE_11NA_HT20\n"));
1428 break;
1429 case ATH9K_MODE_11NA_HT40PLUS:
1430 ARN_DBG((ARN_DBG_RATE,
1431 "choose rate table:ATH9K_MODE_11NA_HT40PLUS\n"));
1432 break;
1433 case ATH9K_MODE_11NG_HT20:
1434 ARN_DBG((ARN_DBG_RATE,
1435 "choose rate table:ATH9K_MODE_11NG_HT20\n"));
1436 break;
1437 case ATH9K_MODE_11NG_HT40PLUS:
1438 ARN_DBG((ARN_DBG_RATE,
1439 "choose rate table:ATH9K_MODE_11NG_HT40PLUS\n"));
1440 break;
1441 default:
1442 arn_problem("Invalid band\n");
1443 break;
1444 }
1445
1446 ARN_DBG((ARN_DBG_RATE, "Choosing rate table for mode: %d\n",
1447 ath9k_mode));
1448 return (sc->hw_rate_table[ath9k_mode]);
1449 }
1450
1451 /* Private rate contral initialization */
1452 static void
arn_rc_init(struct arn_softc * sc,struct ath_rate_priv * ath_rc_priv,struct ieee80211_node * in)1453 arn_rc_init(struct arn_softc *sc,
1454 struct ath_rate_priv *ath_rc_priv,
1455 struct ieee80211_node *in)
1456 {
1457 struct ath_rate_table *rate_table = NULL;
1458 struct ath_rateset *rateset = &ath_rc_priv->neg_rates;
1459 ieee80211com_t *ic = (ieee80211com_t *)sc;
1460 uint32_t cur_mode = ic->ic_curmode;
1461 uint8_t *ht_mcs = (uint8_t *)&ath_rc_priv->neg_ht_rates;
1462 uint8_t i, j, k, hi = 0, hthi = 0;
1463 boolean_t is_rc_ds;
1464
1465 /* FIXME: Adhoc */
1466 if ((sc->sc_ah->ah_opmode == ATH9K_M_STA) ||
1467 (sc->sc_ah->ah_opmode == ATH9K_M_IBSS)) {
1468 boolean_t is_ht = in->in_flags & IEEE80211_NODE_HT;
1469 /* 20/40 support */
1470 boolean_t is_cw_40 =
1471 in->in_htcap & IEEE80211_HTCAP_CHWIDTH40;
1472 rate_table =
1473 arn_choose_rate_table(sc, cur_mode, is_ht, is_cw_40);
1474 } else if (sc->sc_ah->ah_opmode == ATH9K_M_HOSTAP) {
1475 /* cur_rate_table would be set on init */
1476 rate_table = sc->sc_currates;
1477 }
1478
1479 if (!rate_table) {
1480 ARN_DBG((ARN_DBG_FATAL, "Rate table not initialized\n"));
1481 return;
1482 }
1483
1484 if (in->in_flags & IEEE80211_NODE_HT) {
1485 /* 2.6.30 */
1486 ath_rc_priv->ht_cap = WLAN_RC_HT_FLAG;
1487 is_rc_ds = (AR_SREV_9280_20_OR_LATER(sc->sc_ah) &&
1488 (ath9k_hw_get_eeprom(sc->sc_ah, EEP_RC_CHAIN_MASK) == 1)) ?
