xref: /illumos-gate/usr/src/uts/common/inet/udp/udp.c (revision 437220cd296f6d8b6654d6d52508b40b1e2d1ac7)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 /*
22  * Copyright 2007 Sun Microsystems, Inc.  All rights reserved.
23  * Use is subject to license terms.
24  */
25 /* Copyright (c) 1990 Mentat Inc. */
26 
27 #pragma ident	"%Z%%M%	%I%	%E% SMI"
28 
29 const char udp_version[] = "%Z%%M%	%I%	%E% SMI";
30 
31 #include <sys/types.h>
32 #include <sys/stream.h>
33 #include <sys/dlpi.h>
34 #include <sys/pattr.h>
35 #include <sys/stropts.h>
36 #include <sys/strlog.h>
37 #include <sys/strsun.h>
38 #include <sys/time.h>
39 #define	_SUN_TPI_VERSION 2
40 #include <sys/tihdr.h>
41 #include <sys/timod.h>
42 #include <sys/ddi.h>
43 #include <sys/sunddi.h>
44 #include <sys/strsubr.h>
45 #include <sys/suntpi.h>
46 #include <sys/xti_inet.h>
47 #include <sys/cmn_err.h>
48 #include <sys/kmem.h>
49 #include <sys/policy.h>
50 #include <sys/ucred.h>
51 #include <sys/zone.h>
52 
53 #include <sys/socket.h>
54 #include <sys/sockio.h>
55 #include <sys/vtrace.h>
56 #include <sys/sdt.h>
57 #include <sys/debug.h>
58 #include <sys/isa_defs.h>
59 #include <sys/random.h>
60 #include <netinet/in.h>
61 #include <netinet/ip6.h>
62 #include <netinet/icmp6.h>
63 #include <netinet/udp.h>
64 #include <net/if.h>
65 #include <net/route.h>
66 
67 #include <inet/common.h>
68 #include <inet/ip.h>
69 #include <inet/ip_impl.h>
70 #include <inet/ip6.h>
71 #include <inet/ip_ire.h>
72 #include <inet/ip_if.h>
73 #include <inet/ip_multi.h>
74 #include <inet/ip_ndp.h>
75 #include <inet/mi.h>
76 #include <inet/mib2.h>
77 #include <inet/nd.h>
78 #include <inet/optcom.h>
79 #include <inet/snmpcom.h>
80 #include <inet/kstatcom.h>
81 #include <inet/udp_impl.h>
82 #include <inet/ipclassifier.h>
83 #include <inet/ipsec_impl.h>
84 #include <inet/ipp_common.h>
85 
86 /*
87  * The ipsec_info.h header file is here since it has the definition for the
88  * M_CTL message types used by IP to convey information to the ULP. The
89  * ipsec_info.h needs the pfkeyv2.h, hence the latter's presence.
90  */
91 #include <net/pfkeyv2.h>
92 #include <inet/ipsec_info.h>
93 
94 #include <sys/tsol/label.h>
95 #include <sys/tsol/tnet.h>
96 #include <rpc/pmap_prot.h>
97 
98 /*
99  * Synchronization notes:
100  *
101  * UDP uses a combination of its internal perimeter, a global lock and
102  * a set of bind hash locks to protect its data structures.  Please see
103  * the note above udp_mode_assertions for details about the internal
104  * perimeter.
105  *
106  * When a UDP endpoint is bound to a local port, it is inserted into
107  * a bind hash list.  The list consists of an array of udp_fanout_t buckets.
108  * The size of the array is controlled by the udp_bind_fanout_size variable.
109  * This variable can be changed in /etc/system if the default value is
110  * not large enough.  Each bind hash bucket is protected by a per bucket
111  * lock.  It protects the udp_bind_hash and udp_ptpbhn fields in the udp_t
112  * structure.  An UDP endpoint is removed from the bind hash list only
113  * when it is being unbound or being closed.  The per bucket lock also
114  * protects a UDP endpoint's state changes.
115  *
116  * Plumbing notes:
117  *
118  * Both udp and ip are merged, but the streams plumbing is kept unchanged
119  * in that udp is always pushed atop /dev/ip.  This is done to preserve
120  * backwards compatibility for certain applications which rely on such
121  * plumbing geometry to do things such as issuing I_POP on the stream
122  * in order to obtain direct access to /dev/ip, etc.
123  *
124  * All UDP processings happen in the /dev/ip instance; the udp module
125  * instance does not possess any state about the endpoint, and merely
126  * acts as a dummy module whose presence is to keep the streams plumbing
127  * appearance unchanged.  At open time /dev/ip allocates a conn_t that
128  * happens to embed a udp_t.  This stays dormant until the time udp is
129  * pushed, which indicates to /dev/ip that it must convert itself from
130  * an IP to a UDP endpoint.
131  *
132  * We only allow for the following plumbing cases:
133  *
134  * Normal:
135  *	/dev/ip is first opened and later udp is pushed directly on top.
136  *	This is the default action that happens when a udp socket or
137  *	/dev/udp is opened.  The conn_t created by /dev/ip instance is
138  *	now shared and is marked with IPCL_UDP.
139  *
140  * SNMP-only:
141  *	udp is pushed on top of a module other than /dev/ip.  When this
142  *	happens it will support only SNMP semantics.  A new conn_t is
143  *	allocated and marked with IPCL_UDPMOD.
144  *
145  * The above cases imply that we don't support any intermediate module to
146  * reside in between /dev/ip and udp -- in fact, we never supported such
147  * scenario in the past as the inter-layer communication semantics have
148  * always been private.  Also note that the normal case allows for SNMP
149  * requests to be processed in addition to the rest of UDP operations.
150  *
151  * The normal case plumbing is depicted by the following diagram:
152  *
153  *	+---------------+---------------+
154  *	|		|		| udp
155  *	|     udp_wq	|    udp_rq	|
156  *	|		|    UDP_RD	|
157  *	|		|		|
158  *	+---------------+---------------+
159  *		|		^
160  *		v		|
161  *	+---------------+---------------+
162  *	|		|		| /dev/ip
163  *	|     ip_wq	|     ip_rq	| conn_t
164  *	|     UDP_WR	|		|
165  *	|		|		|
166  *	+---------------+---------------+
167  *
168  * Messages arriving at udp_wq from above will end up in ip_wq before
169  * it gets processed, i.e. udp write entry points will advance udp_wq
170  * and use its q_next value as ip_wq in order to use the conn_t that
171  * is stored in its q_ptr.  Likewise, messages generated by ip to the
172  * module above udp will appear as if they are originated from udp_rq,
173  * i.e. putnext() calls to the module above udp is done using the
174  * udp_rq instead of ip_rq in order to avoid udp_rput() which does
175  * nothing more than calling putnext().
176  *
177  * The above implies the following rule of thumb:
178  *
179  *   1. udp_t is obtained from conn_t, which is created by the /dev/ip
180  *	instance and is stored in q_ptr of both ip_wq and ip_rq.  There
181  *	is no direct reference to conn_t from either udp_wq or udp_rq.
182  *
183  *   2. Write-side entry points of udp can obtain the conn_t via the
184  *	Q_TO_CONN() macro, using the queue value obtain from UDP_WR().
185  *
186  *   3. While in /dev/ip context, putnext() to the module above udp can
187  *	be done by supplying the queue value obtained from UDP_RD().
188  *
189  */
190 
191 static queue_t *UDP_WR(queue_t *);
192 static queue_t *UDP_RD(queue_t *);
193 
194 struct kmem_cache *udp_cache;
195 
196 /* For /etc/system control */
197 uint_t udp_bind_fanout_size = UDP_BIND_FANOUT_SIZE;
198 
199 #define	NDD_TOO_QUICK_MSG \
200 	"ndd get info rate too high for non-privileged users, try again " \
201 	"later.\n"
202 #define	NDD_OUT_OF_BUF_MSG	"<< Out of buffer >>\n"
203 
204 /* Option processing attrs */
205 typedef struct udpattrs_s {
206 	union {
207 		ip6_pkt_t	*udpattr_ipp6;	/* For V6 */
208 		ip4_pkt_t 	*udpattr_ipp4;	/* For V4 */
209 	} udpattr_ippu;
210 #define	udpattr_ipp6 udpattr_ippu.udpattr_ipp6
211 #define	udpattr_ipp4 udpattr_ippu.udpattr_ipp4
212 	mblk_t		*udpattr_mb;
213 	boolean_t	udpattr_credset;
214 } udpattrs_t;
215 
216 static void	udp_addr_req(queue_t *q, mblk_t *mp);
217 static void	udp_bind(queue_t *q, mblk_t *mp);
218 static void	udp_bind_hash_insert(udp_fanout_t *uf, udp_t *udp);
219 static void	udp_bind_hash_remove(udp_t *udp, boolean_t caller_holds_lock);
220 static int	udp_build_hdrs(queue_t *q, udp_t *udp);
221 static void	udp_capability_req(queue_t *q, mblk_t *mp);
222 static int	udp_close(queue_t *q);
223 static void	udp_connect(queue_t *q, mblk_t *mp);
224 static void	udp_disconnect(queue_t *q, mblk_t *mp);
225 static void	udp_err_ack(queue_t *q, mblk_t *mp, t_scalar_t t_error,
226 		    int sys_error);
227 static void	udp_err_ack_prim(queue_t *q, mblk_t *mp, int primitive,
228 		    t_scalar_t tlierr, int unixerr);
229 static int	udp_extra_priv_ports_get(queue_t *q, mblk_t *mp, caddr_t cp,
230 		    cred_t *cr);
231 static int	udp_extra_priv_ports_add(queue_t *q, mblk_t *mp,
232 		    char *value, caddr_t cp, cred_t *cr);
233 static int	udp_extra_priv_ports_del(queue_t *q, mblk_t *mp,
234 		    char *value, caddr_t cp, cred_t *cr);
235 static void	udp_icmp_error(queue_t *q, mblk_t *mp);
236 static void	udp_icmp_error_ipv6(queue_t *q, mblk_t *mp);
237 static void	udp_info_req(queue_t *q, mblk_t *mp);
238 static mblk_t	*udp_ip_bind_mp(udp_t *udp, t_scalar_t bind_prim,
239 		    t_scalar_t addr_length);
240 static int	udp_open(queue_t *q, dev_t *devp, int flag, int sflag,
241 		    cred_t *credp);
242 static  int	udp_unitdata_opt_process(queue_t *q, mblk_t *mp,
243 		    int *errorp, udpattrs_t *udpattrs);
244 static boolean_t udp_opt_allow_udr_set(t_scalar_t level, t_scalar_t name);
245 static int	udp_param_get(queue_t *q, mblk_t *mp, caddr_t cp, cred_t *cr);
246 static boolean_t udp_param_register(IDP *ndp, udpparam_t *udppa, int cnt);
247 static int	udp_param_set(queue_t *q, mblk_t *mp, char *value, caddr_t cp,
248 		    cred_t *cr);
249 static void	udp_report_item(mblk_t *mp, udp_t *udp);
250 static void	udp_rput(queue_t *q, mblk_t *mp);
251 static void	udp_rput_other(queue_t *, mblk_t *);
252 static int	udp_rinfop(queue_t *q, infod_t *dp);
253 static int	udp_rrw(queue_t *q, struiod_t *dp);
254 static	void	udp_rput_bind_ack(queue_t *q, mblk_t *mp);
255 static int	udp_status_report(queue_t *q, mblk_t *mp, caddr_t cp,
256 		    cred_t *cr);
257 static void	udp_send_data(udp_t *, queue_t *, mblk_t *, ipha_t *);
258 static void	udp_ud_err(queue_t *q, mblk_t *mp, uchar_t *destaddr,
259 		    t_scalar_t destlen, t_scalar_t err);
260 static void	udp_unbind(queue_t *q, mblk_t *mp);
261 static in_port_t udp_update_next_port(udp_t *udp, in_port_t port,
262     boolean_t random);
263 static void	udp_wput(queue_t *q, mblk_t *mp);
264 static mblk_t	*udp_output_v4(conn_t *, mblk_t *, ipaddr_t, uint16_t, uint_t,
265 		    int *, boolean_t);
266 static mblk_t	*udp_output_v6(conn_t *connp, mblk_t *mp, sin6_t *sin6,
267 		    int *error);
268 static void	udp_wput_other(queue_t *q, mblk_t *mp);
269 static void	udp_wput_iocdata(queue_t *q, mblk_t *mp);
270 static void	udp_output(conn_t *connp, mblk_t *mp, struct sockaddr *addr,
271 		    socklen_t addrlen);
272 static size_t	udp_set_rcv_hiwat(udp_t *udp, size_t size);
273 
274 static void	*udp_stack_init(netstackid_t stackid, netstack_t *ns);
275 static void	udp_stack_fini(netstackid_t stackid, void *arg);
276 
277 static void	*udp_kstat_init(netstackid_t stackid);
278 static void	udp_kstat_fini(netstackid_t stackid, kstat_t *ksp);
279 static void	*udp_kstat2_init(netstackid_t, udp_stat_t *);
280 static void	udp_kstat2_fini(netstackid_t, kstat_t *);
281 static int	udp_kstat_update(kstat_t *kp, int rw);
282 static void	udp_input_wrapper(void *arg, mblk_t *mp, void *arg2);
283 static void	udp_rput_other_wrapper(void *arg, mblk_t *mp, void *arg2);
284 static void	udp_wput_other_wrapper(void *arg, mblk_t *mp, void *arg2);
285 static void	udp_resume_bind_cb(void *arg, mblk_t *mp, void *arg2);
286 
287 static void	udp_rcv_enqueue(queue_t *q, udp_t *udp, mblk_t *mp,
288 		    uint_t pkt_len);
289 static void	udp_rcv_drain(queue_t *q, udp_t *udp, boolean_t closing);
290 static void	udp_enter(conn_t *, mblk_t *, sqproc_t, uint8_t);
291 static void	udp_exit(conn_t *);
292 static void	udp_become_writer(conn_t *, mblk_t *, sqproc_t, uint8_t);
293 #ifdef DEBUG
294 static void	udp_mode_assertions(udp_t *, int);
295 #endif /* DEBUG */
296 
297 major_t UDP6_MAJ;
298 #define	UDP6 "udp6"
299 
300 #define	UDP_RECV_HIWATER	(56 * 1024)
301 #define	UDP_RECV_LOWATER	128
302 #define	UDP_XMIT_HIWATER	(56 * 1024)
303 #define	UDP_XMIT_LOWATER	1024
304 
305 static struct module_info udp_info =  {
306 	UDP_MOD_ID, UDP_MOD_NAME, 1, INFPSZ, UDP_RECV_HIWATER, UDP_RECV_LOWATER
307 };
308 
309 static struct qinit udp_rinit = {
310 	(pfi_t)udp_rput, NULL, udp_open, udp_close, NULL,
311 	&udp_info, NULL, udp_rrw, udp_rinfop, STRUIOT_STANDARD
312 };
313 
314 static struct qinit udp_winit = {
315 	(pfi_t)udp_wput, NULL, NULL, NULL, NULL,
316 	&udp_info, NULL, NULL, NULL, STRUIOT_NONE
317 };
318 
319 /* Support for just SNMP if UDP is not pushed directly over device IP */
320 struct qinit udp_snmp_rinit = {
321 	(pfi_t)putnext, NULL, udp_open, ip_snmpmod_close, NULL,
322 	&udp_info, NULL, NULL, NULL, STRUIOT_NONE
323 };
324 
325 struct qinit udp_snmp_winit = {
326 	(pfi_t)ip_snmpmod_wput, NULL, udp_open, ip_snmpmod_close, NULL,
327 	&udp_info, NULL, NULL, NULL, STRUIOT_NONE
328 };
329 
330 struct streamtab udpinfo = {
331 	&udp_rinit, &udp_winit
332 };
333 
334 static	sin_t	sin_null;	/* Zero address for quick clears */
335 static	sin6_t	sin6_null;	/* Zero address for quick clears */
336 
337 #define	UDP_MAXPACKET_IPV4 (IP_MAXPACKET - UDPH_SIZE - IP_SIMPLE_HDR_LENGTH)
338 
339 /* Default structure copied into T_INFO_ACK messages */
340 static struct T_info_ack udp_g_t_info_ack_ipv4 = {
341 	T_INFO_ACK,
342 	UDP_MAXPACKET_IPV4,	/* TSDU_size. Excl. headers */
343 	T_INVALID,	/* ETSU_size.  udp does not support expedited data. */
344 	T_INVALID,	/* CDATA_size. udp does not support connect data. */
345 	T_INVALID,	/* DDATA_size. udp does not support disconnect data. */
346 	sizeof (sin_t),	/* ADDR_size. */
347 	0,		/* OPT_size - not initialized here */
348 	UDP_MAXPACKET_IPV4,	/* TIDU_size.  Excl. headers */
349 	T_CLTS,		/* SERV_type.  udp supports connection-less. */
350 	TS_UNBND,	/* CURRENT_state.  This is set from udp_state. */
351 	(XPG4_1|SENDZERO) /* PROVIDER_flag */
352 };
353 
354 #define	UDP_MAXPACKET_IPV6 (IP_MAXPACKET - UDPH_SIZE - IPV6_HDR_LEN)
355 
356 static	struct T_info_ack udp_g_t_info_ack_ipv6 = {
357 	T_INFO_ACK,
358 	UDP_MAXPACKET_IPV6,	/* TSDU_size.  Excl. headers */
359 	T_INVALID,	/* ETSU_size.  udp does not support expedited data. */
360 	T_INVALID,	/* CDATA_size. udp does not support connect data. */
361 	T_INVALID,	/* DDATA_size. udp does not support disconnect data. */
362 	sizeof (sin6_t), /* ADDR_size. */
363 	0,		/* OPT_size - not initialized here */
364 	UDP_MAXPACKET_IPV6,	/* TIDU_size. Excl. headers */
365 	T_CLTS,		/* SERV_type.  udp supports connection-less. */
366 	TS_UNBND,	/* CURRENT_state.  This is set from udp_state. */
367 	(XPG4_1|SENDZERO) /* PROVIDER_flag */
368 };
369 
370 /* largest UDP port number */
371 #define	UDP_MAX_PORT	65535
372 
373 /*
374  * Table of ND variables supported by udp.  These are loaded into us_nd
375  * in udp_open.
376  * All of these are alterable, within the min/max values given, at run time.
377  */
378 /* BEGIN CSTYLED */
379 udpparam_t udp_param_arr[] = {
380  /*min		max		value		name */
381  { 0L,		256,		32,		"udp_wroff_extra" },
382  { 1L,		255,		255,		"udp_ipv4_ttl" },
383  { 0,		IPV6_MAX_HOPS,	IPV6_DEFAULT_HOPS, "udp_ipv6_hoplimit"},
384  { 1024,	(32 * 1024),	1024,		"udp_smallest_nonpriv_port" },
385  { 0,		1,		1,		"udp_do_checksum" },
386  { 1024,	UDP_MAX_PORT,	(32 * 1024),	"udp_smallest_anon_port" },
387  { 1024,	UDP_MAX_PORT,	UDP_MAX_PORT,	"udp_largest_anon_port" },
388  { UDP_XMIT_LOWATER, (1<<30), UDP_XMIT_HIWATER,	"udp_xmit_hiwat"},
389  { 0,		     (1<<30), UDP_XMIT_LOWATER, "udp_xmit_lowat"},
390  { UDP_RECV_LOWATER, (1<<30), UDP_RECV_HIWATER,	"udp_recv_hiwat"},
391  { 65536,	(1<<30),	2*1024*1024,	"udp_max_buf"},
392  { 100,		60000,		1000,		"udp_ndd_get_info_interval"},
393 };
394 /* END CSTYLED */
395 
396 /* Setable in /etc/system */
397 /* If set to 0, pick ephemeral port sequentially; otherwise randomly. */
398 uint32_t udp_random_anon_port = 1;
399 
400 /*
401  * Hook functions to enable cluster networking.
402  * On non-clustered systems these vectors must always be NULL
403  */
404 
405 void (*cl_inet_bind)(uchar_t protocol, sa_family_t addr_family,
406     uint8_t *laddrp, in_port_t lport) = NULL;
407 void (*cl_inet_unbind)(uint8_t protocol, sa_family_t addr_family,
408     uint8_t *laddrp, in_port_t lport) = NULL;
409 
410 typedef union T_primitives *t_primp_t;
411 
412 #define	UDP_ENQUEUE_MP(udp, mp, proc, tag) {			\
413 	ASSERT((mp)->b_prev == NULL && (mp)->b_queue == NULL);	\
414 	ASSERT(MUTEX_HELD(&(udp)->udp_connp->conn_lock));	\
415 	(mp)->b_queue = (queue_t *)((uintptr_t)tag);		\
416 	(mp)->b_prev = (mblk_t *)proc;				\
417 	if ((udp)->udp_mphead == NULL)				\
418 		(udp)->udp_mphead = (mp);			\
419 	else							\
420 		(udp)->udp_mptail->b_next = (mp);		\
421 	(udp)->udp_mptail = (mp);				\
422 	(udp)->udp_mpcount++;					\
423 }
424 
425 #define	UDP_READERS_INCREF(udp) {				\
426 	ASSERT(MUTEX_HELD(&(udp)->udp_connp->conn_lock));	\
427 	(udp)->udp_reader_count++;				\
428 }
429 
430 #define	UDP_READERS_DECREF(udp) {				\
431 	ASSERT(MUTEX_HELD(&(udp)->udp_connp->conn_lock));	\
432 	(udp)->udp_reader_count--;				\
433 	if ((udp)->udp_reader_count == 0)			\
434 		cv_broadcast(&(udp)->udp_connp->conn_cv);	\
435 }
436 
437 #define	UDP_SQUEUE_DECREF(udp) {				\
438 	ASSERT(MUTEX_HELD(&(udp)->udp_connp->conn_lock));	\
439 	(udp)->udp_squeue_count--;				\
440 	if ((udp)->udp_squeue_count == 0)			\
441 		cv_broadcast(&(udp)->udp_connp->conn_cv);	\
442 }
443 
444 /*
445  * Notes on UDP endpoint synchronization:
446  *
447  * UDP needs exclusive operation on a per endpoint basis, when executing
448  * functions that modify the endpoint state.  udp_rput_other() deals with
449  * packets with IP options, and processing these packets end up having
450  * to update the endpoint's option related state.  udp_wput_other() deals
451  * with control operations from the top, e.g. connect() that needs to
452  * update the endpoint state.  These could be synchronized using locks,
453  * but the current version uses squeues for this purpose.  squeues may
454  * give performance improvement for certain cases such as connected UDP
455  * sockets; thus the framework allows for using squeues.
456  *
457  * The perimeter routines are described as follows:
458  *
459  * udp_enter():
460  *	Enter the UDP endpoint perimeter.
461  *
462  * udp_become_writer():
463  *	Become exclusive on the UDP endpoint.  Specifies a function
464  *	that will be called exclusively either immediately or later
465  *	when the perimeter is available exclusively.
466  *
467  * udp_exit():
468  *	Exit the UDP perimeter.
469  *
470  * Entering UDP from the top or from the bottom must be done using
471  * udp_enter().  No lock must be held while attempting to enter the UDP
472  * perimeter.  When finished, udp_exit() must be called to get out of
473  * the perimeter.
474  *
475  * UDP operates in either MT_HOT mode or in SQUEUE mode.  In MT_HOT mode,
476  * multiple threads may enter a UDP endpoint concurrently.  This is used
477  * for sending and/or receiving normal data.  Control operations and other
478  * special cases call udp_become_writer() to become exclusive on a per
479  * endpoint basis and this results in transitioning to SQUEUE mode.  squeue
480  * by definition serializes access to the conn_t.  When there are no more
481  * pending messages on the squeue for the UDP connection, the endpoint
482  * reverts to MT_HOT mode.  During the interregnum when not all MT threads
483  * of an endpoint have finished, messages are queued in the UDP endpoint
484  * and the UDP is in UDP_MT_QUEUED mode or UDP_QUEUED_SQUEUE mode.
485  *
486  * These modes have the following analogs:
487  *
488  *	UDP_MT_HOT/udp_reader_count==0		none
489  *	UDP_MT_HOT/udp_reader_count>0		RW_READ_LOCK
490  *	UDP_MT_QUEUED				RW_WRITE_WANTED
491  *	UDP_SQUEUE or UDP_QUEUED_SQUEUE		RW_WRITE_LOCKED
492  *
493  * Stable modes:	UDP_MT_HOT, UDP_SQUEUE
494  * Transient modes:	UDP_MT_QUEUED, UDP_QUEUED_SQUEUE
495  *
496  * While in stable modes, UDP keeps track of the number of threads
497  * operating on the endpoint.  The udp_reader_count variable represents
498  * the number of threads entering the endpoint as readers while it is
499  * in UDP_MT_HOT mode.  Transitioning to UDP_SQUEUE happens when there
500  * is only a single reader, i.e. when this counter drops to 1.  Likewise,
501  * udp_squeue_count represents the number of threads operating on the
502  * endpoint's squeue while it is in UDP_SQUEUE mode.  The mode transition
503  * to UDP_MT_HOT happens after the last thread exits the endpoint, i.e.
504  * when this counter drops to 0.
505  *
506  * The default mode is set to UDP_MT_HOT and UDP alternates between
507  * UDP_MT_HOT and UDP_SQUEUE as shown in the state transition below.
508  *
509  * Mode transition:
510  * ----------------------------------------------------------------
511  * old mode		Event				New mode
512  * ----------------------------------------------------------------
513  * UDP_MT_HOT		Call to udp_become_writer()	UDP_SQUEUE
514  *			and udp_reader_count == 1
515  *
516  * UDP_MT_HOT		Call to udp_become_writer()	UDP_MT_QUEUED
517  *			and udp_reader_count > 1
518  *
519  * UDP_MT_QUEUED	udp_reader_count drops to zero	UDP_QUEUED_SQUEUE
520  *
521  * UDP_QUEUED_SQUEUE	All messages enqueued on the	UDP_SQUEUE
522  *			internal UDP queue successfully
523  *			moved to squeue AND udp_squeue_count != 0
524  *
525  * UDP_QUEUED_SQUEUE	All messages enqueued on the	UDP_MT_HOT
526  *			internal UDP queue successfully
527  *			moved to squeue AND udp_squeue_count
528  *			drops to zero
529  *
530  * UDP_SQUEUE		udp_squeue_count drops to zero	UDP_MT_HOT
531  * ----------------------------------------------------------------
532  */
533 
534 static queue_t *
535 UDP_WR(queue_t *q)
536 {
537 	ASSERT(q->q_ptr == NULL && _OTHERQ(q)->q_ptr == NULL);
538 	ASSERT(WR(q)->q_next != NULL && WR(q)->q_next->q_ptr != NULL);
539 	ASSERT(IPCL_IS_UDP(Q_TO_CONN(WR(q)->q_next)));
540 
541 	return (_WR(q)->q_next);
542 }
543 
544 static queue_t *
545 UDP_RD(queue_t *q)
546 {
547 	ASSERT(q->q_ptr != NULL && _OTHERQ(q)->q_ptr != NULL);
548 	ASSERT(IPCL_IS_UDP(Q_TO_CONN(q)));
549 	ASSERT(RD(q)->q_next != NULL && RD(q)->q_next->q_ptr == NULL);
550 
551 	return (_RD(q)->q_next);
552 }
553 
554 #ifdef DEBUG
555 #define	UDP_MODE_ASSERTIONS(udp, caller) udp_mode_assertions(udp, caller)
556 #else
557 #define	UDP_MODE_ASSERTIONS(udp, caller)
558 #endif
559 
560 /* Invariants */
561 #ifdef DEBUG
562 
563 uint32_t udp_count[4];
564 
565 /* Context of udp_mode_assertions */
566 #define	UDP_ENTER		1
567 #define	UDP_BECOME_WRITER	2
568 #define	UDP_EXIT		3
569 
570 static void
571 udp_mode_assertions(udp_t *udp, int caller)
572 {
573 	ASSERT(MUTEX_HELD(&udp->udp_connp->conn_lock));
574 
575 	switch (udp->udp_mode) {
576 	case UDP_MT_HOT:
577 		/*
578 		 * Messages have not yet been enqueued on the internal queue,
579 		 * otherwise we would have switched to UDP_MT_QUEUED. Likewise
580 		 * by definition, there can't be any messages enqueued on the
581 		 * squeue. The UDP could be quiescent, so udp_reader_count
582 		 * could be zero at entry.
583 		 */
584 		ASSERT(udp->udp_mphead == NULL && udp->udp_mpcount == 0 &&
585 		    udp->udp_squeue_count == 0);
586 		ASSERT(caller == UDP_ENTER || udp->udp_reader_count != 0);
587 		udp_count[0]++;
588 		break;
589 
590 	case UDP_MT_QUEUED:
591 		/*
592 		 * The last MT thread to exit the udp perimeter empties the
593 		 * internal queue and then switches the UDP to
594 		 * UDP_QUEUED_SQUEUE mode. Since we are still in UDP_MT_QUEUED
595 		 * mode, it means there must be at least 1 MT thread still in
596 		 * the perimeter and at least 1 message on the internal queue.
597 		 */
598 		ASSERT(udp->udp_reader_count >= 1 && udp->udp_mphead != NULL &&
599 		    udp->udp_mpcount != 0 && udp->udp_squeue_count == 0);
600 		udp_count[1]++;
601 		break;
602 
603 	case UDP_QUEUED_SQUEUE:
604 		/*
605 		 * The switch has happened from MT to SQUEUE. So there can't
606 		 * any MT threads. Messages could still pile up on the internal
607 		 * queue until the transition is complete and we move to
608 		 * UDP_SQUEUE mode. We can't assert on nonzero udp_squeue_count
609 		 * since the squeue could drain any time.
610 		 */
611 		ASSERT(udp->udp_reader_count == 0);
612 		udp_count[2]++;
613 		break;
614 
615 	case UDP_SQUEUE:
616 		/*
617 		 * The transition is complete. Thre can't be any messages on
618 		 * the internal queue. The udp could be quiescent or the squeue
619 		 * could drain any time, so we can't assert on nonzero
620 		 * udp_squeue_count during entry. Nor can we assert that
621 		 * udp_reader_count is zero, since, a reader thread could have
622 		 * directly become writer in line by calling udp_become_writer
623 		 * without going through the queued states.
624 		 */
625 		ASSERT(udp->udp_mphead == NULL && udp->udp_mpcount == 0);
626 		ASSERT(caller == UDP_ENTER || udp->udp_squeue_count != 0);
627 		udp_count[3]++;
628 		break;
629 	}
630 }
631 #endif
632 
633 #define	_UDP_ENTER(connp, mp, proc, tag) {				\
634 	udp_t *_udp = (connp)->conn_udp;				\
635 									\
636 	mutex_enter(&(connp)->conn_lock);				\
637 	if ((connp)->conn_state_flags & CONN_CLOSING) {			\
638 		mutex_exit(&(connp)->conn_lock);			\
639 		freemsg(mp);						\
640 	} else {							\
641 		UDP_MODE_ASSERTIONS(_udp, UDP_ENTER);			\
642 									\
643 		switch (_udp->udp_mode) {				\
644 		case UDP_MT_HOT:					\
645 			/* We can execute as reader right away. */	\
646 			UDP_READERS_INCREF(_udp);			\
647 			mutex_exit(&(connp)->conn_lock);		\
648 			(*(proc))(connp, mp, (connp)->conn_sqp);	\
649 			break;						\
650 									\
651 		case UDP_SQUEUE:					\
652 			/*						\
653 			 * We are in squeue mode, send the		\
654 			 * packet to the squeue				\
655 			 */						\
656 			_udp->udp_squeue_count++;			\
657 			CONN_INC_REF_LOCKED(connp);			\
658 			mutex_exit(&(connp)->conn_lock);		\
659 			squeue_enter((connp)->conn_sqp, mp, proc,	\
660 			    connp, tag);				\
661 			break;						\
662 									\
663 		case UDP_MT_QUEUED:					\
664 		case UDP_QUEUED_SQUEUE:					\
665 			/*						\
666 			 * Some messages may have been enqueued		\
667 			 * ahead of us.  Enqueue the new message	\
668 			 * at the tail of the internal queue to		\
669 			 * preserve message ordering.			\
670 			 */						\
671 			UDP_ENQUEUE_MP(_udp, mp, proc, tag);		\
672 			mutex_exit(&(connp)->conn_lock);		\
673 			break;						\
674 		}							\
675 	}								\
676 }
677 
678 static void
679 udp_enter(conn_t *connp, mblk_t *mp, sqproc_t proc, uint8_t tag)
680 {
681 	_UDP_ENTER(connp, mp, proc, tag);
682 }
683 
684 static void
685 udp_become_writer(conn_t *connp, mblk_t *mp, sqproc_t proc, uint8_t tag)
686 {
687 	udp_t	*udp;
688 
689 	udp = connp->conn_udp;
690 
691 	mutex_enter(&connp->conn_lock);
692 
693 	UDP_MODE_ASSERTIONS(udp, UDP_BECOME_WRITER);
694 
695 	switch (udp->udp_mode) {
696 	case UDP_MT_HOT:
697 		if (udp->udp_reader_count == 1) {
698 			/*
699 			 * We are the only MT thread. Switch to squeue mode
700 			 * immediately.
701 			 */
702 			udp->udp_mode = UDP_SQUEUE;
703 			udp->udp_squeue_count = 1;
704 			CONN_INC_REF_LOCKED(connp);
705 			mutex_exit(&connp->conn_lock);
706 			squeue_enter(connp->conn_sqp, mp, proc, connp, tag);
707 			return;
708 		}
709 		/* FALLTHRU */
710 
711 	case UDP_MT_QUEUED:
712 		/* Enqueue the packet internally in UDP */
713 		udp->udp_mode = UDP_MT_QUEUED;
714 		UDP_ENQUEUE_MP(udp, mp, proc, tag);
715 		mutex_exit(&connp->conn_lock);
716 		return;
717 
718 	case UDP_SQUEUE:
719 	case UDP_QUEUED_SQUEUE:
720 		/*
721 		 * We are already exclusive. i.e. we are already
722 		 * writer. Simply call the desired function.
723 		 */
724 		udp->udp_squeue_count++;
725 		mutex_exit(&connp->conn_lock);
726 		(*proc)(connp, mp, connp->conn_sqp);
727 		return;
728 	}
729 }
730 
731 /*
732  * Transition from MT mode to SQUEUE mode, when the last MT thread
733  * is exiting the UDP perimeter. Move all messages from the internal
734  * udp queue to the squeue. A better way would be to move all the
735  * messages in one shot, this needs more support from the squeue framework
736  */
737 static void
738 udp_switch_to_squeue(udp_t *udp)
739 {
740 	mblk_t *mp;
741 	mblk_t	*mp_next;
742 	sqproc_t proc;
743 	uint8_t	tag;
744 	conn_t	*connp = udp->udp_connp;
745 
746 	ASSERT(MUTEX_HELD(&connp->conn_lock));
747 	ASSERT(udp->udp_mode == UDP_MT_QUEUED);
748 	while (udp->udp_mphead != NULL) {
749 		mp = udp->udp_mphead;
750 		udp->udp_mphead = NULL;
751 		udp->udp_mptail = NULL;
752 		udp->udp_mpcount = 0;
753 		udp->udp_mode = UDP_QUEUED_SQUEUE;
754 		mutex_exit(&connp->conn_lock);
755 		/*
756 		 * It is best not to hold any locks across the calls
757 		 * to squeue functions. Since we drop the lock we
758 		 * need to go back and check the udp_mphead once again
759 		 * after the squeue_fill and hence the while loop at
760 		 * the top of this function
761 		 */
762 		for (; mp != NULL; mp = mp_next) {
763 			mp_next = mp->b_next;
764 			proc = (sqproc_t)mp->b_prev;
765 			tag = (uint8_t)((uintptr_t)mp->b_queue);
766 			mp->b_next = NULL;
767 			mp->b_prev = NULL;
768 			mp->b_queue = NULL;
769 			CONN_INC_REF(connp);
770 			udp->udp_squeue_count++;
771 			squeue_fill(connp->conn_sqp, mp, proc, connp,
772 			    tag);
773 		}
774 		mutex_enter(&connp->conn_lock);
775 	}
776 	/*
777 	 * udp_squeue_count of zero implies that the squeue has drained
778 	 * even before we arrived here (i.e. after the squeue_fill above)
779 	 */
780 	udp->udp_mode = (udp->udp_squeue_count != 0) ?
781 	    UDP_SQUEUE : UDP_MT_HOT;
782 }
783 
784 #define	_UDP_EXIT(connp) {						\
785 	udp_t *_udp = (connp)->conn_udp;				\
786 									\
787 	mutex_enter(&(connp)->conn_lock);				\
788 	UDP_MODE_ASSERTIONS(_udp, UDP_EXIT);				\
789 									\
790 	switch (_udp->udp_mode) {					\
791 	case UDP_MT_HOT:						\
792 		UDP_READERS_DECREF(_udp);				\
793 		mutex_exit(&(connp)->conn_lock);			\
794 		break;							\
795 									\
796 	case UDP_SQUEUE:						\
797 		UDP_SQUEUE_DECREF(_udp);				\
798 		if (_udp->udp_squeue_count == 0)			\
799 		    _udp->udp_mode = UDP_MT_HOT;			\
800 		mutex_exit(&(connp)->conn_lock);			\
801 		break;							\
802 									\
803 	case UDP_MT_QUEUED:						\
804 		/*							\
805 		 * If this is the last MT thread, we need to		\
806 		 * switch to squeue mode				\
807 		 */							\
808 		UDP_READERS_DECREF(_udp);				\
809 		if (_udp->udp_reader_count == 0)			\
810 			udp_switch_to_squeue(_udp);			\
811 		mutex_exit(&(connp)->conn_lock);			\
812 		break;							\
813 									\
814 	case UDP_QUEUED_SQUEUE:						\
815 		UDP_SQUEUE_DECREF(_udp);				\
816 		/*							\
817 		 * Even if the udp_squeue_count drops to zero, we	\
818 		 * don't want to change udp_mode to UDP_MT_HOT here.	\
819 		 * The thread in udp_switch_to_squeue will take care	\
820 		 * of the transition to UDP_MT_HOT, after emptying	\
821 		 * any more new messages that have been enqueued in	\
822 		 * udp_mphead.						\
823 		 */							\
824 		mutex_exit(&(connp)->conn_lock);			\
825 		break;							\
826 	}								\
827 }
828 
829 static void
830 udp_exit(conn_t *connp)
831 {
832 	_UDP_EXIT(connp);
833 }
834 
835 /*
836  * Return the next anonymous port in the privileged port range for
837  * bind checking.
838  *
839  * Trusted Extension (TX) notes: TX allows administrator to mark or
840  * reserve ports as Multilevel ports (MLP). MLP has special function
841  * on TX systems. Once a port is made MLP, it's not available as
842  * ordinary port. This creates "holes" in the port name space. It
843  * may be necessary to skip the "holes" find a suitable anon port.
844  */
845 static in_port_t
846 udp_get_next_priv_port(udp_t *udp)
847 {
848 	static in_port_t next_priv_port = IPPORT_RESERVED - 1;
849 	in_port_t nextport;
850 	boolean_t restart = B_FALSE;
851 	udp_stack_t *us = udp->udp_us;
852 
853 retry:
854 	if (next_priv_port < us->us_min_anonpriv_port ||
855 	    next_priv_port >= IPPORT_RESERVED) {
856 		next_priv_port = IPPORT_RESERVED - 1;
857 		if (restart)
858 			return (0);
859 		restart = B_TRUE;
860 	}
861 
862 	if (is_system_labeled() &&
863 	    (nextport = tsol_next_port(crgetzone(udp->udp_connp->conn_cred),
864 	    next_priv_port, IPPROTO_UDP, B_FALSE)) != 0) {
865 		next_priv_port = nextport;
866 		goto retry;
867 	}
868 
869 	return (next_priv_port--);
870 }
871 
872 /* UDP bind hash report triggered via the Named Dispatch mechanism. */
873 /* ARGSUSED */
874 static int
875 udp_bind_hash_report(queue_t *q, mblk_t *mp, caddr_t cp, cred_t *cr)
876 {
877 	udp_fanout_t	*udpf;
878 	int		i;
879 	zoneid_t	zoneid;
880 	conn_t		*connp;
881 	udp_t		*udp;
882 	udp_stack_t	*us;
883 
884 	connp = Q_TO_CONN(q);
885 	udp = connp->conn_udp;
886 	us = udp->udp_us;
887 
888 	/* Refer to comments in udp_status_report(). */
889 	if (cr == NULL || secpolicy_ip_config(cr, B_TRUE) != 0) {
890 		if (ddi_get_lbolt() - us->us_last_ndd_get_info_time <
891 		    drv_usectohz(us->us_ndd_get_info_interval * 1000)) {
892 			(void) mi_mpprintf(mp, NDD_TOO_QUICK_MSG);
893 			return (0);
894 		}
895 	}
896 	if ((mp->b_cont = allocb(ND_MAX_BUF_LEN, BPRI_HI)) == NULL) {
897 		/* The following may work even if we cannot get a large buf. */
898 		(void) mi_mpprintf(mp, NDD_OUT_OF_BUF_MSG);
899 		return (0);
900 	}
901 
902 	(void) mi_mpprintf(mp,
903 	    "UDP     " MI_COL_HDRPAD_STR
904 	/*   12345678[89ABCDEF] */
905 	    " zone lport src addr        dest addr       port  state");
906 	/*    1234 12345 xxx.xxx.xxx.xxx xxx.xxx.xxx.xxx 12345 UNBOUND */
907 
908 	zoneid = connp->conn_zoneid;
909 
910 	for (i = 0; i < us->us_bind_fanout_size; i++) {
911 		udpf = &us->us_bind_fanout[i];
912 		mutex_enter(&udpf->uf_lock);
913 
914 		/* Print the hash index. */
915 		udp = udpf->uf_udp;
916 		if (zoneid != GLOBAL_ZONEID) {
917 			/* skip to first entry in this zone; might be none */
918 			while (udp != NULL &&
919 			    udp->udp_connp->conn_zoneid != zoneid)
920 				udp = udp->udp_bind_hash;
921 		}
922 		if (udp != NULL) {
923 			uint_t print_len, buf_len;
924 
925 			buf_len = mp->b_cont->b_datap->db_lim -
926 			    mp->b_cont->b_wptr;
927 			print_len = snprintf((char *)mp->b_cont->b_wptr,
928 			    buf_len, "%d\n", i);
929 			if (print_len < buf_len) {
930 				mp->b_cont->b_wptr += print_len;
931 			} else {
932 				mp->b_cont->b_wptr += buf_len;
933 			}
934 			for (; udp != NULL; udp = udp->udp_bind_hash) {
935 				if (zoneid == GLOBAL_ZONEID ||
936 				    zoneid == udp->udp_connp->conn_zoneid)
937 					udp_report_item(mp->b_cont, udp);
938 			}
939 		}
940 		mutex_exit(&udpf->uf_lock);
941 	}
942 	us->us_last_ndd_get_info_time = ddi_get_lbolt();
943 	return (0);
944 }
945 
946 /*
947  * Hash list removal routine for udp_t structures.
948  */
949 static void
950 udp_bind_hash_remove(udp_t *udp, boolean_t caller_holds_lock)
951 {
952 	udp_t	*udpnext;
953 	kmutex_t *lockp;
954 	udp_stack_t *us = udp->udp_us;
955 
956 	if (udp->udp_ptpbhn == NULL)
957 		return;
958 
959 	/*
960 	 * Extract the lock pointer in case there are concurrent
961 	 * hash_remove's for this instance.
962 	 */
963 	ASSERT(udp->udp_port != 0);
964 	if (!caller_holds_lock) {
965 		lockp = &us->us_bind_fanout[UDP_BIND_HASH(udp->udp_port,
966 		    us->us_bind_fanout_size)].uf_lock;
967 		ASSERT(lockp != NULL);
968 		mutex_enter(lockp);
969 	}
970 	if (udp->udp_ptpbhn != NULL) {
971 		udpnext = udp->udp_bind_hash;
972 		if (udpnext != NULL) {
973 			udpnext->udp_ptpbhn = udp->udp_ptpbhn;
974 			udp->udp_bind_hash = NULL;
975 		}
976 		*udp->udp_ptpbhn = udpnext;
977 		udp->udp_ptpbhn = NULL;
978 	}
979 	if (!caller_holds_lock) {
980 		mutex_exit(lockp);
981 	}
982 }
983 
984 static void
985 udp_bind_hash_insert(udp_fanout_t *uf, udp_t *udp)
986 {
987 	udp_t	**udpp;
988 	udp_t	*udpnext;
989 
990 	ASSERT(MUTEX_HELD(&uf->uf_lock));
991 	if (udp->udp_ptpbhn != NULL) {
992 		udp_bind_hash_remove(udp, B_TRUE);
993 	}
994 	udpp = &uf->uf_udp;
995 	udpnext = udpp[0];
996 	if (udpnext != NULL) {
997 		/*
998 		 * If the new udp bound to the INADDR_ANY address
999 		 * and the first one in the list is not bound to
1000 		 * INADDR_ANY we skip all entries until we find the
1001 		 * first one bound to INADDR_ANY.
1002 		 * This makes sure that applications binding to a
1003 		 * specific address get preference over those binding to
1004 		 * INADDR_ANY.
1005 		 */
1006 		if (V6_OR_V4_INADDR_ANY(udp->udp_bound_v6src) &&
1007 		    !V6_OR_V4_INADDR_ANY(udpnext->udp_bound_v6src)) {
1008 			while ((udpnext = udpp[0]) != NULL &&
1009 			    !V6_OR_V4_INADDR_ANY(
1010 			    udpnext->udp_bound_v6src)) {
1011 				udpp = &(udpnext->udp_bind_hash);
1012 			}
1013 			if (udpnext != NULL)
1014 				udpnext->udp_ptpbhn = &udp->udp_bind_hash;
1015 		} else {
1016 			udpnext->udp_ptpbhn = &udp->udp_bind_hash;
1017 		}
1018 	}
1019 	udp->udp_bind_hash = udpnext;
1020 	udp->udp_ptpbhn = udpp;
1021 	udpp[0] = udp;
1022 }
1023 
1024 /*
1025  * This routine is called to handle each O_T_BIND_REQ/T_BIND_REQ message
1026  * passed to udp_wput.
1027  * It associates a port number and local address with the stream.
1028  * The O_T_BIND_REQ/T_BIND_REQ is passed downstream to ip with the UDP
1029  * protocol type (IPPROTO_UDP) placed in the message following the address.
1030  * A T_BIND_ACK message is passed upstream when ip acknowledges the request.
1031  * (Called as writer.)
1032  *
1033  * Note that UDP over IPv4 and IPv6 sockets can use the same port number
1034  * without setting SO_REUSEADDR. This is needed so that they
1035  * can be viewed as two independent transport protocols.
1036  * However, anonymouns ports are allocated from the same range to avoid
1037  * duplicating the us->us_next_port_to_try.
1038  */
1039 static void
1040 udp_bind(queue_t *q, mblk_t *mp)
1041 {
1042 	sin_t		*sin;
1043 	sin6_t		*sin6;
1044 	mblk_t		*mp1;
1045 	in_port_t	port;		/* Host byte order */
1046 	in_port_t	requested_port;	/* Host byte order */
1047 	struct T_bind_req *tbr;
1048 	int		count;
1049 	in6_addr_t	v6src;
1050 	boolean_t	bind_to_req_port_only;
1051 	int		loopmax;
1052 	udp_fanout_t	*udpf;
1053 	in_port_t	lport;		/* Network byte order */
1054 	zoneid_t	zoneid;
1055 	conn_t		*connp;
1056 	udp_t		*udp;
1057 	boolean_t	is_inaddr_any;
1058 	mlp_type_t	addrtype, mlptype;
1059 	udp_stack_t	*us;
1060 
1061 	connp = Q_TO_CONN(q);
1062 	udp = connp->conn_udp;
1063 	us = udp->udp_us;
1064 	if ((mp->b_wptr - mp->b_rptr) < sizeof (*tbr)) {
1065 		(void) mi_strlog(q, 1, SL_ERROR|SL_TRACE,
1066 		    "udp_bind: bad req, len %u",
1067 		    (uint_t)(mp->b_wptr - mp->b_rptr));
1068 		udp_err_ack(q, mp, TPROTO, 0);
1069 		return;
1070 	}
1071 
1072 	if (udp->udp_state != TS_UNBND) {
1073 		(void) mi_strlog(q, 1, SL_ERROR|SL_TRACE,
1074 		    "udp_bind: bad state, %u", udp->udp_state);
1075 		udp_err_ack(q, mp, TOUTSTATE, 0);
1076 		return;
1077 	}
1078 	/*
1079 	 * Reallocate the message to make sure we have enough room for an
1080 	 * address and the protocol type.