1489 B_FALSE: B_TRUE;
1490 if (sc->sc_ah->ah_caps.tx_chainmask != 1 && is_rc_ds) {
1491 if (sc->sc_ht_conf.rx_mcs_mask[1]) {
1492 ath_rc_priv->ht_cap |= WLAN_RC_DS_FLAG;
1493 }
1494 }
1495
1496 if (in->in_htcap & IEEE80211_HTCAP_CHWIDTH40)
1497 ath_rc_priv->ht_cap |= WLAN_RC_40_FLAG;
1498 if (in->in_htcap & IEEE80211_HTCAP_SHORTGI40)
1499 ath_rc_priv->ht_cap |= WLAN_RC_SGI_FLAG;
1500 }
1501
1502 /*
1503 * Initial rate table size. Will change depending
1504 * on the working rate set
1505 */
1506 ath_rc_priv->rate_table_size = RATE_TABLE_SIZE;
1507
1508 /* Initialize thresholds according to the global rate table */
1509 for (i = 0; i < ath_rc_priv->rate_table_size; i++) {
1510 ath_rc_priv->state[i].rssi_thres =
1511 rate_table->info[i].rssi_ack_validmin;
1512 ath_rc_priv->state[i].per = 0;
1513 }
1514
1515 /* Determine the valid rates */
1516 arn_rc_init_valid_txmask(ath_rc_priv);
1517
1518 for (i = 0; i < WLAN_RC_PHY_MAX; i++) {
1519 for (j = 0; j < MAX_TX_RATE_PHY; j++)
1520 ath_rc_priv->valid_phy_rateidx[i][j] = 0;
1521 ath_rc_priv->valid_phy_ratecnt[i] = 0;
1522 }
1523 ath_rc_priv->rc_phy_mode = (ath_rc_priv->ht_cap & WLAN_RC_40_FLAG);
1524
1525 /* Set stream capability */
1526 ath_rc_priv->single_stream =
1527 (ath_rc_priv->ht_cap & WLAN_RC_DS_FLAG) ? 0 : 1;
1528
1529 if (!rateset->rs_nrates) {
1530 /* No working rate, just initialize valid rates */
1531 hi = arn_rc_init_validrates(ath_rc_priv, rate_table,
1532 ath_rc_priv->ht_cap);
1533 } else {
1534 /* Use intersection of working rates and valid rates */
1535 hi = arn_rc_setvalid_rates(ath_rc_priv, rate_table,
1536 rateset, ath_rc_priv->ht_cap);
1537 if (ath_rc_priv->ht_cap & WLAN_RC_HT_FLAG) {
1538 hthi = arn_rc_setvalid_htrates(ath_rc_priv,
1539 rate_table,
1540 ht_mcs,
1541 ath_rc_priv->ht_cap);
1542 }
1543 hi = A_MAX(hi, hthi);
1544 }
1545
1546 ath_rc_priv->rate_table_size = hi + 1;
1547 ath_rc_priv->rate_max_phy = 0;
1548 ASSERT(ath_rc_priv->rate_table_size <= RATE_TABLE_SIZE);
1549
1550 for (i = 0, k = 0; i < WLAN_RC_PHY_MAX; i++) {
1551 for (j = 0; j < ath_rc_priv->valid_phy_ratecnt[i]; j++) {
1552 ath_rc_priv->valid_rate_index[k++] =
1553 ath_rc_priv->valid_phy_rateidx[i][j];
1554 }
1555
1556 if (!arn_rc_valid_phyrate(i, rate_table->initial_ratemax, 1) ||
1557 !ath_rc_priv->valid_phy_ratecnt[i])
1558 continue;
1559
1560 ath_rc_priv->rate_max_phy =
1561 ath_rc_priv->valid_phy_rateidx[i][j-1];
1562 }
1563 ASSERT(ath_rc_priv->rate_table_size <= RATE_TABLE_SIZE);
1564 ASSERT(k <= RATE_TABLE_SIZE);
1565
1566 ath_rc_priv->max_valid_rate = k;
1567 arn_rc_sort_validrates(rate_table, ath_rc_priv);
1568 ath_rc_priv->rate_max_phy = ath_rc_priv->valid_rate_index[k-4];
1569 sc->sc_currates = rate_table;
1570 }
1571
1572 void
arn_tx_status(struct arn_softc * sc,struct ath_buf * bf,boolean_t is_data)1573 arn_tx_status(struct arn_softc *sc, struct ath_buf *bf, boolean_t is_data)
1574 {
1575 struct ieee80211_node *in = (struct ieee80211_node *)(bf->bf_in);
1576 struct ath_node *an = ATH_NODE(in);
1577 struct ath_rate_priv *ath_rc_priv =
1578 (struct ath_rate_priv *)&an->rate_priv;
1579 struct ath_tx_info_priv *tx_info_priv =
1580 (struct ath_tx_info_priv *)&bf->tx_info_priv;
1581 int final_ts_idx, tx_status = 0, is_underrun = 0;
1582
1583 final_ts_idx = tx_info_priv->tx.ts_rateindex;
1584
1585 if (!is_data || !tx_info_priv->update_rc)
1586 return;
1587
1588 if (tx_info_priv->tx.ts_status & ATH9K_TXERR_FILT)
1589 return;
1590
1591 /*
1592 * If underrun error is seen assume it as an excessive retry only
1593 * if prefetch trigger level have reached the max (0x3f for 5416)
1594 * Adjust the long retry as if the frame was tried ATH_11N_TXMAXTRY
1595 * times. This affects how ratectrl updates PER for the failed rate.
1596 */
1597 if (tx_info_priv->tx.ts_flags &
1598 (ATH9K_TX_DATA_UNDERRUN | ATH9K_TX_DELIM_UNDERRUN) &&
1599 ((sc->sc_ah->ah_txTrigLevel) >= ath_rc_priv->tx_triglevel_max)) {
1600 tx_status = 1;
1601 is_underrun = 1;
1602 }
1603
1604 if ((tx_info_priv->tx.ts_status & ATH9K_TXERR_XRETRY) ||
1605 (tx_info_priv->tx.ts_status & ATH9K_TXERR_FIFO))
1606 tx_status = 1;
1607
1608 ath_rc_tx_status(sc,
1609 ath_rc_priv,
1610 bf,
1611 final_ts_idx,
1612 tx_status,
1613 (is_underrun) ? ATH_11N_TXMAXTRY : tx_info_priv->tx.ts_longretry);
1614 }
1615
1616 void
arn_get_rate(struct arn_softc * sc,struct ath_buf * bf,struct ieee80211_frame * wh)1617 arn_get_rate(struct arn_softc *sc, struct ath_buf *bf,
1618 struct ieee80211_frame *wh)
1619 {
1620 struct ieee80211_node *in = (struct ieee80211_node *)(bf->bf_in);
1621 struct ath_node *an = ATH_NODE(in);
1622 struct ath_rate_priv *ath_rc_priv =
1623 (struct ath_rate_priv *)&an->rate_priv;
1624 struct ath_rate_table *rt = sc->sc_currates;
1625 ieee80211com_t *ic = (ieee80211com_t *)sc;
1626 int is_probe = 0;
1627 uint8_t i;
1628
1629 /* lowest rate for management and multicast/broadcast frames */
1630 if (!IEEE80211_IS_DATA(wh) || IEEE80211_IS_MULTICAST(wh->i_addr1)) {
1631 bf->rates[0].idx = 0; /* xxx Fix me */
1632 bf->rates[0].count =
1633 IEEE80211_IS_MULTICAST(wh->i_addr1) ?
1634 1 : ATH_MGT_TXMAXTRY;
1635 return;
1636 }
1637
1638 /* Find tx rate for unicast frames */
1639 arn_rc_ratefind(sc, ath_rc_priv, bf, ATH_11N_TXMAXTRY, 4,
1640 &is_probe, B_FALSE);
1641
1642 /* Temporary workaround for 'dladm show-wifi' */
1643 for (i = 0; i < in->in_rates.ir_nrates; i++) {
1644 ARN_DBG((ARN_DBG_RATE, "arn: arn_get_rate(): "
1645 "in->in_rates.ir_rates[%d] = %d,"
1646 "bf->rates[0].idx = %d,"
1647 "rt->info[bf->rates[0].idx].dot11rate = %d\n",
1648 i,
1649 in->in_rates.ir_rates[i],
1650 bf->rates[0].idx,
1651 rt->info[bf->rates[0].idx].dot11rate));
1652 if (rt->info[bf->rates[0].idx].dot11rate ==
1653 in->in_rates.ir_rates[i])
1654 break;
1655 }
1656 in->in_txrate = i;
1657 if (ic->ic_curmode == IEEE80211_MODE_11NA ||
1658 ic->ic_curmode == IEEE80211_MODE_11NG)
1659 in->in_txrate = in->in_rates.ir_nrates - 1;
1660
1661 /* Check if aggregation has to be enabled for this tid */
1662 #ifdef ARN_TX_AGGREGATION
1663 /* should check if enabled, not supported */
1664 if (sc->sc_ht_conf.ht_supported) {
1665 if (ieee80211_is_data_qos(wh)) {
1666 uint8_t *qc, tid;
1667 struct ath_node *an;
1668 struct ieee80211_qosframe *qwh = NULL;
1669
1670 qwh = (struct ieee80211_qosframe *)wh;
1671 tid = qc[0] & 0xf;
1672 an = (struct ath_node *)sta->drv_priv;
1673
1674 if (arn_tx_aggr_check(sc, an, tid))
1675 /* to do */
1676 }
1677 }
1678 #endif /* ARN_TX_AGGREGATION */
1679 }
1680
1681 void