1081 	 */
1082 	mp1 = reallocb(mp, sizeof (struct T_bind_ack) + sizeof (sin6_t) + 1, 1);
1083 	if (!mp1) {
1084 		udp_err_ack(q, mp, TSYSERR, ENOMEM);
1085 		return;
1086 	}
1087 
1088 	mp = mp1;
1089 	tbr = (struct T_bind_req *)mp->b_rptr;
1090 	switch (tbr->ADDR_length) {
1091 	case 0:			/* Request for a generic port */
1092 		tbr->ADDR_offset = sizeof (struct T_bind_req);
1093 		if (udp->udp_family == AF_INET) {
1094 			tbr->ADDR_length = sizeof (sin_t);
1095 			sin = (sin_t *)&tbr[1];
1096 			*sin = sin_null;
1097 			sin->sin_family = AF_INET;
1098 			mp->b_wptr = (uchar_t *)&sin[1];
1099 		} else {
1100 			ASSERT(udp->udp_family == AF_INET6);
1101 			tbr->ADDR_length = sizeof (sin6_t);
1102 			sin6 = (sin6_t *)&tbr[1];
1103 			*sin6 = sin6_null;
1104 			sin6->sin6_family = AF_INET6;
1105 			mp->b_wptr = (uchar_t *)&sin6[1];
1106 		}
1107 		port = 0;
1108 		break;
1109 
1110 	case sizeof (sin_t):	/* Complete IPv4 address */
1111 		sin = (sin_t *)mi_offset_param(mp, tbr->ADDR_offset,
1112 		    sizeof (sin_t));
1113 		if (sin == NULL || !OK_32PTR((char *)sin)) {
1114 			udp_err_ack(q, mp, TSYSERR, EINVAL);
1115 			return;
1116 		}
1117 		if (udp->udp_family != AF_INET ||
1118 		    sin->sin_family != AF_INET) {
1119 			udp_err_ack(q, mp, TSYSERR, EAFNOSUPPORT);
1120 			return;
1121 		}
1122 		port = ntohs(sin->sin_port);
1123 		break;
1124 
1125 	case sizeof (sin6_t):	/* complete IPv6 address */
1126 		sin6 = (sin6_t *)mi_offset_param(mp, tbr->ADDR_offset,
1127 		    sizeof (sin6_t));
1128 		if (sin6 == NULL || !OK_32PTR((char *)sin6)) {
1129 			udp_err_ack(q, mp, TSYSERR, EINVAL);
1130 			return;
1131 		}
1132 		if (udp->udp_family != AF_INET6 ||
1133 		    sin6->sin6_family != AF_INET6) {
1134 			udp_err_ack(q, mp, TSYSERR, EAFNOSUPPORT);
1135 			return;
1136 		}
1137 		port = ntohs(sin6->sin6_port);
1138 		break;
1139 
1140 	default:		/* Invalid request */
1141 		(void) mi_strlog(q, 1, SL_ERROR|SL_TRACE,
1142 		    "udp_bind: bad ADDR_length length %u", tbr->ADDR_length);
1143 		udp_err_ack(q, mp, TBADADDR, 0);
1144 		return;
1145 	}
1146 
1147 	requested_port = port;
1148 
1149 	if (requested_port == 0 || tbr->PRIM_type == O_T_BIND_REQ)
1150 		bind_to_req_port_only = B_FALSE;
1151 	else			/* T_BIND_REQ and requested_port != 0 */
1152 		bind_to_req_port_only = B_TRUE;
1153 
1154 	if (requested_port == 0) {
1155 		/*
1156 		 * If the application passed in zero for the port number, it
1157 		 * doesn't care which port number we bind to. Get one in the
1158 		 * valid range.
1159 		 */
1160 		if (udp->udp_anon_priv_bind) {
1161 			port = udp_get_next_priv_port(udp);
1162 		} else {
1163 			port = udp_update_next_port(udp,
1164 			    us->us_next_port_to_try, B_TRUE);
1165 		}
1166 	} else {
1167 		/*
1168 		 * If the port is in the well-known privileged range,
1169 		 * make sure the caller was privileged.
1170 		 */
1171 		int i;
1172 		boolean_t priv = B_FALSE;
1173 
1174 		if (port < us->us_smallest_nonpriv_port) {
1175 			priv = B_TRUE;
1176 		} else {
1177 			for (i = 0; i < us->us_num_epriv_ports; i++) {
1178 				if (port == us->us_epriv_ports[i]) {
1179 					priv = B_TRUE;
1180 					break;
1181 				}
1182 			}
1183 		}
1184 
1185 		if (priv) {
1186 			cred_t *cr = DB_CREDDEF(mp, connp->conn_cred);
1187 
1188 			if (secpolicy_net_privaddr(cr, port) != 0) {
1189 				udp_err_ack(q, mp, TACCES, 0);
1190 				return;
1191 			}
1192 		}
1193 	}
1194 
1195 	if (port == 0) {
1196 		udp_err_ack(q, mp, TNOADDR, 0);
1197 		return;
1198 	}
1199 
1200 	/*
1201 	 * Copy the source address into our udp structure. This address
1202 	 * may still be zero; if so, IP will fill in the correct address
1203 	 * each time an outbound packet is passed to it.
1204 	 */
1205 	if (udp->udp_family == AF_INET) {
1206 		ASSERT(sin != NULL);
1207 		ASSERT(udp->udp_ipversion == IPV4_VERSION);
1208 		udp->udp_max_hdr_len = IP_SIMPLE_HDR_LENGTH + UDPH_SIZE +
1209 		    udp->udp_ip_snd_options_len;
1210 		IN6_IPADDR_TO_V4MAPPED(sin->sin_addr.s_addr, &v6src);
1211 	} else {
1212 		ASSERT(sin6 != NULL);
1213 		v6src = sin6->sin6_addr;
1214 		if (IN6_IS_ADDR_V4MAPPED(&v6src)) {
1215 			udp->udp_ipversion = IPV4_VERSION;
1216 			udp->udp_max_hdr_len = IP_SIMPLE_HDR_LENGTH +
1217 			    UDPH_SIZE + udp->udp_ip_snd_options_len;
1218 		} else {
1219 			udp->udp_ipversion = IPV6_VERSION;
1220 			udp->udp_max_hdr_len = udp->udp_sticky_hdrs_len;
1221 		}
1222 	}
1223 
1224 	/*
1225 	 * If udp_reuseaddr is not set, then we have to make sure that
1226 	 * the IP address and port number the application requested
1227 	 * (or we selected for the application) is not being used by
1228 	 * another stream.  If another stream is already using the
1229 	 * requested IP address and port, the behavior depends on
1230 	 * "bind_to_req_port_only". If set the bind fails; otherwise we
1231 	 * search for any an unused port to bind to the the stream.
1232 	 *
1233 	 * As per the BSD semantics, as modified by the Deering multicast
1234 	 * changes, if udp_reuseaddr is set, then we allow multiple binds
1235 	 * to the same port independent of the local IP address.
1236 	 *
1237 	 * This is slightly different than in SunOS 4.X which did not
1238 	 * support IP multicast. Note that the change implemented by the
1239 	 * Deering multicast code effects all binds - not only binding
1240 	 * to IP multicast addresses.
1241 	 *
1242 	 * Note that when binding to port zero we ignore SO_REUSEADDR in
1243 	 * order to guarantee a unique port.
1244 	 */
1245 
1246 	count = 0;
1247 	if (udp->udp_anon_priv_bind) {
1248 		/*
1249 		 * loopmax = (IPPORT_RESERVED-1) -
1250 		 *    us->us_min_anonpriv_port + 1
1251 		 */
1252 		loopmax = IPPORT_RESERVED - us->us_min_anonpriv_port;
1253 	} else {
1254 		loopmax = us->us_largest_anon_port -
1255 		    us->us_smallest_anon_port + 1;
1256 	}
1257 
1258 	is_inaddr_any = V6_OR_V4_INADDR_ANY(v6src);
1259 	zoneid = connp->conn_zoneid;
1260 
1261 	for (;;) {
1262 		udp_t		*udp1;
1263 		boolean_t	found_exclbind = B_FALSE;
1264 
1265 		/*
1266 		 * Walk through the list of udp streams bound to
1267 		 * requested port with the same IP address.
1268 		 */
1269 		lport = htons(port);
1270 		udpf = &us->us_bind_fanout[UDP_BIND_HASH(lport,
1271 		    us->us_bind_fanout_size)];
1272 		mutex_enter(&udpf->uf_lock);
1273 		for (udp1 = udpf->uf_udp; udp1 != NULL;
1274 		    udp1 = udp1->udp_bind_hash) {
1275 			if (lport != udp1->udp_port)
1276 				continue;
1277 
1278 			/*
1279 			 * On a labeled system, we must treat bindings to ports
1280 			 * on shared IP addresses by sockets with MAC exemption
1281 			 * privilege as being in all zones, as there's
1282 			 * otherwise no way to identify the right receiver.
1283 			 */
1284 			if (zoneid != udp1->udp_connp->conn_zoneid &&
1285 			    !udp->udp_mac_exempt && !udp1->udp_mac_exempt)
1286 				continue;
1287 
1288 			/*
1289 			 * If UDP_EXCLBIND is set for either the bound or
1290 			 * binding endpoint, the semantics of bind
1291 			 * is changed according to the following chart.
1292 			 *
1293 			 * spec = specified address (v4 or v6)
1294 			 * unspec = unspecified address (v4 or v6)
1295 			 * A = specified addresses are different for endpoints
1296 			 *
1297 			 * bound	bind to		allowed?
1298 			 * -------------------------------------
1299 			 * unspec	unspec		no
1300 			 * unspec	spec		no
1301 			 * spec		unspec		no
1302 			 * spec		spec		yes if A
1303 			 *
1304 			 * For labeled systems, SO_MAC_EXEMPT behaves the same
1305 			 * as UDP_EXCLBIND, except that zoneid is ignored.
1306 			 */
1307 			if (udp1->udp_exclbind || udp->udp_exclbind ||
1308 			    udp1->udp_mac_exempt || udp->udp_mac_exempt) {
1309 				if (V6_OR_V4_INADDR_ANY(
1310 				    udp1->udp_bound_v6src) ||
1311 				    is_inaddr_any ||
1312 				    IN6_ARE_ADDR_EQUAL(&udp1->udp_bound_v6src,
1313 				    &v6src)) {
1314 					found_exclbind = B_TRUE;
1315 					break;
1316 				}
1317 				continue;
1318 			}
1319 
1320 			/*
1321 			 * Check ipversion to allow IPv4 and IPv6 sockets to
1322 			 * have disjoint port number spaces.
1323 			 */
1324 			if (udp->udp_ipversion != udp1->udp_ipversion) {
1325 
1326 				/*
1327 				 * On the first time through the loop, if the
1328 				 * the user intentionally specified a
1329 				 * particular port number, then ignore any
1330 				 * bindings of the other protocol that may
1331 				 * conflict. This allows the user to bind IPv6
1332 				 * alone and get both v4 and v6, or bind both
1333 				 * both and get each seperately. On subsequent
1334 				 * times through the loop, we're checking a
1335 				 * port that we chose (not the user) and thus
1336 				 * we do not allow casual duplicate bindings.
1337 				 */
1338 				if (count == 0 && requested_port != 0)
1339 					continue;
1340 			}
1341 
1342 			/*
1343 			 * No difference depending on SO_REUSEADDR.
1344 			 *
1345 			 * If existing port is bound to a
1346 			 * non-wildcard IP address and
1347 			 * the requesting stream is bound to
1348 			 * a distinct different IP addresses
1349 			 * (non-wildcard, also), keep going.
1350 			 */
1351 			if (!is_inaddr_any &&
1352 			    !V6_OR_V4_INADDR_ANY(udp1->udp_bound_v6src) &&
1353 			    !IN6_ARE_ADDR_EQUAL(&udp1->udp_bound_v6src,
1354 			    &v6src)) {
1355 				continue;
1356 			}
1357 			break;
1358 		}
1359 
1360 		if (!found_exclbind &&
1361 		    (udp->udp_reuseaddr && requested_port != 0)) {
1362 			break;
1363 		}
1364 
1365 		if (udp1 == NULL) {
1366 			/*
1367 			 * No other stream has this IP address
1368 			 * and port number. We can use it.
1369 			 */
1370 			break;
1371 		}
1372 		mutex_exit(&udpf->uf_lock);
1373 		if (bind_to_req_port_only) {
1374 			/*
1375 			 * We get here only when requested port
1376 			 * is bound (and only first  of the for()
1377 			 * loop iteration).
1378 			 *
1379 			 * The semantics of this bind request
1380 			 * require it to fail so we return from
1381 			 * the routine (and exit the loop).
1382 			 *
1383 			 */
1384 			udp_err_ack(q, mp, TADDRBUSY, 0);
1385 			return;
1386 		}
1387 
1388 		if (udp->udp_anon_priv_bind) {
1389 			port = udp_get_next_priv_port(udp);
1390 		} else {
1391 			if ((count == 0) && (requested_port != 0)) {
1392 				/*
1393 				 * If the application wants us to find
1394 				 * a port, get one to start with. Set
1395 				 * requested_port to 0, so that we will
1396 				 * update us->us_next_port_to_try below.
1397 				 */
1398 				port = udp_update_next_port(udp,
1399 				    us->us_next_port_to_try, B_TRUE);
1400 				requested_port = 0;
1401 			} else {
1402 				port = udp_update_next_port(udp, port + 1,
1403 				    B_FALSE);
1404 			}
1405 		}
1406 
1407 		if (port == 0 || ++count >= loopmax) {
1408 			/*
1409 			 * We've tried every possible port number and
1410 			 * there are none available, so send an error
1411 			 * to the user.
1412 			 */
1413 			udp_err_ack(q, mp, TNOADDR, 0);
1414 			return;
1415 		}
1416 	}
1417 
1418 	/*
1419 	 * Copy the source address into our udp structure.  This address
1420 	 * may still be zero; if so, ip will fill in the correct address
1421 	 * each time an outbound packet is passed to it.
1422 	 * If we are binding to a broadcast or multicast address udp_rput
1423 	 * will clear the source address when it receives the T_BIND_ACK.
1424 	 */
1425 	udp->udp_v6src = udp->udp_bound_v6src = v6src;
1426 	udp->udp_port = lport;
1427 	/*
1428 	 * Now reset the the next anonymous port if the application requested
1429 	 * an anonymous port, or we handed out the next anonymous port.
1430 	 */
1431 	if ((requested_port == 0) && (!udp->udp_anon_priv_bind)) {
1432 		us->us_next_port_to_try = port + 1;
1433 	}
1434 
1435 	/* Initialize the O_T_BIND_REQ/T_BIND_REQ for ip. */
1436 	if (udp->udp_family == AF_INET) {
1437 		sin->sin_port = udp->udp_port;
1438 	} else {
1439 		int error;
1440 
1441 		sin6->sin6_port = udp->udp_port;
1442 		/* Rebuild the header template */
1443 		error = udp_build_hdrs(q, udp);
1444 		if (error != 0) {
1445 			mutex_exit(&udpf->uf_lock);
1446 			udp_err_ack(q, mp, TSYSERR, error);
1447 			return;
1448 		}
1449 	}
1450 	udp->udp_state = TS_IDLE;
1451 	udp_bind_hash_insert(udpf, udp);
1452 	mutex_exit(&udpf->uf_lock);
1453 
1454 	if (cl_inet_bind) {
1455 		/*
1456 		 * Running in cluster mode - register bind information
1457 		 */
1458 		if (udp->udp_ipversion == IPV4_VERSION) {
1459 			(*cl_inet_bind)(IPPROTO_UDP, AF_INET,
1460 			    (uint8_t *)(&V4_PART_OF_V6(udp->udp_v6src)),
1461 			    (in_port_t)udp->udp_port);
1462 		} else {
1463 			(*cl_inet_bind)(IPPROTO_UDP, AF_INET6,
1464 			    (uint8_t *)&(udp->udp_v6src),
1465 			    (in_port_t)udp->udp_port);
1466 		}
1467 
1468 	}
1469 
1470 	connp->conn_anon_port = (is_system_labeled() && requested_port == 0);
1471 	if (is_system_labeled() && (!connp->conn_anon_port ||
1472 	    connp->conn_anon_mlp)) {
1473 		uint16_t mlpport;
1474 		cred_t *cr = connp->conn_cred;
1475 		zone_t *zone;
1476 
1477 		zone = crgetzone(cr);
1478 		connp->conn_mlp_type = udp->udp_recvucred ? mlptBoth :
1479 		    mlptSingle;
1480 		addrtype = tsol_mlp_addr_type(zone->zone_id, IPV6_VERSION,
1481 		    &v6src, udp->udp_us->us_netstack->netstack_ip);
1482 		if (addrtype == mlptSingle) {
1483 			udp_err_ack(q, mp, TNOADDR, 0);
1484 			connp->conn_anon_port = B_FALSE;
1485 			connp->conn_mlp_type = mlptSingle;
1486 			return;
1487 		}
1488 		mlpport = connp->conn_anon_port ? PMAPPORT : port;
1489 		mlptype = tsol_mlp_port_type(zone, IPPROTO_UDP, mlpport,
1490 		    addrtype);
1491 		if (mlptype != mlptSingle &&
1492 		    (connp->conn_mlp_type == mlptSingle ||
1493 		    secpolicy_net_bindmlp(cr) != 0)) {
1494 			if (udp->udp_debug) {
1495 				(void) strlog(UDP_MOD_ID, 0, 1,
1496 				    SL_ERROR|SL_TRACE,
1497 				    "udp_bind: no priv for multilevel port %d",
1498 				    mlpport);
1499 			}
1500 			udp_err_ack(q, mp, TACCES, 0);
1501 			connp->conn_anon_port = B_FALSE;
1502 			connp->conn_mlp_type = mlptSingle;
1503 			return;
1504 		}
1505 
1506 		/*
1507 		 * If we're specifically binding a shared IP address and the
1508 		 * port is MLP on shared addresses, then check to see if this
1509 		 * zone actually owns the MLP.  Reject if not.
1510 		 */
1511 		if (mlptype == mlptShared && addrtype == mlptShared) {
1512 			/*
1513 			 * No need to handle exclusive-stack zones since
1514 			 * ALL_ZONES only applies to the shared stack.
1515 			 */
1516 			zoneid_t mlpzone;
1517 
1518 			mlpzone = tsol_mlp_findzone(IPPROTO_UDP,
1519 			    htons(mlpport));
1520 			if (connp->conn_zoneid != mlpzone) {
1521 				if (udp->udp_debug) {
1522 					(void) strlog(UDP_MOD_ID, 0, 1,
1523 					    SL_ERROR|SL_TRACE,
1524 					    "udp_bind: attempt to bind port "
1525 					    "%d on shared addr in zone %d "
1526 					    "(should be %d)",
1527 					    mlpport, connp->conn_zoneid,
1528 					    mlpzone);
1529 				}
1530 				udp_err_ack(q, mp, TACCES, 0);
1531 				connp->conn_anon_port = B_FALSE;
1532 				connp->conn_mlp_type = mlptSingle;
1533 				return;
1534 			}
1535 		}
1536 		if (connp->conn_anon_port) {
1537 			int error;
1538 
1539 			error = tsol_mlp_anon(zone, mlptype, connp->conn_ulp,
1540 			    port, B_TRUE);
1541 			if (error != 0) {
1542 				if (udp->udp_debug) {
1543 					(void) strlog(UDP_MOD_ID, 0, 1,
1544 					    SL_ERROR|SL_TRACE,
1545 					    "udp_bind: cannot establish anon "
1546 					    "MLP for port %d", port);
1547 				}
1548 				udp_err_ack(q, mp, TACCES, 0);
1549 				connp->conn_anon_port = B_FALSE;
1550 				connp->conn_mlp_type = mlptSingle;
1551 				return;
1552 			}
1553 		}
1554 		connp->conn_mlp_type = mlptype;
1555 	}
1556 
1557 	/* Pass the protocol number in the message following the address. */
1558 	*mp->b_wptr++ = IPPROTO_UDP;
1559 	if (!V6_OR_V4_INADDR_ANY(udp->udp_v6src)) {
1560 		/*
1561 		 * Append a request for an IRE if udp_v6src not
1562 		 * zero (IPv4 - INADDR_ANY, or IPv6 - all-zeroes address).
1563 		 */
1564 		mp->b_cont = allocb(sizeof (ire_t), BPRI_HI);
1565 		if (!mp->b_cont) {
1566 			udp_err_ack(q, mp, TSYSERR, ENOMEM);
1567 			return;
1568 		}
1569 		mp->b_cont->b_wptr += sizeof (ire_t);
1570 		mp->b_cont->b_datap->db_type = IRE_DB_REQ_TYPE;
1571 	}
1572 	if (udp->udp_family == AF_INET6)
1573 		mp = ip_bind_v6(q, mp, connp, NULL);
1574 	else
1575 		mp = ip_bind_v4(q, mp, connp);
1576 
1577 	if (mp != NULL)
1578 		udp_rput_other(_RD(q), mp);
1579 	else
1580 		CONN_INC_REF(connp);
1581 }
1582 
1583 
1584 void
1585 udp_resume_bind(conn_t *connp, mblk_t *mp)
1586 {
1587 	udp_enter(connp, mp, udp_resume_bind_cb, SQTAG_BIND_RETRY);
1588 }
1589 
1590 /*
1591  * This is called from ip_wput_nondata to resume a deferred UDP bind.
1592  */
1593 /* ARGSUSED */
1594 static void
1595 udp_resume_bind_cb(void *arg, mblk_t *mp, void *arg2)
1596 {
1597 	conn_t *connp = arg;
1598 
1599 	ASSERT(connp != NULL && IPCL_IS_UDP(connp));
1600 
1601 	udp_rput_other(connp->conn_rq, mp);
1602 
1603 	CONN_OPER_PENDING_DONE(connp);
1604 	udp_exit(connp);
1605 }
1606 
1607 /*
1608  * This routine handles each T_CONN_REQ message passed to udp.  It
1609  * associates a default destination address with the stream.
1610  *
1611  * This routine sends down a T_BIND_REQ to IP with the following mblks:
1612  *	T_BIND_REQ	- specifying local and remote address/port
1613  *	IRE_DB_REQ_TYPE	- to get an IRE back containing ire_type and src
1614  *	T_OK_ACK	- for the T_CONN_REQ
1615  *	T_CONN_CON	- to keep the TPI user happy
1616  *
1617  * The connect completes in udp_rput.
1618  * When a T_BIND_ACK is received information is extracted from the IRE
1619  * and the two appended messages are sent to the TPI user.
1620  * Should udp_rput receive T_ERROR_ACK for the T_BIND_REQ it will convert
1621  * it to an error ack for the appropriate primitive.
1622  */
1623 static void
1624 udp_connect(queue_t *q, mblk_t *mp)
1625 {
1626 	sin6_t	*sin6;
1627 	sin_t	*sin;
1628 	struct T_conn_req	*tcr;
1629 	in6_addr_t v6dst;
1630 	ipaddr_t v4dst;
1631 	uint16_t dstport;
1632 	uint32_t flowinfo;
1633 	mblk_t	*mp1, *mp2;
1634 	udp_fanout_t	*udpf;
1635 	udp_t	*udp, *udp1;
1636 	udp_stack_t	*us;
1637 
1638 	udp = Q_TO_UDP(q);
1639 
1640 	tcr = (struct T_conn_req *)mp->b_rptr;
1641 	us = udp->udp_us;
1642 
1643 	/* A bit of sanity checking */
1644 	if ((mp->b_wptr - mp->b_rptr) < sizeof (struct T_conn_req)) {
1645 		udp_err_ack(q, mp, TPROTO, 0);
1646 		return;
1647 	}
1648 	/*
1649 	 * This UDP must have bound to a port already before doing
1650 	 * a connect.
1651 	 */
1652 	if (udp->udp_state == TS_UNBND) {
1653 		(void) mi_strlog(q, 1, SL_ERROR|SL_TRACE,
1654 		    "udp_connect: bad state, %u", udp->udp_state);
1655 		udp_err_ack(q, mp, TOUTSTATE, 0);
1656 		return;
1657 	}
1658 	ASSERT(udp->udp_port != 0 && udp->udp_ptpbhn != NULL);
1659 
1660 	udpf = &us->us_bind_fanout[UDP_BIND_HASH(udp->udp_port,
1661 	    us->us_bind_fanout_size)];
1662 
1663 	if (udp->udp_state == TS_DATA_XFER) {
1664 		/* Already connected - clear out state */
1665 		mutex_enter(&udpf->uf_lock);
1666 		udp->udp_v6src = udp->udp_bound_v6src;
1667 		udp->udp_state = TS_IDLE;
1668 		mutex_exit(&udpf->uf_lock);
1669 	}
1670 
1671 	if (tcr->OPT_length != 0) {
1672 		udp_err_ack(q, mp, TBADOPT, 0);
1673 		return;
1674 	}
1675 
1676 	/*
1677 	 * Determine packet type based on type of address passed in
1678 	 * the request should contain an IPv4 or IPv6 address.
1679 	 * Make sure that address family matches the type of
1680 	 * family of the the address passed down
1681 	 */
1682 	switch (tcr->DEST_length) {
1683 	default:
1684 		udp_err_ack(q, mp, TBADADDR, 0);
1685 		return;
1686 
1687 	case sizeof (sin_t):
1688 		sin = (sin_t *)mi_offset_param(mp, tcr->DEST_offset,
1689 		    sizeof (sin_t));
1690 		if (sin == NULL || !OK_32PTR((char *)sin)) {
1691 			udp_err_ack(q, mp, TSYSERR, EINVAL);
1692 			return;
1693 		}
1694 		if (udp->udp_family != AF_INET ||
1695 		    sin->sin_family != AF_INET) {
1696 			udp_err_ack(q, mp, TSYSERR, EAFNOSUPPORT);
1697 			return;
1698 		}
1699 		v4dst = sin->sin_addr.s_addr;
1700 		dstport = sin->sin_port;
1701 		IN6_IPADDR_TO_V4MAPPED(v4dst, &v6dst);
1702 		ASSERT(udp->udp_ipversion == IPV4_VERSION);
1703 		udp->udp_max_hdr_len = IP_SIMPLE_HDR_LENGTH + UDPH_SIZE +
1704 		    udp->udp_ip_snd_options_len;
1705 		break;
1706 
1707 	case sizeof (sin6_t):
1708 		sin6 = (sin6_t *)mi_offset_param(mp, tcr->DEST_offset,
1709 		    sizeof (sin6_t));
1710 		if (sin6 == NULL || !OK_32PTR((char *)sin6)) {
1711 			udp_err_ack(q, mp, TSYSERR, EINVAL);
1712 			return;
1713 		}
1714 		if (udp->udp_family != AF_INET6 ||
1715 		    sin6->sin6_family != AF_INET6) {
1716 			udp_err_ack(q, mp, TSYSERR, EAFNOSUPPORT);
1717 			return;
1718 		}
1719 		v6dst = sin6->sin6_addr;
1720 		if (IN6_IS_ADDR_V4MAPPED(&v6dst)) {
1721 			IN6_V4MAPPED_TO_IPADDR(&v6dst, v4dst);
1722 			udp->udp_ipversion = IPV4_VERSION;
1723 			udp->udp_max_hdr_len = IP_SIMPLE_HDR_LENGTH +
1724 			    UDPH_SIZE + udp->udp_ip_snd_options_len;
1725 			flowinfo = 0;
1726 		} else {
1727 			udp->udp_ipversion = IPV6_VERSION;
1728 			udp->udp_max_hdr_len = udp->udp_sticky_hdrs_len;
1729 			flowinfo = sin6->sin6_flowinfo;
1730 		}
1731 		dstport = sin6->sin6_port;
1732 		break;
1733 	}
1734 	if (dstport == 0) {
1735 		udp_err_ack(q, mp, TBADADDR, 0);
1736 		return;
1737 	}
1738 
1739 	/*
1740 	 * Create a default IP header with no IP options.
1741 	 */
1742 	udp->udp_dstport = dstport;
1743 	if (udp->udp_ipversion == IPV4_VERSION) {
1744 		/*
1745 		 * Interpret a zero destination to mean loopback.
1746 		 * Update the T_CONN_REQ (sin/sin6) since it is used to
1747 		 * generate the T_CONN_CON.
1748 		 */
1749 		if (v4dst == INADDR_ANY) {
1750 			v4dst = htonl(INADDR_LOOPBACK);
1751 			IN6_IPADDR_TO_V4MAPPED(v4dst, &v6dst);
1752 			if (udp->udp_family == AF_INET) {
1753 				sin->sin_addr.s_addr = v4dst;
1754 			} else {
1755 				sin6->sin6_addr = v6dst;
1756 			}
1757 		}
1758 		udp->udp_v6dst = v6dst;
1759 		udp->udp_flowinfo = 0;
1760 
1761 		/*
1762 		 * If the destination address is multicast and
1763 		 * an outgoing multicast interface has been set,
1764 		 * use the address of that interface as our
1765 		 * source address if no source address has been set.
1766 		 */
1767 		if (V4_PART_OF_V6(udp->udp_v6src) == INADDR_ANY &&
1768 		    CLASSD(v4dst) &&
1769 		    udp->udp_multicast_if_addr != INADDR_ANY) {
1770 			IN6_IPADDR_TO_V4MAPPED(udp->udp_multicast_if_addr,
1771 			    &udp->udp_v6src);
1772 		}
1773 	} else {
1774 		ASSERT(udp->udp_ipversion == IPV6_VERSION);
1775 		/*
1776 		 * Interpret a zero destination to mean loopback.
1777 		 * Update the T_CONN_REQ (sin/sin6) since it is used to
1778 		 * generate the T_CONN_CON.
1779 		 */
1780 		if (IN6_IS_ADDR_UNSPECIFIED(&v6dst)) {
1781 			v6dst = ipv6_loopback;
1782 			sin6->sin6_addr = v6dst;
1783 		}
1784 		udp->udp_v6dst = v6dst;
1785 		udp->udp_flowinfo = flowinfo;
1786 		/*
1787 		 * If the destination address is multicast and
1788 		 * an outgoing multicast interface has been set,
1789 		 * then the ip bind logic will pick the correct source
1790 		 * address (i.e. matching the outgoing multicast interface).
1791 		 */
1792 	}
1793 
1794 	/*
1795 	 * Verify that the src/port/dst/port and zoneid is unique for all
1796 	 * connections in TS_DATA_XFER
1797 	 */
1798 	mutex_enter(&udpf->uf_lock);
1799 	for (udp1 = udpf->uf_udp; udp1 != NULL; udp1 = udp1->udp_bind_hash) {
1800 		if (udp1->udp_state != TS_DATA_XFER)
1801 			continue;
1802 		if (udp->udp_port != udp1->udp_port ||
1803 		    udp->udp_ipversion != udp1->udp_ipversion ||
1804 		    dstport != udp1->udp_dstport ||
1805 		    !IN6_ARE_ADDR_EQUAL(&udp->udp_v6src, &udp1->udp_v6src) ||
1806 		    !IN6_ARE_ADDR_EQUAL(&v6dst, &udp1->udp_v6dst) ||
1807 		    udp->udp_connp->conn_zoneid != udp1->udp_connp->conn_zoneid)
1808 			continue;
1809 		mutex_exit(&udpf->uf_lock);
1810 		udp_err_ack(q, mp, TBADADDR, 0);
1811 		return;
1812 	}
1813 	udp->udp_state = TS_DATA_XFER;
1814 	mutex_exit(&udpf->uf_lock);
1815 
1816 	/*
1817 	 * Send down bind to IP to verify that there is a route
1818 	 * and to determine the source address.
1819 	 * This will come back as T_BIND_ACK with an IRE_DB_TYPE in rput.
1820 	 */
1821 	if (udp->udp_family == AF_INET)
1822 		mp1 = udp_ip_bind_mp(udp, O_T_BIND_REQ, sizeof (ipa_conn_t));
1823 	else
1824 		mp1 = udp_ip_bind_mp(udp, O_T_BIND_REQ, sizeof (ipa6_conn_t));
1825 	if (mp1 == NULL) {
1826 		udp_err_ack(q, mp, TSYSERR, ENOMEM);
1827 bind_failed:
1828 		mutex_enter(&udpf->uf_lock);
1829 		udp->udp_state = TS_IDLE;
1830 		mutex_exit(&udpf->uf_lock);
1831 		return;
1832 	}
1833 
1834 	/*
1835 	 * We also have to send a connection confirmation to
1836 	 * keep TLI happy. Prepare it for udp_rput.
1837 	 */
1838 	if (udp->udp_family == AF_INET)
1839 		mp2 = mi_tpi_conn_con(NULL, (char *)sin,
1840 		    sizeof (*sin), NULL, 0);
1841 	else
1842 		mp2 = mi_tpi_conn_con(NULL, (char *)sin6,
1843 		    sizeof (*sin6), NULL, 0);
1844 	if (mp2 == NULL) {
1845 		freemsg(mp1);
1846 		udp_err_ack(q, mp, TSYSERR, ENOMEM);
1847 		goto bind_failed;
1848 	}
1849 
1850 	mp = mi_tpi_ok_ack_alloc(mp);
1851 	if (mp == NULL) {
1852 		/* Unable to reuse the T_CONN_REQ for the ack. */
1853 		freemsg(mp2);
1854 		udp_err_ack_prim(q, mp1, T_CONN_REQ, TSYSERR, ENOMEM);
1855 		goto bind_failed;
1856 	}
1857 
1858 	/* Hang onto the T_OK_ACK and T_CONN_CON for later. */
1859 	linkb(mp1, mp);
1860 	linkb(mp1, mp2);
1861 
1862 	mblk_setcred(mp1, udp->udp_connp->conn_cred);
1863 	if (udp->udp_family == AF_INET)
1864 		mp1 = ip_bind_v4(q, mp1, udp->udp_connp);
1865 	else
1866 		mp1 = ip_bind_v6(q, mp1, udp->udp_connp, NULL);
1867 
1868 	if (mp1 != NULL)
1869 		udp_rput_other(_RD(q), mp1);
1870 	else
1871 		CONN_INC_REF(udp->udp_connp);
1872 }
1873 
1874 static int
1875 udp_close(queue_t *q)
1876 {
1877 	conn_t	*connp = Q_TO_CONN(UDP_WR(q));
1878 	udp_t	*udp;
1879 	queue_t	*ip_rq = RD(UDP_WR(q));
1880 
1881 	ASSERT(connp != NULL && IPCL_IS_UDP(connp));
1882 	udp = connp->conn_udp;
1883 
1884 	ip_quiesce_conn(connp);
1885 	/*
1886 	 * Disable read-side synchronous stream
1887 	 * interface and drain any queued data.
1888 	 */
1889 	udp_rcv_drain(q, udp, B_TRUE);
1890 	ASSERT(!udp->udp_direct_sockfs);
1891 
1892 	qprocsoff(q);
1893 
1894 	/* restore IP module's high and low water marks to default values */
1895 	ip_rq->q_hiwat = ip_rq->q_qinfo->qi_minfo->mi_hiwat;
1896 	WR(ip_rq)->q_hiwat = WR(ip_rq)->q_qinfo->qi_minfo->mi_hiwat;
1897 	WR(ip_rq)->q_lowat = WR(ip_rq)->q_qinfo->qi_minfo->mi_lowat;
1898 
1899 	ASSERT(udp->udp_rcv_cnt == 0);
1900 	ASSERT(udp->udp_rcv_msgcnt == 0);
1901 	ASSERT(udp->udp_rcv_list_head == NULL);
1902 	ASSERT(udp->udp_rcv_list_tail == NULL);
1903 
1904 	udp_close_free(connp);
1905 
1906 	/*
1907 	 * Restore connp as an IP endpoint.
1908 	 * Locking required to prevent a race with udp_snmp_get()/
1909 	 * ipcl_get_next_conn(), which selects conn_t which are
1910 	 * IPCL_UDP and not CONN_CONDEMNED.
1911 	 */
1912 	mutex_enter(&connp->conn_lock);
1913 	connp->conn_flags &= ~IPCL_UDP;
1914 	connp->conn_state_flags &=
1915 	    ~(CONN_CLOSING | CONN_CONDEMNED | CONN_QUIESCED);
1916 	connp->conn_ulp_labeled = B_FALSE;
1917 	mutex_exit(&connp->conn_lock);
1918 
1919 	return (0);
1920 }
1921 
1922 /*
1923  * Called in the close path from IP (ip_quiesce_conn) to quiesce the conn
1924  */
1925 void
1926 udp_quiesce_conn(conn_t *connp)
1927 {
1928 	udp_t	*udp = connp->conn_udp;
1929 
1930 	if (cl_inet_unbind != NULL && udp->udp_state == TS_IDLE) {
1931 		/*
1932 		 * Running in cluster mode - register unbind information
1933 		 */
1934 		if (udp->udp_ipversion == IPV4_VERSION) {
1935 			(*cl_inet_unbind)(IPPROTO_UDP, AF_INET,
1936 			    (uint8_t *)(&(V4_PART_OF_V6(udp->udp_v6src))),
1937 			    (in_port_t)udp->udp_port);
1938 		} else {
1939 			(*cl_inet_unbind)(IPPROTO_UDP, AF_INET6,
1940 			    (uint8_t *)(&(udp->udp_v6src)),
1941 			    (in_port_t)udp->udp_port);
1942 		}
1943 	}
1944 
1945 	udp_bind_hash_remove(udp, B_FALSE);
1946 
1947 	mutex_enter(&connp->conn_lock);
1948 	while (udp->udp_reader_count != 0 || udp->udp_squeue_count != 0 ||
1949 	    udp->udp_mode != UDP_MT_HOT) {
1950 		cv_wait(&connp->conn_cv, &connp->conn_lock);
1951 	}
1952 	mutex_exit(&connp->conn_lock);
1953 }
1954 
1955 void
1956 udp_close_free(conn_t *connp)
1957 {
1958 	udp_t *udp = connp->conn_udp;
1959 
1960 	/* If there are any options associated with the stream, free them. */
1961 	if (udp->udp_ip_snd_options) {
1962 		mi_free((char *)udp->udp_ip_snd_options);
1963 		udp->udp_ip_snd_options = NULL;
1964 	}
1965 
1966 	if (udp->udp_ip_rcv_options) {
1967 		mi_free((char *)udp->udp_ip_rcv_options);
1968 		udp->udp_ip_rcv_options = NULL;
1969 	}
1970 
1971 	/* Free memory associated with sticky options */
1972 	if (udp->udp_sticky_hdrs_len != 0) {
1973 		kmem_free(udp->udp_sticky_hdrs,
1974 		    udp->udp_sticky_hdrs_len);
1975 		udp->udp_sticky_hdrs = NULL;
1976 		udp->udp_sticky_hdrs_len = 0;
1977 	}
1978 
1979 	ip6_pkt_free(&udp->udp_sticky_ipp);
1980 
1981 	udp->udp_connp = NULL;
1982 	netstack_rele(udp->udp_us->us_netstack);
1983 
1984 	connp->conn_udp = NULL;
1985 	kmem_cache_free(udp_cache, udp);
1986 }
1987 
1988 /*
1989  * This routine handles each T_DISCON_REQ message passed to udp
1990  * as an indicating that UDP is no longer connected. This results
1991  * in sending a T_BIND_REQ to IP to restore the binding to just
1992  * the local address/port.
1993  *
1994  * This routine sends down a T_BIND_REQ to IP with the following mblks:
1995  *	T_BIND_REQ	- specifying just the local address/port
1996  *	T_OK_ACK	- for the T_DISCON_REQ
1997  *
1998  * The disconnect completes in udp_rput.
1999  * When a T_BIND_ACK is received the appended T_OK_ACK is sent to the TPI user.
2000  * Should udp_rput receive T_ERROR_ACK for the T_BIND_REQ it will convert
2001  * it to an error ack for the appropriate primitive.
2002  */
2003 static void
2004 udp_disconnect(queue_t *q, mblk_t *mp)
2005 {
2006 	udp_t	*udp = Q_TO_UDP(q);
2007 	mblk_t	*mp1;
2008 	udp_fanout_t *udpf;
2009 	udp_stack_t *us;
2010 
2011 	us = udp->udp_us;
2012 	if (udp->udp_state != TS_DATA_XFER) {
2013 		(void) mi_strlog(q, 1, SL_ERROR|SL_TRACE,
2014 		    "udp_disconnect: bad state, %u", udp->udp_state);
2015 		udp_err_ack(q, mp, TOUTSTATE, 0);
2016 		return;
2017 	}
2018 	udpf = &us->us_bind_fanout[UDP_BIND_HASH(udp->udp_port,
2019 	    us->us_bind_fanout_size)];
2020 	mutex_enter(&udpf->uf_lock);
2021 	udp->udp_v6src = udp->udp_bound_v6src;
2022 	udp->udp_state = TS_IDLE;
2023 	mutex_exit(&udpf->uf_lock);
2024 
2025 	/*
2026 	 * Send down bind to IP to remove the full binding and revert
2027 	 * to the local address binding.
2028 	 */
2029 	if (udp->udp_family == AF_INET)
2030 		mp1 = udp_ip_bind_mp(udp, O_T_BIND_REQ, sizeof (sin_t));
2031 	else
2032 		mp1 = udp_ip_bind_mp(udp, O_T_BIND_REQ, sizeof (sin6_t));
2033 	if (mp1 == NULL) {
2034 		udp_err_ack(q, mp, TSYSERR, ENOMEM);
2035 		return;
2036 	}
2037 	mp = mi_tpi_ok_ack_alloc(mp);
2038 	if (mp == NULL) {
2039 		/* Unable to reuse the T_DISCON_REQ for the ack. */
2040 		udp_err_ack_prim(q, mp1, T_DISCON_REQ, TSYSERR, ENOMEM);
2041 		return;
2042 	}
2043 
2044 	if (udp->udp_family == AF_INET6) {
2045 		int error;
2046 
2047 		/* Rebuild the header template */
2048 		error = udp_build_hdrs(q, udp);
2049 		if (error != 0) {
2050 			udp_err_ack_prim(q, mp, T_DISCON_REQ, TSYSERR, error);
2051 			freemsg(mp1);
2052 			return;
2053 		}
2054 	}
2055 	mutex_enter(&udpf->uf_lock);
2056 	udp->udp_discon_pending = 1;
2057 	mutex_exit(&udpf->uf_lock);
2058 
2059 	/* Append the T_OK_ACK to the T_BIND_REQ for udp_rput */
2060 	linkb(mp1, mp);
2061 
2062 	if (udp->udp_family == AF_INET6)
2063 		mp1 = ip_bind_v6(q, mp1, udp->udp_connp, NULL);
2064 	else
2065 		mp1 = ip_bind_v4(q, mp1, udp->udp_connp);
2066 
2067 	if (mp1 != NULL)
2068 		udp_rput_other(_RD(q), mp1);
2069 	else
2070 		CONN_INC_REF(udp->udp_connp);
2071 }
2072 
2073 /* This routine creates a T_ERROR_ACK message and passes it upstream. */
2074 static void
2075 udp_err_ack(queue_t *q, mblk_t *mp, t_scalar_t t_error, int sys_error)
2076 {
2077 	if ((mp = mi_tpi_err_ack_alloc(mp, t_error, sys_error)) != NULL)
2078 		putnext(UDP_RD(q), mp);
2079 }
2080 
2081 /* Shorthand to generate and send TPI error acks to our client */
2082 static void
2083 udp_err_ack_prim(queue_t *q, mblk_t *mp, int primitive, t_scalar_t t_error,
2084     int sys_error)
2085 {
2086 	struct T_error_ack	*teackp;
2087 
2088 	if ((mp = tpi_ack_alloc(mp, sizeof (struct T_error_ack),
2089 	    M_PCPROTO, T_ERROR_ACK)) != NULL) {
2090 		teackp = (struct T_error_ack *)mp->b_rptr;
2091 		teackp->ERROR_prim = primitive;
2092 		teackp->TLI_error = t_error;
2093 		teackp->UNIX_error = sys_error;
2094 		putnext(UDP_RD(q), mp);
2095 	}
2096 }
2097 
2098 /*ARGSUSED*/
2099 static int
2100 udp_extra_priv_ports_get(queue_t *q, mblk_t *mp, caddr_t cp, cred_t *cr)
2101 {
2102 	int i;
2103 	udp_t		*udp = Q_TO_UDP(q);
2104 	udp_stack_t *us = udp->udp_us;
2105 
2106 	for (i = 0; i < us->us_num_epriv_ports; i++) {
2107 		if (us->us_epriv_ports[i] != 0)
2108 			(void) mi_mpprintf(mp, "%d ", us->us_epriv_ports[i]);
2109 	}
2110 	return (0);
2111 }
2112 
2113 /* ARGSUSED */
2114 static int
2115 udp_extra_priv_ports_add(queue_t *q, mblk_t *mp, char *value, caddr_t cp,
2116     cred_t *cr)
2117 {
2118 	long	new_value;
2119 	int	i;
2120 	udp_t		*udp = Q_TO_UDP(q);
2121 	udp_stack_t *us = udp->udp_us;
2122 
2123 	/*
2124 	 * Fail the request if the new value does not lie within the
2125 	 * port number limits.
2126 	 */
2127 	if (ddi_strtol(value, NULL, 10, &new_value) != 0 ||
2128 	    new_value <= 0 || new_value >= 65536) {
2129 		return (EINVAL);
2130 	}
2131 
2132 	/* Check if the value is already in the list */
2133 	for (i = 0; i < us->us_num_epriv_ports; i++) {
2134 		if (new_value == us->us_epriv_ports[i]) {
2135 			return (EEXIST);
2136 		}
2137 	}
2138 	/* Find an empty slot */
2139 	for (i = 0; i < us->us_num_epriv_ports; i++) {
2140 		if (us->us_epriv_ports[i] == 0)
2141 			break;
2142 	}
2143 	if (i == us->us_num_epriv_ports) {
2144 		return (EOVERFLOW);
2145 	}
2146 
2147 	/* Set the new value */
2148 	us->us_epriv_ports[i] = (in_port_t)new_value;
2149 	return (0);
2150 }
2151 
2152 /* ARGSUSED */
2153 static int
2154 udp_extra_priv_ports_del(queue_t *q, mblk_t *mp, char *value, caddr_t cp,
2155     cred_t *cr)
2156 {
2157 	long	new_value;
2158 	int	i;
2159 	udp_t		*udp = Q_TO_UDP(q);
2160 	udp_stack_t *us = udp->udp_us;
2161 
2162 	/*
2163 	 * Fail the request if the new value does not lie within the
2164 	 * port number limits.
2165 	 */
2166 	if (ddi_strtol(value, NULL, 10, &new_value) != 0 ||
2167 	    new_value <= 0 || new_value >= 65536) {
2168 		return (EINVAL);
2169 	}
2170 
2171 	/* Check that the value is already in the list */
2172 	for (i = 0; i < us->us_num_epriv_ports; i++) {
2173 		if (us->us_epriv_ports[i] == new_value)
2174 			break;
2175 	}
2176 	if (i == us->us_num_epriv_ports) {
2177 		return (ESRCH);
2178 	}
2179 
2180 	/* Clear the value */
2181 	us->us_epriv_ports[i] = 0;
2182 	return (0);
2183 }
2184 
2185 /* At minimum we need 4 bytes of UDP header */
2186 #define	ICMP_MIN_UDP_HDR	4
2187 
2188 /*
2189  * udp_icmp_error is called by udp_rput to process ICMP msgs. passed up by IP.
2190  * Generates the appropriate T_UDERROR_IND for permanent (non-transient) errors.
2191  * Assumes that IP has pulled up everything up to and including the ICMP header.
2192  * An M_CTL could potentially come here from some other module (i.e. if UDP
2193  * is pushed on some module other than IP). Thus, if we find that the M_CTL
2194  * does not have enough ICMP information , following STREAMS conventions,
2195  * we send it upstream assuming it is an M_CTL we don't understand.
2196  */
2197 static void
2198 udp_icmp_error(queue_t *q, mblk_t *mp)
2199 {
2200 	icmph_t *icmph;
2201 	ipha_t	*ipha;
2202 	int	iph_hdr_length;
2203 	udpha_t	*udpha;
2204 	sin_t	sin;
2205 	sin6_t	sin6;
2206 	mblk_t	*mp1;
2207 	int	error = 0;
2208 	size_t	mp_size = MBLKL(mp);
2209 	udp_t	*udp = Q_TO_UDP(q);
2210 
2211 	/*
2212 	 * Assume IP provides aligned packets - otherwise toss
2213 	 */
2214 	if (!OK_32PTR(mp->b_rptr)) {
2215 		freemsg(mp);
2216 		return;
2217 	}
2218 
2219 	/*
2220 	 * Verify that we have a complete IP header and the application has
2221 	 * asked for errors. If not, send it upstream.
2222 	 */
2223 	if (!udp->udp_dgram_errind || mp_size < sizeof (ipha_t)) {
2224 noticmpv4:
2225 		putnext(UDP_RD(q), mp);
2226 		return;
2227 	}
2228 
2229 	ipha = (ipha_t *)mp->b_rptr;
2230 	/*
2231 	 * Verify IP version. Anything other than IPv4 or IPv6 packet is sent
2232 	 * upstream. ICMPv6  is handled in udp_icmp_error_ipv6.
2233 	 */
2234 	switch (IPH_HDR_VERSION(ipha)) {
2235 	case IPV6_VERSION:
2236 		udp_icmp_error_ipv6(q, mp);
2237 		return;
2238 	case IPV4_VERSION:
2239 		break;
2240 	default:
2241 		goto noticmpv4;
2242 	}
2243 
2244 	/* Skip past the outer IP and ICMP headers */
2245 	iph_hdr_length = IPH_HDR_LENGTH(ipha);
2246 	icmph = (icmph_t *)&mp->b_rptr[iph_hdr_length];
2247 	/*
2248 	 * If we don't have the correct outer IP header length or if the ULP
2249 	 * is not IPPROTO_ICMP or if we don't have a complete inner IP header
2250 	 * send the packet upstream.