arn_rate_init(struct arn_softc * sc,struct ieee80211_node * in)1682 arn_rate_init(struct arn_softc *sc, struct ieee80211_node *in)
1683 {
1684 int i;
1685 struct ath_node *an = ATH_NODE(in);
1686 struct ath_rate_priv *ath_rc_priv =
1687 (struct ath_rate_priv *)&an->rate_priv;
1688
1689 /* should be moved to arn_node_init later */
1690 ath_rc_priv->rssi_down_time =
1691 drv_hztousec(ddi_get_lbolt())/1000; /* mesc */
1692 ath_rc_priv->tx_triglevel_max =
1693 sc->sc_ah->ah_caps.tx_triglevel_max;
1694
1695 for (i = 0; i < in->in_rates.ir_nrates; i++) {
1696 ath_rc_priv->neg_rates.rs_rates[i] = in->in_rates.ir_rates[i];
1697 ARN_DBG((ARN_DBG_RATE, "arn:arn_rate_init()"
1698 "ath_rc_priv->neg_rates.rs_rates[%d] = %d\n",
1699 i, ath_rc_priv->neg_rates.rs_rates[i]));
1700 }
1701 ath_rc_priv->neg_rates.rs_nrates = in->in_rates.ir_nrates;
1702
1703 /* negotiated ht rate set ??? */
1704 if (in->in_flags & IEEE80211_NODE_HT) {
1705 for (i = 0; i < in->in_htrates.rs_nrates; i++) {
1706 ath_rc_priv->neg_ht_rates.rs_rates[i] =
1707 in->in_htrates.rs_rates[i];
1708 ARN_DBG((ARN_DBG_RATE, "arn:arn_rate_init()"
1709 "ath_rc_priv->neg_ht_rates.rs_rates[%d] = %d\n",
1710 i, ath_rc_priv->neg_ht_rates.rs_rates[i]));
1711 }
1712 ath_rc_priv->neg_ht_rates.rs_nrates = in->in_htrates.rs_nrates;
1713
1714 /* arn_update_chainmask(sc); */
1715 }
1716
1717 #ifdef ARN_TX_AGGREGATION
1718 /* Temply put the following ht info init here */
1719 uint8_t ampdu_factor, ampdu_density;
1720 if (sc->sc_ht_conf.ht_support &&
1721 (in->in_htcap_ie != NULL) &&
1722 (in->in_htcap != 0) &&
1723 (in->in_htparam != 0)) {
1724 ampdu_factor = in->in_htparam & HT_RX_AMPDU_FACTOR_MSK;
1725 ampdu_density = (in->in_htparam & HT_MPDU_DENSITY_MSK) >>
1726 HT_MPDU_DENSITY_POS;
1727 an->maxampdu =
1728 1 << (IEEE80211_HTCAP_MAXRXAMPDU_FACTOR + ampdu_factor);
1729 an->mpdudensity = parse_mpdudensity(ampdu_density);
1730 }
1731 /* end */
1732 #endif /* ARN_TX_AGGREGATION */
1733
1734 arn_rc_init(sc, ath_rc_priv, in);
1735 }
1736
1737 static void
arn_setup_rate_table(struct arn_softc * sc,struct ath_rate_table * rate_table)1738 arn_setup_rate_table(struct arn_softc *sc,
1739 struct ath_rate_table *rate_table)
1740 {
1741 int i;
1742
1743 for (i = 0; i < 256; i++)
1744 rate_table->rateCodeToIndex[i] = (uint8_t)-1;
1745
1746 for (i = 0; i < rate_table->rate_cnt; i++) {
1747 uint8_t code = rate_table->info[i].ratecode;
1748 uint8_t cix = rate_table->info[i].ctrl_rate;
1749 uint8_t sh = rate_table->info[i].short_preamble;
1750
1751 rate_table->rateCodeToIndex[code] = (int)i;
1752 rate_table->rateCodeToIndex[code | sh] = (int)i;
1753
1754 rate_table->info[i].lpAckDuration =
1755 ath9k_hw_computetxtime(sc->sc_ah, rate_table,
1756 WLAN_CTRL_FRAME_SIZE,
1757 cix,
1758 B_FALSE);
1759 rate_table->info[i].spAckDuration =