2251 	 */
2252 	if (iph_hdr_length < sizeof (ipha_t) ||
2253 	    ipha->ipha_protocol != IPPROTO_ICMP ||
2254 	    (ipha_t *)&icmph[1] + 1 > (ipha_t *)mp->b_wptr) {
2255 		goto noticmpv4;
2256 	}
2257 	ipha = (ipha_t *)&icmph[1];
2258 
2259 	/* Skip past the inner IP and find the ULP header */
2260 	iph_hdr_length = IPH_HDR_LENGTH(ipha);
2261 	udpha = (udpha_t *)((char *)ipha + iph_hdr_length);
2262 	/*
2263 	 * If we don't have the correct inner IP header length or if the ULP
2264 	 * is not IPPROTO_UDP or if we don't have at least ICMP_MIN_UDP_HDR
2265 	 * bytes of UDP header, send it upstream.
2266 	 */
2267 	if (iph_hdr_length < sizeof (ipha_t) ||
2268 	    ipha->ipha_protocol != IPPROTO_UDP ||
2269 	    (uchar_t *)udpha + ICMP_MIN_UDP_HDR > mp->b_wptr) {
2270 		goto noticmpv4;
2271 	}
2272 
2273 	switch (icmph->icmph_type) {
2274 	case ICMP_DEST_UNREACHABLE:
2275 		switch (icmph->icmph_code) {
2276 		case ICMP_FRAGMENTATION_NEEDED:
2277 			/*
2278 			 * IP has already adjusted the path MTU.
2279 			 * XXX Somehow pass MTU indication to application?
2280 			 */
2281 			break;
2282 		case ICMP_PORT_UNREACHABLE:
2283 		case ICMP_PROTOCOL_UNREACHABLE:
2284 			error = ECONNREFUSED;
2285 			break;
2286 		default:
2287 			/* Transient errors */
2288 			break;
2289 		}
2290 		break;
2291 	default:
2292 		/* Transient errors */
2293 		break;
2294 	}
2295 	if (error == 0) {
2296 		freemsg(mp);
2297 		return;
2298 	}
2299 
2300 	switch (udp->udp_family) {
2301 	case AF_INET:
2302 		sin = sin_null;
2303 		sin.sin_family = AF_INET;
2304 		sin.sin_addr.s_addr = ipha->ipha_dst;
2305 		sin.sin_port = udpha->uha_dst_port;
2306 		mp1 = mi_tpi_uderror_ind((char *)&sin, sizeof (sin_t), NULL, 0,
2307 		    error);
2308 		break;
2309 	case AF_INET6:
2310 		sin6 = sin6_null;
2311 		sin6.sin6_family = AF_INET6;
2312 		IN6_IPADDR_TO_V4MAPPED(ipha->ipha_dst, &sin6.sin6_addr);
2313 		sin6.sin6_port = udpha->uha_dst_port;
2314 
2315 		mp1 = mi_tpi_uderror_ind((char *)&sin6, sizeof (sin6_t),
2316 		    NULL, 0, error);
2317 		break;
2318 	}
2319 	if (mp1)
2320 		putnext(UDP_RD(q), mp1);
2321 	freemsg(mp);
2322 }
2323 
2324 /*
2325  * udp_icmp_error_ipv6 is called by udp_icmp_error to process ICMP for IPv6.
2326  * Generates the appropriate T_UDERROR_IND for permanent (non-transient) errors.
2327  * Assumes that IP has pulled up all the extension headers as well as the
2328  * ICMPv6 header.
2329  * An M_CTL could potentially come here from some other module (i.e. if UDP
2330  * is pushed on some module other than IP). Thus, if we find that the M_CTL
2331  * does not have enough ICMP information , following STREAMS conventions,
2332  * we send it upstream assuming it is an M_CTL we don't understand. The reason
2333  * it might get here is if the non-ICMP M_CTL accidently has 6 in the version
2334  * field (when cast to ipha_t in udp_icmp_error).
2335  */
2336 static void
2337 udp_icmp_error_ipv6(queue_t *q, mblk_t *mp)
2338 {
2339 	icmp6_t		*icmp6;
2340 	ip6_t		*ip6h, *outer_ip6h;
2341 	uint16_t	hdr_length;
2342 	uint8_t		*nexthdrp;
2343 	udpha_t		*udpha;
2344 	sin6_t		sin6;
2345 	mblk_t		*mp1;
2346 	int		error = 0;
2347 	size_t		mp_size = MBLKL(mp);
2348 	udp_t		*udp = Q_TO_UDP(q);
2349 
2350 	/*
2351 	 * Verify that we have a complete IP header. If not, send it upstream.
2352 	 */
2353 	if (mp_size < sizeof (ip6_t)) {
2354 noticmpv6:
2355 		putnext(UDP_RD(q), mp);
2356 		return;
2357 	}
2358 
2359 	outer_ip6h = (ip6_t *)mp->b_rptr;
2360 	/*
2361 	 * Verify this is an ICMPV6 packet, else send it upstream
2362 	 */
2363 	if (outer_ip6h->ip6_nxt == IPPROTO_ICMPV6) {
2364 		hdr_length = IPV6_HDR_LEN;
2365 	} else if (!ip_hdr_length_nexthdr_v6(mp, outer_ip6h, &hdr_length,
2366 	    &nexthdrp) ||
2367 	    *nexthdrp != IPPROTO_ICMPV6) {
2368 		goto noticmpv6;
2369 	}
2370 	icmp6 = (icmp6_t *)&mp->b_rptr[hdr_length];
2371 	ip6h = (ip6_t *)&icmp6[1];
2372 	/*
2373 	 * Verify we have a complete ICMP and inner IP header.
2374 	 */
2375 	if ((uchar_t *)&ip6h[1] > mp->b_wptr)
2376 		goto noticmpv6;
2377 
2378 	if (!ip_hdr_length_nexthdr_v6(mp, ip6h, &hdr_length, &nexthdrp))
2379 		goto noticmpv6;
2380 	udpha = (udpha_t *)((char *)ip6h + hdr_length);
2381 	/*
2382 	 * Validate inner header. If the ULP is not IPPROTO_UDP or if we don't
2383 	 * have at least ICMP_MIN_UDP_HDR bytes of  UDP header send the
2384 	 * packet upstream.
2385 	 */
2386 	if ((*nexthdrp != IPPROTO_UDP) ||
2387 	    ((uchar_t *)udpha + ICMP_MIN_UDP_HDR) > mp->b_wptr) {
2388 		goto noticmpv6;
2389 	}
2390 
2391 	switch (icmp6->icmp6_type) {
2392 	case ICMP6_DST_UNREACH:
2393 		switch (icmp6->icmp6_code) {
2394 		case ICMP6_DST_UNREACH_NOPORT:
2395 			error = ECONNREFUSED;
2396 			break;
2397 		case ICMP6_DST_UNREACH_ADMIN:
2398 		case ICMP6_DST_UNREACH_NOROUTE:
2399 		case ICMP6_DST_UNREACH_BEYONDSCOPE:
2400 		case ICMP6_DST_UNREACH_ADDR:
2401 			/* Transient errors */
2402 			break;
2403 		default:
2404 			break;
2405 		}
2406 		break;
2407 	case ICMP6_PACKET_TOO_BIG: {
2408 		struct T_unitdata_ind	*tudi;
2409 		struct T_opthdr		*toh;
2410 		size_t			udi_size;
2411 		mblk_t			*newmp;
2412 		t_scalar_t		opt_length = sizeof (struct T_opthdr) +
2413 		    sizeof (struct ip6_mtuinfo);
2414 		sin6_t			*sin6;
2415 		struct ip6_mtuinfo	*mtuinfo;
2416 
2417 		/*
2418 		 * If the application has requested to receive path mtu
2419 		 * information, send up an empty message containing an
2420 		 * IPV6_PATHMTU ancillary data item.
2421 		 */
2422 		if (!udp->udp_ipv6_recvpathmtu)
2423 			break;
2424 
2425 		udi_size = sizeof (struct T_unitdata_ind) + sizeof (sin6_t) +
2426 		    opt_length;
2427 		if ((newmp = allocb(udi_size, BPRI_MED)) == NULL) {
2428 			BUMP_MIB(&udp->udp_mib, udpInErrors);
2429 			break;
2430 		}
2431 
2432 		/*
2433 		 * newmp->b_cont is left to NULL on purpose.  This is an
2434 		 * empty message containing only ancillary data.
2435 		 */
2436 		newmp->b_datap->db_type = M_PROTO;
2437 		tudi = (struct T_unitdata_ind *)newmp->b_rptr;
2438 		newmp->b_wptr = (uchar_t *)tudi + udi_size;
2439 		tudi->PRIM_type = T_UNITDATA_IND;
2440 		tudi->SRC_length = sizeof (sin6_t);
2441 		tudi->SRC_offset = sizeof (struct T_unitdata_ind);
2442 		tudi->OPT_offset = tudi->SRC_offset + sizeof (sin6_t);
2443 		tudi->OPT_length = opt_length;
2444 
2445 		sin6 = (sin6_t *)&tudi[1];
2446 		bzero(sin6, sizeof (sin6_t));
2447 		sin6->sin6_family = AF_INET6;
2448 		sin6->sin6_addr = udp->udp_v6dst;
2449 
2450 		toh = (struct T_opthdr *)&sin6[1];
2451 		toh->level = IPPROTO_IPV6;
2452 		toh->name = IPV6_PATHMTU;
2453 		toh->len = opt_length;
2454 		toh->status = 0;
2455 
2456 		mtuinfo = (struct ip6_mtuinfo *)&toh[1];
2457 		bzero(mtuinfo, sizeof (struct ip6_mtuinfo));
2458 		mtuinfo->ip6m_addr.sin6_family = AF_INET6;
2459 		mtuinfo->ip6m_addr.sin6_addr = ip6h->ip6_dst;
2460 		mtuinfo->ip6m_mtu = icmp6->icmp6_mtu;
2461 		/*
2462 		 * We've consumed everything we need from the original
2463 		 * message.  Free it, then send our empty message.
2464 		 */
2465 		freemsg(mp);
2466 		putnext(UDP_RD(q), newmp);
2467 		return;
2468 	}
2469 	case ICMP6_TIME_EXCEEDED:
2470 		/* Transient errors */
2471 		break;
2472 	case ICMP6_PARAM_PROB:
2473 		/* If this corresponds to an ICMP_PROTOCOL_UNREACHABLE */
2474 		if (icmp6->icmp6_code == ICMP6_PARAMPROB_NEXTHEADER &&
2475 		    (uchar_t *)ip6h + icmp6->icmp6_pptr ==
2476 		    (uchar_t *)nexthdrp) {
2477 			error = ECONNREFUSED;
2478 			break;
2479 		}
2480 		break;
2481 	}
2482 	if (error == 0) {
2483 		freemsg(mp);
2484 		return;
2485 	}
2486 
2487 	sin6 = sin6_null;
2488 	sin6.sin6_family = AF_INET6;
2489 	sin6.sin6_addr = ip6h->ip6_dst;
2490 	sin6.sin6_port = udpha->uha_dst_port;
2491 	sin6.sin6_flowinfo = ip6h->ip6_vcf & ~IPV6_VERS_AND_FLOW_MASK;
2492 
2493 	mp1 = mi_tpi_uderror_ind((char *)&sin6, sizeof (sin6_t), NULL, 0,
2494 	    error);
2495 	if (mp1)
2496 		putnext(UDP_RD(q), mp1);
2497 	freemsg(mp);
2498 }
2499 
2500 /*
2501  * This routine responds to T_ADDR_REQ messages.  It is called by udp_wput.
2502  * The local address is filled in if endpoint is bound. The remote address
2503  * is filled in if remote address has been precified ("connected endpoint")
2504  * (The concept of connected CLTS sockets is alien to published TPI
2505  *  but we support it anyway).
2506  */
2507 static void
2508 udp_addr_req(queue_t *q, mblk_t *mp)
2509 {
2510 	sin_t	*sin;
2511 	sin6_t	*sin6;
2512 	mblk_t	*ackmp;
2513 	struct T_addr_ack *taa;
2514 	udp_t	*udp = Q_TO_UDP(q);
2515 
2516 	/* Make it large enough for worst case */
2517 	ackmp = reallocb(mp, sizeof (struct T_addr_ack) +
2518 	    2 * sizeof (sin6_t), 1);
2519 	if (ackmp == NULL) {
2520 		udp_err_ack(q, mp, TSYSERR, ENOMEM);
2521 		return;
2522 	}
2523 	taa = (struct T_addr_ack *)ackmp->b_rptr;
2524 
2525 	bzero(taa, sizeof (struct T_addr_ack));
2526 	ackmp->b_wptr = (uchar_t *)&taa[1];
2527 
2528 	taa->PRIM_type = T_ADDR_ACK;
2529 	ackmp->b_datap->db_type = M_PCPROTO;
2530 	/*
2531 	 * Note: Following code assumes 32 bit alignment of basic
2532 	 * data structures like sin_t and struct T_addr_ack.
2533 	 */
2534 	if (udp->udp_state != TS_UNBND) {
2535 		/*
2536 		 * Fill in local address first
2537 		 */
2538 		taa->LOCADDR_offset = sizeof (*taa);
2539 		if (udp->udp_family == AF_INET) {
2540 			taa->LOCADDR_length = sizeof (sin_t);
2541 			sin = (sin_t *)&taa[1];
2542 			/* Fill zeroes and then initialize non-zero fields */
2543 			*sin = sin_null;
2544 			sin->sin_family = AF_INET;
2545 			if (!IN6_IS_ADDR_V4MAPPED_ANY(&udp->udp_v6src) &&
2546 			    !IN6_IS_ADDR_UNSPECIFIED(&udp->udp_v6src)) {
2547 				IN6_V4MAPPED_TO_IPADDR(&udp->udp_v6src,
2548 				    sin->sin_addr.s_addr);
2549 			} else {
2550 				/*
2551 				 * INADDR_ANY
2552 				 * udp_v6src is not set, we might be bound to
2553 				 * broadcast/multicast. Use udp_bound_v6src as
2554 				 * local address instead (that could
2555 				 * also still be INADDR_ANY)
2556 				 */
2557 				IN6_V4MAPPED_TO_IPADDR(&udp->udp_bound_v6src,
2558 				    sin->sin_addr.s_addr);
2559 			}
2560 			sin->sin_port = udp->udp_port;
2561 			ackmp->b_wptr = (uchar_t *)&sin[1];
2562 			if (udp->udp_state == TS_DATA_XFER) {
2563 				/*
2564 				 * connected, fill remote address too
2565 				 */
2566 				taa->REMADDR_length = sizeof (sin_t);
2567 				/* assumed 32-bit alignment */
2568 				taa->REMADDR_offset = taa->LOCADDR_offset +
2569 				    taa->LOCADDR_length;
2570 
2571 				sin = (sin_t *)(ackmp->b_rptr +
2572 				    taa->REMADDR_offset);
2573 				/* initialize */
2574 				*sin = sin_null;
2575 				sin->sin_family = AF_INET;
2576 				sin->sin_addr.s_addr =
2577 				    V4_PART_OF_V6(udp->udp_v6dst);
2578 				sin->sin_port = udp->udp_dstport;
2579 				ackmp->b_wptr = (uchar_t *)&sin[1];
2580 			}
2581 		} else {
2582 			taa->LOCADDR_length = sizeof (sin6_t);
2583 			sin6 = (sin6_t *)&taa[1];
2584 			/* Fill zeroes and then initialize non-zero fields */
2585 			*sin6 = sin6_null;
2586 			sin6->sin6_family = AF_INET6;
2587 			if (!IN6_IS_ADDR_UNSPECIFIED(&udp->udp_v6src)) {
2588 				sin6->sin6_addr = udp->udp_v6src;
2589 			} else {
2590 				/*
2591 				 * UNSPECIFIED
2592 				 * udp_v6src is not set, we might be bound to
2593 				 * broadcast/multicast. Use udp_bound_v6src as
2594 				 * local address instead (that could
2595 				 * also still be UNSPECIFIED)
2596 				 */
2597 				sin6->sin6_addr =
2598 				    udp->udp_bound_v6src;
2599 			}
2600 			sin6->sin6_port = udp->udp_port;
2601 			ackmp->b_wptr = (uchar_t *)&sin6[1];
2602 			if (udp->udp_state == TS_DATA_XFER) {
2603 				/*
2604 				 * connected, fill remote address too
2605 				 */
2606 				taa->REMADDR_length = sizeof (sin6_t);
2607 				/* assumed 32-bit alignment */
2608 				taa->REMADDR_offset = taa->LOCADDR_offset +
2609 				    taa->LOCADDR_length;
2610 
2611 				sin6 = (sin6_t *)(ackmp->b_rptr +
2612 				    taa->REMADDR_offset);
2613 				/* initialize */
2614 				*sin6 = sin6_null;
2615 				sin6->sin6_family = AF_INET6;
2616 				sin6->sin6_addr = udp->udp_v6dst;
2617 				sin6->sin6_port =  udp->udp_dstport;
2618 				ackmp->b_wptr = (uchar_t *)&sin6[1];
2619 			}
2620 			ackmp->b_wptr = (uchar_t *)&sin6[1];
2621 		}
2622 	}
2623 	ASSERT(ackmp->b_wptr <= ackmp->b_datap->db_lim);
2624 	putnext(UDP_RD(q), ackmp);
2625 }
2626 
2627 static void
2628 udp_copy_info(struct T_info_ack *tap, udp_t *udp)
2629 {
2630 	if (udp->udp_family == AF_INET) {
2631 		*tap = udp_g_t_info_ack_ipv4;
2632 	} else {
2633 		*tap = udp_g_t_info_ack_ipv6;
2634 	}
2635 	tap->CURRENT_state = udp->udp_state;
2636 	tap->OPT_size = udp_max_optsize;
2637 }
2638 
2639 /*
2640  * This routine responds to T_CAPABILITY_REQ messages.  It is called by
2641  * udp_wput.  Much of the T_CAPABILITY_ACK information is copied from
2642  * udp_g_t_info_ack.  The current state of the stream is copied from
2643  * udp_state.
2644  */
2645 static void
2646 udp_capability_req(queue_t *q, mblk_t *mp)
2647 {
2648 	t_uscalar_t		cap_bits1;
2649 	struct T_capability_ack	*tcap;
2650 	udp_t	*udp = Q_TO_UDP(q);
2651 
2652 	cap_bits1 = ((struct T_capability_req *)mp->b_rptr)->CAP_bits1;
2653 
2654 	mp = tpi_ack_alloc(mp, sizeof (struct T_capability_ack),
2655 	    mp->b_datap->db_type, T_CAPABILITY_ACK);
2656 	if (!mp)
2657 		return;
2658 
2659 	tcap = (struct T_capability_ack *)mp->b_rptr;
2660 	tcap->CAP_bits1 = 0;
2661 
2662 	if (cap_bits1 & TC1_INFO) {
2663 		udp_copy_info(&tcap->INFO_ack, udp);
2664 		tcap->CAP_bits1 |= TC1_INFO;
2665 	}
2666 
2667 	putnext(UDP_RD(q), mp);
2668 }
2669 
2670 /*
2671  * This routine responds to T_INFO_REQ messages.  It is called by udp_wput.
2672  * Most of the T_INFO_ACK information is copied from udp_g_t_info_ack.
2673  * The current state of the stream is copied from udp_state.
2674  */
2675 static void
2676 udp_info_req(queue_t *q, mblk_t *mp)
2677 {
2678 	udp_t *udp = Q_TO_UDP(q);
2679 
2680 	/* Create a T_INFO_ACK message. */
2681 	mp = tpi_ack_alloc(mp, sizeof (struct T_info_ack), M_PCPROTO,
2682 	    T_INFO_ACK);
2683 	if (!mp)
2684 		return;
2685 	udp_copy_info((struct T_info_ack *)mp->b_rptr, udp);
2686 	putnext(UDP_RD(q), mp);
2687 }
2688 
2689 /*
2690  * IP recognizes seven kinds of bind requests:
2691  *
2692  * - A zero-length address binds only to the protocol number.
2693  *
2694  * - A 4-byte address is treated as a request to
2695  * validate that the address is a valid local IPv4
2696  * address, appropriate for an application to bind to.
2697  * IP does the verification, but does not make any note
2698  * of the address at this time.
2699  *
2700  * - A 16-byte address contains is treated as a request
2701  * to validate a local IPv6 address, as the 4-byte
2702  * address case above.
2703  *
2704  * - A 16-byte sockaddr_in to validate the local IPv4 address and also
2705  * use it for the inbound fanout of packets.
2706  *
2707  * - A 24-byte sockaddr_in6 to validate the local IPv6 address and also
2708  * use it for the inbound fanout of packets.
2709  *
2710  * - A 12-byte address (ipa_conn_t) containing complete IPv4 fanout
2711  * information consisting of local and remote addresses
2712  * and ports.  In this case, the addresses are both
2713  * validated as appropriate for this operation, and, if
2714  * so, the information is retained for use in the
2715  * inbound fanout.
2716  *
2717  * - A 36-byte address address (ipa6_conn_t) containing complete IPv6
2718  * fanout information, like the 12-byte case above.
2719  *
2720  * IP will also fill in the IRE request mblk with information
2721  * regarding our peer.  In all cases, we notify IP of our protocol
2722  * type by appending a single protocol byte to the bind request.
2723  */
2724 static mblk_t *
2725 udp_ip_bind_mp(udp_t *udp, t_scalar_t bind_prim, t_scalar_t addr_length)
2726 {
2727 	char	*cp;
2728 	mblk_t	*mp;
2729 	struct T_bind_req *tbr;
2730 	ipa_conn_t	*ac;
2731 	ipa6_conn_t	*ac6;
2732 	sin_t		*sin;
2733 	sin6_t		*sin6;
2734 
2735 	ASSERT(bind_prim == O_T_BIND_REQ || bind_prim == T_BIND_REQ);
2736 
2737 	mp = allocb(sizeof (*tbr) + addr_length + 1, BPRI_HI);
2738 	if (!mp)
2739 		return (mp);
2740 	mp->b_datap->db_type = M_PROTO;
2741 	tbr = (struct T_bind_req *)mp->b_rptr;
2742 	tbr->PRIM_type = bind_prim;
2743 	tbr->ADDR_offset = sizeof (*tbr);
2744 	tbr->CONIND_number = 0;
2745 	tbr->ADDR_length = addr_length;
2746 	cp = (char *)&tbr[1];
2747 	switch (addr_length) {
2748 	case sizeof (ipa_conn_t):
2749 		ASSERT(udp->udp_family == AF_INET);
2750 		/* Append a request for an IRE */
2751 		mp->b_cont = allocb(sizeof (ire_t), BPRI_HI);
2752 		if (!mp->b_cont) {
2753 			freemsg(mp);
2754 			return (NULL);
2755 		}
2756 		mp->b_cont->b_wptr += sizeof (ire_t);
2757 		mp->b_cont->b_datap->db_type = IRE_DB_REQ_TYPE;
2758 
2759 		/* cp known to be 32 bit aligned */
2760 		ac = (ipa_conn_t *)cp;
2761 		ac->ac_laddr = V4_PART_OF_V6(udp->udp_v6src);
2762 		ac->ac_faddr = V4_PART_OF_V6(udp->udp_v6dst);
2763 		ac->ac_fport = udp->udp_dstport;
2764 		ac->ac_lport = udp->udp_port;
2765 		break;
2766 
2767 	case sizeof (ipa6_conn_t):
2768 		ASSERT(udp->udp_family == AF_INET6);
2769 		/* Append a request for an IRE */
2770 		mp->b_cont = allocb(sizeof (ire_t), BPRI_HI);
2771 		if (!mp->b_cont) {
2772 			freemsg(mp);
2773 			return (NULL);
2774 		}
2775 		mp->b_cont->b_wptr += sizeof (ire_t);
2776 		mp->b_cont->b_datap->db_type = IRE_DB_REQ_TYPE;
2777 
2778 		/* cp known to be 32 bit aligned */
2779 		ac6 = (ipa6_conn_t *)cp;
2780 		ac6->ac6_laddr = udp->udp_v6src;
2781 		ac6->ac6_faddr = udp->udp_v6dst;
2782 		ac6->ac6_fport = udp->udp_dstport;
2783 		ac6->ac6_lport = udp->udp_port;
2784 		break;
2785 
2786 	case sizeof (sin_t):
2787 		ASSERT(udp->udp_family == AF_INET);
2788 		/* Append a request for an IRE */
2789 		mp->b_cont = allocb(sizeof (ire_t), BPRI_HI);
2790 		if (!mp->b_cont) {
2791 			freemsg(mp);
2792 			return (NULL);
2793 		}
2794 		mp->b_cont->b_wptr += sizeof (ire_t);
2795 		mp->b_cont->b_datap->db_type = IRE_DB_REQ_TYPE;
2796 
2797 		sin = (sin_t *)cp;
2798 		*sin = sin_null;
2799 		sin->sin_family = AF_INET;
2800 		sin->sin_addr.s_addr = V4_PART_OF_V6(udp->udp_bound_v6src);
2801 		sin->sin_port = udp->udp_port;
2802 		break;
2803 
2804 	case sizeof (sin6_t):
2805 		ASSERT(udp->udp_family == AF_INET6);
2806 		/* Append a request for an IRE */
2807 		mp->b_cont = allocb(sizeof (ire_t), BPRI_HI);
2808 		if (!mp->b_cont) {
2809 			freemsg(mp);
2810 			return (NULL);
2811 		}
2812 		mp->b_cont->b_wptr += sizeof (ire_t);
2813 		mp->b_cont->b_datap->db_type = IRE_DB_REQ_TYPE;
2814 
2815 		sin6 = (sin6_t *)cp;
2816 		*sin6 = sin6_null;
2817 		sin6->sin6_family = AF_INET6;
2818 		sin6->sin6_addr = udp->udp_bound_v6src;
2819 		sin6->sin6_port = udp->udp_port;
2820 		break;
2821 	}
2822 	/* Add protocol number to end */
2823 	cp[addr_length] = (char)IPPROTO_UDP;
2824 	mp->b_wptr = (uchar_t *)&cp[addr_length + 1];
2825 	return (mp);
2826 }
2827 
2828 /*
2829  * This is the open routine for udp.  It allocates a udp_t structure for
2830  * the stream and, on the first open of the module, creates an ND table.
2831  */
2832 /* ARGSUSED */
2833 static int
2834 udp_open(queue_t *q, dev_t *devp, int flag, int sflag, cred_t *credp)
2835 {
2836 	int	err;
2837 	udp_t	*udp;
2838 	conn_t *connp;
2839 	queue_t	*ip_wq;
2840 	zoneid_t zoneid;
2841 	netstack_t *ns;
2842 	udp_stack_t *us;
2843 
2844 	TRACE_1(TR_FAC_UDP, TR_UDP_OPEN, "udp_open: q %p", q);
2845 
2846 	/* If the stream is already open, return immediately. */
2847 	if (q->q_ptr != NULL)
2848 		return (0);
2849 
2850 	/* If this is not a push of udp as a module, fail. */
2851 	if (sflag != MODOPEN)
2852 		return (EINVAL);
2853 
2854 	ns = netstack_find_by_cred(credp);
2855 	ASSERT(ns != NULL);
2856 	us = ns->netstack_udp;
2857 	ASSERT(us != NULL);
2858 
2859 	/*
2860 	 * For exclusive stacks we set the zoneid to zero
2861 	 * to make UDP operate as if in the global zone.
2862 	 */
2863 	if (us->us_netstack->netstack_stackid != GLOBAL_NETSTACKID)
2864 		zoneid = GLOBAL_ZONEID;
2865 	else
2866 		zoneid = crgetzoneid(credp);
2867 
2868 	q->q_hiwat = us->us_recv_hiwat;
2869 	WR(q)->q_hiwat = us->us_xmit_hiwat;
2870 	WR(q)->q_lowat = us->us_xmit_lowat;
2871 
2872 	/* Insert ourselves in the stream since we're about to walk q_next */
2873 	qprocson(q);
2874 
2875 	udp = kmem_cache_alloc(udp_cache, KM_SLEEP);
2876 	bzero(udp, sizeof (*udp));
2877 
2878 	/*
2879 	 * UDP is supported only as a module and it has to be pushed directly
2880 	 * above the device instance of IP. If UDP is pushed anywhere else
2881 	 * on a stream, it will support just T_SVR4_OPTMGMT_REQ for the
2882 	 * sake of MIB browsers and fail everything else.
2883 	 */
2884 	ip_wq = WR(q)->q_next;
2885 	if (NOT_OVER_IP(ip_wq)) {
2886 		/* Support just SNMP for MIB browsers */
2887 		connp = ipcl_conn_create(IPCL_IPCCONN, KM_SLEEP,
2888 		    us->us_netstack);
2889 		connp->conn_rq = q;
2890 		connp->conn_wq = WR(q);
2891 		connp->conn_flags |= IPCL_UDPMOD;
2892 		connp->conn_cred = credp;
2893 		connp->conn_zoneid = zoneid;
2894 		connp->conn_udp = udp;
2895 		udp->udp_us = us;
2896 		udp->udp_connp = connp;
2897 		q->q_ptr = WR(q)->q_ptr = connp;
2898 		crhold(credp);
2899 		q->q_qinfo = &udp_snmp_rinit;
2900 		WR(q)->q_qinfo = &udp_snmp_winit;
2901 		return (0);
2902 	}
2903 
2904 	/*
2905 	 * Initialize the udp_t structure for this stream.
2906 	 */
2907 	q = RD(ip_wq);
2908 	connp = Q_TO_CONN(q);
2909 	mutex_enter(&connp->conn_lock);
2910 	connp->conn_proto = IPPROTO_UDP;
2911 	connp->conn_flags |= IPCL_UDP;
2912 	connp->conn_sqp = IP_SQUEUE_GET(lbolt);
2913 	connp->conn_udp = udp;
2914 
2915 	/* Set the initial state of the stream and the privilege status. */
2916 	udp->udp_connp = connp;
2917 	udp->udp_state = TS_UNBND;
2918 	udp->udp_mode = UDP_MT_HOT;
2919 	if (getmajor(*devp) == (major_t)UDP6_MAJ) {
2920 		udp->udp_family = AF_INET6;
2921 		udp->udp_ipversion = IPV6_VERSION;
2922 		udp->udp_max_hdr_len = IPV6_HDR_LEN + UDPH_SIZE;
2923 		udp->udp_ttl = us->us_ipv6_hoplimit;
2924 		connp->conn_af_isv6 = B_TRUE;
2925 		connp->conn_flags |= IPCL_ISV6;
2926 	} else {
2927 		udp->udp_family = AF_INET;
2928 		udp->udp_ipversion = IPV4_VERSION;
2929 		udp->udp_max_hdr_len = IP_SIMPLE_HDR_LENGTH + UDPH_SIZE;
2930 		udp->udp_ttl = us->us_ipv4_ttl;
2931 		connp->conn_af_isv6 = B_FALSE;
2932 		connp->conn_flags &= ~IPCL_ISV6;
2933 	}
2934 
2935 	udp->udp_multicast_ttl = IP_DEFAULT_MULTICAST_TTL;
2936 	connp->conn_multicast_loop = IP_DEFAULT_MULTICAST_LOOP;
2937 	connp->conn_zoneid = zoneid;
2938 
2939 	udp->udp_open_time = lbolt64;
2940 	udp->udp_open_pid = curproc->p_pid;
2941 
2942 	/*
2943 	 * If the caller has the process-wide flag set, then default to MAC
2944 	 * exempt mode.  This allows read-down to unlabeled hosts.
2945 	 */
2946 	if (getpflags(NET_MAC_AWARE, credp) != 0)
2947 		udp->udp_mac_exempt = B_TRUE;
2948 
2949 	if (connp->conn_flags & IPCL_SOCKET) {
2950 		udp->udp_issocket = B_TRUE;
2951 		udp->udp_direct_sockfs = B_TRUE;
2952 	}
2953 
2954 	connp->conn_ulp_labeled = is_system_labeled();
2955 
2956 	mutex_exit(&connp->conn_lock);
2957 	udp->udp_us = us;
2958 
2959 	/*
2960 	 * The transmit hiwat/lowat is only looked at on IP's queue.
2961 	 * Store in q_hiwat in order to return on SO_SNDBUF/SO_RCVBUF
2962 	 * getsockopts.
2963 	 */
2964 	q->q_hiwat = us->us_recv_hiwat;
2965 	WR(q)->q_hiwat = us->us_xmit_hiwat;
2966 	WR(q)->q_lowat = us->us_xmit_lowat;
2967 
2968 	if (udp->udp_family == AF_INET6) {
2969 		/* Build initial header template for transmit */
2970 		if ((err = udp_build_hdrs(q, udp)) != 0) {
2971 			/* XXX missing free of connp? crfree? netstack_rele? */
2972 			qprocsoff(UDP_RD(q));
2973 			udp->udp_connp = NULL;
2974 			connp->conn_udp = NULL;
2975 			kmem_cache_free(udp_cache, udp);
2976 			return (err);
2977 		}
2978 	}
2979 
2980 	/* Set the Stream head write offset and high watermark. */
2981 	(void) mi_set_sth_wroff(UDP_RD(q),
2982 	    udp->udp_max_hdr_len + us->us_wroff_extra);
2983 	(void) mi_set_sth_hiwat(UDP_RD(q), udp_set_rcv_hiwat(udp, q->q_hiwat));
2984 
2985 	return (0);
2986 }
2987 
2988 /*
2989  * Which UDP options OK to set through T_UNITDATA_REQ...
2990  */
2991 /* ARGSUSED */
2992 static boolean_t
2993 udp_opt_allow_udr_set(t_scalar_t level, t_scalar_t name)
2994 {
2995 	return (B_TRUE);
2996 }
2997 
2998 /*
2999  * This routine gets default values of certain options whose default
3000  * values are maintained by protcol specific code
3001  */
3002 /* ARGSUSED */
3003 int
3004 udp_opt_default(queue_t	*q, t_scalar_t level, t_scalar_t name, uchar_t *ptr)
3005 {
3006 	udp_t		*udp = Q_TO_UDP(q);
3007 	udp_stack_t *us = udp->udp_us;
3008 	int *i1 = (int *)ptr;
3009 
3010 	switch (level) {
3011 	case IPPROTO_IP:
3012 		switch (name) {
3013 		case IP_MULTICAST_TTL:
3014 			*ptr = (uchar_t)IP_DEFAULT_MULTICAST_TTL;
3015 			return (sizeof (uchar_t));
3016 		case IP_MULTICAST_LOOP:
3017 			*ptr = (uchar_t)IP_DEFAULT_MULTICAST_LOOP;
3018 			return (sizeof (uchar_t));
3019 		}
3020 		break;
3021 	case IPPROTO_IPV6:
3022 		switch (name) {
3023 		case IPV6_MULTICAST_HOPS:
3024 			*i1 = IP_DEFAULT_MULTICAST_TTL;
3025 			return (sizeof (int));
3026 		case IPV6_MULTICAST_LOOP:
3027 			*i1 = IP_DEFAULT_MULTICAST_LOOP;
3028 			return (sizeof (int));
3029 		case IPV6_UNICAST_HOPS:
3030 			*i1 = us->us_ipv6_hoplimit;
3031 			return (sizeof (int));
3032 		}
3033 		break;
3034 	}
3035 	return (-1);
3036 }
3037 
3038 /*
3039  * This routine retrieves the current status of socket options
3040  * and expects the caller to pass in the queue pointer of the
3041  * upper instance.  It returns the size of the option retrieved.
3042  */
3043 int
3044 udp_opt_get(queue_t *q, t_scalar_t level, t_scalar_t name, uchar_t *ptr)
3045 {
3046 	int	*i1 = (int *)ptr;
3047 	conn_t	*connp;
3048 	udp_t	*udp;
3049 	ip6_pkt_t *ipp;
3050 	int	len;
3051 	udp_stack_t	*us;
3052 
3053 	q = UDP_WR(q);
3054 	connp = Q_TO_CONN(q);
3055 	udp = connp->conn_udp;
3056 	ipp = &udp->udp_sticky_ipp;
3057 	us = udp->udp_us;
3058 
3059 	switch (level) {
3060 	case SOL_SOCKET:
3061 		switch (name) {
3062 		case SO_DEBUG:
3063 			*i1 = udp->udp_debug;
3064 			break;	/* goto sizeof (int) option return */
3065 		case SO_REUSEADDR:
3066 			*i1 = udp->udp_reuseaddr;
3067 			break;	/* goto sizeof (int) option return */
3068 		case SO_TYPE:
3069 			*i1 = SOCK_DGRAM;
3070 			break;	/* goto sizeof (int) option return */
3071 
3072 		/*
3073 		 * The following three items are available here,
3074 		 * but are only meaningful to IP.
3075 		 */
3076 		case SO_DONTROUTE:
3077 			*i1 = udp->udp_dontroute;
3078 			break;	/* goto sizeof (int) option return */
3079 		case SO_USELOOPBACK:
3080 			*i1 = udp->udp_useloopback;
3081 			break;	/* goto sizeof (int) option return */
3082 		case SO_BROADCAST:
3083 			*i1 = udp->udp_broadcast;
3084 			break;	/* goto sizeof (int) option return */
3085 
3086 		case SO_SNDBUF:
3087 			*i1 = q->q_hiwat;
3088 			break;	/* goto sizeof (int) option return */
3089 		case SO_RCVBUF:
3090 			*i1 = RD(q)->q_hiwat;
3091 			break;	/* goto sizeof (int) option return */
3092 		case SO_DGRAM_ERRIND:
3093 			*i1 = udp->udp_dgram_errind;
3094 			break;	/* goto sizeof (int) option return */
3095 		case SO_RECVUCRED:
3096 			*i1 = udp->udp_recvucred;
3097 			break;	/* goto sizeof (int) option return */
3098 		case SO_TIMESTAMP:
3099 			*i1 = udp->udp_timestamp;
3100 			break;	/* goto sizeof (int) option return */
3101 		case SO_ANON_MLP:
3102 			*i1 = udp->udp_anon_mlp;
3103 			break;	/* goto sizeof (int) option return */
3104 		case SO_MAC_EXEMPT:
3105 			*i1 = udp->udp_mac_exempt;
3106 			break;	/* goto sizeof (int) option return */
3107 		case SO_ALLZONES:
3108 			*i1 = connp->conn_allzones;
3109 			break;	/* goto sizeof (int) option return */
3110 		case SO_EXCLBIND:
3111 			*i1 = udp->udp_exclbind ? SO_EXCLBIND : 0;
3112 			break;
3113 		case SO_PROTOTYPE:
3114 			*i1 = IPPROTO_UDP;
3115 			break;
3116 		case SO_DOMAIN:
3117 			*i1 = udp->udp_family;
3118 			break;
3119 		default:
3120 			return (-1);
3121 		}
3122 		break;
3123 	case IPPROTO_IP:
3124 		if (udp->udp_family != AF_INET)
3125 			return (-1);
3126 		switch (name) {
3127 		case IP_OPTIONS:
3128 		case T_IP_OPTIONS:
3129 			len = udp->udp_ip_rcv_options_len - udp->udp_label_len;
3130 			if (len > 0) {
3131 				bcopy(udp->udp_ip_rcv_options +
3132 				    udp->udp_label_len, ptr, len);
3133 			}
3134 			return (len);
3135 		case IP_TOS:
3136 		case T_IP_TOS:
3137 			*i1 = (int)udp->udp_type_of_service;
3138 			break;	/* goto sizeof (int) option return */
3139 		case IP_TTL:
3140 			*i1 = (int)udp->udp_ttl;
3141 			break;	/* goto sizeof (int) option return */
3142 		case IP_NEXTHOP:
3143 		case IP_RECVPKTINFO:
3144 			/*
3145 			 * This also handles IP_PKTINFO.
3146 			 * IP_PKTINFO and IP_RECVPKTINFO have the same value.
3147 			 * Differentiation is based on the size of the argument
3148 			 * passed in.
3149 			 * This option is handled in IP which will return an
3150 			 * error for IP_PKTINFO as it's not supported as a
3151 			 * sticky option.
3152 			 */
3153 			return (-EINVAL);
3154 		case IP_MULTICAST_IF:
3155 			/* 0 address if not set */
3156 			*(ipaddr_t *)ptr = udp->udp_multicast_if_addr;
3157 			return (sizeof (ipaddr_t));
3158 		case IP_MULTICAST_TTL:
3159 			*(uchar_t *)ptr = udp->udp_multicast_ttl;
3160 			return (sizeof (uchar_t));
3161 		case IP_MULTICAST_LOOP:
3162 			*ptr = connp->conn_multicast_loop;
3163 			return (sizeof (uint8_t));
3164 		case IP_RECVOPTS:
3165 			*i1 = udp->udp_recvopts;
3166 			break;	/* goto sizeof (int) option return */
3167 		case IP_RECVDSTADDR:
3168 			*i1 = udp->udp_recvdstaddr;
3169 			break;	/* goto sizeof (int) option return */
3170 		case IP_RECVIF:
3171 			*i1 = udp->udp_recvif;
3172 			break;	/* goto sizeof (int) option return */
3173 		case IP_RECVSLLA:
3174 			*i1 = udp->udp_recvslla;
3175 			break;	/* goto sizeof (int) option return */
3176 		case IP_RECVTTL:
3177 			*i1 = udp->udp_recvttl;
3178 			break;	/* goto sizeof (int) option return */
3179 		case IP_ADD_MEMBERSHIP:
3180 		case IP_DROP_MEMBERSHIP:
3181 		case IP_BLOCK_SOURCE:
3182 		case IP_UNBLOCK_SOURCE:
3183 		case IP_ADD_SOURCE_MEMBERSHIP:
3184 		case IP_DROP_SOURCE_MEMBERSHIP:
3185 		case MCAST_JOIN_GROUP:
3186 		case MCAST_LEAVE_GROUP:
3187 		case MCAST_BLOCK_SOURCE:
3188 		case MCAST_UNBLOCK_SOURCE:
3189 		case MCAST_JOIN_SOURCE_GROUP:
3190 		case MCAST_LEAVE_SOURCE_GROUP:
3191 		case IP_DONTFAILOVER_IF:
3192 			/* cannot "get" the value for these */
3193 			return (-1);
3194 		case IP_BOUND_IF:
3195 			/* Zero if not set */
3196 			*i1 = udp->udp_bound_if;
3197 			break;	/* goto sizeof (int) option return */
3198 		case IP_UNSPEC_SRC:
3199 			*i1 = udp->udp_unspec_source;
3200 			break;	/* goto sizeof (int) option return */
3201 		case IP_XMIT_IF:
3202 			*i1 = udp->udp_xmit_if;
3203 			break; /* goto sizeof (int) option return */
3204 		default:
3205 			return (-1);
3206 		}
3207 		break;
3208 	case IPPROTO_IPV6:
3209 		if (udp->udp_family != AF_INET6)
3210 			return (-1);
3211 		switch (name) {
3212 		case IPV6_UNICAST_HOPS:
3213 			*i1 = (unsigned int)udp->udp_ttl;
3214 			break;	/* goto sizeof (int) option return */
3215 		case IPV6_MULTICAST_IF:
3216 			/* 0 index if not set */
3217 			*i1 = udp->udp_multicast_if_index;
3218 			break;	/* goto sizeof (int) option return */
3219 		case IPV6_MULTICAST_HOPS:
3220 			*i1 = udp->udp_multicast_ttl;
3221 			break;	/* goto sizeof (int) option return */
3222 		case IPV6_MULTICAST_LOOP:
3223 			*i1 = connp->conn_multicast_loop;
3224 			break;	/* goto sizeof (int) option return */
3225 		case IPV6_JOIN_GROUP:
3226 		case IPV6_LEAVE_GROUP:
3227 		case MCAST_JOIN_GROUP:
3228 		case MCAST_LEAVE_GROUP:
3229 		case MCAST_BLOCK_SOURCE:
3230 		case MCAST_UNBLOCK_SOURCE:
3231 		case MCAST_JOIN_SOURCE_GROUP:
3232 		case MCAST_LEAVE_SOURCE_GROUP:
3233 			/* cannot "get" the value for these */
3234 			return (-1);
3235 		case IPV6_BOUND_IF:
3236 			/* Zero if not set */
3237 			*i1 = udp->udp_bound_if;
3238 			break;	/* goto sizeof (int) option return */
3239 		case IPV6_UNSPEC_SRC:
3240 			*i1 = udp->udp_unspec_source;
3241 			break;	/* goto sizeof (int) option return */
3242 		case IPV6_RECVPKTINFO:
3243 			*i1 = udp->udp_ip_recvpktinfo;
3244 			break;	/* goto sizeof (int) option return */
3245 		case IPV6_RECVTCLASS:
3246 			*i1 = udp->udp_ipv6_recvtclass;
3247 			break;	/* goto sizeof (int) option return */
3248 		case IPV6_RECVPATHMTU:
3249 			*i1 = udp->udp_ipv6_recvpathmtu;
3250 			break;	/* goto sizeof (int) option return */
3251 		case IPV6_RECVHOPLIMIT:
3252 			*i1 = udp->udp_ipv6_recvhoplimit;
3253 			break;	/* goto sizeof (int) option return */
3254 		case IPV6_RECVHOPOPTS:
3255 			*i1 = udp->udp_ipv6_recvhopopts;
3256 			break;	/* goto sizeof (int) option return */
3257 		case IPV6_RECVDSTOPTS:
3258 			*i1 = udp->udp_ipv6_recvdstopts;
3259 			break;	/* goto sizeof (int) option return */
3260 		case _OLD_IPV6_RECVDSTOPTS:
3261 			*i1 = udp->udp_old_ipv6_recvdstopts;
3262 			break;	/* goto sizeof (int) option return */
3263 		case IPV6_RECVRTHDRDSTOPTS:
3264 			*i1 = udp->udp_ipv6_recvrthdrdstopts;
3265 			break;	/* goto sizeof (int) option return */
3266 		case IPV6_RECVRTHDR:
3267 			*i1 = udp->udp_ipv6_recvrthdr;
3268 			break;	/* goto sizeof (int) option return */
3269 		case IPV6_PKTINFO: {
3270 			/* XXX assumes that caller has room for max size! */
3271 			struct in6_pktinfo *pkti;
3272 
3273 			pkti = (struct in6_pktinfo *)ptr;
3274 			if (ipp->ipp_fields & IPPF_IFINDEX)
3275 				pkti->ipi6_ifindex = ipp->ipp_ifindex;
3276 			else
3277 				pkti->ipi6_ifindex = 0;
3278 			if (ipp->ipp_fields & IPPF_ADDR)
3279 				pkti->ipi6_addr = ipp->ipp_addr;
3280 			else
3281 				pkti->ipi6_addr = ipv6_all_zeros;
3282 			return (sizeof (struct in6_pktinfo));
3283 		}
3284 		case IPV6_TCLASS:
3285 			if (ipp->ipp_fields & IPPF_TCLASS)
3286 				*i1 = ipp->ipp_tclass;
3287 			else
3288 				*i1 = IPV6_FLOW_TCLASS(
3289 				    IPV6_DEFAULT_VERS_AND_FLOW);
3290 			break;	/* goto sizeof (int) option return */
3291 		case IPV6_NEXTHOP: {
3292 			sin6_t *sin6 = (sin6_t *)ptr;
3293 
3294 			if (!(ipp->ipp_fields & IPPF_NEXTHOP))
3295 				return (0);
3296 			*sin6 = sin6_null;
3297 			sin6->sin6_family = AF_INET6;
3298 			sin6->sin6_addr = ipp->ipp_nexthop;
3299 			return (sizeof (sin6_t));
3300 		}
3301 		case IPV6_HOPOPTS:
3302 			if (!(ipp->ipp_fields & IPPF_HOPOPTS))
3303 				return (0);
3304 			if (ipp->ipp_hopoptslen <= udp->udp_label_len_v6)
3305 				return (0);
3306 			/*
3307 			 * The cipso/label option is added by kernel.
3308 			 * User is not usually aware of this option.
3309 			 * We copy out the hbh opt after the label option.
3310 			 */
3311 			bcopy((char *)ipp->ipp_hopopts + udp->udp_label_len_v6,
3312 			    ptr, ipp->ipp_hopoptslen - udp->udp_label_len_v6);
3313 			if (udp->udp_label_len_v6 > 0) {
3314 				ptr[0] = ((char *)ipp->ipp_hopopts)[0];
3315 				ptr[1] = (ipp->ipp_hopoptslen -
3316 				    udp->udp_label_len_v6 + 7) / 8 - 1;
3317 			}
3318 			return (ipp->ipp_hopoptslen - udp->udp_label_len_v6);
3319 		case IPV6_RTHDRDSTOPTS:
3320 			if (!(ipp->ipp_fields & IPPF_RTDSTOPTS))
3321 				return (0);
3322 			bcopy(ipp->ipp_rtdstopts, ptr, ipp->ipp_rtdstoptslen);
3323 			return (ipp->ipp_rtdstoptslen);
3324 		case IPV6_RTHDR:
3325 			if (!(ipp->ipp_fields & IPPF_RTHDR))
3326 				return (0);
3327 			bcopy(ipp->ipp_rthdr, ptr, ipp->ipp_rthdrlen);
3328 			return (ipp->ipp_rthdrlen);
3329 		case IPV6_DSTOPTS:
3330 			if (!(ipp->ipp_fields & IPPF_DSTOPTS))
3331 				return (0);
3332 			bcopy(ipp->ipp_dstopts, ptr, ipp->ipp_dstoptslen);
3333 			return (ipp->ipp_dstoptslen);
3334 		case IPV6_PATHMTU:
3335 			return (ip_fill_mtuinfo(&udp->udp_v6dst,
3336 			    udp->udp_dstport, (struct ip6_mtuinfo *)ptr,
3337 			    us->us_netstack));
3338 		default:
3339 			return (-1);
3340 		}
3341 		break;
3342 	case IPPROTO_UDP:
3343 		switch (name) {
3344 		case UDP_ANONPRIVBIND:
3345 			*i1 = udp->udp_anon_priv_bind;
3346 			break;
3347 		case UDP_EXCLBIND:
3348 			*i1 = udp->udp_exclbind ? UDP_EXCLBIND : 0;
3349 			break;
3350 		case UDP_RCVHDR:
3351 			*i1 = udp->udp_rcvhdr ? 1 : 0;
3352 			break;
3353 		case UDP_NAT_T_ENDPOINT:
3354 			*i1 = udp->udp_nat_t_endpoint;
3355 			break;
3356 		default:
3357 			return (-1);
3358 		}
3359 		break;
3360 	default:
3361 		return (-1);
3362 	}
3363 	return (sizeof (int));
3364 }
3365 
3366 /*
3367  * This routine sets socket options; it expects the caller
3368  * to pass in the queue pointer of the upper instance.
3369  */
3370 /* ARGSUSED */
3371 int
3372 udp_opt_set(queue_t *q, uint_t optset_context, int level,
3373     int name, uint_t inlen, uchar_t *invalp, uint_t *outlenp,
3374     uchar_t *outvalp, void *thisdg_attrs, cred_t *cr, mblk_t *mblk)
3375 {
3376 	udpattrs_t *attrs = thisdg_attrs;
3377 	int	*i1 = (int *)invalp;
3378 	boolean_t onoff = (*i1 == 0) ? 0 : 1;
3379 	boolean_t checkonly;
3380 	int	error;
3381 	conn_t	*connp;
3382 	udp_t	*udp;
3383 	uint_t	newlen;
3384 	udp_stack_t *us;
3385 
3386 	q = UDP_WR(q);
3387 	connp = Q_TO_CONN(q);
3388 	udp = connp->conn_udp;
3389 	us = udp->udp_us;
3390 
3391 	switch (optset_context) {
3392 	case SETFN_OPTCOM_CHECKONLY:
3393 		checkonly = B_TRUE;
3394 		/*
3395 		 * Note: Implies T_CHECK semantics for T_OPTCOM_REQ
3396 		 * inlen != 0 implies value supplied and
3397 		 * 	we have to "pretend" to set it.
3398 		 * inlen == 0 implies that there is no
3399 		 * 	value part in T_CHECK request and just validation
3400 		 * done elsewhere should be enough, we just return here.
3401 		 */
3402 		if (inlen == 0) {
3403 			*outlenp = 0;
3404 			return (0);
3405 		}
3406 		break;
3407 	case SETFN_OPTCOM_NEGOTIATE:
3408 		checkonly = B_FALSE;
3409 		break;
3410 	case SETFN_UD_NEGOTIATE:
3411 	case SETFN_CONN_NEGOTIATE:
3412 		checkonly = B_FALSE;
3413 		/*
3414 		 * Negotiating local and "association-related" options
3415 		 * through T_UNITDATA_REQ.
3416 		 *
3417 		 * Following routine can filter out ones we do not
3418 		 * want to be "set" this way.
3419 		 */
3420 		if (!udp_opt_allow_udr_set(level, name)) {
3421 			*outlenp = 0;
3422 			return (EINVAL);
3423 		}
3424 		break;
3425 	default:
3426 		/*
3427 		 * We should never get here
3428 		 */
3429 		*outlenp = 0;
3430 		return (EINVAL);
3431 	}
3432 
3433 	ASSERT((optset_context != SETFN_OPTCOM_CHECKONLY) ||
3434 	    (optset_context == SETFN_OPTCOM_CHECKONLY && inlen != 0));
3435 
3436 	/*
3437 	 * For fixed length options, no sanity check
3438 	 * of passed in length is done. It is assumed *_optcom_req()
3439 	 * routines do the right thing.
3440 	 */
3441 
3442 	switch (level) {
3443 	case SOL_SOCKET:
3444 		switch (name) {
3445 		case SO_REUSEADDR:
3446 			if (!checkonly)
3447 				udp->udp_reuseaddr = onoff;
3448 			break;
3449 		case SO_DEBUG:
3450 			if (!checkonly)
3451 				udp->udp_debug = onoff;
3452 			break;
3453 		/*
3454 		 * The following three items are available here,
3455 		 * but are only meaningful to IP.
3456 		 */
3457 		case SO_DONTROUTE:
3458 			if (!checkonly)
3459 				udp->udp_dontroute = onoff;
3460 			break;
3461 		case SO_USELOOPBACK:
3462 			if (!checkonly)
3463 				udp->udp_useloopback = onoff;
3464 			break;
3465 		case SO_BROADCAST:
3466 			if (!checkonly)
3467 				udp->udp_broadcast = onoff;
3468 			break;
3469 
3470 		case SO_SNDBUF:
3471 			if (*i1 > us->us_max_buf) {
3472 				*outlenp = 0;
3473 				return (ENOBUFS);
3474 			}
3475 			if (!checkonly) {
3476 				q->q_hiwat = *i1;
3477 				WR(UDP_RD(q))->q_hiwat = *i1;
3478 			}
3479 			break;
3480 		case SO_RCVBUF:
3481 			if (*i1 > us->us_max_buf) {
3482 				*outlenp = 0;
3483 				return (ENOBUFS);
3484 			}
3485 			if (!checkonly) {
3486 				RD(q)->q_hiwat = *i1;
3487 				UDP_RD(q)->q_hiwat = *i1;
3488 				(void) mi_set_sth_hiwat(UDP_RD(q),
3489 				    udp_set_rcv_hiwat(udp, *i1));
3490 			}
3491 			break;
3492 		case SO_DGRAM_ERRIND:
3493 			if (!checkonly)
3494 				udp->udp_dgram_errind = onoff;
3495 			break;
3496 		case SO_RECVUCRED:
3497 			if (!checkonly)
3498 				udp->udp_recvucred = onoff;
3499 			break;
3500 		case SO_ALLZONES:
3501 			/*
3502 			 * "soft" error (negative)
3503 			 * option not handled at this level
3504 			 * Do not modify *outlenp.
3505 			 */
3506 			return (-EINVAL);
3507 		case SO_TIMESTAMP:
3508 			if (!checkonly)
3509 				udp->udp_timestamp = onoff;
3510 			break;
3511 		case SO_ANON_MLP:
3512 			if (!checkonly)
3513 				udp->udp_anon_mlp = onoff;
3514 			break;
3515 		case SO_MAC_EXEMPT:
3516 			if (secpolicy_net_mac_aware(cr) != 0 ||
3517 			    udp->udp_state != TS_UNBND)
3518 				return (EACCES);
3519 			if (!checkonly)
3520 				udp->udp_mac_exempt = onoff;
3521 			break;
3522 		case SCM_UCRED: {
3523 			struct ucred_s *ucr;
3524 			cred_t *cr, *newcr;
3525 			ts_label_t *tsl;
3526 
3527 			/*
3528 			 * Only sockets that have proper privileges and are
3529 			 * bound to MLPs will have any other value here, so
3530 			 * this implicitly tests for privilege to set label.
3531 			 */
3532 			if (connp->conn_mlp_type == mlptSingle)
3533 				break;
3534 			ucr = (struct ucred_s *)invalp;
3535 			if (inlen != ucredsize ||
3536 			    ucr->uc_labeloff < sizeof (*ucr) ||
3537 			    ucr->uc_labeloff + sizeof (bslabel_t) > inlen)
3538 				return (EINVAL);
3539 			if (!checkonly) {
3540 				mblk_t *mb;
3541 
3542 				if (attrs == NULL ||
3543 				    (mb = attrs->udpattr_mb) == NULL)
3544 					return (EINVAL);
3545 				if ((cr = DB_CRED(mb)) == NULL)
3546 					cr = udp->udp_connp->conn_cred;
3547 				ASSERT(cr != NULL);
3548 				if ((tsl = crgetlabel(cr)) == NULL)
3549 					return (EINVAL);
3550 				newcr = copycred_from_bslabel(cr, UCLABEL(ucr),
3551 				    tsl->tsl_doi, KM_NOSLEEP);
3552 				if (newcr == NULL)
3553 					return (ENOSR);
3554 				mblk_setcred(mb, newcr);
3555 				attrs->udpattr_credset = B_TRUE;
3556 				crfree(newcr);
3557 			}
3558 			break;
3559 		}
3560 		case SO_EXCLBIND:
3561 			if (!checkonly)
3562 				udp->udp_exclbind = onoff;
3563 			break;
3564 		default:
3565 			*outlenp = 0;
3566 			return (EINVAL);
3567 		}
3568 		break;
3569 	case IPPROTO_IP:
3570 		if (udp->udp_family != AF_INET) {
3571 			*outlenp = 0;
3572 			return (ENOPROTOOPT);
3573 		}
3574 		switch (name) {
3575 		case IP_OPTIONS:
3576 		case T_IP_OPTIONS:
3577 			/* Save options for use by IP. */
3578 			newlen = inlen + udp->udp_label_len;
3579 			if ((inlen & 0x3) || newlen > IP_MAX_OPT_LENGTH) {
3580 				*outlenp = 0;
3581 				return (EINVAL);
3582 			}
3583 			if (checkonly)
3584 				break;
3585 
3586 			if (!tsol_option_set(&udp->udp_ip_snd_options,
3587 			    &udp->udp_ip_snd_options_len,
3588 			    udp->udp_label_len, invalp, inlen)) {
3589 				*outlenp = 0;
3590 				return (ENOMEM);
3591 			}
3592 
3593 			udp->udp_max_hdr_len = IP_SIMPLE_HDR_LENGTH +
3594 			    UDPH_SIZE + udp->udp_ip_snd_options_len;
3595 			(void) mi_set_sth_wroff(RD(q), udp->udp_max_hdr_len +
3596 			    us->us_wroff_extra);
3597 			break;
3598 
3599 		case IP_TTL:
3600 			if (!checkonly) {
3601 				udp->udp_ttl = (uchar_t)*i1;
3602 			}
3603 			break;
3604 		case IP_TOS:
3605 		case T_IP_TOS:
3606 			if (!checkonly) {
3607 				udp->udp_type_of_service = (uchar_t)*i1;
3608 			}
3609 			break;
3610 		case IP_MULTICAST_IF: {
3611 			/*
3612 			 * TODO should check OPTMGMT reply and undo this if
3613 			 * there is an error.
3614 			 */
3615 			struct in_addr *inap = (struct in_addr *)invalp;
3616 			if (!checkonly) {
3617 				udp->udp_multicast_if_addr =
3618 				    inap->s_addr;
3619 			}
3620 			break;
3621 		}
3622 		case IP_MULTICAST_TTL:
3623 			if (!checkonly)
3624 				udp->udp_multicast_ttl = *invalp;
3625 			break;
3626 		case IP_MULTICAST_LOOP:
3627 			if (!checkonly)
3628 				connp->conn_multicast_loop = *invalp;
3629 			break;
3630 		case IP_RECVOPTS:
3631 			if (!checkonly)
3632 				udp->udp_recvopts = onoff;
3633 			break;
3634 		case IP_RECVDSTADDR:
3635 			if (!checkonly)
3636 				udp->udp_recvdstaddr = onoff;
3637 			break;
3638 		case IP_RECVIF:
3639 			if (!checkonly)
3640 				udp->udp_recvif = onoff;
3641 			break;
3642 		case IP_RECVSLLA:
3643 			if (!checkonly)
3644 				udp->udp_recvslla = onoff;
3645 			break;
3646 		case IP_RECVTTL:
3647 			if (!checkonly)
3648 				udp->udp_recvttl = onoff;
3649 			break;
3650 		case IP_PKTINFO: {
3651 			/*
3652 			 * This also handles IP_RECVPKTINFO.
3653 			 * IP_PKTINFO and IP_RECVPKTINFO have same value.
3654 			 * Differentiation is based on the size of the
3655 			 * argument passed in.
3656 			 */
3657 			struct in_pktinfo *pktinfop;
3658 			ip4_pkt_t *attr_pktinfop;
3659 
3660 			if (checkonly)
3661 				break;
3662 
3663 			if (inlen == sizeof (int)) {
3664 				/*
3665 				 * This is IP_RECVPKTINFO option.
3666 				 * Keep a local copy of whether this option is
3667 				 * set or not and pass it down to IP for
3668 				 * processing.
3669 				 */
3670 
3671 				udp->udp_ip_recvpktinfo = onoff;
3672 				return (-EINVAL);
3673 			}
3674 
3675 			if (attrs == NULL ||
3676 			    (attr_pktinfop = attrs->udpattr_ipp4) == NULL) {
3677 				/*
3678 				 * sticky option or no buffer to return
3679 				 * the results.
3680 				 */
3681 				return (EINVAL);
3682 			}
3683 
3684 			if (inlen != sizeof (struct in_pktinfo))
3685 				return (EINVAL);
3686 
3687 			pktinfop = (struct in_pktinfo *)invalp;
3688 
3689 			/*
3690 			 * At least one of the values should be specified
3691 			 */
3692 			if (pktinfop->ipi_ifindex == 0 &&
3693 			    pktinfop->ipi_spec_dst.s_addr == INADDR_ANY) {
3694 				return (EINVAL);
3695 			}
3696 
3697 			attr_pktinfop->ip4_addr = pktinfop->ipi_spec_dst.s_addr;
3698 			attr_pktinfop->ip4_ill_index = pktinfop->ipi_ifindex;
3699 
3700 			break;
3701 		}
3702 		case IP_ADD_MEMBERSHIP:
3703 		case IP_DROP_MEMBERSHIP:
3704 		case IP_BLOCK_SOURCE:
3705 		case IP_UNBLOCK_SOURCE:
3706 		case IP_ADD_SOURCE_MEMBERSHIP:
3707 		case IP_DROP_SOURCE_MEMBERSHIP:
3708 		case MCAST_JOIN_GROUP:
3709 		case MCAST_LEAVE_GROUP:
3710 		case MCAST_BLOCK_SOURCE:
3711 		case MCAST_UNBLOCK_SOURCE:
3712 		case MCAST_JOIN_SOURCE_GROUP:
3713 		case MCAST_LEAVE_SOURCE_GROUP:
3714 		case IP_SEC_OPT:
3715 		case IP_NEXTHOP:
3716 			/*
3717 			 * "soft" error (negative)
3718 			 * option not handled at this level
3719 			 * Do not modify *outlenp.
3720 			 */
3721 			return (-EINVAL);
3722 		case IP_BOUND_IF:
3723 			if (!checkonly)
3724 				udp->udp_bound_if = *i1;
3725 			break;
3726 		case IP_UNSPEC_SRC:
3727 			if (!checkonly)
3728 				udp->udp_unspec_source = onoff;
3729 			break;
3730 		case IP_XMIT_IF:
3731 			if (!checkonly)
3732 				udp->udp_xmit_if = *i1;
3733 			break;
3734 		default:
3735 			*outlenp = 0;
3736 			return (EINVAL);
3737 		}
3738 		break;
3739 	case IPPROTO_IPV6: {
3740 		ip6_pkt_t		*ipp;
3741 		boolean_t		sticky;
3742 
3743 		if (udp->udp_family != AF_INET6) {
3744 			*outlenp = 0;
3745 			return (ENOPROTOOPT);
3746 		}
3747 		/*
3748 		 * Deal with both sticky options and ancillary data
3749 		 */
3750 		sticky = B_FALSE;
3751 		if (attrs == NULL || (ipp = attrs->udpattr_ipp6) ==
3752 		    NULL) {
3753 			/* sticky options, or none */
3754 			ipp = &udp->udp_sticky_ipp;
3755 			sticky = B_TRUE;
3756 		}
3757 
3758 		switch (name) {
3759 		case IPV6_MULTICAST_IF:
3760 			if (!checkonly)
3761 				udp->udp_multicast_if_index = *i1;
3762 			break;
3763 		case IPV6_UNICAST_HOPS:
3764 			/* -1 means use default */
3765 			if (*i1 < -1 || *i1 > IPV6_MAX_HOPS) {
3766 				*outlenp = 0;
3767 				return (EINVAL);
3768 			}
3769 			if (!checkonly) {
3770 				if (*i1 == -1) {
3771 					udp->udp_ttl = ipp->ipp_unicast_hops =
3772 					    us->us_ipv6_hoplimit;
3773 					ipp->ipp_fields &= ~IPPF_UNICAST_HOPS;
3774 					/* Pass modified value to IP. */
3775 					*i1 = udp->udp_ttl;
3776 				} else {
3777 					udp->udp_ttl = ipp->ipp_unicast_hops =
3778 					    (uint8_t)*i1;
3779 					ipp->ipp_fields |= IPPF_UNICAST_HOPS;
3780 				}
3781 				/* Rebuild the header template */
3782 				error = udp_build_hdrs(q, udp);
3783 				if (error != 0) {
3784 					*outlenp = 0;
3785 					return (error);
3786 				}
3787 			}
3788 			break;
3789 		case IPV6_MULTICAST_HOPS:
3790 			/* -1 means use default */
3791 			if (*i1 < -1 || *i1 > IPV6_MAX_HOPS) {
3792 				*outlenp = 0;
3793 				return (EINVAL);
3794 			}
3795 			if (!checkonly) {
3796 				if (*i1 == -1) {
3797 					udp->udp_multicast_ttl =
3798 					    ipp->ipp_multicast_hops =
3799 					    IP_DEFAULT_MULTICAST_TTL;
3800 					ipp->ipp_fields &= ~IPPF_MULTICAST_HOPS;
3801 					/* Pass modified value to IP. */
3802 					*i1 = udp->udp_multicast_ttl;
3803 				} else {
3804 					udp->udp_multicast_ttl =
3805 					    ipp->ipp_multicast_hops =
3806 					    (uint8_t)*i1;
3807 					ipp->ipp_fields |= IPPF_MULTICAST_HOPS;
3808 				}
3809 			}
3810 			break;
3811 		case IPV6_MULTICAST_LOOP:
3812 			if (*i1 != 0 && *i1 != 1) {
3813 				*outlenp = 0;
3814 				return (EINVAL);
3815 			}
3816 			if (!checkonly)
3817 				connp->conn_multicast_loop = *i1;
3818 			break;
3819 		case IPV6_JOIN_GROUP:
3820 		case IPV6_LEAVE_GROUP:
3821 		case MCAST_JOIN_GROUP:
3822 		case MCAST_LEAVE_GROUP:
3823 		case MCAST_BLOCK_SOURCE:
3824 		case MCAST_UNBLOCK_SOURCE:
3825 		case MCAST_JOIN_SOURCE_GROUP:
3826 		case MCAST_LEAVE_SOURCE_GROUP:
3827 			/*
3828 			 * "soft" error (negative)
3829 			 * option not handled at this level
3830 			 * Note: Do not modify *outlenp
3831 			 */
3832 			return (-EINVAL);
3833 		case IPV6_BOUND_IF:
3834 			if (!checkonly)
3835 				udp->udp_bound_if = *i1;
3836 			break;
3837 		case IPV6_UNSPEC_SRC:
3838 			if (!checkonly)
3839 				udp->udp_unspec_source = onoff;
3840 			break;
3841 		/*
3842 		 * Set boolean switches for ancillary data delivery
3843 		 */
3844 		case IPV6_RECVPKTINFO:
3845 			if (!checkonly)
3846 				udp->udp_ip_recvpktinfo = onoff;
3847 			break;
3848 		case IPV6_RECVTCLASS:
3849 			if (!checkonly) {
3850 				udp->udp_ipv6_recvtclass = onoff;
3851 			}
3852 			break;
3853 		case IPV6_RECVPATHMTU:
3854 			if (!checkonly) {
3855 				udp->udp_ipv6_recvpathmtu = onoff;
3856 			}
3857 			break;
3858 		case IPV6_RECVHOPLIMIT:
3859 			if (!checkonly)
3860 				udp->udp_ipv6_recvhoplimit = onoff;
3861 			break;
3862 		case IPV6_RECVHOPOPTS:
3863 			if (!checkonly)
3864 				udp->udp_ipv6_recvhopopts = onoff;
3865 			break;
3866 		case IPV6_RECVDSTOPTS:
3867 			if (!checkonly)
3868 				udp->udp_ipv6_recvdstopts = onoff;
3869 			break;
3870 		case _OLD_IPV6_RECVDSTOPTS:
3871 			if (!checkonly)
3872 				udp->udp_old_ipv6_recvdstopts = onoff;
3873 			break;
3874 		case IPV6_RECVRTHDRDSTOPTS:
3875 			if (!checkonly)
3876 				udp->udp_ipv6_recvrthdrdstopts = onoff;
3877 			break;
3878 		case IPV6_RECVRTHDR:
3879 			if (!checkonly)
3880 				udp->udp_ipv6_recvrthdr = onoff;
3881 			break;
3882 		/*
3883 		 * Set sticky options or ancillary data.
3884 		 * If sticky options, (re)build any extension headers
3885 		 * that might be needed as a result.
3886 		 */
3887 		case IPV6_PKTINFO:
3888 			/*
3889 			 * The source address and ifindex are verified
3890 			 * in ip_opt_set(). For ancillary data the
3891 			 * source address is checked in ip_wput_v6.
3892 			 */
3893 			if (inlen != 0 && inlen != sizeof (struct in6_pktinfo))
3894 				return (EINVAL);
3895 			if (checkonly)
3896 				break;
3897 
3898 			if (inlen == 0) {
3899 				ipp->ipp_fields &= ~(IPPF_IFINDEX|IPPF_ADDR);
3900 				ipp->ipp_sticky_ignored |=
3901 				    (IPPF_IFINDEX|IPPF_ADDR);
3902 			} else {
3903 				struct in6_pktinfo *pkti;
3904 
3905 				pkti = (struct in6_pktinfo *)invalp;
3906 				ipp->ipp_ifindex = pkti->ipi6_ifindex;
3907 				ipp->ipp_addr = pkti->ipi6_addr;
3908 				if (ipp->ipp_ifindex != 0)
3909 					ipp->ipp_fields |= IPPF_IFINDEX;
3910 				else
3911 					ipp->ipp_fields &= ~IPPF_IFINDEX;
3912 				if (!IN6_IS_ADDR_UNSPECIFIED(
3913 				    &ipp->ipp_addr))
3914 					ipp->ipp_fields |= IPPF_ADDR;
3915 				else
3916 					ipp->ipp_fields &= ~IPPF_ADDR;
3917 			}
3918 			if (sticky) {
3919 				error = udp_build_hdrs(q, udp);
3920 				if (error != 0)
3921 					return (error);
3922 			}
3923 			break;
3924 		case IPV6_HOPLIMIT:
3925 			if (sticky)
3926 				return (EINVAL);
3927 			if (inlen != 0 && inlen != sizeof (int))
3928 				return (EINVAL);
3929 			if (checkonly)
3930 				break;
3931 
3932 			if (inlen == 0) {
3933 				ipp->ipp_fields &= ~IPPF_HOPLIMIT;
3934 				ipp->ipp_sticky_ignored |= IPPF_HOPLIMIT;
3935 			} else {
3936 				if (*i1 > 255 || *i1 < -1)
3937 					return (EINVAL);
3938 				if (*i1 == -1)
3939 					ipp->ipp_hoplimit =
3940 					    us->us_ipv6_hoplimit;
3941 				else
3942 					ipp->ipp_hoplimit = *i1;
3943 				ipp->ipp_fields |= IPPF_HOPLIMIT;
3944 			}
3945 			break;
3946 		case IPV6_TCLASS:
3947 			if (inlen != 0 && inlen != sizeof (int))
3948 				return (EINVAL);
3949 			if (checkonly)
3950 				break;
3951 
3952 			if (inlen == 0) {
3953 				ipp->ipp_fields &= ~IPPF_TCLASS;
3954 				ipp->ipp_sticky_ignored |= IPPF_TCLASS;
3955 			} else {
3956 				if (*i1 > 255 || *i1 < -1)
3957 					return (EINVAL);
3958 				if (*i1 == -1)
3959 					ipp->ipp_tclass = 0;
3960 				else
3961 					ipp->ipp_tclass = *i1;
3962 				ipp->ipp_fields |= IPPF_TCLASS;
3963 			}
3964 			if (sticky) {
3965 				error = udp_build_hdrs(q, udp);
3966 				if (error != 0)
3967 					return (error);
3968 			}
3969 			break;
3970 		case IPV6_NEXTHOP:
3971 			/*
3972 			 * IP will verify that the nexthop is reachable
3973 			 * and fail for sticky options.
3974 			 */
3975 			if (inlen != 0 && inlen != sizeof (sin6_t))
3976 				return (EINVAL);
3977 			if (checkonly)
3978 				break;
3979 
3980 			if (inlen == 0) {
3981 				ipp->ipp_fields &= ~IPPF_NEXTHOP;
3982 				ipp->ipp_sticky_ignored |= IPPF_NEXTHOP;
3983 			} else {
3984 				sin6_t *sin6 = (sin6_t *)invalp;
3985 
3986 				if (sin6->sin6_family != AF_INET6)
3987 					return (EAFNOSUPPORT);
3988 				if (IN6_IS_ADDR_V4MAPPED(
3989 				    &sin6->sin6_addr))
3990 					return (EADDRNOTAVAIL);
3991 				ipp->ipp_nexthop = sin6->sin6_addr;
3992 				if (!IN6_IS_ADDR_UNSPECIFIED(
3993 				    &ipp->ipp_nexthop))
3994 					ipp->ipp_fields |= IPPF_NEXTHOP;
3995 				else
3996 					ipp->ipp_fields &= ~IPPF_NEXTHOP;
3997 			}
3998 			if (sticky) {
3999 				error = udp_build_hdrs(q, udp);
4000 				if (error != 0)
4001 					return (error);
4002 			}
4003 			break;
4004 		case IPV6_HOPOPTS: {
4005 			ip6_hbh_t *hopts = (ip6_hbh_t *)invalp;
4006 			/*
4007 			 * Sanity checks - minimum size, size a multiple of
4008 			 * eight bytes, and matching size passed in.
4009 			 */
4010 			if (inlen != 0 &&
4011 			    inlen != (8 * (hopts->ip6h_len + 1)))
4012 				return (EINVAL);
4013 
4014 			if (checkonly)
4015 				break;
4016 
4017 			error = optcom_pkt_set(invalp, inlen, sticky,
4018 			    (uchar_t **)&ipp->ipp_hopopts,
4019 			    &ipp->ipp_hopoptslen,
4020 			    sticky ? udp->udp_label_len_v6 : 0);
4021 			if (error != 0)
4022 				return (error);
4023 			if (ipp->ipp_hopoptslen == 0) {
4024 				ipp->ipp_fields &= ~IPPF_HOPOPTS;
4025 				ipp->ipp_sticky_ignored |= IPPF_HOPOPTS;
4026 			} else {
4027 				ipp->ipp_fields |= IPPF_HOPOPTS;
4028 			}
4029 			if (sticky) {
4030 				error = udp_build_hdrs(q, udp);
4031 				if (error != 0)
4032 					return (error);
4033 			}
4034 			break;
4035 		}
4036 		case IPV6_RTHDRDSTOPTS: {
4037 			ip6_dest_t *dopts = (ip6_dest_t *)invalp;
4038 
4039 			/*
4040 			 * Sanity checks - minimum size, size a multiple of
4041 			 * eight bytes, and matching size passed in.
4042 			 */
4043 			if (inlen != 0 &&
4044 			    inlen != (8 * (dopts->ip6d_len + 1)))
4045 				return (EINVAL);
4046 
4047 			if (checkonly)
4048 				break;
4049 
4050 			if (inlen == 0) {
4051 				if (sticky &&
4052 				    (ipp->ipp_fields & IPPF_RTDSTOPTS) != 0) {
4053 					kmem_free(ipp->ipp_rtdstopts,
4054 					    ipp->ipp_rtdstoptslen);
4055 					ipp->ipp_rtdstopts = NULL;
4056 					ipp->ipp_rtdstoptslen = 0;
4057 				}
4058 
4059 				ipp->ipp_fields &= ~IPPF_RTDSTOPTS;
4060 				ipp->ipp_sticky_ignored |= IPPF_RTDSTOPTS;
4061 			} else {
4062 				error = optcom_pkt_set(invalp, inlen, sticky,
4063 				    (uchar_t **)&ipp->ipp_rtdstopts,
4064 				    &ipp->ipp_rtdstoptslen, 0);
4065 				if (error != 0)
4066 					return (error);
4067 				ipp->ipp_fields |= IPPF_RTDSTOPTS;
4068 			}
4069 			if (sticky) {
4070 				error = udp_build_hdrs(q, udp);
4071 				if (error != 0)
4072 					return (error);
4073 			}
4074 			break;
4075 		}
4076 		case IPV6_DSTOPTS: {
4077 			ip6_dest_t *dopts = (ip6_dest_t *)invalp;
4078 
4079 			/*
4080 			 * Sanity checks - minimum size, size a multiple of
4081 			 * eight bytes, and matching size passed in.
4082 			 */
4083 			if (inlen != 0 &&
4084 			    inlen != (8 * (dopts->ip6d_len + 1)))
4085 				return (EINVAL);
4086 
4087 			if (checkonly)
4088 				break;
4089 
4090 			if (inlen == 0) {
4091 				if (sticky &&
4092 				    (ipp->ipp_fields & IPPF_DSTOPTS) != 0) {
4093 					kmem_free(ipp->ipp_dstopts,
4094 					    ipp->ipp_dstoptslen);
4095 					ipp->ipp_dstopts = NULL;
4096 					ipp->ipp_dstoptslen = 0;
4097 				}
4098 				ipp->ipp_fields &= ~IPPF_DSTOPTS;
4099 				ipp->ipp_sticky_ignored |= IPPF_DSTOPTS;
4100 			} else {
4101 				error = optcom_pkt_set(invalp, inlen, sticky,
4102 				    (uchar_t **)&ipp->ipp_dstopts,
4103 				    &ipp->ipp_dstoptslen, 0);
4104 				if (error != 0)
4105 					return (error);
4106 				ipp->ipp_fields |= IPPF_DSTOPTS;
4107 			}
4108 			if (sticky) {
4109 				error = udp_build_hdrs(q, udp);
4110 				if (error != 0)
4111 					return (error);
4112 			}
4113 			break;
4114 		}
4115 		case IPV6_RTHDR: {
4116 			ip6_rthdr_t *rt = (ip6_rthdr_t *)invalp;
4117 
4118 			/*
4119 			 * Sanity checks - minimum size, size a multiple of
4120 			 * eight bytes, and matching size passed in.
4121 			 */
4122 			if (inlen != 0 &&
4123 			    inlen != (8 * (rt->ip6r_len + 1)))
4124 				return (EINVAL);
4125 
4126 			if (checkonly)
4127 				break;
4128 
4129 			if (inlen == 0) {
4130 				if (sticky &&
4131 				    (ipp->ipp_fields & IPPF_RTHDR) != 0) {
4132 					kmem_free(ipp->ipp_rthdr,
4133 					    ipp->ipp_rthdrlen);
4134 					ipp->ipp_rthdr = NULL;
4135 					ipp->ipp_rthdrlen = 0;
4136 				}
4137 				ipp->ipp_fields &= ~IPPF_RTHDR;
4138 				ipp->ipp_sticky_ignored |= IPPF_RTHDR;
4139 			} else {
4140 				error = optcom_pkt_set(invalp, inlen, sticky,
4141 				    (uchar_t **)&ipp->ipp_rthdr,
4142 				    &ipp->ipp_rthdrlen, 0);
4143 				if (error != 0)
4144 					return (error);
4145 				ipp->ipp_fields |= IPPF_RTHDR;
4146 			}
4147 			if (sticky) {
4148 				error = udp_build_hdrs(q, udp);
4149 				if (error != 0)
4150 					return (error);
4151 			}
4152 			break;
4153 		}
4154 
4155 		case IPV6_DONTFRAG:
4156 			if (checkonly)
4157 				break;
4158 
4159 			if (onoff) {
4160 				ipp->ipp_fields |= IPPF_DONTFRAG;
4161 			} else {
4162 				ipp->ipp_fields &= ~IPPF_DONTFRAG;
4163 			}
4164 			break;
4165 
4166 		case IPV6_USE_MIN_MTU:
4167 			if (inlen != sizeof (int))
4168 				return (EINVAL);
4169 
4170 			if (*i1 < -1 || *i1 > 1)
4171 				return (EINVAL);
4172 
4173 			if (checkonly)
4174 				break;
4175 
4176 			ipp->ipp_fields |= IPPF_USE_MIN_MTU;
4177 			ipp->ipp_use_min_mtu = *i1;
4178 			break;
4179 
4180 		case IPV6_BOUND_PIF:
4181 		case IPV6_SEC_OPT:
4182 		case IPV6_DONTFAILOVER_IF:
4183 		case IPV6_SRC_PREFERENCES:
4184 		case IPV6_V6ONLY:
4185 			/* Handled at the IP level */
4186 			return (-EINVAL);
4187 		default:
4188 			*outlenp = 0;
4189 			return (EINVAL);
4190 		}
4191 		break;
4192 		}		/* end IPPROTO_IPV6 */
4193 	case IPPROTO_UDP:
4194 		switch (name) {
4195 		case UDP_ANONPRIVBIND:
4196 			if ((error = secpolicy_net_privaddr(cr, 0)) != 0) {
4197 				*outlenp = 0;
4198 				return (error);
4199 			}
4200 			if (!checkonly) {
4201 				udp->udp_anon_priv_bind = onoff;
4202 			}
4203 			break;
4204 		case UDP_EXCLBIND:
4205 			if (!checkonly)
4206 				udp->udp_exclbind = onoff;
4207 			break;
4208 		case UDP_RCVHDR:
4209 			if (!checkonly)
4210 				udp->udp_rcvhdr = onoff;
4211 			break;
4212 		case UDP_NAT_T_ENDPOINT:
4213 			if ((error = secpolicy_ip_config(cr, B_FALSE)) != 0) {
4214 				*outlenp = 0;
4215 				return (error);
4216 			}
4217 
4218 			/*
4219 			 * Use udp_family instead so we can avoid ambiguitites
4220 			 * with AF_INET6 sockets that may switch from IPv4
4221 			 * to IPv6.
4222 			 */
4223 			if (udp->udp_family != AF_INET) {
4224 				*outlenp = 0;
4225 				return (EAFNOSUPPORT);
4226 			}
4227 
4228 			if (!checkonly) {
4229 				udp->udp_nat_t_endpoint = onoff;
4230 
4231 				udp->udp_max_hdr_len = IP_SIMPLE_HDR_LENGTH +
4232 				    UDPH_SIZE + udp->udp_ip_snd_options_len;
4233 
4234 				/* Also, adjust wroff */
4235 				if (onoff) {
4236 					udp->udp_max_hdr_len +=
4237 					    sizeof (uint32_t);
4238 				}
4239 				(void) mi_set_sth_wroff(RD(q),
4240 				    udp->udp_max_hdr_len + us->us_wroff_extra);
4241 			}
4242 			break;
4243 		default:
4244 			*outlenp = 0;
4245 			return (EINVAL);
4246 		}
4247 		break;
4248 	default:
4249 		*outlenp = 0;
4250 		return (EINVAL);
4251 	}
4252 	/*
4253 	 * Common case of OK return with outval same as inval.
4254 	 */
4255 	if (invalp != outvalp) {
4256 		/* don't trust bcopy for identical src/dst */
4257 		(void) bcopy(invalp, outvalp, inlen);
4258 	}
4259 	*outlenp = inlen;
4260 	return (0);
4261 }
4262 
4263 /*
4264  * Update udp_sticky_hdrs based on udp_sticky_ipp, udp_v6src, and udp_ttl.
4265  * The headers include ip6i_t (if needed), ip6_t, any sticky extension
4266  * headers, and the udp header.
4267  * Returns failure if can't allocate memory.
4268  */
4269 static int
4270 udp_build_hdrs(queue_t *q, udp_t *udp)
4271 {
4272 	udp_stack_t *us = udp->udp_us;
4273 	uchar_t	*hdrs;
4274 	uint_t	hdrs_len;
4275 	ip6_t	*ip6h;
4276 	ip6i_t	*ip6i;
4277 	udpha_t	*udpha;
4278 	ip6_pkt_t *ipp = &udp->udp_sticky_ipp;
4279 
4280 	hdrs_len = ip_total_hdrs_len_v6(ipp) + UDPH_SIZE;
4281 	ASSERT(hdrs_len != 0);
4282 	if (hdrs_len != udp->udp_sticky_hdrs_len) {
4283 		/* Need to reallocate */
4284 		hdrs = kmem_alloc(hdrs_len, KM_NOSLEEP);
4285 		if (hdrs == NULL)
4286 			return (ENOMEM);
4287 
4288 		if (udp->udp_sticky_hdrs_len != 0) {
4289 			kmem_free(udp->udp_sticky_hdrs,
4290 			    udp->udp_sticky_hdrs_len);
4291 		}
4292 		udp->udp_sticky_hdrs = hdrs;
4293 		udp->udp_sticky_hdrs_len = hdrs_len;
4294 	}
4295 	ip_build_hdrs_v6(udp->udp_sticky_hdrs,
4296 	    udp->udp_sticky_hdrs_len - UDPH_SIZE, ipp, IPPROTO_UDP);
4297 
4298 	/* Set header fields not in ipp */
4299 	if (ipp->ipp_fields & IPPF_HAS_IP6I) {
4300 		ip6i = (ip6i_t *)udp->udp_sticky_hdrs;
4301 		ip6h = (ip6_t *)&ip6i[1];
4302 	} else {
4303 		ip6h = (ip6_t *)udp->udp_sticky_hdrs;
4304 	}
4305 
4306 	if (!(ipp->ipp_fields & IPPF_ADDR))
4307 		ip6h->ip6_src = udp->udp_v6src;
4308 
4309 	udpha = (udpha_t *)(udp->udp_sticky_hdrs + hdrs_len - UDPH_SIZE);
4310 	udpha->uha_src_port = udp->udp_port;
4311 
4312 	/* Try to get everything in a single mblk */
4313 	if (hdrs_len > udp->udp_max_hdr_len) {
4314 		udp->udp_max_hdr_len = hdrs_len;
4315 		(void) mi_set_sth_wroff(RD(q), udp->udp_max_hdr_len +
4316 		    us->us_wroff_extra);
4317 	}
4318 	return (0);
4319 }
4320 
4321 /*
4322  * This routine retrieves the value of an ND variable in a udpparam_t
4323  * structure.  It is called through nd_getset when a user reads the
4324  * variable.
4325  */
4326 /* ARGSUSED */
4327 static int
4328 udp_param_get(queue_t *q, mblk_t *mp, caddr_t cp, cred_t *cr)
4329 {
4330 	udpparam_t *udppa = (udpparam_t *)cp;
4331 
4332 	(void) mi_mpprintf(mp, "%d", udppa->udp_param_value);
4333 	return (0);
4334 }
4335 
4336 /*
4337  * Walk through the param array specified registering each element with the
4338  * named dispatch (ND) handler.
4339  */
4340 static boolean_t
4341 udp_param_register(IDP *ndp, udpparam_t *udppa, int cnt)
4342 {
4343 	for (; cnt-- > 0; udppa++) {
4344 		if (udppa->udp_param_name && udppa->udp_param_name[0]) {
4345 			if (!nd_load(ndp, udppa->udp_param_name,
4346 			    udp_param_get, udp_param_set,
4347 			    (caddr_t)udppa)) {
4348 				nd_free(ndp);
4349 				return (B_FALSE);
4350 			}
4351 		}
4352 	}
4353 	if (!nd_load(ndp, "udp_extra_priv_ports",
4354 	    udp_extra_priv_ports_get, NULL, NULL)) {
4355 		nd_free(ndp);
4356 		return (B_FALSE);
4357 	}
4358 	if (!nd_load(ndp, "udp_extra_priv_ports_add",
4359 	    NULL, udp_extra_priv_ports_add, NULL)) {
4360 		nd_free(ndp);
4361 		return (B_FALSE);
4362 	}
4363 	if (!nd_load(ndp, "udp_extra_priv_ports_del",
4364 	    NULL, udp_extra_priv_ports_del, NULL)) {
4365 		nd_free(ndp);
4366 		return (B_FALSE);
4367 	}
4368 	if (!nd_load(ndp, "udp_status", udp_status_report, NULL,
4369 	    NULL)) {
4370 		nd_free(ndp);
4371 		return (B_FALSE);
4372 	}
4373 	if (!nd_load(ndp, "udp_bind_hash", udp_bind_hash_report, NULL,
4374 	    NULL)) {
4375 		nd_free(ndp);
4376 		return (B_FALSE);
4377 	}
4378 	return (B_TRUE);
4379 }
4380 
4381 /* This routine sets an ND variable in a udpparam_t structure. */
4382 /* ARGSUSED */
4383 static int
4384 udp_param_set(queue_t *q, mblk_t *mp, char *value, caddr_t cp, cred_t *cr)
4385 {
4386 	long		new_value;
4387 	udpparam_t	*udppa = (udpparam_t *)cp;
4388 
4389 	/*
4390 	 * Fail the request if the new value does not lie within the
4391 	 * required bounds.
4392 	 */
4393 	if (ddi_strtol(value, NULL, 10, &new_value) != 0 ||
4394 	    new_value < udppa->udp_param_min ||
4395 	    new_value > udppa->udp_param_max) {
4396 		return (EINVAL);
4397 	}
4398 
4399 	/* Set the new value */
4400 	udppa->udp_param_value = new_value;
4401 	return (0);
4402 }
4403 
4404 /*
4405  * Copy hop-by-hop option from ipp->ipp_hopopts to the buffer provided (with
4406  * T_opthdr) and return the number of bytes copied.  'dbuf' may be NULL to
4407  * just count the length needed for allocation.  If 'dbuf' is non-NULL,
4408  * then it's assumed to be allocated to be large enough.
4409  *
4410  * Returns zero if trimming of the security option causes all options to go
4411  * away.
4412  */
4413 static size_t
4414 copy_hop_opts(const ip6_pkt_t *ipp, uchar_t *dbuf)
4415 {
4416 	struct T_opthdr *toh;
4417 	size_t hol = ipp->ipp_hopoptslen;
4418 	ip6_hbh_t *dstopt = NULL;
4419 	const ip6_hbh_t *srcopt = ipp->ipp_hopopts;
4420 	size_t tlen, olen, plen;
4421 	boolean_t deleting;
4422 	const struct ip6_opt *sopt, *lastpad;
4423 	struct ip6_opt *dopt;
4424 
4425 	if ((toh = (struct T_opthdr *)dbuf) != NULL) {
4426 		toh->level = IPPROTO_IPV6;
4427 		toh->name = IPV6_HOPOPTS;
4428 		toh->status = 0;
4429 		dstopt = (ip6_hbh_t *)(toh + 1);
4430 	}
4431 
4432 	/*
4433 	 * If labeling is enabled, then skip the label option
4434 	 * but get other options if there are any.
4435 	 */
4436 	if (is_system_labeled()) {
4437 		dopt = NULL;
4438 		if (dstopt != NULL) {
4439 			/* will fill in ip6h_len later */
4440 			dstopt->ip6h_nxt = srcopt->ip6h_nxt;
4441 			dopt = (struct ip6_opt *)(dstopt + 1);
4442 		}
4443 		sopt = (const struct ip6_opt *)(srcopt + 1);
4444 		hol -= sizeof (*srcopt);
4445 		tlen = sizeof (*dstopt);
4446 		lastpad = NULL;
4447 		deleting = B_FALSE;
4448 		/*
4449 		 * This loop finds the first (lastpad pointer) of any number of
4450 		 * pads that preceeds the security option, then treats the
4451 		 * security option as though it were a pad, and then finds the
4452 		 * next non-pad option (or end of list).
4453 		 *
4454 		 * It then treats the entire block as one big pad.  To preserve
4455 		 * alignment of any options that follow, or just the end of the
4456 		 * list, it computes a minimal new padding size that keeps the
4457 		 * same alignment for the next option.
4458 		 *
4459 		 * If it encounters just a sequence of pads with no security
4460 		 * option, those are copied as-is rather than collapsed.
4461 		 *
4462 		 * Note that to handle the end of list case, the code makes one
4463 		 * loop with 'hol' set to zero.
4464 		 */
4465 		for (;;) {
4466 			if (hol > 0) {
4467 				if (sopt->ip6o_type == IP6OPT_PAD1) {
4468 					if (lastpad == NULL)
4469 						lastpad = sopt;
4470 					sopt = (const struct ip6_opt *)
4471 					    &sopt->ip6o_len;
4472 					hol--;
4473 					continue;
4474 				}
4475 				olen = sopt->ip6o_len + sizeof (*sopt);
4476 				if (olen > hol)
4477 					olen = hol;
4478 				if (sopt->ip6o_type == IP6OPT_PADN ||
4479 				    sopt->ip6o_type == ip6opt_ls) {
4480 					if (sopt->ip6o_type == ip6opt_ls)
4481 						deleting = B_TRUE;
4482 					if (lastpad == NULL)
4483 						lastpad = sopt;
4484 					sopt = (const struct ip6_opt *)
4485 					    ((const char *)sopt + olen);
4486 					hol -= olen;
4487 					continue;
4488 				}
4489 			} else {
4490 				/* if nothing was copied at all, then delete */
4491 				if (tlen == sizeof (*dstopt))
4492 					return (0);
4493 				/* last pass; pick up any trailing padding */
4494 				olen = 0;
4495 			}
4496 			if (deleting) {
4497 				/*
4498 				 * compute aligning effect of deleted material
4499 				 * to reproduce with pad.
4500 				 */
4501 				plen = ((const char *)sopt -
4502 				    (const char *)lastpad) & 7;
4503 				tlen += plen;
4504 				if (dopt != NULL) {
4505 					if (plen == 1) {
4506 						dopt->ip6o_type = IP6OPT_PAD1;
4507 					} else if (plen > 1) {
4508 						plen -= sizeof (*dopt);
4509 						dopt->ip6o_type = IP6OPT_PADN;
4510 						dopt->ip6o_len = plen;
4511 						if (plen > 0)
4512 							bzero(dopt + 1, plen);
4513 					}
4514 					dopt = (struct ip6_opt *)
4515 					    ((char *)dopt + plen);
4516 				}
4517 				deleting = B_FALSE;
4518 				lastpad = NULL;
4519 			}
4520 			/* if there's uncopied padding, then copy that now */
4521 			if (lastpad != NULL) {
4522 				olen += (const char *)sopt -
4523 				    (const char *)lastpad;
4524 				sopt = lastpad;
4525 				lastpad = NULL;
4526 			}
4527 			if (dopt != NULL && olen > 0) {
4528 				bcopy(sopt, dopt, olen);
4529 				dopt = (struct ip6_opt *)((char *)dopt + olen);
4530 			}
4531 			if (hol == 0)
4532 				break;
4533 			tlen += olen;
4534 			sopt = (const struct ip6_opt *)
4535 			    ((const char *)sopt + olen);
4536 			hol -= olen;
4537 		}
4538 		/* go back and patch up the length value, rounded upward */
4539 		if (dstopt != NULL)
4540 			dstopt->ip6h_len = (tlen - 1) >> 3;
4541 	} else {
4542 		tlen = hol;
4543 		if (dstopt != NULL)
4544 			bcopy(srcopt, dstopt, hol);
4545 	}
4546 
4547 	tlen += sizeof (*toh);
4548 	if (toh != NULL)
4549 		toh->len = tlen;
4550 
4551 	return (tlen);
4552 }
4553 
4554 static void
4555 udp_input(conn_t *connp, mblk_t *mp)
4556 {
4557 	struct T_unitdata_ind	*tudi;
4558 	uchar_t			*rptr;		/* Pointer to IP header */
4559 	int			hdr_length;	/* Length of IP+UDP headers */
4560 	int			udi_size;	/* Size of T_unitdata_ind */
4561 	int			mp_len;
4562 	udp_t			*udp;
4563 	udpha_t			*udpha;
4564 	int			ipversion;
4565 	ip6_pkt_t		ipp;
4566 	ip6_t			*ip6h;
4567 	ip6i_t			*ip6i;
4568 	mblk_t			*mp1;
4569 	mblk_t			*options_mp = NULL;
4570 	ip_pktinfo_t		*pinfo = NULL;
4571 	cred_t			*cr = NULL;
4572 	queue_t			*q = connp->conn_rq;
4573 	pid_t			cpid;
4574 	cred_t			*rcr = connp->conn_cred;
4575 	udp_stack_t *us;
4576 
4577 	TRACE_2(TR_FAC_UDP, TR_UDP_RPUT_START,
4578 	    "udp_rput_start: q %p mp %p", q, mp);
4579 
4580 	udp = connp->conn_udp;
4581 	us = udp->udp_us;
4582 	rptr = mp->b_rptr;
4583 	ASSERT(DB_TYPE(mp) == M_DATA || DB_TYPE(mp) == M_CTL);
4584 	ASSERT(OK_32PTR(rptr));
4585 
4586 	/*
4587 	 * IP should have prepended the options data in an M_CTL
4588 	 * Check M_CTL "type" to make sure are not here bcos of
4589 	 * a valid ICMP message
4590 	 */
4591 	if (DB_TYPE(mp) == M_CTL) {
4592 		if (MBLKL(mp) == sizeof (ip_pktinfo_t) &&
4593 		    ((ip_pktinfo_t *)mp->b_rptr)->ip_pkt_ulp_type ==
4594 		    IN_PKTINFO) {
4595 			/*
4596 			 * IP_RECVIF or IP_RECVSLLA or IPF_RECVADDR information
4597 			 * has been appended to the packet by IP. We need to
4598 			 * extract the mblk and adjust the rptr
4599 			 */
4600 			pinfo = (ip_pktinfo_t *)mp->b_rptr;
4601 			options_mp = mp;
4602 			mp = mp->b_cont;
4603 			rptr = mp->b_rptr;
4604 			UDP_STAT(us, udp_in_pktinfo);
4605 		} else {
4606 			/*
4607 			 * ICMP messages.