1760 ath9k_hw_computetxtime(sc->sc_ah, rate_table,
1761 WLAN_CTRL_FRAME_SIZE,
1762 cix,
1763 B_TRUE);
1764 }
1765 }
1766
1767 void
arn_rate_attach(struct arn_softc * sc)1768 arn_rate_attach(struct arn_softc *sc)
1769 {
1770 sc->hw_rate_table[ATH9K_MODE_11B] =
1771 &ar5416_11b_ratetable;
1772 sc->hw_rate_table[ATH9K_MODE_11A] =
1773 &ar5416_11a_ratetable;
1774 sc->hw_rate_table[ATH9K_MODE_11G] =
1775 &ar5416_11g_ratetable;
1776 sc->hw_rate_table[ATH9K_MODE_11NA_HT20] =
1777 &ar5416_11na_ratetable;
1778 sc->hw_rate_table[ATH9K_MODE_11NG_HT20] =
1779 &ar5416_11ng_ratetable;
1780 sc->hw_rate_table[ATH9K_MODE_11NA_HT40PLUS] =
1781 &ar5416_11na_ratetable;
1782 sc->hw_rate_table[ATH9K_MODE_11NA_HT40MINUS] =
1783 &ar5416_11na_ratetable;
1784 sc->hw_rate_table[ATH9K_MODE_11NG_HT40PLUS] =
1785 &ar5416_11ng_ratetable;
1786 sc->hw_rate_table[ATH9K_MODE_11NG_HT40MINUS] =
1787 &ar5416_11ng_ratetable;
1788
1789 arn_setup_rate_table(sc, &ar5416_11b_ratetable);
1790 arn_setup_rate_table(sc, &ar5416_11a_ratetable);
1791 arn_setup_rate_table(sc, &ar5416_11g_ratetable);
1792 arn_setup_rate_table(sc, &ar5416_11na_ratetable);
1793 arn_setup_rate_table(sc, &ar5416_11ng_ratetable);
1794 }
1795
1796 #ifdef ARN_LEGACY_RC
1797 void
arn_rate_update(struct arn_softc * sc,struct ieee80211_node * in,int32_t rate)1798 arn_rate_update(struct arn_softc *sc, struct ieee80211_node *in, int32_t rate)
1799 {
1800 struct ath_node *an = ATH_NODE(in);
1801 const struct ath_rate_table *rt = sc->sc_currates;
1802 uint8_t rix;
1803
1804 ASSERT(rt != NULL);
1805
1806 in->in_txrate = rate;
1807
1808 /* management/control frames always go at the lowest speed */
1809 an->an_tx_mgtrate = rt->info[0].ratecode;
1810 an->an_tx_mgtratesp = an->an_tx_mgtrate | rt->info[0].short_preamble;
1811
1812 ARN_DBG((ARN_DBG_RATE, "arn: arn_rate_update(): "
1813 "mgtrate=%d mgtratesp=%d\n",
1814 an->an_tx_mgtrate, an->an_tx_mgtratesp));
1815
1816 /*
1817 * Before associating a node has no rate set setup
1818 * so we can't calculate any transmit codes to use.
1819 * This is ok since we should never be sending anything
1820 * but management frames and those always go at the
1821 * lowest hardware rate.
1822 */
1823 if (in->in_rates.ir_nrates == 0)
1824 goto done;
1825 an->an_tx_rix0 = sc->asc_rixmap[
1826 in->in_rates.ir_rates[rate] & IEEE80211_RATE_VAL];
1827 an->an_tx_rate0 = rt->info[an->an_tx_rix0].ratecode;
1828 an->an_tx_rate0sp = an->an_tx_rate0 |
1829 rt->info[an->an_tx_rix0].short_preamble;
1830 if (sc->sc_mrretry) {
1831 /*
1832 * Hardware supports multi-rate retry; setup two
1833 * step-down retry rates and make the lowest rate
1834 * be the ``last chance''. We use 4, 2, 2, 2 tries
1835 * respectively (4 is set here, the rest are fixed
1836 * in the xmit routine).