4608 			 */
4609 			udp_icmp_error(q, mp);
4610 			TRACE_2(TR_FAC_UDP, TR_UDP_RPUT_END,
4611 			    "udp_rput_end: q %p (%S)", q, "m_ctl");
4612 			return;
4613 		}
4614 	}
4615 
4616 	mp_len = msgdsize(mp);
4617 	/*
4618 	 * This is the inbound data path.
4619 	 * First, we check to make sure the IP version number is correct,
4620 	 * and then pull the IP and UDP headers into the first mblk.
4621 	 * Assume IP provides aligned packets - otherwise toss.
4622 	 * Also, check if we have a complete IP header.
4623 	 */
4624 
4625 	/* Initialize regardless if ipversion is IPv4 or IPv6 */
4626 	ipp.ipp_fields = 0;
4627 
4628 	ipversion = IPH_HDR_VERSION(rptr);
4629 	switch (ipversion) {
4630 	case IPV4_VERSION:
4631 		ASSERT(MBLKL(mp) >= sizeof (ipha_t));
4632 		ASSERT(((ipha_t *)rptr)->ipha_protocol == IPPROTO_UDP);
4633 		hdr_length = IPH_HDR_LENGTH(rptr) + UDPH_SIZE;
4634 		if ((hdr_length > IP_SIMPLE_HDR_LENGTH + UDPH_SIZE) ||
4635 		    (udp->udp_ip_rcv_options_len)) {
4636 			/*
4637 			 * Handle IPv4 packets with options outside of the
4638 			 * main data path. Not needed for AF_INET6 sockets
4639 			 * since they don't support a getsockopt of IP_OPTIONS.
4640 			 */
4641 			if (udp->udp_family == AF_INET6)
4642 				break;
4643 			/*
4644 			 * UDP length check performed for IPv4 packets with
4645 			 * options to check whether UDP length specified in
4646 			 * the header is the same as the physical length of
4647 			 * the packet.
4648 			 */
4649 			udpha = (udpha_t *)(rptr + (hdr_length - UDPH_SIZE));
4650 			if (mp_len != (ntohs(udpha->uha_length) +
4651 			    hdr_length - UDPH_SIZE)) {
4652 				goto tossit;
4653 			}
4654 			/*
4655 			 * Handle the case where the packet has IP options
4656 			 * and the IP_RECVSLLA & IP_RECVIF are set
4657 			 */
4658 			if (pinfo != NULL)
4659 				mp = options_mp;
4660 			udp_become_writer(connp, mp, udp_rput_other_wrapper,
4661 			    SQTAG_UDP_INPUT);
4662 			TRACE_2(TR_FAC_UDP, TR_UDP_RPUT_END,
4663 			    "udp_rput_end: q %p (%S)", q, "end");
4664 			return;
4665 		}
4666 
4667 		/* Handle IPV6_RECVHOPLIMIT. */
4668 		if ((udp->udp_family == AF_INET6) && (pinfo != NULL) &&
4669 		    udp->udp_ip_recvpktinfo) {
4670 			if (pinfo->ip_pkt_flags & IPF_RECVIF) {
4671 				ipp.ipp_fields |= IPPF_IFINDEX;
4672 				ipp.ipp_ifindex = pinfo->ip_pkt_ifindex;
4673 			}
4674 		}
4675 		break;
4676 	case IPV6_VERSION:
4677 		/*
4678 		 * IPv6 packets can only be received by applications
4679 		 * that are prepared to receive IPv6 addresses.
4680 		 * The IP fanout must ensure this.
4681 		 */
4682 		ASSERT(udp->udp_family == AF_INET6);
4683 
4684 		ip6h = (ip6_t *)rptr;
4685 		ASSERT((uchar_t *)&ip6h[1] <= mp->b_wptr);
4686 
4687 		if (ip6h->ip6_nxt != IPPROTO_UDP) {
4688 			uint8_t nexthdrp;
4689 			/* Look for ifindex information */
4690 			if (ip6h->ip6_nxt == IPPROTO_RAW) {
4691 				ip6i = (ip6i_t *)ip6h;
4692 				if ((uchar_t *)&ip6i[1] > mp->b_wptr)
4693 					goto tossit;
4694 
4695 				if (ip6i->ip6i_flags & IP6I_IFINDEX) {
4696 					ASSERT(ip6i->ip6i_ifindex != 0);
4697 					ipp.ipp_fields |= IPPF_IFINDEX;
4698 					ipp.ipp_ifindex = ip6i->ip6i_ifindex;
4699 				}
4700 				rptr = (uchar_t *)&ip6i[1];
4701 				mp->b_rptr = rptr;
4702 				if (rptr == mp->b_wptr) {
4703 					mp1 = mp->b_cont;
4704 					freeb(mp);
4705 					mp = mp1;
4706 					rptr = mp->b_rptr;
4707 				}
4708 				if (MBLKL(mp) < (IPV6_HDR_LEN + UDPH_SIZE))
4709 					goto tossit;
4710 				ip6h = (ip6_t *)rptr;
4711 				mp_len = msgdsize(mp);
4712 			}
4713 			/*
4714 			 * Find any potentially interesting extension headers
4715 			 * as well as the length of the IPv6 + extension
4716 			 * headers.
4717 			 */
4718 			hdr_length = ip_find_hdr_v6(mp, ip6h, &ipp, &nexthdrp) +
4719 			    UDPH_SIZE;
4720 			ASSERT(nexthdrp == IPPROTO_UDP);
4721 		} else {
4722 			hdr_length = IPV6_HDR_LEN + UDPH_SIZE;
4723 			ip6i = NULL;
4724 		}
4725 		break;
4726 	default:
4727 		ASSERT(0);
4728 	}
4729 
4730 	/*
4731 	 * IP inspected the UDP header thus all of it must be in the mblk.
4732 	 * UDP length check is performed for IPv6 packets and IPv4 packets
4733 	 * without options to check if the size of the packet as specified
4734 	 * by the header is the same as the physical size of the packet.
4735 	 */
4736 	udpha = (udpha_t *)(rptr + (hdr_length - UDPH_SIZE));
4737 	if ((MBLKL(mp) < hdr_length) ||
4738 	    (mp_len != (ntohs(udpha->uha_length) + hdr_length - UDPH_SIZE))) {
4739 		goto tossit;
4740 	}
4741 
4742 	/* Walk past the headers. */
4743 	if (!udp->udp_rcvhdr) {
4744 		mp->b_rptr = rptr + hdr_length;
4745 		mp_len -= hdr_length;
4746 	}
4747 
4748 	/*
4749 	 * This is the inbound data path.  Packets are passed upstream as
4750 	 * T_UNITDATA_IND messages with full IP headers still attached.
4751 	 */
4752 	if (udp->udp_family == AF_INET) {
4753 		sin_t *sin;
4754 
4755 		ASSERT(IPH_HDR_VERSION((ipha_t *)rptr) == IPV4_VERSION);
4756 
4757 		/*
4758 		 * Normally only send up the address.
4759 		 * If IP_RECVDSTADDR is set we include the destination IP
4760 		 * address as an option. With IP_RECVOPTS we include all
4761 		 * the IP options. Only ip_rput_other() handles packets
4762 		 * that contain IP options.
4763 		 */
4764 		udi_size = sizeof (struct T_unitdata_ind) + sizeof (sin_t);
4765 		if (udp->udp_recvdstaddr) {
4766 			udi_size += sizeof (struct T_opthdr) +
4767 			    sizeof (struct in_addr);
4768 			UDP_STAT(us, udp_in_recvdstaddr);
4769 		}
4770 
4771 		if (udp->udp_ip_recvpktinfo && (pinfo != NULL) &&
4772 		    (pinfo->ip_pkt_flags & IPF_RECVADDR)) {
4773 			udi_size += sizeof (struct T_opthdr) +
4774 			    sizeof (struct in_pktinfo);
4775 			UDP_STAT(us, udp_ip_recvpktinfo);
4776 		}
4777 
4778 		/*
4779 		 * If the IP_RECVSLLA or the IP_RECVIF is set then allocate
4780 		 * space accordingly
4781 		 */
4782 		if (udp->udp_recvif && (pinfo != NULL) &&
4783 		    (pinfo->ip_pkt_flags & IPF_RECVIF)) {
4784 			udi_size += sizeof (struct T_opthdr) + sizeof (uint_t);
4785 			UDP_STAT(us, udp_in_recvif);
4786 		}
4787 
4788 		if (udp->udp_recvslla && (pinfo != NULL) &&
4789 		    (pinfo->ip_pkt_flags & IPF_RECVSLLA)) {
4790 			udi_size += sizeof (struct T_opthdr) +
4791 			    sizeof (struct sockaddr_dl);
4792 			UDP_STAT(us, udp_in_recvslla);
4793 		}
4794 
4795 		if (udp->udp_recvucred && (cr = DB_CRED(mp)) != NULL) {
4796 			udi_size += sizeof (struct T_opthdr) + ucredsize;
4797 			cpid = DB_CPID(mp);
4798 			UDP_STAT(us, udp_in_recvucred);
4799 		}
4800 
4801 		/*
4802 		 * If SO_TIMESTAMP is set allocate the appropriate sized
4803 		 * buffer. Since gethrestime() expects a pointer aligned
4804 		 * argument, we allocate space necessary for extra
4805 		 * alignment (even though it might not be used).
4806 		 */
4807 		if (udp->udp_timestamp) {
4808 			udi_size += sizeof (struct T_opthdr) +
4809 			    sizeof (timestruc_t) + _POINTER_ALIGNMENT;
4810 			UDP_STAT(us, udp_in_timestamp);
4811 		}
4812 
4813 		/*
4814 		 * If IP_RECVTTL is set allocate the appropriate sized buffer
4815 		 */
4816 		if (udp->udp_recvttl) {
4817 			udi_size += sizeof (struct T_opthdr) + sizeof (uint8_t);
4818 			UDP_STAT(us, udp_in_recvttl);
4819 		}
4820 		ASSERT(IPH_HDR_LENGTH((ipha_t *)rptr) == IP_SIMPLE_HDR_LENGTH);
4821 
4822 		/* Allocate a message block for the T_UNITDATA_IND structure. */
4823 		mp1 = allocb(udi_size, BPRI_MED);
4824 		if (mp1 == NULL) {
4825 			freemsg(mp);
4826 			if (options_mp != NULL)
4827 				freeb(options_mp);
4828 			TRACE_2(TR_FAC_UDP, TR_UDP_RPUT_END,
4829 			    "udp_rput_end: q %p (%S)", q, "allocbfail");
4830 			BUMP_MIB(&udp->udp_mib, udpInErrors);
4831 			return;
4832 		}
4833 		mp1->b_cont = mp;
4834 		mp = mp1;
4835 		mp->b_datap->db_type = M_PROTO;
4836 		tudi = (struct T_unitdata_ind *)mp->b_rptr;
4837 		mp->b_wptr = (uchar_t *)tudi + udi_size;
4838 		tudi->PRIM_type = T_UNITDATA_IND;
4839 		tudi->SRC_length = sizeof (sin_t);
4840 		tudi->SRC_offset = sizeof (struct T_unitdata_ind);
4841 		tudi->OPT_offset = sizeof (struct T_unitdata_ind) +
4842 		    sizeof (sin_t);
4843 		udi_size -= (sizeof (struct T_unitdata_ind) + sizeof (sin_t));
4844 		tudi->OPT_length = udi_size;
4845 		sin = (sin_t *)&tudi[1];
4846 		sin->sin_addr.s_addr = ((ipha_t *)rptr)->ipha_src;
4847 		sin->sin_port =	udpha->uha_src_port;
4848 		sin->sin_family = udp->udp_family;
4849 		*(uint32_t *)&sin->sin_zero[0] = 0;
4850 		*(uint32_t *)&sin->sin_zero[4] = 0;
4851 
4852 		/*
4853 		 * Add options if IP_RECVDSTADDR, IP_RECVIF, IP_RECVSLLA or
4854 		 * IP_RECVTTL has been set.
4855 		 */
4856 		if (udi_size != 0) {
4857 			/*
4858 			 * Copy in destination address before options to avoid
4859 			 * any padding issues.
4860 			 */
4861 			char *dstopt;
4862 
4863 			dstopt = (char *)&sin[1];
4864 			if (udp->udp_recvdstaddr) {
4865 				struct T_opthdr *toh;
4866 				ipaddr_t *dstptr;
4867 
4868 				toh = (struct T_opthdr *)dstopt;
4869 				toh->level = IPPROTO_IP;
4870 				toh->name = IP_RECVDSTADDR;
4871 				toh->len = sizeof (struct T_opthdr) +
4872 				    sizeof (ipaddr_t);
4873 				toh->status = 0;
4874 				dstopt += sizeof (struct T_opthdr);
4875 				dstptr = (ipaddr_t *)dstopt;
4876 				*dstptr = ((ipha_t *)rptr)->ipha_dst;
4877 				dstopt = (char *)toh + toh->len;
4878 				udi_size -= toh->len;
4879 			}
4880 
4881 			if (udp->udp_ip_recvpktinfo && (pinfo != NULL) &&
4882 			    (pinfo->ip_pkt_flags & IPF_RECVADDR)) {
4883 				struct T_opthdr *toh;
4884 				struct in_pktinfo *pktinfop;
4885 
4886 				toh = (struct T_opthdr *)dstopt;
4887 				toh->level = IPPROTO_IP;
4888 				toh->name = IP_PKTINFO;
4889 				toh->len = sizeof (struct T_opthdr) +
4890 				    sizeof (*pktinfop);
4891 				toh->status = 0;
4892 				dstopt += sizeof (struct T_opthdr);
4893 				pktinfop = (struct in_pktinfo *)dstopt;
4894 				pktinfop->ipi_ifindex = pinfo->ip_pkt_ifindex;
4895 				pktinfop->ipi_spec_dst =
4896 				    pinfo->ip_pkt_match_addr;
4897 				pktinfop->ipi_addr.s_addr =
4898 				    ((ipha_t *)rptr)->ipha_dst;
4899 
4900 				dstopt += sizeof (struct in_pktinfo);
4901 				udi_size -= toh->len;
4902 			}
4903 
4904 			if (udp->udp_recvslla && (pinfo != NULL) &&
4905 			    (pinfo->ip_pkt_flags & IPF_RECVSLLA)) {
4906 
4907 				struct T_opthdr *toh;
4908 				struct sockaddr_dl	*dstptr;
4909 
4910 				toh = (struct T_opthdr *)dstopt;
4911 				toh->level = IPPROTO_IP;
4912 				toh->name = IP_RECVSLLA;
4913 				toh->len = sizeof (struct T_opthdr) +
4914 				    sizeof (struct sockaddr_dl);
4915 				toh->status = 0;
4916 				dstopt += sizeof (struct T_opthdr);
4917 				dstptr = (struct sockaddr_dl *)dstopt;
4918 				bcopy(&pinfo->ip_pkt_slla, dstptr,
4919 				    sizeof (struct sockaddr_dl));
4920 				dstopt = (char *)toh + toh->len;
4921 				udi_size -= toh->len;
4922 			}
4923 
4924 			if (udp->udp_recvif && (pinfo != NULL) &&
4925 			    (pinfo->ip_pkt_flags & IPF_RECVIF)) {
4926 
4927 				struct T_opthdr *toh;
4928 				uint_t		*dstptr;
4929 
4930 				toh = (struct T_opthdr *)dstopt;
4931 				toh->level = IPPROTO_IP;
4932 				toh->name = IP_RECVIF;
4933 				toh->len = sizeof (struct T_opthdr) +
4934 				    sizeof (uint_t);
4935 				toh->status = 0;
4936 				dstopt += sizeof (struct T_opthdr);
4937 				dstptr = (uint_t *)dstopt;
4938 				*dstptr = pinfo->ip_pkt_ifindex;
4939 				dstopt = (char *)toh + toh->len;
4940 				udi_size -= toh->len;
4941 			}
4942 
4943 			if (cr != NULL) {
4944 				struct T_opthdr *toh;
4945 
4946 				toh = (struct T_opthdr *)dstopt;
4947 				toh->level = SOL_SOCKET;
4948 				toh->name = SCM_UCRED;
4949 				toh->len = sizeof (struct T_opthdr) + ucredsize;
4950 				toh->status = 0;
4951 				(void) cred2ucred(cr, cpid, &toh[1], rcr);
4952 				dstopt = (char *)toh + toh->len;
4953 				udi_size -= toh->len;
4954 			}
4955 
4956 			if (udp->udp_timestamp) {
4957 				struct	T_opthdr *toh;
4958 
4959 				toh = (struct T_opthdr *)dstopt;
4960 				toh->level = SOL_SOCKET;
4961 				toh->name = SCM_TIMESTAMP;
4962 				toh->len = sizeof (struct T_opthdr) +
4963 				    sizeof (timestruc_t) + _POINTER_ALIGNMENT;
4964 				toh->status = 0;
4965 				dstopt += sizeof (struct T_opthdr);
4966 				/* Align for gethrestime() */
4967 				dstopt = (char *)P2ROUNDUP((intptr_t)dstopt,
4968 				    sizeof (intptr_t));
4969 				gethrestime((timestruc_t *)dstopt);
4970 				dstopt = (char *)toh + toh->len;
4971 				udi_size -= toh->len;
4972 			}
4973 
4974 			/*
4975 			 * CAUTION:
4976 			 * Due to aligment issues
4977 			 * Processing of IP_RECVTTL option
4978 			 * should always be the last. Adding
4979 			 * any option processing after this will
4980 			 * cause alignment panic.
4981 			 */
4982 			if (udp->udp_recvttl) {
4983 				struct	T_opthdr *toh;
4984 				uint8_t	*dstptr;
4985 
4986 				toh = (struct T_opthdr *)dstopt;
4987 				toh->level = IPPROTO_IP;
4988 				toh->name = IP_RECVTTL;
4989 				toh->len = sizeof (struct T_opthdr) +
4990 				    sizeof (uint8_t);
4991 				toh->status = 0;
4992 				dstopt += sizeof (struct T_opthdr);
4993 				dstptr = (uint8_t *)dstopt;
4994 				*dstptr = ((ipha_t *)rptr)->ipha_ttl;
4995 				dstopt = (char *)toh + toh->len;
4996 				udi_size -= toh->len;
4997 			}
4998 
4999 			/* Consumed all of allocated space */
5000 			ASSERT(udi_size == 0);
5001 		}
5002 	} else {
5003 		sin6_t *sin6;
5004 
5005 		/*
5006 		 * Handle both IPv4 and IPv6 packets for IPv6 sockets.
5007 		 *
5008 		 * Normally we only send up the address. If receiving of any
5009 		 * optional receive side information is enabled, we also send
5010 		 * that up as options.
5011 		 * [ Only udp_rput_other() handles packets that contain IP
5012 		 * options so code to account for does not appear immediately
5013 		 * below but elsewhere ]
5014 		 */
5015 		udi_size = sizeof (struct T_unitdata_ind) + sizeof (sin6_t);
5016 
5017 		if (ipp.ipp_fields & (IPPF_HOPOPTS|IPPF_DSTOPTS|IPPF_RTDSTOPTS|
5018 		    IPPF_RTHDR|IPPF_IFINDEX)) {
5019 			if (udp->udp_ipv6_recvhopopts &&
5020 			    (ipp.ipp_fields & IPPF_HOPOPTS)) {
5021 				size_t hlen;
5022 
5023 				UDP_STAT(us, udp_in_recvhopopts);
5024 				hlen = copy_hop_opts(&ipp, NULL);
5025 				if (hlen == 0)
5026 					ipp.ipp_fields &= ~IPPF_HOPOPTS;
5027 				udi_size += hlen;
5028 			}
5029 			if ((udp->udp_ipv6_recvdstopts ||
5030 			    udp->udp_old_ipv6_recvdstopts) &&
5031 			    (ipp.ipp_fields & IPPF_DSTOPTS)) {
5032 				udi_size += sizeof (struct T_opthdr) +
5033 				    ipp.ipp_dstoptslen;
5034 				UDP_STAT(us, udp_in_recvdstopts);
5035 			}
5036 			if (((udp->udp_ipv6_recvdstopts &&
5037 			    udp->udp_ipv6_recvrthdr &&
5038 			    (ipp.ipp_fields & IPPF_RTHDR)) ||
5039 			    udp->udp_ipv6_recvrthdrdstopts) &&
5040 			    (ipp.ipp_fields & IPPF_RTDSTOPTS)) {
5041 				udi_size += sizeof (struct T_opthdr) +
5042 				    ipp.ipp_rtdstoptslen;
5043 				UDP_STAT(us, udp_in_recvrtdstopts);
5044 			}
5045 			if (udp->udp_ipv6_recvrthdr &&
5046 			    (ipp.ipp_fields & IPPF_RTHDR)) {
5047 				udi_size += sizeof (struct T_opthdr) +
5048 				    ipp.ipp_rthdrlen;
5049 				UDP_STAT(us, udp_in_recvrthdr);
5050 			}
5051 			if (udp->udp_ip_recvpktinfo &&
5052 			    (ipp.ipp_fields & IPPF_IFINDEX)) {
5053 				udi_size += sizeof (struct T_opthdr) +
5054 				    sizeof (struct in6_pktinfo);
5055 				UDP_STAT(us, udp_in_recvpktinfo);
5056 			}
5057 
5058 		}
5059 		if (udp->udp_recvucred && (cr = DB_CRED(mp)) != NULL) {
5060 			udi_size += sizeof (struct T_opthdr) + ucredsize;
5061 			cpid = DB_CPID(mp);
5062 			UDP_STAT(us, udp_in_recvucred);
5063 		}
5064 
5065 		if (udp->udp_ipv6_recvhoplimit) {
5066 			udi_size += sizeof (struct T_opthdr) + sizeof (int);
5067 			UDP_STAT(us, udp_in_recvhoplimit);
5068 		}
5069 
5070 		if (udp->udp_ipv6_recvtclass) {
5071 			udi_size += sizeof (struct T_opthdr) + sizeof (int);
5072 			UDP_STAT(us, udp_in_recvtclass);
5073 		}
5074 
5075 		mp1 = allocb(udi_size, BPRI_MED);
5076 		if (mp1 == NULL) {
5077 			freemsg(mp);
5078 			if (options_mp != NULL)
5079 				freeb(options_mp);
5080 			TRACE_2(TR_FAC_UDP, TR_UDP_RPUT_END,
5081 			    "udp_rput_end: q %p (%S)", q, "allocbfail");
5082 			BUMP_MIB(&udp->udp_mib, udpInErrors);
5083 			return;
5084 		}
5085 		mp1->b_cont = mp;
5086 		mp = mp1;
5087 		mp->b_datap->db_type = M_PROTO;
5088 		tudi = (struct T_unitdata_ind *)mp->b_rptr;
5089 		mp->b_wptr = (uchar_t *)tudi + udi_size;
5090 		tudi->PRIM_type = T_UNITDATA_IND;
5091 		tudi->SRC_length = sizeof (sin6_t);
5092 		tudi->SRC_offset = sizeof (struct T_unitdata_ind);
5093 		tudi->OPT_offset = sizeof (struct T_unitdata_ind) +
5094 		    sizeof (sin6_t);
5095 		udi_size -= (sizeof (struct T_unitdata_ind) + sizeof (sin6_t));
5096 		tudi->OPT_length = udi_size;
5097 		sin6 = (sin6_t *)&tudi[1];
5098 		if (ipversion == IPV4_VERSION) {
5099 			in6_addr_t v6dst;
5100 
5101 			IN6_IPADDR_TO_V4MAPPED(((ipha_t *)rptr)->ipha_src,
5102 			    &sin6->sin6_addr);
5103 			IN6_IPADDR_TO_V4MAPPED(((ipha_t *)rptr)->ipha_dst,
5104 			    &v6dst);
5105 			sin6->sin6_flowinfo = 0;
5106 			sin6->sin6_scope_id = 0;
5107 			sin6->__sin6_src_id = ip_srcid_find_addr(&v6dst,
5108 			    connp->conn_zoneid, us->us_netstack);
5109 		} else {
5110 			sin6->sin6_addr = ip6h->ip6_src;
5111 			/* No sin6_flowinfo per API */
5112 			sin6->sin6_flowinfo = 0;
5113 			/* For link-scope source pass up scope id */
5114 			if ((ipp.ipp_fields & IPPF_IFINDEX) &&
5115 			    IN6_IS_ADDR_LINKSCOPE(&ip6h->ip6_src))
5116 				sin6->sin6_scope_id = ipp.ipp_ifindex;
5117 			else
5118 				sin6->sin6_scope_id = 0;
5119 			sin6->__sin6_src_id = ip_srcid_find_addr(
5120 			    &ip6h->ip6_dst, connp->conn_zoneid,
5121 			    us->us_netstack);
5122 		}
5123 		sin6->sin6_port = udpha->uha_src_port;
5124 		sin6->sin6_family = udp->udp_family;
5125 
5126 		if (udi_size != 0) {
5127 			uchar_t *dstopt;
5128 
5129 			dstopt = (uchar_t *)&sin6[1];
5130 			if (udp->udp_ip_recvpktinfo &&
5131 			    (ipp.ipp_fields & IPPF_IFINDEX)) {
5132 				struct T_opthdr *toh;
5133 				struct in6_pktinfo *pkti;
5134 
5135 				toh = (struct T_opthdr *)dstopt;
5136 				toh->level = IPPROTO_IPV6;
5137 				toh->name = IPV6_PKTINFO;
5138 				toh->len = sizeof (struct T_opthdr) +
5139 				    sizeof (*pkti);
5140 				toh->status = 0;
5141 				dstopt += sizeof (struct T_opthdr);
5142 				pkti = (struct in6_pktinfo *)dstopt;
5143 				if (ipversion == IPV6_VERSION)
5144 					pkti->ipi6_addr = ip6h->ip6_dst;
5145 				else
5146 					IN6_IPADDR_TO_V4MAPPED(
5147 					    ((ipha_t *)rptr)->ipha_dst,
5148 					    &pkti->ipi6_addr);
5149 				pkti->ipi6_ifindex = ipp.ipp_ifindex;
5150 				dstopt += sizeof (*pkti);
5151 				udi_size -= toh->len;
5152 			}
5153 			if (udp->udp_ipv6_recvhoplimit) {
5154 				struct T_opthdr *toh;
5155 
5156 				toh = (struct T_opthdr *)dstopt;
5157 				toh->level = IPPROTO_IPV6;
5158 				toh->name = IPV6_HOPLIMIT;
5159 				toh->len = sizeof (struct T_opthdr) +
5160 				    sizeof (uint_t);
5161 				toh->status = 0;
5162 				dstopt += sizeof (struct T_opthdr);
5163 				if (ipversion == IPV6_VERSION)
5164 					*(uint_t *)dstopt = ip6h->ip6_hops;
5165 				else
5166 					*(uint_t *)dstopt =
5167 					    ((ipha_t *)rptr)->ipha_ttl;
5168 				dstopt += sizeof (uint_t);
5169 				udi_size -= toh->len;
5170 			}
5171 			if (udp->udp_ipv6_recvtclass) {
5172 				struct T_opthdr *toh;
5173 
5174 				toh = (struct T_opthdr *)dstopt;
5175 				toh->level = IPPROTO_IPV6;
5176 				toh->name = IPV6_TCLASS;
5177 				toh->len = sizeof (struct T_opthdr) +
5178 				    sizeof (uint_t);
5179 				toh->status = 0;
5180 				dstopt += sizeof (struct T_opthdr);
5181 				if (ipversion == IPV6_VERSION) {
5182 					*(uint_t *)dstopt =
5183 					    IPV6_FLOW_TCLASS(ip6h->ip6_flow);
5184 				} else {
5185 					ipha_t *ipha = (ipha_t *)rptr;
5186 					*(uint_t *)dstopt =
5187 					    ipha->ipha_type_of_service;
5188 				}
5189 				dstopt += sizeof (uint_t);
5190 				udi_size -= toh->len;
5191 			}
5192 			if (udp->udp_ipv6_recvhopopts &&
5193 			    (ipp.ipp_fields & IPPF_HOPOPTS)) {
5194 				size_t hlen;
5195 
5196 				hlen = copy_hop_opts(&ipp, dstopt);
5197 				dstopt += hlen;
5198 				udi_size -= hlen;
5199 			}
5200 			if (udp->udp_ipv6_recvdstopts &&
5201 			    udp->udp_ipv6_recvrthdr &&
5202 			    (ipp.ipp_fields & IPPF_RTHDR) &&
5203 			    (ipp.ipp_fields & IPPF_RTDSTOPTS)) {
5204 				struct T_opthdr *toh;
5205 
5206 				toh = (struct T_opthdr *)dstopt;
5207 				toh->level = IPPROTO_IPV6;
5208 				toh->name = IPV6_DSTOPTS;
5209 				toh->len = sizeof (struct T_opthdr) +
5210 				    ipp.ipp_rtdstoptslen;
5211 				toh->status = 0;
5212 				dstopt += sizeof (struct T_opthdr);
5213 				bcopy(ipp.ipp_rtdstopts, dstopt,
5214 				    ipp.ipp_rtdstoptslen);
5215 				dstopt += ipp.ipp_rtdstoptslen;
5216 				udi_size -= toh->len;
5217 			}
5218 			if (udp->udp_ipv6_recvrthdr &&
5219 			    (ipp.ipp_fields & IPPF_RTHDR)) {
5220 				struct T_opthdr *toh;
5221 
5222 				toh = (struct T_opthdr *)dstopt;
5223 				toh->level = IPPROTO_IPV6;
5224 				toh->name = IPV6_RTHDR;
5225 				toh->len = sizeof (struct T_opthdr) +
5226 				    ipp.ipp_rthdrlen;
5227 				toh->status = 0;
5228 				dstopt += sizeof (struct T_opthdr);
5229 				bcopy(ipp.ipp_rthdr, dstopt, ipp.ipp_rthdrlen);
5230 				dstopt += ipp.ipp_rthdrlen;
5231 				udi_size -= toh->len;
5232 			}
5233 			if (udp->udp_ipv6_recvdstopts &&
5234 			    (ipp.ipp_fields & IPPF_DSTOPTS)) {
5235 				struct T_opthdr *toh;
5236 
5237 				toh = (struct T_opthdr *)dstopt;
5238 				toh->level = IPPROTO_IPV6;
5239 				toh->name = IPV6_DSTOPTS;
5240 				toh->len = sizeof (struct T_opthdr) +
5241 				    ipp.ipp_dstoptslen;
5242 				toh->status = 0;
5243 				dstopt += sizeof (struct T_opthdr);
5244 				bcopy(ipp.ipp_dstopts, dstopt,
5245 				    ipp.ipp_dstoptslen);
5246 				dstopt += ipp.ipp_dstoptslen;
5247 				udi_size -= toh->len;
5248 			}
5249 
5250 			if (cr != NULL) {
5251 				struct T_opthdr *toh;
5252 
5253 				toh = (struct T_opthdr *)dstopt;
5254 				toh->level = SOL_SOCKET;
5255 				toh->name = SCM_UCRED;
5256 				toh->len = sizeof (struct T_opthdr) + ucredsize;
5257 				toh->status = 0;
5258 				(void) cred2ucred(cr, cpid, &toh[1], rcr);
5259 				dstopt += toh->len;
5260 				udi_size -= toh->len;
5261 			}
5262 			/* Consumed all of allocated space */
5263 			ASSERT(udi_size == 0);
5264 		}
5265 #undef	sin6
5266 		/* No IP_RECVDSTADDR for IPv6. */
5267 	}
5268 
5269 	BUMP_MIB(&udp->udp_mib, udpHCInDatagrams);
5270 	TRACE_2(TR_FAC_UDP, TR_UDP_RPUT_END,
5271 	    "udp_rput_end: q %p (%S)", q, "end");
5272 	if (options_mp != NULL)
5273 		freeb(options_mp);
5274 
5275 	if (udp->udp_direct_sockfs) {
5276 		/*
5277 		 * There is nothing above us except for the stream head;
5278 		 * use the read-side synchronous stream interface in
5279 		 * order to reduce the time spent in interrupt thread.
5280 		 */
5281 		ASSERT(udp->udp_issocket);
5282 		udp_rcv_enqueue(UDP_RD(q), udp, mp, mp_len);
5283 	} else {
5284 		/*
5285 		 * Use regular STREAMS interface to pass data upstream
5286 		 * if this is not a socket endpoint, or if we have
5287 		 * switched over to the slow mode due to sockmod being
5288 		 * popped or a module being pushed on top of us.
5289 		 */
5290 		putnext(UDP_RD(q), mp);
5291 	}
5292 	return;
5293 
5294 tossit:
5295 	freemsg(mp);
5296 	if (options_mp != NULL)
5297 		freeb(options_mp);
5298 	BUMP_MIB(&udp->udp_mib, udpInErrors);
5299 }
5300 
5301 void
5302 udp_conn_recv(conn_t *connp, mblk_t *mp)
5303 {
5304 	_UDP_ENTER(connp, mp, udp_input_wrapper, SQTAG_UDP_FANOUT);
5305 }
5306 
5307 /* ARGSUSED */
5308 static void
5309 udp_input_wrapper(void *arg, mblk_t *mp, void *arg2)
5310 {
5311 	udp_input((conn_t *)arg, mp);
5312 	_UDP_EXIT((conn_t *)arg);
5313 }
5314 
5315 /*
5316  * Process non-M_DATA messages as well as M_DATA messages that requires
5317  * modifications to udp_ip_rcv_options i.e. IPv4 packets with IP options.
5318  */
5319 static void
5320 udp_rput_other(queue_t *q, mblk_t *mp)
5321 {
5322 	struct T_unitdata_ind	*tudi;
5323 	mblk_t			*mp1;
5324 	uchar_t			*rptr;
5325 	uchar_t			*new_rptr;
5326 	int			hdr_length;
5327 	int			udi_size;	/* Size of T_unitdata_ind */
5328 	int			opt_len;	/* Length of IP options */
5329 	sin_t			*sin;
5330 	struct T_error_ack	*tea;
5331 	mblk_t			*options_mp = NULL;
5332 	ip_pktinfo_t		*pinfo;
5333 	boolean_t		recv_on = B_FALSE;
5334 	cred_t			*cr = NULL;
5335 	udp_t			*udp = Q_TO_UDP(q);
5336 	pid_t			cpid;
5337 	cred_t			*rcr = udp->udp_connp->conn_cred;
5338 	udp_stack_t		*us = udp->udp_us;
5339 
5340 	TRACE_2(TR_FAC_UDP, TR_UDP_RPUT_START,
5341 	    "udp_rput_other: q %p mp %p", q, mp);
5342 
5343 	ASSERT(OK_32PTR(mp->b_rptr));
5344 	rptr = mp->b_rptr;
5345 
5346 	switch (mp->b_datap->db_type) {
5347 	case M_CTL:
5348 		/*
5349 		 * We are here only if IP_RECVSLLA and/or IP_RECVIF are set
5350 		 */
5351 		recv_on = B_TRUE;
5352 		options_mp = mp;
5353 		pinfo = (ip_pktinfo_t *)options_mp->b_rptr;
5354 
5355 		/*
5356 		 * The actual data is in mp->b_cont
5357 		 */
5358 		mp = mp->b_cont;
5359 		ASSERT(OK_32PTR(mp->b_rptr));
5360 		rptr = mp->b_rptr;
5361 		break;
5362 	case M_DATA:
5363 		/*
5364 		 * M_DATA messages contain IPv4 datagrams.  They are handled
5365 		 * after this switch.
5366 		 */
5367 		break;
5368 	case M_PROTO:
5369 	case M_PCPROTO:
5370 		/* M_PROTO messages contain some type of TPI message. */
5371 		ASSERT((uintptr_t)(mp->b_wptr - rptr) <= (uintptr_t)INT_MAX);
5372 		if (mp->b_wptr - rptr < sizeof (t_scalar_t)) {
5373 			freemsg(mp);
5374 			TRACE_2(TR_FAC_UDP, TR_UDP_RPUT_END,
5375 			    "udp_rput_other_end: q %p (%S)", q, "protoshort");
5376 			return;
5377 		}
5378 		tea = (struct T_error_ack *)rptr;
5379 
5380 		switch (tea->PRIM_type) {
5381 		case T_ERROR_ACK:
5382 			switch (tea->ERROR_prim) {
5383 			case O_T_BIND_REQ:
5384 			case T_BIND_REQ: {
5385 				/*
5386 				 * If our O_T_BIND_REQ/T_BIND_REQ fails,
5387 				 * clear out the associated port and source
5388 				 * address before passing the message
5389 				 * upstream. If this was caused by a T_CONN_REQ
5390 				 * revert back to bound state.
5391 				 */
5392 				udp_fanout_t	*udpf;
5393 
5394 				udpf = &us->us_bind_fanout[UDP_BIND_HASH(
5395 				    udp->udp_port, us->us_bind_fanout_size)];
5396 				mutex_enter(&udpf->uf_lock);
5397 				if (udp->udp_state == TS_DATA_XFER) {
5398 					/* Connect failed */
5399 					tea->ERROR_prim = T_CONN_REQ;
5400 					/* Revert back to the bound source */
5401 					udp->udp_v6src = udp->udp_bound_v6src;
5402 					udp->udp_state = TS_IDLE;
5403 					mutex_exit(&udpf->uf_lock);
5404 					if (udp->udp_family == AF_INET6)
5405 						(void) udp_build_hdrs(q, udp);
5406 					break;
5407 				}
5408 
5409 				if (udp->udp_discon_pending) {
5410 					tea->ERROR_prim = T_DISCON_REQ;
5411 					udp->udp_discon_pending = 0;
5412 				}
5413 					V6_SET_ZERO(udp->udp_v6src);
5414 					V6_SET_ZERO(udp->udp_bound_v6src);
5415 					udp->udp_state = TS_UNBND;
5416 					udp_bind_hash_remove(udp, B_TRUE);
5417 					udp->udp_port = 0;
5418 					mutex_exit(&udpf->uf_lock);
5419 					if (udp->udp_family == AF_INET6)
5420 						(void) udp_build_hdrs(q, udp);
5421 					break;
5422 				}
5423 			default:
5424 				break;
5425 			}
5426 			break;
5427 		case T_BIND_ACK:
5428 			udp_rput_bind_ack(q, mp);
5429 			return;
5430 
5431 		case T_OPTMGMT_ACK:
5432 		case T_OK_ACK:
5433 			break;
5434 		default:
5435 			freemsg(mp);
5436 			return;
5437 		}
5438 		putnext(UDP_RD(q), mp);
5439 		return;
5440 	}
5441 
5442 	/*
5443 	 * This is the inbound data path.
5444 	 * First, we make sure the data contains both IP and UDP headers.
5445 	 *
5446 	 * This handle IPv4 packets for only AF_INET sockets.
5447 	 * AF_INET6 sockets can never access udp_ip_rcv_options thus there
5448 	 * is no need saving the options.
5449 	 */
5450 	ASSERT(IPH_HDR_VERSION((ipha_t *)rptr) == IPV4_VERSION);
5451 	hdr_length = IPH_HDR_LENGTH(rptr) + UDPH_SIZE;
5452 	if (mp->b_wptr - rptr < hdr_length) {
5453 		if (!pullupmsg(mp, hdr_length)) {
5454 			freemsg(mp);
5455 			if (options_mp != NULL)
5456 				freeb(options_mp);
5457 			BUMP_MIB(&udp->udp_mib, udpInErrors);
5458 			TRACE_2(TR_FAC_UDP, TR_UDP_RPUT_END,
5459 			    "udp_rput_other_end: q %p (%S)", q, "hdrshort");
5460 			return;
5461 		}
5462 		rptr = mp->b_rptr;
5463 	}
5464 	/* Walk past the headers. */
5465 	new_rptr = rptr + hdr_length;
5466 	if (!udp->udp_rcvhdr)
5467 		mp->b_rptr = new_rptr;
5468 
5469 	/* Save the options if any */
5470 	opt_len = hdr_length - (IP_SIMPLE_HDR_LENGTH + UDPH_SIZE);
5471 	if (opt_len > 0) {
5472 		if (opt_len > udp->udp_ip_rcv_options_len) {
5473 			if (udp->udp_ip_rcv_options_len)
5474 				mi_free((char *)udp->udp_ip_rcv_options);
5475 			udp->udp_ip_rcv_options_len = 0;
5476 			udp->udp_ip_rcv_options =
5477 			    (uchar_t *)mi_alloc(opt_len, BPRI_HI);
5478 			if (udp->udp_ip_rcv_options)
5479 				udp->udp_ip_rcv_options_len = opt_len;
5480 		}
5481 		if (udp->udp_ip_rcv_options_len) {
5482 			bcopy(rptr + IP_SIMPLE_HDR_LENGTH,
5483 			    udp->udp_ip_rcv_options, opt_len);
5484 			/* Adjust length if we are resusing the space */
5485 			udp->udp_ip_rcv_options_len = opt_len;
5486 		}
5487 	} else if (udp->udp_ip_rcv_options_len) {
5488 		mi_free((char *)udp->udp_ip_rcv_options);
5489 		udp->udp_ip_rcv_options = NULL;
5490 		udp->udp_ip_rcv_options_len = 0;
5491 	}
5492 
5493 	/*
5494 	 * Normally only send up the address.
5495 	 * If IP_RECVDSTADDR is set we include the destination IP
5496 	 * address as an option. With IP_RECVOPTS we include all
5497 	 * the IP options.
5498 	 */
5499 	udi_size = sizeof (struct T_unitdata_ind) + sizeof (sin_t);
5500 	if (udp->udp_recvdstaddr) {
5501 		udi_size += sizeof (struct T_opthdr) + sizeof (struct in_addr);
5502 		UDP_STAT(us, udp_in_recvdstaddr);
5503 	}
5504 
5505 	if (udp->udp_ip_recvpktinfo && recv_on &&
5506 	    (pinfo->ip_pkt_flags & IPF_RECVADDR)) {
5507 		udi_size += sizeof (struct T_opthdr) +
5508 		    sizeof (struct in_pktinfo);
5509 		UDP_STAT(us, udp_ip_recvpktinfo);
5510 	}
5511 
5512 	if (udp->udp_recvopts && opt_len > 0) {
5513 		udi_size += sizeof (struct T_opthdr) + opt_len;
5514 		UDP_STAT(us, udp_in_recvopts);
5515 	}
5516 
5517 	/*
5518 	 * If the IP_RECVSLLA or the IP_RECVIF is set then allocate
5519 	 * space accordingly
5520 	 */
5521 	if (udp->udp_recvif && recv_on &&
5522 	    (pinfo->ip_pkt_flags & IPF_RECVIF)) {
5523 		udi_size += sizeof (struct T_opthdr) + sizeof (uint_t);
5524 		UDP_STAT(us, udp_in_recvif);
5525 	}
5526 
5527 	if (udp->udp_recvslla && recv_on &&
5528 	    (pinfo->ip_pkt_flags & IPF_RECVSLLA)) {
5529 		udi_size += sizeof (struct T_opthdr) +
5530 		    sizeof (struct sockaddr_dl);
5531 		UDP_STAT(us, udp_in_recvslla);
5532 	}
5533 
5534 	if (udp->udp_recvucred && (cr = DB_CRED(mp)) != NULL) {
5535 		udi_size += sizeof (struct T_opthdr) + ucredsize;
5536 		cpid = DB_CPID(mp);
5537 		UDP_STAT(us, udp_in_recvucred);
5538 	}
5539 	/*
5540 	 * If IP_RECVTTL is set allocate the appropriate sized buffer
5541 	 */
5542 	if (udp->udp_recvttl) {
5543 		udi_size += sizeof (struct T_opthdr) + sizeof (uint8_t);
5544 		UDP_STAT(us, udp_in_recvttl);
5545 	}
5546 
5547 	/* Allocate a message block for the T_UNITDATA_IND structure. */
5548 	mp1 = allocb(udi_size, BPRI_MED);
5549 	if (mp1 == NULL) {
5550 		freemsg(mp);
5551 		if (options_mp != NULL)
5552 			freeb(options_mp);
5553 		TRACE_2(TR_FAC_UDP, TR_UDP_RPUT_END,
5554 		    "udp_rput_other_end: q %p (%S)", q, "allocbfail");
5555 		BUMP_MIB(&udp->udp_mib, udpInErrors);
5556 		return;
5557 	}
5558 	mp1->b_cont = mp;
5559 	mp = mp1;
5560 	mp->b_datap->db_type = M_PROTO;
5561 	tudi = (struct T_unitdata_ind *)mp->b_rptr;
5562 	mp->b_wptr = (uchar_t *)tudi + udi_size;
5563 	tudi->PRIM_type = T_UNITDATA_IND;
5564 	tudi->SRC_length = sizeof (sin_t);
5565 	tudi->SRC_offset = sizeof (struct T_unitdata_ind);
5566 	tudi->OPT_offset = sizeof (struct T_unitdata_ind) + sizeof (sin_t);
5567 	udi_size -= (sizeof (struct T_unitdata_ind) + sizeof (sin_t));
5568 	tudi->OPT_length = udi_size;
5569 
5570 	sin = (sin_t *)&tudi[1];
5571 	sin->sin_addr.s_addr = ((ipha_t *)rptr)->ipha_src;
5572 	sin->sin_port =	((in_port_t *)
5573 	    new_rptr)[-(UDPH_SIZE/sizeof (in_port_t))];
5574 	sin->sin_family = AF_INET;
5575 	*(uint32_t *)&sin->sin_zero[0] = 0;
5576 	*(uint32_t *)&sin->sin_zero[4] = 0;
5577 
5578 	/*
5579 	 * Add options if IP_RECVDSTADDR, IP_RECVIF, IP_RECVSLLA or
5580 	 * IP_RECVTTL has been set.
5581 	 */
5582 	if (udi_size != 0) {
5583 		/*
5584 		 * Copy in destination address before options to avoid any
5585 		 * padding issues.
5586 		 */
5587 		char *dstopt;
5588 
5589 		dstopt = (char *)&sin[1];
5590 		if (udp->udp_recvdstaddr) {
5591 			struct T_opthdr *toh;
5592 			ipaddr_t *dstptr;
5593 
5594 			toh = (struct T_opthdr *)dstopt;
5595 			toh->level = IPPROTO_IP;
5596 			toh->name = IP_RECVDSTADDR;
5597 			toh->len = sizeof (struct T_opthdr) + sizeof (ipaddr_t);
5598 			toh->status = 0;
5599 			dstopt += sizeof (struct T_opthdr);
5600 			dstptr = (ipaddr_t *)dstopt;
5601 			*dstptr = (((ipaddr_t *)rptr)[4]);
5602 			dstopt += sizeof (ipaddr_t);
5603 			udi_size -= toh->len;
5604 		}
5605 		if (udp->udp_recvopts && udi_size != 0) {
5606 			struct T_opthdr *toh;
5607 
5608 			toh = (struct T_opthdr *)dstopt;
5609 			toh->level = IPPROTO_IP;
5610 			toh->name = IP_RECVOPTS;
5611 			toh->len = sizeof (struct T_opthdr) + opt_len;
5612 			toh->status = 0;
5613 			dstopt += sizeof (struct T_opthdr);
5614 			bcopy(rptr + IP_SIMPLE_HDR_LENGTH, dstopt, opt_len);
5615 			dstopt += opt_len;
5616 			udi_size -= toh->len;
5617 		}
5618 		if (udp->udp_ip_recvpktinfo && recv_on &&
5619 		    (pinfo->ip_pkt_flags & IPF_RECVADDR)) {
5620 
5621 			struct T_opthdr *toh;
5622 			struct in_pktinfo *pktinfop;
5623 
5624 			toh = (struct T_opthdr *)dstopt;
5625 			toh->level = IPPROTO_IP;
5626 			toh->name = IP_PKTINFO;
5627 			toh->len = sizeof (struct T_opthdr) +
5628 			    sizeof (*pktinfop);
5629 			toh->status = 0;
5630 			dstopt += sizeof (struct T_opthdr);
5631 			pktinfop = (struct in_pktinfo *)dstopt;
5632 			pktinfop->ipi_ifindex = pinfo->ip_pkt_ifindex;
5633 			pktinfop->ipi_spec_dst = pinfo->ip_pkt_match_addr;
5634 
5635 			pktinfop->ipi_addr.s_addr = ((ipha_t *)rptr)->ipha_dst;
5636 
5637 			dstopt += sizeof (struct in_pktinfo);
5638 			udi_size -= toh->len;
5639 		}
5640 
5641 		if (udp->udp_recvslla && recv_on &&
5642 		    (pinfo->ip_pkt_flags & IPF_RECVSLLA)) {
5643 
5644 			struct T_opthdr *toh;
5645 			struct sockaddr_dl	*dstptr;
5646 
5647 			toh = (struct T_opthdr *)dstopt;
5648 			toh->level = IPPROTO_IP;
5649 			toh->name = IP_RECVSLLA;
5650 			toh->len = sizeof (struct T_opthdr) +
5651 			    sizeof (struct sockaddr_dl);
5652 			toh->status = 0;
5653 			dstopt += sizeof (struct T_opthdr);
5654 			dstptr = (struct sockaddr_dl *)dstopt;
5655 			bcopy(&pinfo->ip_pkt_slla, dstptr,
5656 			    sizeof (struct sockaddr_dl));
5657 			dstopt += sizeof (struct sockaddr_dl);
5658 			udi_size -= toh->len;
5659 		}
5660 
5661 		if (udp->udp_recvif && recv_on &&
5662 		    (pinfo->ip_pkt_flags & IPF_RECVIF)) {
5663 
5664 			struct T_opthdr *toh;
5665 			uint_t		*dstptr;
5666 
5667 			toh = (struct T_opthdr *)dstopt;
5668 			toh->level = IPPROTO_IP;
5669 			toh->name = IP_RECVIF;
5670 			toh->len = sizeof (struct T_opthdr) +
5671 			    sizeof (uint_t);
5672 			toh->status = 0;
5673 			dstopt += sizeof (struct T_opthdr);
5674 			dstptr = (uint_t *)dstopt;
5675 			*dstptr = pinfo->ip_pkt_ifindex;
5676 			dstopt += sizeof (uint_t);
5677 			udi_size -= toh->len;
5678 		}
5679 
5680 		if (cr != NULL) {
5681 			struct T_opthdr *toh;
5682 
5683 			toh = (struct T_opthdr *)dstopt;
5684 			toh->level = SOL_SOCKET;
5685 			toh->name = SCM_UCRED;
5686 			toh->len = sizeof (struct T_opthdr) + ucredsize;
5687 			toh->status = 0;
5688 			(void) cred2ucred(cr, cpid, &toh[1], rcr);
5689 			dstopt += toh->len;
5690 			udi_size -= toh->len;
5691 		}
5692 
5693 		if (udp->udp_recvttl) {
5694 			struct	T_opthdr *toh;
5695 			uint8_t	*dstptr;
5696 
5697 			toh = (struct T_opthdr *)dstopt;
5698 			toh->level = IPPROTO_IP;
5699 			toh->name = IP_RECVTTL;
5700 			toh->len = sizeof (struct T_opthdr) +
5701 			    sizeof (uint8_t);
5702 			toh->status = 0;
5703 			dstopt += sizeof (struct T_opthdr);
5704 			dstptr = (uint8_t *)dstopt;
5705 			*dstptr = ((ipha_t *)rptr)->ipha_ttl;
5706 			dstopt += sizeof (uint8_t);
5707 			udi_size -= toh->len;
5708 		}
5709 
5710 		ASSERT(udi_size == 0);	/* "Consumed" all of allocated space */
5711 	}
5712 	BUMP_MIB(&udp->udp_mib, udpHCInDatagrams);
5713 	TRACE_2(TR_FAC_UDP, TR_UDP_RPUT_END,
5714 	    "udp_rput_other_end: q %p (%S)", q, "end");
5715 	if (options_mp != NULL)
5716 		freeb(options_mp);
5717 
5718 	if (udp->udp_direct_sockfs) {
5719 		/*
5720 		 * There is nothing above us except for the stream head;
5721 		 * use the read-side synchronous stream interface in
5722 		 * order to reduce the time spent in interrupt thread.
5723 		 */
5724 		ASSERT(udp->udp_issocket);
5725 		udp_rcv_enqueue(UDP_RD(q), udp, mp, msgdsize(mp));
5726 	} else {
5727 		/*
5728 		 * Use regular STREAMS interface to pass data upstream
5729 		 * if this is not a socket endpoint, or if we have
5730 		 * switched over to the slow mode due to sockmod being
5731 		 * popped or a module being pushed on top of us.
5732 		 */
5733 		putnext(UDP_RD(q), mp);
5734 	}
5735 }
5736 
5737 /* ARGSUSED */
5738 static void
5739 udp_rput_other_wrapper(void *arg, mblk_t *mp, void *arg2)
5740 {
5741 	conn_t *connp = arg;
5742 
5743 	udp_rput_other(connp->conn_rq, mp);
5744 	udp_exit(connp);
5745 }
5746 
5747 /*
5748  * Process a T_BIND_ACK
5749  */
5750 static void
5751 udp_rput_bind_ack(queue_t *q, mblk_t *mp)
5752 {
5753 	udp_t	*udp = Q_TO_UDP(q);
5754 	mblk_t	*mp1;
5755 	ire_t	*ire;
5756 	struct T_bind_ack *tba;
5757 	uchar_t *addrp;
5758 	ipa_conn_t	*ac;
5759 	ipa6_conn_t	*ac6;
5760 
5761 	if (udp->udp_discon_pending)
5762 		udp->udp_discon_pending = 0;
5763 
5764 	/*
5765 	 * If a broadcast/multicast address was bound set
5766 	 * the source address to 0.
5767 	 * This ensures no datagrams with broadcast address
5768 	 * as source address are emitted (which would violate
5769 	 * RFC1122 - Hosts requirements)
5770 	 *
5771 	 * Note that when connecting the returned IRE is
5772 	 * for the destination address and we only perform
5773 	 * the broadcast check for the source address (it
5774 	 * is OK to connect to a broadcast/multicast address.)
5775 	 */
5776 	mp1 = mp->b_cont;
5777 	if (mp1 != NULL && mp1->b_datap->db_type == IRE_DB_TYPE) {
5778 		ire = (ire_t *)mp1->b_rptr;
5779 
5780 		/*
5781 		 * Note: we get IRE_BROADCAST for IPv6 to "mark" a multicast
5782 		 * local address.
5783 		 */
5784 		if (ire->ire_type == IRE_BROADCAST &&
5785 		    udp->udp_state != TS_DATA_XFER) {
5786 			/* This was just a local bind to a broadcast addr */
5787 			V6_SET_ZERO(udp->udp_v6src);
5788 			if (udp->udp_family == AF_INET6)
5789 				(void) udp_build_hdrs(q, udp);
5790 		} else if (V6_OR_V4_INADDR_ANY(udp->udp_v6src)) {
5791 			/*
5792 			 * Local address not yet set - pick it from the
5793 			 * T_bind_ack
5794 			 */
5795 			tba = (struct T_bind_ack *)mp->b_rptr;
5796 			addrp = &mp->b_rptr[tba->ADDR_offset];
5797 			switch (udp->udp_family) {
5798 			case AF_INET:
5799 				if (tba->ADDR_length == sizeof (ipa_conn_t)) {
5800 					ac = (ipa_conn_t *)addrp;
5801 				} else {
5802 					ASSERT(tba->ADDR_length ==
5803 					    sizeof (ipa_conn_x_t));
5804 					ac = &((ipa_conn_x_t *)addrp)->acx_conn;
5805 				}
5806 				IN6_IPADDR_TO_V4MAPPED(ac->ac_laddr,
5807 				    &udp->udp_v6src);
5808 				break;
5809 			case AF_INET6:
5810 				if (tba->ADDR_length == sizeof (ipa6_conn_t)) {
5811 					ac6 = (ipa6_conn_t *)addrp;
5812 				} else {
5813 					ASSERT(tba->ADDR_length ==
5814 					    sizeof (ipa6_conn_x_t));
5815 					ac6 = &((ipa6_conn_x_t *)
5816 					    addrp)->ac6x_conn;
5817 				}
5818 				udp->udp_v6src = ac6->ac6_laddr;
5819 				(void) udp_build_hdrs(q, udp);
5820 				break;
5821 			}
5822 		}
5823 		mp1 = mp1->b_cont;
5824 	}
5825 	/*
5826 	 * Look for one or more appended ACK message added by
5827 	 * udp_connect or udp_disconnect.
5828 	 * If none found just send up the T_BIND_ACK.
5829 	 * udp_connect has appended a T_OK_ACK and a T_CONN_CON.
5830 	 * udp_disconnect has appended a T_OK_ACK.
5831 	 */
5832 	if (mp1 != NULL) {
5833 		if (mp->b_cont == mp1)
5834 			mp->b_cont = NULL;
5835 		else {
5836 			ASSERT(mp->b_cont->b_cont == mp1);
5837 			mp->b_cont->b_cont = NULL;
5838 		}
5839 		freemsg(mp);
5840 		mp = mp1;
5841 		while (mp != NULL) {
5842 			mp1 = mp->b_cont;
5843 			mp->b_cont = NULL;
5844 			putnext(UDP_RD(q), mp);
5845 			mp = mp1;
5846 		}
5847 		return;
5848 	}
5849 	freemsg(mp->b_cont);
5850 	mp->b_cont = NULL;
5851 	putnext(UDP_RD(q), mp);
5852 }
5853 
5854 /*
5855  * return SNMP stuff in buffer in mpdata
5856  */
5857 int
5858 udp_snmp_get(queue_t *q, mblk_t *mpctl)
5859 {
5860 	mblk_t			*mpdata;
5861 	mblk_t			*mp_conn_ctl;
5862 	mblk_t			*mp_attr_ctl;
5863 	mblk_t			*mp6_conn_ctl;
5864 	mblk_t			*mp6_attr_ctl;
5865 	mblk_t			*mp_conn_tail;
5866 	mblk_t			*mp_attr_tail;
5867 	mblk_t			*mp6_conn_tail;
5868 	mblk_t			*mp6_attr_tail;
5869 	struct opthdr		*optp;
5870 	mib2_udpEntry_t		ude;
5871 	mib2_udp6Entry_t	ude6;
5872 	mib2_transportMLPEntry_t mlp;
5873 	int			state;
5874 	zoneid_t		zoneid;
5875 	int			i;
5876 	connf_t			*connfp;
5877 	conn_t			*connp = Q_TO_CONN(q);
5878 	udp_t			*udp = connp->conn_udp;
5879 	int			v4_conn_idx;
5880 	int			v6_conn_idx;
5881 	boolean_t		needattr;
5882 	ip_stack_t		*ipst = connp->conn_netstack->netstack_ip;
5883 
5884 	mp_conn_ctl = mp_attr_ctl = mp6_conn_ctl = NULL;
5885 	if (mpctl == NULL ||
5886 	    (mpdata = mpctl->b_cont) == NULL ||
5887 	    (mp_conn_ctl = copymsg(mpctl)) == NULL ||
5888 	    (mp_attr_ctl = copymsg(mpctl)) == NULL ||
5889 	    (mp6_conn_ctl = copymsg(mpctl)) == NULL ||
5890 	    (mp6_attr_ctl = copymsg(mpctl)) == NULL) {
5891 		freemsg(mp_conn_ctl);
5892 		freemsg(mp_attr_ctl);
5893 		freemsg(mp6_conn_ctl);
5894 		return (0);
5895 	}
5896 
5897 	zoneid = connp->conn_zoneid;
5898 
5899 	/* fixed length structure for IPv4 and IPv6 counters */
5900 	SET_MIB(udp->udp_mib.udpEntrySize, sizeof (mib2_udpEntry_t));
5901 	SET_MIB(udp->udp_mib.udp6EntrySize, sizeof (mib2_udp6Entry_t));
5902 	/* synchronize 64- and 32-bit counters */
5903 	SYNC32_MIB(&udp->udp_mib, udpInDatagrams, udpHCInDatagrams);
5904 	SYNC32_MIB(&udp->udp_mib, udpOutDatagrams, udpHCOutDatagrams);
5905 
5906 	optp = (struct opthdr *)&mpctl->b_rptr[sizeof (struct T_optmgmt_ack)];
5907 	optp->level = MIB2_UDP;
5908 	optp->name = 0;
5909 	(void) snmp_append_data(mpdata, (char *)&udp->udp_mib,
5910 	    sizeof (udp->udp_mib));
5911 	optp->len = msgdsize(mpdata);
5912 	qreply(q, mpctl);
5913 
5914 	mp_conn_tail = mp_attr_tail = mp6_conn_tail = mp6_attr_tail = NULL;
5915 	v4_conn_idx = v6_conn_idx = 0;
5916 
5917 	for (i = 0; i < CONN_G_HASH_SIZE; i++) {
5918 		connfp = &ipst->ips_ipcl_globalhash_fanout[i];
5919 		connp = NULL;
5920 
5921 		while ((connp = ipcl_get_next_conn(connfp, connp,
5922 		    IPCL_UDP))) {
5923 			udp = connp->conn_udp;
5924 			if (zoneid != connp->conn_zoneid)
5925 				continue;
5926 
5927 			/*
5928 			 * Note that the port numbers are sent in
5929 			 * host byte order
5930 			 */
5931 
5932 			if (udp->udp_state == TS_UNBND)
5933 				state = MIB2_UDP_unbound;
5934 			else if (udp->udp_state == TS_IDLE)
5935 				state = MIB2_UDP_idle;
5936 			else if (udp->udp_state == TS_DATA_XFER)
5937 				state = MIB2_UDP_connected;
5938 			else
5939 				state = MIB2_UDP_unknown;
5940 
5941 			needattr = B_FALSE;
5942 			bzero(&mlp, sizeof (mlp));
5943 			if (connp->conn_mlp_type != mlptSingle) {
5944 				if (connp->conn_mlp_type == mlptShared ||
5945 				    connp->conn_mlp_type == mlptBoth)
5946 					mlp.tme_flags |= MIB2_TMEF_SHARED;
5947 				if (connp->conn_mlp_type == mlptPrivate ||
5948 				    connp->conn_mlp_type == mlptBoth)
5949 					mlp.tme_flags |= MIB2_TMEF_PRIVATE;
5950 				needattr = B_TRUE;
5951 			}
5952 
5953 			/*
5954 			 * Create an IPv4 table entry for IPv4 entries and also
5955 			 * any IPv6 entries which are bound to in6addr_any
5956 			 * (i.e. anything a IPv4 peer could connect/send to).
5957 			 */
5958 			if (udp->udp_ipversion == IPV4_VERSION ||
5959 			    (udp->udp_state <= TS_IDLE &&
5960 			    IN6_IS_ADDR_UNSPECIFIED(&udp->udp_v6src))) {
5961 				ude.udpEntryInfo.ue_state = state;
5962 				/*
5963 				 * If in6addr_any this will set it to
5964 				 * INADDR_ANY
5965 				 */
5966 				ude.udpLocalAddress =
5967 				    V4_PART_OF_V6(udp->udp_v6src);
5968 				ude.udpLocalPort = ntohs(udp->udp_port);
5969 				if (udp->udp_state == TS_DATA_XFER) {
5970 					/*
5971 					 * Can potentially get here for
5972 					 * v6 socket if another process
5973 					 * (say, ping) has just done a
5974 					 * sendto(), changing the state
5975 					 * from the TS_IDLE above to
5976 					 * TS_DATA_XFER by the time we hit
5977 					 * this part of the code.
5978 					 */
5979 					ude.udpEntryInfo.ue_RemoteAddress =
5980 					    V4_PART_OF_V6(udp->udp_v6dst);
5981 					ude.udpEntryInfo.ue_RemotePort =
5982 					    ntohs(udp->udp_dstport);
5983 				} else {
5984 					ude.udpEntryInfo.ue_RemoteAddress = 0;
5985 					ude.udpEntryInfo.ue_RemotePort = 0;
5986 				}
5987 
5988 				/*
5989 				 * We make the assumption that all udp_t
5990 				 * structs will be created within an address
5991 				 * region no larger than 32-bits.
5992 				 */
5993 				ude.udpInstance = (uint32_t)(uintptr_t)udp;
5994 				ude.udpCreationProcess =
5995 				    (udp->udp_open_pid < 0) ?
5996 				    MIB2_UNKNOWN_PROCESS :
5997 				    udp->udp_open_pid;
5998 				ude.udpCreationTime = udp->udp_open_time;
5999 
6000 				(void) snmp_append_data2(mp_conn_ctl->b_cont,
6001 				    &mp_conn_tail, (char *)&ude, sizeof (ude));
6002 				mlp.tme_connidx = v4_conn_idx++;
6003 				if (needattr)
6004 					(void) snmp_append_data2(
6005 					    mp_attr_ctl->b_cont, &mp_attr_tail,
6006 					    (char *)&mlp, sizeof (mlp));
6007 			}
6008 			if (udp->udp_ipversion == IPV6_VERSION) {
6009 				ude6.udp6EntryInfo.ue_state  = state;
6010 				ude6.udp6LocalAddress = udp->udp_v6src;
6011 				ude6.udp6LocalPort = ntohs(udp->udp_port);
6012 				ude6.udp6IfIndex = udp->udp_bound_if;
6013 				if (udp->udp_state == TS_DATA_XFER) {
6014 					ude6.udp6EntryInfo.ue_RemoteAddress =
6015 					    udp->udp_v6dst;
6016 					ude6.udp6EntryInfo.ue_RemotePort =
6017 					    ntohs(udp->udp_dstport);
6018 				} else {
6019 					ude6.udp6EntryInfo.ue_RemoteAddress =
6020 					    sin6_null.sin6_addr;
6021 					ude6.udp6EntryInfo.ue_RemotePort = 0;
6022 				}
6023 				/*
6024 				 * We make the assumption that all udp_t
6025 				 * structs will be created within an address
6026 				 * region no larger than 32-bits.
6027 				 */
6028 				ude6.udp6Instance = (uint32_t)(uintptr_t)udp;
6029 				ude6.udp6CreationProcess =
6030 				    (udp->udp_open_pid < 0) ?
6031 				    MIB2_UNKNOWN_PROCESS :
6032 				    udp->udp_open_pid;
6033 				ude6.udp6CreationTime = udp->udp_open_time;
6034 
6035 				(void) snmp_append_data2(mp6_conn_ctl->b_cont,
6036 				    &mp6_conn_tail, (char *)&ude6,
6037 				    sizeof (ude6));
6038 				mlp.tme_connidx = v6_conn_idx++;
6039 				if (needattr)
6040 					(void) snmp_append_data2(
6041 					    mp6_attr_ctl->b_cont,
6042 					    &mp6_attr_tail, (char *)&mlp,
6043 					    sizeof (mlp));
6044 			}
6045 		}
6046 	}
6047 
6048 	/* IPv4 UDP endpoints */
6049 	optp = (struct opthdr *)&mp_conn_ctl->b_rptr[
6050 	    sizeof (struct T_optmgmt_ack)];
6051 	optp->level = MIB2_UDP;
6052 	optp->name = MIB2_UDP_ENTRY;
6053 	optp->len = msgdsize(mp_conn_ctl->b_cont);
6054 	qreply(q, mp_conn_ctl);
6055 
6056 	/* table of MLP attributes... */
6057 	optp = (struct opthdr *)&mp_attr_ctl->b_rptr[
6058 	    sizeof (struct T_optmgmt_ack)];
6059 	optp->level = MIB2_UDP;
6060 	optp->name = EXPER_XPORT_MLP;
6061 	optp->len = msgdsize(mp_attr_ctl->b_cont);
6062 	if (optp->len == 0)
6063 		freemsg(mp_attr_ctl);
6064 	else
6065 		qreply(q, mp_attr_ctl);
6066 
6067 	/* IPv6 UDP endpoints */
6068 	optp = (struct opthdr *)&mp6_conn_ctl->b_rptr[
6069 	    sizeof (struct T_optmgmt_ack)];
6070 	optp->level = MIB2_UDP6;
6071 	optp->name = MIB2_UDP6_ENTRY;
6072 	optp->len = msgdsize(mp6_conn_ctl->b_cont);
6073 	qreply(q, mp6_conn_ctl);
6074 
6075 	/* table of MLP attributes... */
6076 	optp = (struct opthdr *)&mp6_attr_ctl->b_rptr[
6077 	    sizeof (struct T_optmgmt_ack)];
6078 	optp->level = MIB2_UDP6;
6079 	optp->name = EXPER_XPORT_MLP;
6080 	optp->len = msgdsize(mp6_attr_ctl->b_cont);
6081 	if (optp->len == 0)
6082 		freemsg(mp6_attr_ctl);
6083 	else
6084 		qreply(q, mp6_attr_ctl);
6085 
6086 	return (1);
6087 }
6088 
6089 /*
6090  * Return 0 if invalid set request, 1 otherwise, including non-udp requests.
6091  * NOTE: Per MIB-II, UDP has no writable data.
6092  * TODO:  If this ever actually tries to set anything, it needs to be
6093  * to do the appropriate locking.
6094  */
6095 /* ARGSUSED */
6096 int
6097 udp_snmp_set(queue_t *q, t_scalar_t level, t_scalar_t name,
6098     uchar_t *ptr, int len)
6099 {
6100 	switch (level) {
6101 	case MIB2_UDP:
6102 		return (0);
6103 	default:
6104 		return (1);
6105 	}
6106 }
6107 
6108 static void
6109 udp_report_item(mblk_t *mp, udp_t *udp)
6110 {
6111 	char *state;
6112 	char addrbuf1[INET6_ADDRSTRLEN];
6113 	char addrbuf2[INET6_ADDRSTRLEN];
6114 	uint_t print_len, buf_len;
6115 
6116 	buf_len = mp->b_datap->db_lim - mp->b_wptr;
6117 	ASSERT(buf_len >= 0);
6118 	if (buf_len == 0)
6119 		return;
6120 
6121 	if (udp->udp_state == TS_UNBND)
6122 		state = "UNBOUND";
6123 	else if (udp->udp_state == TS_IDLE)
6124 		state = "IDLE";
6125 	else if (udp->udp_state == TS_DATA_XFER)
6126 		state = "CONNECTED";
6127 	else
6128 		state = "UnkState";
6129 	print_len = snprintf((char *)mp->b_wptr, buf_len,
6130 	    MI_COL_PTRFMT_STR "%4d %5u %s %s %5u %s\n",
6131 	    (void *)udp, udp->udp_connp->conn_zoneid, ntohs(udp->udp_port),
6132 	    inet_ntop(AF_INET6, &udp->udp_v6src, addrbuf1, sizeof (addrbuf1)),
6133 	    inet_ntop(AF_INET6, &udp->udp_v6dst, addrbuf2, sizeof (addrbuf2)),
6134 	    ntohs(udp->udp_dstport), state);
6135 	if (print_len < buf_len) {
6136 		mp->b_wptr += print_len;
6137 	} else {
6138 		mp->b_wptr += buf_len;
6139 	}
6140 }
6141 
6142 /* Report for ndd "udp_status" */
6143 /* ARGSUSED */
6144 static int
6145 udp_status_report(queue_t *q, mblk_t *mp, caddr_t cp, cred_t *cr)
6146 {
6147 	zoneid_t zoneid;
6148 	connf_t	*connfp;
6149 	conn_t	*connp = Q_TO_CONN(q);
6150 	udp_t	*udp = connp->conn_udp;
6151 	int	i;
6152 	udp_stack_t *us = udp->udp_us;
6153 	ip_stack_t *ipst = connp->conn_netstack->netstack_ip;
6154 
6155 	/*
6156 	 * Because of the ndd constraint, at most we can have 64K buffer
6157 	 * to put in all UDP info.  So to be more efficient, just
6158 	 * allocate a 64K buffer here, assuming we need that large buffer.
6159 	 * This may be a problem as any user can read udp_status.  Therefore
6160 	 * we limit the rate of doing this using us_ndd_get_info_interval.
6161 	 * This should be OK as normal users should not do this too often.
6162 	 */
6163 	if (cr == NULL || secpolicy_ip_config(cr, B_TRUE) != 0) {
6164 		if (ddi_get_lbolt() - us->us_last_ndd_get_info_time <
6165 		    drv_usectohz(us->us_ndd_get_info_interval * 1000)) {
6166 			(void) mi_mpprintf(mp, NDD_TOO_QUICK_MSG);
6167 			return (0);
6168 		}
6169 	}
6170 	if ((mp->b_cont = allocb(ND_MAX_BUF_LEN, BPRI_HI)) == NULL) {
6171 		/* The following may work even if we cannot get a large buf. */
6172 		(void) mi_mpprintf(mp, NDD_OUT_OF_BUF_MSG);
6173 		return (0);
6174 	}
6175 	(void) mi_mpprintf(mp,
6176 	    "UDP     " MI_COL_HDRPAD_STR
6177 	/*   12345678[89ABCDEF] */
6178 	    " zone lport src addr        dest addr       port  state");
6179 	/*    1234 12345 xxx.xxx.xxx.xxx xxx.xxx.xxx.xxx 12345 UNBOUND */
6180 
6181 	zoneid = connp->conn_zoneid;
6182 
6183 	for (i = 0; i < CONN_G_HASH_SIZE; i++) {
6184 		connfp = &ipst->ips_ipcl_globalhash_fanout[i];
6185 		connp = NULL;
6186 
6187 		while ((connp = ipcl_get_next_conn(connfp, connp,
6188 		    IPCL_UDP))) {
6189 			udp = connp->conn_udp;
6190 			if (zoneid != GLOBAL_ZONEID &&
6191 			    zoneid != connp->conn_zoneid)
6192 				continue;
6193 
6194 			udp_report_item(mp->b_cont, udp);
6195 		}
6196 	}
6197 	us->us_last_ndd_get_info_time = ddi_get_lbolt();
6198 	return (0);
6199 }
6200 
6201 /*
6202  * This routine creates a T_UDERROR_IND message and passes it upstream.
6203  * The address and options are copied from the T_UNITDATA_REQ message
6204  * passed in mp.  This message is freed.
6205  */
6206 static void
6207 udp_ud_err(queue_t *q, mblk_t *mp, uchar_t *destaddr, t_scalar_t destlen,
6208     t_scalar_t err)
6209 {
6210 	struct T_unitdata_req *tudr;
6211 	mblk_t	*mp1;
6212 	uchar_t	*optaddr;
6213 	t_scalar_t optlen;
6214 
6215 	if (DB_TYPE(mp) == M_DATA) {
6216 		ASSERT(destaddr != NULL && destlen != 0);
6217 		optaddr = NULL;
6218 		optlen = 0;
6219 	} else {
6220 		if ((mp->b_wptr < mp->b_rptr) ||
6221 		    (MBLKL(mp)) < sizeof (struct T_unitdata_req)) {
6222 			goto done;
6223 		}
6224 		tudr = (struct T_unitdata_req *)mp->b_rptr;
6225 		destaddr = mp->b_rptr + tudr->DEST_offset;
6226 		if (destaddr < mp->b_rptr || destaddr >= mp->b_wptr ||
6227 		    destaddr + tudr->DEST_length < mp->b_rptr ||
6228 		    destaddr + tudr->DEST_length > mp->b_wptr) {
6229 			goto done;
6230 		}
6231 		optaddr = mp->b_rptr + tudr->OPT_offset;
6232 		if (optaddr < mp->b_rptr || optaddr >= mp->b_wptr ||
6233 		    optaddr + tudr->OPT_length < mp->b_rptr ||
6234 		    optaddr + tudr->OPT_length > mp->b_wptr) {
6235 			goto done;
6236 		}
6237 		destlen = tudr->DEST_length;
6238 		optlen = tudr->OPT_length;
6239 	}
6240 
6241 	mp1 = mi_tpi_uderror_ind((char *)destaddr, destlen,
6242 	    (char *)optaddr, optlen, err);
6243 	if (mp1 != NULL)
6244 		putnext(UDP_RD(q), mp1);
6245 
6246 done:
6247 	freemsg(mp);
6248 }
6249 
6250 /*
6251  * This routine removes a port number association from a stream.  It
6252  * is called by udp_wput to handle T_UNBIND_REQ messages.
6253  */
6254 static void
6255 udp_unbind(queue_t *q, mblk_t *mp)
6256 {
6257 	udp_t *udp = Q_TO_UDP(q);
6258 
6259 	/* If a bind has not been done, we can't unbind. */
6260 	if (udp->udp_state == TS_UNBND) {
6261 		udp_err_ack(q, mp, TOUTSTATE, 0);
6262 		return;
6263 	}
6264 	if (cl_inet_unbind != NULL) {
6265 		/*
6266 		 * Running in cluster mode - register unbind information
6267 		 */
6268 		if (udp->udp_ipversion == IPV4_VERSION) {
6269 			(*cl_inet_unbind)(IPPROTO_UDP, AF_INET,
6270 			    (uint8_t *)(&V4_PART_OF_V6(udp->udp_v6src)),
6271 			    (in_port_t)udp->udp_port);
6272 		} else {
6273 			(*cl_inet_unbind)(IPPROTO_UDP, AF_INET6,
6274 			    (uint8_t *)&(udp->udp_v6src),
6275 			    (in_port_t)udp->udp_port);
6276 		}
6277 	}
6278 
6279 	udp_bind_hash_remove(udp, B_FALSE);
6280 	V6_SET_ZERO(udp->udp_v6src);
6281 	V6_SET_ZERO(udp->udp_bound_v6src);
6282 	udp->udp_port = 0;
6283 	udp->udp_state = TS_UNBND;
6284 
6285 	if (udp->udp_family == AF_INET6) {
6286 		int error;
6287 
6288 		/* Rebuild the header template */
6289 		error = udp_build_hdrs(q, udp);
6290 		if (error != 0) {
6291 			udp_err_ack(q, mp, TSYSERR, error);
6292 			return;
6293 		}
6294 	}
6295 	/*
6296 	 * Pass the unbind to IP; T_UNBIND_REQ is larger than T_OK_ACK
6297 	 * and therefore ip_unbind must never return NULL.
6298 	 */
6299 	mp = ip_unbind(q, mp);
6300 	ASSERT(mp != NULL);
6301 	putnext(UDP_RD(q), mp);
6302 }
6303 
6304 /*
6305  * Don't let port fall into the privileged range.
6306  * Since the extra privileged ports can be arbitrary we also
6307  * ensure that we exclude those from consideration.
6308  * us->us_epriv_ports is not sorted thus we loop over it until
6309  * there are no changes.
6310  */
6311 static in_port_t
6312 udp_update_next_port(udp_t *udp, in_port_t port, boolean_t random)
6313 {
6314 	int i;
6315 	in_port_t nextport;
6316 	boolean_t restart = B_FALSE;
6317 	udp_stack_t *us = udp->udp_us;
6318 
6319 	if (random && udp_random_anon_port != 0) {
6320 		(void) random_get_pseudo_bytes((uint8_t *)&port,
6321 		    sizeof (in_port_t));
6322 		/*
6323 		 * Unless changed by a sys admin, the smallest anon port
6324 		 * is 32768 and the largest anon port is 65535.  It is
6325 		 * very likely (50%) for the random port to be smaller
6326 		 * than the smallest anon port.  When that happens,
6327 		 * add port % (anon port range) to the smallest anon
6328 		 * port to get the random port.  It should fall into the
6329 		 * valid anon port range.
6330 		 */
6331 		if (port < us->us_smallest_anon_port) {
6332 			port = us->us_smallest_anon_port +
6333 			    port % (us->us_largest_anon_port -
6334 			    us->us_smallest_anon_port);
6335 		}
6336 	}
6337 
6338 retry:
6339 	if (port < us->us_smallest_anon_port)
6340 		port = us->us_smallest_anon_port;
6341 
6342 	if (port > us->us_largest_anon_port) {
6343 		port = us->us_smallest_anon_port;
6344 		if (restart)
6345 			return (0);
6346 		restart = B_TRUE;
6347 	}
6348 
6349 	if (port < us->us_smallest_nonpriv_port)
6350 		port = us->us_smallest_nonpriv_port;
6351 
6352 	for (i = 0; i < us->us_num_epriv_ports; i++) {
6353 		if (port == us->us_epriv_ports[i]) {
6354 			port++;
6355 			/*
6356 			 * Make sure that the port is in the
6357 			 * valid range.
6358 			 */
6359 			goto retry;
6360 		}
6361 	}
6362 
6363 	if (is_system_labeled() &&
6364 	    (nextport = tsol_next_port(crgetzone(udp->udp_connp->conn_cred),
6365 	    port, IPPROTO_UDP, B_TRUE)) != 0) {
6366 		port = nextport;
6367 		goto retry;
6368 	}
6369 
6370 	return (port);
6371 }
6372 
6373 static int
6374 udp_update_label(queue_t *wq, mblk_t *mp, ipaddr_t dst)
6375 {
6376 	int err;
6377 	uchar_t opt_storage[IP_MAX_OPT_LENGTH];
6378 	udp_t *udp = Q_TO_UDP(wq);
6379 
6380 	err = tsol_compute_label(DB_CREDDEF(mp, udp->udp_connp->conn_cred), dst,
6381 	    opt_storage, udp->udp_mac_exempt,
6382 	    udp->udp_us->us_netstack->netstack_ip);
6383 	if (err == 0) {
6384 		err = tsol_update_options(&udp->udp_ip_snd_options,
6385 		    &udp->udp_ip_snd_options_len, &udp->udp_label_len,
6386 		    opt_storage);
6387 	}
6388 	if (err != 0) {
6389 		DTRACE_PROBE4(
6390 		    tx__ip__log__info__updatelabel__udp,
6391 		    char *, "queue(1) failed to update options(2) on mp(3)",
6392 		    queue_t *, wq, char *, opt_storage, mblk_t *, mp);
6393 	} else {
6394 		IN6_IPADDR_TO_V4MAPPED(dst, &udp->udp_v6lastdst);
6395 	}
6396 	return (err);
6397 }
6398 
6399 static mblk_t *
6400 udp_output_v4(conn_t *connp, mblk_t *mp, ipaddr_t v4dst, uint16_t port,
6401     uint_t srcid, int *error, boolean_t insert_spi)
6402 {
6403 	udp_t	*udp = connp->conn_udp;
6404 	queue_t	*q = connp->conn_wq;
6405 	mblk_t	*mp1 = mp;
6406 	mblk_t	*mp2;
6407 	ipha_t	*ipha;
6408 	int	ip_hdr_length;
6409 	uint32_t ip_len;
6410 	udpha_t	*udpha;
6411 	udpattrs_t	attrs;
6412 	uchar_t	ip_snd_opt[IP_MAX_OPT_LENGTH];
6413 	uint32_t	ip_snd_opt_len = 0;
6414 	ip4_pkt_t  pktinfo;
6415 	ip4_pkt_t  *pktinfop = &pktinfo;
6416 	ip_opt_info_t optinfo;
6417 	ip_stack_t	*ipst = connp->conn_netstack->netstack_ip;
6418 	udp_stack_t	*us = udp->udp_us;
6419 	ipsec_stack_t	*ipss = ipst->ips_netstack->netstack_ipsec;
6420 
6421 
6422 	*error = 0;
6423 	pktinfop->ip4_ill_index = 0;
6424 	pktinfop->ip4_addr = INADDR_ANY;
6425 	optinfo.ip_opt_flags = 0;
6426 	optinfo.ip_opt_ill_index = 0;
6427 
6428 	if (v4dst == INADDR_ANY)
6429 		v4dst = htonl(INADDR_LOOPBACK);
6430 
6431 	/*
6432 	 * If options passed in, feed it for verification and handling
6433 	 */
6434 	attrs.udpattr_credset = B_FALSE;
6435 	if (DB_TYPE(mp) != M_DATA) {
6436 		mp1 = mp->b_cont;
6437 		if (((struct T_unitdata_req *)mp->b_rptr)->OPT_length != 0) {
6438 			attrs.udpattr_ipp4 = pktinfop;
6439 			attrs.udpattr_mb = mp;
6440 			if (udp_unitdata_opt_process(q, mp, error, &attrs) < 0)
6441 				goto done;
6442 			/*
6443 			 * Note: success in processing options.
6444 			 * mp option buffer represented by
6445 			 * OPT_length/offset now potentially modified
6446 			 * and contain option setting results
6447 			 */
6448 			ASSERT(*error == 0);
6449 		}
6450 	}
6451 
6452 	/* mp1 points to the M_DATA mblk carrying the packet */
6453 	ASSERT(mp1 != NULL && DB_TYPE(mp1) == M_DATA);
6454 
6455 	/*
6456 	 * Check if our saved options are valid; update if not.
6457 	 * TSOL Note: Since we are not in WRITER mode, UDP packets
6458 	 * to different destination may require different labels,
6459 	 * or worse, UDP packets to same IP address may require
6460 	 * different labels due to use of shared all-zones address.
6461 	 * We use conn_lock to ensure that lastdst, ip_snd_options,
6462 	 * and ip_snd_options_len are consistent for the current
6463 	 * destination and are updated atomically.
6464 	 */
6465 	mutex_enter(&connp->conn_lock);
6466 	if (is_system_labeled()) {
6467 		/* Using UDP MLP requires SCM_UCRED from user */
6468 		if (connp->conn_mlp_type != mlptSingle &&
6469 		    !attrs.udpattr_credset) {
6470 			mutex_exit(&connp->conn_lock);
6471 			DTRACE_PROBE4(
6472 			    tx__ip__log__info__output__udp,
6473 			    char *, "MLP mp(1) lacks SCM_UCRED attr(2) on q(3)",
6474 			    mblk_t *, mp1, udpattrs_t *, &attrs, queue_t *, q);
6475 			*error = ECONNREFUSED;
6476 			goto done;
6477 		}
6478 		/*
6479 		 * update label option for this UDP socket if
6480 		 * - the destination has changed, or
6481 		 * - the UDP socket is MLP
6482 		 */
6483 		if ((!IN6_IS_ADDR_V4MAPPED(&udp->udp_v6lastdst) ||
6484 		    V4_PART_OF_V6(udp->udp_v6lastdst) != v4dst ||
6485 		    connp->conn_mlp_type != mlptSingle) &&
6486 		    (*error = udp_update_label(q, mp, v4dst)) != 0) {
6487 			mutex_exit(&connp->conn_lock);
6488 			goto done;
6489 		}
6490 	}
6491 	if (udp->udp_ip_snd_options_len > 0) {
6492 		ip_snd_opt_len = udp->udp_ip_snd_options_len;
6493 		bcopy(udp->udp_ip_snd_options, ip_snd_opt, ip_snd_opt_len);
6494 	}
6495 	mutex_exit(&connp->conn_lock);
6496 
6497 	/* Add an IP header */
6498 	ip_hdr_length = IP_SIMPLE_HDR_LENGTH + UDPH_SIZE + ip_snd_opt_len +
6499 	    (insert_spi ? sizeof (uint32_t) : 0);
6500 	ipha = (ipha_t *)&mp1->b_rptr[-ip_hdr_length];
6501 	if (DB_REF(mp1) != 1 || (uchar_t *)ipha < DB_BASE(mp1) ||
6502 	    !OK_32PTR(ipha)) {
6503 		mp2 = allocb(ip_hdr_length + us->us_wroff_extra, BPRI_LO);
6504 		if (mp2 == NULL) {
6505 			TRACE_2(TR_FAC_UDP, TR_UDP_WPUT_END,
6506 			    "udp_wput_end: q %p (%S)", q, "allocbfail2");
6507 			*error = ENOMEM;
6508 			goto done;
6509 		}
6510 		mp2->b_wptr = DB_LIM(mp2);
6511 		mp2->b_cont = mp1;
6512 		mp1 = mp2;
6513 		if (DB_TYPE(mp) != M_DATA)
6514 			mp->b_cont = mp1;
6515 		else
6516 			mp = mp1;
6517 
6518 		ipha = (ipha_t *)(mp1->b_wptr - ip_hdr_length);
6519 	}
6520 	ip_hdr_length -= (UDPH_SIZE + (insert_spi ? sizeof (uint32_t) : 0));
6521 #ifdef	_BIG_ENDIAN
6522 	/* Set version, header length, and tos */
6523 	*(uint16_t *)&ipha->ipha_version_and_hdr_length =
6524 	    ((((IP_VERSION << 4) | (ip_hdr_length>>2)) << 8) |
6525 	    udp->udp_type_of_service);
6526 	/* Set ttl and protocol */
6527 	*(uint16_t *)&ipha->ipha_ttl = (udp->udp_ttl << 8) | IPPROTO_UDP;
6528 #else
6529 	/* Set version, header length, and tos */
6530 	*(uint16_t *)&ipha->ipha_version_and_hdr_length =
6531 	    ((udp->udp_type_of_service << 8) |
6532 	    ((IP_VERSION << 4) | (ip_hdr_length>>2)));
6533 	/* Set ttl and protocol */
6534 	*(uint16_t *)&ipha->ipha_ttl = (IPPROTO_UDP << 8) | udp->udp_ttl;
6535 #endif
6536 	if (pktinfop->ip4_addr != INADDR_ANY) {
6537 		ipha->ipha_src = pktinfop->ip4_addr;
6538 		optinfo.ip_opt_flags = IP_VERIFY_SRC;
6539 	} else {
6540 		/*
6541 		 * Copy our address into the packet.  If this is zero,
6542 		 * first look at __sin6_src_id for a hint. If we leave the
6543 		 * source as INADDR_ANY then ip will fill in the real source
6544 		 * address.
6545 		 */
6546 		IN6_V4MAPPED_TO_IPADDR(&udp->udp_v6src, ipha->ipha_src);
6547 		if (srcid != 0 && ipha->ipha_src == INADDR_ANY) {
6548 			in6_addr_t v6src;
6549 
6550 			ip_srcid_find_id(srcid, &v6src, connp->conn_zoneid,
6551 			    us->us_netstack);
6552 			IN6_V4MAPPED_TO_IPADDR(&v6src, ipha->ipha_src);
6553 		}
6554 	}
6555 
6556 	if (pktinfop->ip4_ill_index != 0) {
6557 		optinfo.ip_opt_ill_index = pktinfop->ip4_ill_index;
6558 	}
6559 
6560 	ipha->ipha_fragment_offset_and_flags = 0;
6561 	ipha->ipha_ident = 0;
6562 
6563 	mp1->b_rptr = (uchar_t *)ipha;
6564 
6565 	ASSERT((uintptr_t)(mp1->b_wptr - (uchar_t *)ipha) <=
6566 	    (uintptr_t)UINT_MAX);
6567 
6568 	/* Determine length of packet */
6569 	ip_len = (uint32_t)(mp1->b_wptr - (uchar_t *)ipha);
6570 	if ((mp2 = mp1->b_cont) != NULL) {
6571 		do {
6572 			ASSERT((uintptr_t)MBLKL(mp2) <= (uintptr_t)UINT_MAX);
6573 			ip_len += (uint32_t)MBLKL(mp2);
6574 		} while ((mp2 = mp2->b_cont) != NULL);
6575 	}
6576 	/*
6577 	 * If the size of the packet is greater than the maximum allowed by
6578 	 * ip, return an error. Passing this down could cause panics because
6579 	 * the size will have wrapped and be inconsistent with the msg size.
6580 	 */
6581 	if (ip_len > IP_MAXPACKET) {
6582 		TRACE_2(TR_FAC_UDP, TR_UDP_WPUT_END,
6583 		    "udp_wput_end: q %p (%S)", q, "IP length exceeded");
6584 		*error = EMSGSIZE;
6585 		goto done;
6586 	}
6587 	ipha->ipha_length = htons((uint16_t)ip_len);
6588 	ip_len -= ip_hdr_length;
6589 	ip_len = htons((uint16_t)ip_len);
6590 	udpha = (udpha_t *)(((uchar_t *)ipha) + ip_hdr_length);
6591 
6592 	/* Insert all-0s SPI now. */
6593 	if (insert_spi)
6594 		*((uint32_t *)(udpha + 1)) = 0;
6595 
6596 	/*
6597 	 * Copy in the destination address
6598 	 */
6599 	ipha->ipha_dst = v4dst;
6600 
6601 	/*
6602 	 * Set ttl based on IP_MULTICAST_TTL to match IPv6 logic.
6603 	 */
6604 	if (CLASSD(v4dst))
6605 		ipha->ipha_ttl = udp->udp_multicast_ttl;
6606 
6607 	udpha->uha_dst_port = port;
6608 	udpha->uha_src_port = udp->udp_port;
6609 
6610 	if (ip_snd_opt_len > 0) {
6611 		uint32_t	cksum;
6612 
6613 		bcopy(ip_snd_opt, &ipha[1], ip_snd_opt_len);
6614 		/*
6615 		 * Massage source route putting first source route in ipha_dst.
6616 		 * Ignore the destination in T_unitdata_req.
6617 		 * Create a checksum adjustment for a source route, if any.
6618 		 */
6619 		cksum = ip_massage_options(ipha, us->us_netstack);
6620 		cksum = (cksum & 0xFFFF) + (cksum >> 16);
6621 		cksum -= ((ipha->ipha_dst >> 16) & 0xFFFF) +
6622 		    (ipha->ipha_dst & 0xFFFF);
6623 		if ((int)cksum < 0)
6624 			cksum--;
6625 		cksum = (cksum & 0xFFFF) + (cksum >> 16);
6626 		/*
6627 		 * IP does the checksum if uha_checksum is non-zero,
6628 		 * We make it easy for IP to include our pseudo header
6629 		 * by putting our length in uha_checksum.
6630 		 */
6631 		cksum += ip_len;
6632 		cksum = (cksum & 0xFFFF) + (cksum >> 16);
6633 		/* There might be a carry. */
6634 		cksum = (cksum & 0xFFFF) + (cksum >> 16);
6635 #ifdef _LITTLE_ENDIAN
6636 		if (us->us_do_checksum)
6637 			ip_len = (cksum << 16) | ip_len;
6638 #else
6639 		if (us->us_do_checksum)
6640 			ip_len = (ip_len << 16) | cksum;
6641 		else
6642 			ip_len <<= 16;
6643 #endif
6644 	} else {
6645 		/*
6646 		 * IP does the checksum if uha_checksum is non-zero,
6647 		 * We make it easy for IP to include our pseudo header
6648 		 * by putting our length in uha_checksum.