1837 */
1838 an->an_tx_try0 = 1 + 3; /* 4 tries at rate 0 */
1839 if (--rate >= 0) {
1840 rix = sc->asc_rixmap[
1841 in->in_rates.ir_rates[rate]&IEEE80211_RATE_VAL];
1842 an->an_tx_rate1 = rt->info[rix].ratecode;
1843 an->an_tx_rate1sp = an->an_tx_rate1 |
1844 rt->info[rix].short_preamble;
1845 } else {
1846 an->an_tx_rate1 = an->an_tx_rate1sp = 0;
1847 }
1848 if (--rate >= 0) {
1849 rix = sc->asc_rixmap[
1850 in->in_rates.ir_rates[rate]&IEEE80211_RATE_VAL];
1851 an->an_tx_rate2 = rt->info[rix].ratecode;
1852 an->an_tx_rate2sp = an->an_tx_rate2 |
1853 rt->info[rix].short_preamble;
1854 } else {
1855 an->an_tx_rate2 = an->an_tx_rate2sp = 0;
1856 }
1857 if (rate > 0) {
1858 an->an_tx_rate3 = rt->info[0].ratecode;
1859 an->an_tx_rate3sp =
1860 an->an_tx_mgtrate | rt->info[0].short_preamble;
1861 } else {
1862 an->an_tx_rate3 = an->an_tx_rate3sp = 0;
1863 }
1864 } else {
1865 an->an_tx_try0 = ATH_TXMAXTRY; /* max tries at rate 0 */
1866 an->an_tx_rate1 = an->an_tx_rate1sp = 0;
1867 an->an_tx_rate2 = an->an_tx_rate2sp = 0;
1868 an->an_tx_rate3 = an->an_tx_rate3sp = 0;
1869 }
1870 done:
1871 an->an_tx_ok = an->an_tx_err = an->an_tx_retr = an->an_tx_upper = 0;
1872 }
1873
1874 /*
1875 * Set the starting transmit rate for a node.
1876 */
1877 void
arn_rate_ctl_start(struct arn_softc * sc,struct ieee80211_node * in)1878 arn_rate_ctl_start(struct arn_softc *sc, struct ieee80211_node *in)
1879 {
1880 ieee80211com_t *ic = (ieee80211com_t *)sc;
1881 int32_t srate;
1882
1883 if (ic->ic_fixed_rate == IEEE80211_FIXED_RATE_NONE) {
1884 /*
1885 * No fixed rate is requested. For 11b start with
1886 * the highest negotiated rate; otherwise, for 11g
1887 * and 11a, we start "in the middle" at 24Mb or 36Mb.
1888 */
1889 srate = in->in_rates.ir_nrates - 1;
1890 if (sc->sc_curmode != IEEE80211_MODE_11B) {
1891 /*
1892 * Scan the negotiated rate set to find the
1893 * closest rate.
1894 */
1895 /* NB: the rate set is assumed sorted */
1896 for (; srate >= 0 && IEEE80211_RATE(srate) > 72;
1897 srate--) {}
1898 }
1899 } else {
1900 /*
1901 * A fixed rate is to be used; We know the rate is
1902 * there because the rate set is checked when the
1903 * station associates.
1904 */
1905 /* NB: the rate set is assumed sorted */
1906 srate = in->in_rates.ir_nrates - 1;
1907 for (; srate >= 0 && IEEE80211_RATE(srate) != ic->ic_fixed_rate;
1908 srate--) {}
1909 }
1910
1911 ARN_DBG((ARN_DBG_RATE, "arn: arn_rate_ctl_start(): "
1912 "srate=%d rate=%d\n", srate, IEEE80211_RATE(srate)));
1913
1914 arn_rate_update(sc, in, srate);
1915 }
1916
1917 void
arn_rate_cb(void * arg,struct ieee80211_node * in)1918 arn_rate_cb(void *arg, struct ieee80211_node *in)
1919 {
1920 arn_rate_update((struct arn_softc *)arg, in, 0);
1921 }
1922 #endif /* ARN_LEGACY_RC */
1923 /*
1924 * Reset the rate control state for each 802.11 state transition.