6649 		 */
6650 		if (us->us_do_checksum)
6651 			ip_len |= (ip_len << 16);
6652 #ifndef _LITTLE_ENDIAN
6653 		else
6654 			ip_len <<= 16;
6655 #endif
6656 	}
6657 
6658 	/* Set UDP length and checksum */
6659 	*((uint32_t *)&udpha->uha_length) = ip_len;
6660 	if (DB_CRED(mp) != NULL)
6661 		mblk_setcred(mp1, DB_CRED(mp));
6662 
6663 	if (DB_TYPE(mp) != M_DATA) {
6664 		ASSERT(mp != mp1);
6665 		freeb(mp);
6666 	}
6667 
6668 	/* mp has been consumed and we'll return success */
6669 	ASSERT(*error == 0);
6670 	mp = NULL;
6671 
6672 	/* We're done.  Pass the packet to ip. */
6673 	BUMP_MIB(&udp->udp_mib, udpHCOutDatagrams);
6674 	TRACE_2(TR_FAC_UDP, TR_UDP_WPUT_END,
6675 	    "udp_wput_end: q %p (%S)", q, "end");
6676 
6677 	if ((connp->conn_flags & IPCL_CHECK_POLICY) != 0 ||
6678 	    CONN_OUTBOUND_POLICY_PRESENT(connp, ipss) ||
6679 	    connp->conn_dontroute || connp->conn_xmit_if_ill != NULL ||
6680 	    connp->conn_nofailover_ill != NULL ||
6681 	    connp->conn_outgoing_ill != NULL || optinfo.ip_opt_flags != 0 ||
6682 	    optinfo.ip_opt_ill_index != 0 ||
6683 	    ipha->ipha_version_and_hdr_length != IP_SIMPLE_HDR_VERSION ||
6684 	    IPP_ENABLED(IPP_LOCAL_OUT, ipst) ||
6685 	    ipst->ips_ip_g_mrouter != NULL) {
6686 		UDP_STAT(us, udp_ip_send);
6687 		ip_output_options(connp, mp1, connp->conn_wq, IP_WPUT,
6688 		    &optinfo);
6689 	} else {
6690 		udp_send_data(udp, connp->conn_wq, mp1, ipha);
6691 	}
6692 
6693 done:
6694 	if (*error != 0) {
6695 		ASSERT(mp != NULL);
6696 		BUMP_MIB(&udp->udp_mib, udpOutErrors);
6697 	}
6698 	return (mp);
6699 }
6700 
6701 static void
6702 udp_send_data(udp_t *udp, queue_t *q, mblk_t *mp, ipha_t *ipha)
6703 {
6704 	conn_t	*connp = udp->udp_connp;
6705 	ipaddr_t src, dst;
6706 	ill_t	*ill;
6707 	ire_t	*ire;
6708 	ipif_t	*ipif = NULL;
6709 	mblk_t	*ire_fp_mp;
6710 	uint_t	ire_fp_mp_len;
6711 	uint16_t *up;
6712 	uint32_t cksum, hcksum_txflags;
6713 	queue_t	*dev_q;
6714 	boolean_t retry_caching;
6715 	udp_stack_t *us = udp->udp_us;
6716 	ip_stack_t	*ipst = connp->conn_netstack->netstack_ip;
6717 
6718 	dst = ipha->ipha_dst;
6719 	src = ipha->ipha_src;
6720 	ASSERT(ipha->ipha_ident == 0);
6721 
6722 	if (CLASSD(dst)) {
6723 		int err;
6724 
6725 		ipif = conn_get_held_ipif(connp,
6726 		    &connp->conn_multicast_ipif, &err);
6727 
6728 		if (ipif == NULL || ipif->ipif_isv6 ||
6729 		    (ipif->ipif_ill->ill_phyint->phyint_flags &
6730 		    PHYI_LOOPBACK)) {
6731 			if (ipif != NULL)
6732 				ipif_refrele(ipif);
6733 			UDP_STAT(us, udp_ip_send);
6734 			ip_output(connp, mp, q, IP_WPUT);
6735 			return;
6736 		}
6737 	}
6738 
6739 	retry_caching = B_FALSE;
6740 	mutex_enter(&connp->conn_lock);
6741 	ire = connp->conn_ire_cache;
6742 	ASSERT(!(connp->conn_state_flags & CONN_INCIPIENT));
6743 
6744 	if (ire == NULL || ire->ire_addr != dst ||
6745 	    (ire->ire_marks & IRE_MARK_CONDEMNED)) {
6746 		retry_caching = B_TRUE;
6747 	} else if (CLASSD(dst) && (ire->ire_type & IRE_CACHE)) {
6748 		ill_t *stq_ill = (ill_t *)ire->ire_stq->q_ptr;
6749 
6750 		ASSERT(ipif != NULL);
6751 		if (stq_ill != ipif->ipif_ill && (stq_ill->ill_group == NULL ||
6752 		    stq_ill->ill_group != ipif->ipif_ill->ill_group))
6753 			retry_caching = B_TRUE;
6754 	}
6755 
6756 	if (!retry_caching) {
6757 		ASSERT(ire != NULL);
6758 		IRE_REFHOLD(ire);
6759 		mutex_exit(&connp->conn_lock);
6760 	} else {
6761 		boolean_t cached = B_FALSE;
6762 
6763 		connp->conn_ire_cache = NULL;
6764 		mutex_exit(&connp->conn_lock);
6765 
6766 		/* Release the old ire */
6767 		if (ire != NULL) {
6768 			IRE_REFRELE_NOTR(ire);
6769 			ire = NULL;
6770 		}
6771 
6772 		if (CLASSD(dst)) {
6773 			ASSERT(ipif != NULL);
6774 			ire = ire_ctable_lookup(dst, 0, 0, ipif,
6775 			    connp->conn_zoneid, MBLK_GETLABEL(mp),
6776 			    MATCH_IRE_ILL_GROUP, ipst);
6777 		} else {
6778 			ASSERT(ipif == NULL);
6779 			ire = ire_cache_lookup(dst, connp->conn_zoneid,
6780 			    MBLK_GETLABEL(mp), ipst);
6781 		}
6782 
6783 		if (ire == NULL) {
6784 			if (ipif != NULL)
6785 				ipif_refrele(ipif);
6786 			UDP_STAT(us, udp_ire_null);
6787 			ip_output(connp, mp, q, IP_WPUT);
6788 			return;
6789 		}
6790 		IRE_REFHOLD_NOTR(ire);
6791 
6792 		mutex_enter(&connp->conn_lock);
6793 		if (CONN_CACHE_IRE(connp) && connp->conn_ire_cache == NULL) {
6794 			rw_enter(&ire->ire_bucket->irb_lock, RW_READER);
6795 			if (!(ire->ire_marks & IRE_MARK_CONDEMNED)) {
6796 				connp->conn_ire_cache = ire;
6797 				cached = B_TRUE;
6798 			}
6799 			rw_exit(&ire->ire_bucket->irb_lock);
6800 		}
6801 		mutex_exit(&connp->conn_lock);
6802 
6803 		/*
6804 		 * We can continue to use the ire but since it was not
6805 		 * cached, we should drop the extra reference.
6806 		 */
6807 		if (!cached)
6808 			IRE_REFRELE_NOTR(ire);
6809 	}
6810 	ASSERT(ire != NULL && ire->ire_ipversion == IPV4_VERSION);
6811 	ASSERT(!CLASSD(dst) || ipif != NULL);
6812 
6813 	/*
6814 	 * Check if we can take the fast-path.
6815 	 * Note that "incomplete" ire's (where the link-layer for next hop
6816 	 * is not resolved, or where the fast-path header in nce_fp_mp is not
6817 	 * available yet) are sent down the legacy (slow) path
6818 	 */
6819 	if ((ire->ire_type & (IRE_BROADCAST|IRE_LOCAL|IRE_LOOPBACK)) ||
6820 	    (ire->ire_flags & RTF_MULTIRT) || (ire->ire_stq == NULL) ||
6821 	    (ire->ire_max_frag < ntohs(ipha->ipha_length)) ||
6822 	    (connp->conn_nexthop_set) ||
6823 	    (ire->ire_nce == NULL) ||
6824 	    ((ire_fp_mp = ire->ire_nce->nce_fp_mp) == NULL) ||
6825 	    ((ire_fp_mp_len = MBLKL(ire_fp_mp)) > MBLKHEAD(mp))) {
6826 		if (ipif != NULL)
6827 			ipif_refrele(ipif);
6828 		UDP_STAT(us, udp_ip_ire_send);
6829 		IRE_REFRELE(ire);
6830 		ip_output(connp, mp, q, IP_WPUT);
6831 		return;
6832 	}
6833 
6834 	ill = ire_to_ill(ire);
6835 	ASSERT(ill != NULL);
6836 
6837 	BUMP_MIB(ill->ill_ip_mib, ipIfStatsHCOutRequests);
6838 
6839 	dev_q = ire->ire_stq->q_next;
6840 	ASSERT(dev_q != NULL);
6841 	/*
6842 	 * If the service thread is already running, or if the driver
6843 	 * queue is currently flow-controlled, queue this packet.
6844 	 */
6845 	if ((q->q_first != NULL || connp->conn_draining) ||
6846 	    ((dev_q->q_next || dev_q->q_first) && !canput(dev_q))) {
6847 		if (ipst->ips_ip_output_queue) {
6848 			(void) putq(q, mp);
6849 		} else {
6850 			BUMP_MIB(ill->ill_ip_mib, ipIfStatsOutDiscards);
6851 			freemsg(mp);
6852 		}
6853 		if (ipif != NULL)
6854 			ipif_refrele(ipif);
6855 		IRE_REFRELE(ire);
6856 		return;
6857 	}
6858 
6859 	ipha->ipha_ident = (uint16_t)atomic_add_32_nv(&ire->ire_ident, 1);
6860 #ifndef _BIG_ENDIAN
6861 	ipha->ipha_ident = (ipha->ipha_ident << 8) | (ipha->ipha_ident >> 8);
6862 #endif
6863 
6864 	if (src == INADDR_ANY && !connp->conn_unspec_src) {
6865 		if (CLASSD(dst) && !(ire->ire_flags & RTF_SETSRC))
6866 			src = ipha->ipha_src = ipif->ipif_src_addr;
6867 		else
6868 			src = ipha->ipha_src = ire->ire_src_addr;
6869 	}
6870 
6871 	if (ILL_HCKSUM_CAPABLE(ill) && dohwcksum) {
6872 		ASSERT(ill->ill_hcksum_capab != NULL);
6873 		hcksum_txflags = ill->ill_hcksum_capab->ill_hcksum_txflags;
6874 	} else {
6875 		hcksum_txflags = 0;
6876 	}
6877 
6878 	/* pseudo-header checksum (do it in parts for IP header checksum) */
6879 	cksum = (dst >> 16) + (dst & 0xFFFF) + (src >> 16) + (src & 0xFFFF);
6880 
6881 	ASSERT(ipha->ipha_version_and_hdr_length == IP_SIMPLE_HDR_VERSION);
6882 	up = IPH_UDPH_CHECKSUMP(ipha, IP_SIMPLE_HDR_LENGTH);
6883 	if (*up != 0) {
6884 		IP_CKSUM_XMIT_FAST(ire->ire_ipversion, hcksum_txflags,
6885 		    mp, ipha, up, IPPROTO_UDP, IP_SIMPLE_HDR_LENGTH,
6886 		    ntohs(ipha->ipha_length), cksum);
6887 
6888 		/* Software checksum? */
6889 		if (DB_CKSUMFLAGS(mp) == 0) {
6890 			UDP_STAT(us, udp_out_sw_cksum);
6891 			UDP_STAT_UPDATE(us, udp_out_sw_cksum_bytes,
6892 			    ntohs(ipha->ipha_length) - IP_SIMPLE_HDR_LENGTH);
6893 		}
6894 	}
6895 
6896 	if (!CLASSD(dst)) {
6897 		ipha->ipha_fragment_offset_and_flags |=
6898 		    (uint32_t)htons(ire->ire_frag_flag);
6899 	}
6900 
6901 	/* Calculate IP header checksum if hardware isn't capable */
6902 	if (!(DB_CKSUMFLAGS(mp) & HCK_IPV4_HDRCKSUM)) {
6903 		IP_HDR_CKSUM(ipha, cksum, ((uint32_t *)ipha)[0],
6904 		    ((uint16_t *)ipha)[4]);
6905 	}
6906 
6907 	if (CLASSD(dst)) {
6908 		ilm_t *ilm;
6909 
6910 		ILM_WALKER_HOLD(ill);
6911 		ilm = ilm_lookup_ill(ill, dst, ALL_ZONES);
6912 		ILM_WALKER_RELE(ill);
6913 		if (ilm != NULL) {
6914 			ip_multicast_loopback(q, ill, mp,
6915 			    connp->conn_multicast_loop ? 0 :
6916 			    IP_FF_NO_MCAST_LOOP, connp->conn_zoneid);
6917 		}
6918 
6919 		/* If multicast TTL is 0 then we are done */
6920 		if (ipha->ipha_ttl == 0) {
6921 			if (ipif != NULL)
6922 				ipif_refrele(ipif);
6923 			freemsg(mp);
6924 			IRE_REFRELE(ire);
6925 			return;
6926 		}
6927 	}
6928 
6929 	ASSERT(DB_TYPE(ire_fp_mp) == M_DATA);
6930 	mp->b_rptr = (uchar_t *)ipha - ire_fp_mp_len;
6931 	bcopy(ire_fp_mp->b_rptr, mp->b_rptr, ire_fp_mp_len);
6932 
6933 	UPDATE_OB_PKT_COUNT(ire);
6934 	ire->ire_last_used_time = lbolt;
6935 
6936 	BUMP_MIB(ill->ill_ip_mib, ipIfStatsHCOutTransmits);
6937 	UPDATE_MIB(ill->ill_ip_mib, ipIfStatsHCOutOctets,
6938 	    ntohs(ipha->ipha_length));
6939 
6940 	if (ILL_DLS_CAPABLE(ill)) {
6941 		/*
6942 		 * Send the packet directly to DLD, where it may be queued
6943 		 * depending on the availability of transmit resources at
6944 		 * the media layer.
6945 		 */
6946 		IP_DLS_ILL_TX(ill, ipha, mp, ipst);
6947 	} else {
6948 		DTRACE_PROBE4(ip4__physical__out__start,
6949 		    ill_t *, NULL, ill_t *, ill,
6950 		    ipha_t *, ipha, mblk_t *, mp);
6951 		FW_HOOKS(ipst->ips_ip4_physical_out_event,
6952 		    ipst->ips_ipv4firewall_physical_out,
6953 		    NULL, ill, ipha, mp, mp, ipst);
6954 		DTRACE_PROBE1(ip4__physical__out__end, mblk_t *, mp);
6955 		if (mp != NULL)
6956 			putnext(ire->ire_stq, mp);
6957 	}
6958 
6959 	if (ipif != NULL)
6960 		ipif_refrele(ipif);
6961 	IRE_REFRELE(ire);
6962 }
6963 
6964 static boolean_t
6965 udp_update_label_v6(queue_t *wq, mblk_t *mp, in6_addr_t *dst)
6966 {
6967 	udp_t *udp = Q_TO_UDP(wq);
6968 	int err;
6969 	uchar_t opt_storage[TSOL_MAX_IPV6_OPTION];
6970 
6971 	err = tsol_compute_label_v6(DB_CREDDEF(mp, udp->udp_connp->conn_cred),
6972 	    dst, opt_storage, udp->udp_mac_exempt,
6973 	    udp->udp_us->us_netstack->netstack_ip);
6974 	if (err == 0) {
6975 		err = tsol_update_sticky(&udp->udp_sticky_ipp,
6976 		    &udp->udp_label_len_v6, opt_storage);
6977 	}
6978 	if (err != 0) {
6979 		DTRACE_PROBE4(
6980 		    tx__ip__log__drop__updatelabel__udp6,
6981 		    char *, "queue(1) failed to update options(2) on mp(3)",
6982 		    queue_t *, wq, char *, opt_storage, mblk_t *, mp);
6983 	} else {
6984 		udp->udp_v6lastdst = *dst;
6985 	}
6986 	return (err);
6987 }
6988 
6989 /*
6990  * This routine handles all messages passed downstream.  It either
6991  * consumes the message or passes it downstream; it never queues a
6992  * a message.
6993  */
6994 static void
6995 udp_output(conn_t *connp, mblk_t *mp, struct sockaddr *addr, socklen_t addrlen)
6996 {
6997 	sin6_t		*sin6;
6998 	sin_t		*sin;
6999 	ipaddr_t	v4dst;
7000 	uint16_t	port;
7001 	uint_t		srcid;
7002 	queue_t		*q = connp->conn_wq;
7003 	udp_t		*udp = connp->conn_udp;
7004 	int		error = 0;
7005 	struct sockaddr_storage ss;
7006 	udp_stack_t *us = udp->udp_us;
7007 	boolean_t	insert_spi = udp->udp_nat_t_endpoint;
7008 
7009 	TRACE_2(TR_FAC_UDP, TR_UDP_WPUT_START,
7010 	    "udp_wput_start: connp %p mp %p", connp, mp);
7011 
7012 	/*
7013 	 * We directly handle several cases here: T_UNITDATA_REQ message
7014 	 * coming down as M_PROTO/M_PCPROTO and M_DATA messages for both
7015 	 * connected and non-connected socket.  The latter carries the
7016 	 * address structure along when this routine gets called.
7017 	 */
7018 	switch (DB_TYPE(mp)) {
7019 	case M_DATA:
7020 		if (!udp->udp_direct_sockfs || udp->udp_state != TS_DATA_XFER) {
7021 			if (!udp->udp_direct_sockfs ||
7022 			    addr == NULL || addrlen == 0) {
7023 				/* Not connected; address is required */
7024 				BUMP_MIB(&udp->udp_mib, udpOutErrors);
7025 				UDP_STAT(us, udp_out_err_notconn);
7026 				freemsg(mp);
7027 				TRACE_2(TR_FAC_UDP, TR_UDP_WPUT_END,
7028 				    "udp_wput_end: connp %p (%S)", connp,
7029 				    "not-connected; address required");
7030 				return;
7031 			}
7032 			ASSERT(udp->udp_issocket);
7033 			UDP_DBGSTAT(us, udp_data_notconn);
7034 			/* Not connected; do some more checks below */
7035 			break;
7036 		}
7037 		/* M_DATA for connected socket */
7038 		UDP_DBGSTAT(us, udp_data_conn);
7039 		IN6_V4MAPPED_TO_IPADDR(&udp->udp_v6dst, v4dst);
7040 
7041 		/* Initialize addr and addrlen as if they're passed in */
7042 		if (udp->udp_family == AF_INET) {
7043 			sin = (sin_t *)&ss;
7044 			sin->sin_family = AF_INET;
7045 			sin->sin_port = udp->udp_dstport;
7046 			sin->sin_addr.s_addr = v4dst;
7047 			addr = (struct sockaddr *)sin;
7048 			addrlen = sizeof (*sin);
7049 		} else {
7050 			sin6 = (sin6_t *)&ss;
7051 			sin6->sin6_family = AF_INET6;
7052 			sin6->sin6_port = udp->udp_dstport;
7053 			sin6->sin6_flowinfo = udp->udp_flowinfo;
7054 			sin6->sin6_addr = udp->udp_v6dst;
7055 			sin6->sin6_scope_id = 0;
7056 			sin6->__sin6_src_id = 0;
7057 			addr = (struct sockaddr *)sin6;
7058 			addrlen = sizeof (*sin6);
7059 		}
7060 
7061 		if (udp->udp_family == AF_INET ||
7062 		    IN6_IS_ADDR_V4MAPPED(&udp->udp_v6dst)) {
7063 			/*
7064 			 * Handle both AF_INET and AF_INET6; the latter
7065 			 * for IPV4 mapped destination addresses.  Note
7066 			 * here that both addr and addrlen point to the
7067 			 * corresponding struct depending on the address
7068 			 * family of the socket.
7069 			 */
7070 			mp = udp_output_v4(connp, mp, v4dst,
7071 			    udp->udp_dstport, 0, &error, insert_spi);
7072 		} else {
7073 			mp = udp_output_v6(connp, mp, sin6, &error);
7074 		}
7075 		if (error != 0) {
7076 			ASSERT(addr != NULL && addrlen != 0);
7077 			goto ud_error;
7078 		}
7079 		return;
7080 	case M_PROTO:
7081 	case M_PCPROTO: {
7082 		struct T_unitdata_req *tudr;
7083 
7084 		ASSERT((uintptr_t)MBLKL(mp) <= (uintptr_t)INT_MAX);
7085 		tudr = (struct T_unitdata_req *)mp->b_rptr;
7086 
7087 		/* Handle valid T_UNITDATA_REQ here */
7088 		if (MBLKL(mp) >= sizeof (*tudr) &&
7089 		    ((t_primp_t)mp->b_rptr)->type == T_UNITDATA_REQ) {
7090 			if (mp->b_cont == NULL) {
7091 				TRACE_2(TR_FAC_UDP, TR_UDP_WPUT_END,
7092 				    "udp_wput_end: q %p (%S)", q, "badaddr");
7093 				error = EPROTO;
7094 				goto ud_error;
7095 			}
7096 
7097 			if (!MBLKIN(mp, 0, tudr->DEST_offset +
7098 			    tudr->DEST_length)) {
7099 				TRACE_2(TR_FAC_UDP, TR_UDP_WPUT_END,
7100 				    "udp_wput_end: q %p (%S)", q, "badaddr");
7101 				error = EADDRNOTAVAIL;
7102 				goto ud_error;
7103 			}
7104 			/*
7105 			 * If a port has not been bound to the stream, fail.
7106 			 * This is not a problem when sockfs is directly
7107 			 * above us, because it will ensure that the socket
7108 			 * is first bound before allowing data to be sent.
7109 			 */
7110 			if (udp->udp_state == TS_UNBND) {
7111 				TRACE_2(TR_FAC_UDP, TR_UDP_WPUT_END,
7112 				    "udp_wput_end: q %p (%S)", q, "outstate");
7113 				error = EPROTO;
7114 				goto ud_error;
7115 			}
7116 			addr = (struct sockaddr *)
7117 			    &mp->b_rptr[tudr->DEST_offset];
7118 			addrlen = tudr->DEST_length;
7119 			if (tudr->OPT_length != 0)
7120 				UDP_STAT(us, udp_out_opt);
7121 			break;
7122 		}
7123 		/* FALLTHRU */
7124 	}
7125 	default:
7126 		udp_become_writer(connp, mp, udp_wput_other_wrapper,
7127 		    SQTAG_UDP_OUTPUT);
7128 		return;
7129 	}
7130 	ASSERT(addr != NULL);
7131 
7132 	switch (udp->udp_family) {
7133 	case AF_INET6:
7134 		sin6 = (sin6_t *)addr;
7135 		if (!OK_32PTR((char *)sin6) || addrlen != sizeof (sin6_t) ||
7136 		    sin6->sin6_family != AF_INET6) {
7137 			TRACE_2(TR_FAC_UDP, TR_UDP_WPUT_END,
7138 			    "udp_wput_end: q %p (%S)", q, "badaddr");
7139 			error = EADDRNOTAVAIL;
7140 			goto ud_error;
7141 		}
7142 
7143 		if (!IN6_IS_ADDR_V4MAPPED(&sin6->sin6_addr)) {
7144 			/*
7145 			 * Destination is a non-IPv4-compatible IPv6 address.
7146 			 * Send out an IPv6 format packet.
7147 			 */
7148 			mp = udp_output_v6(connp, mp, sin6, &error);
7149 			if (error != 0)
7150 				goto ud_error;
7151 
7152 			TRACE_2(TR_FAC_UDP, TR_UDP_WPUT_END,
7153 			    "udp_wput_end: q %p (%S)", q, "udp_output_v6");
7154 			return;
7155 		}
7156 		/*
7157 		 * If the local address is not zero or a mapped address
7158 		 * return an error.  It would be possible to send an IPv4
7159 		 * packet but the response would never make it back to the
7160 		 * application since it is bound to a non-mapped address.
7161 		 */
7162 		if (!IN6_IS_ADDR_V4MAPPED(&udp->udp_v6src) &&
7163 		    !IN6_IS_ADDR_UNSPECIFIED(&udp->udp_v6src)) {
7164 			TRACE_2(TR_FAC_UDP, TR_UDP_WPUT_END,
7165 			    "udp_wput_end: q %p (%S)", q, "badaddr");
7166 			error = EADDRNOTAVAIL;
7167 			goto ud_error;
7168 		}
7169 		/* Send IPv4 packet without modifying udp_ipversion */
7170 		/* Extract port and ipaddr */
7171 		port = sin6->sin6_port;
7172 		IN6_V4MAPPED_TO_IPADDR(&sin6->sin6_addr, v4dst);
7173 		srcid = sin6->__sin6_src_id;
7174 		break;
7175 
7176 	case AF_INET:
7177 		sin = (sin_t *)addr;
7178 		if (!OK_32PTR((char *)sin) || addrlen != sizeof (sin_t) ||
7179 		    sin->sin_family != AF_INET) {
7180 			TRACE_2(TR_FAC_UDP, TR_UDP_WPUT_END,
7181 			    "udp_wput_end: q %p (%S)", q, "badaddr");
7182 			error = EADDRNOTAVAIL;
7183 			goto ud_error;
7184 		}
7185 		/* Extract port and ipaddr */
7186 		port = sin->sin_port;
7187 		v4dst = sin->sin_addr.s_addr;
7188 		srcid = 0;
7189 		break;
7190 	}
7191 
7192 	mp = udp_output_v4(connp, mp, v4dst, port, srcid, &error, insert_spi);
7193 	if (error != 0) {
7194 ud_error:
7195 		UDP_STAT(us, udp_out_err_output);
7196 		ASSERT(mp != NULL);
7197 		/* mp is freed by the following routine */
7198 		udp_ud_err(q, mp, (uchar_t *)addr, (t_scalar_t)addrlen,
7199 		    (t_scalar_t)error);
7200 	}
7201 }
7202 
7203 /* ARGSUSED */
7204 static void
7205 udp_output_wrapper(void *arg, mblk_t *mp, void *arg2)
7206 {
7207 	udp_output((conn_t *)arg, mp, NULL, 0);
7208 	_UDP_EXIT((conn_t *)arg);
7209 }
7210 
7211 static void
7212 udp_wput(queue_t *q, mblk_t *mp)
7213 {
7214 	_UDP_ENTER(Q_TO_CONN(UDP_WR(q)), mp, udp_output_wrapper,
7215 	    SQTAG_UDP_WPUT);
7216 }
7217 
7218 /*
7219  * Allocate and prepare a T_UNITDATA_REQ message.
7220  */
7221 static mblk_t *
7222 udp_tudr_alloc(struct sockaddr *addr, socklen_t addrlen)
7223 {
7224 	struct T_unitdata_req *tudr;
7225 	mblk_t *mp;
7226 
7227 	mp = allocb(sizeof (*tudr) + addrlen, BPRI_MED);
7228 	if (mp != NULL) {
7229 		mp->b_wptr += sizeof (*tudr) + addrlen;
7230 		DB_TYPE(mp) = M_PROTO;
7231 
7232 		tudr = (struct T_unitdata_req *)mp->b_rptr;
7233 		tudr->PRIM_type = T_UNITDATA_REQ;
7234 		tudr->DEST_length = addrlen;
7235 		tudr->DEST_offset = (t_scalar_t)sizeof (*tudr);
7236 		tudr->OPT_length = 0;
7237 		tudr->OPT_offset = 0;
7238 		bcopy(addr, tudr+1, addrlen);
7239 	}
7240 	return (mp);
7241 }
7242 
7243 /*
7244  * Entry point for sockfs when udp is in "direct sockfs" mode.  This mode
7245  * is valid when we are directly beneath the stream head, and thus sockfs
7246  * is able to bypass STREAMS and directly call us, passing along the sockaddr
7247  * structure without the cumbersome T_UNITDATA_REQ interface.  Note that
7248  * this is done for both connected and non-connected endpoint.
7249  */
7250 void
7251 udp_wput_data(queue_t *q, mblk_t *mp, struct sockaddr *addr, socklen_t addrlen)
7252 {
7253 	conn_t	*connp;
7254 	udp_t	*udp;
7255 	udp_stack_t *us;
7256 
7257 	q = UDP_WR(q);
7258 	connp = Q_TO_CONN(q);
7259 	udp = connp->conn_udp;
7260 	us = udp->udp_us;
7261 
7262 	/* udpsockfs should only send down M_DATA for this entry point */
7263 	ASSERT(DB_TYPE(mp) == M_DATA);
7264 
7265 	mutex_enter(&connp->conn_lock);
7266 	UDP_MODE_ASSERTIONS(udp, UDP_ENTER);
7267 
7268 	if (udp->udp_mode != UDP_MT_HOT) {
7269 		/*
7270 		 * We can't enter this conn right away because another
7271 		 * thread is currently executing as writer; therefore we
7272 		 * need to deposit the message into the squeue to be
7273 		 * drained later.  If a socket address is present, we
7274 		 * need to create a T_UNITDATA_REQ message as placeholder.
7275 		 */
7276 		if (addr != NULL && addrlen != 0) {
7277 			mblk_t *tudr_mp = udp_tudr_alloc(addr, addrlen);
7278 
7279 			if (tudr_mp == NULL) {
7280 				mutex_exit(&connp->conn_lock);
7281 				BUMP_MIB(&udp->udp_mib, udpOutErrors);
7282 				UDP_STAT(us, udp_out_err_tudr);
7283 				freemsg(mp);
7284 				return;
7285 			}
7286 			/* Tag the packet with T_UNITDATA_REQ */
7287 			tudr_mp->b_cont = mp;
7288 			mp = tudr_mp;
7289 		}
7290 		mutex_exit(&connp->conn_lock);
7291 		udp_enter(connp, mp, udp_output_wrapper, SQTAG_UDP_WPUT);
7292 		return;
7293 	}
7294 
7295 	/* We can execute as reader right away. */
7296 	UDP_READERS_INCREF(udp);
7297 	mutex_exit(&connp->conn_lock);
7298 
7299 	udp_output(connp, mp, addr, addrlen);
7300 
7301 	udp_exit(connp);
7302 }
7303 
7304 /*
7305  * udp_output_v6():
7306  * Assumes that udp_wput did some sanity checking on the destination
7307  * address.
7308  */
7309 static mblk_t *
7310 udp_output_v6(conn_t *connp, mblk_t *mp, sin6_t *sin6, int *error)
7311 {
7312 	ip6_t		*ip6h;
7313 	ip6i_t		*ip6i;	/* mp1->b_rptr even if no ip6i_t */
7314 	mblk_t		*mp1 = mp;
7315 	mblk_t		*mp2;
7316 	int		udp_ip_hdr_len = IPV6_HDR_LEN + UDPH_SIZE;
7317 	size_t		ip_len;
7318 	udpha_t		*udph;
7319 	udp_t		*udp = connp->conn_udp;
7320 	queue_t		*q = connp->conn_wq;
7321 	ip6_pkt_t	ipp_s;	/* For ancillary data options */
7322 	ip6_pkt_t	*ipp = &ipp_s;
7323 	ip6_pkt_t	*tipp;	/* temporary ipp */
7324 	uint32_t	csum = 0;
7325 	uint_t		ignore = 0;
7326 	uint_t		option_exists = 0, is_sticky = 0;
7327 	uint8_t		*cp;
7328 	uint8_t		*nxthdr_ptr;
7329 	in6_addr_t	ip6_dst;
7330 	udpattrs_t	attrs;
7331 	boolean_t	opt_present;
7332 	ip6_hbh_t	*hopoptsptr = NULL;
7333 	uint_t		hopoptslen = 0;
7334 	boolean_t	is_ancillary = B_FALSE;
7335 	udp_stack_t	*us = udp->udp_us;
7336 
7337 	*error = 0;
7338 
7339 	/*
7340 	 * If the local address is a mapped address return
7341 	 * an error.
7342 	 * It would be possible to send an IPv6 packet but the
7343 	 * response would never make it back to the application
7344 	 * since it is bound to a mapped address.
7345 	 */
7346 	if (IN6_IS_ADDR_V4MAPPED(&udp->udp_v6src)) {
7347 		*error = EADDRNOTAVAIL;
7348 		goto done;
7349 	}
7350 
7351 	ipp->ipp_fields = 0;
7352 	ipp->ipp_sticky_ignored = 0;
7353 
7354 	/*
7355 	 * If TPI options passed in, feed it for verification and handling
7356 	 */
7357 	attrs.udpattr_credset = B_FALSE;
7358 	opt_present = B_FALSE;
7359 	if (DB_TYPE(mp) != M_DATA) {
7360 		mp1 = mp->b_cont;
7361 		if (((struct T_unitdata_req *)mp->b_rptr)->OPT_length != 0) {
7362 			attrs.udpattr_ipp6 = ipp;
7363 			attrs.udpattr_mb = mp;
7364 			if (udp_unitdata_opt_process(q, mp, error, &attrs) < 0)
7365 				goto done;
7366 			ASSERT(*error == 0);
7367 			opt_present = B_TRUE;
7368 		}
7369 	}
7370 	ignore = ipp->ipp_sticky_ignored;
7371 
7372 	/* mp1 points to the M_DATA mblk carrying the packet */
7373 	ASSERT(mp1 != NULL && DB_TYPE(mp1) == M_DATA);
7374 
7375 	if (sin6->sin6_scope_id != 0 &&
7376 	    IN6_IS_ADDR_LINKLOCAL(&sin6->sin6_addr)) {
7377 		/*
7378 		 * IPPF_SCOPE_ID is special.  It's neither a sticky
7379 		 * option nor ancillary data.  It needs to be
7380 		 * explicitly set in options_exists.
7381 		 */
7382 		option_exists |= IPPF_SCOPE_ID;
7383 	}
7384 
7385 	/*
7386 	 * Compute the destination address
7387 	 */
7388 	ip6_dst = sin6->sin6_addr;
7389 	if (IN6_IS_ADDR_UNSPECIFIED(&sin6->sin6_addr))
7390 		ip6_dst = ipv6_loopback;
7391 
7392 	/*
7393 	 * If we're not going to the same destination as last time, then
7394 	 * recompute the label required.  This is done in a separate routine to
7395 	 * avoid blowing up our stack here.
7396 	 *
7397 	 * TSOL Note: Since we are not in WRITER mode, UDP packets
7398 	 * to different destination may require different labels,
7399 	 * or worse, UDP packets to same IP address may require
7400 	 * different labels due to use of shared all-zones address.
7401 	 * We use conn_lock to ensure that lastdst, sticky ipp_hopopts,
7402 	 * and sticky ipp_hopoptslen are consistent for the current
7403 	 * destination and are updated atomically.
7404 	 */
7405 	mutex_enter(&connp->conn_lock);
7406 	if (is_system_labeled()) {
7407 		/* Using UDP MLP requires SCM_UCRED from user */
7408 		if (connp->conn_mlp_type != mlptSingle &&
7409 		    !attrs.udpattr_credset) {
7410 			DTRACE_PROBE4(
7411 			    tx__ip__log__info__output__udp6,
7412 			    char *, "MLP mp(1) lacks SCM_UCRED attr(2) on q(3)",
7413 			    mblk_t *, mp1, udpattrs_t *, &attrs, queue_t *, q);
7414 			*error = ECONNREFUSED;
7415 			mutex_exit(&connp->conn_lock);
7416 			goto done;
7417 		}
7418 		/*
7419 		 * update label option for this UDP socket if
7420 		 * - the destination has changed, or
7421 		 * - the UDP socket is MLP
7422 		 */
7423 		if ((opt_present ||
7424 		    !IN6_ARE_ADDR_EQUAL(&udp->udp_v6lastdst, &ip6_dst) ||
7425 		    connp->conn_mlp_type != mlptSingle) &&
7426 		    (*error = udp_update_label_v6(q, mp, &ip6_dst)) != 0) {
7427 			mutex_exit(&connp->conn_lock);
7428 			goto done;
7429 		}
7430 	}
7431 
7432 	/*
7433 	 * If there's a security label here, then we ignore any options the
7434 	 * user may try to set.  We keep the peer's label as a hidden sticky
7435 	 * option. We make a private copy of this label before releasing the
7436 	 * lock so that label is kept consistent with the destination addr.
7437 	 */
7438 	if (udp->udp_label_len_v6 > 0) {
7439 		ignore &= ~IPPF_HOPOPTS;
7440 		ipp->ipp_fields &= ~IPPF_HOPOPTS;
7441 	}
7442 
7443 	if ((udp->udp_sticky_ipp.ipp_fields == 0) && (ipp->ipp_fields == 0)) {
7444 		/* No sticky options nor ancillary data. */
7445 		mutex_exit(&connp->conn_lock);
7446 		goto no_options;
7447 	}
7448 
7449 	/*
7450 	 * Go through the options figuring out where each is going to
7451 	 * come from and build two masks.  The first mask indicates if
7452 	 * the option exists at all.  The second mask indicates if the
7453 	 * option is sticky or ancillary.
7454 	 */
7455 	if (!(ignore & IPPF_HOPOPTS)) {
7456 		if (ipp->ipp_fields & IPPF_HOPOPTS) {
7457 			option_exists |= IPPF_HOPOPTS;
7458 			udp_ip_hdr_len += ipp->ipp_hopoptslen;
7459 		} else if (udp->udp_sticky_ipp.ipp_fields & IPPF_HOPOPTS) {
7460 			option_exists |= IPPF_HOPOPTS;
7461 			is_sticky |= IPPF_HOPOPTS;
7462 			ASSERT(udp->udp_sticky_ipp.ipp_hopoptslen != 0);
7463 			hopoptsptr = kmem_alloc(
7464 			    udp->udp_sticky_ipp.ipp_hopoptslen, KM_NOSLEEP);
7465 			if (hopoptsptr == NULL) {
7466 				*error = ENOMEM;
7467 				mutex_exit(&connp->conn_lock);
7468 				goto done;
7469 			}
7470 			hopoptslen = udp->udp_sticky_ipp.ipp_hopoptslen;
7471 			bcopy(udp->udp_sticky_ipp.ipp_hopopts, hopoptsptr,
7472 			    hopoptslen);
7473 			udp_ip_hdr_len += hopoptslen;
7474 		}
7475 	}
7476 	mutex_exit(&connp->conn_lock);
7477 
7478 	if (!(ignore & IPPF_RTHDR)) {
7479 		if (ipp->ipp_fields & IPPF_RTHDR) {
7480 			option_exists |= IPPF_RTHDR;
7481 			udp_ip_hdr_len += ipp->ipp_rthdrlen;
7482 		} else if (udp->udp_sticky_ipp.ipp_fields & IPPF_RTHDR) {
7483 			option_exists |= IPPF_RTHDR;
7484 			is_sticky |= IPPF_RTHDR;
7485 			udp_ip_hdr_len += udp->udp_sticky_ipp.ipp_rthdrlen;
7486 		}
7487 	}
7488 
7489 	if (!(ignore & IPPF_RTDSTOPTS) && (option_exists & IPPF_RTHDR)) {
7490 		if (ipp->ipp_fields & IPPF_RTDSTOPTS) {
7491 			option_exists |= IPPF_RTDSTOPTS;
7492 			udp_ip_hdr_len += ipp->ipp_rtdstoptslen;
7493 		} else if (udp->udp_sticky_ipp.ipp_fields & IPPF_RTDSTOPTS) {
7494 			option_exists |= IPPF_RTDSTOPTS;
7495 			is_sticky |= IPPF_RTDSTOPTS;
7496 			udp_ip_hdr_len += udp->udp_sticky_ipp.ipp_rtdstoptslen;
7497 		}
7498 	}
7499 
7500 	if (!(ignore & IPPF_DSTOPTS)) {
7501 		if (ipp->ipp_fields & IPPF_DSTOPTS) {
7502 			option_exists |= IPPF_DSTOPTS;
7503 			udp_ip_hdr_len += ipp->ipp_dstoptslen;
7504 		} else if (udp->udp_sticky_ipp.ipp_fields & IPPF_DSTOPTS) {
7505 			option_exists |= IPPF_DSTOPTS;
7506 			is_sticky |= IPPF_DSTOPTS;
7507 			udp_ip_hdr_len += udp->udp_sticky_ipp.ipp_dstoptslen;
7508 		}
7509 	}
7510 
7511 	if (!(ignore & IPPF_IFINDEX)) {
7512 		if (ipp->ipp_fields & IPPF_IFINDEX) {
7513 			option_exists |= IPPF_IFINDEX;
7514 		} else if (udp->udp_sticky_ipp.ipp_fields & IPPF_IFINDEX) {
7515 			option_exists |= IPPF_IFINDEX;
7516 			is_sticky |= IPPF_IFINDEX;
7517 		}
7518 	}
7519 
7520 	if (!(ignore & IPPF_ADDR)) {
7521 		if (ipp->ipp_fields & IPPF_ADDR) {
7522 			option_exists |= IPPF_ADDR;
7523 		} else if (udp->udp_sticky_ipp.ipp_fields & IPPF_ADDR) {
7524 			option_exists |= IPPF_ADDR;
7525 			is_sticky |= IPPF_ADDR;
7526 		}
7527 	}
7528 
7529 	if (!(ignore & IPPF_DONTFRAG)) {
7530 		if (ipp->ipp_fields & IPPF_DONTFRAG) {
7531 			option_exists |= IPPF_DONTFRAG;
7532 		} else if (udp->udp_sticky_ipp.ipp_fields & IPPF_DONTFRAG) {
7533 			option_exists |= IPPF_DONTFRAG;
7534 			is_sticky |= IPPF_DONTFRAG;
7535 		}
7536 	}
7537 
7538 	if (!(ignore & IPPF_USE_MIN_MTU)) {
7539 		if (ipp->ipp_fields & IPPF_USE_MIN_MTU) {
7540 			option_exists |= IPPF_USE_MIN_MTU;
7541 		} else if (udp->udp_sticky_ipp.ipp_fields &
7542 		    IPPF_USE_MIN_MTU) {
7543 			option_exists |= IPPF_USE_MIN_MTU;
7544 			is_sticky |= IPPF_USE_MIN_MTU;
7545 		}
7546 	}
7547 
7548 	if (!(ignore & IPPF_HOPLIMIT) && (ipp->ipp_fields & IPPF_HOPLIMIT))
7549 		option_exists |= IPPF_HOPLIMIT;
7550 	/* IPV6_HOPLIMIT can never be sticky */
7551 	ASSERT(!(udp->udp_sticky_ipp.ipp_fields & IPPF_HOPLIMIT));
7552 
7553 	if (!(ignore & IPPF_UNICAST_HOPS) &&
7554 	    (udp->udp_sticky_ipp.ipp_fields & IPPF_UNICAST_HOPS)) {
7555 		option_exists |= IPPF_UNICAST_HOPS;
7556 		is_sticky |= IPPF_UNICAST_HOPS;
7557 	}
7558 
7559 	if (!(ignore & IPPF_MULTICAST_HOPS) &&
7560 	    (udp->udp_sticky_ipp.ipp_fields & IPPF_MULTICAST_HOPS)) {
7561 		option_exists |= IPPF_MULTICAST_HOPS;
7562 		is_sticky |= IPPF_MULTICAST_HOPS;
7563 	}
7564 
7565 	if (!(ignore & IPPF_TCLASS)) {
7566 		if (ipp->ipp_fields & IPPF_TCLASS) {
7567 			option_exists |= IPPF_TCLASS;
7568 		} else if (udp->udp_sticky_ipp.ipp_fields & IPPF_TCLASS) {
7569 			option_exists |= IPPF_TCLASS;
7570 			is_sticky |= IPPF_TCLASS;
7571 		}
7572 	}
7573 
7574 	if (!(ignore & IPPF_NEXTHOP) &&
7575 	    (udp->udp_sticky_ipp.ipp_fields & IPPF_NEXTHOP)) {
7576 		option_exists |= IPPF_NEXTHOP;
7577 		is_sticky |= IPPF_NEXTHOP;
7578 	}
7579 
7580 no_options:
7581 
7582 	/*
7583 	 * If any options carried in the ip6i_t were specified, we
7584 	 * need to account for the ip6i_t in the data we'll be sending
7585 	 * down.
7586 	 */
7587 	if (option_exists & IPPF_HAS_IP6I)
7588 		udp_ip_hdr_len += sizeof (ip6i_t);
7589 
7590 	/* check/fix buffer config, setup pointers into it */
7591 	ip6h = (ip6_t *)&mp1->b_rptr[-udp_ip_hdr_len];
7592 	if (DB_REF(mp1) != 1 || ((unsigned char *)ip6h < DB_BASE(mp1)) ||
7593 	    !OK_32PTR(ip6h)) {
7594 		/* Try to get everything in a single mblk next time */
7595 		if (udp_ip_hdr_len > udp->udp_max_hdr_len) {
7596 			udp->udp_max_hdr_len = udp_ip_hdr_len;
7597 			(void) mi_set_sth_wroff(UDP_RD(q),
7598 			    udp->udp_max_hdr_len + us->us_wroff_extra);
7599 		}
7600 		mp2 = allocb(udp_ip_hdr_len + us->us_wroff_extra, BPRI_LO);
7601 		if (mp2 == NULL) {
7602 			*error = ENOMEM;
7603 			goto done;
7604 		}
7605 		mp2->b_wptr = DB_LIM(mp2);
7606 		mp2->b_cont = mp1;
7607 		mp1 = mp2;
7608 		if (DB_TYPE(mp) != M_DATA)
7609 			mp->b_cont = mp1;
7610 		else
7611 			mp = mp1;
7612 
7613 		ip6h = (ip6_t *)(mp1->b_wptr - udp_ip_hdr_len);
7614 	}
7615 	mp1->b_rptr = (unsigned char *)ip6h;
7616 	ip6i = (ip6i_t *)ip6h;
7617 
7618 #define	ANCIL_OR_STICKY_PTR(f) ((is_sticky & f) ? &udp->udp_sticky_ipp : ipp)
7619 	if (option_exists & IPPF_HAS_IP6I) {
7620 		ip6h = (ip6_t *)&ip6i[1];
7621 		ip6i->ip6i_flags = 0;
7622 		ip6i->ip6i_vcf = IPV6_DEFAULT_VERS_AND_FLOW;
7623 
7624 		/* sin6_scope_id takes precendence over IPPF_IFINDEX */
7625 		if (option_exists & IPPF_SCOPE_ID) {
7626 			ip6i->ip6i_flags |= IP6I_IFINDEX;
7627 			ip6i->ip6i_ifindex = sin6->sin6_scope_id;
7628 		} else if (option_exists & IPPF_IFINDEX) {
7629 			tipp = ANCIL_OR_STICKY_PTR(IPPF_IFINDEX);
7630 			ASSERT(tipp->ipp_ifindex != 0);
7631 			ip6i->ip6i_flags |= IP6I_IFINDEX;
7632 			ip6i->ip6i_ifindex = tipp->ipp_ifindex;
7633 		}
7634 
7635 		if (option_exists & IPPF_ADDR) {
7636 			/*
7637 			 * Enable per-packet source address verification if
7638 			 * IPV6_PKTINFO specified the source address.
7639 			 * ip6_src is set in the transport's _wput function.
7640 			 */
7641 			ip6i->ip6i_flags |= IP6I_VERIFY_SRC;
7642 		}
7643 
7644 		if (option_exists & IPPF_DONTFRAG) {
7645 			ip6i->ip6i_flags |= IP6I_DONTFRAG;
7646 		}
7647 
7648 		if (option_exists & IPPF_USE_MIN_MTU) {
7649 			ip6i->ip6i_flags = IP6I_API_USE_MIN_MTU(
7650 			    ip6i->ip6i_flags, ipp->ipp_use_min_mtu);
7651 		}
7652 
7653 		if (option_exists & IPPF_NEXTHOP) {
7654 			tipp = ANCIL_OR_STICKY_PTR(IPPF_NEXTHOP);
7655 			ASSERT(!IN6_IS_ADDR_UNSPECIFIED(&tipp->ipp_nexthop));
7656 			ip6i->ip6i_flags |= IP6I_NEXTHOP;
7657 			ip6i->ip6i_nexthop = tipp->ipp_nexthop;
7658 		}
7659 
7660 		/*
7661 		 * tell IP this is an ip6i_t private header
7662 		 */
7663 		ip6i->ip6i_nxt = IPPROTO_RAW;
7664 	}
7665 
7666 	/* Initialize IPv6 header */
7667 	ip6h->ip6_vcf = IPV6_DEFAULT_VERS_AND_FLOW;
7668 	bzero(&ip6h->ip6_src, sizeof (ip6h->ip6_src));
7669 
7670 	/* Set the hoplimit of the outgoing packet. */
7671 	if (option_exists & IPPF_HOPLIMIT) {
7672 		/* IPV6_HOPLIMIT ancillary data overrides all other settings. */
7673 		ip6h->ip6_hops = ipp->ipp_hoplimit;
7674 		ip6i->ip6i_flags |= IP6I_HOPLIMIT;
7675 	} else if (IN6_IS_ADDR_MULTICAST(&sin6->sin6_addr)) {
7676 		ip6h->ip6_hops = udp->udp_multicast_ttl;
7677 		if (option_exists & IPPF_MULTICAST_HOPS)
7678 			ip6i->ip6i_flags |= IP6I_HOPLIMIT;
7679 	} else {
7680 		ip6h->ip6_hops = udp->udp_ttl;
7681 		if (option_exists & IPPF_UNICAST_HOPS)
7682 			ip6i->ip6i_flags |= IP6I_HOPLIMIT;
7683 	}
7684 
7685 	if (option_exists & IPPF_ADDR) {
7686 		tipp = ANCIL_OR_STICKY_PTR(IPPF_ADDR);
7687 		ASSERT(!IN6_IS_ADDR_UNSPECIFIED(&tipp->ipp_addr));
7688 		ip6h->ip6_src = tipp->ipp_addr;
7689 	} else {
7690 		/*
7691 		 * The source address was not set using IPV6_PKTINFO.
7692 		 * First look at the bound source.
7693 		 * If unspecified fallback to __sin6_src_id.
7694 		 */
7695 		ip6h->ip6_src = udp->udp_v6src;
7696 		if (sin6->__sin6_src_id != 0 &&
7697 		    IN6_IS_ADDR_UNSPECIFIED(&ip6h->ip6_src)) {
7698 			ip_srcid_find_id(sin6->__sin6_src_id,
7699 			    &ip6h->ip6_src, connp->conn_zoneid,
7700 			    us->us_netstack);
7701 		}
7702 	}
7703 
7704 	nxthdr_ptr = (uint8_t *)&ip6h->ip6_nxt;
7705 	cp = (uint8_t *)&ip6h[1];
7706 
7707 	/*
7708 	 * Here's where we have to start stringing together
7709 	 * any extension headers in the right order:
7710 	 * Hop-by-hop, destination, routing, and final destination opts.
7711 	 */
7712 	if (option_exists & IPPF_HOPOPTS) {
7713 		/* Hop-by-hop options */
7714 		ip6_hbh_t *hbh = (ip6_hbh_t *)cp;
7715 		tipp = ANCIL_OR_STICKY_PTR(IPPF_HOPOPTS);
7716 		if (hopoptslen == 0) {
7717 			hopoptsptr = tipp->ipp_hopopts;
7718 			hopoptslen = tipp->ipp_hopoptslen;
7719 			is_ancillary = B_TRUE;
7720 		}
7721 
7722 		*nxthdr_ptr = IPPROTO_HOPOPTS;
7723 		nxthdr_ptr = &hbh->ip6h_nxt;
7724 
7725 		bcopy(hopoptsptr, cp, hopoptslen);
7726 		cp += hopoptslen;
7727 
7728 		if (hopoptsptr != NULL && !is_ancillary) {
7729 			kmem_free(hopoptsptr, hopoptslen);
7730 			hopoptsptr = NULL;
7731 			hopoptslen = 0;
7732 		}
7733 	}
7734 	/*
7735 	 * En-route destination options
7736 	 * Only do them if there's a routing header as well
7737 	 */
7738 	if (option_exists & IPPF_RTDSTOPTS) {
7739 		ip6_dest_t *dst = (ip6_dest_t *)cp;
7740 		tipp = ANCIL_OR_STICKY_PTR(IPPF_RTDSTOPTS);
7741 
7742 		*nxthdr_ptr = IPPROTO_DSTOPTS;
7743 		nxthdr_ptr = &dst->ip6d_nxt;
7744 
7745 		bcopy(tipp->ipp_rtdstopts, cp, tipp->ipp_rtdstoptslen);
7746 		cp += tipp->ipp_rtdstoptslen;
7747 	}
7748 	/*
7749 	 * Routing header next
7750 	 */
7751 	if (option_exists & IPPF_RTHDR) {
7752 		ip6_rthdr_t *rt = (ip6_rthdr_t *)cp;
7753 		tipp = ANCIL_OR_STICKY_PTR(IPPF_RTHDR);
7754 
7755 		*nxthdr_ptr = IPPROTO_ROUTING;
7756 		nxthdr_ptr = &rt->ip6r_nxt;
7757 
7758 		bcopy(tipp->ipp_rthdr, cp, tipp->ipp_rthdrlen);
7759 		cp += tipp->ipp_rthdrlen;
7760 	}
7761 	/*
7762 	 * Do ultimate destination options
7763 	 */
7764 	if (option_exists & IPPF_DSTOPTS) {
7765 		ip6_dest_t *dest = (ip6_dest_t *)cp;
7766 		tipp = ANCIL_OR_STICKY_PTR(IPPF_DSTOPTS);
7767 
7768 		*nxthdr_ptr = IPPROTO_DSTOPTS;
7769 		nxthdr_ptr = &dest->ip6d_nxt;
7770 
7771 		bcopy(tipp->ipp_dstopts, cp, tipp->ipp_dstoptslen);
7772 		cp += tipp->ipp_dstoptslen;
7773 	}
7774 	/*
7775 	 * Now set the last header pointer to the proto passed in
7776 	 */
7777 	ASSERT((int)(cp - (uint8_t *)ip6i) == (udp_ip_hdr_len - UDPH_SIZE));
7778 	*nxthdr_ptr = IPPROTO_UDP;
7779 
7780 	/* Update UDP header */
7781 	udph = (udpha_t *)((uchar_t *)ip6i + udp_ip_hdr_len - UDPH_SIZE);
7782 	udph->uha_dst_port = sin6->sin6_port;
7783 	udph->uha_src_port = udp->udp_port;
7784 
7785 	/*
7786 	 * Copy in the destination address
7787 	 */
7788 	ip6h->ip6_dst = ip6_dst;
7789 
7790 	ip6h->ip6_vcf =
7791 	    (IPV6_DEFAULT_VERS_AND_FLOW & IPV6_VERS_AND_FLOW_MASK) |
7792 	    (sin6->sin6_flowinfo & ~IPV6_VERS_AND_FLOW_MASK);
7793 
7794 	if (option_exists & IPPF_TCLASS) {
7795 		tipp = ANCIL_OR_STICKY_PTR(IPPF_TCLASS);
7796 		ip6h->ip6_vcf = IPV6_TCLASS_FLOW(ip6h->ip6_vcf,
7797 		    tipp->ipp_tclass);
7798 	}
7799 
7800 	if (option_exists & IPPF_RTHDR) {
7801 		ip6_rthdr_t	*rth;
7802 
7803 		/*
7804 		 * Perform any processing needed for source routing.
7805 		 * We know that all extension headers will be in the same mblk
7806 		 * as the IPv6 header.
7807 		 */
7808 		rth = ip_find_rthdr_v6(ip6h, mp1->b_wptr);
7809 		if (rth != NULL && rth->ip6r_segleft != 0) {
7810 			if (rth->ip6r_type != IPV6_RTHDR_TYPE_0) {
7811 				/*
7812 				 * Drop packet - only support Type 0 routing.
7813 				 * Notify the application as well.
7814 				 */
7815 				*error = EPROTO;
7816 				goto done;
7817 			}
7818 
7819 			/*
7820 			 * rth->ip6r_len is twice the number of
7821 			 * addresses in the header. Thus it must be even.
7822 			 */
7823 			if (rth->ip6r_len & 0x1) {
7824 				*error = EPROTO;
7825 				goto done;
7826 			}
7827 			/*
7828 			 * Shuffle the routing header and ip6_dst
7829 			 * addresses, and get the checksum difference
7830 			 * between the first hop (in ip6_dst) and
7831 			 * the destination (in the last routing hdr entry).
7832 			 */
7833 			csum = ip_massage_options_v6(ip6h, rth,
7834 			    us->us_netstack);
7835 			/*
7836 			 * Verify that the first hop isn't a mapped address.
7837 			 * Routers along the path need to do this verification
7838 			 * for subsequent hops.
7839 			 */
7840 			if (IN6_IS_ADDR_V4MAPPED(&ip6h->ip6_dst)) {
7841 				*error = EADDRNOTAVAIL;
7842 				goto done;
7843 			}
7844 
7845 			cp += (rth->ip6r_len + 1)*8;
7846 		}
7847 	}
7848 
7849 	/* count up length of UDP packet */
7850 	ip_len = (mp1->b_wptr - (unsigned char *)ip6h) - IPV6_HDR_LEN;
7851 	if ((mp2 = mp1->b_cont) != NULL) {
7852 		do {
7853 			ASSERT((uintptr_t)MBLKL(mp2) <= (uintptr_t)UINT_MAX);
7854 			ip_len += (uint32_t)MBLKL(mp2);
7855 		} while ((mp2 = mp2->b_cont) != NULL);
7856 	}
7857 
7858 	/*
7859 	 * If the size of the packet is greater than the maximum allowed by
7860 	 * ip, return an error. Passing this down could cause panics because
7861 	 * the size will have wrapped and be inconsistent with the msg size.
7862 	 */
7863 	if (ip_len > IP_MAXPACKET) {
7864 		*error = EMSGSIZE;
7865 		goto done;
7866 	}
7867 
7868 	/* Store the UDP length. Subtract length of extension hdrs */
7869 	udph->uha_length = htons(ip_len + IPV6_HDR_LEN -
7870 	    (int)((uchar_t *)udph - (uchar_t *)ip6h));
7871 
7872 	/*
7873 	 * We make it easy for IP to include our pseudo header
7874 	 * by putting our length in uh_checksum, modified (if
7875 	 * we have a routing header) by the checksum difference
7876 	 * between the ultimate destination and first hop addresses.
7877 	 * Note: UDP over IPv6 must always checksum the packet.
7878 	 */
7879 	csum += udph->uha_length;
7880 	csum = (csum & 0xFFFF) + (csum >> 16);
7881 	udph->uha_checksum = (uint16_t)csum;
7882 
7883 #ifdef _LITTLE_ENDIAN
7884 	ip_len = htons(ip_len);
7885 #endif
7886 	ip6h->ip6_plen = ip_len;
7887 	if (DB_CRED(mp) != NULL)
7888 		mblk_setcred(mp1, DB_CRED(mp));
7889 
7890 	if (DB_TYPE(mp) != M_DATA) {
7891 		ASSERT(mp != mp1);
7892 		freeb(mp);
7893 	}
7894 
7895 	/* mp has been consumed and we'll return success */
7896 	ASSERT(*error == 0);
7897 	mp = NULL;
7898 
7899 	/* We're done. Pass the packet to IP */
7900 	BUMP_MIB(&udp->udp_mib, udpHCOutDatagrams);
7901 	ip_output_v6(connp, mp1, q, IP_WPUT);
7902 
7903 done:
7904 	if (hopoptsptr != NULL && !is_ancillary) {
7905 		kmem_free(hopoptsptr, hopoptslen);
7906 		hopoptsptr = NULL;
7907 	}
7908 	if (*error != 0) {
7909 		ASSERT(mp != NULL);
7910 		BUMP_MIB(&udp->udp_mib, udpOutErrors);
7911 	}
7912 	return (mp);
7913 }
7914 
7915 static void
7916 udp_wput_other(queue_t *q, mblk_t *mp)
7917 {
7918 	uchar_t	*rptr = mp->b_rptr;
7919 	struct datab *db;
7920 	struct iocblk *iocp;
7921 	cred_t	*cr;
7922 	conn_t	*connp = Q_TO_CONN(q);
7923 	udp_t	*udp = connp->conn_udp;
7924 	udp_stack_t *us;
7925 
7926 	TRACE_1(TR_FAC_UDP, TR_UDP_WPUT_OTHER_START,
7927 	    "udp_wput_other_start: q %p", q);
7928 
7929 	us = udp->udp_us;
7930 	db = mp->b_datap;
7931 
7932 	cr = DB_CREDDEF(mp, connp->conn_cred);
7933 
7934 	switch (db->db_type) {
7935 	case M_PROTO:
7936 	case M_PCPROTO:
7937 		if (mp->b_wptr - rptr < sizeof (t_scalar_t)) {
7938 			freemsg(mp);
7939 			TRACE_2(TR_FAC_UDP, TR_UDP_WPUT_OTHER_END,
7940 			    "udp_wput_other_end: q %p (%S)", q, "protoshort");
7941 			return;
7942 		}
7943 		switch (((t_primp_t)rptr)->type) {
7944 		case T_ADDR_REQ:
7945 			udp_addr_req(q, mp);
7946 			TRACE_2(TR_FAC_UDP, TR_UDP_WPUT_OTHER_END,
7947 			    "udp_wput_other_end: q %p (%S)", q, "addrreq");
7948 			return;
7949 		case O_T_BIND_REQ:
7950 		case T_BIND_REQ:
7951 			udp_bind(q, mp);
7952 			TRACE_2(TR_FAC_UDP, TR_UDP_WPUT_OTHER_END,
7953 			    "udp_wput_other_end: q %p (%S)", q, "bindreq");
7954 			return;
7955 		case T_CONN_REQ:
7956 			udp_connect(q, mp);
7957 			TRACE_2(TR_FAC_UDP, TR_UDP_WPUT_OTHER_END,
7958 			    "udp_wput_other_end: q %p (%S)", q, "connreq");
7959 			return;
7960 		case T_CAPABILITY_REQ:
7961 			udp_capability_req(q, mp);
7962 			TRACE_2(TR_FAC_UDP, TR_UDP_WPUT_OTHER_END,
7963 			    "udp_wput_other_end: q %p (%S)", q, "capabreq");
7964 			return;
7965 		case T_INFO_REQ:
7966 			udp_info_req(q, mp);
7967 			TRACE_2(TR_FAC_UDP, TR_UDP_WPUT_OTHER_END,
7968 			    "udp_wput_other_end: q %p (%S)", q, "inforeq");
7969 			return;
7970 		case T_UNITDATA_REQ:
7971 			/*
7972 			 * If a T_UNITDATA_REQ gets here, the address must
7973 			 * be bad.  Valid T_UNITDATA_REQs are handled
7974 			 * in udp_wput.
7975 			 */
7976 			udp_ud_err(q, mp, NULL, 0, EADDRNOTAVAIL);
7977 			TRACE_2(TR_FAC_UDP, TR_UDP_WPUT_OTHER_END,
7978 			    "udp_wput_other_end: q %p (%S)", q, "unitdatareq");
7979 			return;
7980 		case T_UNBIND_REQ:
7981 			udp_unbind(q, mp);
7982 			TRACE_2(TR_FAC_UDP, TR_UDP_WPUT_OTHER_END,
7983 			    "udp_wput_other_end: q %p (%S)", q, "unbindreq");
7984 			return;
7985 		case T_SVR4_OPTMGMT_REQ:
7986 			if (!snmpcom_req(q, mp, udp_snmp_set, udp_snmp_get, cr))
7987 				/*
7988 				 * Use upper queue for option processing in
7989 				 * case the request is not handled at this
7990 				 * level and needs to be passed down to IP.
7991 				 */
7992 				(void) svr4_optcom_req(_WR(UDP_RD(q)),
7993 				    mp, cr, &udp_opt_obj);
7994 			TRACE_2(TR_FAC_UDP, TR_UDP_WPUT_OTHER_END,
7995 			    "udp_wput_other_end: q %p (%S)", q, "optmgmtreq");
7996 			return;
7997 
7998 		case T_OPTMGMT_REQ:
7999 			/*
8000 			 * Use upper queue for option processing in
8001 			 * case the request is not handled at this
8002 			 * level and needs to be passed down to IP.
8003 			 */
8004 			(void) tpi_optcom_req(_WR(UDP_RD(q)),
8005 			    mp, cr, &udp_opt_obj);
8006 			TRACE_2(TR_FAC_UDP, TR_UDP_WPUT_OTHER_END,
8007 			    "udp_wput_other_end: q %p (%S)", q, "optmgmtreq");
8008 			return;
8009 
8010 		case T_DISCON_REQ:
8011 			udp_disconnect(q, mp);
8012 			TRACE_2(TR_FAC_UDP, TR_UDP_WPUT_OTHER_END,
8013 			    "udp_wput_other_end: q %p (%S)", q, "disconreq");
8014 			return;
8015 
8016 		/* The following TPI message is not supported by udp. */
8017 		case O_T_CONN_RES:
8018 		case T_CONN_RES:
8019 			udp_err_ack(q, mp, TNOTSUPPORT, 0);
8020 			TRACE_2(TR_FAC_UDP, TR_UDP_WPUT_OTHER_END,
8021 			    "udp_wput_other_end: q %p (%S)", q,
8022 			    "connres/disconreq");
8023 			return;
8024 
8025 		/* The following 3 TPI messages are illegal for udp. */
8026 		case T_DATA_REQ:
8027 		case T_EXDATA_REQ:
8028 		case T_ORDREL_REQ:
8029 			udp_err_ack(q, mp, TNOTSUPPORT, 0);
8030 			TRACE_2(TR_FAC_UDP, TR_UDP_WPUT_OTHER_END,
8031 			    "udp_wput_other_end: q %p (%S)", q,
8032 			    "data/exdata/ordrel");
8033 			return;
8034 		default:
8035 			break;
8036 		}
8037 		break;
8038 	case M_FLUSH:
8039 		if (*rptr & FLUSHW)
8040 			flushq(q, FLUSHDATA);
8041 		break;
8042 	case M_IOCTL:
8043 		iocp = (struct iocblk *)mp->b_rptr;
8044 		switch (iocp->ioc_cmd) {
8045 		case TI_GETPEERNAME:
8046 			if (udp->udp_state != TS_DATA_XFER) {
8047 				/*
8048 				 * If a default destination address has not
8049 				 * been associated with the stream, then we
8050 				 * don't know the peer's name.
8051 				 */
8052 				iocp->ioc_error = ENOTCONN;
8053 				iocp->ioc_count = 0;
8054 				mp->b_datap->db_type = M_IOCACK;
8055 				putnext(UDP_RD(q), mp);
8056 				TRACE_2(TR_FAC_UDP, TR_UDP_WPUT_OTHER_END,
8057 				    "udp_wput_other_end: q %p (%S)", q,
8058 				    "getpeername");
8059 				return;
8060 			}
8061 			/* FALLTHRU */
8062 		case TI_GETMYNAME: {
8063 			/*
8064 			 * For TI_GETPEERNAME and TI_GETMYNAME, we first
8065 			 * need to copyin the user's strbuf structure.
8066 			 * Processing will continue in the M_IOCDATA case
8067 			 * below.
8068 			 */
8069 			mi_copyin(q, mp, NULL,
8070 			    SIZEOF_STRUCT(strbuf, iocp->ioc_flag));
8071 			TRACE_2(TR_FAC_UDP, TR_UDP_WPUT_OTHER_END,
8072 			    "udp_wput_other_end: q %p (%S)", q, "getmyname");
8073 			return;
8074 			}
8075 		case ND_SET:
8076 			/* nd_getset performs the necessary checking */
8077 		case ND_GET:
8078 			if (nd_getset(q, us->us_nd, mp)) {
8079 				putnext(UDP_RD(q), mp);
8080 				TRACE_2(TR_FAC_UDP, TR_UDP_WPUT_OTHER_END,
8081 				    "udp_wput_other_end: q %p (%S)", q, "get");
8082 				return;
8083 			}
8084 			break;
8085 		case _SIOCSOCKFALLBACK:
8086 			/*
8087 			 * Either sockmod is about to be popped and the
8088 			 * socket would now be treated as a plain stream,
8089 			 * or a module is about to be pushed so we could
8090 			 * no longer use read-side synchronous stream.
8091 			 * Drain any queued data and disable direct sockfs
8092 			 * interface from now on.
8093 			 */
8094 			if (!udp->udp_issocket) {
8095 				DB_TYPE(mp) = M_IOCNAK;
8096 				iocp->ioc_error = EINVAL;
8097 			} else {
8098 				udp->udp_issocket = B_FALSE;
8099 				if (udp->udp_direct_sockfs) {
8100 					/*
8101 					 * Disable read-side synchronous
8102 					 * stream interface and drain any
8103 					 * queued data.
8104 					 */
8105 					udp_rcv_drain(UDP_RD(q), udp,
8106 					    B_FALSE);
8107 					ASSERT(!udp->udp_direct_sockfs);
8108 					UDP_STAT(us, udp_sock_fallback);
8109 				}
8110 				DB_TYPE(mp) = M_IOCACK;
8111 				iocp->ioc_error = 0;
8112 			}
8113 			iocp->ioc_count = 0;
8114 			iocp->ioc_rval = 0;
8115 			putnext(UDP_RD(q), mp);
8116 			return;
8117 		default:
8118 			break;
8119 		}
8120 		break;
8121 	case M_IOCDATA:
8122 		udp_wput_iocdata(q, mp);
8123 		TRACE_2(TR_FAC_UDP, TR_UDP_WPUT_OTHER_END,
8124 		    "udp_wput_other_end: q %p (%S)", q, "iocdata");
8125 		return;
8126 	default:
8127 		/* Unrecognized messages are passed through without change. */
8128 		break;
8129 	}
8130 	TRACE_2(TR_FAC_UDP, TR_UDP_WPUT_OTHER_END,
8131 	    "udp_wput_other_end: q %p (%S)", q, "end");
8132 	ip_output(connp, mp, q, IP_WPUT);
8133 }
8134 
8135 /* ARGSUSED */
8136 static void
8137 udp_wput_other_wrapper(void *arg, mblk_t *mp, void *arg2)
8138 {
8139 	udp_wput_other(((conn_t *)arg)->conn_wq, mp);
8140 	udp_exit((conn_t *)arg);
8141 }
8142 
8143 /*
8144  * udp_wput_iocdata is called by udp_wput_other to handle all M_IOCDATA
8145  * messages.
8146  */
8147 static void
8148 udp_wput_iocdata(queue_t *q, mblk_t *mp)
8149 {
8150 	mblk_t	*mp1;
8151 	STRUCT_HANDLE(strbuf, sb);
8152 	uint16_t port;
8153 	in6_addr_t	v6addr;
8154 	ipaddr_t	v4addr;
8155 	uint32_t	flowinfo = 0;
8156 	int		addrlen;
8157 	udp_t		*udp = Q_TO_UDP(q);
8158 
8159 	/* Make sure it is one of ours. */
8160 	switch (((struct iocblk *)mp->b_rptr)->ioc_cmd) {
8161 	case TI_GETMYNAME:
8162 	case TI_GETPEERNAME:
8163 		break;
8164 	default:
8165 		ip_output(udp->udp_connp, mp, q, IP_WPUT);
8166 		return;
8167 	}
8168 
8169 	q = WR(UDP_RD(q));
8170 	switch (mi_copy_state(q, mp, &mp1)) {
8171 	case -1:
8172 		return;
8173 	case MI_COPY_CASE(MI_COPY_IN, 1):
8174 		break;
8175 	case MI_COPY_CASE(MI_COPY_OUT, 1):
8176 		/*
8177 		 * The address has been copied out, so now
8178 		 * copyout the strbuf.
8179 		 */
8180 		mi_copyout(q, mp);
8181 		return;
8182 	case MI_COPY_CASE(MI_COPY_OUT, 2):
8183 		/*
8184 		 * The address and strbuf have been copied out.
8185 		 * We're done, so just acknowledge the original
8186 		 * M_IOCTL.
8187 		 */
8188 		mi_copy_done(q, mp, 0);
8189 		return;
8190 	default:
8191 		/*
8192 		 * Something strange has happened, so acknowledge
8193 		 * the original M_IOCTL with an EPROTO error.
8194 		 */
8195 		mi_copy_done(q, mp, EPROTO);
8196 		return;
8197 	}
8198 
8199 	/*
8200 	 * Now we have the strbuf structure for TI_GETMYNAME
8201 	 * and TI_GETPEERNAME.  Next we copyout the requested
8202 	 * address and then we'll copyout the strbuf.
8203 	 */
8204 	STRUCT_SET_HANDLE(sb, ((struct iocblk *)mp->b_rptr)->ioc_flag,
8205 	    (void *)mp1->b_rptr);
8206 	if (udp->udp_family == AF_INET)
8207 		addrlen = sizeof (sin_t);
8208 	else
8209 		addrlen = sizeof (sin6_t);
8210 
8211 	if (STRUCT_FGET(sb, maxlen) < addrlen) {
8212 		mi_copy_done(q, mp, EINVAL);
8213 		return;
8214 	}
8215 	switch (((struct iocblk *)mp->b_rptr)->ioc_cmd) {
8216 	case TI_GETMYNAME:
8217 		if (udp->udp_family == AF_INET) {
8218 			ASSERT(udp->udp_ipversion == IPV4_VERSION);
8219 			if (!IN6_IS_ADDR_V4MAPPED_ANY(&udp->udp_v6src) &&
8220 			    !IN6_IS_ADDR_UNSPECIFIED(&udp->udp_v6src)) {
8221 				v4addr = V4_PART_OF_V6(udp->udp_v6src);
8222 			} else {
8223 				/*
8224 				 * INADDR_ANY
8225 				 * udp_v6src is not set, we might be bound to
8226 				 * broadcast/multicast. Use udp_bound_v6src as
8227 				 * local address instead (that could
8228 				 * also still be INADDR_ANY)
8229 				 */
8230 				v4addr = V4_PART_OF_V6(udp->udp_bound_v6src);
8231 			}
8232 		} else {
8233 			/* udp->udp_family == AF_INET6 */
8234 			if (!IN6_IS_ADDR_UNSPECIFIED(&udp->udp_v6src)) {
8235 				v6addr = udp->udp_v6src;
8236 			} else {
8237 				/*
8238 				 * UNSPECIFIED
8239 				 * udp_v6src is not set, we might be bound to
8240 				 * broadcast/multicast. Use udp_bound_v6src as
8241 				 * local address instead (that could
8242 				 * also still be UNSPECIFIED)
8243 				 */
8244 				v6addr = udp->udp_bound_v6src;
8245 			}
8246 		}
8247 		port = udp->udp_port;
8248 		break;
8249 	case TI_GETPEERNAME:
8250 		if (udp->udp_state != TS_DATA_XFER) {
8251 			mi_copy_done(q, mp, ENOTCONN);
8252 			return;
8253 		}
8254 		if (udp->udp_family == AF_INET) {
8255 			ASSERT(udp->udp_ipversion == IPV4_VERSION);
8256 			v4addr = V4_PART_OF_V6(udp->udp_v6dst);
8257 		} else {
8258 			/* udp->udp_family == AF_INET6) */
8259 			v6addr = udp->udp_v6dst;
8260 			flowinfo = udp->udp_flowinfo;
8261 		}
8262 		port = udp->udp_dstport;
8263 		break;
8264 	default:
8265 		mi_copy_done(q, mp, EPROTO);
8266 		return;
8267 	}
8268 	mp1 = mi_copyout_alloc(q, mp, STRUCT_FGETP(sb, buf), addrlen, B_TRUE);
8269 	if (!mp1)
8270 		return;
8271 
8272 	if (udp->udp_family == AF_INET) {
8273 		sin_t *sin;
8274 
8275 		STRUCT_FSET(sb, len, (int)sizeof (sin_t));
8276 		sin = (sin_t *)mp1->b_rptr;
8277 		mp1->b_wptr = (uchar_t *)&sin[1];
8278 		*sin = sin_null;
8279 		sin->sin_family = AF_INET;
8280 		sin->sin_addr.s_addr = v4addr;
8281 		sin->sin_port = port;
8282 	} else {
8283 		/* udp->udp_family == AF_INET6 */
8284 		sin6_t *sin6;
8285 
8286 		STRUCT_FSET(sb, len, (int)sizeof (sin6_t));
8287 		sin6 = (sin6_t *)mp1->b_rptr;
8288 		mp1->b_wptr = (uchar_t *)&sin6[1];
8289 		*sin6 = sin6_null;
8290 		sin6->sin6_family = AF_INET6;
8291 		sin6->sin6_flowinfo = flowinfo;
8292 		sin6->sin6_addr = v6addr;
8293 		sin6->sin6_port = port;
8294 	}
8295 	/* Copy out the address */
8296 	mi_copyout(q, mp);
8297 }
8298 
8299 
8300 static int
8301 udp_unitdata_opt_process(queue_t *q, mblk_t *mp, int *errorp,
8302     udpattrs_t *udpattrs)
8303 {
8304 	struct T_unitdata_req *udreqp;
8305 	int is_absreq_failure;
8306 	cred_t *cr;
8307 	conn_t	*connp = Q_TO_CONN(q);
8308 
8309 	ASSERT(((t_primp_t)mp->b_rptr)->type);
8310 
8311 	cr = DB_CREDDEF(mp, connp->conn_cred);
8312 
8313 	udreqp = (struct T_unitdata_req *)mp->b_rptr;
8314 
8315 	/*
8316 	 * Use upper queue for option processing since the callback
8317 	 * routines expect to be called in UDP instance instead of IP.
8318 	 */
8319 	*errorp = tpi_optcom_buf(_WR(UDP_RD(q)), mp, &udreqp->OPT_length,
8320 	    udreqp->OPT_offset, cr, &udp_opt_obj,
8321 	    udpattrs, &is_absreq_failure);
8322 
8323 	if (*errorp != 0) {
8324 		/*
8325 		 * Note: No special action needed in this
8326 		 * module for "is_absreq_failure"
8327 		 */
8328 		return (-1);		/* failure */
8329 	}
8330 	ASSERT(is_absreq_failure == 0);
8331 	return (0);	/* success */
8332 }
8333 
8334 void
8335 udp_ddi_init(void)
8336 {
8337 	UDP6_MAJ = ddi_name_to_major(UDP6);
8338 	udp_max_optsize = optcom_max_optsize(udp_opt_obj.odb_opt_des_arr,
8339 	    udp_opt_obj.odb_opt_arr_cnt);
8340 
8341 	udp_cache = kmem_cache_create("udp_cache", sizeof (udp_t),
8342 	    CACHE_ALIGN_SIZE, NULL, NULL, NULL, NULL, NULL, 0);
8343 
8344 	/*
8345 	 * We want to be informed each time a stack is created or
8346 	 * destroyed in the kernel, so we can maintain the
8347 	 * set of udp_stack_t's.
8348 	 */
8349 	netstack_register(NS_UDP, udp_stack_init, NULL, udp_stack_fini);
8350 }
8351 
8352 void
8353 udp_ddi_destroy(void)
8354 {
8355 	netstack_unregister(NS_UDP);
8356 
8357 	kmem_cache_destroy(udp_cache);
8358 }
8359 
8360 /*
8361  * Initialize the UDP stack instance.
8362  */
8363 static void *
8364 udp_stack_init(netstackid_t stackid, netstack_t *ns)
8365 {
8366 	udp_stack_t	*us;
8367 	udpparam_t	*pa;
8368 	int		i;
8369 
8370 	us = (udp_stack_t *)kmem_zalloc(sizeof (*us), KM_SLEEP);
8371 	us->us_netstack = ns;
8372 
8373 	us->us_num_epriv_ports = UDP_NUM_EPRIV_PORTS;
8374 	us->us_epriv_ports[0] = 2049;
8375 	us->us_epriv_ports[1] = 4045;
8376 
8377 	/*
8378 	 * The smallest anonymous port in the priviledged port range which UDP
8379 	 * looks for free port.  Use in the option UDP_ANONPRIVBIND.
8380 	 */
8381 	us->us_min_anonpriv_port = 512;
8382 
8383 	us->us_bind_fanout_size = udp_bind_fanout_size;
8384 
8385 	/* Roundup variable that might have been modified in /etc/system */
8386 	if (us->us_bind_fanout_size & (us->us_bind_fanout_size - 1)) {
8387 		/* Not a power of two. Round up to nearest power of two */
8388 		for (i = 0; i < 31; i++) {
8389 			if (us->us_bind_fanout_size < (1 << i))
8390 				break;
8391 		}
8392 		us->us_bind_fanout_size = 1 << i;
8393 	}
8394 	us->us_bind_fanout = kmem_zalloc(us->us_bind_fanout_size *
8395 	    sizeof (udp_fanout_t), KM_SLEEP);
8396 	for (i = 0; i < us->us_bind_fanout_size; i++) {
8397 		mutex_init(&us->us_bind_fanout[i].uf_lock, NULL, MUTEX_DEFAULT,
8398 		    NULL);
8399 	}
8400 
8401 	pa = (udpparam_t *)kmem_alloc(sizeof (udp_param_arr), KM_SLEEP);
8402 
8403 	us->us_param_arr = pa;
8404 	bcopy(udp_param_arr, us->us_param_arr, sizeof (udp_param_arr));
8405 
8406 	(void) udp_param_register(&us->us_nd,
8407 	    us->us_param_arr, A_CNT(udp_param_arr));
8408 
8409 	us->us_kstat = udp_kstat2_init(stackid, &us->us_statistics);
8410 	us->us_mibkp = udp_kstat_init(stackid);
8411 	return (us);
8412 }
8413 
8414 /*
8415  * Free the UDP stack instance.
8416  */
8417 static void
8418 udp_stack_fini(netstackid_t stackid, void *arg)
8419 {
8420 	udp_stack_t *us = (udp_stack_t *)arg;
8421 	int i;
8422 
8423 	for (i = 0; i < us->us_bind_fanout_size; i++) {
8424 		mutex_destroy(&us->us_bind_fanout[i].uf_lock);
8425 	}
8426 
8427 	kmem_free(us->us_bind_fanout, us->us_bind_fanout_size *
8428 	    sizeof (udp_fanout_t));
8429 
8430 	us->us_bind_fanout = NULL;
8431 
8432 	nd_free(&us->us_nd);
8433 	kmem_free(us->us_param_arr, sizeof (udp_param_arr));
8434 	us->us_param_arr = NULL;
8435 
8436 	udp_kstat_fini(stackid, us->us_mibkp);
8437 	us->us_mibkp = NULL;
8438 
8439 	udp_kstat2_fini(stackid, us->us_kstat);
8440 	us->us_kstat = NULL;
8441 	bzero(&us->us_statistics, sizeof (us->us_statistics));
8442 	kmem_free(us, sizeof (*us));
8443 }
8444 
8445 static void *
8446 udp_kstat2_init(netstackid_t stackid, udp_stat_t *us_statisticsp)
8447 {
8448 	kstat_t *ksp;
8449 
8450 	udp_stat_t template = {
8451 		{ "udp_ip_send",		KSTAT_DATA_UINT64 },
8452 		{ "udp_ip_ire_send",		KSTAT_DATA_UINT64 },
8453 		{ "udp_ire_null",		KSTAT_DATA_UINT64 },
8454 		{ "udp_drain",			KSTAT_DATA_UINT64 },
8455 		{ "udp_sock_fallback",		KSTAT_DATA_UINT64 },
8456 		{ "udp_rrw_busy",		KSTAT_DATA_UINT64 },
8457 		{ "udp_rrw_msgcnt",		KSTAT_DATA_UINT64 },
8458 		{ "udp_out_sw_cksum",		KSTAT_DATA_UINT64 },
8459 		{ "udp_out_sw_cksum_bytes",	KSTAT_DATA_UINT64 },
8460 		{ "udp_out_opt",		KSTAT_DATA_UINT64 },
8461 		{ "udp_out_err_notconn",	KSTAT_DATA_UINT64 },
8462 		{ "udp_out_err_output",		KSTAT_DATA_UINT64 },
8463 		{ "udp_out_err_tudr",		KSTAT_DATA_UINT64 },
8464 		{ "udp_in_pktinfo",		KSTAT_DATA_UINT64 },
8465 		{ "udp_in_recvdstaddr",		KSTAT_DATA_UINT64 },
8466 		{ "udp_in_recvopts",		KSTAT_DATA_UINT64 },
8467 		{ "udp_in_recvif",		KSTAT_DATA_UINT64 },
8468 		{ "udp_in_recvslla",		KSTAT_DATA_UINT64 },
8469 		{ "udp_in_recvucred",		KSTAT_DATA_UINT64 },
8470 		{ "udp_in_recvttl",		KSTAT_DATA_UINT64 },
8471 		{ "udp_in_recvhopopts",		KSTAT_DATA_UINT64 },
8472 		{ "udp_in_recvhoplimit",	KSTAT_DATA_UINT64 },
8473 		{ "udp_in_recvdstopts",		KSTAT_DATA_UINT64 },
8474 		{ "udp_in_recvrtdstopts",	KSTAT_DATA_UINT64 },
8475 		{ "udp_in_recvrthdr",		KSTAT_DATA_UINT64 },
8476 		{ "udp_in_recvpktinfo",		KSTAT_DATA_UINT64 },
8477 		{ "udp_in_recvtclass",		KSTAT_DATA_UINT64 },
8478 		{ "udp_in_timestamp",		KSTAT_DATA_UINT64 },
8479 #ifdef DEBUG
8480 		{ "udp_data_conn",		KSTAT_DATA_UINT64 },
8481 		{ "udp_data_notconn",		KSTAT_DATA_UINT64 },
8482 #endif
8483 	};
8484 
8485 	ksp = kstat_create_netstack(UDP_MOD_NAME, 0, "udpstat", "net",
8486 	    KSTAT_TYPE_NAMED, sizeof (template) / sizeof (kstat_named_t),
8487 	    KSTAT_FLAG_VIRTUAL, stackid);
8488 
8489 	if (ksp == NULL)
8490 		return (NULL);
8491 
8492 	bcopy(&template, us_statisticsp, sizeof (template));
8493 	ksp->ks_data = (void *)us_statisticsp;
8494 	ksp->ks_private = (void *)(uintptr_t)stackid;
8495 
8496 	kstat_install(ksp);
8497 	return (ksp);
8498 }
8499 
8500 static void
8501 udp_kstat2_fini(netstackid_t stackid, kstat_t *ksp)
8502 {
8503 	if (ksp != NULL) {
8504 		ASSERT(stackid == (netstackid_t)(uintptr_t)ksp->ks_private);
8505 		kstat_delete_netstack(ksp, stackid);
8506 	}
8507 }
8508 
8509 static void *
8510 udp_kstat_init(netstackid_t stackid)
8511 {
8512 	kstat_t	*ksp;
8513 
8514 	udp_named_kstat_t template = {
8515 		{ "inDatagrams",	KSTAT_DATA_UINT64, 0 },
8516 		{ "inErrors",		KSTAT_DATA_UINT32, 0 },
8517 		{ "outDatagrams",	KSTAT_DATA_UINT64, 0 },
8518 		{ "entrySize",		KSTAT_DATA_INT32, 0 },
8519 		{ "entry6Size",		KSTAT_DATA_INT32, 0 },
8520 		{ "outErrors",		KSTAT_DATA_UINT32, 0 },
8521 	};
8522 
8523 	ksp = kstat_create_netstack(UDP_MOD_NAME, 0, UDP_MOD_NAME, "mib2",
8524 	    KSTAT_TYPE_NAMED,
8525 	    NUM_OF_FIELDS(udp_named_kstat_t), 0, stackid);
8526 
8527 	if (ksp == NULL || ksp->ks_data == NULL)
8528 		return (NULL);
8529 
8530 	template.entrySize.value.ui32 = sizeof (mib2_udpEntry_t);
8531 	template.entry6Size.value.ui32 = sizeof (mib2_udp6Entry_t);
8532 
8533 	bcopy(&template, ksp->ks_data, sizeof (template));
8534 	ksp->ks_update = udp_kstat_update;
8535 	ksp->ks_private = (void *)(uintptr_t)stackid;
8536 
8537 	kstat_install(ksp);
8538 	return (ksp);
8539 }
8540 
8541 static void
8542 udp_kstat_fini(netstackid_t stackid, kstat_t *ksp)
8543 {
8544 	if (ksp != NULL) {
8545 		ASSERT(stackid == (netstackid_t)(uintptr_t)ksp->ks_private);
8546 		kstat_delete_netstack(ksp, stackid);
8547 	}
8548 }
8549 
8550 static int
8551 udp_kstat_update(kstat_t *kp, int rw)
8552 {
8553 	udp_named_kstat_t *udpkp;
8554 	netstackid_t	stackid = (netstackid_t)(uintptr_t)kp->ks_private;
8555 	netstack_t	*ns;
8556 	udp_stack_t	*us;
8557 
8558 	if ((kp == NULL) || (kp->ks_data == NULL))
8559 		return (EIO);
8560 
8561 	if (rw == KSTAT_WRITE)
8562 		return (EACCES);
8563 
8564 	ns = netstack_find_by_stackid(stackid);
8565 	if (ns == NULL)
8566 		return (-1);
8567 	us = ns->netstack_udp;
8568 	if (us == NULL) {
8569 		netstack_rele(ns);
8570 		return (-1);
8571 	}
8572 	udpkp = (udp_named_kstat_t *)kp->ks_data;
8573 
8574 	udpkp->inDatagrams.value.ui64 =	us->us_udp_mib.udpHCInDatagrams;
8575 	udpkp->inErrors.value.ui32 =	us->us_udp_mib.udpInErrors;
8576 	udpkp->outDatagrams.value.ui64 = us->us_udp_mib.udpHCOutDatagrams;
8577 	udpkp->outErrors.value.ui32 =	us->us_udp_mib.udpOutErrors;
8578 	netstack_rele(ns);
8579 	return (0);
8580 }
8581 
8582 /* ARGSUSED */
8583 static void
8584 udp_rput(queue_t *q, mblk_t *mp)
8585 {
8586 	/*
8587 	 * We get here whenever we do qreply() from IP,
8588 	 * i.e as part of handlings ioctls, etc.
8589 	 */
8590 	putnext(q, mp);
8591 }
8592 
8593 /*
8594  * Read-side synchronous stream info entry point, called as a
8595  * result of handling certain STREAMS ioctl operations.
8596  */
8597 static int
8598 udp_rinfop(queue_t *q, infod_t *dp)
8599 {
8600 	mblk_t	*mp;
8601 	uint_t	cmd = dp->d_cmd;
8602 	int	res = 0;
8603 	int	error = 0;
8604 	udp_t	*udp = Q_TO_UDP(RD(UDP_WR(q)));
8605 	struct stdata *stp = STREAM(q);
8606 
8607 	mutex_enter(&udp->udp_drain_lock);
8608 	/* If shutdown on read has happened, return nothing */
8609 	mutex_enter(&stp->sd_lock);
8610 	if (stp->sd_flag & STREOF) {
8611 		mutex_exit(&stp->sd_lock);
8612 		goto done;
8613 	}
8614 	mutex_exit(&stp->sd_lock);
8615 
8616 	if ((mp = udp->udp_rcv_list_head) == NULL)
8617 		goto done;
8618 
8619 	ASSERT(DB_TYPE(mp) != M_DATA && mp->b_cont != NULL);
8620 
8621 	if (cmd & INFOD_COUNT) {
8622 		/*
8623 		 * Return the number of messages.
8624 		 */
8625 		dp->d_count += udp->udp_rcv_msgcnt;
8626 		res |= INFOD_COUNT;
8627 	}
8628 	if (cmd & INFOD_BYTES) {
8629 		/*
8630 		 * Return size of all data messages.
8631 		 */
8632 		dp->d_bytes += udp->udp_rcv_cnt;
8633 		res |= INFOD_BYTES;
8634 	}
8635 	if (cmd & INFOD_FIRSTBYTES) {
8636 		/*
8637 		 * Return size of first data message.
8638 		 */
8639 		dp->d_bytes = msgdsize(mp);
8640 		res |= INFOD_FIRSTBYTES;
8641 		dp->d_cmd &= ~INFOD_FIRSTBYTES;
8642 	}
8643 	if (cmd & INFOD_COPYOUT) {
8644 		mblk_t *mp1 = mp->b_cont;
8645 		int n;
8646 		/*
8647 		 * Return data contents of first message.
8648 		 */
8649 		ASSERT(DB_TYPE(mp1) == M_DATA);
8650 		while (mp1 != NULL && dp->d_uiop->uio_resid > 0) {
8651 			n = MIN(dp->d_uiop->uio_resid, MBLKL(mp1));
8652 			if (n != 0 && (error = uiomove((char *)mp1->b_rptr, n,
8653 			    UIO_READ, dp->d_uiop)) != 0) {
8654 				goto done;
8655 			}
8656 			mp1 = mp1->b_cont;
8657 		}
8658 		res |= INFOD_COPYOUT;
8659 		dp->d_cmd &= ~INFOD_COPYOUT;
8660 	}
8661 done:
8662 	mutex_exit(&udp->udp_drain_lock);
8663 
8664 	dp->d_res |= res;
8665 
8666 	return (error);
8667 }
8668 
8669 /*
8670  * Read-side synchronous stream entry point.  This is called as a result
8671  * of recv/read operation done at sockfs, and is guaranteed to execute
8672  * outside of the interrupt thread context.  It returns a single datagram
8673  * (b_cont chain of T_UNITDATA_IND plus data) to the upper layer.
8674  */
8675 static int
8676 udp_rrw(queue_t *q, struiod_t *dp)
8677 {
8678 	mblk_t	*mp;
8679 	udp_t	*udp = Q_TO_UDP(_RD(UDP_WR(q)));
8680 	udp_stack_t *us = udp->udp_us;
8681 
8682 	/* We should never get here when we're in SNMP mode */
8683 	ASSERT(!(udp->udp_connp->conn_flags & IPCL_UDPMOD));
8684 
8685 	/*
8686 	 * Dequeue datagram from the head of the list and return
8687 	 * it to caller; also ensure that RSLEEP sd_wakeq flag is
8688 	 * set/cleared depending on whether or not there's data
8689 	 * remaining in the list.
8690 	 */
8691 	mutex_enter(&udp->udp_drain_lock);
8692 	if (!udp->udp_direct_sockfs) {
8693 		mutex_exit(&udp->udp_drain_lock);
8694 		UDP_STAT(us, udp_rrw_busy);
8695 		return (EBUSY);
8696 	}
8697 	if ((mp = udp->udp_rcv_list_head) != NULL) {
8698 		uint_t size = msgdsize(mp);
8699 
8700 		/* Last datagram in the list? */
8701 		if ((udp->udp_rcv_list_head = mp->b_next) == NULL)
8702 			udp->udp_rcv_list_tail = NULL;
8703 		mp->b_next = NULL;
8704 
8705 		udp->udp_rcv_cnt -= size;
8706 		udp->udp_rcv_msgcnt--;
8707 		UDP_STAT(us, udp_rrw_msgcnt);
8708 
8709 		/* No longer flow-controlling? */
8710 		if (udp->udp_rcv_cnt < udp->udp_rcv_hiwat &&
8711 		    udp->udp_rcv_msgcnt < udp->udp_rcv_hiwat)
8712 			udp->udp_drain_qfull = B_FALSE;
8713 	}
8714 	if (udp->udp_rcv_list_head == NULL) {
8715 		/*
8716 		 * Either we just dequeued the last datagram or
8717 		 * we get here from sockfs and have nothing to
8718 		 * return; in this case clear RSLEEP.
8719 		 */
8720 		ASSERT(udp->udp_rcv_cnt == 0);
8721 		ASSERT(udp->udp_rcv_msgcnt == 0);
8722 		ASSERT(udp->udp_rcv_list_tail == NULL);
8723 		STR_WAKEUP_CLEAR(STREAM(q));
8724 	} else {
8725 		/*
8726 		 * More data follows; we need udp_rrw() to be
8727 		 * called in future to pick up the rest.
8728 		 */
8729 		STR_WAKEUP_SET(STREAM(q));
8730 	}
8731 	mutex_exit(&udp->udp_drain_lock);
8732 	dp->d_mp = mp;
8733 	return (0);
8734 }
8735 
8736 /*
8737  * Enqueue a completely-built T_UNITDATA_IND message into the receive
8738  * list; this is typically executed within the interrupt thread context
8739  * and so we do things as quickly as possible.
8740  */
8741 static void
8742 udp_rcv_enqueue(queue_t *q, udp_t *udp, mblk_t *mp, uint_t pkt_len)
8743 {
8744 	ASSERT(q == RD(q));
8745 	ASSERT(pkt_len == msgdsize(mp));
8746 	ASSERT(mp->b_next == NULL && mp->b_cont != NULL);
8747 	ASSERT(DB_TYPE(mp) == M_PROTO && DB_TYPE(mp->b_cont) == M_DATA);
8748 	ASSERT(MBLKL(mp) >= sizeof (struct T_unitdata_ind));
8749 
8750 	mutex_enter(&udp->udp_drain_lock);
8751 	/*
8752 	 * Wake up and signal the receiving app; it is okay to do this
8753 	 * before enqueueing the mp because we are holding the drain lock.
8754 	 * One of the advantages of synchronous stream is the ability for
8755 	 * us to find out when the application performs a read on the
8756 	 * socket by way of udp_rrw() entry point being called.  We need
8757 	 * to generate SIGPOLL/SIGIO for each received data in the case
8758 	 * of asynchronous socket just as in the strrput() case.  However,
8759 	 * we only wake the application up when necessary, i.e. during the
8760 	 * first enqueue.  When udp_rrw() is called, we send up a single
8761 	 * datagram upstream and call STR_WAKEUP_SET() again when there
8762 	 * are still data remaining in our receive queue.
8763 	 */
8764 	if (udp->udp_rcv_list_head == NULL) {
8765 		STR_WAKEUP_SET(STREAM(q));
8766 		udp->udp_rcv_list_head = mp;
8767 	} else {
8768 		udp->udp_rcv_list_tail->b_next = mp;
8769 	}
8770 	udp->udp_rcv_list_tail = mp;
8771 	udp->udp_rcv_cnt += pkt_len;
8772 	udp->udp_rcv_msgcnt++;
8773 
8774 	/* Need to flow-control? */
8775 	if (udp->udp_rcv_cnt >= udp->udp_rcv_hiwat ||
8776 	    udp->udp_rcv_msgcnt >= udp->udp_rcv_hiwat)
8777 		udp->udp_drain_qfull = B_TRUE;
8778 
8779 	/* Update poll events and send SIGPOLL/SIGIO if necessary */
8780 	STR_SENDSIG(STREAM(q));
8781 	mutex_exit(&udp->udp_drain_lock);
8782 }
8783 
8784 /*
8785  * Drain the contents of receive list to the module upstream; we do
8786  * this during close or when we fallback to the slow mode due to
8787  * sockmod being popped or a module being pushed on top of us.
8788  */
8789 static void
8790 udp_rcv_drain(queue_t *q, udp_t *udp, boolean_t closing)
8791 {
8792 	mblk_t *mp;
8793 	udp_stack_t *us = udp->udp_us;
8794 
8795 	ASSERT(q == RD(q));
8796 
8797 	mutex_enter(&udp->udp_drain_lock);
8798 	/*
8799 	 * There is no race with a concurrent udp_input() sending
8800 	 * up packets using putnext() after we have cleared the
8801 	 * udp_direct_sockfs flag but before we have completed
8802 	 * sending up the packets in udp_rcv_list, since we are
8803 	 * either a writer or we have quiesced the conn.
8804 	 */
8805 	udp->udp_direct_sockfs = B_FALSE;
8806 	mutex_exit(&udp->udp_drain_lock);
8807 
8808 	if (udp->udp_rcv_list_head != NULL)
8809 		UDP_STAT(us, udp_drain);
8810 
8811 	/*
8812 	 * Send up everything via putnext(); note here that we
8813 	 * don't need the udp_drain_lock to protect us since
8814 	 * nothing can enter udp_rrw() and that we currently
8815 	 * have exclusive access to this udp.
8816 	 */
8817 	while ((mp = udp->udp_rcv_list_head) != NULL) {
8818 		udp->udp_rcv_list_head = mp->b_next;
8819 		mp->b_next = NULL;
8820 		udp->udp_rcv_cnt -= msgdsize(mp);
8821 		udp->udp_rcv_msgcnt--;
8822 		if (closing) {
8823 			freemsg(mp);
8824 		} else {
8825 			putnext(q, mp);
8826 		}
8827 	}
8828 	ASSERT(udp->udp_rcv_cnt == 0);
8829 	ASSERT(udp->udp_rcv_msgcnt == 0);
8830 	ASSERT(udp->udp_rcv_list_head == NULL);
8831 	udp->udp_rcv_list_tail = NULL;
8832 	udp->udp_drain_qfull = B_FALSE;
8833 }
8834 
8835 static size_t
8836 udp_set_rcv_hiwat(udp_t *udp, size_t size)
8837 {
8838 	udp_stack_t *us = udp->udp_us;
8839 
8840 	/* We add a bit of extra buffering */
8841 	size += size >> 1;
8842 	if (size > us->us_max_buf)
8843 		size = us->us_max_buf;
8844 
8845 	udp->udp_rcv_hiwat = size;
8846 	return (size);
8847 }
8848