1925 */
1926 void
arn_rate_ctl_reset(struct arn_softc * sc,enum ieee80211_state state)1927 arn_rate_ctl_reset(struct arn_softc *sc, enum ieee80211_state state)
1928 {
1929 ieee80211com_t *ic = (ieee80211com_t *)sc;
1930 struct ieee80211_node *in;
1931
1932 if (ic->ic_opmode == IEEE80211_M_STA) {
1933 /*
1934 * Reset local xmit state; this is really only
1935 * meaningful when operating in station mode.
1936 */
1937 in = (struct ieee80211_node *)ic->ic_bss;
1938
1939 #ifdef ARN_LEGACY_RC
1940 if (state == IEEE80211_S_RUN) {
1941 arn_rate_ctl_start(sc, in);
1942 } else {
1943 arn_rate_update(sc, in, 0);
1944 }
1945 #else
1946 if (state == IEEE80211_S_RUN)
1947 arn_rate_init(sc, in);
1948 #endif
1949 /* LINTED E_NOP_ELSE_STMT */
1950 } else {
1951 /*
1952 * When operating as a station the node table holds
1953 * the AP's that were discovered during scanning.
1954 * For any other operating mode we want to reset the
1955 * tx rate state of each node.
1956 */
1957 #ifdef ARN_LEGACY_RC
1958 ieee80211_iterate_nodes(&ic->ic_sta, arn_rate_cb, sc);
1959 #endif
1960 }
1961 }
1962
1963 #ifdef ARN_LEGACY_RC
1964 /*
1965 * Examine and potentially adjust the transmit rate.
1966 */
1967 void
arn_rate_ctl(void * arg,struct ieee80211_node * in)1968 arn_rate_ctl(void *arg, struct ieee80211_node *in)
1969 {
1970 struct arn_softc *sc = arg;
1971 struct ath_node *an = ATH_NODE(in);
1972 struct ieee80211_rateset *rs = &in->in_rates;
1973 int32_t mod = 0, nrate, enough;
1974
1975 /*
1976 * Rate control(very primitive version).
1977 */
1978 sc->sc_stats.ast_rate_calls++;
1979
1980 enough = (an->an_tx_ok + an->an_tx_err >= 10);
1981
1982 /* no packet reached -> down */
1983 if (an->an_tx_err > 0 && an->an_tx_ok == 0)
1984 mod = -1;
1985
1986 /* all packets needs retry in average -> down */
1987 if (enough && an->an_tx_ok < an->an_tx_retr)
1988 mod = -1;
1989
1990 /* no error and less than 10% of packets needs retry -> up */
1991 if (enough && an->an_tx_err == 0 && an->an_tx_ok > an->an_tx_retr * 10)
1992 mod = 1;
1993
1994 nrate = in->in_txrate;
1995 switch (mod) {
1996 case 0:
1997 if (enough && an->an_tx_upper > 0)
1998 an->an_tx_upper--;
1999 break;
2000 case -1:
2001 if (nrate > 0) {
2002 nrate--;
2003 sc->sc_stats.ast_rate_drop++;
2004 }
2005 an->an_tx_upper = 0;
2006 break;
2007 case 1:
2008 if (++an->an_tx_upper < 10)
2009 break;
2010 an->an_tx_upper = 0;
2011 if (nrate + 1 < rs->ir_nrates) {
2012 nrate++;
2013 sc->sc_stats.ast_rate_raise++;
2014 }
2015 break;
2016 }
2017
2018 if (nrate != in->in_txrate) {
2019 ARN_DBG((ARN_DBG_RATE, "arn: arn_rate_ctl(): %dM -> %dM "
2020 "(%d ok, %d err, %d retr)\n",
2021 (rs->ir_rates[in->in_txrate] & IEEE80211_RATE_VAL) / 2,
2022 (rs->ir_rates[nrate] & IEEE80211_RATE_VAL) / 2,
2023 an->an_tx_ok, an->an_tx_err, an->an_tx_retr));
2024 arn_rate_update(sc, in, nrate);
2025 } else if (enough)
2026 an->an_tx_ok = an->an_tx_err = an->an_tx_retr = 0;
2027 }
2028 #endif /* ARN_LEGACY_RC */
2029